| 1 | /* SPDX-License-Identifier: GPL-2.0 */ | 
|---|
| 2 | /* | 
|---|
| 3 | * x86 TSC related functions | 
|---|
| 4 | */ | 
|---|
| 5 | #ifndef _ASM_X86_TSC_H | 
|---|
| 6 | #define _ASM_X86_TSC_H | 
|---|
| 7 |  | 
|---|
| 8 | #include <asm/asm.h> | 
|---|
| 9 | #include <asm/cpufeature.h> | 
|---|
| 10 | #include <asm/processor.h> | 
|---|
| 11 | #include <asm/msr.h> | 
|---|
| 12 |  | 
|---|
| 13 | /** | 
|---|
| 14 | * rdtsc() - returns the current TSC without ordering constraints | 
|---|
| 15 | * | 
|---|
| 16 | * rdtsc() returns the result of RDTSC as a 64-bit integer.  The | 
|---|
| 17 | * only ordering constraint it supplies is the ordering implied by | 
|---|
| 18 | * "asm volatile": it will put the RDTSC in the place you expect.  The | 
|---|
| 19 | * CPU can and will speculatively execute that RDTSC, though, so the | 
|---|
| 20 | * results can be non-monotonic if compared on different CPUs. | 
|---|
| 21 | */ | 
|---|
| 22 | static __always_inline u64 rdtsc(void) | 
|---|
| 23 | { | 
|---|
| 24 | EAX_EDX_DECLARE_ARGS(val, low, high); | 
|---|
| 25 |  | 
|---|
| 26 | asm volatile( "rdtsc": EAX_EDX_RET(val, low, high)); | 
|---|
| 27 |  | 
|---|
| 28 | return EAX_EDX_VAL(val, low, high); | 
|---|
| 29 | } | 
|---|
| 30 |  | 
|---|
| 31 | /** | 
|---|
| 32 | * rdtsc_ordered() - read the current TSC in program order | 
|---|
| 33 | * | 
|---|
| 34 | * rdtsc_ordered() returns the result of RDTSC as a 64-bit integer. | 
|---|
| 35 | * It is ordered like a load to a global in-memory counter.  It should | 
|---|
| 36 | * be impossible to observe non-monotonic rdtsc_unordered() behavior | 
|---|
| 37 | * across multiple CPUs as long as the TSC is synced. | 
|---|
| 38 | */ | 
|---|
| 39 | static __always_inline u64 rdtsc_ordered(void) | 
|---|
| 40 | { | 
|---|
| 41 | EAX_EDX_DECLARE_ARGS(val, low, high); | 
|---|
| 42 |  | 
|---|
| 43 | /* | 
|---|
| 44 | * The RDTSC instruction is not ordered relative to memory | 
|---|
| 45 | * access.  The Intel SDM and the AMD APM are both vague on this | 
|---|
| 46 | * point, but empirically an RDTSC instruction can be | 
|---|
| 47 | * speculatively executed before prior loads.  An RDTSC | 
|---|
| 48 | * immediately after an appropriate barrier appears to be | 
|---|
| 49 | * ordered as a normal load, that is, it provides the same | 
|---|
| 50 | * ordering guarantees as reading from a global memory location | 
|---|
| 51 | * that some other imaginary CPU is updating continuously with a | 
|---|
| 52 | * time stamp. | 
|---|
| 53 | * | 
|---|
| 54 | * Thus, use the preferred barrier on the respective CPU, aiming for | 
|---|
| 55 | * RDTSCP as the default. | 
|---|
| 56 | */ | 
|---|
| 57 | asm volatile(ALTERNATIVE_2( "rdtsc", | 
|---|
| 58 | "lfence; rdtsc", X86_FEATURE_LFENCE_RDTSC, | 
|---|
| 59 | "rdtscp", X86_FEATURE_RDTSCP) | 
|---|
| 60 | : EAX_EDX_RET(val, low, high) | 
|---|
| 61 | /* RDTSCP clobbers ECX with MSR_TSC_AUX. */ | 
|---|
| 62 | :: "ecx"); | 
|---|
| 63 |  | 
|---|
| 64 | return EAX_EDX_VAL(val, low, high); | 
|---|
| 65 | } | 
|---|
| 66 |  | 
|---|
| 67 | /* | 
|---|
| 68 | * Standard way to access the cycle counter. | 
|---|
| 69 | */ | 
|---|
| 70 | typedef unsigned long long cycles_t; | 
|---|
| 71 |  | 
|---|
| 72 | extern unsigned int cpu_khz; | 
|---|
| 73 | extern unsigned int tsc_khz; | 
|---|
| 74 |  | 
|---|
| 75 | extern void disable_TSC(void); | 
|---|
| 76 |  | 
|---|
| 77 | static inline cycles_t get_cycles(void) | 
|---|
| 78 | { | 
|---|
| 79 | if (!IS_ENABLED(CONFIG_X86_TSC) && | 
|---|
| 80 | !cpu_feature_enabled(X86_FEATURE_TSC)) | 
|---|
| 81 | return 0; | 
|---|
| 82 | return rdtsc(); | 
|---|
| 83 | } | 
|---|
| 84 | #define get_cycles get_cycles | 
|---|
| 85 |  | 
|---|
| 86 | extern void tsc_early_init(void); | 
|---|
| 87 | extern void tsc_init(void); | 
|---|
| 88 | extern void mark_tsc_unstable(char *reason); | 
|---|
| 89 | extern int unsynchronized_tsc(void); | 
|---|
| 90 | extern int check_tsc_unstable(void); | 
|---|
| 91 | extern void mark_tsc_async_resets(char *reason); | 
|---|
| 92 | extern unsigned long native_calibrate_cpu_early(void); | 
|---|
| 93 | extern unsigned long native_calibrate_tsc(void); | 
|---|
| 94 | extern unsigned long long native_sched_clock_from_tsc(u64 tsc); | 
|---|
| 95 |  | 
|---|
| 96 | extern int tsc_clocksource_reliable; | 
|---|
| 97 | #ifdef CONFIG_X86_TSC | 
|---|
| 98 | extern bool tsc_async_resets; | 
|---|
| 99 | #else | 
|---|
| 100 | # define tsc_async_resets	false | 
|---|
| 101 | #endif | 
|---|
| 102 |  | 
|---|
| 103 | /* | 
|---|
| 104 | * Boot-time check whether the TSCs are synchronized across | 
|---|
| 105 | * all CPUs/cores: | 
|---|
| 106 | */ | 
|---|
| 107 | #ifdef CONFIG_X86_TSC | 
|---|
| 108 | extern bool tsc_store_and_check_tsc_adjust(bool bootcpu); | 
|---|
| 109 | extern void tsc_verify_tsc_adjust(bool resume); | 
|---|
| 110 | extern void check_tsc_sync_target(void); | 
|---|
| 111 | #else | 
|---|
| 112 | static inline bool tsc_store_and_check_tsc_adjust(bool bootcpu) { return false; } | 
|---|
| 113 | static inline void tsc_verify_tsc_adjust(bool resume) { } | 
|---|
| 114 | static inline void check_tsc_sync_target(void) { } | 
|---|
| 115 | #endif | 
|---|
| 116 |  | 
|---|
| 117 | extern int notsc_setup(char *); | 
|---|
| 118 | extern void tsc_save_sched_clock_state(void); | 
|---|
| 119 | extern void tsc_restore_sched_clock_state(void); | 
|---|
| 120 |  | 
|---|
| 121 | unsigned long cpu_khz_from_msr(void); | 
|---|
| 122 |  | 
|---|
| 123 | #endif /* _ASM_X86_TSC_H */ | 
|---|
| 124 |  | 
|---|