| 1 | // SPDX-License-Identifier: GPL-2.0 | 
|---|
| 2 | /* | 
|---|
| 3 | *  Copyright (C) 1995  Linus Torvalds | 
|---|
| 4 | *  Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs. | 
|---|
| 5 | *  Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar | 
|---|
| 6 | */ | 
|---|
| 7 | #include <linux/sched.h>		/* test_thread_flag(), ...	*/ | 
|---|
| 8 | #include <linux/sched/task_stack.h>	/* task_stack_*(), ...		*/ | 
|---|
| 9 | #include <linux/kdebug.h>		/* oops_begin/end, ...		*/ | 
|---|
| 10 | #include <linux/memblock.h>		/* max_low_pfn			*/ | 
|---|
| 11 | #include <linux/kfence.h>		/* kfence_handle_page_fault	*/ | 
|---|
| 12 | #include <linux/kprobes.h>		/* NOKPROBE_SYMBOL, ...		*/ | 
|---|
| 13 | #include <linux/mmiotrace.h>		/* kmmio_handler, ...		*/ | 
|---|
| 14 | #include <linux/perf_event.h>		/* perf_sw_event		*/ | 
|---|
| 15 | #include <linux/hugetlb.h>		/* hstate_index_to_shift	*/ | 
|---|
| 16 | #include <linux/context_tracking.h>	/* exception_enter(), ...	*/ | 
|---|
| 17 | #include <linux/uaccess.h>		/* faulthandler_disabled()	*/ | 
|---|
| 18 | #include <linux/efi.h>			/* efi_crash_gracefully_on_page_fault()*/ | 
|---|
| 19 | #include <linux/mm_types.h> | 
|---|
| 20 | #include <linux/mm.h>			/* find_and_lock_vma() */ | 
|---|
| 21 | #include <linux/vmalloc.h> | 
|---|
| 22 |  | 
|---|
| 23 | #include <asm/cpufeature.h>		/* boot_cpu_has, ...		*/ | 
|---|
| 24 | #include <asm/traps.h>			/* dotraplinkage, ...		*/ | 
|---|
| 25 | #include <asm/fixmap.h>			/* VSYSCALL_ADDR		*/ | 
|---|
| 26 | #include <asm/vsyscall.h>		/* emulate_vsyscall		*/ | 
|---|
| 27 | #include <asm/vm86.h>			/* struct vm86			*/ | 
|---|
| 28 | #include <asm/mmu_context.h>		/* vma_pkey()			*/ | 
|---|
| 29 | #include <asm/efi.h>			/* efi_crash_gracefully_on_page_fault()*/ | 
|---|
| 30 | #include <asm/desc.h>			/* store_idt(), ...		*/ | 
|---|
| 31 | #include <asm/cpu_entry_area.h>		/* exception stack		*/ | 
|---|
| 32 | #include <asm/pgtable_areas.h>		/* VMALLOC_START, ...		*/ | 
|---|
| 33 | #include <asm/kvm_para.h>		/* kvm_handle_async_pf		*/ | 
|---|
| 34 | #include <asm/vdso.h>			/* fixup_vdso_exception()	*/ | 
|---|
| 35 | #include <asm/irq_stack.h> | 
|---|
| 36 | #include <asm/fred.h> | 
|---|
| 37 | #include <asm/sev.h>			/* snp_dump_hva_rmpentry()	*/ | 
|---|
| 38 |  | 
|---|
| 39 | #define CREATE_TRACE_POINTS | 
|---|
| 40 | #include <trace/events/exceptions.h> | 
|---|
| 41 |  | 
|---|
| 42 | /* | 
|---|
| 43 | * Returns 0 if mmiotrace is disabled, or if the fault is not | 
|---|
| 44 | * handled by mmiotrace: | 
|---|
| 45 | */ | 
|---|
| 46 | static nokprobe_inline int | 
|---|
| 47 | kmmio_fault(struct pt_regs *regs, unsigned long addr) | 
|---|
| 48 | { | 
|---|
| 49 | if (unlikely(is_kmmio_active())) | 
|---|
| 50 | if (kmmio_handler(regs, addr) == 1) | 
|---|
| 51 | return -1; | 
|---|
| 52 | return 0; | 
|---|
| 53 | } | 
|---|
| 54 |  | 
|---|
| 55 | /* | 
|---|
| 56 | * Prefetch quirks: | 
|---|
| 57 | * | 
|---|
| 58 | * 32-bit mode: | 
|---|
| 59 | * | 
|---|
| 60 | *   Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch. | 
|---|
| 61 | *   Check that here and ignore it.  This is AMD erratum #91. | 
|---|
| 62 | * | 
|---|
| 63 | * 64-bit mode: | 
|---|
| 64 | * | 
|---|
| 65 | *   Sometimes the CPU reports invalid exceptions on prefetch. | 
|---|
| 66 | *   Check that here and ignore it. | 
|---|
| 67 | * | 
|---|
| 68 | * Opcode checker based on code by Richard Brunner. | 
|---|
| 69 | */ | 
|---|
| 70 | static inline int | 
|---|
| 71 | check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr, | 
|---|
| 72 | unsigned char opcode, int *prefetch) | 
|---|
| 73 | { | 
|---|
| 74 | unsigned char instr_hi = opcode & 0xf0; | 
|---|
| 75 | unsigned char instr_lo = opcode & 0x0f; | 
|---|
| 76 |  | 
|---|
| 77 | switch (instr_hi) { | 
|---|
| 78 | case 0x20: | 
|---|
| 79 | case 0x30: | 
|---|
| 80 | /* | 
|---|
| 81 | * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes. | 
|---|
| 82 | * In X86_64 long mode, the CPU will signal invalid | 
|---|
| 83 | * opcode if some of these prefixes are present so | 
|---|
| 84 | * X86_64 will never get here anyway | 
|---|
| 85 | */ | 
|---|
| 86 | return ((instr_lo & 7) == 0x6); | 
|---|
| 87 | #ifdef CONFIG_X86_64 | 
|---|
| 88 | case 0x40: | 
|---|
| 89 | /* | 
|---|
| 90 | * In 64-bit mode 0x40..0x4F are valid REX prefixes | 
|---|
| 91 | */ | 
|---|
| 92 | return (!user_mode(regs) || user_64bit_mode(regs)); | 
|---|
| 93 | #endif | 
|---|
| 94 | case 0x60: | 
|---|
| 95 | /* 0x64 thru 0x67 are valid prefixes in all modes. */ | 
|---|
| 96 | return (instr_lo & 0xC) == 0x4; | 
|---|
| 97 | case 0xF0: | 
|---|
| 98 | /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */ | 
|---|
| 99 | return !instr_lo || (instr_lo>>1) == 1; | 
|---|
| 100 | case 0x00: | 
|---|
| 101 | /* Prefetch instruction is 0x0F0D or 0x0F18 */ | 
|---|
| 102 | if (get_kernel_nofault(opcode, instr)) | 
|---|
| 103 | return 0; | 
|---|
| 104 |  | 
|---|
| 105 | *prefetch = (instr_lo == 0xF) && | 
|---|
| 106 | (opcode == 0x0D || opcode == 0x18); | 
|---|
| 107 | return 0; | 
|---|
| 108 | default: | 
|---|
| 109 | return 0; | 
|---|
| 110 | } | 
|---|
| 111 | } | 
|---|
| 112 |  | 
|---|
| 113 | static bool is_amd_k8_pre_npt(void) | 
|---|
| 114 | { | 
|---|
| 115 | struct cpuinfo_x86 *c = &boot_cpu_data; | 
|---|
| 116 |  | 
|---|
| 117 | return unlikely(IS_ENABLED(CONFIG_CPU_SUP_AMD) && | 
|---|
| 118 | c->x86_vendor == X86_VENDOR_AMD && | 
|---|
| 119 | c->x86 == 0xf && c->x86_model < 0x40); | 
|---|
| 120 | } | 
|---|
| 121 |  | 
|---|
| 122 | static int | 
|---|
| 123 | is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr) | 
|---|
| 124 | { | 
|---|
| 125 | unsigned char *max_instr; | 
|---|
| 126 | unsigned char *instr; | 
|---|
| 127 | int prefetch = 0; | 
|---|
| 128 |  | 
|---|
| 129 | /* Erratum #91 affects AMD K8, pre-NPT CPUs */ | 
|---|
| 130 | if (!is_amd_k8_pre_npt()) | 
|---|
| 131 | return 0; | 
|---|
| 132 |  | 
|---|
| 133 | /* | 
|---|
| 134 | * If it was a exec (instruction fetch) fault on NX page, then | 
|---|
| 135 | * do not ignore the fault: | 
|---|
| 136 | */ | 
|---|
| 137 | if (error_code & X86_PF_INSTR) | 
|---|
| 138 | return 0; | 
|---|
| 139 |  | 
|---|
| 140 | instr = (void *)convert_ip_to_linear(current, regs); | 
|---|
| 141 | max_instr = instr + 15; | 
|---|
| 142 |  | 
|---|
| 143 | /* | 
|---|
| 144 | * This code has historically always bailed out if IP points to a | 
|---|
| 145 | * not-present page (e.g. due to a race).  No one has ever | 
|---|
| 146 | * complained about this. | 
|---|
| 147 | */ | 
|---|
| 148 | pagefault_disable(); | 
|---|
| 149 |  | 
|---|
| 150 | while (instr < max_instr) { | 
|---|
| 151 | unsigned char opcode; | 
|---|
| 152 |  | 
|---|
| 153 | if (user_mode(regs)) { | 
|---|
| 154 | if (get_user(opcode, (unsigned char __user *) instr)) | 
|---|
| 155 | break; | 
|---|
| 156 | } else { | 
|---|
| 157 | if (get_kernel_nofault(opcode, instr)) | 
|---|
| 158 | break; | 
|---|
| 159 | } | 
|---|
| 160 |  | 
|---|
| 161 | instr++; | 
|---|
| 162 |  | 
|---|
| 163 | if (!check_prefetch_opcode(regs, instr, opcode, prefetch: &prefetch)) | 
|---|
| 164 | break; | 
|---|
| 165 | } | 
|---|
| 166 |  | 
|---|
| 167 | pagefault_enable(); | 
|---|
| 168 | return prefetch; | 
|---|
| 169 | } | 
|---|
| 170 |  | 
|---|
| 171 | DEFINE_SPINLOCK(pgd_lock); | 
|---|
| 172 | LIST_HEAD(pgd_list); | 
|---|
| 173 |  | 
|---|
| 174 | #ifdef CONFIG_X86_32 | 
|---|
| 175 | static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address) | 
|---|
| 176 | { | 
|---|
| 177 | unsigned index = pgd_index(address); | 
|---|
| 178 | pgd_t *pgd_k; | 
|---|
| 179 | p4d_t *p4d, *p4d_k; | 
|---|
| 180 | pud_t *pud, *pud_k; | 
|---|
| 181 | pmd_t *pmd, *pmd_k; | 
|---|
| 182 |  | 
|---|
| 183 | pgd += index; | 
|---|
| 184 | pgd_k = init_mm.pgd + index; | 
|---|
| 185 |  | 
|---|
| 186 | if (!pgd_present(*pgd_k)) | 
|---|
| 187 | return NULL; | 
|---|
| 188 |  | 
|---|
| 189 | /* | 
|---|
| 190 | * set_pgd(pgd, *pgd_k); here would be useless on PAE | 
|---|
| 191 | * and redundant with the set_pmd() on non-PAE. As would | 
|---|
| 192 | * set_p4d/set_pud. | 
|---|
| 193 | */ | 
|---|
| 194 | p4d = p4d_offset(pgd, address); | 
|---|
| 195 | p4d_k = p4d_offset(pgd_k, address); | 
|---|
| 196 | if (!p4d_present(*p4d_k)) | 
|---|
| 197 | return NULL; | 
|---|
| 198 |  | 
|---|
| 199 | pud = pud_offset(p4d, address); | 
|---|
| 200 | pud_k = pud_offset(p4d_k, address); | 
|---|
| 201 | if (!pud_present(*pud_k)) | 
|---|
| 202 | return NULL; | 
|---|
| 203 |  | 
|---|
| 204 | pmd = pmd_offset(pud, address); | 
|---|
| 205 | pmd_k = pmd_offset(pud_k, address); | 
|---|
| 206 |  | 
|---|
| 207 | if (pmd_present(*pmd) != pmd_present(*pmd_k)) | 
|---|
| 208 | set_pmd(pmd, *pmd_k); | 
|---|
| 209 |  | 
|---|
| 210 | if (!pmd_present(*pmd_k)) | 
|---|
| 211 | return NULL; | 
|---|
| 212 | else | 
|---|
| 213 | BUG_ON(pmd_pfn(*pmd) != pmd_pfn(*pmd_k)); | 
|---|
| 214 |  | 
|---|
| 215 | return pmd_k; | 
|---|
| 216 | } | 
|---|
| 217 |  | 
|---|
| 218 | /* | 
|---|
| 219 | *   Handle a fault on the vmalloc or module mapping area | 
|---|
| 220 | * | 
|---|
| 221 | *   This is needed because there is a race condition between the time | 
|---|
| 222 | *   when the vmalloc mapping code updates the PMD to the point in time | 
|---|
| 223 | *   where it synchronizes this update with the other page-tables in the | 
|---|
| 224 | *   system. | 
|---|
| 225 | * | 
|---|
| 226 | *   In this race window another thread/CPU can map an area on the same | 
|---|
| 227 | *   PMD, finds it already present and does not synchronize it with the | 
|---|
| 228 | *   rest of the system yet. As a result v[mz]alloc might return areas | 
|---|
| 229 | *   which are not mapped in every page-table in the system, causing an | 
|---|
| 230 | *   unhandled page-fault when they are accessed. | 
|---|
| 231 | */ | 
|---|
| 232 | static noinline int vmalloc_fault(unsigned long address) | 
|---|
| 233 | { | 
|---|
| 234 | unsigned long pgd_paddr; | 
|---|
| 235 | pmd_t *pmd_k; | 
|---|
| 236 | pte_t *pte_k; | 
|---|
| 237 |  | 
|---|
| 238 | /* Make sure we are in vmalloc area: */ | 
|---|
| 239 | if (!(address >= VMALLOC_START && address < VMALLOC_END)) | 
|---|
| 240 | return -1; | 
|---|
| 241 |  | 
|---|
| 242 | /* | 
|---|
| 243 | * Synchronize this task's top level page-table | 
|---|
| 244 | * with the 'reference' page table. | 
|---|
| 245 | * | 
|---|
| 246 | * Do _not_ use "current" here. We might be inside | 
|---|
| 247 | * an interrupt in the middle of a task switch.. | 
|---|
| 248 | */ | 
|---|
| 249 | pgd_paddr = read_cr3_pa(); | 
|---|
| 250 | pmd_k = vmalloc_sync_one(__va(pgd_paddr), address); | 
|---|
| 251 | if (!pmd_k) | 
|---|
| 252 | return -1; | 
|---|
| 253 |  | 
|---|
| 254 | if (pmd_leaf(*pmd_k)) | 
|---|
| 255 | return 0; | 
|---|
| 256 |  | 
|---|
| 257 | pte_k = pte_offset_kernel(pmd_k, address); | 
|---|
| 258 | if (!pte_present(*pte_k)) | 
|---|
| 259 | return -1; | 
|---|
| 260 |  | 
|---|
| 261 | return 0; | 
|---|
| 262 | } | 
|---|
| 263 | NOKPROBE_SYMBOL(vmalloc_fault); | 
|---|
| 264 |  | 
|---|
| 265 | void arch_sync_kernel_mappings(unsigned long start, unsigned long end) | 
|---|
| 266 | { | 
|---|
| 267 | unsigned long addr; | 
|---|
| 268 |  | 
|---|
| 269 | for (addr = start & PMD_MASK; | 
|---|
| 270 | addr >= TASK_SIZE_MAX && addr < VMALLOC_END; | 
|---|
| 271 | addr += PMD_SIZE) { | 
|---|
| 272 | struct page *page; | 
|---|
| 273 |  | 
|---|
| 274 | spin_lock(&pgd_lock); | 
|---|
| 275 | list_for_each_entry(page, &pgd_list, lru) { | 
|---|
| 276 | spinlock_t *pgt_lock; | 
|---|
| 277 |  | 
|---|
| 278 | /* the pgt_lock only for Xen */ | 
|---|
| 279 | pgt_lock = &pgd_page_get_mm(page)->page_table_lock; | 
|---|
| 280 |  | 
|---|
| 281 | spin_lock(pgt_lock); | 
|---|
| 282 | vmalloc_sync_one(page_address(page), addr); | 
|---|
| 283 | spin_unlock(pgt_lock); | 
|---|
| 284 | } | 
|---|
| 285 | spin_unlock(&pgd_lock); | 
|---|
| 286 | } | 
|---|
| 287 | } | 
|---|
| 288 |  | 
|---|
| 289 | static bool low_pfn(unsigned long pfn) | 
|---|
| 290 | { | 
|---|
| 291 | return pfn < max_low_pfn; | 
|---|
| 292 | } | 
|---|
| 293 |  | 
|---|
| 294 | static void dump_pagetable(unsigned long address) | 
|---|
| 295 | { | 
|---|
| 296 | pgd_t *base = __va(read_cr3_pa()); | 
|---|
| 297 | pgd_t *pgd = &base[pgd_index(address)]; | 
|---|
| 298 | p4d_t *p4d; | 
|---|
| 299 | pud_t *pud; | 
|---|
| 300 | pmd_t *pmd; | 
|---|
| 301 | pte_t *pte; | 
|---|
| 302 |  | 
|---|
| 303 | #ifdef CONFIG_X86_PAE | 
|---|
| 304 | pr_info( "*pdpt = %016Lx ", pgd_val(*pgd)); | 
|---|
| 305 | if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd)) | 
|---|
| 306 | goto out; | 
|---|
| 307 | #define pr_pde pr_cont | 
|---|
| 308 | #else | 
|---|
| 309 | #define pr_pde pr_info | 
|---|
| 310 | #endif | 
|---|
| 311 | p4d = p4d_offset(pgd, address); | 
|---|
| 312 | pud = pud_offset(p4d, address); | 
|---|
| 313 | pmd = pmd_offset(pud, address); | 
|---|
| 314 | pr_pde( "*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd)); | 
|---|
| 315 | #undef pr_pde | 
|---|
| 316 |  | 
|---|
| 317 | /* | 
|---|
| 318 | * We must not directly access the pte in the highpte | 
|---|
| 319 | * case if the page table is located in highmem. | 
|---|
| 320 | * And let's rather not kmap-atomic the pte, just in case | 
|---|
| 321 | * it's allocated already: | 
|---|
| 322 | */ | 
|---|
| 323 | if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_leaf(*pmd)) | 
|---|
| 324 | goto out; | 
|---|
| 325 |  | 
|---|
| 326 | pte = pte_offset_kernel(pmd, address); | 
|---|
| 327 | pr_cont( "*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte)); | 
|---|
| 328 | out: | 
|---|
| 329 | pr_cont( "\n"); | 
|---|
| 330 | } | 
|---|
| 331 |  | 
|---|
| 332 | #else /* CONFIG_X86_64: */ | 
|---|
| 333 |  | 
|---|
| 334 | #ifdef CONFIG_CPU_SUP_AMD | 
|---|
| 335 | static const char errata93_warning[] = | 
|---|
| 336 | KERN_ERR | 
|---|
| 337 | "******* Your BIOS seems to not contain a fix for K8 errata #93\n" | 
|---|
| 338 | "******* Working around it, but it may cause SEGVs or burn power.\n" | 
|---|
| 339 | "******* Please consider a BIOS update.\n" | 
|---|
| 340 | "******* Disabling USB legacy in the BIOS may also help.\n"; | 
|---|
| 341 | #endif | 
|---|
| 342 |  | 
|---|
| 343 | static int bad_address(void *p) | 
|---|
| 344 | { | 
|---|
| 345 | unsigned long dummy; | 
|---|
| 346 |  | 
|---|
| 347 | return get_kernel_nofault(dummy, (unsigned long *)p); | 
|---|
| 348 | } | 
|---|
| 349 |  | 
|---|
| 350 | static void dump_pagetable(unsigned long address) | 
|---|
| 351 | { | 
|---|
| 352 | pgd_t *base = __va(read_cr3_pa()); | 
|---|
| 353 | pgd_t *pgd = base + pgd_index(address); | 
|---|
| 354 | p4d_t *p4d; | 
|---|
| 355 | pud_t *pud; | 
|---|
| 356 | pmd_t *pmd; | 
|---|
| 357 | pte_t *pte; | 
|---|
| 358 |  | 
|---|
| 359 | if (bad_address(p: pgd)) | 
|---|
| 360 | goto bad; | 
|---|
| 361 |  | 
|---|
| 362 | pr_info( "PGD %lx ", pgd_val(*pgd)); | 
|---|
| 363 |  | 
|---|
| 364 | if (!pgd_present(pgd: *pgd)) | 
|---|
| 365 | goto out; | 
|---|
| 366 |  | 
|---|
| 367 | p4d = p4d_offset(pgd, address); | 
|---|
| 368 | if (bad_address(p: p4d)) | 
|---|
| 369 | goto bad; | 
|---|
| 370 |  | 
|---|
| 371 | pr_cont( "P4D %lx ", p4d_val(*p4d)); | 
|---|
| 372 | if (!p4d_present(p4d: *p4d) || p4d_leaf(*p4d)) | 
|---|
| 373 | goto out; | 
|---|
| 374 |  | 
|---|
| 375 | pud = pud_offset(p4d, address); | 
|---|
| 376 | if (bad_address(p: pud)) | 
|---|
| 377 | goto bad; | 
|---|
| 378 |  | 
|---|
| 379 | pr_cont( "PUD %lx ", pud_val(*pud)); | 
|---|
| 380 | if (!pud_present(pud: *pud) || pud_leaf(pud: *pud)) | 
|---|
| 381 | goto out; | 
|---|
| 382 |  | 
|---|
| 383 | pmd = pmd_offset(pud, address); | 
|---|
| 384 | if (bad_address(p: pmd)) | 
|---|
| 385 | goto bad; | 
|---|
| 386 |  | 
|---|
| 387 | pr_cont( "PMD %lx ", pmd_val(*pmd)); | 
|---|
| 388 | if (!pmd_present(pmd: *pmd) || pmd_leaf(pte: *pmd)) | 
|---|
| 389 | goto out; | 
|---|
| 390 |  | 
|---|
| 391 | pte = pte_offset_kernel(pmd, address); | 
|---|
| 392 | if (bad_address(p: pte)) | 
|---|
| 393 | goto bad; | 
|---|
| 394 |  | 
|---|
| 395 | pr_cont( "PTE %lx", pte_val(*pte)); | 
|---|
| 396 | out: | 
|---|
| 397 | pr_cont( "\n"); | 
|---|
| 398 | return; | 
|---|
| 399 | bad: | 
|---|
| 400 | pr_info( "BAD\n"); | 
|---|
| 401 | } | 
|---|
| 402 |  | 
|---|
| 403 | #endif /* CONFIG_X86_64 */ | 
|---|
| 404 |  | 
|---|
| 405 | /* | 
|---|
| 406 | * Workaround for K8 erratum #93 & buggy BIOS. | 
|---|
| 407 | * | 
|---|
| 408 | * BIOS SMM functions are required to use a specific workaround | 
|---|
| 409 | * to avoid corruption of the 64bit RIP register on C stepping K8. | 
|---|
| 410 | * | 
|---|
| 411 | * A lot of BIOS that didn't get tested properly miss this. | 
|---|
| 412 | * | 
|---|
| 413 | * The OS sees this as a page fault with the upper 32bits of RIP cleared. | 
|---|
| 414 | * Try to work around it here. | 
|---|
| 415 | * | 
|---|
| 416 | * Note we only handle faults in kernel here. | 
|---|
| 417 | * Does nothing on 32-bit. | 
|---|
| 418 | */ | 
|---|
| 419 | static int is_errata93(struct pt_regs *regs, unsigned long address) | 
|---|
| 420 | { | 
|---|
| 421 | #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD) | 
|---|
| 422 | if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD | 
|---|
| 423 | || boot_cpu_data.x86 != 0xf) | 
|---|
| 424 | return 0; | 
|---|
| 425 |  | 
|---|
| 426 | if (user_mode(regs)) | 
|---|
| 427 | return 0; | 
|---|
| 428 |  | 
|---|
| 429 | if (address != regs->ip) | 
|---|
| 430 | return 0; | 
|---|
| 431 |  | 
|---|
| 432 | if ((address >> 32) != 0) | 
|---|
| 433 | return 0; | 
|---|
| 434 |  | 
|---|
| 435 | address |= 0xffffffffUL << 32; | 
|---|
| 436 | if ((address >= (u64)_stext && address <= (u64)_etext) || | 
|---|
| 437 | (address >= MODULES_VADDR && address <= MODULES_END)) { | 
|---|
| 438 | printk_once(errata93_warning); | 
|---|
| 439 | regs->ip = address; | 
|---|
| 440 | return 1; | 
|---|
| 441 | } | 
|---|
| 442 | #endif | 
|---|
| 443 | return 0; | 
|---|
| 444 | } | 
|---|
| 445 |  | 
|---|
| 446 | /* | 
|---|
| 447 | * Work around K8 erratum #100 K8 in compat mode occasionally jumps | 
|---|
| 448 | * to illegal addresses >4GB. | 
|---|
| 449 | * | 
|---|
| 450 | * We catch this in the page fault handler because these addresses | 
|---|
| 451 | * are not reachable. Just detect this case and return.  Any code | 
|---|
| 452 | * segment in LDT is compatibility mode. | 
|---|
| 453 | */ | 
|---|
| 454 | static int is_errata100(struct pt_regs *regs, unsigned long address) | 
|---|
| 455 | { | 
|---|
| 456 | #ifdef CONFIG_X86_64 | 
|---|
| 457 | if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32)) | 
|---|
| 458 | return 1; | 
|---|
| 459 | #endif | 
|---|
| 460 | return 0; | 
|---|
| 461 | } | 
|---|
| 462 |  | 
|---|
| 463 | /* Pentium F0 0F C7 C8 bug workaround: */ | 
|---|
| 464 | static int is_f00f_bug(struct pt_regs *regs, unsigned long error_code, | 
|---|
| 465 | unsigned long address) | 
|---|
| 466 | { | 
|---|
| 467 | #ifdef CONFIG_X86_F00F_BUG | 
|---|
| 468 | if (boot_cpu_has_bug(X86_BUG_F00F) && !(error_code & X86_PF_USER) && | 
|---|
| 469 | idt_is_f00f_address(address)) { | 
|---|
| 470 | handle_invalid_op(regs); | 
|---|
| 471 | return 1; | 
|---|
| 472 | } | 
|---|
| 473 | #endif | 
|---|
| 474 | return 0; | 
|---|
| 475 | } | 
|---|
| 476 |  | 
|---|
| 477 | static void show_ldttss(const struct desc_ptr *gdt, const char *name, u16 index) | 
|---|
| 478 | { | 
|---|
| 479 | u32 offset = (index >> 3) * sizeof(struct desc_struct); | 
|---|
| 480 | unsigned long addr; | 
|---|
| 481 | struct ldttss_desc desc; | 
|---|
| 482 |  | 
|---|
| 483 | if (index == 0) { | 
|---|
| 484 | pr_alert( "%s: NULL\n", name); | 
|---|
| 485 | return; | 
|---|
| 486 | } | 
|---|
| 487 |  | 
|---|
| 488 | if (offset + sizeof(struct ldttss_desc) >= gdt->size) { | 
|---|
| 489 | pr_alert( "%s: 0x%hx -- out of bounds\n", name, index); | 
|---|
| 490 | return; | 
|---|
| 491 | } | 
|---|
| 492 |  | 
|---|
| 493 | if (copy_from_kernel_nofault(dst: &desc, src: (void *)(gdt->address + offset), | 
|---|
| 494 | size: sizeof(struct ldttss_desc))) { | 
|---|
| 495 | pr_alert( "%s: 0x%hx -- GDT entry is not readable\n", | 
|---|
| 496 | name, index); | 
|---|
| 497 | return; | 
|---|
| 498 | } | 
|---|
| 499 |  | 
|---|
| 500 | addr = desc.base0 | (desc.base1 << 16) | ((unsigned long)desc.base2 << 24); | 
|---|
| 501 | #ifdef CONFIG_X86_64 | 
|---|
| 502 | addr |= ((u64)desc.base3 << 32); | 
|---|
| 503 | #endif | 
|---|
| 504 | pr_alert( "%s: 0x%hx -- base=0x%lx limit=0x%x\n", | 
|---|
| 505 | name, index, addr, (desc.limit0 | (desc.limit1 << 16))); | 
|---|
| 506 | } | 
|---|
| 507 |  | 
|---|
| 508 | static void | 
|---|
| 509 | show_fault_oops(struct pt_regs *regs, unsigned long error_code, unsigned long address) | 
|---|
| 510 | { | 
|---|
| 511 | if (!oops_may_print()) | 
|---|
| 512 | return; | 
|---|
| 513 |  | 
|---|
| 514 | if (error_code & X86_PF_INSTR) { | 
|---|
| 515 | unsigned int level; | 
|---|
| 516 | bool nx, rw; | 
|---|
| 517 | pgd_t *pgd; | 
|---|
| 518 | pte_t *pte; | 
|---|
| 519 |  | 
|---|
| 520 | pgd = __va(read_cr3_pa()); | 
|---|
| 521 | pgd += pgd_index(address); | 
|---|
| 522 |  | 
|---|
| 523 | pte = lookup_address_in_pgd_attr(pgd, address, level: &level, nx: &nx, rw: &rw); | 
|---|
| 524 |  | 
|---|
| 525 | if (pte && pte_present(a: *pte) && (!pte_exec(pte: *pte) || nx)) | 
|---|
| 526 | pr_crit( "kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n", | 
|---|
| 527 | from_kuid(&init_user_ns, current_uid())); | 
|---|
| 528 | if (pte && pte_present(a: *pte) && pte_exec(pte: *pte) && !nx && | 
|---|
| 529 | (pgd_flags(pgd: *pgd) & _PAGE_USER) && | 
|---|
| 530 | (__read_cr4() & X86_CR4_SMEP)) | 
|---|
| 531 | pr_crit( "unable to execute userspace code (SMEP?) (uid: %d)\n", | 
|---|
| 532 | from_kuid(&init_user_ns, current_uid())); | 
|---|
| 533 | } | 
|---|
| 534 |  | 
|---|
| 535 | if (address < PAGE_SIZE && !user_mode(regs)) | 
|---|
| 536 | pr_alert( "BUG: kernel NULL pointer dereference, address: %px\n", | 
|---|
| 537 | (void *)address); | 
|---|
| 538 | else | 
|---|
| 539 | pr_alert( "BUG: unable to handle page fault for address: %px\n", | 
|---|
| 540 | (void *)address); | 
|---|
| 541 |  | 
|---|
| 542 | pr_alert( "#PF: %s %s in %s mode\n", | 
|---|
| 543 | (error_code & X86_PF_USER)  ? "user": "supervisor", | 
|---|
| 544 | (error_code & X86_PF_INSTR) ? "instruction fetch": | 
|---|
| 545 | (error_code & X86_PF_WRITE) ? "write access": | 
|---|
| 546 | "read access", | 
|---|
| 547 | user_mode(regs) ? "user": "kernel"); | 
|---|
| 548 | pr_alert( "#PF: error_code(0x%04lx) - %s\n", error_code, | 
|---|
| 549 | !(error_code & X86_PF_PROT) ? "not-present page": | 
|---|
| 550 | (error_code & X86_PF_RSVD)  ? "reserved bit violation": | 
|---|
| 551 | (error_code & X86_PF_PK)    ? "protection keys violation": | 
|---|
| 552 | (error_code & X86_PF_RMP)   ? "RMP violation": | 
|---|
| 553 | "permissions violation"); | 
|---|
| 554 |  | 
|---|
| 555 | if (!(error_code & X86_PF_USER) && user_mode(regs)) { | 
|---|
| 556 | struct desc_ptr idt, gdt; | 
|---|
| 557 | u16 ldtr, tr; | 
|---|
| 558 |  | 
|---|
| 559 | /* | 
|---|
| 560 | * This can happen for quite a few reasons.  The more obvious | 
|---|
| 561 | * ones are faults accessing the GDT, or LDT.  Perhaps | 
|---|
| 562 | * surprisingly, if the CPU tries to deliver a benign or | 
|---|
| 563 | * contributory exception from user code and gets a page fault | 
|---|
| 564 | * during delivery, the page fault can be delivered as though | 
|---|
| 565 | * it originated directly from user code.  This could happen | 
|---|
| 566 | * due to wrong permissions on the IDT, GDT, LDT, TSS, or | 
|---|
| 567 | * kernel or IST stack. | 
|---|
| 568 | */ | 
|---|
| 569 | store_idt(dtr: &idt); | 
|---|
| 570 |  | 
|---|
| 571 | /* Usable even on Xen PV -- it's just slow. */ | 
|---|
| 572 | native_store_gdt(dtr: &gdt); | 
|---|
| 573 |  | 
|---|
| 574 | pr_alert( "IDT: 0x%lx (limit=0x%hx) GDT: 0x%lx (limit=0x%hx)\n", | 
|---|
| 575 | idt.address, idt.size, gdt.address, gdt.size); | 
|---|
| 576 |  | 
|---|
| 577 | store_ldt(ldtr); | 
|---|
| 578 | show_ldttss(gdt: &gdt, name: "LDTR", index: ldtr); | 
|---|
| 579 |  | 
|---|
| 580 | store_tr(tr); | 
|---|
| 581 | show_ldttss(gdt: &gdt, name: "TR", index: tr); | 
|---|
| 582 | } | 
|---|
| 583 |  | 
|---|
| 584 | dump_pagetable(address); | 
|---|
| 585 |  | 
|---|
| 586 | if (error_code & X86_PF_RMP) | 
|---|
| 587 | snp_dump_hva_rmpentry(address); | 
|---|
| 588 | } | 
|---|
| 589 |  | 
|---|
| 590 | static noinline void | 
|---|
| 591 | pgtable_bad(struct pt_regs *regs, unsigned long error_code, | 
|---|
| 592 | unsigned long address) | 
|---|
| 593 | { | 
|---|
| 594 | struct task_struct *tsk; | 
|---|
| 595 | unsigned long flags; | 
|---|
| 596 | int sig; | 
|---|
| 597 |  | 
|---|
| 598 | flags = oops_begin(); | 
|---|
| 599 | tsk = current; | 
|---|
| 600 | sig = SIGKILL; | 
|---|
| 601 |  | 
|---|
| 602 | printk(KERN_ALERT "%s: Corrupted page table at address %lx\n", | 
|---|
| 603 | tsk->comm, address); | 
|---|
| 604 | dump_pagetable(address); | 
|---|
| 605 |  | 
|---|
| 606 | if (__die( "Bad pagetable", regs, error_code)) | 
|---|
| 607 | sig = 0; | 
|---|
| 608 |  | 
|---|
| 609 | oops_end(flags, regs, signr: sig); | 
|---|
| 610 | } | 
|---|
| 611 |  | 
|---|
| 612 | static void sanitize_error_code(unsigned long address, | 
|---|
| 613 | unsigned long *error_code) | 
|---|
| 614 | { | 
|---|
| 615 | /* | 
|---|
| 616 | * To avoid leaking information about the kernel page | 
|---|
| 617 | * table layout, pretend that user-mode accesses to | 
|---|
| 618 | * kernel addresses are always protection faults. | 
|---|
| 619 | * | 
|---|
| 620 | * NB: This means that failed vsyscalls with vsyscall=none | 
|---|
| 621 | * will have the PROT bit.  This doesn't leak any | 
|---|
| 622 | * information and does not appear to cause any problems. | 
|---|
| 623 | */ | 
|---|
| 624 | if (address >= TASK_SIZE_MAX) | 
|---|
| 625 | *error_code |= X86_PF_PROT; | 
|---|
| 626 | } | 
|---|
| 627 |  | 
|---|
| 628 | static void set_signal_archinfo(unsigned long address, | 
|---|
| 629 | unsigned long error_code) | 
|---|
| 630 | { | 
|---|
| 631 | struct task_struct *tsk = current; | 
|---|
| 632 |  | 
|---|
| 633 | tsk->thread.trap_nr = X86_TRAP_PF; | 
|---|
| 634 | tsk->thread.error_code = error_code | X86_PF_USER; | 
|---|
| 635 | tsk->thread.cr2 = address; | 
|---|
| 636 | } | 
|---|
| 637 |  | 
|---|
| 638 | static noinline void | 
|---|
| 639 | page_fault_oops(struct pt_regs *regs, unsigned long error_code, | 
|---|
| 640 | unsigned long address) | 
|---|
| 641 | { | 
|---|
| 642 | #ifdef CONFIG_VMAP_STACK | 
|---|
| 643 | struct stack_info info; | 
|---|
| 644 | #endif | 
|---|
| 645 | unsigned long flags; | 
|---|
| 646 | int sig; | 
|---|
| 647 |  | 
|---|
| 648 | if (user_mode(regs)) { | 
|---|
| 649 | /* | 
|---|
| 650 | * Implicit kernel access from user mode?  Skip the stack | 
|---|
| 651 | * overflow and EFI special cases. | 
|---|
| 652 | */ | 
|---|
| 653 | goto oops; | 
|---|
| 654 | } | 
|---|
| 655 |  | 
|---|
| 656 | #ifdef CONFIG_VMAP_STACK | 
|---|
| 657 | /* | 
|---|
| 658 | * Stack overflow?  During boot, we can fault near the initial | 
|---|
| 659 | * stack in the direct map, but that's not an overflow -- check | 
|---|
| 660 | * that we're in vmalloc space to avoid this. | 
|---|
| 661 | */ | 
|---|
| 662 | if (is_vmalloc_addr(x: (void *)address) && | 
|---|
| 663 | get_stack_guard_info(stack: (void *)address, info: &info)) { | 
|---|
| 664 | /* | 
|---|
| 665 | * We're likely to be running with very little stack space | 
|---|
| 666 | * left.  It's plausible that we'd hit this condition but | 
|---|
| 667 | * double-fault even before we get this far, in which case | 
|---|
| 668 | * we're fine: the double-fault handler will deal with it. | 
|---|
| 669 | * | 
|---|
| 670 | * We don't want to make it all the way into the oops code | 
|---|
| 671 | * and then double-fault, though, because we're likely to | 
|---|
| 672 | * break the console driver and lose most of the stack dump. | 
|---|
| 673 | */ | 
|---|
| 674 | call_on_stack(__this_cpu_ist_top_va(DF) - sizeof(void*), | 
|---|
| 675 | handle_stack_overflow, | 
|---|
| 676 | ASM_CALL_ARG3, | 
|---|
| 677 | , [arg1] "r"(regs), [arg2] "r"(address), [arg3] "r"(&info)); | 
|---|
| 678 |  | 
|---|
| 679 | BUG(); | 
|---|
| 680 | } | 
|---|
| 681 | #endif | 
|---|
| 682 |  | 
|---|
| 683 | /* | 
|---|
| 684 | * Buggy firmware could access regions which might page fault.  If | 
|---|
| 685 | * this happens, EFI has a special OOPS path that will try to | 
|---|
| 686 | * avoid hanging the system. | 
|---|
| 687 | */ | 
|---|
| 688 | if (IS_ENABLED(CONFIG_EFI)) | 
|---|
| 689 | efi_crash_gracefully_on_page_fault(phys_addr: address); | 
|---|
| 690 |  | 
|---|
| 691 | /* Only not-present faults should be handled by KFENCE. */ | 
|---|
| 692 | if (!(error_code & X86_PF_PROT) && | 
|---|
| 693 | kfence_handle_page_fault(addr: address, is_write: error_code & X86_PF_WRITE, regs)) | 
|---|
| 694 | return; | 
|---|
| 695 |  | 
|---|
| 696 | oops: | 
|---|
| 697 | /* | 
|---|
| 698 | * Oops. The kernel tried to access some bad page. We'll have to | 
|---|
| 699 | * terminate things with extreme prejudice: | 
|---|
| 700 | */ | 
|---|
| 701 | flags = oops_begin(); | 
|---|
| 702 |  | 
|---|
| 703 | show_fault_oops(regs, error_code, address); | 
|---|
| 704 |  | 
|---|
| 705 | if (task_stack_end_corrupted(current)) | 
|---|
| 706 | printk(KERN_EMERG "Thread overran stack, or stack corrupted\n"); | 
|---|
| 707 |  | 
|---|
| 708 | sig = SIGKILL; | 
|---|
| 709 | if (__die( "Oops", regs, error_code)) | 
|---|
| 710 | sig = 0; | 
|---|
| 711 |  | 
|---|
| 712 | /* Executive summary in case the body of the oops scrolled away */ | 
|---|
| 713 | printk(KERN_DEFAULT "CR2: %016lx\n", address); | 
|---|
| 714 |  | 
|---|
| 715 | oops_end(flags, regs, signr: sig); | 
|---|
| 716 | } | 
|---|
| 717 |  | 
|---|
| 718 | static noinline void | 
|---|
| 719 | kernelmode_fixup_or_oops(struct pt_regs *regs, unsigned long error_code, | 
|---|
| 720 | unsigned long address, int signal, int si_code, | 
|---|
| 721 | u32 pkey) | 
|---|
| 722 | { | 
|---|
| 723 | WARN_ON_ONCE(user_mode(regs)); | 
|---|
| 724 |  | 
|---|
| 725 | /* Are we prepared to handle this kernel fault? */ | 
|---|
| 726 | if (fixup_exception(regs, X86_TRAP_PF, error_code, fault_addr: address)) | 
|---|
| 727 | return; | 
|---|
| 728 |  | 
|---|
| 729 | /* | 
|---|
| 730 | * AMD erratum #91 manifests as a spurious page fault on a PREFETCH | 
|---|
| 731 | * instruction. | 
|---|
| 732 | */ | 
|---|
| 733 | if (is_prefetch(regs, error_code, addr: address)) | 
|---|
| 734 | return; | 
|---|
| 735 |  | 
|---|
| 736 | page_fault_oops(regs, error_code, address); | 
|---|
| 737 | } | 
|---|
| 738 |  | 
|---|
| 739 | /* | 
|---|
| 740 | * Print out info about fatal segfaults, if the show_unhandled_signals | 
|---|
| 741 | * sysctl is set: | 
|---|
| 742 | */ | 
|---|
| 743 | static inline void | 
|---|
| 744 | show_signal_msg(struct pt_regs *regs, unsigned long error_code, | 
|---|
| 745 | unsigned long address, struct task_struct *tsk) | 
|---|
| 746 | { | 
|---|
| 747 | const char *loglvl = task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG; | 
|---|
| 748 | /* This is a racy snapshot, but it's better than nothing. */ | 
|---|
| 749 | int cpu = raw_smp_processor_id(); | 
|---|
| 750 |  | 
|---|
| 751 | if (!unhandled_signal(tsk, SIGSEGV)) | 
|---|
| 752 | return; | 
|---|
| 753 |  | 
|---|
| 754 | if (!printk_ratelimit()) | 
|---|
| 755 | return; | 
|---|
| 756 |  | 
|---|
| 757 | printk( "%s%s[%d]: segfault at %lx ip %px sp %px error %lx", | 
|---|
| 758 | loglvl, tsk->comm, task_pid_nr(tsk), address, | 
|---|
| 759 | (void *)regs->ip, (void *)regs->sp, error_code); | 
|---|
| 760 |  | 
|---|
| 761 | print_vma_addr(KERN_CONT " in ", rip: regs->ip); | 
|---|
| 762 |  | 
|---|
| 763 | /* | 
|---|
| 764 | * Dump the likely CPU where the fatal segfault happened. | 
|---|
| 765 | * This can help identify faulty hardware. | 
|---|
| 766 | */ | 
|---|
| 767 | printk(KERN_CONT " likely on CPU %d (core %d, socket %d)", cpu, | 
|---|
| 768 | topology_core_id(cpu), topology_physical_package_id(cpu)); | 
|---|
| 769 |  | 
|---|
| 770 |  | 
|---|
| 771 | printk(KERN_CONT "\n"); | 
|---|
| 772 |  | 
|---|
| 773 | show_opcodes(regs, loglvl); | 
|---|
| 774 | } | 
|---|
| 775 |  | 
|---|
| 776 | static void | 
|---|
| 777 | __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code, | 
|---|
| 778 | unsigned long address, u32 pkey, int si_code) | 
|---|
| 779 | { | 
|---|
| 780 | struct task_struct *tsk = current; | 
|---|
| 781 |  | 
|---|
| 782 | if (!user_mode(regs)) { | 
|---|
| 783 | kernelmode_fixup_or_oops(regs, error_code, address, | 
|---|
| 784 | SIGSEGV, si_code, pkey); | 
|---|
| 785 | return; | 
|---|
| 786 | } | 
|---|
| 787 |  | 
|---|
| 788 | if (!(error_code & X86_PF_USER)) { | 
|---|
| 789 | /* Implicit user access to kernel memory -- just oops */ | 
|---|
| 790 | page_fault_oops(regs, error_code, address); | 
|---|
| 791 | return; | 
|---|
| 792 | } | 
|---|
| 793 |  | 
|---|
| 794 | /* | 
|---|
| 795 | * User mode accesses just cause a SIGSEGV. | 
|---|
| 796 | * It's possible to have interrupts off here: | 
|---|
| 797 | */ | 
|---|
| 798 | local_irq_enable(); | 
|---|
| 799 |  | 
|---|
| 800 | /* | 
|---|
| 801 | * Valid to do another page fault here because this one came | 
|---|
| 802 | * from user space: | 
|---|
| 803 | */ | 
|---|
| 804 | if (is_prefetch(regs, error_code, addr: address)) | 
|---|
| 805 | return; | 
|---|
| 806 |  | 
|---|
| 807 | if (is_errata100(regs, address)) | 
|---|
| 808 | return; | 
|---|
| 809 |  | 
|---|
| 810 | sanitize_error_code(address, error_code: &error_code); | 
|---|
| 811 |  | 
|---|
| 812 | if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, fault_addr: address)) | 
|---|
| 813 | return; | 
|---|
| 814 |  | 
|---|
| 815 | if (likely(show_unhandled_signals)) | 
|---|
| 816 | show_signal_msg(regs, error_code, address, tsk); | 
|---|
| 817 |  | 
|---|
| 818 | set_signal_archinfo(address, error_code); | 
|---|
| 819 |  | 
|---|
| 820 | if (si_code == SEGV_PKUERR) | 
|---|
| 821 | force_sig_pkuerr(addr: (void __user *)address, pkey); | 
|---|
| 822 | else | 
|---|
| 823 | force_sig_fault(SIGSEGV, code: si_code, addr: (void __user *)address); | 
|---|
| 824 |  | 
|---|
| 825 | local_irq_disable(); | 
|---|
| 826 | } | 
|---|
| 827 |  | 
|---|
| 828 | static noinline void | 
|---|
| 829 | bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code, | 
|---|
| 830 | unsigned long address) | 
|---|
| 831 | { | 
|---|
| 832 | __bad_area_nosemaphore(regs, error_code, address, pkey: 0, SEGV_MAPERR); | 
|---|
| 833 | } | 
|---|
| 834 |  | 
|---|
| 835 | static void | 
|---|
| 836 | __bad_area(struct pt_regs *regs, unsigned long error_code, | 
|---|
| 837 | unsigned long address, struct mm_struct *mm, | 
|---|
| 838 | struct vm_area_struct *vma, u32 pkey, int si_code) | 
|---|
| 839 | { | 
|---|
| 840 | /* | 
|---|
| 841 | * Something tried to access memory that isn't in our memory map.. | 
|---|
| 842 | * Fix it, but check if it's kernel or user first.. | 
|---|
| 843 | */ | 
|---|
| 844 | if (mm) | 
|---|
| 845 | mmap_read_unlock(mm); | 
|---|
| 846 | else | 
|---|
| 847 | vma_end_read(vma); | 
|---|
| 848 |  | 
|---|
| 849 | __bad_area_nosemaphore(regs, error_code, address, pkey, si_code); | 
|---|
| 850 | } | 
|---|
| 851 |  | 
|---|
| 852 | static inline bool bad_area_access_from_pkeys(unsigned long error_code, | 
|---|
| 853 | struct vm_area_struct *vma) | 
|---|
| 854 | { | 
|---|
| 855 | /* This code is always called on the current mm */ | 
|---|
| 856 | bool foreign = false; | 
|---|
| 857 |  | 
|---|
| 858 | if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) | 
|---|
| 859 | return false; | 
|---|
| 860 | if (error_code & X86_PF_PK) | 
|---|
| 861 | return true; | 
|---|
| 862 | /* this checks permission keys on the VMA: */ | 
|---|
| 863 | if (!arch_vma_access_permitted(vma, write: (error_code & X86_PF_WRITE), | 
|---|
| 864 | execute: (error_code & X86_PF_INSTR), foreign)) | 
|---|
| 865 | return true; | 
|---|
| 866 | return false; | 
|---|
| 867 | } | 
|---|
| 868 |  | 
|---|
| 869 | static noinline void | 
|---|
| 870 | bad_area_access_error(struct pt_regs *regs, unsigned long error_code, | 
|---|
| 871 | unsigned long address, struct mm_struct *mm, | 
|---|
| 872 | struct vm_area_struct *vma) | 
|---|
| 873 | { | 
|---|
| 874 | /* | 
|---|
| 875 | * This OSPKE check is not strictly necessary at runtime. | 
|---|
| 876 | * But, doing it this way allows compiler optimizations | 
|---|
| 877 | * if pkeys are compiled out. | 
|---|
| 878 | */ | 
|---|
| 879 | if (bad_area_access_from_pkeys(error_code, vma)) { | 
|---|
| 880 | /* | 
|---|
| 881 | * A protection key fault means that the PKRU value did not allow | 
|---|
| 882 | * access to some PTE.  Userspace can figure out what PKRU was | 
|---|
| 883 | * from the XSAVE state.  This function captures the pkey from | 
|---|
| 884 | * the vma and passes it to userspace so userspace can discover | 
|---|
| 885 | * which protection key was set on the PTE. | 
|---|
| 886 | * | 
|---|
| 887 | * If we get here, we know that the hardware signaled a X86_PF_PK | 
|---|
| 888 | * fault and that there was a VMA once we got in the fault | 
|---|
| 889 | * handler.  It does *not* guarantee that the VMA we find here | 
|---|
| 890 | * was the one that we faulted on. | 
|---|
| 891 | * | 
|---|
| 892 | * 1. T1   : mprotect_key(foo, PAGE_SIZE, pkey=4); | 
|---|
| 893 | * 2. T1   : set PKRU to deny access to pkey=4, touches page | 
|---|
| 894 | * 3. T1   : faults... | 
|---|
| 895 | * 4.    T2: mprotect_key(foo, PAGE_SIZE, pkey=5); | 
|---|
| 896 | * 5. T1   : enters fault handler, takes mmap_lock, etc... | 
|---|
| 897 | * 6. T1   : reaches here, sees vma_pkey(vma)=5, when we really | 
|---|
| 898 | *	     faulted on a pte with its pkey=4. | 
|---|
| 899 | */ | 
|---|
| 900 | u32 pkey = vma_pkey(vma); | 
|---|
| 901 |  | 
|---|
| 902 | __bad_area(regs, error_code, address, mm, vma, pkey, SEGV_PKUERR); | 
|---|
| 903 | } else { | 
|---|
| 904 | __bad_area(regs, error_code, address, mm, vma, pkey: 0, SEGV_ACCERR); | 
|---|
| 905 | } | 
|---|
| 906 | } | 
|---|
| 907 |  | 
|---|
| 908 | static void | 
|---|
| 909 | do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address, | 
|---|
| 910 | vm_fault_t fault) | 
|---|
| 911 | { | 
|---|
| 912 | /* Kernel mode? Handle exceptions or die: */ | 
|---|
| 913 | if (!user_mode(regs)) { | 
|---|
| 914 | kernelmode_fixup_or_oops(regs, error_code, address, | 
|---|
| 915 | SIGBUS, BUS_ADRERR, ARCH_DEFAULT_PKEY); | 
|---|
| 916 | return; | 
|---|
| 917 | } | 
|---|
| 918 |  | 
|---|
| 919 | /* User-space => ok to do another page fault: */ | 
|---|
| 920 | if (is_prefetch(regs, error_code, addr: address)) | 
|---|
| 921 | return; | 
|---|
| 922 |  | 
|---|
| 923 | sanitize_error_code(address, error_code: &error_code); | 
|---|
| 924 |  | 
|---|
| 925 | if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, fault_addr: address)) | 
|---|
| 926 | return; | 
|---|
| 927 |  | 
|---|
| 928 | set_signal_archinfo(address, error_code); | 
|---|
| 929 |  | 
|---|
| 930 | #ifdef CONFIG_MEMORY_FAILURE | 
|---|
| 931 | if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) { | 
|---|
| 932 | struct task_struct *tsk = current; | 
|---|
| 933 | unsigned lsb = 0; | 
|---|
| 934 |  | 
|---|
| 935 | pr_err( | 
|---|
| 936 | "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n", | 
|---|
| 937 | tsk->comm, tsk->pid, address); | 
|---|
| 938 | if (fault & VM_FAULT_HWPOISON_LARGE) | 
|---|
| 939 | lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault)); | 
|---|
| 940 | if (fault & VM_FAULT_HWPOISON) | 
|---|
| 941 | lsb = PAGE_SHIFT; | 
|---|
| 942 | force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb); | 
|---|
| 943 | return; | 
|---|
| 944 | } | 
|---|
| 945 | #endif | 
|---|
| 946 | force_sig_fault(SIGBUS, BUS_ADRERR, addr: (void __user *)address); | 
|---|
| 947 | } | 
|---|
| 948 |  | 
|---|
| 949 | static int spurious_kernel_fault_check(unsigned long error_code, pte_t *pte) | 
|---|
| 950 | { | 
|---|
| 951 | if ((error_code & X86_PF_WRITE) && !pte_write(pte: *pte)) | 
|---|
| 952 | return 0; | 
|---|
| 953 |  | 
|---|
| 954 | if ((error_code & X86_PF_INSTR) && !pte_exec(pte: *pte)) | 
|---|
| 955 | return 0; | 
|---|
| 956 |  | 
|---|
| 957 | return 1; | 
|---|
| 958 | } | 
|---|
| 959 |  | 
|---|
| 960 | /* | 
|---|
| 961 | * Handle a spurious fault caused by a stale TLB entry. | 
|---|
| 962 | * | 
|---|
| 963 | * This allows us to lazily refresh the TLB when increasing the | 
|---|
| 964 | * permissions of a kernel page (RO -> RW or NX -> X).  Doing it | 
|---|
| 965 | * eagerly is very expensive since that implies doing a full | 
|---|
| 966 | * cross-processor TLB flush, even if no stale TLB entries exist | 
|---|
| 967 | * on other processors. | 
|---|
| 968 | * | 
|---|
| 969 | * Spurious faults may only occur if the TLB contains an entry with | 
|---|
| 970 | * fewer permission than the page table entry.  Non-present (P = 0) | 
|---|
| 971 | * and reserved bit (R = 1) faults are never spurious. | 
|---|
| 972 | * | 
|---|
| 973 | * There are no security implications to leaving a stale TLB when | 
|---|
| 974 | * increasing the permissions on a page. | 
|---|
| 975 | * | 
|---|
| 976 | * Returns non-zero if a spurious fault was handled, zero otherwise. | 
|---|
| 977 | * | 
|---|
| 978 | * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3 | 
|---|
| 979 | * (Optional Invalidation). | 
|---|
| 980 | */ | 
|---|
| 981 | static noinline int | 
|---|
| 982 | spurious_kernel_fault(unsigned long error_code, unsigned long address) | 
|---|
| 983 | { | 
|---|
| 984 | pgd_t *pgd; | 
|---|
| 985 | p4d_t *p4d; | 
|---|
| 986 | pud_t *pud; | 
|---|
| 987 | pmd_t *pmd; | 
|---|
| 988 | pte_t *pte; | 
|---|
| 989 | int ret; | 
|---|
| 990 |  | 
|---|
| 991 | /* | 
|---|
| 992 | * Only writes to RO or instruction fetches from NX may cause | 
|---|
| 993 | * spurious faults. | 
|---|
| 994 | * | 
|---|
| 995 | * These could be from user or supervisor accesses but the TLB | 
|---|
| 996 | * is only lazily flushed after a kernel mapping protection | 
|---|
| 997 | * change, so user accesses are not expected to cause spurious | 
|---|
| 998 | * faults. | 
|---|
| 999 | */ | 
|---|
| 1000 | if (error_code != (X86_PF_WRITE | X86_PF_PROT) && | 
|---|
| 1001 | error_code != (X86_PF_INSTR | X86_PF_PROT)) | 
|---|
| 1002 | return 0; | 
|---|
| 1003 |  | 
|---|
| 1004 | pgd = init_mm.pgd + pgd_index(address); | 
|---|
| 1005 | if (!pgd_present(pgd: *pgd)) | 
|---|
| 1006 | return 0; | 
|---|
| 1007 |  | 
|---|
| 1008 | p4d = p4d_offset(pgd, address); | 
|---|
| 1009 | if (!p4d_present(p4d: *p4d)) | 
|---|
| 1010 | return 0; | 
|---|
| 1011 |  | 
|---|
| 1012 | if (p4d_leaf(*p4d)) | 
|---|
| 1013 | return spurious_kernel_fault_check(error_code, pte: (pte_t *) p4d); | 
|---|
| 1014 |  | 
|---|
| 1015 | pud = pud_offset(p4d, address); | 
|---|
| 1016 | if (!pud_present(pud: *pud)) | 
|---|
| 1017 | return 0; | 
|---|
| 1018 |  | 
|---|
| 1019 | if (pud_leaf(pud: *pud)) | 
|---|
| 1020 | return spurious_kernel_fault_check(error_code, pte: (pte_t *) pud); | 
|---|
| 1021 |  | 
|---|
| 1022 | pmd = pmd_offset(pud, address); | 
|---|
| 1023 | if (!pmd_present(pmd: *pmd)) | 
|---|
| 1024 | return 0; | 
|---|
| 1025 |  | 
|---|
| 1026 | if (pmd_leaf(pte: *pmd)) | 
|---|
| 1027 | return spurious_kernel_fault_check(error_code, pte: (pte_t *) pmd); | 
|---|
| 1028 |  | 
|---|
| 1029 | pte = pte_offset_kernel(pmd, address); | 
|---|
| 1030 | if (!pte_present(a: *pte)) | 
|---|
| 1031 | return 0; | 
|---|
| 1032 |  | 
|---|
| 1033 | ret = spurious_kernel_fault_check(error_code, pte); | 
|---|
| 1034 | if (!ret) | 
|---|
| 1035 | return 0; | 
|---|
| 1036 |  | 
|---|
| 1037 | /* | 
|---|
| 1038 | * Make sure we have permissions in PMD. | 
|---|
| 1039 | * If not, then there's a bug in the page tables: | 
|---|
| 1040 | */ | 
|---|
| 1041 | ret = spurious_kernel_fault_check(error_code, pte: (pte_t *) pmd); | 
|---|
| 1042 | WARN_ONCE(!ret, "PMD has incorrect permission bits\n"); | 
|---|
| 1043 |  | 
|---|
| 1044 | return ret; | 
|---|
| 1045 | } | 
|---|
| 1046 | NOKPROBE_SYMBOL(spurious_kernel_fault); | 
|---|
| 1047 |  | 
|---|
| 1048 | int show_unhandled_signals = 1; | 
|---|
| 1049 |  | 
|---|
| 1050 | static inline int | 
|---|
| 1051 | access_error(unsigned long error_code, struct vm_area_struct *vma) | 
|---|
| 1052 | { | 
|---|
| 1053 | /* This is only called for the current mm, so: */ | 
|---|
| 1054 | bool foreign = false; | 
|---|
| 1055 |  | 
|---|
| 1056 | /* | 
|---|
| 1057 | * Read or write was blocked by protection keys.  This is | 
|---|
| 1058 | * always an unconditional error and can never result in | 
|---|
| 1059 | * a follow-up action to resolve the fault, like a COW. | 
|---|
| 1060 | */ | 
|---|
| 1061 | if (error_code & X86_PF_PK) | 
|---|
| 1062 | return 1; | 
|---|
| 1063 |  | 
|---|
| 1064 | /* | 
|---|
| 1065 | * SGX hardware blocked the access.  This usually happens | 
|---|
| 1066 | * when the enclave memory contents have been destroyed, like | 
|---|
| 1067 | * after a suspend/resume cycle. In any case, the kernel can't | 
|---|
| 1068 | * fix the cause of the fault.  Handle the fault as an access | 
|---|
| 1069 | * error even in cases where no actual access violation | 
|---|
| 1070 | * occurred.  This allows userspace to rebuild the enclave in | 
|---|
| 1071 | * response to the signal. | 
|---|
| 1072 | */ | 
|---|
| 1073 | if (unlikely(error_code & X86_PF_SGX)) | 
|---|
| 1074 | return 1; | 
|---|
| 1075 |  | 
|---|
| 1076 | /* | 
|---|
| 1077 | * Make sure to check the VMA so that we do not perform | 
|---|
| 1078 | * faults just to hit a X86_PF_PK as soon as we fill in a | 
|---|
| 1079 | * page. | 
|---|
| 1080 | */ | 
|---|
| 1081 | if (!arch_vma_access_permitted(vma, write: (error_code & X86_PF_WRITE), | 
|---|
| 1082 | execute: (error_code & X86_PF_INSTR), foreign)) | 
|---|
| 1083 | return 1; | 
|---|
| 1084 |  | 
|---|
| 1085 | /* | 
|---|
| 1086 | * Shadow stack accesses (PF_SHSTK=1) are only permitted to | 
|---|
| 1087 | * shadow stack VMAs. All other accesses result in an error. | 
|---|
| 1088 | */ | 
|---|
| 1089 | if (error_code & X86_PF_SHSTK) { | 
|---|
| 1090 | if (unlikely(!(vma->vm_flags & VM_SHADOW_STACK))) | 
|---|
| 1091 | return 1; | 
|---|
| 1092 | if (unlikely(!(vma->vm_flags & VM_WRITE))) | 
|---|
| 1093 | return 1; | 
|---|
| 1094 | return 0; | 
|---|
| 1095 | } | 
|---|
| 1096 |  | 
|---|
| 1097 | if (error_code & X86_PF_WRITE) { | 
|---|
| 1098 | /* write, present and write, not present: */ | 
|---|
| 1099 | if (unlikely(vma->vm_flags & VM_SHADOW_STACK)) | 
|---|
| 1100 | return 1; | 
|---|
| 1101 | if (unlikely(!(vma->vm_flags & VM_WRITE))) | 
|---|
| 1102 | return 1; | 
|---|
| 1103 | return 0; | 
|---|
| 1104 | } | 
|---|
| 1105 |  | 
|---|
| 1106 | /* read, present: */ | 
|---|
| 1107 | if (unlikely(error_code & X86_PF_PROT)) | 
|---|
| 1108 | return 1; | 
|---|
| 1109 |  | 
|---|
| 1110 | /* read, not present: */ | 
|---|
| 1111 | if (unlikely(!vma_is_accessible(vma))) | 
|---|
| 1112 | return 1; | 
|---|
| 1113 |  | 
|---|
| 1114 | return 0; | 
|---|
| 1115 | } | 
|---|
| 1116 |  | 
|---|
| 1117 | bool fault_in_kernel_space(unsigned long address) | 
|---|
| 1118 | { | 
|---|
| 1119 | /* | 
|---|
| 1120 | * On 64-bit systems, the vsyscall page is at an address above | 
|---|
| 1121 | * TASK_SIZE_MAX, but is not considered part of the kernel | 
|---|
| 1122 | * address space. | 
|---|
| 1123 | */ | 
|---|
| 1124 | if (IS_ENABLED(CONFIG_X86_64) && is_vsyscall_vaddr(vaddr: address)) | 
|---|
| 1125 | return false; | 
|---|
| 1126 |  | 
|---|
| 1127 | return address >= TASK_SIZE_MAX; | 
|---|
| 1128 | } | 
|---|
| 1129 |  | 
|---|
| 1130 | /* | 
|---|
| 1131 | * Called for all faults where 'address' is part of the kernel address | 
|---|
| 1132 | * space.  Might get called for faults that originate from *code* that | 
|---|
| 1133 | * ran in userspace or the kernel. | 
|---|
| 1134 | */ | 
|---|
| 1135 | static void | 
|---|
| 1136 | do_kern_addr_fault(struct pt_regs *regs, unsigned long hw_error_code, | 
|---|
| 1137 | unsigned long address) | 
|---|
| 1138 | { | 
|---|
| 1139 | /* | 
|---|
| 1140 | * Protection keys exceptions only happen on user pages.  We | 
|---|
| 1141 | * have no user pages in the kernel portion of the address | 
|---|
| 1142 | * space, so do not expect them here. | 
|---|
| 1143 | */ | 
|---|
| 1144 | WARN_ON_ONCE(hw_error_code & X86_PF_PK); | 
|---|
| 1145 |  | 
|---|
| 1146 | #ifdef CONFIG_X86_32 | 
|---|
| 1147 | /* | 
|---|
| 1148 | * We can fault-in kernel-space virtual memory on-demand. The | 
|---|
| 1149 | * 'reference' page table is init_mm.pgd. | 
|---|
| 1150 | * | 
|---|
| 1151 | * NOTE! We MUST NOT take any locks for this case. We may | 
|---|
| 1152 | * be in an interrupt or a critical region, and should | 
|---|
| 1153 | * only copy the information from the master page table, | 
|---|
| 1154 | * nothing more. | 
|---|
| 1155 | * | 
|---|
| 1156 | * Before doing this on-demand faulting, ensure that the | 
|---|
| 1157 | * fault is not any of the following: | 
|---|
| 1158 | * 1. A fault on a PTE with a reserved bit set. | 
|---|
| 1159 | * 2. A fault caused by a user-mode access.  (Do not demand- | 
|---|
| 1160 | *    fault kernel memory due to user-mode accesses). | 
|---|
| 1161 | * 3. A fault caused by a page-level protection violation. | 
|---|
| 1162 | *    (A demand fault would be on a non-present page which | 
|---|
| 1163 | *     would have X86_PF_PROT==0). | 
|---|
| 1164 | * | 
|---|
| 1165 | * This is only needed to close a race condition on x86-32 in | 
|---|
| 1166 | * the vmalloc mapping/unmapping code. See the comment above | 
|---|
| 1167 | * vmalloc_fault() for details. On x86-64 the race does not | 
|---|
| 1168 | * exist as the vmalloc mappings don't need to be synchronized | 
|---|
| 1169 | * there. | 
|---|
| 1170 | */ | 
|---|
| 1171 | if (!(hw_error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) { | 
|---|
| 1172 | if (vmalloc_fault(address) >= 0) | 
|---|
| 1173 | return; | 
|---|
| 1174 | } | 
|---|
| 1175 | #endif | 
|---|
| 1176 |  | 
|---|
| 1177 | if (is_f00f_bug(regs, error_code: hw_error_code, address)) | 
|---|
| 1178 | return; | 
|---|
| 1179 |  | 
|---|
| 1180 | /* Was the fault spurious, caused by lazy TLB invalidation? */ | 
|---|
| 1181 | if (spurious_kernel_fault(error_code: hw_error_code, address)) | 
|---|
| 1182 | return; | 
|---|
| 1183 |  | 
|---|
| 1184 | /* kprobes don't want to hook the spurious faults: */ | 
|---|
| 1185 | if (WARN_ON_ONCE(kprobe_page_fault(regs, X86_TRAP_PF))) | 
|---|
| 1186 | return; | 
|---|
| 1187 |  | 
|---|
| 1188 | /* | 
|---|
| 1189 | * Note, despite being a "bad area", there are quite a few | 
|---|
| 1190 | * acceptable reasons to get here, such as erratum fixups | 
|---|
| 1191 | * and handling kernel code that can fault, like get_user(). | 
|---|
| 1192 | * | 
|---|
| 1193 | * Don't take the mm semaphore here. If we fixup a prefetch | 
|---|
| 1194 | * fault we could otherwise deadlock: | 
|---|
| 1195 | */ | 
|---|
| 1196 | bad_area_nosemaphore(regs, error_code: hw_error_code, address); | 
|---|
| 1197 | } | 
|---|
| 1198 | NOKPROBE_SYMBOL(do_kern_addr_fault); | 
|---|
| 1199 |  | 
|---|
| 1200 | /* | 
|---|
| 1201 | * Handle faults in the user portion of the address space.  Nothing in here | 
|---|
| 1202 | * should check X86_PF_USER without a specific justification: for almost | 
|---|
| 1203 | * all purposes, we should treat a normal kernel access to user memory | 
|---|
| 1204 | * (e.g. get_user(), put_user(), etc.) the same as the WRUSS instruction. | 
|---|
| 1205 | * The one exception is AC flag handling, which is, per the x86 | 
|---|
| 1206 | * architecture, special for WRUSS. | 
|---|
| 1207 | */ | 
|---|
| 1208 | static inline | 
|---|
| 1209 | void do_user_addr_fault(struct pt_regs *regs, | 
|---|
| 1210 | unsigned long error_code, | 
|---|
| 1211 | unsigned long address) | 
|---|
| 1212 | { | 
|---|
| 1213 | struct vm_area_struct *vma; | 
|---|
| 1214 | struct task_struct *tsk; | 
|---|
| 1215 | struct mm_struct *mm; | 
|---|
| 1216 | vm_fault_t fault; | 
|---|
| 1217 | unsigned int flags = FAULT_FLAG_DEFAULT; | 
|---|
| 1218 |  | 
|---|
| 1219 | tsk = current; | 
|---|
| 1220 | mm = tsk->mm; | 
|---|
| 1221 |  | 
|---|
| 1222 | if (unlikely((error_code & (X86_PF_USER | X86_PF_INSTR)) == X86_PF_INSTR)) { | 
|---|
| 1223 | /* | 
|---|
| 1224 | * Whoops, this is kernel mode code trying to execute from | 
|---|
| 1225 | * user memory.  Unless this is AMD erratum #93, which | 
|---|
| 1226 | * corrupts RIP such that it looks like a user address, | 
|---|
| 1227 | * this is unrecoverable.  Don't even try to look up the | 
|---|
| 1228 | * VMA or look for extable entries. | 
|---|
| 1229 | */ | 
|---|
| 1230 | if (is_errata93(regs, address)) | 
|---|
| 1231 | return; | 
|---|
| 1232 |  | 
|---|
| 1233 | page_fault_oops(regs, error_code, address); | 
|---|
| 1234 | return; | 
|---|
| 1235 | } | 
|---|
| 1236 |  | 
|---|
| 1237 | /* kprobes don't want to hook the spurious faults: */ | 
|---|
| 1238 | if (WARN_ON_ONCE(kprobe_page_fault(regs, X86_TRAP_PF))) | 
|---|
| 1239 | return; | 
|---|
| 1240 |  | 
|---|
| 1241 | /* | 
|---|
| 1242 | * Reserved bits are never expected to be set on | 
|---|
| 1243 | * entries in the user portion of the page tables. | 
|---|
| 1244 | */ | 
|---|
| 1245 | if (unlikely(error_code & X86_PF_RSVD)) | 
|---|
| 1246 | pgtable_bad(regs, error_code, address); | 
|---|
| 1247 |  | 
|---|
| 1248 | /* | 
|---|
| 1249 | * If SMAP is on, check for invalid kernel (supervisor) access to user | 
|---|
| 1250 | * pages in the user address space.  The odd case here is WRUSS, | 
|---|
| 1251 | * which, according to the preliminary documentation, does not respect | 
|---|
| 1252 | * SMAP and will have the USER bit set so, in all cases, SMAP | 
|---|
| 1253 | * enforcement appears to be consistent with the USER bit. | 
|---|
| 1254 | */ | 
|---|
| 1255 | if (unlikely(cpu_feature_enabled(X86_FEATURE_SMAP) && | 
|---|
| 1256 | !(error_code & X86_PF_USER) && | 
|---|
| 1257 | !(regs->flags & X86_EFLAGS_AC))) { | 
|---|
| 1258 | /* | 
|---|
| 1259 | * No extable entry here.  This was a kernel access to an | 
|---|
| 1260 | * invalid pointer.  get_kernel_nofault() will not get here. | 
|---|
| 1261 | */ | 
|---|
| 1262 | page_fault_oops(regs, error_code, address); | 
|---|
| 1263 | return; | 
|---|
| 1264 | } | 
|---|
| 1265 |  | 
|---|
| 1266 | /* | 
|---|
| 1267 | * If we're in an interrupt, have no user context or are running | 
|---|
| 1268 | * in a region with pagefaults disabled then we must not take the fault | 
|---|
| 1269 | */ | 
|---|
| 1270 | if (unlikely(faulthandler_disabled() || !mm)) { | 
|---|
| 1271 | bad_area_nosemaphore(regs, error_code, address); | 
|---|
| 1272 | return; | 
|---|
| 1273 | } | 
|---|
| 1274 |  | 
|---|
| 1275 | /* Legacy check - remove this after verifying that it doesn't trigger */ | 
|---|
| 1276 | if (WARN_ON_ONCE(!(regs->flags & X86_EFLAGS_IF))) { | 
|---|
| 1277 | bad_area_nosemaphore(regs, error_code, address); | 
|---|
| 1278 | return; | 
|---|
| 1279 | } | 
|---|
| 1280 |  | 
|---|
| 1281 | local_irq_enable(); | 
|---|
| 1282 |  | 
|---|
| 1283 | perf_sw_event(event_id: PERF_COUNT_SW_PAGE_FAULTS, nr: 1, regs, addr: address); | 
|---|
| 1284 |  | 
|---|
| 1285 | /* | 
|---|
| 1286 | * Read-only permissions can not be expressed in shadow stack PTEs. | 
|---|
| 1287 | * Treat all shadow stack accesses as WRITE faults. This ensures | 
|---|
| 1288 | * that the MM will prepare everything (e.g., break COW) such that | 
|---|
| 1289 | * maybe_mkwrite() can create a proper shadow stack PTE. | 
|---|
| 1290 | */ | 
|---|
| 1291 | if (error_code & X86_PF_SHSTK) | 
|---|
| 1292 | flags |= FAULT_FLAG_WRITE; | 
|---|
| 1293 | if (error_code & X86_PF_WRITE) | 
|---|
| 1294 | flags |= FAULT_FLAG_WRITE; | 
|---|
| 1295 | if (error_code & X86_PF_INSTR) | 
|---|
| 1296 | flags |= FAULT_FLAG_INSTRUCTION; | 
|---|
| 1297 |  | 
|---|
| 1298 | /* | 
|---|
| 1299 | * We set FAULT_FLAG_USER based on the register state, not | 
|---|
| 1300 | * based on X86_PF_USER. User space accesses that cause | 
|---|
| 1301 | * system page faults are still user accesses. | 
|---|
| 1302 | */ | 
|---|
| 1303 | if (user_mode(regs)) | 
|---|
| 1304 | flags |= FAULT_FLAG_USER; | 
|---|
| 1305 |  | 
|---|
| 1306 | #ifdef CONFIG_X86_64 | 
|---|
| 1307 | /* | 
|---|
| 1308 | * Faults in the vsyscall page might need emulation.  The | 
|---|
| 1309 | * vsyscall page is at a high address (>PAGE_OFFSET), but is | 
|---|
| 1310 | * considered to be part of the user address space. | 
|---|
| 1311 | * | 
|---|
| 1312 | * The vsyscall page does not have a "real" VMA, so do this | 
|---|
| 1313 | * emulation before we go searching for VMAs. | 
|---|
| 1314 | * | 
|---|
| 1315 | * PKRU never rejects instruction fetches, so we don't need | 
|---|
| 1316 | * to consider the PF_PK bit. | 
|---|
| 1317 | */ | 
|---|
| 1318 | if (is_vsyscall_vaddr(vaddr: address)) { | 
|---|
| 1319 | if (emulate_vsyscall(error_code, regs, address)) | 
|---|
| 1320 | return; | 
|---|
| 1321 | } | 
|---|
| 1322 | #endif | 
|---|
| 1323 |  | 
|---|
| 1324 | if (!(flags & FAULT_FLAG_USER)) | 
|---|
| 1325 | goto lock_mmap; | 
|---|
| 1326 |  | 
|---|
| 1327 | vma = lock_vma_under_rcu(mm, address); | 
|---|
| 1328 | if (!vma) | 
|---|
| 1329 | goto lock_mmap; | 
|---|
| 1330 |  | 
|---|
| 1331 | if (unlikely(access_error(error_code, vma))) { | 
|---|
| 1332 | bad_area_access_error(regs, error_code, address, NULL, vma); | 
|---|
| 1333 | count_vm_vma_lock_event(VMA_LOCK_SUCCESS); | 
|---|
| 1334 | return; | 
|---|
| 1335 | } | 
|---|
| 1336 | fault = handle_mm_fault(vma, address, flags: flags | FAULT_FLAG_VMA_LOCK, regs); | 
|---|
| 1337 | if (!(fault & (VM_FAULT_RETRY | VM_FAULT_COMPLETED))) | 
|---|
| 1338 | vma_end_read(vma); | 
|---|
| 1339 |  | 
|---|
| 1340 | if (!(fault & VM_FAULT_RETRY)) { | 
|---|
| 1341 | count_vm_vma_lock_event(VMA_LOCK_SUCCESS); | 
|---|
| 1342 | goto done; | 
|---|
| 1343 | } | 
|---|
| 1344 | count_vm_vma_lock_event(VMA_LOCK_RETRY); | 
|---|
| 1345 | if (fault & VM_FAULT_MAJOR) | 
|---|
| 1346 | flags |= FAULT_FLAG_TRIED; | 
|---|
| 1347 |  | 
|---|
| 1348 | /* Quick path to respond to signals */ | 
|---|
| 1349 | if (fault_signal_pending(fault_flags: fault, regs)) { | 
|---|
| 1350 | if (!user_mode(regs)) | 
|---|
| 1351 | kernelmode_fixup_or_oops(regs, error_code, address, | 
|---|
| 1352 | SIGBUS, BUS_ADRERR, | 
|---|
| 1353 | ARCH_DEFAULT_PKEY); | 
|---|
| 1354 | return; | 
|---|
| 1355 | } | 
|---|
| 1356 | lock_mmap: | 
|---|
| 1357 |  | 
|---|
| 1358 | retry: | 
|---|
| 1359 | vma = lock_mm_and_find_vma(mm, address, regs); | 
|---|
| 1360 | if (unlikely(!vma)) { | 
|---|
| 1361 | bad_area_nosemaphore(regs, error_code, address); | 
|---|
| 1362 | return; | 
|---|
| 1363 | } | 
|---|
| 1364 |  | 
|---|
| 1365 | /* | 
|---|
| 1366 | * Ok, we have a good vm_area for this memory access, so | 
|---|
| 1367 | * we can handle it.. | 
|---|
| 1368 | */ | 
|---|
| 1369 | if (unlikely(access_error(error_code, vma))) { | 
|---|
| 1370 | bad_area_access_error(regs, error_code, address, mm, vma); | 
|---|
| 1371 | return; | 
|---|
| 1372 | } | 
|---|
| 1373 |  | 
|---|
| 1374 | /* | 
|---|
| 1375 | * If for any reason at all we couldn't handle the fault, | 
|---|
| 1376 | * make sure we exit gracefully rather than endlessly redo | 
|---|
| 1377 | * the fault.  Since we never set FAULT_FLAG_RETRY_NOWAIT, if | 
|---|
| 1378 | * we get VM_FAULT_RETRY back, the mmap_lock has been unlocked. | 
|---|
| 1379 | * | 
|---|
| 1380 | * Note that handle_userfault() may also release and reacquire mmap_lock | 
|---|
| 1381 | * (and not return with VM_FAULT_RETRY), when returning to userland to | 
|---|
| 1382 | * repeat the page fault later with a VM_FAULT_NOPAGE retval | 
|---|
| 1383 | * (potentially after handling any pending signal during the return to | 
|---|
| 1384 | * userland). The return to userland is identified whenever | 
|---|
| 1385 | * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags. | 
|---|
| 1386 | */ | 
|---|
| 1387 | fault = handle_mm_fault(vma, address, flags, regs); | 
|---|
| 1388 |  | 
|---|
| 1389 | if (fault_signal_pending(fault_flags: fault, regs)) { | 
|---|
| 1390 | /* | 
|---|
| 1391 | * Quick path to respond to signals.  The core mm code | 
|---|
| 1392 | * has unlocked the mm for us if we get here. | 
|---|
| 1393 | */ | 
|---|
| 1394 | if (!user_mode(regs)) | 
|---|
| 1395 | kernelmode_fixup_or_oops(regs, error_code, address, | 
|---|
| 1396 | SIGBUS, BUS_ADRERR, | 
|---|
| 1397 | ARCH_DEFAULT_PKEY); | 
|---|
| 1398 | return; | 
|---|
| 1399 | } | 
|---|
| 1400 |  | 
|---|
| 1401 | /* The fault is fully completed (including releasing mmap lock) */ | 
|---|
| 1402 | if (fault & VM_FAULT_COMPLETED) | 
|---|
| 1403 | return; | 
|---|
| 1404 |  | 
|---|
| 1405 | /* | 
|---|
| 1406 | * If we need to retry the mmap_lock has already been released, | 
|---|
| 1407 | * and if there is a fatal signal pending there is no guarantee | 
|---|
| 1408 | * that we made any progress. Handle this case first. | 
|---|
| 1409 | */ | 
|---|
| 1410 | if (unlikely(fault & VM_FAULT_RETRY)) { | 
|---|
| 1411 | flags |= FAULT_FLAG_TRIED; | 
|---|
| 1412 | goto retry; | 
|---|
| 1413 | } | 
|---|
| 1414 |  | 
|---|
| 1415 | mmap_read_unlock(mm); | 
|---|
| 1416 | done: | 
|---|
| 1417 | if (likely(!(fault & VM_FAULT_ERROR))) | 
|---|
| 1418 | return; | 
|---|
| 1419 |  | 
|---|
| 1420 | if (fatal_signal_pending(current) && !user_mode(regs)) { | 
|---|
| 1421 | kernelmode_fixup_or_oops(regs, error_code, address, | 
|---|
| 1422 | signal: 0, si_code: 0, ARCH_DEFAULT_PKEY); | 
|---|
| 1423 | return; | 
|---|
| 1424 | } | 
|---|
| 1425 |  | 
|---|
| 1426 | if (fault & VM_FAULT_OOM) { | 
|---|
| 1427 | /* Kernel mode? Handle exceptions or die: */ | 
|---|
| 1428 | if (!user_mode(regs)) { | 
|---|
| 1429 | kernelmode_fixup_or_oops(regs, error_code, address, | 
|---|
| 1430 | SIGSEGV, SEGV_MAPERR, | 
|---|
| 1431 | ARCH_DEFAULT_PKEY); | 
|---|
| 1432 | return; | 
|---|
| 1433 | } | 
|---|
| 1434 |  | 
|---|
| 1435 | /* | 
|---|
| 1436 | * We ran out of memory, call the OOM killer, and return the | 
|---|
| 1437 | * userspace (which will retry the fault, or kill us if we got | 
|---|
| 1438 | * oom-killed): | 
|---|
| 1439 | */ | 
|---|
| 1440 | pagefault_out_of_memory(); | 
|---|
| 1441 | } else { | 
|---|
| 1442 | if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON| | 
|---|
| 1443 | VM_FAULT_HWPOISON_LARGE)) | 
|---|
| 1444 | do_sigbus(regs, error_code, address, fault); | 
|---|
| 1445 | else if (fault & VM_FAULT_SIGSEGV) | 
|---|
| 1446 | bad_area_nosemaphore(regs, error_code, address); | 
|---|
| 1447 | else | 
|---|
| 1448 | BUG(); | 
|---|
| 1449 | } | 
|---|
| 1450 | } | 
|---|
| 1451 | NOKPROBE_SYMBOL(do_user_addr_fault); | 
|---|
| 1452 |  | 
|---|
| 1453 | static __always_inline void | 
|---|
| 1454 | trace_page_fault_entries(struct pt_regs *regs, unsigned long error_code, | 
|---|
| 1455 | unsigned long address) | 
|---|
| 1456 | { | 
|---|
| 1457 | if (user_mode(regs)) | 
|---|
| 1458 | trace_page_fault_user(address, regs, error_code); | 
|---|
| 1459 | else | 
|---|
| 1460 | trace_page_fault_kernel(address, regs, error_code); | 
|---|
| 1461 | } | 
|---|
| 1462 |  | 
|---|
| 1463 | static __always_inline void | 
|---|
| 1464 | handle_page_fault(struct pt_regs *regs, unsigned long error_code, | 
|---|
| 1465 | unsigned long address) | 
|---|
| 1466 | { | 
|---|
| 1467 | trace_page_fault_entries(regs, error_code, address); | 
|---|
| 1468 |  | 
|---|
| 1469 | if (unlikely(kmmio_fault(regs, address))) | 
|---|
| 1470 | return; | 
|---|
| 1471 |  | 
|---|
| 1472 | /* Was the fault on kernel-controlled part of the address space? */ | 
|---|
| 1473 | if (unlikely(fault_in_kernel_space(address))) { | 
|---|
| 1474 | do_kern_addr_fault(regs, hw_error_code: error_code, address); | 
|---|
| 1475 | } else { | 
|---|
| 1476 | do_user_addr_fault(regs, error_code, address); | 
|---|
| 1477 | /* | 
|---|
| 1478 | * User address page fault handling might have reenabled | 
|---|
| 1479 | * interrupts. Fixing up all potential exit points of | 
|---|
| 1480 | * do_user_addr_fault() and its leaf functions is just not | 
|---|
| 1481 | * doable w/o creating an unholy mess or turning the code | 
|---|
| 1482 | * upside down. | 
|---|
| 1483 | */ | 
|---|
| 1484 | local_irq_disable(); | 
|---|
| 1485 | } | 
|---|
| 1486 | } | 
|---|
| 1487 |  | 
|---|
| 1488 | DEFINE_IDTENTRY_RAW_ERRORCODE(exc_page_fault) | 
|---|
| 1489 | { | 
|---|
| 1490 | irqentry_state_t state; | 
|---|
| 1491 | unsigned long address; | 
|---|
| 1492 |  | 
|---|
| 1493 | address = cpu_feature_enabled(X86_FEATURE_FRED) ? fred_event_data(regs) : read_cr2(); | 
|---|
| 1494 |  | 
|---|
| 1495 | /* | 
|---|
| 1496 | * KVM uses #PF vector to deliver 'page not present' events to guests | 
|---|
| 1497 | * (asynchronous page fault mechanism). The event happens when a | 
|---|
| 1498 | * userspace task is trying to access some valid (from guest's point of | 
|---|
| 1499 | * view) memory which is not currently mapped by the host (e.g. the | 
|---|
| 1500 | * memory is swapped out). Note, the corresponding "page ready" event | 
|---|
| 1501 | * which is injected when the memory becomes available, is delivered via | 
|---|
| 1502 | * an interrupt mechanism and not a #PF exception | 
|---|
| 1503 | * (see arch/x86/kernel/kvm.c: sysvec_kvm_asyncpf_interrupt()). | 
|---|
| 1504 | * | 
|---|
| 1505 | * We are relying on the interrupted context being sane (valid RSP, | 
|---|
| 1506 | * relevant locks not held, etc.), which is fine as long as the | 
|---|
| 1507 | * interrupted context had IF=1.  We are also relying on the KVM | 
|---|
| 1508 | * async pf type field and CR2 being read consistently instead of | 
|---|
| 1509 | * getting values from real and async page faults mixed up. | 
|---|
| 1510 | * | 
|---|
| 1511 | * Fingers crossed. | 
|---|
| 1512 | * | 
|---|
| 1513 | * The async #PF handling code takes care of idtentry handling | 
|---|
| 1514 | * itself. | 
|---|
| 1515 | */ | 
|---|
| 1516 | if (kvm_handle_async_pf(regs, token: (u32)address)) | 
|---|
| 1517 | return; | 
|---|
| 1518 |  | 
|---|
| 1519 | /* | 
|---|
| 1520 | * Entry handling for valid #PF from kernel mode is slightly | 
|---|
| 1521 | * different: RCU is already watching and ct_irq_enter() must not | 
|---|
| 1522 | * be invoked because a kernel fault on a user space address might | 
|---|
| 1523 | * sleep. | 
|---|
| 1524 | * | 
|---|
| 1525 | * In case the fault hit a RCU idle region the conditional entry | 
|---|
| 1526 | * code reenabled RCU to avoid subsequent wreckage which helps | 
|---|
| 1527 | * debuggability. | 
|---|
| 1528 | */ | 
|---|
| 1529 | state = irqentry_enter(regs); | 
|---|
| 1530 |  | 
|---|
| 1531 | instrumentation_begin(); | 
|---|
| 1532 | handle_page_fault(regs, error_code, address); | 
|---|
| 1533 | instrumentation_end(); | 
|---|
| 1534 |  | 
|---|
| 1535 | irqentry_exit(regs, state); | 
|---|
| 1536 | } | 
|---|
| 1537 |  | 
|---|