| 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | |
| 3 | #include "blk-rq-qos.h" |
| 4 | |
| 5 | /* |
| 6 | * Increment 'v', if 'v' is below 'below'. Returns true if we succeeded, |
| 7 | * false if 'v' + 1 would be bigger than 'below'. |
| 8 | */ |
| 9 | static bool atomic_inc_below(atomic_t *v, unsigned int below) |
| 10 | { |
| 11 | unsigned int cur = atomic_read(v); |
| 12 | |
| 13 | do { |
| 14 | if (cur >= below) |
| 15 | return false; |
| 16 | } while (!atomic_try_cmpxchg(v, old: &cur, new: cur + 1)); |
| 17 | |
| 18 | return true; |
| 19 | } |
| 20 | |
| 21 | bool rq_wait_inc_below(struct rq_wait *rq_wait, unsigned int limit) |
| 22 | { |
| 23 | return atomic_inc_below(v: &rq_wait->inflight, below: limit); |
| 24 | } |
| 25 | |
| 26 | void __rq_qos_cleanup(struct rq_qos *rqos, struct bio *bio) |
| 27 | { |
| 28 | do { |
| 29 | if (rqos->ops->cleanup) |
| 30 | rqos->ops->cleanup(rqos, bio); |
| 31 | rqos = rqos->next; |
| 32 | } while (rqos); |
| 33 | } |
| 34 | |
| 35 | void __rq_qos_done(struct rq_qos *rqos, struct request *rq) |
| 36 | { |
| 37 | do { |
| 38 | if (rqos->ops->done) |
| 39 | rqos->ops->done(rqos, rq); |
| 40 | rqos = rqos->next; |
| 41 | } while (rqos); |
| 42 | } |
| 43 | |
| 44 | void __rq_qos_issue(struct rq_qos *rqos, struct request *rq) |
| 45 | { |
| 46 | do { |
| 47 | if (rqos->ops->issue) |
| 48 | rqos->ops->issue(rqos, rq); |
| 49 | rqos = rqos->next; |
| 50 | } while (rqos); |
| 51 | } |
| 52 | |
| 53 | void __rq_qos_requeue(struct rq_qos *rqos, struct request *rq) |
| 54 | { |
| 55 | do { |
| 56 | if (rqos->ops->requeue) |
| 57 | rqos->ops->requeue(rqos, rq); |
| 58 | rqos = rqos->next; |
| 59 | } while (rqos); |
| 60 | } |
| 61 | |
| 62 | void __rq_qos_throttle(struct rq_qos *rqos, struct bio *bio) |
| 63 | { |
| 64 | do { |
| 65 | if (rqos->ops->throttle) |
| 66 | rqos->ops->throttle(rqos, bio); |
| 67 | rqos = rqos->next; |
| 68 | } while (rqos); |
| 69 | } |
| 70 | |
| 71 | void __rq_qos_track(struct rq_qos *rqos, struct request *rq, struct bio *bio) |
| 72 | { |
| 73 | do { |
| 74 | if (rqos->ops->track) |
| 75 | rqos->ops->track(rqos, rq, bio); |
| 76 | rqos = rqos->next; |
| 77 | } while (rqos); |
| 78 | } |
| 79 | |
| 80 | void __rq_qos_merge(struct rq_qos *rqos, struct request *rq, struct bio *bio) |
| 81 | { |
| 82 | do { |
| 83 | if (rqos->ops->merge) |
| 84 | rqos->ops->merge(rqos, rq, bio); |
| 85 | rqos = rqos->next; |
| 86 | } while (rqos); |
| 87 | } |
| 88 | |
| 89 | void __rq_qos_done_bio(struct rq_qos *rqos, struct bio *bio) |
| 90 | { |
| 91 | do { |
| 92 | if (rqos->ops->done_bio) |
| 93 | rqos->ops->done_bio(rqos, bio); |
| 94 | rqos = rqos->next; |
| 95 | } while (rqos); |
| 96 | } |
| 97 | |
| 98 | void __rq_qos_queue_depth_changed(struct rq_qos *rqos) |
| 99 | { |
| 100 | do { |
| 101 | if (rqos->ops->queue_depth_changed) |
| 102 | rqos->ops->queue_depth_changed(rqos); |
| 103 | rqos = rqos->next; |
| 104 | } while (rqos); |
| 105 | } |
| 106 | |
| 107 | /* |
| 108 | * Return true, if we can't increase the depth further by scaling |
| 109 | */ |
| 110 | bool rq_depth_calc_max_depth(struct rq_depth *rqd) |
| 111 | { |
| 112 | unsigned int depth; |
| 113 | bool ret = false; |
| 114 | |
| 115 | /* |
| 116 | * For QD=1 devices, this is a special case. It's important for those |
| 117 | * to have one request ready when one completes, so force a depth of |
| 118 | * 2 for those devices. On the backend, it'll be a depth of 1 anyway, |
| 119 | * since the device can't have more than that in flight. If we're |
| 120 | * scaling down, then keep a setting of 1/1/1. |
| 121 | */ |
| 122 | if (rqd->queue_depth == 1) { |
| 123 | if (rqd->scale_step > 0) |
| 124 | rqd->max_depth = 1; |
| 125 | else { |
| 126 | rqd->max_depth = 2; |
| 127 | ret = true; |
| 128 | } |
| 129 | } else { |
| 130 | /* |
| 131 | * scale_step == 0 is our default state. If we have suffered |
| 132 | * latency spikes, step will be > 0, and we shrink the |
| 133 | * allowed write depths. If step is < 0, we're only doing |
| 134 | * writes, and we allow a temporarily higher depth to |
| 135 | * increase performance. |
| 136 | */ |
| 137 | depth = min_t(unsigned int, rqd->default_depth, |
| 138 | rqd->queue_depth); |
| 139 | if (rqd->scale_step > 0) |
| 140 | depth = 1 + ((depth - 1) >> min(31, rqd->scale_step)); |
| 141 | else if (rqd->scale_step < 0) { |
| 142 | unsigned int maxd = 3 * rqd->queue_depth / 4; |
| 143 | |
| 144 | depth = 1 + ((depth - 1) << -rqd->scale_step); |
| 145 | if (depth > maxd) { |
| 146 | depth = maxd; |
| 147 | ret = true; |
| 148 | } |
| 149 | } |
| 150 | |
| 151 | rqd->max_depth = depth; |
| 152 | } |
| 153 | |
| 154 | return ret; |
| 155 | } |
| 156 | |
| 157 | /* Returns true on success and false if scaling up wasn't possible */ |
| 158 | bool rq_depth_scale_up(struct rq_depth *rqd) |
| 159 | { |
| 160 | /* |
| 161 | * Hit max in previous round, stop here |
| 162 | */ |
| 163 | if (rqd->scaled_max) |
| 164 | return false; |
| 165 | |
| 166 | rqd->scale_step--; |
| 167 | |
| 168 | rqd->scaled_max = rq_depth_calc_max_depth(rqd); |
| 169 | return true; |
| 170 | } |
| 171 | |
| 172 | /* |
| 173 | * Scale rwb down. If 'hard_throttle' is set, do it quicker, since we |
| 174 | * had a latency violation. Returns true on success and returns false if |
| 175 | * scaling down wasn't possible. |
| 176 | */ |
| 177 | bool rq_depth_scale_down(struct rq_depth *rqd, bool hard_throttle) |
| 178 | { |
| 179 | /* |
| 180 | * Stop scaling down when we've hit the limit. This also prevents |
| 181 | * ->scale_step from going to crazy values, if the device can't |
| 182 | * keep up. |
| 183 | */ |
| 184 | if (rqd->max_depth == 1) |
| 185 | return false; |
| 186 | |
| 187 | if (rqd->scale_step < 0 && hard_throttle) |
| 188 | rqd->scale_step = 0; |
| 189 | else |
| 190 | rqd->scale_step++; |
| 191 | |
| 192 | rqd->scaled_max = false; |
| 193 | rq_depth_calc_max_depth(rqd); |
| 194 | return true; |
| 195 | } |
| 196 | |
| 197 | struct rq_qos_wait_data { |
| 198 | struct wait_queue_entry wq; |
| 199 | struct rq_wait *rqw; |
| 200 | acquire_inflight_cb_t *cb; |
| 201 | void *private_data; |
| 202 | bool got_token; |
| 203 | }; |
| 204 | |
| 205 | static int rq_qos_wake_function(struct wait_queue_entry *curr, |
| 206 | unsigned int mode, int wake_flags, void *key) |
| 207 | { |
| 208 | struct rq_qos_wait_data *data = container_of(curr, |
| 209 | struct rq_qos_wait_data, |
| 210 | wq); |
| 211 | |
| 212 | /* |
| 213 | * If we fail to get a budget, return -1 to interrupt the wake up loop |
| 214 | * in __wake_up_common. |
| 215 | */ |
| 216 | if (!data->cb(data->rqw, data->private_data)) |
| 217 | return -1; |
| 218 | |
| 219 | data->got_token = true; |
| 220 | /* |
| 221 | * autoremove_wake_function() removes the wait entry only when it |
| 222 | * actually changed the task state. We want the wait always removed. |
| 223 | * Remove explicitly and use default_wake_function(). |
| 224 | */ |
| 225 | default_wake_function(wq_entry: curr, mode, flags: wake_flags, key); |
| 226 | /* |
| 227 | * Note that the order of operations is important as finish_wait() |
| 228 | * tests whether @curr is removed without grabbing the lock. This |
| 229 | * should be the last thing to do to make sure we will not have a |
| 230 | * UAF access to @data. And the semantics of memory barrier in it |
| 231 | * also make sure the waiter will see the latest @data->got_token |
| 232 | * once list_empty_careful() in finish_wait() returns true. |
| 233 | */ |
| 234 | list_del_init_careful(entry: &curr->entry); |
| 235 | return 1; |
| 236 | } |
| 237 | |
| 238 | /** |
| 239 | * rq_qos_wait - throttle on a rqw if we need to |
| 240 | * @rqw: rqw to throttle on |
| 241 | * @private_data: caller provided specific data |
| 242 | * @acquire_inflight_cb: inc the rqw->inflight counter if we can |
| 243 | * @cleanup_cb: the callback to cleanup in case we race with a waker |
| 244 | * |
| 245 | * This provides a uniform place for the rq_qos users to do their throttling. |
| 246 | * Since you can end up with a lot of things sleeping at once, this manages the |
| 247 | * waking up based on the resources available. The acquire_inflight_cb should |
| 248 | * inc the rqw->inflight if we have the ability to do so, or return false if not |
| 249 | * and then we will sleep until the room becomes available. |
| 250 | * |
| 251 | * cleanup_cb is in case that we race with a waker and need to cleanup the |
| 252 | * inflight count accordingly. |
| 253 | */ |
| 254 | void rq_qos_wait(struct rq_wait *rqw, void *private_data, |
| 255 | acquire_inflight_cb_t *acquire_inflight_cb, |
| 256 | cleanup_cb_t *cleanup_cb) |
| 257 | { |
| 258 | struct rq_qos_wait_data data = { |
| 259 | .rqw = rqw, |
| 260 | .cb = acquire_inflight_cb, |
| 261 | .private_data = private_data, |
| 262 | .got_token = false, |
| 263 | }; |
| 264 | bool first_waiter; |
| 265 | |
| 266 | /* |
| 267 | * If there are no waiters in the waiting queue, try to increase the |
| 268 | * inflight counter if we can. Otherwise, prepare for adding ourselves |
| 269 | * to the waiting queue. |
| 270 | */ |
| 271 | if (!waitqueue_active(wq_head: &rqw->wait) && acquire_inflight_cb(rqw, private_data)) |
| 272 | return; |
| 273 | |
| 274 | init_wait_func(&data.wq, rq_qos_wake_function); |
| 275 | first_waiter = prepare_to_wait_exclusive(wq_head: &rqw->wait, wq_entry: &data.wq, |
| 276 | TASK_UNINTERRUPTIBLE); |
| 277 | /* |
| 278 | * Make sure there is at least one inflight process; otherwise, waiters |
| 279 | * will never be woken up. Since there may be no inflight process before |
| 280 | * adding ourselves to the waiting queue above, we need to try to |
| 281 | * increase the inflight counter for ourselves. And it is sufficient to |
| 282 | * guarantee that at least the first waiter to enter the waiting queue |
| 283 | * will re-check the waiting condition before going to sleep, thus |
| 284 | * ensuring forward progress. |
| 285 | */ |
| 286 | if (!data.got_token && first_waiter && acquire_inflight_cb(rqw, private_data)) { |
| 287 | finish_wait(wq_head: &rqw->wait, wq_entry: &data.wq); |
| 288 | /* |
| 289 | * We raced with rq_qos_wake_function() getting a token, |
| 290 | * which means we now have two. Put our local token |
| 291 | * and wake anyone else potentially waiting for one. |
| 292 | * |
| 293 | * Enough memory barrier in list_empty_careful() in |
| 294 | * finish_wait() is paired with list_del_init_careful() |
| 295 | * in rq_qos_wake_function() to make sure we will see |
| 296 | * the latest @data->got_token. |
| 297 | */ |
| 298 | if (data.got_token) |
| 299 | cleanup_cb(rqw, private_data); |
| 300 | return; |
| 301 | } |
| 302 | |
| 303 | /* we are now relying on the waker to increase our inflight counter. */ |
| 304 | do { |
| 305 | if (data.got_token) |
| 306 | break; |
| 307 | io_schedule(); |
| 308 | set_current_state(TASK_UNINTERRUPTIBLE); |
| 309 | } while (1); |
| 310 | finish_wait(wq_head: &rqw->wait, wq_entry: &data.wq); |
| 311 | } |
| 312 | |
| 313 | void rq_qos_exit(struct request_queue *q) |
| 314 | { |
| 315 | mutex_lock(lock: &q->rq_qos_mutex); |
| 316 | while (q->rq_qos) { |
| 317 | struct rq_qos *rqos = q->rq_qos; |
| 318 | q->rq_qos = rqos->next; |
| 319 | rqos->ops->exit(rqos); |
| 320 | } |
| 321 | blk_queue_flag_clear(flag: QUEUE_FLAG_QOS_ENABLED, q); |
| 322 | mutex_unlock(lock: &q->rq_qos_mutex); |
| 323 | } |
| 324 | |
| 325 | int rq_qos_add(struct rq_qos *rqos, struct gendisk *disk, enum rq_qos_id id, |
| 326 | const struct rq_qos_ops *ops) |
| 327 | { |
| 328 | struct request_queue *q = disk->queue; |
| 329 | unsigned int memflags; |
| 330 | |
| 331 | lockdep_assert_held(&q->rq_qos_mutex); |
| 332 | |
| 333 | rqos->disk = disk; |
| 334 | rqos->id = id; |
| 335 | rqos->ops = ops; |
| 336 | |
| 337 | /* |
| 338 | * No IO can be in-flight when adding rqos, so freeze queue, which |
| 339 | * is fine since we only support rq_qos for blk-mq queue. |
| 340 | */ |
| 341 | memflags = blk_mq_freeze_queue(q); |
| 342 | |
| 343 | if (rq_qos_id(q, id: rqos->id)) |
| 344 | goto ebusy; |
| 345 | rqos->next = q->rq_qos; |
| 346 | q->rq_qos = rqos; |
| 347 | blk_queue_flag_set(flag: QUEUE_FLAG_QOS_ENABLED, q); |
| 348 | |
| 349 | blk_mq_unfreeze_queue(q, memflags); |
| 350 | |
| 351 | if (rqos->ops->debugfs_attrs) { |
| 352 | mutex_lock(lock: &q->debugfs_mutex); |
| 353 | blk_mq_debugfs_register_rqos(rqos); |
| 354 | mutex_unlock(lock: &q->debugfs_mutex); |
| 355 | } |
| 356 | |
| 357 | return 0; |
| 358 | ebusy: |
| 359 | blk_mq_unfreeze_queue(q, memflags); |
| 360 | return -EBUSY; |
| 361 | } |
| 362 | |
| 363 | void rq_qos_del(struct rq_qos *rqos) |
| 364 | { |
| 365 | struct request_queue *q = rqos->disk->queue; |
| 366 | struct rq_qos **cur; |
| 367 | unsigned int memflags; |
| 368 | |
| 369 | lockdep_assert_held(&q->rq_qos_mutex); |
| 370 | |
| 371 | memflags = blk_mq_freeze_queue(q); |
| 372 | for (cur = &q->rq_qos; *cur; cur = &(*cur)->next) { |
| 373 | if (*cur == rqos) { |
| 374 | *cur = rqos->next; |
| 375 | break; |
| 376 | } |
| 377 | } |
| 378 | if (!q->rq_qos) |
| 379 | blk_queue_flag_clear(flag: QUEUE_FLAG_QOS_ENABLED, q); |
| 380 | blk_mq_unfreeze_queue(q, memflags); |
| 381 | |
| 382 | mutex_lock(lock: &q->debugfs_mutex); |
| 383 | blk_mq_debugfs_unregister_rqos(rqos); |
| 384 | mutex_unlock(lock: &q->debugfs_mutex); |
| 385 | } |
| 386 | |