1// SPDX-License-Identifier: GPL-2.0
2/*
3 * cacheinfo support - processor cache information via sysfs
4 *
5 * Based on arch/x86/kernel/cpu/intel_cacheinfo.c
6 * Author: Sudeep Holla <sudeep.holla@arm.com>
7 */
8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10#include <linux/acpi.h>
11#include <linux/bitfield.h>
12#include <linux/bitops.h>
13#include <linux/cacheinfo.h>
14#include <linux/compiler.h>
15#include <linux/cpu.h>
16#include <linux/device.h>
17#include <linux/init.h>
18#include <linux/of.h>
19#include <linux/sched.h>
20#include <linux/slab.h>
21#include <linux/smp.h>
22#include <linux/sysfs.h>
23
24/* pointer to per cpu cacheinfo */
25static DEFINE_PER_CPU(struct cpu_cacheinfo, ci_cpu_cacheinfo);
26#define ci_cacheinfo(cpu) (&per_cpu(ci_cpu_cacheinfo, cpu))
27#define cache_leaves(cpu) (ci_cacheinfo(cpu)->num_leaves)
28#define per_cpu_cacheinfo(cpu) (ci_cacheinfo(cpu)->info_list)
29#define per_cpu_cacheinfo_idx(cpu, idx) \
30 (per_cpu_cacheinfo(cpu) + (idx))
31
32/* Set if no cache information is found in DT/ACPI. */
33static bool use_arch_info;
34
35struct cpu_cacheinfo *get_cpu_cacheinfo(unsigned int cpu)
36{
37 return ci_cacheinfo(cpu);
38}
39
40static inline bool cache_leaves_are_shared(struct cacheinfo *this_leaf,
41 struct cacheinfo *sib_leaf)
42{
43 /*
44 * For non DT/ACPI systems, assume unique level 1 caches,
45 * system-wide shared caches for all other levels.
46 */
47 if (!(IS_ENABLED(CONFIG_OF) || IS_ENABLED(CONFIG_ACPI)) ||
48 use_arch_info)
49 return (this_leaf->level != 1) && (sib_leaf->level != 1);
50
51 if ((sib_leaf->attributes & CACHE_ID) &&
52 (this_leaf->attributes & CACHE_ID))
53 return sib_leaf->id == this_leaf->id;
54
55 return sib_leaf->fw_token == this_leaf->fw_token;
56}
57
58bool last_level_cache_is_valid(unsigned int cpu)
59{
60 struct cacheinfo *llc;
61
62 if (!cache_leaves(cpu) || !per_cpu_cacheinfo(cpu))
63 return false;
64
65 llc = per_cpu_cacheinfo_idx(cpu, cache_leaves(cpu) - 1);
66
67 return (llc->attributes & CACHE_ID) || !!llc->fw_token;
68
69}
70
71bool last_level_cache_is_shared(unsigned int cpu_x, unsigned int cpu_y)
72{
73 struct cacheinfo *llc_x, *llc_y;
74
75 if (!last_level_cache_is_valid(cpu: cpu_x) ||
76 !last_level_cache_is_valid(cpu: cpu_y))
77 return false;
78
79 llc_x = per_cpu_cacheinfo_idx(cpu_x, cache_leaves(cpu_x) - 1);
80 llc_y = per_cpu_cacheinfo_idx(cpu_y, cache_leaves(cpu_y) - 1);
81
82 return cache_leaves_are_shared(this_leaf: llc_x, sib_leaf: llc_y);
83}
84
85#ifdef CONFIG_OF
86
87static bool of_check_cache_nodes(struct device_node *np);
88
89/* OF properties to query for a given cache type */
90struct cache_type_info {
91 const char *size_prop;
92 const char *line_size_props[2];
93 const char *nr_sets_prop;
94};
95
96static const struct cache_type_info cache_type_info[] = {
97 {
98 .size_prop = "cache-size",
99 .line_size_props = { "cache-line-size",
100 "cache-block-size", },
101 .nr_sets_prop = "cache-sets",
102 }, {
103 .size_prop = "i-cache-size",
104 .line_size_props = { "i-cache-line-size",
105 "i-cache-block-size", },
106 .nr_sets_prop = "i-cache-sets",
107 }, {
108 .size_prop = "d-cache-size",
109 .line_size_props = { "d-cache-line-size",
110 "d-cache-block-size", },
111 .nr_sets_prop = "d-cache-sets",
112 },
113};
114
115static inline int get_cacheinfo_idx(enum cache_type type)
116{
117 if (type == CACHE_TYPE_UNIFIED)
118 return 0;
119 return type;
120}
121
122static void cache_size(struct cacheinfo *this_leaf, struct device_node *np)
123{
124 const char *propname;
125 int ct_idx;
126
127 ct_idx = get_cacheinfo_idx(this_leaf->type);
128 propname = cache_type_info[ct_idx].size_prop;
129
130 of_property_read_u32(np, propname, &this_leaf->size);
131}
132
133/* not cache_line_size() because that's a macro in include/linux/cache.h */
134static void cache_get_line_size(struct cacheinfo *this_leaf,
135 struct device_node *np)
136{
137 int i, lim, ct_idx;
138
139 ct_idx = get_cacheinfo_idx(this_leaf->type);
140 lim = ARRAY_SIZE(cache_type_info[ct_idx].line_size_props);
141
142 for (i = 0; i < lim; i++) {
143 int ret;
144 u32 line_size;
145 const char *propname;
146
147 propname = cache_type_info[ct_idx].line_size_props[i];
148 ret = of_property_read_u32(np, propname, &line_size);
149 if (!ret) {
150 this_leaf->coherency_line_size = line_size;
151 break;
152 }
153 }
154}
155
156static void cache_nr_sets(struct cacheinfo *this_leaf, struct device_node *np)
157{
158 const char *propname;
159 int ct_idx;
160
161 ct_idx = get_cacheinfo_idx(this_leaf->type);
162 propname = cache_type_info[ct_idx].nr_sets_prop;
163
164 of_property_read_u32(np, propname, &this_leaf->number_of_sets);
165}
166
167static void cache_associativity(struct cacheinfo *this_leaf)
168{
169 unsigned int line_size = this_leaf->coherency_line_size;
170 unsigned int nr_sets = this_leaf->number_of_sets;
171 unsigned int size = this_leaf->size;
172
173 /*
174 * If the cache is fully associative, there is no need to
175 * check the other properties.
176 */
177 if (!(nr_sets == 1) && (nr_sets > 0 && size > 0 && line_size > 0))
178 this_leaf->ways_of_associativity = (size / nr_sets) / line_size;
179}
180
181static bool cache_node_is_unified(struct cacheinfo *this_leaf,
182 struct device_node *np)
183{
184 return of_property_read_bool(np, "cache-unified");
185}
186
187static bool match_cache_node(struct device_node *cpu,
188 const struct device_node *cache_node)
189{
190 struct device_node *prev, *cache = of_find_next_cache_node(cpu);
191
192 while (cache) {
193 if (cache == cache_node) {
194 of_node_put(cache);
195 return true;
196 }
197
198 prev = cache;
199 cache = of_find_next_cache_node(cache);
200 of_node_put(prev);
201 }
202
203 return false;
204}
205
206#ifndef arch_compact_of_hwid
207#define arch_compact_of_hwid(_x) (_x)
208#endif
209
210static void cache_of_set_id(struct cacheinfo *this_leaf,
211 struct device_node *cache_node)
212{
213 struct device_node *cpu;
214 u32 min_id = ~0;
215
216 for_each_of_cpu_node(cpu) {
217 u64 id = of_get_cpu_hwid(cpu, 0);
218
219 id = arch_compact_of_hwid(id);
220 if (FIELD_GET(GENMASK_ULL(63, 32), id)) {
221 of_node_put(cpu);
222 return;
223 }
224
225 if (match_cache_node(cpu, cache_node))
226 min_id = min(min_id, id);
227 }
228
229 if (min_id != ~0) {
230 this_leaf->id = min_id;
231 this_leaf->attributes |= CACHE_ID;
232 }
233}
234
235static void cache_of_set_props(struct cacheinfo *this_leaf,
236 struct device_node *np)
237{
238 /*
239 * init_cache_level must setup the cache level correctly
240 * overriding the architecturally specified levels, so
241 * if type is NONE at this stage, it should be unified
242 */
243 if (this_leaf->type == CACHE_TYPE_NOCACHE &&
244 cache_node_is_unified(this_leaf, np))
245 this_leaf->type = CACHE_TYPE_UNIFIED;
246 cache_size(this_leaf, np);
247 cache_get_line_size(this_leaf, np);
248 cache_nr_sets(this_leaf, np);
249 cache_associativity(this_leaf);
250 cache_of_set_id(this_leaf, np);
251}
252
253static int cache_setup_of_node(unsigned int cpu)
254{
255 struct cacheinfo *this_leaf;
256 unsigned int index = 0;
257
258 struct device_node *np __free(device_node) = of_cpu_device_node_get(cpu);
259 if (!np) {
260 pr_err("Failed to find cpu%d device node\n", cpu);
261 return -ENOENT;
262 }
263
264 if (!of_check_cache_nodes(np)) {
265 return -ENOENT;
266 }
267
268 while (index < cache_leaves(cpu)) {
269 this_leaf = per_cpu_cacheinfo_idx(cpu, index);
270 if (this_leaf->level != 1) {
271 struct device_node *prev __free(device_node) = np;
272 np = of_find_next_cache_node(np);
273 if (!np)
274 break;
275 }
276 cache_of_set_props(this_leaf, np);
277 this_leaf->fw_token = np;
278 index++;
279 }
280
281 if (index != cache_leaves(cpu)) /* not all OF nodes populated */
282 return -ENOENT;
283
284 return 0;
285}
286
287static bool of_check_cache_nodes(struct device_node *np)
288{
289 if (of_property_present(np, "cache-size") ||
290 of_property_present(np, "i-cache-size") ||
291 of_property_present(np, "d-cache-size") ||
292 of_property_present(np, "cache-unified"))
293 return true;
294
295 struct device_node *next __free(device_node) = of_find_next_cache_node(np);
296 if (next) {
297 return true;
298 }
299
300 return false;
301}
302
303static int of_count_cache_leaves(struct device_node *np)
304{
305 unsigned int leaves = 0;
306
307 if (of_property_present(np, "cache-size"))
308 ++leaves;
309 if (of_property_present(np, "i-cache-size"))
310 ++leaves;
311 if (of_property_present(np, "d-cache-size"))
312 ++leaves;
313
314 if (!leaves) {
315 /* The '[i-|d-|]cache-size' property is required, but
316 * if absent, fallback on the 'cache-unified' property.
317 */
318 if (of_property_read_bool(np, "cache-unified"))
319 return 1;
320 else
321 return 2;
322 }
323
324 return leaves;
325}
326
327int init_of_cache_level(unsigned int cpu)
328{
329 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
330 struct device_node *np __free(device_node) = of_cpu_device_node_get(cpu);
331 unsigned int levels = 0, leaves, level;
332
333 if (!of_check_cache_nodes(np)) {
334 return -ENOENT;
335 }
336
337 leaves = of_count_cache_leaves(np);
338 if (leaves > 0)
339 levels = 1;
340
341 while (1) {
342 struct device_node *prev __free(device_node) = np;
343 np = of_find_next_cache_node(np);
344 if (!np)
345 break;
346
347 if (!of_device_is_compatible(np, "cache"))
348 return -EINVAL;
349 if (of_property_read_u32(np, "cache-level", &level))
350 return -EINVAL;
351 if (level <= levels)
352 return -EINVAL;
353
354 leaves += of_count_cache_leaves(np);
355 levels = level;
356 }
357
358 this_cpu_ci->num_levels = levels;
359 this_cpu_ci->num_leaves = leaves;
360
361 return 0;
362}
363
364#else
365static inline int cache_setup_of_node(unsigned int cpu) { return 0; }
366int init_of_cache_level(unsigned int cpu) { return 0; }
367#endif
368
369int __weak cache_setup_acpi(unsigned int cpu)
370{
371 return -ENOTSUPP;
372}
373
374unsigned int coherency_max_size;
375
376static int cache_setup_properties(unsigned int cpu)
377{
378 int ret = 0;
379
380 if (of_have_populated_dt())
381 ret = cache_setup_of_node(cpu);
382 else if (!acpi_disabled)
383 ret = cache_setup_acpi(cpu);
384
385 // Assume there is no cache information available in DT/ACPI from now.
386 if (ret && use_arch_cache_info())
387 use_arch_info = true;
388
389 return ret;
390}
391
392static int cache_shared_cpu_map_setup(unsigned int cpu)
393{
394 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
395 struct cacheinfo *this_leaf, *sib_leaf;
396 unsigned int index, sib_index;
397 int ret = 0;
398
399 if (this_cpu_ci->cpu_map_populated)
400 return 0;
401
402 /*
403 * skip setting up cache properties if LLC is valid, just need
404 * to update the shared cpu_map if the cache attributes were
405 * populated early before all the cpus are brought online
406 */
407 if (!last_level_cache_is_valid(cpu) && !use_arch_info) {
408 ret = cache_setup_properties(cpu);
409 if (ret)
410 return ret;
411 }
412
413 for (index = 0; index < cache_leaves(cpu); index++) {
414 unsigned int i;
415
416 this_leaf = per_cpu_cacheinfo_idx(cpu, index);
417
418 cpumask_set_cpu(cpu, dstp: &this_leaf->shared_cpu_map);
419 for_each_online_cpu(i) {
420 if (i == cpu || !per_cpu_cacheinfo(i))
421 continue;/* skip if itself or no cacheinfo */
422 for (sib_index = 0; sib_index < cache_leaves(i); sib_index++) {
423 sib_leaf = per_cpu_cacheinfo_idx(i, sib_index);
424
425 /*
426 * Comparing cache IDs only makes sense if the leaves
427 * belong to the same cache level of same type. Skip
428 * the check if level and type do not match.
429 */
430 if (sib_leaf->level != this_leaf->level ||
431 sib_leaf->type != this_leaf->type)
432 continue;
433
434 if (cache_leaves_are_shared(this_leaf, sib_leaf)) {
435 cpumask_set_cpu(cpu, dstp: &sib_leaf->shared_cpu_map);
436 cpumask_set_cpu(cpu: i, dstp: &this_leaf->shared_cpu_map);
437 break;
438 }
439 }
440 }
441 /* record the maximum cache line size */
442 if (this_leaf->coherency_line_size > coherency_max_size)
443 coherency_max_size = this_leaf->coherency_line_size;
444 }
445
446 /* shared_cpu_map is now populated for the cpu */
447 this_cpu_ci->cpu_map_populated = true;
448 return 0;
449}
450
451static void cache_shared_cpu_map_remove(unsigned int cpu)
452{
453 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
454 struct cacheinfo *this_leaf, *sib_leaf;
455 unsigned int sibling, index, sib_index;
456
457 for (index = 0; index < cache_leaves(cpu); index++) {
458 this_leaf = per_cpu_cacheinfo_idx(cpu, index);
459 for_each_cpu(sibling, &this_leaf->shared_cpu_map) {
460 if (sibling == cpu || !per_cpu_cacheinfo(sibling))
461 continue;/* skip if itself or no cacheinfo */
462
463 for (sib_index = 0; sib_index < cache_leaves(sibling); sib_index++) {
464 sib_leaf = per_cpu_cacheinfo_idx(sibling, sib_index);
465
466 /*
467 * Comparing cache IDs only makes sense if the leaves
468 * belong to the same cache level of same type. Skip
469 * the check if level and type do not match.
470 */
471 if (sib_leaf->level != this_leaf->level ||
472 sib_leaf->type != this_leaf->type)
473 continue;
474
475 if (cache_leaves_are_shared(this_leaf, sib_leaf)) {
476 cpumask_clear_cpu(cpu, dstp: &sib_leaf->shared_cpu_map);
477 cpumask_clear_cpu(cpu: sibling, dstp: &this_leaf->shared_cpu_map);
478 break;
479 }
480 }
481 }
482 }
483
484 /* cpu is no longer populated in the shared map */
485 this_cpu_ci->cpu_map_populated = false;
486}
487
488static void free_cache_attributes(unsigned int cpu)
489{
490 if (!per_cpu_cacheinfo(cpu))
491 return;
492
493 cache_shared_cpu_map_remove(cpu);
494}
495
496int __weak early_cache_level(unsigned int cpu)
497{
498 return -ENOENT;
499}
500
501int __weak init_cache_level(unsigned int cpu)
502{
503 return -ENOENT;
504}
505
506int __weak populate_cache_leaves(unsigned int cpu)
507{
508 return -ENOENT;
509}
510
511static inline int allocate_cache_info(int cpu)
512{
513 per_cpu_cacheinfo(cpu) = kcalloc(cache_leaves(cpu), sizeof(struct cacheinfo), GFP_ATOMIC);
514 if (!per_cpu_cacheinfo(cpu)) {
515 cache_leaves(cpu) = 0;
516 return -ENOMEM;
517 }
518
519 return 0;
520}
521
522int fetch_cache_info(unsigned int cpu)
523{
524 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
525 unsigned int levels = 0, split_levels = 0;
526 int ret;
527
528 if (acpi_disabled) {
529 ret = init_of_cache_level(cpu);
530 } else {
531 ret = acpi_get_cache_info(cpu, levels: &levels, split_levels: &split_levels);
532 if (!ret) {
533 this_cpu_ci->num_levels = levels;
534 /*
535 * This assumes that:
536 * - there cannot be any split caches (data/instruction)
537 * above a unified cache
538 * - data/instruction caches come by pair
539 */
540 this_cpu_ci->num_leaves = levels + split_levels;
541 }
542 }
543
544 if (ret || !cache_leaves(cpu)) {
545 ret = early_cache_level(cpu);
546 if (ret)
547 return ret;
548
549 if (!cache_leaves(cpu))
550 return -ENOENT;
551
552 this_cpu_ci->early_ci_levels = true;
553 }
554
555 return allocate_cache_info(cpu);
556}
557
558static inline int init_level_allocate_ci(unsigned int cpu)
559{
560 unsigned int early_leaves = cache_leaves(cpu);
561
562 /* Since early initialization/allocation of the cacheinfo is allowed
563 * via fetch_cache_info() and this also gets called as CPU hotplug
564 * callbacks via cacheinfo_cpu_online, the init/alloc can be skipped
565 * as it will happen only once (the cacheinfo memory is never freed).
566 * Just populate the cacheinfo. However, if the cacheinfo has been
567 * allocated early through the arch-specific early_cache_level() call,
568 * there is a chance the info is wrong (this can happen on arm64). In
569 * that case, call init_cache_level() anyway to give the arch-specific
570 * code a chance to make things right.
571 */
572 if (per_cpu_cacheinfo(cpu) && !ci_cacheinfo(cpu)->early_ci_levels)
573 return 0;
574
575 if (init_cache_level(cpu) || !cache_leaves(cpu))
576 return -ENOENT;
577
578 /*
579 * Now that we have properly initialized the cache level info, make
580 * sure we don't try to do that again the next time we are called
581 * (e.g. as CPU hotplug callbacks).
582 */
583 ci_cacheinfo(cpu)->early_ci_levels = false;
584
585 /*
586 * Some architectures (e.g., x86) do not use early initialization.
587 * Allocate memory now in such case.
588 */
589 if (cache_leaves(cpu) <= early_leaves && per_cpu_cacheinfo(cpu))
590 return 0;
591
592 kfree(per_cpu_cacheinfo(cpu));
593 return allocate_cache_info(cpu);
594}
595
596int detect_cache_attributes(unsigned int cpu)
597{
598 int ret;
599
600 ret = init_level_allocate_ci(cpu);
601 if (ret)
602 return ret;
603
604 /*
605 * If LLC is valid the cache leaves were already populated so just go to
606 * update the cpu map.
607 */
608 if (!last_level_cache_is_valid(cpu)) {
609 /*
610 * populate_cache_leaves() may completely setup the cache leaves and
611 * shared_cpu_map or it may leave it partially setup.
612 */
613 ret = populate_cache_leaves(cpu);
614 if (ret)
615 goto free_ci;
616 }
617
618 /*
619 * For systems using DT for cache hierarchy, fw_token
620 * and shared_cpu_map will be set up here only if they are
621 * not populated already
622 */
623 ret = cache_shared_cpu_map_setup(cpu);
624 if (ret) {
625 pr_warn("Unable to detect cache hierarchy for CPU %d\n", cpu);
626 goto free_ci;
627 }
628
629 return 0;
630
631free_ci:
632 free_cache_attributes(cpu);
633 return ret;
634}
635
636/* pointer to cpuX/cache device */
637static DEFINE_PER_CPU(struct device *, ci_cache_dev);
638#define per_cpu_cache_dev(cpu) (per_cpu(ci_cache_dev, cpu))
639
640static cpumask_t cache_dev_map;
641
642/* pointer to array of devices for cpuX/cache/indexY */
643static DEFINE_PER_CPU(struct device **, ci_index_dev);
644#define per_cpu_index_dev(cpu) (per_cpu(ci_index_dev, cpu))
645#define per_cache_index_dev(cpu, idx) ((per_cpu_index_dev(cpu))[idx])
646
647#define show_one(file_name, object) \
648static ssize_t file_name##_show(struct device *dev, \
649 struct device_attribute *attr, char *buf) \
650{ \
651 struct cacheinfo *this_leaf = dev_get_drvdata(dev); \
652 return sysfs_emit(buf, "%u\n", this_leaf->object); \
653}
654
655show_one(id, id);
656show_one(level, level);
657show_one(coherency_line_size, coherency_line_size);
658show_one(number_of_sets, number_of_sets);
659show_one(physical_line_partition, physical_line_partition);
660show_one(ways_of_associativity, ways_of_associativity);
661
662static ssize_t size_show(struct device *dev,
663 struct device_attribute *attr, char *buf)
664{
665 struct cacheinfo *this_leaf = dev_get_drvdata(dev);
666
667 return sysfs_emit(buf, fmt: "%uK\n", this_leaf->size >> 10);
668}
669
670static ssize_t shared_cpu_map_show(struct device *dev,
671 struct device_attribute *attr, char *buf)
672{
673 struct cacheinfo *this_leaf = dev_get_drvdata(dev);
674 const struct cpumask *mask = &this_leaf->shared_cpu_map;
675
676 return sysfs_emit(buf, fmt: "%*pb\n", nr_cpu_ids, mask);
677}
678
679static ssize_t shared_cpu_list_show(struct device *dev,
680 struct device_attribute *attr, char *buf)
681{
682 struct cacheinfo *this_leaf = dev_get_drvdata(dev);
683 const struct cpumask *mask = &this_leaf->shared_cpu_map;
684
685 return sysfs_emit(buf, fmt: "%*pbl\n", nr_cpu_ids, mask);
686}
687
688static ssize_t type_show(struct device *dev,
689 struct device_attribute *attr, char *buf)
690{
691 struct cacheinfo *this_leaf = dev_get_drvdata(dev);
692 const char *output;
693
694 switch (this_leaf->type) {
695 case CACHE_TYPE_DATA:
696 output = "Data";
697 break;
698 case CACHE_TYPE_INST:
699 output = "Instruction";
700 break;
701 case CACHE_TYPE_UNIFIED:
702 output = "Unified";
703 break;
704 default:
705 return -EINVAL;
706 }
707
708 return sysfs_emit(buf, fmt: "%s\n", output);
709}
710
711static ssize_t allocation_policy_show(struct device *dev,
712 struct device_attribute *attr, char *buf)
713{
714 struct cacheinfo *this_leaf = dev_get_drvdata(dev);
715 unsigned int ci_attr = this_leaf->attributes;
716 const char *output;
717
718 if ((ci_attr & CACHE_READ_ALLOCATE) && (ci_attr & CACHE_WRITE_ALLOCATE))
719 output = "ReadWriteAllocate";
720 else if (ci_attr & CACHE_READ_ALLOCATE)
721 output = "ReadAllocate";
722 else if (ci_attr & CACHE_WRITE_ALLOCATE)
723 output = "WriteAllocate";
724 else
725 return 0;
726
727 return sysfs_emit(buf, fmt: "%s\n", output);
728}
729
730static ssize_t write_policy_show(struct device *dev,
731 struct device_attribute *attr, char *buf)
732{
733 struct cacheinfo *this_leaf = dev_get_drvdata(dev);
734 unsigned int ci_attr = this_leaf->attributes;
735 int n = 0;
736
737 if (ci_attr & CACHE_WRITE_THROUGH)
738 n = sysfs_emit(buf, fmt: "WriteThrough\n");
739 else if (ci_attr & CACHE_WRITE_BACK)
740 n = sysfs_emit(buf, fmt: "WriteBack\n");
741 return n;
742}
743
744static DEVICE_ATTR_RO(id);
745static DEVICE_ATTR_RO(level);
746static DEVICE_ATTR_RO(type);
747static DEVICE_ATTR_RO(coherency_line_size);
748static DEVICE_ATTR_RO(ways_of_associativity);
749static DEVICE_ATTR_RO(number_of_sets);
750static DEVICE_ATTR_RO(size);
751static DEVICE_ATTR_RO(allocation_policy);
752static DEVICE_ATTR_RO(write_policy);
753static DEVICE_ATTR_RO(shared_cpu_map);
754static DEVICE_ATTR_RO(shared_cpu_list);
755static DEVICE_ATTR_RO(physical_line_partition);
756
757static struct attribute *cache_default_attrs[] = {
758 &dev_attr_id.attr,
759 &dev_attr_type.attr,
760 &dev_attr_level.attr,
761 &dev_attr_shared_cpu_map.attr,
762 &dev_attr_shared_cpu_list.attr,
763 &dev_attr_coherency_line_size.attr,
764 &dev_attr_ways_of_associativity.attr,
765 &dev_attr_number_of_sets.attr,
766 &dev_attr_size.attr,
767 &dev_attr_allocation_policy.attr,
768 &dev_attr_write_policy.attr,
769 &dev_attr_physical_line_partition.attr,
770 NULL
771};
772
773static umode_t
774cache_default_attrs_is_visible(struct kobject *kobj,
775 struct attribute *attr, int unused)
776{
777 struct device *dev = kobj_to_dev(kobj);
778 struct cacheinfo *this_leaf = dev_get_drvdata(dev);
779 const struct cpumask *mask = &this_leaf->shared_cpu_map;
780 umode_t mode = attr->mode;
781
782 if ((attr == &dev_attr_id.attr) && (this_leaf->attributes & CACHE_ID))
783 return mode;
784 if ((attr == &dev_attr_type.attr) && this_leaf->type)
785 return mode;
786 if ((attr == &dev_attr_level.attr) && this_leaf->level)
787 return mode;
788 if ((attr == &dev_attr_shared_cpu_map.attr) && !cpumask_empty(srcp: mask))
789 return mode;
790 if ((attr == &dev_attr_shared_cpu_list.attr) && !cpumask_empty(srcp: mask))
791 return mode;
792 if ((attr == &dev_attr_coherency_line_size.attr) &&
793 this_leaf->coherency_line_size)
794 return mode;
795 if ((attr == &dev_attr_ways_of_associativity.attr) &&
796 this_leaf->size) /* allow 0 = full associativity */
797 return mode;
798 if ((attr == &dev_attr_number_of_sets.attr) &&
799 this_leaf->number_of_sets)
800 return mode;
801 if ((attr == &dev_attr_size.attr) && this_leaf->size)
802 return mode;
803 if ((attr == &dev_attr_write_policy.attr) &&
804 (this_leaf->attributes & CACHE_WRITE_POLICY_MASK))
805 return mode;
806 if ((attr == &dev_attr_allocation_policy.attr) &&
807 (this_leaf->attributes & CACHE_ALLOCATE_POLICY_MASK))
808 return mode;
809 if ((attr == &dev_attr_physical_line_partition.attr) &&
810 this_leaf->physical_line_partition)
811 return mode;
812
813 return 0;
814}
815
816static const struct attribute_group cache_default_group = {
817 .attrs = cache_default_attrs,
818 .is_visible = cache_default_attrs_is_visible,
819};
820
821static const struct attribute_group *cache_default_groups[] = {
822 &cache_default_group,
823 NULL,
824};
825
826static const struct attribute_group *cache_private_groups[] = {
827 &cache_default_group,
828 NULL, /* Place holder for private group */
829 NULL,
830};
831
832const struct attribute_group *
833__weak cache_get_priv_group(struct cacheinfo *this_leaf)
834{
835 return NULL;
836}
837
838static const struct attribute_group **
839cache_get_attribute_groups(struct cacheinfo *this_leaf)
840{
841 const struct attribute_group *priv_group =
842 cache_get_priv_group(this_leaf);
843
844 if (!priv_group)
845 return cache_default_groups;
846
847 if (!cache_private_groups[1])
848 cache_private_groups[1] = priv_group;
849
850 return cache_private_groups;
851}
852
853/* Add/Remove cache interface for CPU device */
854static void cpu_cache_sysfs_exit(unsigned int cpu)
855{
856 int i;
857 struct device *ci_dev;
858
859 if (per_cpu_index_dev(cpu)) {
860 for (i = 0; i < cache_leaves(cpu); i++) {
861 ci_dev = per_cache_index_dev(cpu, i);
862 if (!ci_dev)
863 continue;
864 device_unregister(dev: ci_dev);
865 }
866 kfree(per_cpu_index_dev(cpu));
867 per_cpu_index_dev(cpu) = NULL;
868 }
869 device_unregister(per_cpu_cache_dev(cpu));
870 per_cpu_cache_dev(cpu) = NULL;
871}
872
873static int cpu_cache_sysfs_init(unsigned int cpu)
874{
875 struct device *dev = get_cpu_device(cpu);
876
877 if (per_cpu_cacheinfo(cpu) == NULL)
878 return -ENOENT;
879
880 per_cpu_cache_dev(cpu) = cpu_device_create(parent: dev, NULL, NULL, fmt: "cache");
881 if (IS_ERR(per_cpu_cache_dev(cpu)))
882 return PTR_ERR(per_cpu_cache_dev(cpu));
883
884 /* Allocate all required memory */
885 per_cpu_index_dev(cpu) = kcalloc(cache_leaves(cpu),
886 sizeof(struct device *), GFP_KERNEL);
887 if (unlikely(per_cpu_index_dev(cpu) == NULL))
888 goto err_out;
889
890 return 0;
891
892err_out:
893 cpu_cache_sysfs_exit(cpu);
894 return -ENOMEM;
895}
896
897static int cache_add_dev(unsigned int cpu)
898{
899 unsigned int i;
900 int rc;
901 struct device *ci_dev, *parent;
902 struct cacheinfo *this_leaf;
903 const struct attribute_group **cache_groups;
904
905 rc = cpu_cache_sysfs_init(cpu);
906 if (unlikely(rc < 0))
907 return rc;
908
909 parent = per_cpu_cache_dev(cpu);
910 for (i = 0; i < cache_leaves(cpu); i++) {
911 this_leaf = per_cpu_cacheinfo_idx(cpu, i);
912 if (this_leaf->disable_sysfs)
913 continue;
914 if (this_leaf->type == CACHE_TYPE_NOCACHE)
915 break;
916 cache_groups = cache_get_attribute_groups(this_leaf);
917 ci_dev = cpu_device_create(parent, drvdata: this_leaf, groups: cache_groups,
918 fmt: "index%1u", i);
919 if (IS_ERR(ptr: ci_dev)) {
920 rc = PTR_ERR(ptr: ci_dev);
921 goto err;
922 }
923 per_cache_index_dev(cpu, i) = ci_dev;
924 }
925 cpumask_set_cpu(cpu, dstp: &cache_dev_map);
926
927 return 0;
928err:
929 cpu_cache_sysfs_exit(cpu);
930 return rc;
931}
932
933static unsigned int cpu_map_shared_cache(bool online, unsigned int cpu,
934 cpumask_t **map)
935{
936 struct cacheinfo *llc, *sib_llc;
937 unsigned int sibling;
938
939 if (!last_level_cache_is_valid(cpu))
940 return 0;
941
942 llc = per_cpu_cacheinfo_idx(cpu, cache_leaves(cpu) - 1);
943
944 if (llc->type != CACHE_TYPE_DATA && llc->type != CACHE_TYPE_UNIFIED)
945 return 0;
946
947 if (online) {
948 *map = &llc->shared_cpu_map;
949 return cpumask_weight(srcp: *map);
950 }
951
952 /* shared_cpu_map of offlined CPU will be cleared, so use sibling map */
953 for_each_cpu(sibling, &llc->shared_cpu_map) {
954 if (sibling == cpu || !last_level_cache_is_valid(cpu: sibling))
955 continue;
956 sib_llc = per_cpu_cacheinfo_idx(sibling, cache_leaves(sibling) - 1);
957 *map = &sib_llc->shared_cpu_map;
958 return cpumask_weight(srcp: *map);
959 }
960
961 return 0;
962}
963
964/*
965 * Calculate the size of the per-CPU data cache slice. This can be
966 * used to estimate the size of the data cache slice that can be used
967 * by one CPU under ideal circumstances. UNIFIED caches are counted
968 * in addition to DATA caches. So, please consider code cache usage
969 * when use the result.
970 *
971 * Because the cache inclusive/non-inclusive information isn't
972 * available, we just use the size of the per-CPU slice of LLC to make
973 * the result more predictable across architectures.
974 */
975static void update_per_cpu_data_slice_size_cpu(unsigned int cpu)
976{
977 struct cpu_cacheinfo *ci;
978 struct cacheinfo *llc;
979 unsigned int nr_shared;
980
981 if (!last_level_cache_is_valid(cpu))
982 return;
983
984 ci = ci_cacheinfo(cpu);
985 llc = per_cpu_cacheinfo_idx(cpu, cache_leaves(cpu) - 1);
986
987 if (llc->type != CACHE_TYPE_DATA && llc->type != CACHE_TYPE_UNIFIED)
988 return;
989
990 nr_shared = cpumask_weight(srcp: &llc->shared_cpu_map);
991 if (nr_shared)
992 ci->per_cpu_data_slice_size = llc->size / nr_shared;
993}
994
995static void update_per_cpu_data_slice_size(bool cpu_online, unsigned int cpu,
996 cpumask_t *cpu_map)
997{
998 unsigned int icpu;
999
1000 for_each_cpu(icpu, cpu_map) {
1001 if (!cpu_online && icpu == cpu)
1002 continue;
1003 update_per_cpu_data_slice_size_cpu(cpu: icpu);
1004 setup_pcp_cacheinfo(icpu);
1005 }
1006}
1007
1008static int cacheinfo_cpu_online(unsigned int cpu)
1009{
1010 int rc = detect_cache_attributes(cpu);
1011 cpumask_t *cpu_map;
1012
1013 if (rc)
1014 return rc;
1015 rc = cache_add_dev(cpu);
1016 if (rc)
1017 goto err;
1018 if (cpu_map_shared_cache(online: true, cpu, map: &cpu_map))
1019 update_per_cpu_data_slice_size(cpu_online: true, cpu, cpu_map);
1020 return 0;
1021err:
1022 free_cache_attributes(cpu);
1023 return rc;
1024}
1025
1026static int cacheinfo_cpu_pre_down(unsigned int cpu)
1027{
1028 cpumask_t *cpu_map;
1029 unsigned int nr_shared;
1030
1031 nr_shared = cpu_map_shared_cache(online: false, cpu, map: &cpu_map);
1032 if (cpumask_test_and_clear_cpu(cpu, cpumask: &cache_dev_map))
1033 cpu_cache_sysfs_exit(cpu);
1034
1035 free_cache_attributes(cpu);
1036 if (nr_shared > 1)
1037 update_per_cpu_data_slice_size(cpu_online: false, cpu, cpu_map);
1038 return 0;
1039}
1040
1041static int __init cacheinfo_sysfs_init(void)
1042{
1043 return cpuhp_setup_state(state: CPUHP_AP_BASE_CACHEINFO_ONLINE,
1044 name: "base/cacheinfo:online",
1045 startup: cacheinfo_cpu_online, teardown: cacheinfo_cpu_pre_down);
1046}
1047device_initcall(cacheinfo_sysfs_init);
1048