| 1 | // SPDX-License-Identifier: GPL-2.0 | 
|---|
| 2 | /* | 
|---|
| 3 | * i8253 PIT clocksource | 
|---|
| 4 | */ | 
|---|
| 5 | #include <linux/clockchips.h> | 
|---|
| 6 | #include <linux/init.h> | 
|---|
| 7 | #include <linux/io.h> | 
|---|
| 8 | #include <linux/spinlock.h> | 
|---|
| 9 | #include <linux/timex.h> | 
|---|
| 10 | #include <linux/module.h> | 
|---|
| 11 | #include <linux/i8253.h> | 
|---|
| 12 | #include <linux/smp.h> | 
|---|
| 13 |  | 
|---|
| 14 | /* | 
|---|
| 15 | * Protects access to I/O ports | 
|---|
| 16 | * | 
|---|
| 17 | * 0040-0043 : timer0, i8253 / i8254 | 
|---|
| 18 | * 0061-0061 : NMI Control Register which contains two speaker control bits. | 
|---|
| 19 | */ | 
|---|
| 20 | DEFINE_RAW_SPINLOCK(i8253_lock); | 
|---|
| 21 | EXPORT_SYMBOL(i8253_lock); | 
|---|
| 22 |  | 
|---|
| 23 | #ifdef CONFIG_CLKSRC_I8253 | 
|---|
| 24 | /* | 
|---|
| 25 | * Since the PIT overflows every tick, its not very useful | 
|---|
| 26 | * to just read by itself. So use jiffies to emulate a free | 
|---|
| 27 | * running counter: | 
|---|
| 28 | */ | 
|---|
| 29 | static u64 i8253_read(struct clocksource *cs) | 
|---|
| 30 | { | 
|---|
| 31 | static int old_count; | 
|---|
| 32 | static u32 old_jifs; | 
|---|
| 33 | unsigned long flags; | 
|---|
| 34 | int count; | 
|---|
| 35 | u32 jifs; | 
|---|
| 36 |  | 
|---|
| 37 | raw_spin_lock_irqsave(&i8253_lock, flags); | 
|---|
| 38 | /* | 
|---|
| 39 | * Although our caller may have the read side of jiffies_lock, | 
|---|
| 40 | * this is now a seqlock, and we are cheating in this routine | 
|---|
| 41 | * by having side effects on state that we cannot undo if | 
|---|
| 42 | * there is a collision on the seqlock and our caller has to | 
|---|
| 43 | * retry.  (Namely, old_jifs and old_count.)  So we must treat | 
|---|
| 44 | * jiffies as volatile despite the lock.  We read jiffies | 
|---|
| 45 | * before latching the timer count to guarantee that although | 
|---|
| 46 | * the jiffies value might be older than the count (that is, | 
|---|
| 47 | * the counter may underflow between the last point where | 
|---|
| 48 | * jiffies was incremented and the point where we latch the | 
|---|
| 49 | * count), it cannot be newer. | 
|---|
| 50 | */ | 
|---|
| 51 | jifs = jiffies; | 
|---|
| 52 | outb_p(0x00, PIT_MODE);	/* latch the count ASAP */ | 
|---|
| 53 | count = inb_p(PIT_CH0);	/* read the latched count */ | 
|---|
| 54 | count |= inb_p(PIT_CH0) << 8; | 
|---|
| 55 |  | 
|---|
| 56 | /* VIA686a test code... reset the latch if count > max + 1 */ | 
|---|
| 57 | if (count > PIT_LATCH) { | 
|---|
| 58 | outb_p(0x34, PIT_MODE); | 
|---|
| 59 | outb_p(PIT_LATCH & 0xff, PIT_CH0); | 
|---|
| 60 | outb_p(PIT_LATCH >> 8, PIT_CH0); | 
|---|
| 61 | count = PIT_LATCH - 1; | 
|---|
| 62 | } | 
|---|
| 63 |  | 
|---|
| 64 | /* | 
|---|
| 65 | * It's possible for count to appear to go the wrong way for a | 
|---|
| 66 | * couple of reasons: | 
|---|
| 67 | * | 
|---|
| 68 | *  1. The timer counter underflows, but we haven't handled the | 
|---|
| 69 | *     resulting interrupt and incremented jiffies yet. | 
|---|
| 70 | *  2. Hardware problem with the timer, not giving us continuous time, | 
|---|
| 71 | *     the counter does small "jumps" upwards on some Pentium systems, | 
|---|
| 72 | *     (see c't 95/10 page 335 for Neptun bug.) | 
|---|
| 73 | * | 
|---|
| 74 | * Previous attempts to handle these cases intelligently were | 
|---|
| 75 | * buggy, so we just do the simple thing now. | 
|---|
| 76 | */ | 
|---|
| 77 | if (count > old_count && jifs == old_jifs) | 
|---|
| 78 | count = old_count; | 
|---|
| 79 |  | 
|---|
| 80 | old_count = count; | 
|---|
| 81 | old_jifs = jifs; | 
|---|
| 82 |  | 
|---|
| 83 | raw_spin_unlock_irqrestore(&i8253_lock, flags); | 
|---|
| 84 |  | 
|---|
| 85 | count = (PIT_LATCH - 1) - count; | 
|---|
| 86 |  | 
|---|
| 87 | return (u64)(jifs * PIT_LATCH) + count; | 
|---|
| 88 | } | 
|---|
| 89 |  | 
|---|
| 90 | static struct clocksource i8253_cs = { | 
|---|
| 91 | .name		= "pit", | 
|---|
| 92 | .rating		= 110, | 
|---|
| 93 | .read		= i8253_read, | 
|---|
| 94 | .mask		= CLOCKSOURCE_MASK(32), | 
|---|
| 95 | }; | 
|---|
| 96 |  | 
|---|
| 97 | int __init clocksource_i8253_init(void) | 
|---|
| 98 | { | 
|---|
| 99 | return clocksource_register_hz(&i8253_cs, PIT_TICK_RATE); | 
|---|
| 100 | } | 
|---|
| 101 | #endif | 
|---|
| 102 |  | 
|---|
| 103 | #ifdef CONFIG_CLKEVT_I8253 | 
|---|
| 104 | void clockevent_i8253_disable(void) | 
|---|
| 105 | { | 
|---|
| 106 | guard(raw_spinlock_irqsave)(l: &i8253_lock); | 
|---|
| 107 |  | 
|---|
| 108 | /* | 
|---|
| 109 | * Writing the MODE register should stop the counter, according to | 
|---|
| 110 | * the datasheet. This appears to work on real hardware (well, on | 
|---|
| 111 | * modern Intel and AMD boxes; I didn't dig the Pegasos out of the | 
|---|
| 112 | * shed). | 
|---|
| 113 | * | 
|---|
| 114 | * However, some virtual implementations differ, and the MODE change | 
|---|
| 115 | * doesn't have any effect until either the counter is written (KVM | 
|---|
| 116 | * in-kernel PIT) or the next interrupt (QEMU). And in those cases, | 
|---|
| 117 | * it may not stop the *count*, only the interrupts. Although in | 
|---|
| 118 | * the virt case, that probably doesn't matter, as the value of the | 
|---|
| 119 | * counter will only be calculated on demand if the guest reads it; | 
|---|
| 120 | * it's the interrupts which cause steal time. | 
|---|
| 121 | * | 
|---|
| 122 | * Hyper-V apparently has a bug where even in mode 0, the IRQ keeps | 
|---|
| 123 | * firing repeatedly if the counter is running. But it *does* do the | 
|---|
| 124 | * right thing when the MODE register is written. | 
|---|
| 125 | * | 
|---|
| 126 | * So: write the MODE and then load the counter, which ensures that | 
|---|
| 127 | * the IRQ is stopped on those buggy virt implementations. And then | 
|---|
| 128 | * write the MODE again, which is the right way to stop it. | 
|---|
| 129 | */ | 
|---|
| 130 | outb_p(value: 0x30, PIT_MODE); | 
|---|
| 131 | outb_p(value: 0, PIT_CH0); | 
|---|
| 132 | outb_p(value: 0, PIT_CH0); | 
|---|
| 133 |  | 
|---|
| 134 | outb_p(value: 0x30, PIT_MODE); | 
|---|
| 135 | } | 
|---|
| 136 |  | 
|---|
| 137 | static int pit_shutdown(struct clock_event_device *evt) | 
|---|
| 138 | { | 
|---|
| 139 | if (!clockevent_state_oneshot(dev: evt) && !clockevent_state_periodic(dev: evt)) | 
|---|
| 140 | return 0; | 
|---|
| 141 |  | 
|---|
| 142 | clockevent_i8253_disable(); | 
|---|
| 143 | return 0; | 
|---|
| 144 | } | 
|---|
| 145 |  | 
|---|
| 146 | static int pit_set_oneshot(struct clock_event_device *evt) | 
|---|
| 147 | { | 
|---|
| 148 | raw_spin_lock(&i8253_lock); | 
|---|
| 149 | outb_p(value: 0x38, PIT_MODE); | 
|---|
| 150 | raw_spin_unlock(&i8253_lock); | 
|---|
| 151 | return 0; | 
|---|
| 152 | } | 
|---|
| 153 |  | 
|---|
| 154 | static int pit_set_periodic(struct clock_event_device *evt) | 
|---|
| 155 | { | 
|---|
| 156 | raw_spin_lock(&i8253_lock); | 
|---|
| 157 |  | 
|---|
| 158 | /* binary, mode 2, LSB/MSB, ch 0 */ | 
|---|
| 159 | outb_p(value: 0x34, PIT_MODE); | 
|---|
| 160 | outb_p(PIT_LATCH & 0xff, PIT_CH0);	/* LSB */ | 
|---|
| 161 | outb_p(PIT_LATCH >> 8, PIT_CH0);	/* MSB */ | 
|---|
| 162 |  | 
|---|
| 163 | raw_spin_unlock(&i8253_lock); | 
|---|
| 164 | return 0; | 
|---|
| 165 | } | 
|---|
| 166 |  | 
|---|
| 167 | /* | 
|---|
| 168 | * Program the next event in oneshot mode | 
|---|
| 169 | * | 
|---|
| 170 | * Delta is given in PIT ticks | 
|---|
| 171 | */ | 
|---|
| 172 | static int pit_next_event(unsigned long delta, struct clock_event_device *evt) | 
|---|
| 173 | { | 
|---|
| 174 | raw_spin_lock(&i8253_lock); | 
|---|
| 175 | outb_p(value: delta & 0xff , PIT_CH0);	/* LSB */ | 
|---|
| 176 | outb_p(value: delta >> 8 , PIT_CH0);		/* MSB */ | 
|---|
| 177 | raw_spin_unlock(&i8253_lock); | 
|---|
| 178 |  | 
|---|
| 179 | return 0; | 
|---|
| 180 | } | 
|---|
| 181 |  | 
|---|
| 182 | /* | 
|---|
| 183 | * On UP the PIT can serve all of the possible timer functions. On SMP systems | 
|---|
| 184 | * it can be solely used for the global tick. | 
|---|
| 185 | */ | 
|---|
| 186 | struct clock_event_device i8253_clockevent = { | 
|---|
| 187 | .name			= "pit", | 
|---|
| 188 | .features		= CLOCK_EVT_FEAT_PERIODIC, | 
|---|
| 189 | .set_state_shutdown	= pit_shutdown, | 
|---|
| 190 | .set_state_periodic	= pit_set_periodic, | 
|---|
| 191 | .set_next_event		= pit_next_event, | 
|---|
| 192 | }; | 
|---|
| 193 |  | 
|---|
| 194 | /* | 
|---|
| 195 | * Initialize the conversion factor and the min/max deltas of the clock event | 
|---|
| 196 | * structure and register the clock event source with the framework. | 
|---|
| 197 | */ | 
|---|
| 198 | void __init clockevent_i8253_init(bool oneshot) | 
|---|
| 199 | { | 
|---|
| 200 | if (oneshot) { | 
|---|
| 201 | i8253_clockevent.features |= CLOCK_EVT_FEAT_ONESHOT; | 
|---|
| 202 | i8253_clockevent.set_state_oneshot = pit_set_oneshot; | 
|---|
| 203 | } | 
|---|
| 204 | /* | 
|---|
| 205 | * Start pit with the boot cpu mask. x86 might make it global | 
|---|
| 206 | * when it is used as broadcast device later. | 
|---|
| 207 | */ | 
|---|
| 208 | i8253_clockevent.cpumask = cpumask_of(smp_processor_id()); | 
|---|
| 209 |  | 
|---|
| 210 | clockevents_config_and_register(dev: &i8253_clockevent, PIT_TICK_RATE, | 
|---|
| 211 | min_delta: 0xF, max_delta: 0x7FFF); | 
|---|
| 212 | } | 
|---|
| 213 | #endif | 
|---|
| 214 |  | 
|---|