1// SPDX-License-Identifier: MIT
2/*
3 * Copyright © 2014-2019 Intel Corporation
4 */
5
6#include <linux/debugfs.h>
7#include <linux/string_helpers.h>
8
9#include <drm/drm_managed.h>
10
11#include "gt/intel_gt.h"
12#include "i915_drv.h"
13#include "i915_irq.h"
14#include "i915_memcpy.h"
15#include "intel_guc_capture.h"
16#include "intel_guc_log.h"
17#include "intel_guc_print.h"
18
19#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GUC)
20#define GUC_LOG_DEFAULT_CRASH_BUFFER_SIZE SZ_2M
21#define GUC_LOG_DEFAULT_DEBUG_BUFFER_SIZE SZ_16M
22#define GUC_LOG_DEFAULT_CAPTURE_BUFFER_SIZE SZ_1M
23#elif IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
24#define GUC_LOG_DEFAULT_CRASH_BUFFER_SIZE SZ_1M
25#define GUC_LOG_DEFAULT_DEBUG_BUFFER_SIZE SZ_2M
26#define GUC_LOG_DEFAULT_CAPTURE_BUFFER_SIZE SZ_1M
27#else
28#define GUC_LOG_DEFAULT_CRASH_BUFFER_SIZE SZ_8K
29#define GUC_LOG_DEFAULT_DEBUG_BUFFER_SIZE SZ_64K
30#define GUC_LOG_DEFAULT_CAPTURE_BUFFER_SIZE SZ_1M
31#endif
32
33static void guc_log_copy_debuglogs_for_relay(struct intel_guc_log *log);
34
35struct guc_log_section {
36 u32 max;
37 u32 flag;
38 u32 default_val;
39 const char *name;
40};
41
42static void _guc_log_init_sizes(struct intel_guc_log *log)
43{
44 struct intel_guc *guc = log_to_guc(log);
45 static const struct guc_log_section sections[GUC_LOG_SECTIONS_LIMIT] = {
46 {
47 GUC_LOG_CRASH_MASK >> GUC_LOG_CRASH_SHIFT,
48 GUC_LOG_LOG_ALLOC_UNITS,
49 GUC_LOG_DEFAULT_CRASH_BUFFER_SIZE,
50 "crash dump"
51 },
52 {
53 GUC_LOG_DEBUG_MASK >> GUC_LOG_DEBUG_SHIFT,
54 GUC_LOG_LOG_ALLOC_UNITS,
55 GUC_LOG_DEFAULT_DEBUG_BUFFER_SIZE,
56 "debug",
57 },
58 {
59 GUC_LOG_CAPTURE_MASK >> GUC_LOG_CAPTURE_SHIFT,
60 GUC_LOG_CAPTURE_ALLOC_UNITS,
61 GUC_LOG_DEFAULT_CAPTURE_BUFFER_SIZE,
62 "capture",
63 }
64 };
65 int i;
66
67 for (i = 0; i < GUC_LOG_SECTIONS_LIMIT; i++)
68 log->sizes[i].bytes = sections[i].default_val;
69
70 /* If debug size > 1MB then bump default crash size to keep the same units */
71 if (log->sizes[GUC_LOG_SECTIONS_DEBUG].bytes >= SZ_1M &&
72 GUC_LOG_DEFAULT_CRASH_BUFFER_SIZE < SZ_1M)
73 log->sizes[GUC_LOG_SECTIONS_CRASH].bytes = SZ_1M;
74
75 /* Prepare the GuC API structure fields: */
76 for (i = 0; i < GUC_LOG_SECTIONS_LIMIT; i++) {
77 /* Convert to correct units */
78 if ((log->sizes[i].bytes % SZ_1M) == 0) {
79 log->sizes[i].units = SZ_1M;
80 log->sizes[i].flag = sections[i].flag;
81 } else {
82 log->sizes[i].units = SZ_4K;
83 log->sizes[i].flag = 0;
84 }
85
86 if (!IS_ALIGNED(log->sizes[i].bytes, log->sizes[i].units))
87 guc_err(guc, "Mis-aligned log %s size: 0x%X vs 0x%X!\n",
88 sections[i].name, log->sizes[i].bytes, log->sizes[i].units);
89 log->sizes[i].count = log->sizes[i].bytes / log->sizes[i].units;
90
91 if (!log->sizes[i].count) {
92 guc_err(guc, "Zero log %s size!\n", sections[i].name);
93 } else {
94 /* Size is +1 unit */
95 log->sizes[i].count--;
96 }
97
98 /* Clip to field size */
99 if (log->sizes[i].count > sections[i].max) {
100 guc_err(guc, "log %s size too large: %d vs %d!\n",
101 sections[i].name, log->sizes[i].count + 1, sections[i].max + 1);
102 log->sizes[i].count = sections[i].max;
103 }
104 }
105
106 if (log->sizes[GUC_LOG_SECTIONS_CRASH].units != log->sizes[GUC_LOG_SECTIONS_DEBUG].units) {
107 guc_err(guc, "Unit mismatch for crash and debug sections: %d vs %d!\n",
108 log->sizes[GUC_LOG_SECTIONS_CRASH].units,
109 log->sizes[GUC_LOG_SECTIONS_DEBUG].units);
110 log->sizes[GUC_LOG_SECTIONS_CRASH].units = log->sizes[GUC_LOG_SECTIONS_DEBUG].units;
111 log->sizes[GUC_LOG_SECTIONS_CRASH].count = 0;
112 }
113
114 log->sizes_initialised = true;
115}
116
117static void guc_log_init_sizes(struct intel_guc_log *log)
118{
119 if (log->sizes_initialised)
120 return;
121
122 _guc_log_init_sizes(log);
123}
124
125static u32 intel_guc_log_section_size_crash(struct intel_guc_log *log)
126{
127 guc_log_init_sizes(log);
128
129 return log->sizes[GUC_LOG_SECTIONS_CRASH].bytes;
130}
131
132static u32 intel_guc_log_section_size_debug(struct intel_guc_log *log)
133{
134 guc_log_init_sizes(log);
135
136 return log->sizes[GUC_LOG_SECTIONS_DEBUG].bytes;
137}
138
139u32 intel_guc_log_section_size_capture(struct intel_guc_log *log)
140{
141 guc_log_init_sizes(log);
142
143 return log->sizes[GUC_LOG_SECTIONS_CAPTURE].bytes;
144}
145
146static u32 intel_guc_log_size(struct intel_guc_log *log)
147{
148 /*
149 * GuC Log buffer Layout:
150 *
151 * NB: Ordering must follow "enum guc_log_buffer_type".
152 *
153 * +===============================+ 00B
154 * | Debug state header |
155 * +-------------------------------+ 32B
156 * | Crash dump state header |
157 * +-------------------------------+ 64B
158 * | Capture state header |
159 * +-------------------------------+ 96B
160 * | |
161 * +===============================+ PAGE_SIZE (4KB)
162 * | Debug logs |
163 * +===============================+ + DEBUG_SIZE
164 * | Crash Dump logs |
165 * +===============================+ + CRASH_SIZE
166 * | Capture logs |
167 * +===============================+ + CAPTURE_SIZE
168 */
169 return PAGE_SIZE +
170 intel_guc_log_section_size_crash(log) +
171 intel_guc_log_section_size_debug(log) +
172 intel_guc_log_section_size_capture(log);
173}
174
175/**
176 * DOC: GuC firmware log
177 *
178 * Firmware log is enabled by setting i915.guc_log_level to the positive level.
179 * Log data is printed out via reading debugfs i915_guc_log_dump. Reading from
180 * i915_guc_load_status will print out firmware loading status and scratch
181 * registers value.
182 */
183
184static int guc_action_flush_log_complete(struct intel_guc *guc)
185{
186 u32 action[] = {
187 INTEL_GUC_ACTION_LOG_BUFFER_FILE_FLUSH_COMPLETE,
188 GUC_DEBUG_LOG_BUFFER
189 };
190
191 return intel_guc_send_nb(guc, action, ARRAY_SIZE(action), g2h_len_dw: 0);
192}
193
194static int guc_action_flush_log(struct intel_guc *guc)
195{
196 u32 action[] = {
197 INTEL_GUC_ACTION_FORCE_LOG_BUFFER_FLUSH,
198 0
199 };
200
201 return intel_guc_send(guc, action, ARRAY_SIZE(action));
202}
203
204static int guc_action_control_log(struct intel_guc *guc, bool enable,
205 bool default_logging, u32 verbosity)
206{
207 u32 action[] = {
208 INTEL_GUC_ACTION_UK_LOG_ENABLE_LOGGING,
209 (enable ? GUC_LOG_CONTROL_LOGGING_ENABLED : 0) |
210 (verbosity << GUC_LOG_CONTROL_VERBOSITY_SHIFT) |
211 (default_logging ? GUC_LOG_CONTROL_DEFAULT_LOGGING : 0)
212 };
213
214 GEM_BUG_ON(verbosity > GUC_LOG_VERBOSITY_MAX);
215
216 return intel_guc_send(guc, action, ARRAY_SIZE(action));
217}
218
219/*
220 * Sub buffer switch callback. Called whenever relay has to switch to a new
221 * sub buffer, relay stays on the same sub buffer if 0 is returned.
222 */
223static int subbuf_start_callback(struct rchan_buf *buf,
224 void *subbuf,
225 void *prev_subbuf)
226{
227 /*
228 * Use no-overwrite mode by default, where relay will stop accepting
229 * new data if there are no empty sub buffers left.
230 * There is no strict synchronization enforced by relay between Consumer
231 * and Producer. In overwrite mode, there is a possibility of getting
232 * inconsistent/garbled data, the producer could be writing on to the
233 * same sub buffer from which Consumer is reading. This can't be avoided
234 * unless Consumer is fast enough and can always run in tandem with
235 * Producer.
236 */
237 if (relay_buf_full(buf))
238 return 0;
239
240 return 1;
241}
242
243/*
244 * file_create() callback. Creates relay file in debugfs.
245 */
246static struct dentry *create_buf_file_callback(const char *filename,
247 struct dentry *parent,
248 umode_t mode,
249 struct rchan_buf *buf,
250 int *is_global)
251{
252 struct dentry *buf_file;
253
254 /*
255 * This to enable the use of a single buffer for the relay channel and
256 * correspondingly have a single file exposed to User, through which
257 * it can collect the logs in order without any post-processing.
258 * Need to set 'is_global' even if parent is NULL for early logging.
259 */
260 *is_global = 1;
261
262 if (!parent)
263 return NULL;
264
265 buf_file = debugfs_create_file(filename, mode,
266 parent, buf, &relay_file_operations);
267 if (IS_ERR(ptr: buf_file))
268 return NULL;
269
270 return buf_file;
271}
272
273/*
274 * file_remove() default callback. Removes relay file in debugfs.
275 */
276static int remove_buf_file_callback(struct dentry *dentry)
277{
278 debugfs_remove(dentry);
279 return 0;
280}
281
282/* relay channel callbacks */
283static const struct rchan_callbacks relay_callbacks = {
284 .subbuf_start = subbuf_start_callback,
285 .create_buf_file = create_buf_file_callback,
286 .remove_buf_file = remove_buf_file_callback,
287};
288
289static void guc_move_to_next_buf(struct intel_guc_log *log)
290{
291 /*
292 * Make sure the updates made in the sub buffer are visible when
293 * Consumer sees the following update to offset inside the sub buffer.
294 */
295 smp_wmb();
296
297 /* All data has been written, so now move the offset of sub buffer. */
298 relay_reserve(chan: log->relay.channel, length: log->vma->obj->base.size -
299 intel_guc_log_section_size_capture(log));
300
301 /* Switch to the next sub buffer */
302 relay_flush(chan: log->relay.channel);
303}
304
305static void *guc_get_write_buffer(struct intel_guc_log *log)
306{
307 /*
308 * Just get the base address of a new sub buffer and copy data into it
309 * ourselves. NULL will be returned in no-overwrite mode, if all sub
310 * buffers are full. Could have used the relay_write() to indirectly
311 * copy the data, but that would have been bit convoluted, as we need to
312 * write to only certain locations inside a sub buffer which cannot be
313 * done without using relay_reserve() along with relay_write(). So its
314 * better to use relay_reserve() alone.
315 */
316 return relay_reserve(chan: log->relay.channel, length: 0);
317}
318
319bool intel_guc_check_log_buf_overflow(struct intel_guc_log *log,
320 enum guc_log_buffer_type type,
321 unsigned int full_cnt)
322{
323 unsigned int prev_full_cnt = log->stats[type].sampled_overflow;
324 bool overflow = false;
325
326 if (full_cnt != prev_full_cnt) {
327 overflow = true;
328
329 log->stats[type].overflow = full_cnt;
330 log->stats[type].sampled_overflow += full_cnt - prev_full_cnt;
331
332 if (full_cnt < prev_full_cnt) {
333 /* buffer_full_cnt is a 4 bit counter */
334 log->stats[type].sampled_overflow += 16;
335 }
336
337 guc_notice_ratelimited(log_to_guc(log), "log buffer overflow\n");
338 }
339
340 return overflow;
341}
342
343unsigned int intel_guc_get_log_buffer_size(struct intel_guc_log *log,
344 enum guc_log_buffer_type type)
345{
346 switch (type) {
347 case GUC_DEBUG_LOG_BUFFER:
348 return intel_guc_log_section_size_debug(log);
349 case GUC_CRASH_DUMP_LOG_BUFFER:
350 return intel_guc_log_section_size_crash(log);
351 case GUC_CAPTURE_LOG_BUFFER:
352 return intel_guc_log_section_size_capture(log);
353 default:
354 MISSING_CASE(type);
355 }
356
357 return 0;
358}
359
360size_t intel_guc_get_log_buffer_offset(struct intel_guc_log *log,
361 enum guc_log_buffer_type type)
362{
363 enum guc_log_buffer_type i;
364 size_t offset = PAGE_SIZE;/* for the log_buffer_states */
365
366 for (i = GUC_DEBUG_LOG_BUFFER; i < GUC_MAX_LOG_BUFFER; ++i) {
367 if (i == type)
368 break;
369 offset += intel_guc_get_log_buffer_size(log, type: i);
370 }
371
372 return offset;
373}
374
375static void _guc_log_copy_debuglogs_for_relay(struct intel_guc_log *log)
376{
377 struct intel_guc *guc = log_to_guc(log);
378 unsigned int buffer_size, read_offset, write_offset, bytes_to_copy, full_cnt;
379 struct guc_log_buffer_state *log_buf_state, *log_buf_snapshot_state;
380 struct guc_log_buffer_state log_buf_state_local;
381 enum guc_log_buffer_type type;
382 void *src_data, *dst_data;
383 bool new_overflow;
384
385 mutex_lock(lock: &log->relay.lock);
386
387 if (guc_WARN_ON(guc, !intel_guc_log_relay_created(log)))
388 goto out_unlock;
389
390 /* Get the pointer to shared GuC log buffer */
391 src_data = log->buf_addr;
392 log_buf_state = src_data;
393
394 /* Get the pointer to local buffer to store the logs */
395 log_buf_snapshot_state = dst_data = guc_get_write_buffer(log);
396
397 if (unlikely(!log_buf_snapshot_state)) {
398 /*
399 * Used rate limited to avoid deluge of messages, logs might be
400 * getting consumed by User at a slow rate.
401 */
402 guc_err_ratelimited(guc, "no sub-buffer to copy general logs\n");
403 log->relay.full_count++;
404
405 goto out_unlock;
406 }
407
408 /* Actual logs are present from the 2nd page */
409 src_data += PAGE_SIZE;
410 dst_data += PAGE_SIZE;
411
412 /* For relay logging, we exclude error state capture */
413 for (type = GUC_DEBUG_LOG_BUFFER; type <= GUC_CRASH_DUMP_LOG_BUFFER; type++) {
414 /*
415 * Make a copy of the state structure, inside GuC log buffer
416 * (which is uncached mapped), on the stack to avoid reading
417 * from it multiple times.
418 */
419 memcpy(to: &log_buf_state_local, from: log_buf_state,
420 len: sizeof(struct guc_log_buffer_state));
421 buffer_size = intel_guc_get_log_buffer_size(log, type);
422 read_offset = log_buf_state_local.read_ptr;
423 write_offset = log_buf_state_local.sampled_write_ptr;
424 full_cnt = log_buf_state_local.buffer_full_cnt;
425
426 /* Bookkeeping stuff */
427 log->stats[type].flush += log_buf_state_local.flush_to_file;
428 new_overflow = intel_guc_check_log_buf_overflow(log, type, full_cnt);
429
430 /* Update the state of shared log buffer */
431 log_buf_state->read_ptr = write_offset;
432 log_buf_state->flush_to_file = 0;
433 log_buf_state++;
434
435 /* First copy the state structure in snapshot buffer */
436 memcpy(to: log_buf_snapshot_state, from: &log_buf_state_local,
437 len: sizeof(struct guc_log_buffer_state));
438
439 /*
440 * The write pointer could have been updated by GuC firmware,
441 * after sending the flush interrupt to Host, for consistency
442 * set write pointer value to same value of sampled_write_ptr
443 * in the snapshot buffer.
444 */
445 log_buf_snapshot_state->write_ptr = write_offset;
446 log_buf_snapshot_state++;
447
448 /* Now copy the actual logs. */
449 if (unlikely(new_overflow)) {
450 /* copy the whole buffer in case of overflow */
451 read_offset = 0;
452 write_offset = buffer_size;
453 } else if (unlikely((read_offset > buffer_size) ||
454 (write_offset > buffer_size))) {
455 guc_err(guc, "invalid log buffer state\n");
456 /* copy whole buffer as offsets are unreliable */
457 read_offset = 0;
458 write_offset = buffer_size;
459 }
460
461 /* Just copy the newly written data */
462 if (read_offset > write_offset) {
463 i915_memcpy_from_wc(dst: dst_data, src: src_data, len: write_offset);
464 bytes_to_copy = buffer_size - read_offset;
465 } else {
466 bytes_to_copy = write_offset - read_offset;
467 }
468 i915_memcpy_from_wc(dst: dst_data + read_offset,
469 src: src_data + read_offset, len: bytes_to_copy);
470
471 src_data += buffer_size;
472 dst_data += buffer_size;
473 }
474
475 guc_move_to_next_buf(log);
476
477out_unlock:
478 mutex_unlock(lock: &log->relay.lock);
479}
480
481static void copy_debug_logs_work(struct work_struct *work)
482{
483 struct intel_guc_log *log =
484 container_of(work, struct intel_guc_log, relay.flush_work);
485
486 guc_log_copy_debuglogs_for_relay(log);
487}
488
489static int guc_log_relay_map(struct intel_guc_log *log)
490{
491 lockdep_assert_held(&log->relay.lock);
492
493 if (!log->vma || !log->buf_addr)
494 return -ENODEV;
495
496 /*
497 * WC vmalloc mapping of log buffer pages was done at
498 * GuC Log Init time, but lets keep a ref for book-keeping
499 */
500 i915_gem_object_get(obj: log->vma->obj);
501 log->relay.buf_in_use = true;
502
503 return 0;
504}
505
506static void guc_log_relay_unmap(struct intel_guc_log *log)
507{
508 lockdep_assert_held(&log->relay.lock);
509
510 i915_gem_object_put(obj: log->vma->obj);
511 log->relay.buf_in_use = false;
512}
513
514void intel_guc_log_init_early(struct intel_guc_log *log)
515{
516 struct intel_guc *guc = log_to_guc(log);
517 struct drm_i915_private *i915 = guc_to_i915(guc);
518
519 drmm_mutex_init(&i915->drm, &log->relay.lock);
520 drmm_mutex_init(&i915->drm, &log->guc_lock);
521 INIT_WORK(&log->relay.flush_work, copy_debug_logs_work);
522 log->relay.started = false;
523}
524
525static int guc_log_relay_create(struct intel_guc_log *log)
526{
527 struct intel_guc *guc = log_to_guc(log);
528 struct drm_i915_private *i915 = guc_to_i915(guc);
529 struct rchan *guc_log_relay_chan;
530 size_t n_subbufs, subbuf_size;
531 int ret;
532
533 lockdep_assert_held(&log->relay.lock);
534 GEM_BUG_ON(!log->vma);
535
536 /*
537 * Keep the size of sub buffers same as shared log buffer
538 * but GuC log-events excludes the error-state-capture logs
539 */
540 subbuf_size = log->vma->size - intel_guc_log_section_size_capture(log);
541
542 /*
543 * Store up to 8 snapshots, which is large enough to buffer sufficient
544 * boot time logs and provides enough leeway to User, in terms of
545 * latency, for consuming the logs from relay. Also doesn't take
546 * up too much memory.
547 */
548 n_subbufs = 8;
549
550 if (!guc->dbgfs_node)
551 return -ENOENT;
552
553 guc_log_relay_chan = relay_open(base_filename: "guc_log",
554 parent: guc->dbgfs_node,
555 subbuf_size, n_subbufs,
556 cb: &relay_callbacks, private_data: i915);
557 if (!guc_log_relay_chan) {
558 guc_err(guc, "Couldn't create relay channel for logging\n");
559
560 ret = -ENOMEM;
561 return ret;
562 }
563
564 GEM_BUG_ON(guc_log_relay_chan->subbuf_size < subbuf_size);
565 log->relay.channel = guc_log_relay_chan;
566
567 return 0;
568}
569
570static void guc_log_relay_destroy(struct intel_guc_log *log)
571{
572 lockdep_assert_held(&log->relay.lock);
573
574 relay_close(chan: log->relay.channel);
575 log->relay.channel = NULL;
576}
577
578static void guc_log_copy_debuglogs_for_relay(struct intel_guc_log *log)
579{
580 struct intel_guc *guc = log_to_guc(log);
581 struct drm_i915_private *i915 = guc_to_i915(guc);
582 intel_wakeref_t wakeref;
583
584 _guc_log_copy_debuglogs_for_relay(log);
585
586 /*
587 * Generally device is expected to be active only at this
588 * time, so get/put should be really quick.
589 */
590 with_intel_runtime_pm(&i915->runtime_pm, wakeref)
591 guc_action_flush_log_complete(guc);
592}
593
594static u32 __get_default_log_level(struct intel_guc_log *log)
595{
596 struct intel_guc *guc = log_to_guc(log);
597 struct drm_i915_private *i915 = guc_to_i915(guc);
598
599 /* A negative value means "use platform/config default" */
600 if (i915->params.guc_log_level < 0) {
601 return (IS_ENABLED(CONFIG_DRM_I915_DEBUG) ||
602 IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) ?
603 GUC_LOG_LEVEL_MAX : GUC_LOG_LEVEL_NON_VERBOSE;
604 }
605
606 if (i915->params.guc_log_level > GUC_LOG_LEVEL_MAX) {
607 guc_warn(guc, "Log verbosity param out of range: %d > %d!\n",
608 i915->params.guc_log_level, GUC_LOG_LEVEL_MAX);
609 return (IS_ENABLED(CONFIG_DRM_I915_DEBUG) ||
610 IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) ?
611 GUC_LOG_LEVEL_MAX : GUC_LOG_LEVEL_DISABLED;
612 }
613
614 GEM_BUG_ON(i915->params.guc_log_level < GUC_LOG_LEVEL_DISABLED);
615 GEM_BUG_ON(i915->params.guc_log_level > GUC_LOG_LEVEL_MAX);
616 return i915->params.guc_log_level;
617}
618
619int intel_guc_log_create(struct intel_guc_log *log)
620{
621 struct intel_guc *guc = log_to_guc(log);
622 struct i915_vma *vma;
623 void *vaddr;
624 u32 guc_log_size;
625 int ret;
626
627 GEM_BUG_ON(log->vma);
628
629 guc_log_size = intel_guc_log_size(log);
630
631 vma = intel_guc_allocate_vma(guc, size: guc_log_size);
632 if (IS_ERR(ptr: vma)) {
633 ret = PTR_ERR(ptr: vma);
634 goto err;
635 }
636
637 log->vma = vma;
638 /*
639 * Create a WC (Uncached for read) vmalloc mapping up front immediate access to
640 * data from memory during critical events such as error capture
641 */
642 vaddr = i915_gem_object_pin_map_unlocked(obj: log->vma->obj, type: I915_MAP_WC);
643 if (IS_ERR(ptr: vaddr)) {
644 ret = PTR_ERR(ptr: vaddr);
645 i915_vma_unpin_and_release(p_vma: &log->vma, flags: 0);
646 goto err;
647 }
648 log->buf_addr = vaddr;
649
650 log->level = __get_default_log_level(log);
651 guc_dbg(guc, "guc_log_level=%d (%s, verbose:%s, verbosity:%d)\n",
652 log->level, str_enabled_disabled(log->level),
653 str_yes_no(GUC_LOG_LEVEL_IS_VERBOSE(log->level)),
654 GUC_LOG_LEVEL_TO_VERBOSITY(log->level));
655
656 return 0;
657
658err:
659 guc_err(guc, "Failed to allocate or map log buffer %pe\n", ERR_PTR(ret));
660 return ret;
661}
662
663void intel_guc_log_destroy(struct intel_guc_log *log)
664{
665 log->buf_addr = NULL;
666 i915_vma_unpin_and_release(p_vma: &log->vma, I915_VMA_RELEASE_MAP);
667}
668
669int intel_guc_log_set_level(struct intel_guc_log *log, u32 level)
670{
671 struct intel_guc *guc = log_to_guc(log);
672 struct drm_i915_private *i915 = guc_to_i915(guc);
673 intel_wakeref_t wakeref;
674 int ret = 0;
675
676 BUILD_BUG_ON(GUC_LOG_VERBOSITY_MIN != 0);
677 GEM_BUG_ON(!log->vma);
678
679 /*
680 * GuC is recognizing log levels starting from 0 to max, we're using 0
681 * as indication that logging should be disabled.
682 */
683 if (level < GUC_LOG_LEVEL_DISABLED || level > GUC_LOG_LEVEL_MAX)
684 return -EINVAL;
685
686 mutex_lock(lock: &log->guc_lock);
687
688 if (log->level == level)
689 goto out_unlock;
690
691 with_intel_runtime_pm(&i915->runtime_pm, wakeref)
692 ret = guc_action_control_log(guc,
693 GUC_LOG_LEVEL_IS_VERBOSE(level),
694 GUC_LOG_LEVEL_IS_ENABLED(level),
695 GUC_LOG_LEVEL_TO_VERBOSITY(level));
696 if (ret) {
697 guc_dbg(guc, "guc_log_control action failed %pe\n", ERR_PTR(ret));
698 goto out_unlock;
699 }
700
701 log->level = level;
702
703out_unlock:
704 mutex_unlock(lock: &log->guc_lock);
705
706 return ret;
707}
708
709bool intel_guc_log_relay_created(const struct intel_guc_log *log)
710{
711 return log->buf_addr;
712}
713
714int intel_guc_log_relay_open(struct intel_guc_log *log)
715{
716 int ret;
717
718 if (!log->vma)
719 return -ENODEV;
720
721 mutex_lock(lock: &log->relay.lock);
722
723 if (intel_guc_log_relay_created(log)) {
724 ret = -EEXIST;
725 goto out_unlock;
726 }
727
728 /*
729 * We require SSE 4.1 for fast reads from the GuC log buffer and
730 * it should be present on the chipsets supporting GuC based
731 * submissions.
732 */
733 if (!i915_has_memcpy_from_wc()) {
734 ret = -ENXIO;
735 goto out_unlock;
736 }
737
738 ret = guc_log_relay_create(log);
739 if (ret)
740 goto out_unlock;
741
742 ret = guc_log_relay_map(log);
743 if (ret)
744 goto out_relay;
745
746 mutex_unlock(lock: &log->relay.lock);
747
748 return 0;
749
750out_relay:
751 guc_log_relay_destroy(log);
752out_unlock:
753 mutex_unlock(lock: &log->relay.lock);
754
755 return ret;
756}
757
758int intel_guc_log_relay_start(struct intel_guc_log *log)
759{
760 if (log->relay.started)
761 return -EEXIST;
762
763 /*
764 * When GuC is logging without us relaying to userspace, we're ignoring
765 * the flush notification. This means that we need to unconditionally
766 * flush on relay enabling, since GuC only notifies us once.
767 */
768 queue_work(wq: system_highpri_wq, work: &log->relay.flush_work);
769
770 log->relay.started = true;
771
772 return 0;
773}
774
775void intel_guc_log_relay_flush(struct intel_guc_log *log)
776{
777 struct intel_guc *guc = log_to_guc(log);
778 intel_wakeref_t wakeref;
779
780 if (!log->relay.started)
781 return;
782
783 /*
784 * Before initiating the forceful flush, wait for any pending/ongoing
785 * flush to complete otherwise forceful flush may not actually happen.
786 */
787 flush_work(work: &log->relay.flush_work);
788
789 with_intel_runtime_pm(guc_to_gt(guc)->uncore->rpm, wakeref)
790 guc_action_flush_log(guc);
791
792 /* GuC would have updated log buffer by now, so copy it */
793 guc_log_copy_debuglogs_for_relay(log);
794}
795
796/*
797 * Stops the relay log. Called from intel_guc_log_relay_close(), so no
798 * possibility of race with start/flush since relay_write cannot race
799 * relay_close.
800 */
801static void guc_log_relay_stop(struct intel_guc_log *log)
802{
803 struct intel_guc *guc = log_to_guc(log);
804 struct drm_i915_private *i915 = guc_to_i915(guc);
805
806 if (!log->relay.started)
807 return;
808
809 intel_synchronize_irq(i915);
810
811 flush_work(work: &log->relay.flush_work);
812
813 log->relay.started = false;
814}
815
816void intel_guc_log_relay_close(struct intel_guc_log *log)
817{
818 guc_log_relay_stop(log);
819
820 mutex_lock(lock: &log->relay.lock);
821 GEM_BUG_ON(!intel_guc_log_relay_created(log));
822 guc_log_relay_unmap(log);
823 guc_log_relay_destroy(log);
824 mutex_unlock(lock: &log->relay.lock);
825}
826
827void intel_guc_log_handle_flush_event(struct intel_guc_log *log)
828{
829 if (log->relay.started)
830 queue_work(wq: system_highpri_wq, work: &log->relay.flush_work);
831}
832
833static const char *
834stringify_guc_log_type(enum guc_log_buffer_type type)
835{
836 switch (type) {
837 case GUC_DEBUG_LOG_BUFFER:
838 return "DEBUG";
839 case GUC_CRASH_DUMP_LOG_BUFFER:
840 return "CRASH";
841 case GUC_CAPTURE_LOG_BUFFER:
842 return "CAPTURE";
843 default:
844 MISSING_CASE(type);
845 }
846
847 return "";
848}
849
850/**
851 * intel_guc_log_info - dump information about GuC log relay
852 * @log: the GuC log
853 * @p: the &drm_printer
854 *
855 * Pretty printer for GuC log info
856 */
857void intel_guc_log_info(struct intel_guc_log *log, struct drm_printer *p)
858{
859 enum guc_log_buffer_type type;
860
861 if (!intel_guc_log_relay_created(log)) {
862 drm_puts(p, str: "GuC log relay not created\n");
863 return;
864 }
865
866 drm_puts(p, str: "GuC logging stats:\n");
867
868 drm_printf(p, f: "\tRelay full count: %u\n", log->relay.full_count);
869
870 for (type = GUC_DEBUG_LOG_BUFFER; type < GUC_MAX_LOG_BUFFER; type++) {
871 drm_printf(p, f: "\t%s:\tflush count %10u, overflow count %10u\n",
872 stringify_guc_log_type(type),
873 log->stats[type].flush,
874 log->stats[type].sampled_overflow);
875 }
876}
877
878/**
879 * intel_guc_log_dump - dump the contents of the GuC log
880 * @log: the GuC log
881 * @p: the &drm_printer
882 * @dump_load_err: dump the log saved on GuC load error
883 *
884 * Pretty printer for the GuC log
885 */
886int intel_guc_log_dump(struct intel_guc_log *log, struct drm_printer *p,
887 bool dump_load_err)
888{
889 struct intel_guc *guc = log_to_guc(log);
890 struct intel_uc *uc = container_of(guc, struct intel_uc, guc);
891 struct drm_i915_gem_object *obj = NULL;
892 void *map;
893 u32 *page;
894 int i, j;
895
896 if (!intel_guc_is_supported(guc))
897 return -ENODEV;
898
899 if (dump_load_err)
900 obj = uc->load_err_log;
901 else if (guc->log.vma)
902 obj = guc->log.vma->obj;
903
904 if (!obj)
905 return 0;
906
907 page = (u32 *)__get_free_page(GFP_KERNEL);
908 if (!page)
909 return -ENOMEM;
910
911 intel_guc_dump_time_info(guc, p);
912
913 map = i915_gem_object_pin_map_unlocked(obj, type: I915_MAP_WC);
914 if (IS_ERR(ptr: map)) {
915 guc_dbg(guc, "Failed to pin log object: %pe\n", map);
916 drm_puts(p, str: "(log data unaccessible)\n");
917 free_page((unsigned long)page);
918 return PTR_ERR(ptr: map);
919 }
920
921 for (i = 0; i < obj->base.size; i += PAGE_SIZE) {
922 if (!i915_memcpy_from_wc(dst: page, src: map + i, PAGE_SIZE))
923 memcpy(to: page, from: map + i, PAGE_SIZE);
924
925 for (j = 0; j < PAGE_SIZE / sizeof(u32); j += 4)
926 drm_printf(p, f: "0x%08x 0x%08x 0x%08x 0x%08x\n",
927 *(page + j + 0), *(page + j + 1),
928 *(page + j + 2), *(page + j + 3));
929 }
930
931 drm_puts(p, str: "\n");
932
933 i915_gem_object_unpin_map(obj);
934 free_page((unsigned long)page);
935
936 return 0;
937}
938