| 1 | // SPDX-License-Identifier: GPL-2.0 | 
|---|
| 2 | /* Copyright(c) 1999 - 2006 Intel Corporation. */ | 
|---|
| 3 |  | 
|---|
| 4 | /* e1000_hw.c | 
|---|
| 5 | * Shared functions for accessing and configuring the MAC | 
|---|
| 6 | */ | 
|---|
| 7 |  | 
|---|
| 8 | #include <linux/bitfield.h> | 
|---|
| 9 | #include "e1000.h" | 
|---|
| 10 |  | 
|---|
| 11 | static s32 e1000_check_downshift(struct e1000_hw *hw); | 
|---|
| 12 | static s32 e1000_check_polarity(struct e1000_hw *hw, | 
|---|
| 13 | e1000_rev_polarity *polarity); | 
|---|
| 14 | static void e1000_clear_hw_cntrs(struct e1000_hw *hw); | 
|---|
| 15 | static void e1000_clear_vfta(struct e1000_hw *hw); | 
|---|
| 16 | static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw, | 
|---|
| 17 | bool link_up); | 
|---|
| 18 | static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw); | 
|---|
| 19 | static s32 e1000_detect_gig_phy(struct e1000_hw *hw); | 
|---|
| 20 | static s32 e1000_get_auto_rd_done(struct e1000_hw *hw); | 
|---|
| 21 | static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length, | 
|---|
| 22 | u16 *max_length); | 
|---|
| 23 | static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw); | 
|---|
| 24 | static s32 e1000_id_led_init(struct e1000_hw *hw); | 
|---|
| 25 | static void e1000_init_rx_addrs(struct e1000_hw *hw); | 
|---|
| 26 | static s32 e1000_phy_igp_get_info(struct e1000_hw *hw, | 
|---|
| 27 | struct e1000_phy_info *phy_info); | 
|---|
| 28 | static s32 e1000_phy_m88_get_info(struct e1000_hw *hw, | 
|---|
| 29 | struct e1000_phy_info *phy_info); | 
|---|
| 30 | static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active); | 
|---|
| 31 | static s32 e1000_wait_autoneg(struct e1000_hw *hw); | 
|---|
| 32 | static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value); | 
|---|
| 33 | static s32 e1000_set_phy_type(struct e1000_hw *hw); | 
|---|
| 34 | static void e1000_phy_init_script(struct e1000_hw *hw); | 
|---|
| 35 | static s32 e1000_setup_copper_link(struct e1000_hw *hw); | 
|---|
| 36 | static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw); | 
|---|
| 37 | static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw); | 
|---|
| 38 | static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw); | 
|---|
| 39 | static s32 e1000_config_mac_to_phy(struct e1000_hw *hw); | 
|---|
| 40 | static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl); | 
|---|
| 41 | static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl); | 
|---|
| 42 | static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count); | 
|---|
| 43 | static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw); | 
|---|
| 44 | static s32 e1000_phy_reset_dsp(struct e1000_hw *hw); | 
|---|
| 45 | static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset, | 
|---|
| 46 | u16 words, u16 *data); | 
|---|
| 47 | static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset, | 
|---|
| 48 | u16 words, u16 *data); | 
|---|
| 49 | static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw); | 
|---|
| 50 | static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd); | 
|---|
| 51 | static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd); | 
|---|
| 52 | static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count); | 
|---|
| 53 | static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr, | 
|---|
| 54 | u16 phy_data); | 
|---|
| 55 | static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr, | 
|---|
| 56 | u16 *phy_data); | 
|---|
| 57 | static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count); | 
|---|
| 58 | static s32 e1000_acquire_eeprom(struct e1000_hw *hw); | 
|---|
| 59 | static void e1000_release_eeprom(struct e1000_hw *hw); | 
|---|
| 60 | static void e1000_standby_eeprom(struct e1000_hw *hw); | 
|---|
| 61 | static s32 e1000_set_vco_speed(struct e1000_hw *hw); | 
|---|
| 62 | static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw); | 
|---|
| 63 | static s32 e1000_set_phy_mode(struct e1000_hw *hw); | 
|---|
| 64 | static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, | 
|---|
| 65 | u16 *data); | 
|---|
| 66 | static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, | 
|---|
| 67 | u16 *data); | 
|---|
| 68 |  | 
|---|
| 69 | /* IGP cable length table */ | 
|---|
| 70 | static const | 
|---|
| 71 | u16 e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] = { | 
|---|
| 72 | 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, | 
|---|
| 73 | 5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25, | 
|---|
| 74 | 25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40, | 
|---|
| 75 | 40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60, | 
|---|
| 76 | 60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90, | 
|---|
| 77 | 90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100, | 
|---|
| 78 | 100, | 
|---|
| 79 | 100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, | 
|---|
| 80 | 110, 110, | 
|---|
| 81 | 110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120, | 
|---|
| 82 | 120, 120 | 
|---|
| 83 | }; | 
|---|
| 84 |  | 
|---|
| 85 | static DEFINE_MUTEX(e1000_eeprom_lock); | 
|---|
| 86 | static DEFINE_SPINLOCK(e1000_phy_lock); | 
|---|
| 87 |  | 
|---|
| 88 | /** | 
|---|
| 89 | * e1000_set_phy_type - Set the phy type member in the hw struct. | 
|---|
| 90 | * @hw: Struct containing variables accessed by shared code | 
|---|
| 91 | */ | 
|---|
| 92 | static s32 e1000_set_phy_type(struct e1000_hw *hw) | 
|---|
| 93 | { | 
|---|
| 94 | if (hw->mac_type == e1000_undefined) | 
|---|
| 95 | return -E1000_ERR_PHY_TYPE; | 
|---|
| 96 |  | 
|---|
| 97 | switch (hw->phy_id) { | 
|---|
| 98 | case M88E1000_E_PHY_ID: | 
|---|
| 99 | case M88E1000_I_PHY_ID: | 
|---|
| 100 | case M88E1011_I_PHY_ID: | 
|---|
| 101 | case M88E1111_I_PHY_ID: | 
|---|
| 102 | case M88E1118_E_PHY_ID: | 
|---|
| 103 | hw->phy_type = e1000_phy_m88; | 
|---|
| 104 | break; | 
|---|
| 105 | case IGP01E1000_I_PHY_ID: | 
|---|
| 106 | if (hw->mac_type == e1000_82541 || | 
|---|
| 107 | hw->mac_type == e1000_82541_rev_2 || | 
|---|
| 108 | hw->mac_type == e1000_82547 || | 
|---|
| 109 | hw->mac_type == e1000_82547_rev_2) | 
|---|
| 110 | hw->phy_type = e1000_phy_igp; | 
|---|
| 111 | break; | 
|---|
| 112 | case RTL8211B_PHY_ID: | 
|---|
| 113 | hw->phy_type = e1000_phy_8211; | 
|---|
| 114 | break; | 
|---|
| 115 | case RTL8201N_PHY_ID: | 
|---|
| 116 | hw->phy_type = e1000_phy_8201; | 
|---|
| 117 | break; | 
|---|
| 118 | default: | 
|---|
| 119 | /* Should never have loaded on this device */ | 
|---|
| 120 | hw->phy_type = e1000_phy_undefined; | 
|---|
| 121 | return -E1000_ERR_PHY_TYPE; | 
|---|
| 122 | } | 
|---|
| 123 |  | 
|---|
| 124 | return E1000_SUCCESS; | 
|---|
| 125 | } | 
|---|
| 126 |  | 
|---|
| 127 | /** | 
|---|
| 128 | * e1000_phy_init_script - IGP phy init script - initializes the GbE PHY | 
|---|
| 129 | * @hw: Struct containing variables accessed by shared code | 
|---|
| 130 | */ | 
|---|
| 131 | static void e1000_phy_init_script(struct e1000_hw *hw) | 
|---|
| 132 | { | 
|---|
| 133 | u16 phy_saved_data; | 
|---|
| 134 |  | 
|---|
| 135 | if (hw->phy_init_script) { | 
|---|
| 136 | msleep(msecs: 20); | 
|---|
| 137 |  | 
|---|
| 138 | /* Save off the current value of register 0x2F5B to be restored | 
|---|
| 139 | * at the end of this routine. | 
|---|
| 140 | */ | 
|---|
| 141 | e1000_read_phy_reg(hw, reg_addr: 0x2F5B, phy_data: &phy_saved_data); | 
|---|
| 142 |  | 
|---|
| 143 | /* Disabled the PHY transmitter */ | 
|---|
| 144 | e1000_write_phy_reg(hw, reg_addr: 0x2F5B, data: 0x0003); | 
|---|
| 145 | msleep(msecs: 20); | 
|---|
| 146 |  | 
|---|
| 147 | e1000_write_phy_reg(hw, reg_addr: 0x0000, data: 0x0140); | 
|---|
| 148 | msleep(msecs: 5); | 
|---|
| 149 |  | 
|---|
| 150 | switch (hw->mac_type) { | 
|---|
| 151 | case e1000_82541: | 
|---|
| 152 | case e1000_82547: | 
|---|
| 153 | e1000_write_phy_reg(hw, reg_addr: 0x1F95, data: 0x0001); | 
|---|
| 154 | e1000_write_phy_reg(hw, reg_addr: 0x1F71, data: 0xBD21); | 
|---|
| 155 | e1000_write_phy_reg(hw, reg_addr: 0x1F79, data: 0x0018); | 
|---|
| 156 | e1000_write_phy_reg(hw, reg_addr: 0x1F30, data: 0x1600); | 
|---|
| 157 | e1000_write_phy_reg(hw, reg_addr: 0x1F31, data: 0x0014); | 
|---|
| 158 | e1000_write_phy_reg(hw, reg_addr: 0x1F32, data: 0x161C); | 
|---|
| 159 | e1000_write_phy_reg(hw, reg_addr: 0x1F94, data: 0x0003); | 
|---|
| 160 | e1000_write_phy_reg(hw, reg_addr: 0x1F96, data: 0x003F); | 
|---|
| 161 | e1000_write_phy_reg(hw, reg_addr: 0x2010, data: 0x0008); | 
|---|
| 162 | break; | 
|---|
| 163 |  | 
|---|
| 164 | case e1000_82541_rev_2: | 
|---|
| 165 | case e1000_82547_rev_2: | 
|---|
| 166 | e1000_write_phy_reg(hw, reg_addr: 0x1F73, data: 0x0099); | 
|---|
| 167 | break; | 
|---|
| 168 | default: | 
|---|
| 169 | break; | 
|---|
| 170 | } | 
|---|
| 171 |  | 
|---|
| 172 | e1000_write_phy_reg(hw, reg_addr: 0x0000, data: 0x3300); | 
|---|
| 173 | msleep(msecs: 20); | 
|---|
| 174 |  | 
|---|
| 175 | /* Now enable the transmitter */ | 
|---|
| 176 | e1000_write_phy_reg(hw, reg_addr: 0x2F5B, data: phy_saved_data); | 
|---|
| 177 |  | 
|---|
| 178 | if (hw->mac_type == e1000_82547) { | 
|---|
| 179 | u16 fused, fine, coarse; | 
|---|
| 180 |  | 
|---|
| 181 | /* Move to analog registers page */ | 
|---|
| 182 | e1000_read_phy_reg(hw, | 
|---|
| 183 | IGP01E1000_ANALOG_SPARE_FUSE_STATUS, | 
|---|
| 184 | phy_data: &fused); | 
|---|
| 185 |  | 
|---|
| 186 | if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) { | 
|---|
| 187 | e1000_read_phy_reg(hw, | 
|---|
| 188 | IGP01E1000_ANALOG_FUSE_STATUS, | 
|---|
| 189 | phy_data: &fused); | 
|---|
| 190 |  | 
|---|
| 191 | fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK; | 
|---|
| 192 | coarse = | 
|---|
| 193 | fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK; | 
|---|
| 194 |  | 
|---|
| 195 | if (coarse > | 
|---|
| 196 | IGP01E1000_ANALOG_FUSE_COARSE_THRESH) { | 
|---|
| 197 | coarse -= | 
|---|
| 198 | IGP01E1000_ANALOG_FUSE_COARSE_10; | 
|---|
| 199 | fine -= IGP01E1000_ANALOG_FUSE_FINE_1; | 
|---|
| 200 | } else if (coarse == | 
|---|
| 201 | IGP01E1000_ANALOG_FUSE_COARSE_THRESH) | 
|---|
| 202 | fine -= IGP01E1000_ANALOG_FUSE_FINE_10; | 
|---|
| 203 |  | 
|---|
| 204 | fused = | 
|---|
| 205 | (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) | | 
|---|
| 206 | (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) | | 
|---|
| 207 | (coarse & | 
|---|
| 208 | IGP01E1000_ANALOG_FUSE_COARSE_MASK); | 
|---|
| 209 |  | 
|---|
| 210 | e1000_write_phy_reg(hw, | 
|---|
| 211 | IGP01E1000_ANALOG_FUSE_CONTROL, | 
|---|
| 212 | data: fused); | 
|---|
| 213 | e1000_write_phy_reg(hw, | 
|---|
| 214 | IGP01E1000_ANALOG_FUSE_BYPASS, | 
|---|
| 215 | IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL); | 
|---|
| 216 | } | 
|---|
| 217 | } | 
|---|
| 218 | } | 
|---|
| 219 | } | 
|---|
| 220 |  | 
|---|
| 221 | /** | 
|---|
| 222 | * e1000_set_mac_type - Set the mac type member in the hw struct. | 
|---|
| 223 | * @hw: Struct containing variables accessed by shared code | 
|---|
| 224 | */ | 
|---|
| 225 | s32 e1000_set_mac_type(struct e1000_hw *hw) | 
|---|
| 226 | { | 
|---|
| 227 | switch (hw->device_id) { | 
|---|
| 228 | case E1000_DEV_ID_82542: | 
|---|
| 229 | switch (hw->revision_id) { | 
|---|
| 230 | case E1000_82542_2_0_REV_ID: | 
|---|
| 231 | hw->mac_type = e1000_82542_rev2_0; | 
|---|
| 232 | break; | 
|---|
| 233 | case E1000_82542_2_1_REV_ID: | 
|---|
| 234 | hw->mac_type = e1000_82542_rev2_1; | 
|---|
| 235 | break; | 
|---|
| 236 | default: | 
|---|
| 237 | /* Invalid 82542 revision ID */ | 
|---|
| 238 | return -E1000_ERR_MAC_TYPE; | 
|---|
| 239 | } | 
|---|
| 240 | break; | 
|---|
| 241 | case E1000_DEV_ID_82543GC_FIBER: | 
|---|
| 242 | case E1000_DEV_ID_82543GC_COPPER: | 
|---|
| 243 | hw->mac_type = e1000_82543; | 
|---|
| 244 | break; | 
|---|
| 245 | case E1000_DEV_ID_82544EI_COPPER: | 
|---|
| 246 | case E1000_DEV_ID_82544EI_FIBER: | 
|---|
| 247 | case E1000_DEV_ID_82544GC_COPPER: | 
|---|
| 248 | case E1000_DEV_ID_82544GC_LOM: | 
|---|
| 249 | hw->mac_type = e1000_82544; | 
|---|
| 250 | break; | 
|---|
| 251 | case E1000_DEV_ID_82540EM: | 
|---|
| 252 | case E1000_DEV_ID_82540EM_LOM: | 
|---|
| 253 | case E1000_DEV_ID_82540EP: | 
|---|
| 254 | case E1000_DEV_ID_82540EP_LOM: | 
|---|
| 255 | case E1000_DEV_ID_82540EP_LP: | 
|---|
| 256 | hw->mac_type = e1000_82540; | 
|---|
| 257 | break; | 
|---|
| 258 | case E1000_DEV_ID_82545EM_COPPER: | 
|---|
| 259 | case E1000_DEV_ID_82545EM_FIBER: | 
|---|
| 260 | hw->mac_type = e1000_82545; | 
|---|
| 261 | break; | 
|---|
| 262 | case E1000_DEV_ID_82545GM_COPPER: | 
|---|
| 263 | case E1000_DEV_ID_82545GM_FIBER: | 
|---|
| 264 | case E1000_DEV_ID_82545GM_SERDES: | 
|---|
| 265 | hw->mac_type = e1000_82545_rev_3; | 
|---|
| 266 | break; | 
|---|
| 267 | case E1000_DEV_ID_82546EB_COPPER: | 
|---|
| 268 | case E1000_DEV_ID_82546EB_FIBER: | 
|---|
| 269 | case E1000_DEV_ID_82546EB_QUAD_COPPER: | 
|---|
| 270 | hw->mac_type = e1000_82546; | 
|---|
| 271 | break; | 
|---|
| 272 | case E1000_DEV_ID_82546GB_COPPER: | 
|---|
| 273 | case E1000_DEV_ID_82546GB_FIBER: | 
|---|
| 274 | case E1000_DEV_ID_82546GB_SERDES: | 
|---|
| 275 | case E1000_DEV_ID_82546GB_PCIE: | 
|---|
| 276 | case E1000_DEV_ID_82546GB_QUAD_COPPER: | 
|---|
| 277 | case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: | 
|---|
| 278 | hw->mac_type = e1000_82546_rev_3; | 
|---|
| 279 | break; | 
|---|
| 280 | case E1000_DEV_ID_82541EI: | 
|---|
| 281 | case E1000_DEV_ID_82541EI_MOBILE: | 
|---|
| 282 | case E1000_DEV_ID_82541ER_LOM: | 
|---|
| 283 | hw->mac_type = e1000_82541; | 
|---|
| 284 | break; | 
|---|
| 285 | case E1000_DEV_ID_82541ER: | 
|---|
| 286 | case E1000_DEV_ID_82541GI: | 
|---|
| 287 | case E1000_DEV_ID_82541GI_LF: | 
|---|
| 288 | case E1000_DEV_ID_82541GI_MOBILE: | 
|---|
| 289 | hw->mac_type = e1000_82541_rev_2; | 
|---|
| 290 | break; | 
|---|
| 291 | case E1000_DEV_ID_82547EI: | 
|---|
| 292 | case E1000_DEV_ID_82547EI_MOBILE: | 
|---|
| 293 | hw->mac_type = e1000_82547; | 
|---|
| 294 | break; | 
|---|
| 295 | case E1000_DEV_ID_82547GI: | 
|---|
| 296 | hw->mac_type = e1000_82547_rev_2; | 
|---|
| 297 | break; | 
|---|
| 298 | case E1000_DEV_ID_INTEL_CE4100_GBE: | 
|---|
| 299 | hw->mac_type = e1000_ce4100; | 
|---|
| 300 | break; | 
|---|
| 301 | default: | 
|---|
| 302 | /* Should never have loaded on this device */ | 
|---|
| 303 | return -E1000_ERR_MAC_TYPE; | 
|---|
| 304 | } | 
|---|
| 305 |  | 
|---|
| 306 | switch (hw->mac_type) { | 
|---|
| 307 | case e1000_82541: | 
|---|
| 308 | case e1000_82547: | 
|---|
| 309 | case e1000_82541_rev_2: | 
|---|
| 310 | case e1000_82547_rev_2: | 
|---|
| 311 | hw->asf_firmware_present = true; | 
|---|
| 312 | break; | 
|---|
| 313 | default: | 
|---|
| 314 | break; | 
|---|
| 315 | } | 
|---|
| 316 |  | 
|---|
| 317 | /* The 82543 chip does not count tx_carrier_errors properly in | 
|---|
| 318 | * FD mode | 
|---|
| 319 | */ | 
|---|
| 320 | if (hw->mac_type == e1000_82543) | 
|---|
| 321 | hw->bad_tx_carr_stats_fd = true; | 
|---|
| 322 |  | 
|---|
| 323 | if (hw->mac_type > e1000_82544) | 
|---|
| 324 | hw->has_smbus = true; | 
|---|
| 325 |  | 
|---|
| 326 | return E1000_SUCCESS; | 
|---|
| 327 | } | 
|---|
| 328 |  | 
|---|
| 329 | /** | 
|---|
| 330 | * e1000_set_media_type - Set media type and TBI compatibility. | 
|---|
| 331 | * @hw: Struct containing variables accessed by shared code | 
|---|
| 332 | */ | 
|---|
| 333 | void e1000_set_media_type(struct e1000_hw *hw) | 
|---|
| 334 | { | 
|---|
| 335 | u32 status; | 
|---|
| 336 |  | 
|---|
| 337 | if (hw->mac_type != e1000_82543) { | 
|---|
| 338 | /* tbi_compatibility is only valid on 82543 */ | 
|---|
| 339 | hw->tbi_compatibility_en = false; | 
|---|
| 340 | } | 
|---|
| 341 |  | 
|---|
| 342 | switch (hw->device_id) { | 
|---|
| 343 | case E1000_DEV_ID_82545GM_SERDES: | 
|---|
| 344 | case E1000_DEV_ID_82546GB_SERDES: | 
|---|
| 345 | hw->media_type = e1000_media_type_internal_serdes; | 
|---|
| 346 | break; | 
|---|
| 347 | default: | 
|---|
| 348 | switch (hw->mac_type) { | 
|---|
| 349 | case e1000_82542_rev2_0: | 
|---|
| 350 | case e1000_82542_rev2_1: | 
|---|
| 351 | hw->media_type = e1000_media_type_fiber; | 
|---|
| 352 | break; | 
|---|
| 353 | case e1000_ce4100: | 
|---|
| 354 | hw->media_type = e1000_media_type_copper; | 
|---|
| 355 | break; | 
|---|
| 356 | default: | 
|---|
| 357 | status = er32(STATUS); | 
|---|
| 358 | if (status & E1000_STATUS_TBIMODE) { | 
|---|
| 359 | hw->media_type = e1000_media_type_fiber; | 
|---|
| 360 | /* tbi_compatibility not valid on fiber */ | 
|---|
| 361 | hw->tbi_compatibility_en = false; | 
|---|
| 362 | } else { | 
|---|
| 363 | hw->media_type = e1000_media_type_copper; | 
|---|
| 364 | } | 
|---|
| 365 | break; | 
|---|
| 366 | } | 
|---|
| 367 | } | 
|---|
| 368 | } | 
|---|
| 369 |  | 
|---|
| 370 | /** | 
|---|
| 371 | * e1000_reset_hw - reset the hardware completely | 
|---|
| 372 | * @hw: Struct containing variables accessed by shared code | 
|---|
| 373 | * | 
|---|
| 374 | * Reset the transmit and receive units; mask and clear all interrupts. | 
|---|
| 375 | */ | 
|---|
| 376 | s32 e1000_reset_hw(struct e1000_hw *hw) | 
|---|
| 377 | { | 
|---|
| 378 | u32 ctrl; | 
|---|
| 379 | u32 ctrl_ext; | 
|---|
| 380 | u32 manc; | 
|---|
| 381 | u32 led_ctrl; | 
|---|
| 382 | s32 ret_val; | 
|---|
| 383 |  | 
|---|
| 384 | /* For 82542 (rev 2.0), disable MWI before issuing a device reset */ | 
|---|
| 385 | if (hw->mac_type == e1000_82542_rev2_0) { | 
|---|
| 386 | e_dbg( "Disabling MWI on 82542 rev 2.0\n"); | 
|---|
| 387 | e1000_pci_clear_mwi(hw); | 
|---|
| 388 | } | 
|---|
| 389 |  | 
|---|
| 390 | /* Clear interrupt mask to stop board from generating interrupts */ | 
|---|
| 391 | e_dbg( "Masking off all interrupts\n"); | 
|---|
| 392 | ew32(IMC, 0xffffffff); | 
|---|
| 393 |  | 
|---|
| 394 | /* Disable the Transmit and Receive units.  Then delay to allow | 
|---|
| 395 | * any pending transactions to complete before we hit the MAC with | 
|---|
| 396 | * the global reset. | 
|---|
| 397 | */ | 
|---|
| 398 | ew32(RCTL, 0); | 
|---|
| 399 | ew32(TCTL, E1000_TCTL_PSP); | 
|---|
| 400 | E1000_WRITE_FLUSH(); | 
|---|
| 401 |  | 
|---|
| 402 | /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */ | 
|---|
| 403 | hw->tbi_compatibility_on = false; | 
|---|
| 404 |  | 
|---|
| 405 | /* Delay to allow any outstanding PCI transactions to complete before | 
|---|
| 406 | * resetting the device | 
|---|
| 407 | */ | 
|---|
| 408 | msleep(msecs: 10); | 
|---|
| 409 |  | 
|---|
| 410 | ctrl = er32(CTRL); | 
|---|
| 411 |  | 
|---|
| 412 | /* Must reset the PHY before resetting the MAC */ | 
|---|
| 413 | if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { | 
|---|
| 414 | ew32(CTRL, (ctrl | E1000_CTRL_PHY_RST)); | 
|---|
| 415 | E1000_WRITE_FLUSH(); | 
|---|
| 416 | msleep(msecs: 5); | 
|---|
| 417 | } | 
|---|
| 418 |  | 
|---|
| 419 | /* Issue a global reset to the MAC.  This will reset the chip's | 
|---|
| 420 | * transmit, receive, DMA, and link units.  It will not effect | 
|---|
| 421 | * the current PCI configuration.  The global reset bit is self- | 
|---|
| 422 | * clearing, and should clear within a microsecond. | 
|---|
| 423 | */ | 
|---|
| 424 | e_dbg( "Issuing a global reset to MAC\n"); | 
|---|
| 425 |  | 
|---|
| 426 | switch (hw->mac_type) { | 
|---|
| 427 | case e1000_82544: | 
|---|
| 428 | case e1000_82540: | 
|---|
| 429 | case e1000_82545: | 
|---|
| 430 | case e1000_82546: | 
|---|
| 431 | case e1000_82541: | 
|---|
| 432 | case e1000_82541_rev_2: | 
|---|
| 433 | /* These controllers can't ack the 64-bit write when issuing the | 
|---|
| 434 | * reset, so use IO-mapping as a workaround to issue the reset | 
|---|
| 435 | */ | 
|---|
| 436 | E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST)); | 
|---|
| 437 | break; | 
|---|
| 438 | case e1000_82545_rev_3: | 
|---|
| 439 | case e1000_82546_rev_3: | 
|---|
| 440 | /* Reset is performed on a shadow of the control register */ | 
|---|
| 441 | ew32(CTRL_DUP, (ctrl | E1000_CTRL_RST)); | 
|---|
| 442 | break; | 
|---|
| 443 | case e1000_ce4100: | 
|---|
| 444 | default: | 
|---|
| 445 | ew32(CTRL, (ctrl | E1000_CTRL_RST)); | 
|---|
| 446 | break; | 
|---|
| 447 | } | 
|---|
| 448 |  | 
|---|
| 449 | /* After MAC reset, force reload of EEPROM to restore power-on settings | 
|---|
| 450 | * to device.  Later controllers reload the EEPROM automatically, so | 
|---|
| 451 | * just wait for reload to complete. | 
|---|
| 452 | */ | 
|---|
| 453 | switch (hw->mac_type) { | 
|---|
| 454 | case e1000_82542_rev2_0: | 
|---|
| 455 | case e1000_82542_rev2_1: | 
|---|
| 456 | case e1000_82543: | 
|---|
| 457 | case e1000_82544: | 
|---|
| 458 | /* Wait for reset to complete */ | 
|---|
| 459 | udelay(usec: 10); | 
|---|
| 460 | ctrl_ext = er32(CTRL_EXT); | 
|---|
| 461 | ctrl_ext |= E1000_CTRL_EXT_EE_RST; | 
|---|
| 462 | ew32(CTRL_EXT, ctrl_ext); | 
|---|
| 463 | E1000_WRITE_FLUSH(); | 
|---|
| 464 | /* Wait for EEPROM reload */ | 
|---|
| 465 | msleep(msecs: 2); | 
|---|
| 466 | break; | 
|---|
| 467 | case e1000_82541: | 
|---|
| 468 | case e1000_82541_rev_2: | 
|---|
| 469 | case e1000_82547: | 
|---|
| 470 | case e1000_82547_rev_2: | 
|---|
| 471 | /* Wait for EEPROM reload */ | 
|---|
| 472 | msleep(msecs: 20); | 
|---|
| 473 | break; | 
|---|
| 474 | default: | 
|---|
| 475 | /* Auto read done will delay 5ms or poll based on mac type */ | 
|---|
| 476 | ret_val = e1000_get_auto_rd_done(hw); | 
|---|
| 477 | if (ret_val) | 
|---|
| 478 | return ret_val; | 
|---|
| 479 | break; | 
|---|
| 480 | } | 
|---|
| 481 |  | 
|---|
| 482 | /* Disable HW ARPs on ASF enabled adapters */ | 
|---|
| 483 | if (hw->mac_type >= e1000_82540) { | 
|---|
| 484 | manc = er32(MANC); | 
|---|
| 485 | manc &= ~(E1000_MANC_ARP_EN); | 
|---|
| 486 | ew32(MANC, manc); | 
|---|
| 487 | } | 
|---|
| 488 |  | 
|---|
| 489 | if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { | 
|---|
| 490 | e1000_phy_init_script(hw); | 
|---|
| 491 |  | 
|---|
| 492 | /* Configure activity LED after PHY reset */ | 
|---|
| 493 | led_ctrl = er32(LEDCTL); | 
|---|
| 494 | led_ctrl &= IGP_ACTIVITY_LED_MASK; | 
|---|
| 495 | led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); | 
|---|
| 496 | ew32(LEDCTL, led_ctrl); | 
|---|
| 497 | } | 
|---|
| 498 |  | 
|---|
| 499 | /* Clear interrupt mask to stop board from generating interrupts */ | 
|---|
| 500 | e_dbg( "Masking off all interrupts\n"); | 
|---|
| 501 | ew32(IMC, 0xffffffff); | 
|---|
| 502 |  | 
|---|
| 503 | /* Clear any pending interrupt events. */ | 
|---|
| 504 | er32(ICR); | 
|---|
| 505 |  | 
|---|
| 506 | /* If MWI was previously enabled, reenable it. */ | 
|---|
| 507 | if (hw->mac_type == e1000_82542_rev2_0) { | 
|---|
| 508 | if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE) | 
|---|
| 509 | e1000_pci_set_mwi(hw); | 
|---|
| 510 | } | 
|---|
| 511 |  | 
|---|
| 512 | return E1000_SUCCESS; | 
|---|
| 513 | } | 
|---|
| 514 |  | 
|---|
| 515 | /** | 
|---|
| 516 | * e1000_init_hw - Performs basic configuration of the adapter. | 
|---|
| 517 | * @hw: Struct containing variables accessed by shared code | 
|---|
| 518 | * | 
|---|
| 519 | * Assumes that the controller has previously been reset and is in a | 
|---|
| 520 | * post-reset uninitialized state. Initializes the receive address registers, | 
|---|
| 521 | * multicast table, and VLAN filter table. Calls routines to setup link | 
|---|
| 522 | * configuration and flow control settings. Clears all on-chip counters. Leaves | 
|---|
| 523 | * the transmit and receive units disabled and uninitialized. | 
|---|
| 524 | */ | 
|---|
| 525 | s32 e1000_init_hw(struct e1000_hw *hw) | 
|---|
| 526 | { | 
|---|
| 527 | u32 ctrl; | 
|---|
| 528 | u32 i; | 
|---|
| 529 | s32 ret_val; | 
|---|
| 530 | u32 mta_size; | 
|---|
| 531 | u32 ctrl_ext; | 
|---|
| 532 |  | 
|---|
| 533 | /* Initialize Identification LED */ | 
|---|
| 534 | ret_val = e1000_id_led_init(hw); | 
|---|
| 535 | if (ret_val) { | 
|---|
| 536 | e_dbg( "Error Initializing Identification LED\n"); | 
|---|
| 537 | return ret_val; | 
|---|
| 538 | } | 
|---|
| 539 |  | 
|---|
| 540 | /* Set the media type and TBI compatibility */ | 
|---|
| 541 | e1000_set_media_type(hw); | 
|---|
| 542 |  | 
|---|
| 543 | /* Disabling VLAN filtering. */ | 
|---|
| 544 | e_dbg( "Initializing the IEEE VLAN\n"); | 
|---|
| 545 | if (hw->mac_type < e1000_82545_rev_3) | 
|---|
| 546 | ew32(VET, 0); | 
|---|
| 547 | e1000_clear_vfta(hw); | 
|---|
| 548 |  | 
|---|
| 549 | /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */ | 
|---|
| 550 | if (hw->mac_type == e1000_82542_rev2_0) { | 
|---|
| 551 | e_dbg( "Disabling MWI on 82542 rev 2.0\n"); | 
|---|
| 552 | e1000_pci_clear_mwi(hw); | 
|---|
| 553 | ew32(RCTL, E1000_RCTL_RST); | 
|---|
| 554 | E1000_WRITE_FLUSH(); | 
|---|
| 555 | msleep(msecs: 5); | 
|---|
| 556 | } | 
|---|
| 557 |  | 
|---|
| 558 | /* Setup the receive address. This involves initializing all of the | 
|---|
| 559 | * Receive Address Registers (RARs 0 - 15). | 
|---|
| 560 | */ | 
|---|
| 561 | e1000_init_rx_addrs(hw); | 
|---|
| 562 |  | 
|---|
| 563 | /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */ | 
|---|
| 564 | if (hw->mac_type == e1000_82542_rev2_0) { | 
|---|
| 565 | ew32(RCTL, 0); | 
|---|
| 566 | E1000_WRITE_FLUSH(); | 
|---|
| 567 | msleep(msecs: 1); | 
|---|
| 568 | if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE) | 
|---|
| 569 | e1000_pci_set_mwi(hw); | 
|---|
| 570 | } | 
|---|
| 571 |  | 
|---|
| 572 | /* Zero out the Multicast HASH table */ | 
|---|
| 573 | e_dbg( "Zeroing the MTA\n"); | 
|---|
| 574 | mta_size = E1000_MC_TBL_SIZE; | 
|---|
| 575 | for (i = 0; i < mta_size; i++) { | 
|---|
| 576 | E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); | 
|---|
| 577 | /* use write flush to prevent Memory Write Block (MWB) from | 
|---|
| 578 | * occurring when accessing our register space | 
|---|
| 579 | */ | 
|---|
| 580 | E1000_WRITE_FLUSH(); | 
|---|
| 581 | } | 
|---|
| 582 |  | 
|---|
| 583 | /* Set the PCI priority bit correctly in the CTRL register.  This | 
|---|
| 584 | * determines if the adapter gives priority to receives, or if it | 
|---|
| 585 | * gives equal priority to transmits and receives.  Valid only on | 
|---|
| 586 | * 82542 and 82543 silicon. | 
|---|
| 587 | */ | 
|---|
| 588 | if (hw->dma_fairness && hw->mac_type <= e1000_82543) { | 
|---|
| 589 | ctrl = er32(CTRL); | 
|---|
| 590 | ew32(CTRL, ctrl | E1000_CTRL_PRIOR); | 
|---|
| 591 | } | 
|---|
| 592 |  | 
|---|
| 593 | switch (hw->mac_type) { | 
|---|
| 594 | case e1000_82545_rev_3: | 
|---|
| 595 | case e1000_82546_rev_3: | 
|---|
| 596 | break; | 
|---|
| 597 | default: | 
|---|
| 598 | /* Workaround for PCI-X problem when BIOS sets MMRBC | 
|---|
| 599 | * incorrectly. | 
|---|
| 600 | */ | 
|---|
| 601 | if (hw->bus_type == e1000_bus_type_pcix && | 
|---|
| 602 | e1000_pcix_get_mmrbc(hw) > 2048) | 
|---|
| 603 | e1000_pcix_set_mmrbc(hw, mmrbc: 2048); | 
|---|
| 604 | break; | 
|---|
| 605 | } | 
|---|
| 606 |  | 
|---|
| 607 | /* Call a subroutine to configure the link and setup flow control. */ | 
|---|
| 608 | ret_val = e1000_setup_link(hw); | 
|---|
| 609 |  | 
|---|
| 610 | /* Set the transmit descriptor write-back policy */ | 
|---|
| 611 | if (hw->mac_type > e1000_82544) { | 
|---|
| 612 | ctrl = er32(TXDCTL); | 
|---|
| 613 | ctrl = | 
|---|
| 614 | (ctrl & ~E1000_TXDCTL_WTHRESH) | | 
|---|
| 615 | E1000_TXDCTL_FULL_TX_DESC_WB; | 
|---|
| 616 | ew32(TXDCTL, ctrl); | 
|---|
| 617 | } | 
|---|
| 618 |  | 
|---|
| 619 | /* Clear all of the statistics registers (clear on read).  It is | 
|---|
| 620 | * important that we do this after we have tried to establish link | 
|---|
| 621 | * because the symbol error count will increment wildly if there | 
|---|
| 622 | * is no link. | 
|---|
| 623 | */ | 
|---|
| 624 | e1000_clear_hw_cntrs(hw); | 
|---|
| 625 |  | 
|---|
| 626 | if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER || | 
|---|
| 627 | hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) { | 
|---|
| 628 | ctrl_ext = er32(CTRL_EXT); | 
|---|
| 629 | /* Relaxed ordering must be disabled to avoid a parity | 
|---|
| 630 | * error crash in a PCI slot. | 
|---|
| 631 | */ | 
|---|
| 632 | ctrl_ext |= E1000_CTRL_EXT_RO_DIS; | 
|---|
| 633 | ew32(CTRL_EXT, ctrl_ext); | 
|---|
| 634 | } | 
|---|
| 635 |  | 
|---|
| 636 | return ret_val; | 
|---|
| 637 | } | 
|---|
| 638 |  | 
|---|
| 639 | /** | 
|---|
| 640 | * e1000_adjust_serdes_amplitude - Adjust SERDES output amplitude based on EEPROM setting. | 
|---|
| 641 | * @hw: Struct containing variables accessed by shared code. | 
|---|
| 642 | */ | 
|---|
| 643 | static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw) | 
|---|
| 644 | { | 
|---|
| 645 | u16 eeprom_data; | 
|---|
| 646 | s32 ret_val; | 
|---|
| 647 |  | 
|---|
| 648 | if (hw->media_type != e1000_media_type_internal_serdes) | 
|---|
| 649 | return E1000_SUCCESS; | 
|---|
| 650 |  | 
|---|
| 651 | switch (hw->mac_type) { | 
|---|
| 652 | case e1000_82545_rev_3: | 
|---|
| 653 | case e1000_82546_rev_3: | 
|---|
| 654 | break; | 
|---|
| 655 | default: | 
|---|
| 656 | return E1000_SUCCESS; | 
|---|
| 657 | } | 
|---|
| 658 |  | 
|---|
| 659 | ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, words: 1, | 
|---|
| 660 | data: &eeprom_data); | 
|---|
| 661 | if (ret_val) | 
|---|
| 662 | return ret_val; | 
|---|
| 663 |  | 
|---|
| 664 | if (eeprom_data != EEPROM_RESERVED_WORD) { | 
|---|
| 665 | /* Adjust SERDES output amplitude only. */ | 
|---|
| 666 | eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK; | 
|---|
| 667 | ret_val = | 
|---|
| 668 | e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, data: eeprom_data); | 
|---|
| 669 | if (ret_val) | 
|---|
| 670 | return ret_val; | 
|---|
| 671 | } | 
|---|
| 672 |  | 
|---|
| 673 | return E1000_SUCCESS; | 
|---|
| 674 | } | 
|---|
| 675 |  | 
|---|
| 676 | /** | 
|---|
| 677 | * e1000_setup_link - Configures flow control and link settings. | 
|---|
| 678 | * @hw: Struct containing variables accessed by shared code | 
|---|
| 679 | * | 
|---|
| 680 | * Determines which flow control settings to use. Calls the appropriate media- | 
|---|
| 681 | * specific link configuration function. Configures the flow control settings. | 
|---|
| 682 | * Assuming the adapter has a valid link partner, a valid link should be | 
|---|
| 683 | * established. Assumes the hardware has previously been reset and the | 
|---|
| 684 | * transmitter and receiver are not enabled. | 
|---|
| 685 | */ | 
|---|
| 686 | s32 e1000_setup_link(struct e1000_hw *hw) | 
|---|
| 687 | { | 
|---|
| 688 | u32 ctrl_ext; | 
|---|
| 689 | s32 ret_val; | 
|---|
| 690 | u16 eeprom_data; | 
|---|
| 691 |  | 
|---|
| 692 | /* Read and store word 0x0F of the EEPROM. This word contains bits | 
|---|
| 693 | * that determine the hardware's default PAUSE (flow control) mode, | 
|---|
| 694 | * a bit that determines whether the HW defaults to enabling or | 
|---|
| 695 | * disabling auto-negotiation, and the direction of the | 
|---|
| 696 | * SW defined pins. If there is no SW over-ride of the flow | 
|---|
| 697 | * control setting, then the variable hw->fc will | 
|---|
| 698 | * be initialized based on a value in the EEPROM. | 
|---|
| 699 | */ | 
|---|
| 700 | if (hw->fc == E1000_FC_DEFAULT) { | 
|---|
| 701 | ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, | 
|---|
| 702 | words: 1, data: &eeprom_data); | 
|---|
| 703 | if (ret_val) { | 
|---|
| 704 | e_dbg( "EEPROM Read Error\n"); | 
|---|
| 705 | return -E1000_ERR_EEPROM; | 
|---|
| 706 | } | 
|---|
| 707 | if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0) | 
|---|
| 708 | hw->fc = E1000_FC_NONE; | 
|---|
| 709 | else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == | 
|---|
| 710 | EEPROM_WORD0F_ASM_DIR) | 
|---|
| 711 | hw->fc = E1000_FC_TX_PAUSE; | 
|---|
| 712 | else | 
|---|
| 713 | hw->fc = E1000_FC_FULL; | 
|---|
| 714 | } | 
|---|
| 715 |  | 
|---|
| 716 | /* We want to save off the original Flow Control configuration just | 
|---|
| 717 | * in case we get disconnected and then reconnected into a different | 
|---|
| 718 | * hub or switch with different Flow Control capabilities. | 
|---|
| 719 | */ | 
|---|
| 720 | if (hw->mac_type == e1000_82542_rev2_0) | 
|---|
| 721 | hw->fc &= (~E1000_FC_TX_PAUSE); | 
|---|
| 722 |  | 
|---|
| 723 | if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1)) | 
|---|
| 724 | hw->fc &= (~E1000_FC_RX_PAUSE); | 
|---|
| 725 |  | 
|---|
| 726 | hw->original_fc = hw->fc; | 
|---|
| 727 |  | 
|---|
| 728 | e_dbg( "After fix-ups FlowControl is now = %x\n", hw->fc); | 
|---|
| 729 |  | 
|---|
| 730 | /* Take the 4 bits from EEPROM word 0x0F that determine the initial | 
|---|
| 731 | * polarity value for the SW controlled pins, and setup the | 
|---|
| 732 | * Extended Device Control reg with that info. | 
|---|
| 733 | * This is needed because one of the SW controlled pins is used for | 
|---|
| 734 | * signal detection.  So this should be done before e1000_setup_pcs_link() | 
|---|
| 735 | * or e1000_phy_setup() is called. | 
|---|
| 736 | */ | 
|---|
| 737 | if (hw->mac_type == e1000_82543) { | 
|---|
| 738 | ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, | 
|---|
| 739 | words: 1, data: &eeprom_data); | 
|---|
| 740 | if (ret_val) { | 
|---|
| 741 | e_dbg( "EEPROM Read Error\n"); | 
|---|
| 742 | return -E1000_ERR_EEPROM; | 
|---|
| 743 | } | 
|---|
| 744 | ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) << | 
|---|
| 745 | SWDPIO__EXT_SHIFT); | 
|---|
| 746 | ew32(CTRL_EXT, ctrl_ext); | 
|---|
| 747 | } | 
|---|
| 748 |  | 
|---|
| 749 | /* Call the necessary subroutine to configure the link. */ | 
|---|
| 750 | ret_val = (hw->media_type == e1000_media_type_copper) ? | 
|---|
| 751 | e1000_setup_copper_link(hw) : e1000_setup_fiber_serdes_link(hw); | 
|---|
| 752 |  | 
|---|
| 753 | /* Initialize the flow control address, type, and PAUSE timer | 
|---|
| 754 | * registers to their default values.  This is done even if flow | 
|---|
| 755 | * control is disabled, because it does not hurt anything to | 
|---|
| 756 | * initialize these registers. | 
|---|
| 757 | */ | 
|---|
| 758 | e_dbg( "Initializing the Flow Control address, type and timer regs\n"); | 
|---|
| 759 |  | 
|---|
| 760 | ew32(FCT, FLOW_CONTROL_TYPE); | 
|---|
| 761 | ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH); | 
|---|
| 762 | ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW); | 
|---|
| 763 |  | 
|---|
| 764 | ew32(FCTTV, hw->fc_pause_time); | 
|---|
| 765 |  | 
|---|
| 766 | /* Set the flow control receive threshold registers.  Normally, | 
|---|
| 767 | * these registers will be set to a default threshold that may be | 
|---|
| 768 | * adjusted later by the driver's runtime code.  However, if the | 
|---|
| 769 | * ability to transmit pause frames in not enabled, then these | 
|---|
| 770 | * registers will be set to 0. | 
|---|
| 771 | */ | 
|---|
| 772 | if (!(hw->fc & E1000_FC_TX_PAUSE)) { | 
|---|
| 773 | ew32(FCRTL, 0); | 
|---|
| 774 | ew32(FCRTH, 0); | 
|---|
| 775 | } else { | 
|---|
| 776 | /* We need to set up the Receive Threshold high and low water | 
|---|
| 777 | * marks as well as (optionally) enabling the transmission of | 
|---|
| 778 | * XON frames. | 
|---|
| 779 | */ | 
|---|
| 780 | if (hw->fc_send_xon) { | 
|---|
| 781 | ew32(FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE)); | 
|---|
| 782 | ew32(FCRTH, hw->fc_high_water); | 
|---|
| 783 | } else { | 
|---|
| 784 | ew32(FCRTL, hw->fc_low_water); | 
|---|
| 785 | ew32(FCRTH, hw->fc_high_water); | 
|---|
| 786 | } | 
|---|
| 787 | } | 
|---|
| 788 | return ret_val; | 
|---|
| 789 | } | 
|---|
| 790 |  | 
|---|
| 791 | /** | 
|---|
| 792 | * e1000_setup_fiber_serdes_link - prepare fiber or serdes link | 
|---|
| 793 | * @hw: Struct containing variables accessed by shared code | 
|---|
| 794 | * | 
|---|
| 795 | * Manipulates Physical Coding Sublayer functions in order to configure | 
|---|
| 796 | * link. Assumes the hardware has been previously reset and the transmitter | 
|---|
| 797 | * and receiver are not enabled. | 
|---|
| 798 | */ | 
|---|
| 799 | static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw) | 
|---|
| 800 | { | 
|---|
| 801 | u32 ctrl; | 
|---|
| 802 | u32 status; | 
|---|
| 803 | u32 txcw = 0; | 
|---|
| 804 | u32 i; | 
|---|
| 805 | u32 signal = 0; | 
|---|
| 806 | s32 ret_val; | 
|---|
| 807 |  | 
|---|
| 808 | /* On adapters with a MAC newer than 82544, SWDP 1 will be | 
|---|
| 809 | * set when the optics detect a signal. On older adapters, it will be | 
|---|
| 810 | * cleared when there is a signal.  This applies to fiber media only. | 
|---|
| 811 | * If we're on serdes media, adjust the output amplitude to value | 
|---|
| 812 | * set in the EEPROM. | 
|---|
| 813 | */ | 
|---|
| 814 | ctrl = er32(CTRL); | 
|---|
| 815 | if (hw->media_type == e1000_media_type_fiber) | 
|---|
| 816 | signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0; | 
|---|
| 817 |  | 
|---|
| 818 | ret_val = e1000_adjust_serdes_amplitude(hw); | 
|---|
| 819 | if (ret_val) | 
|---|
| 820 | return ret_val; | 
|---|
| 821 |  | 
|---|
| 822 | /* Take the link out of reset */ | 
|---|
| 823 | ctrl &= ~(E1000_CTRL_LRST); | 
|---|
| 824 |  | 
|---|
| 825 | /* Adjust VCO speed to improve BER performance */ | 
|---|
| 826 | ret_val = e1000_set_vco_speed(hw); | 
|---|
| 827 | if (ret_val) | 
|---|
| 828 | return ret_val; | 
|---|
| 829 |  | 
|---|
| 830 | e1000_config_collision_dist(hw); | 
|---|
| 831 |  | 
|---|
| 832 | /* Check for a software override of the flow control settings, and setup | 
|---|
| 833 | * the device accordingly.  If auto-negotiation is enabled, then | 
|---|
| 834 | * software will have to set the "PAUSE" bits to the correct value in | 
|---|
| 835 | * the Tranmsit Config Word Register (TXCW) and re-start | 
|---|
| 836 | * auto-negotiation.  However, if auto-negotiation is disabled, then | 
|---|
| 837 | * software will have to manually configure the two flow control enable | 
|---|
| 838 | * bits in the CTRL register. | 
|---|
| 839 | * | 
|---|
| 840 | * The possible values of the "fc" parameter are: | 
|---|
| 841 | *  0:  Flow control is completely disabled | 
|---|
| 842 | *  1:  Rx flow control is enabled (we can receive pause frames, but | 
|---|
| 843 | *      not send pause frames). | 
|---|
| 844 | *  2:  Tx flow control is enabled (we can send pause frames but we do | 
|---|
| 845 | *      not support receiving pause frames). | 
|---|
| 846 | *  3:  Both Rx and TX flow control (symmetric) are enabled. | 
|---|
| 847 | */ | 
|---|
| 848 | switch (hw->fc) { | 
|---|
| 849 | case E1000_FC_NONE: | 
|---|
| 850 | /* Flow ctrl is completely disabled by a software over-ride */ | 
|---|
| 851 | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD); | 
|---|
| 852 | break; | 
|---|
| 853 | case E1000_FC_RX_PAUSE: | 
|---|
| 854 | /* Rx Flow control is enabled and Tx Flow control is disabled by | 
|---|
| 855 | * a software over-ride. Since there really isn't a way to | 
|---|
| 856 | * advertise that we are capable of Rx Pause ONLY, we will | 
|---|
| 857 | * advertise that we support both symmetric and asymmetric Rx | 
|---|
| 858 | * PAUSE. Later, we will disable the adapter's ability to send | 
|---|
| 859 | * PAUSE frames. | 
|---|
| 860 | */ | 
|---|
| 861 | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); | 
|---|
| 862 | break; | 
|---|
| 863 | case E1000_FC_TX_PAUSE: | 
|---|
| 864 | /* Tx Flow control is enabled, and Rx Flow control is disabled, | 
|---|
| 865 | * by a software over-ride. | 
|---|
| 866 | */ | 
|---|
| 867 | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR); | 
|---|
| 868 | break; | 
|---|
| 869 | case E1000_FC_FULL: | 
|---|
| 870 | /* Flow control (both Rx and Tx) is enabled by a software | 
|---|
| 871 | * over-ride. | 
|---|
| 872 | */ | 
|---|
| 873 | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); | 
|---|
| 874 | break; | 
|---|
| 875 | default: | 
|---|
| 876 | e_dbg( "Flow control param set incorrectly\n"); | 
|---|
| 877 | return -E1000_ERR_CONFIG; | 
|---|
| 878 | } | 
|---|
| 879 |  | 
|---|
| 880 | /* Since auto-negotiation is enabled, take the link out of reset (the | 
|---|
| 881 | * link will be in reset, because we previously reset the chip). This | 
|---|
| 882 | * will restart auto-negotiation.  If auto-negotiation is successful | 
|---|
| 883 | * then the link-up status bit will be set and the flow control enable | 
|---|
| 884 | * bits (RFCE and TFCE) will be set according to their negotiated value. | 
|---|
| 885 | */ | 
|---|
| 886 | e_dbg( "Auto-negotiation enabled\n"); | 
|---|
| 887 |  | 
|---|
| 888 | ew32(TXCW, txcw); | 
|---|
| 889 | ew32(CTRL, ctrl); | 
|---|
| 890 | E1000_WRITE_FLUSH(); | 
|---|
| 891 |  | 
|---|
| 892 | hw->txcw = txcw; | 
|---|
| 893 | msleep(msecs: 1); | 
|---|
| 894 |  | 
|---|
| 895 | /* If we have a signal (the cable is plugged in) then poll for a | 
|---|
| 896 | * "Link-Up" indication in the Device Status Register.  Time-out if a | 
|---|
| 897 | * link isn't seen in 500 milliseconds seconds (Auto-negotiation should | 
|---|
| 898 | * complete in less than 500 milliseconds even if the other end is doing | 
|---|
| 899 | * it in SW). For internal serdes, we just assume a signal is present, | 
|---|
| 900 | * then poll. | 
|---|
| 901 | */ | 
|---|
| 902 | if (hw->media_type == e1000_media_type_internal_serdes || | 
|---|
| 903 | (er32(CTRL) & E1000_CTRL_SWDPIN1) == signal) { | 
|---|
| 904 | e_dbg( "Looking for Link\n"); | 
|---|
| 905 | for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) { | 
|---|
| 906 | msleep(msecs: 10); | 
|---|
| 907 | status = er32(STATUS); | 
|---|
| 908 | if (status & E1000_STATUS_LU) | 
|---|
| 909 | break; | 
|---|
| 910 | } | 
|---|
| 911 | if (i == (LINK_UP_TIMEOUT / 10)) { | 
|---|
| 912 | e_dbg( "Never got a valid link from auto-neg!!!\n"); | 
|---|
| 913 | hw->autoneg_failed = 1; | 
|---|
| 914 | /* AutoNeg failed to achieve a link, so we'll call | 
|---|
| 915 | * e1000_check_for_link. This routine will force the | 
|---|
| 916 | * link up if we detect a signal. This will allow us to | 
|---|
| 917 | * communicate with non-autonegotiating link partners. | 
|---|
| 918 | */ | 
|---|
| 919 | ret_val = e1000_check_for_link(hw); | 
|---|
| 920 | if (ret_val) { | 
|---|
| 921 | e_dbg( "Error while checking for link\n"); | 
|---|
| 922 | return ret_val; | 
|---|
| 923 | } | 
|---|
| 924 | hw->autoneg_failed = 0; | 
|---|
| 925 | } else { | 
|---|
| 926 | hw->autoneg_failed = 0; | 
|---|
| 927 | e_dbg( "Valid Link Found\n"); | 
|---|
| 928 | } | 
|---|
| 929 | } else { | 
|---|
| 930 | e_dbg( "No Signal Detected\n"); | 
|---|
| 931 | } | 
|---|
| 932 | return E1000_SUCCESS; | 
|---|
| 933 | } | 
|---|
| 934 |  | 
|---|
| 935 | /** | 
|---|
| 936 | * e1000_copper_link_rtl_setup - Copper link setup for e1000_phy_rtl series. | 
|---|
| 937 | * @hw: Struct containing variables accessed by shared code | 
|---|
| 938 | * | 
|---|
| 939 | * Commits changes to PHY configuration by calling e1000_phy_reset(). | 
|---|
| 940 | */ | 
|---|
| 941 | static s32 e1000_copper_link_rtl_setup(struct e1000_hw *hw) | 
|---|
| 942 | { | 
|---|
| 943 | s32 ret_val; | 
|---|
| 944 |  | 
|---|
| 945 | /* SW reset the PHY so all changes take effect */ | 
|---|
| 946 | ret_val = e1000_phy_reset(hw); | 
|---|
| 947 | if (ret_val) { | 
|---|
| 948 | e_dbg( "Error Resetting the PHY\n"); | 
|---|
| 949 | return ret_val; | 
|---|
| 950 | } | 
|---|
| 951 |  | 
|---|
| 952 | return E1000_SUCCESS; | 
|---|
| 953 | } | 
|---|
| 954 |  | 
|---|
| 955 | static s32 gbe_dhg_phy_setup(struct e1000_hw *hw) | 
|---|
| 956 | { | 
|---|
| 957 | s32 ret_val; | 
|---|
| 958 | u32 ctrl_aux; | 
|---|
| 959 |  | 
|---|
| 960 | switch (hw->phy_type) { | 
|---|
| 961 | case e1000_phy_8211: | 
|---|
| 962 | ret_val = e1000_copper_link_rtl_setup(hw); | 
|---|
| 963 | if (ret_val) { | 
|---|
| 964 | e_dbg( "e1000_copper_link_rtl_setup failed!\n"); | 
|---|
| 965 | return ret_val; | 
|---|
| 966 | } | 
|---|
| 967 | break; | 
|---|
| 968 | case e1000_phy_8201: | 
|---|
| 969 | /* Set RMII mode */ | 
|---|
| 970 | ctrl_aux = er32(CTL_AUX); | 
|---|
| 971 | ctrl_aux |= E1000_CTL_AUX_RMII; | 
|---|
| 972 | ew32(CTL_AUX, ctrl_aux); | 
|---|
| 973 | E1000_WRITE_FLUSH(); | 
|---|
| 974 |  | 
|---|
| 975 | /* Disable the J/K bits required for receive */ | 
|---|
| 976 | ctrl_aux = er32(CTL_AUX); | 
|---|
| 977 | ctrl_aux |= 0x4; | 
|---|
| 978 | ctrl_aux &= ~0x2; | 
|---|
| 979 | ew32(CTL_AUX, ctrl_aux); | 
|---|
| 980 | E1000_WRITE_FLUSH(); | 
|---|
| 981 | ret_val = e1000_copper_link_rtl_setup(hw); | 
|---|
| 982 |  | 
|---|
| 983 | if (ret_val) { | 
|---|
| 984 | e_dbg( "e1000_copper_link_rtl_setup failed!\n"); | 
|---|
| 985 | return ret_val; | 
|---|
| 986 | } | 
|---|
| 987 | break; | 
|---|
| 988 | default: | 
|---|
| 989 | e_dbg( "Error Resetting the PHY\n"); | 
|---|
| 990 | return E1000_ERR_PHY_TYPE; | 
|---|
| 991 | } | 
|---|
| 992 |  | 
|---|
| 993 | return E1000_SUCCESS; | 
|---|
| 994 | } | 
|---|
| 995 |  | 
|---|
| 996 | /** | 
|---|
| 997 | * e1000_copper_link_preconfig - early configuration for copper | 
|---|
| 998 | * @hw: Struct containing variables accessed by shared code | 
|---|
| 999 | * | 
|---|
| 1000 | * Make sure we have a valid PHY and change PHY mode before link setup. | 
|---|
| 1001 | */ | 
|---|
| 1002 | static s32 e1000_copper_link_preconfig(struct e1000_hw *hw) | 
|---|
| 1003 | { | 
|---|
| 1004 | u32 ctrl; | 
|---|
| 1005 | s32 ret_val; | 
|---|
| 1006 | u16 phy_data; | 
|---|
| 1007 |  | 
|---|
| 1008 | ctrl = er32(CTRL); | 
|---|
| 1009 | /* With 82543, we need to force speed and duplex on the MAC equal to | 
|---|
| 1010 | * what the PHY speed and duplex configuration is. In addition, we need | 
|---|
| 1011 | * to perform a hardware reset on the PHY to take it out of reset. | 
|---|
| 1012 | */ | 
|---|
| 1013 | if (hw->mac_type > e1000_82543) { | 
|---|
| 1014 | ctrl |= E1000_CTRL_SLU; | 
|---|
| 1015 | ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); | 
|---|
| 1016 | ew32(CTRL, ctrl); | 
|---|
| 1017 | } else { | 
|---|
| 1018 | ctrl |= | 
|---|
| 1019 | (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU); | 
|---|
| 1020 | ew32(CTRL, ctrl); | 
|---|
| 1021 | ret_val = e1000_phy_hw_reset(hw); | 
|---|
| 1022 | if (ret_val) | 
|---|
| 1023 | return ret_val; | 
|---|
| 1024 | } | 
|---|
| 1025 |  | 
|---|
| 1026 | /* Make sure we have a valid PHY */ | 
|---|
| 1027 | ret_val = e1000_detect_gig_phy(hw); | 
|---|
| 1028 | if (ret_val) { | 
|---|
| 1029 | e_dbg( "Error, did not detect valid phy.\n"); | 
|---|
| 1030 | return ret_val; | 
|---|
| 1031 | } | 
|---|
| 1032 | e_dbg( "Phy ID = %x\n", hw->phy_id); | 
|---|
| 1033 |  | 
|---|
| 1034 | /* Set PHY to class A mode (if necessary) */ | 
|---|
| 1035 | ret_val = e1000_set_phy_mode(hw); | 
|---|
| 1036 | if (ret_val) | 
|---|
| 1037 | return ret_val; | 
|---|
| 1038 |  | 
|---|
| 1039 | if ((hw->mac_type == e1000_82545_rev_3) || | 
|---|
| 1040 | (hw->mac_type == e1000_82546_rev_3)) { | 
|---|
| 1041 | ret_val = | 
|---|
| 1042 | e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data: &phy_data); | 
|---|
| 1043 | phy_data |= 0x00000008; | 
|---|
| 1044 | ret_val = | 
|---|
| 1045 | e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, data: phy_data); | 
|---|
| 1046 | } | 
|---|
| 1047 |  | 
|---|
| 1048 | if (hw->mac_type <= e1000_82543 || | 
|---|
| 1049 | hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 || | 
|---|
| 1050 | hw->mac_type == e1000_82541_rev_2 || | 
|---|
| 1051 | hw->mac_type == e1000_82547_rev_2) | 
|---|
| 1052 | hw->phy_reset_disable = false; | 
|---|
| 1053 |  | 
|---|
| 1054 | return E1000_SUCCESS; | 
|---|
| 1055 | } | 
|---|
| 1056 |  | 
|---|
| 1057 | /** | 
|---|
| 1058 | * e1000_copper_link_igp_setup - Copper link setup for e1000_phy_igp series. | 
|---|
| 1059 | * @hw: Struct containing variables accessed by shared code | 
|---|
| 1060 | */ | 
|---|
| 1061 | static s32 e1000_copper_link_igp_setup(struct e1000_hw *hw) | 
|---|
| 1062 | { | 
|---|
| 1063 | u32 led_ctrl; | 
|---|
| 1064 | s32 ret_val; | 
|---|
| 1065 | u16 phy_data; | 
|---|
| 1066 |  | 
|---|
| 1067 | if (hw->phy_reset_disable) | 
|---|
| 1068 | return E1000_SUCCESS; | 
|---|
| 1069 |  | 
|---|
| 1070 | ret_val = e1000_phy_reset(hw); | 
|---|
| 1071 | if (ret_val) { | 
|---|
| 1072 | e_dbg( "Error Resetting the PHY\n"); | 
|---|
| 1073 | return ret_val; | 
|---|
| 1074 | } | 
|---|
| 1075 |  | 
|---|
| 1076 | /* Wait 15ms for MAC to configure PHY from eeprom settings */ | 
|---|
| 1077 | msleep(msecs: 15); | 
|---|
| 1078 | /* Configure activity LED after PHY reset */ | 
|---|
| 1079 | led_ctrl = er32(LEDCTL); | 
|---|
| 1080 | led_ctrl &= IGP_ACTIVITY_LED_MASK; | 
|---|
| 1081 | led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); | 
|---|
| 1082 | ew32(LEDCTL, led_ctrl); | 
|---|
| 1083 |  | 
|---|
| 1084 | /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */ | 
|---|
| 1085 | if (hw->phy_type == e1000_phy_igp) { | 
|---|
| 1086 | /* disable lplu d3 during driver init */ | 
|---|
| 1087 | ret_val = e1000_set_d3_lplu_state(hw, active: false); | 
|---|
| 1088 | if (ret_val) { | 
|---|
| 1089 | e_dbg( "Error Disabling LPLU D3\n"); | 
|---|
| 1090 | return ret_val; | 
|---|
| 1091 | } | 
|---|
| 1092 | } | 
|---|
| 1093 |  | 
|---|
| 1094 | /* Configure mdi-mdix settings */ | 
|---|
| 1095 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data: &phy_data); | 
|---|
| 1096 | if (ret_val) | 
|---|
| 1097 | return ret_val; | 
|---|
| 1098 |  | 
|---|
| 1099 | if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { | 
|---|
| 1100 | hw->dsp_config_state = e1000_dsp_config_disabled; | 
|---|
| 1101 | /* Force MDI for earlier revs of the IGP PHY */ | 
|---|
| 1102 | phy_data &= | 
|---|
| 1103 | ~(IGP01E1000_PSCR_AUTO_MDIX | | 
|---|
| 1104 | IGP01E1000_PSCR_FORCE_MDI_MDIX); | 
|---|
| 1105 | hw->mdix = 1; | 
|---|
| 1106 |  | 
|---|
| 1107 | } else { | 
|---|
| 1108 | hw->dsp_config_state = e1000_dsp_config_enabled; | 
|---|
| 1109 | phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; | 
|---|
| 1110 |  | 
|---|
| 1111 | switch (hw->mdix) { | 
|---|
| 1112 | case 1: | 
|---|
| 1113 | phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; | 
|---|
| 1114 | break; | 
|---|
| 1115 | case 2: | 
|---|
| 1116 | phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX; | 
|---|
| 1117 | break; | 
|---|
| 1118 | case 0: | 
|---|
| 1119 | default: | 
|---|
| 1120 | phy_data |= IGP01E1000_PSCR_AUTO_MDIX; | 
|---|
| 1121 | break; | 
|---|
| 1122 | } | 
|---|
| 1123 | } | 
|---|
| 1124 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, data: phy_data); | 
|---|
| 1125 | if (ret_val) | 
|---|
| 1126 | return ret_val; | 
|---|
| 1127 |  | 
|---|
| 1128 | /* set auto-master slave resolution settings */ | 
|---|
| 1129 | if (hw->autoneg) { | 
|---|
| 1130 | e1000_ms_type phy_ms_setting = hw->master_slave; | 
|---|
| 1131 |  | 
|---|
| 1132 | if (hw->ffe_config_state == e1000_ffe_config_active) | 
|---|
| 1133 | hw->ffe_config_state = e1000_ffe_config_enabled; | 
|---|
| 1134 |  | 
|---|
| 1135 | if (hw->dsp_config_state == e1000_dsp_config_activated) | 
|---|
| 1136 | hw->dsp_config_state = e1000_dsp_config_enabled; | 
|---|
| 1137 |  | 
|---|
| 1138 | /* when autonegotiation advertisement is only 1000Mbps then we | 
|---|
| 1139 | * should disable SmartSpeed and enable Auto MasterSlave | 
|---|
| 1140 | * resolution as hardware default. | 
|---|
| 1141 | */ | 
|---|
| 1142 | if (hw->autoneg_advertised == ADVERTISE_1000_FULL) { | 
|---|
| 1143 | /* Disable SmartSpeed */ | 
|---|
| 1144 | ret_val = | 
|---|
| 1145 | e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | 
|---|
| 1146 | phy_data: &phy_data); | 
|---|
| 1147 | if (ret_val) | 
|---|
| 1148 | return ret_val; | 
|---|
| 1149 | phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; | 
|---|
| 1150 | ret_val = | 
|---|
| 1151 | e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | 
|---|
| 1152 | data: phy_data); | 
|---|
| 1153 | if (ret_val) | 
|---|
| 1154 | return ret_val; | 
|---|
| 1155 | /* Set auto Master/Slave resolution process */ | 
|---|
| 1156 | ret_val = | 
|---|
| 1157 | e1000_read_phy_reg(hw, PHY_1000T_CTRL, phy_data: &phy_data); | 
|---|
| 1158 | if (ret_val) | 
|---|
| 1159 | return ret_val; | 
|---|
| 1160 | phy_data &= ~CR_1000T_MS_ENABLE; | 
|---|
| 1161 | ret_val = | 
|---|
| 1162 | e1000_write_phy_reg(hw, PHY_1000T_CTRL, data: phy_data); | 
|---|
| 1163 | if (ret_val) | 
|---|
| 1164 | return ret_val; | 
|---|
| 1165 | } | 
|---|
| 1166 |  | 
|---|
| 1167 | ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, phy_data: &phy_data); | 
|---|
| 1168 | if (ret_val) | 
|---|
| 1169 | return ret_val; | 
|---|
| 1170 |  | 
|---|
| 1171 | /* load defaults for future use */ | 
|---|
| 1172 | hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ? | 
|---|
| 1173 | ((phy_data & CR_1000T_MS_VALUE) ? | 
|---|
| 1174 | e1000_ms_force_master : | 
|---|
| 1175 | e1000_ms_force_slave) : e1000_ms_auto; | 
|---|
| 1176 |  | 
|---|
| 1177 | switch (phy_ms_setting) { | 
|---|
| 1178 | case e1000_ms_force_master: | 
|---|
| 1179 | phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE); | 
|---|
| 1180 | break; | 
|---|
| 1181 | case e1000_ms_force_slave: | 
|---|
| 1182 | phy_data |= CR_1000T_MS_ENABLE; | 
|---|
| 1183 | phy_data &= ~(CR_1000T_MS_VALUE); | 
|---|
| 1184 | break; | 
|---|
| 1185 | case e1000_ms_auto: | 
|---|
| 1186 | phy_data &= ~CR_1000T_MS_ENABLE; | 
|---|
| 1187 | break; | 
|---|
| 1188 | default: | 
|---|
| 1189 | break; | 
|---|
| 1190 | } | 
|---|
| 1191 | ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, data: phy_data); | 
|---|
| 1192 | if (ret_val) | 
|---|
| 1193 | return ret_val; | 
|---|
| 1194 | } | 
|---|
| 1195 |  | 
|---|
| 1196 | return E1000_SUCCESS; | 
|---|
| 1197 | } | 
|---|
| 1198 |  | 
|---|
| 1199 | /** | 
|---|
| 1200 | * e1000_copper_link_mgp_setup - Copper link setup for e1000_phy_m88 series. | 
|---|
| 1201 | * @hw: Struct containing variables accessed by shared code | 
|---|
| 1202 | */ | 
|---|
| 1203 | static s32 e1000_copper_link_mgp_setup(struct e1000_hw *hw) | 
|---|
| 1204 | { | 
|---|
| 1205 | s32 ret_val; | 
|---|
| 1206 | u16 phy_data; | 
|---|
| 1207 |  | 
|---|
| 1208 | if (hw->phy_reset_disable) | 
|---|
| 1209 | return E1000_SUCCESS; | 
|---|
| 1210 |  | 
|---|
| 1211 | /* Enable CRS on TX. This must be set for half-duplex operation. */ | 
|---|
| 1212 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data: &phy_data); | 
|---|
| 1213 | if (ret_val) | 
|---|
| 1214 | return ret_val; | 
|---|
| 1215 |  | 
|---|
| 1216 | phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; | 
|---|
| 1217 |  | 
|---|
| 1218 | /* Options: | 
|---|
| 1219 | *   MDI/MDI-X = 0 (default) | 
|---|
| 1220 | *   0 - Auto for all speeds | 
|---|
| 1221 | *   1 - MDI mode | 
|---|
| 1222 | *   2 - MDI-X mode | 
|---|
| 1223 | *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) | 
|---|
| 1224 | */ | 
|---|
| 1225 | phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; | 
|---|
| 1226 |  | 
|---|
| 1227 | switch (hw->mdix) { | 
|---|
| 1228 | case 1: | 
|---|
| 1229 | phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; | 
|---|
| 1230 | break; | 
|---|
| 1231 | case 2: | 
|---|
| 1232 | phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; | 
|---|
| 1233 | break; | 
|---|
| 1234 | case 3: | 
|---|
| 1235 | phy_data |= M88E1000_PSCR_AUTO_X_1000T; | 
|---|
| 1236 | break; | 
|---|
| 1237 | case 0: | 
|---|
| 1238 | default: | 
|---|
| 1239 | phy_data |= M88E1000_PSCR_AUTO_X_MODE; | 
|---|
| 1240 | break; | 
|---|
| 1241 | } | 
|---|
| 1242 |  | 
|---|
| 1243 | /* Options: | 
|---|
| 1244 | *   disable_polarity_correction = 0 (default) | 
|---|
| 1245 | *       Automatic Correction for Reversed Cable Polarity | 
|---|
| 1246 | *   0 - Disabled | 
|---|
| 1247 | *   1 - Enabled | 
|---|
| 1248 | */ | 
|---|
| 1249 | phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; | 
|---|
| 1250 | if (hw->disable_polarity_correction == 1) | 
|---|
| 1251 | phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; | 
|---|
| 1252 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, data: phy_data); | 
|---|
| 1253 | if (ret_val) | 
|---|
| 1254 | return ret_val; | 
|---|
| 1255 |  | 
|---|
| 1256 | if (hw->phy_revision < M88E1011_I_REV_4) { | 
|---|
| 1257 | /* Force TX_CLK in the Extended PHY Specific Control Register | 
|---|
| 1258 | * to 25MHz clock. | 
|---|
| 1259 | */ | 
|---|
| 1260 | ret_val = | 
|---|
| 1261 | e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, | 
|---|
| 1262 | phy_data: &phy_data); | 
|---|
| 1263 | if (ret_val) | 
|---|
| 1264 | return ret_val; | 
|---|
| 1265 |  | 
|---|
| 1266 | phy_data |= M88E1000_EPSCR_TX_CLK_25; | 
|---|
| 1267 |  | 
|---|
| 1268 | if ((hw->phy_revision == E1000_REVISION_2) && | 
|---|
| 1269 | (hw->phy_id == M88E1111_I_PHY_ID)) { | 
|---|
| 1270 | /* Vidalia Phy, set the downshift counter to 5x */ | 
|---|
| 1271 | phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK); | 
|---|
| 1272 | phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X; | 
|---|
| 1273 | ret_val = e1000_write_phy_reg(hw, | 
|---|
| 1274 | M88E1000_EXT_PHY_SPEC_CTRL, | 
|---|
| 1275 | data: phy_data); | 
|---|
| 1276 | if (ret_val) | 
|---|
| 1277 | return ret_val; | 
|---|
| 1278 | } else { | 
|---|
| 1279 | /* Configure Master and Slave downshift values */ | 
|---|
| 1280 | phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | | 
|---|
| 1281 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); | 
|---|
| 1282 | phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | | 
|---|
| 1283 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); | 
|---|
| 1284 | ret_val = e1000_write_phy_reg(hw, | 
|---|
| 1285 | M88E1000_EXT_PHY_SPEC_CTRL, | 
|---|
| 1286 | data: phy_data); | 
|---|
| 1287 | if (ret_val) | 
|---|
| 1288 | return ret_val; | 
|---|
| 1289 | } | 
|---|
| 1290 | } | 
|---|
| 1291 |  | 
|---|
| 1292 | /* SW Reset the PHY so all changes take effect */ | 
|---|
| 1293 | ret_val = e1000_phy_reset(hw); | 
|---|
| 1294 | if (ret_val) { | 
|---|
| 1295 | e_dbg( "Error Resetting the PHY\n"); | 
|---|
| 1296 | return ret_val; | 
|---|
| 1297 | } | 
|---|
| 1298 |  | 
|---|
| 1299 | return E1000_SUCCESS; | 
|---|
| 1300 | } | 
|---|
| 1301 |  | 
|---|
| 1302 | /** | 
|---|
| 1303 | * e1000_copper_link_autoneg - setup auto-neg | 
|---|
| 1304 | * @hw: Struct containing variables accessed by shared code | 
|---|
| 1305 | * | 
|---|
| 1306 | * Setup auto-negotiation and flow control advertisements, | 
|---|
| 1307 | * and then perform auto-negotiation. | 
|---|
| 1308 | */ | 
|---|
| 1309 | static s32 e1000_copper_link_autoneg(struct e1000_hw *hw) | 
|---|
| 1310 | { | 
|---|
| 1311 | s32 ret_val; | 
|---|
| 1312 | u16 phy_data; | 
|---|
| 1313 |  | 
|---|
| 1314 | /* Perform some bounds checking on the hw->autoneg_advertised | 
|---|
| 1315 | * parameter.  If this variable is zero, then set it to the default. | 
|---|
| 1316 | */ | 
|---|
| 1317 | hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT; | 
|---|
| 1318 |  | 
|---|
| 1319 | /* If autoneg_advertised is zero, we assume it was not defaulted | 
|---|
| 1320 | * by the calling code so we set to advertise full capability. | 
|---|
| 1321 | */ | 
|---|
| 1322 | if (hw->autoneg_advertised == 0) | 
|---|
| 1323 | hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT; | 
|---|
| 1324 |  | 
|---|
| 1325 | /* IFE/RTL8201N PHY only supports 10/100 */ | 
|---|
| 1326 | if (hw->phy_type == e1000_phy_8201) | 
|---|
| 1327 | hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL; | 
|---|
| 1328 |  | 
|---|
| 1329 | e_dbg( "Reconfiguring auto-neg advertisement params\n"); | 
|---|
| 1330 | ret_val = e1000_phy_setup_autoneg(hw); | 
|---|
| 1331 | if (ret_val) { | 
|---|
| 1332 | e_dbg( "Error Setting up Auto-Negotiation\n"); | 
|---|
| 1333 | return ret_val; | 
|---|
| 1334 | } | 
|---|
| 1335 | e_dbg( "Restarting Auto-Neg\n"); | 
|---|
| 1336 |  | 
|---|
| 1337 | /* Restart auto-negotiation by setting the Auto Neg Enable bit and | 
|---|
| 1338 | * the Auto Neg Restart bit in the PHY control register. | 
|---|
| 1339 | */ | 
|---|
| 1340 | ret_val = e1000_read_phy_reg(hw, PHY_CTRL, phy_data: &phy_data); | 
|---|
| 1341 | if (ret_val) | 
|---|
| 1342 | return ret_val; | 
|---|
| 1343 |  | 
|---|
| 1344 | phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); | 
|---|
| 1345 | ret_val = e1000_write_phy_reg(hw, PHY_CTRL, data: phy_data); | 
|---|
| 1346 | if (ret_val) | 
|---|
| 1347 | return ret_val; | 
|---|
| 1348 |  | 
|---|
| 1349 | /* Does the user want to wait for Auto-Neg to complete here, or | 
|---|
| 1350 | * check at a later time (for example, callback routine). | 
|---|
| 1351 | */ | 
|---|
| 1352 | if (hw->wait_autoneg_complete) { | 
|---|
| 1353 | ret_val = e1000_wait_autoneg(hw); | 
|---|
| 1354 | if (ret_val) { | 
|---|
| 1355 | e_dbg | 
|---|
| 1356 | ( "Error while waiting for autoneg to complete\n"); | 
|---|
| 1357 | return ret_val; | 
|---|
| 1358 | } | 
|---|
| 1359 | } | 
|---|
| 1360 |  | 
|---|
| 1361 | hw->get_link_status = true; | 
|---|
| 1362 |  | 
|---|
| 1363 | return E1000_SUCCESS; | 
|---|
| 1364 | } | 
|---|
| 1365 |  | 
|---|
| 1366 | /** | 
|---|
| 1367 | * e1000_copper_link_postconfig - post link setup | 
|---|
| 1368 | * @hw: Struct containing variables accessed by shared code | 
|---|
| 1369 | * | 
|---|
| 1370 | * Config the MAC and the PHY after link is up. | 
|---|
| 1371 | *   1) Set up the MAC to the current PHY speed/duplex | 
|---|
| 1372 | *      if we are on 82543.  If we | 
|---|
| 1373 | *      are on newer silicon, we only need to configure | 
|---|
| 1374 | *      collision distance in the Transmit Control Register. | 
|---|
| 1375 | *   2) Set up flow control on the MAC to that established with | 
|---|
| 1376 | *      the link partner. | 
|---|
| 1377 | *   3) Config DSP to improve Gigabit link quality for some PHY revisions. | 
|---|
| 1378 | */ | 
|---|
| 1379 | static s32 e1000_copper_link_postconfig(struct e1000_hw *hw) | 
|---|
| 1380 | { | 
|---|
| 1381 | s32 ret_val; | 
|---|
| 1382 |  | 
|---|
| 1383 | if ((hw->mac_type >= e1000_82544) && (hw->mac_type != e1000_ce4100)) { | 
|---|
| 1384 | e1000_config_collision_dist(hw); | 
|---|
| 1385 | } else { | 
|---|
| 1386 | ret_val = e1000_config_mac_to_phy(hw); | 
|---|
| 1387 | if (ret_val) { | 
|---|
| 1388 | e_dbg( "Error configuring MAC to PHY settings\n"); | 
|---|
| 1389 | return ret_val; | 
|---|
| 1390 | } | 
|---|
| 1391 | } | 
|---|
| 1392 | ret_val = e1000_config_fc_after_link_up(hw); | 
|---|
| 1393 | if (ret_val) { | 
|---|
| 1394 | e_dbg( "Error Configuring Flow Control\n"); | 
|---|
| 1395 | return ret_val; | 
|---|
| 1396 | } | 
|---|
| 1397 |  | 
|---|
| 1398 | /* Config DSP to improve Giga link quality */ | 
|---|
| 1399 | if (hw->phy_type == e1000_phy_igp) { | 
|---|
| 1400 | ret_val = e1000_config_dsp_after_link_change(hw, link_up: true); | 
|---|
| 1401 | if (ret_val) { | 
|---|
| 1402 | e_dbg( "Error Configuring DSP after link up\n"); | 
|---|
| 1403 | return ret_val; | 
|---|
| 1404 | } | 
|---|
| 1405 | } | 
|---|
| 1406 |  | 
|---|
| 1407 | return E1000_SUCCESS; | 
|---|
| 1408 | } | 
|---|
| 1409 |  | 
|---|
| 1410 | /** | 
|---|
| 1411 | * e1000_setup_copper_link - phy/speed/duplex setting | 
|---|
| 1412 | * @hw: Struct containing variables accessed by shared code | 
|---|
| 1413 | * | 
|---|
| 1414 | * Detects which PHY is present and sets up the speed and duplex | 
|---|
| 1415 | */ | 
|---|
| 1416 | static s32 e1000_setup_copper_link(struct e1000_hw *hw) | 
|---|
| 1417 | { | 
|---|
| 1418 | s32 ret_val; | 
|---|
| 1419 | u16 i; | 
|---|
| 1420 | u16 phy_data; | 
|---|
| 1421 |  | 
|---|
| 1422 | /* Check if it is a valid PHY and set PHY mode if necessary. */ | 
|---|
| 1423 | ret_val = e1000_copper_link_preconfig(hw); | 
|---|
| 1424 | if (ret_val) | 
|---|
| 1425 | return ret_val; | 
|---|
| 1426 |  | 
|---|
| 1427 | if (hw->phy_type == e1000_phy_igp) { | 
|---|
| 1428 | ret_val = e1000_copper_link_igp_setup(hw); | 
|---|
| 1429 | if (ret_val) | 
|---|
| 1430 | return ret_val; | 
|---|
| 1431 | } else if (hw->phy_type == e1000_phy_m88) { | 
|---|
| 1432 | ret_val = e1000_copper_link_mgp_setup(hw); | 
|---|
| 1433 | if (ret_val) | 
|---|
| 1434 | return ret_val; | 
|---|
| 1435 | } else { | 
|---|
| 1436 | ret_val = gbe_dhg_phy_setup(hw); | 
|---|
| 1437 | if (ret_val) { | 
|---|
| 1438 | e_dbg( "gbe_dhg_phy_setup failed!\n"); | 
|---|
| 1439 | return ret_val; | 
|---|
| 1440 | } | 
|---|
| 1441 | } | 
|---|
| 1442 |  | 
|---|
| 1443 | if (hw->autoneg) { | 
|---|
| 1444 | /* Setup autoneg and flow control advertisement | 
|---|
| 1445 | * and perform autonegotiation | 
|---|
| 1446 | */ | 
|---|
| 1447 | ret_val = e1000_copper_link_autoneg(hw); | 
|---|
| 1448 | if (ret_val) | 
|---|
| 1449 | return ret_val; | 
|---|
| 1450 | } else { | 
|---|
| 1451 | /* PHY will be set to 10H, 10F, 100H,or 100F | 
|---|
| 1452 | * depending on value from forced_speed_duplex. | 
|---|
| 1453 | */ | 
|---|
| 1454 | e_dbg( "Forcing speed and duplex\n"); | 
|---|
| 1455 | ret_val = e1000_phy_force_speed_duplex(hw); | 
|---|
| 1456 | if (ret_val) { | 
|---|
| 1457 | e_dbg( "Error Forcing Speed and Duplex\n"); | 
|---|
| 1458 | return ret_val; | 
|---|
| 1459 | } | 
|---|
| 1460 | } | 
|---|
| 1461 |  | 
|---|
| 1462 | /* Check link status. Wait up to 100 microseconds for link to become | 
|---|
| 1463 | * valid. | 
|---|
| 1464 | */ | 
|---|
| 1465 | for (i = 0; i < 10; i++) { | 
|---|
| 1466 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, phy_data: &phy_data); | 
|---|
| 1467 | if (ret_val) | 
|---|
| 1468 | return ret_val; | 
|---|
| 1469 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, phy_data: &phy_data); | 
|---|
| 1470 | if (ret_val) | 
|---|
| 1471 | return ret_val; | 
|---|
| 1472 |  | 
|---|
| 1473 | if (phy_data & MII_SR_LINK_STATUS) { | 
|---|
| 1474 | /* Config the MAC and PHY after link is up */ | 
|---|
| 1475 | ret_val = e1000_copper_link_postconfig(hw); | 
|---|
| 1476 | if (ret_val) | 
|---|
| 1477 | return ret_val; | 
|---|
| 1478 |  | 
|---|
| 1479 | e_dbg( "Valid link established!!!\n"); | 
|---|
| 1480 | return E1000_SUCCESS; | 
|---|
| 1481 | } | 
|---|
| 1482 | udelay(usec: 10); | 
|---|
| 1483 | } | 
|---|
| 1484 |  | 
|---|
| 1485 | e_dbg( "Unable to establish link!!!\n"); | 
|---|
| 1486 | return E1000_SUCCESS; | 
|---|
| 1487 | } | 
|---|
| 1488 |  | 
|---|
| 1489 | /** | 
|---|
| 1490 | * e1000_phy_setup_autoneg - phy settings | 
|---|
| 1491 | * @hw: Struct containing variables accessed by shared code | 
|---|
| 1492 | * | 
|---|
| 1493 | * Configures PHY autoneg and flow control advertisement settings | 
|---|
| 1494 | */ | 
|---|
| 1495 | s32 e1000_phy_setup_autoneg(struct e1000_hw *hw) | 
|---|
| 1496 | { | 
|---|
| 1497 | s32 ret_val; | 
|---|
| 1498 | u16 mii_autoneg_adv_reg; | 
|---|
| 1499 | u16 mii_1000t_ctrl_reg; | 
|---|
| 1500 |  | 
|---|
| 1501 | /* Read the MII Auto-Neg Advertisement Register (Address 4). */ | 
|---|
| 1502 | ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, phy_data: &mii_autoneg_adv_reg); | 
|---|
| 1503 | if (ret_val) | 
|---|
| 1504 | return ret_val; | 
|---|
| 1505 |  | 
|---|
| 1506 | /* Read the MII 1000Base-T Control Register (Address 9). */ | 
|---|
| 1507 | ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, phy_data: &mii_1000t_ctrl_reg); | 
|---|
| 1508 | if (ret_val) | 
|---|
| 1509 | return ret_val; | 
|---|
| 1510 | else if (hw->phy_type == e1000_phy_8201) | 
|---|
| 1511 | mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK; | 
|---|
| 1512 |  | 
|---|
| 1513 | /* Need to parse both autoneg_advertised and fc and set up | 
|---|
| 1514 | * the appropriate PHY registers.  First we will parse for | 
|---|
| 1515 | * autoneg_advertised software override.  Since we can advertise | 
|---|
| 1516 | * a plethora of combinations, we need to check each bit | 
|---|
| 1517 | * individually. | 
|---|
| 1518 | */ | 
|---|
| 1519 |  | 
|---|
| 1520 | /* First we clear all the 10/100 mb speed bits in the Auto-Neg | 
|---|
| 1521 | * Advertisement Register (Address 4) and the 1000 mb speed bits in | 
|---|
| 1522 | * the  1000Base-T Control Register (Address 9). | 
|---|
| 1523 | */ | 
|---|
| 1524 | mii_autoneg_adv_reg &= ~REG4_SPEED_MASK; | 
|---|
| 1525 | mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK; | 
|---|
| 1526 |  | 
|---|
| 1527 | e_dbg( "autoneg_advertised %x\n", hw->autoneg_advertised); | 
|---|
| 1528 |  | 
|---|
| 1529 | /* Do we want to advertise 10 Mb Half Duplex? */ | 
|---|
| 1530 | if (hw->autoneg_advertised & ADVERTISE_10_HALF) { | 
|---|
| 1531 | e_dbg( "Advertise 10mb Half duplex\n"); | 
|---|
| 1532 | mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS; | 
|---|
| 1533 | } | 
|---|
| 1534 |  | 
|---|
| 1535 | /* Do we want to advertise 10 Mb Full Duplex? */ | 
|---|
| 1536 | if (hw->autoneg_advertised & ADVERTISE_10_FULL) { | 
|---|
| 1537 | e_dbg( "Advertise 10mb Full duplex\n"); | 
|---|
| 1538 | mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS; | 
|---|
| 1539 | } | 
|---|
| 1540 |  | 
|---|
| 1541 | /* Do we want to advertise 100 Mb Half Duplex? */ | 
|---|
| 1542 | if (hw->autoneg_advertised & ADVERTISE_100_HALF) { | 
|---|
| 1543 | e_dbg( "Advertise 100mb Half duplex\n"); | 
|---|
| 1544 | mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS; | 
|---|
| 1545 | } | 
|---|
| 1546 |  | 
|---|
| 1547 | /* Do we want to advertise 100 Mb Full Duplex? */ | 
|---|
| 1548 | if (hw->autoneg_advertised & ADVERTISE_100_FULL) { | 
|---|
| 1549 | e_dbg( "Advertise 100mb Full duplex\n"); | 
|---|
| 1550 | mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS; | 
|---|
| 1551 | } | 
|---|
| 1552 |  | 
|---|
| 1553 | /* We do not allow the Phy to advertise 1000 Mb Half Duplex */ | 
|---|
| 1554 | if (hw->autoneg_advertised & ADVERTISE_1000_HALF) { | 
|---|
| 1555 | e_dbg | 
|---|
| 1556 | ( "Advertise 1000mb Half duplex requested, request denied!\n"); | 
|---|
| 1557 | } | 
|---|
| 1558 |  | 
|---|
| 1559 | /* Do we want to advertise 1000 Mb Full Duplex? */ | 
|---|
| 1560 | if (hw->autoneg_advertised & ADVERTISE_1000_FULL) { | 
|---|
| 1561 | e_dbg( "Advertise 1000mb Full duplex\n"); | 
|---|
| 1562 | mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; | 
|---|
| 1563 | } | 
|---|
| 1564 |  | 
|---|
| 1565 | /* Check for a software override of the flow control settings, and | 
|---|
| 1566 | * setup the PHY advertisement registers accordingly.  If | 
|---|
| 1567 | * auto-negotiation is enabled, then software will have to set the | 
|---|
| 1568 | * "PAUSE" bits to the correct value in the Auto-Negotiation | 
|---|
| 1569 | * Advertisement Register (PHY_AUTONEG_ADV) and re-start | 
|---|
| 1570 | * auto-negotiation. | 
|---|
| 1571 | * | 
|---|
| 1572 | * The possible values of the "fc" parameter are: | 
|---|
| 1573 | *      0:  Flow control is completely disabled | 
|---|
| 1574 | *      1:  Rx flow control is enabled (we can receive pause frames | 
|---|
| 1575 | *          but not send pause frames). | 
|---|
| 1576 | *      2:  Tx flow control is enabled (we can send pause frames | 
|---|
| 1577 | *          but we do not support receiving pause frames). | 
|---|
| 1578 | *      3:  Both Rx and TX flow control (symmetric) are enabled. | 
|---|
| 1579 | *  other:  No software override.  The flow control configuration | 
|---|
| 1580 | *          in the EEPROM is used. | 
|---|
| 1581 | */ | 
|---|
| 1582 | switch (hw->fc) { | 
|---|
| 1583 | case E1000_FC_NONE:	/* 0 */ | 
|---|
| 1584 | /* Flow control (RX & TX) is completely disabled by a | 
|---|
| 1585 | * software over-ride. | 
|---|
| 1586 | */ | 
|---|
| 1587 | mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); | 
|---|
| 1588 | break; | 
|---|
| 1589 | case E1000_FC_RX_PAUSE:	/* 1 */ | 
|---|
| 1590 | /* RX Flow control is enabled, and TX Flow control is | 
|---|
| 1591 | * disabled, by a software over-ride. | 
|---|
| 1592 | */ | 
|---|
| 1593 | /* Since there really isn't a way to advertise that we are | 
|---|
| 1594 | * capable of RX Pause ONLY, we will advertise that we | 
|---|
| 1595 | * support both symmetric and asymmetric RX PAUSE.  Later | 
|---|
| 1596 | * (in e1000_config_fc_after_link_up) we will disable the | 
|---|
| 1597 | * hw's ability to send PAUSE frames. | 
|---|
| 1598 | */ | 
|---|
| 1599 | mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); | 
|---|
| 1600 | break; | 
|---|
| 1601 | case E1000_FC_TX_PAUSE:	/* 2 */ | 
|---|
| 1602 | /* TX Flow control is enabled, and RX Flow control is | 
|---|
| 1603 | * disabled, by a software over-ride. | 
|---|
| 1604 | */ | 
|---|
| 1605 | mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR; | 
|---|
| 1606 | mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE; | 
|---|
| 1607 | break; | 
|---|
| 1608 | case E1000_FC_FULL:	/* 3 */ | 
|---|
| 1609 | /* Flow control (both RX and TX) is enabled by a software | 
|---|
| 1610 | * over-ride. | 
|---|
| 1611 | */ | 
|---|
| 1612 | mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); | 
|---|
| 1613 | break; | 
|---|
| 1614 | default: | 
|---|
| 1615 | e_dbg( "Flow control param set incorrectly\n"); | 
|---|
| 1616 | return -E1000_ERR_CONFIG; | 
|---|
| 1617 | } | 
|---|
| 1618 |  | 
|---|
| 1619 | ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, data: mii_autoneg_adv_reg); | 
|---|
| 1620 | if (ret_val) | 
|---|
| 1621 | return ret_val; | 
|---|
| 1622 |  | 
|---|
| 1623 | e_dbg( "Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); | 
|---|
| 1624 |  | 
|---|
| 1625 | if (hw->phy_type == e1000_phy_8201) { | 
|---|
| 1626 | mii_1000t_ctrl_reg = 0; | 
|---|
| 1627 | } else { | 
|---|
| 1628 | ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, | 
|---|
| 1629 | data: mii_1000t_ctrl_reg); | 
|---|
| 1630 | if (ret_val) | 
|---|
| 1631 | return ret_val; | 
|---|
| 1632 | } | 
|---|
| 1633 |  | 
|---|
| 1634 | return E1000_SUCCESS; | 
|---|
| 1635 | } | 
|---|
| 1636 |  | 
|---|
| 1637 | /** | 
|---|
| 1638 | * e1000_phy_force_speed_duplex - force link settings | 
|---|
| 1639 | * @hw: Struct containing variables accessed by shared code | 
|---|
| 1640 | * | 
|---|
| 1641 | * Force PHY speed and duplex settings to hw->forced_speed_duplex | 
|---|
| 1642 | */ | 
|---|
| 1643 | static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw) | 
|---|
| 1644 | { | 
|---|
| 1645 | u32 ctrl; | 
|---|
| 1646 | s32 ret_val; | 
|---|
| 1647 | u16 mii_ctrl_reg; | 
|---|
| 1648 | u16 mii_status_reg; | 
|---|
| 1649 | u16 phy_data; | 
|---|
| 1650 | u16 i; | 
|---|
| 1651 |  | 
|---|
| 1652 | /* Turn off Flow control if we are forcing speed and duplex. */ | 
|---|
| 1653 | hw->fc = E1000_FC_NONE; | 
|---|
| 1654 |  | 
|---|
| 1655 | e_dbg( "hw->fc = %d\n", hw->fc); | 
|---|
| 1656 |  | 
|---|
| 1657 | /* Read the Device Control Register. */ | 
|---|
| 1658 | ctrl = er32(CTRL); | 
|---|
| 1659 |  | 
|---|
| 1660 | /* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */ | 
|---|
| 1661 | ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); | 
|---|
| 1662 | ctrl &= ~(DEVICE_SPEED_MASK); | 
|---|
| 1663 |  | 
|---|
| 1664 | /* Clear the Auto Speed Detect Enable bit. */ | 
|---|
| 1665 | ctrl &= ~E1000_CTRL_ASDE; | 
|---|
| 1666 |  | 
|---|
| 1667 | /* Read the MII Control Register. */ | 
|---|
| 1668 | ret_val = e1000_read_phy_reg(hw, PHY_CTRL, phy_data: &mii_ctrl_reg); | 
|---|
| 1669 | if (ret_val) | 
|---|
| 1670 | return ret_val; | 
|---|
| 1671 |  | 
|---|
| 1672 | /* We need to disable autoneg in order to force link and duplex. */ | 
|---|
| 1673 |  | 
|---|
| 1674 | mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN; | 
|---|
| 1675 |  | 
|---|
| 1676 | /* Are we forcing Full or Half Duplex? */ | 
|---|
| 1677 | if (hw->forced_speed_duplex == e1000_100_full || | 
|---|
| 1678 | hw->forced_speed_duplex == e1000_10_full) { | 
|---|
| 1679 | /* We want to force full duplex so we SET the full duplex bits | 
|---|
| 1680 | * in the Device and MII Control Registers. | 
|---|
| 1681 | */ | 
|---|
| 1682 | ctrl |= E1000_CTRL_FD; | 
|---|
| 1683 | mii_ctrl_reg |= MII_CR_FULL_DUPLEX; | 
|---|
| 1684 | e_dbg( "Full Duplex\n"); | 
|---|
| 1685 | } else { | 
|---|
| 1686 | /* We want to force half duplex so we CLEAR the full duplex bits | 
|---|
| 1687 | * in the Device and MII Control Registers. | 
|---|
| 1688 | */ | 
|---|
| 1689 | ctrl &= ~E1000_CTRL_FD; | 
|---|
| 1690 | mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX; | 
|---|
| 1691 | e_dbg( "Half Duplex\n"); | 
|---|
| 1692 | } | 
|---|
| 1693 |  | 
|---|
| 1694 | /* Are we forcing 100Mbps??? */ | 
|---|
| 1695 | if (hw->forced_speed_duplex == e1000_100_full || | 
|---|
| 1696 | hw->forced_speed_duplex == e1000_100_half) { | 
|---|
| 1697 | /* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */ | 
|---|
| 1698 | ctrl |= E1000_CTRL_SPD_100; | 
|---|
| 1699 | mii_ctrl_reg |= MII_CR_SPEED_100; | 
|---|
| 1700 | mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10); | 
|---|
| 1701 | e_dbg( "Forcing 100mb "); | 
|---|
| 1702 | } else { | 
|---|
| 1703 | /* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */ | 
|---|
| 1704 | ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); | 
|---|
| 1705 | mii_ctrl_reg |= MII_CR_SPEED_10; | 
|---|
| 1706 | mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100); | 
|---|
| 1707 | e_dbg( "Forcing 10mb "); | 
|---|
| 1708 | } | 
|---|
| 1709 |  | 
|---|
| 1710 | e1000_config_collision_dist(hw); | 
|---|
| 1711 |  | 
|---|
| 1712 | /* Write the configured values back to the Device Control Reg. */ | 
|---|
| 1713 | ew32(CTRL, ctrl); | 
|---|
| 1714 |  | 
|---|
| 1715 | if (hw->phy_type == e1000_phy_m88) { | 
|---|
| 1716 | ret_val = | 
|---|
| 1717 | e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data: &phy_data); | 
|---|
| 1718 | if (ret_val) | 
|---|
| 1719 | return ret_val; | 
|---|
| 1720 |  | 
|---|
| 1721 | /* Clear Auto-Crossover to force MDI manually. M88E1000 requires | 
|---|
| 1722 | * MDI forced whenever speed are duplex are forced. | 
|---|
| 1723 | */ | 
|---|
| 1724 | phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; | 
|---|
| 1725 | ret_val = | 
|---|
| 1726 | e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, data: phy_data); | 
|---|
| 1727 | if (ret_val) | 
|---|
| 1728 | return ret_val; | 
|---|
| 1729 |  | 
|---|
| 1730 | e_dbg( "M88E1000 PSCR: %x\n", phy_data); | 
|---|
| 1731 |  | 
|---|
| 1732 | /* Need to reset the PHY or these changes will be ignored */ | 
|---|
| 1733 | mii_ctrl_reg |= MII_CR_RESET; | 
|---|
| 1734 |  | 
|---|
| 1735 | /* Disable MDI-X support for 10/100 */ | 
|---|
| 1736 | } else { | 
|---|
| 1737 | /* Clear Auto-Crossover to force MDI manually.  IGP requires MDI | 
|---|
| 1738 | * forced whenever speed or duplex are forced. | 
|---|
| 1739 | */ | 
|---|
| 1740 | ret_val = | 
|---|
| 1741 | e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data: &phy_data); | 
|---|
| 1742 | if (ret_val) | 
|---|
| 1743 | return ret_val; | 
|---|
| 1744 |  | 
|---|
| 1745 | phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; | 
|---|
| 1746 | phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; | 
|---|
| 1747 |  | 
|---|
| 1748 | ret_val = | 
|---|
| 1749 | e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, data: phy_data); | 
|---|
| 1750 | if (ret_val) | 
|---|
| 1751 | return ret_val; | 
|---|
| 1752 | } | 
|---|
| 1753 |  | 
|---|
| 1754 | /* Write back the modified PHY MII control register. */ | 
|---|
| 1755 | ret_val = e1000_write_phy_reg(hw, PHY_CTRL, data: mii_ctrl_reg); | 
|---|
| 1756 | if (ret_val) | 
|---|
| 1757 | return ret_val; | 
|---|
| 1758 |  | 
|---|
| 1759 | udelay(usec: 1); | 
|---|
| 1760 |  | 
|---|
| 1761 | /* The wait_autoneg_complete flag may be a little misleading here. | 
|---|
| 1762 | * Since we are forcing speed and duplex, Auto-Neg is not enabled. | 
|---|
| 1763 | * But we do want to delay for a period while forcing only so we | 
|---|
| 1764 | * don't generate false No Link messages.  So we will wait here | 
|---|
| 1765 | * only if the user has set wait_autoneg_complete to 1, which is | 
|---|
| 1766 | * the default. | 
|---|
| 1767 | */ | 
|---|
| 1768 | if (hw->wait_autoneg_complete) { | 
|---|
| 1769 | /* We will wait for autoneg to complete. */ | 
|---|
| 1770 | e_dbg( "Waiting for forced speed/duplex link.\n"); | 
|---|
| 1771 | mii_status_reg = 0; | 
|---|
| 1772 |  | 
|---|
| 1773 | /* Wait for autoneg to complete or 4.5 seconds to expire */ | 
|---|
| 1774 | for (i = PHY_FORCE_TIME; i > 0; i--) { | 
|---|
| 1775 | /* Read the MII Status Register and wait for Auto-Neg | 
|---|
| 1776 | * Complete bit to be set. | 
|---|
| 1777 | */ | 
|---|
| 1778 | ret_val = | 
|---|
| 1779 | e1000_read_phy_reg(hw, PHY_STATUS, phy_data: &mii_status_reg); | 
|---|
| 1780 | if (ret_val) | 
|---|
| 1781 | return ret_val; | 
|---|
| 1782 |  | 
|---|
| 1783 | ret_val = | 
|---|
| 1784 | e1000_read_phy_reg(hw, PHY_STATUS, phy_data: &mii_status_reg); | 
|---|
| 1785 | if (ret_val) | 
|---|
| 1786 | return ret_val; | 
|---|
| 1787 |  | 
|---|
| 1788 | if (mii_status_reg & MII_SR_LINK_STATUS) | 
|---|
| 1789 | break; | 
|---|
| 1790 | msleep(msecs: 100); | 
|---|
| 1791 | } | 
|---|
| 1792 | if ((i == 0) && (hw->phy_type == e1000_phy_m88)) { | 
|---|
| 1793 | /* We didn't get link.  Reset the DSP and wait again | 
|---|
| 1794 | * for link. | 
|---|
| 1795 | */ | 
|---|
| 1796 | ret_val = e1000_phy_reset_dsp(hw); | 
|---|
| 1797 | if (ret_val) { | 
|---|
| 1798 | e_dbg( "Error Resetting PHY DSP\n"); | 
|---|
| 1799 | return ret_val; | 
|---|
| 1800 | } | 
|---|
| 1801 | } | 
|---|
| 1802 | /* This loop will early-out if the link condition has been | 
|---|
| 1803 | * met | 
|---|
| 1804 | */ | 
|---|
| 1805 | for (i = PHY_FORCE_TIME; i > 0; i--) { | 
|---|
| 1806 | if (mii_status_reg & MII_SR_LINK_STATUS) | 
|---|
| 1807 | break; | 
|---|
| 1808 | msleep(msecs: 100); | 
|---|
| 1809 | /* Read the MII Status Register and wait for Auto-Neg | 
|---|
| 1810 | * Complete bit to be set. | 
|---|
| 1811 | */ | 
|---|
| 1812 | ret_val = | 
|---|
| 1813 | e1000_read_phy_reg(hw, PHY_STATUS, phy_data: &mii_status_reg); | 
|---|
| 1814 | if (ret_val) | 
|---|
| 1815 | return ret_val; | 
|---|
| 1816 |  | 
|---|
| 1817 | ret_val = | 
|---|
| 1818 | e1000_read_phy_reg(hw, PHY_STATUS, phy_data: &mii_status_reg); | 
|---|
| 1819 | if (ret_val) | 
|---|
| 1820 | return ret_val; | 
|---|
| 1821 | } | 
|---|
| 1822 | } | 
|---|
| 1823 |  | 
|---|
| 1824 | if (hw->phy_type == e1000_phy_m88) { | 
|---|
| 1825 | /* Because we reset the PHY above, we need to re-force TX_CLK in | 
|---|
| 1826 | * the Extended PHY Specific Control Register to 25MHz clock. | 
|---|
| 1827 | * This value defaults back to a 2.5MHz clock when the PHY is | 
|---|
| 1828 | * reset. | 
|---|
| 1829 | */ | 
|---|
| 1830 | ret_val = | 
|---|
| 1831 | e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, | 
|---|
| 1832 | phy_data: &phy_data); | 
|---|
| 1833 | if (ret_val) | 
|---|
| 1834 | return ret_val; | 
|---|
| 1835 |  | 
|---|
| 1836 | phy_data |= M88E1000_EPSCR_TX_CLK_25; | 
|---|
| 1837 | ret_val = | 
|---|
| 1838 | e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, | 
|---|
| 1839 | data: phy_data); | 
|---|
| 1840 | if (ret_val) | 
|---|
| 1841 | return ret_val; | 
|---|
| 1842 |  | 
|---|
| 1843 | /* In addition, because of the s/w reset above, we need to | 
|---|
| 1844 | * enable CRS on Tx.  This must be set for both full and half | 
|---|
| 1845 | * duplex operation. | 
|---|
| 1846 | */ | 
|---|
| 1847 | ret_val = | 
|---|
| 1848 | e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data: &phy_data); | 
|---|
| 1849 | if (ret_val) | 
|---|
| 1850 | return ret_val; | 
|---|
| 1851 |  | 
|---|
| 1852 | phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; | 
|---|
| 1853 | ret_val = | 
|---|
| 1854 | e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, data: phy_data); | 
|---|
| 1855 | if (ret_val) | 
|---|
| 1856 | return ret_val; | 
|---|
| 1857 |  | 
|---|
| 1858 | if ((hw->mac_type == e1000_82544 || | 
|---|
| 1859 | hw->mac_type == e1000_82543) && | 
|---|
| 1860 | (!hw->autoneg) && | 
|---|
| 1861 | (hw->forced_speed_duplex == e1000_10_full || | 
|---|
| 1862 | hw->forced_speed_duplex == e1000_10_half)) { | 
|---|
| 1863 | ret_val = e1000_polarity_reversal_workaround(hw); | 
|---|
| 1864 | if (ret_val) | 
|---|
| 1865 | return ret_val; | 
|---|
| 1866 | } | 
|---|
| 1867 | } | 
|---|
| 1868 | return E1000_SUCCESS; | 
|---|
| 1869 | } | 
|---|
| 1870 |  | 
|---|
| 1871 | /** | 
|---|
| 1872 | * e1000_config_collision_dist - set collision distance register | 
|---|
| 1873 | * @hw: Struct containing variables accessed by shared code | 
|---|
| 1874 | * | 
|---|
| 1875 | * Sets the collision distance in the Transmit Control register. | 
|---|
| 1876 | * Link should have been established previously. Reads the speed and duplex | 
|---|
| 1877 | * information from the Device Status register. | 
|---|
| 1878 | */ | 
|---|
| 1879 | void e1000_config_collision_dist(struct e1000_hw *hw) | 
|---|
| 1880 | { | 
|---|
| 1881 | u32 tctl, coll_dist; | 
|---|
| 1882 |  | 
|---|
| 1883 | if (hw->mac_type < e1000_82543) | 
|---|
| 1884 | coll_dist = E1000_COLLISION_DISTANCE_82542; | 
|---|
| 1885 | else | 
|---|
| 1886 | coll_dist = E1000_COLLISION_DISTANCE; | 
|---|
| 1887 |  | 
|---|
| 1888 | tctl = er32(TCTL); | 
|---|
| 1889 |  | 
|---|
| 1890 | tctl &= ~E1000_TCTL_COLD; | 
|---|
| 1891 | tctl |= coll_dist << E1000_COLD_SHIFT; | 
|---|
| 1892 |  | 
|---|
| 1893 | ew32(TCTL, tctl); | 
|---|
| 1894 | E1000_WRITE_FLUSH(); | 
|---|
| 1895 | } | 
|---|
| 1896 |  | 
|---|
| 1897 | /** | 
|---|
| 1898 | * e1000_config_mac_to_phy - sync phy and mac settings | 
|---|
| 1899 | * @hw: Struct containing variables accessed by shared code | 
|---|
| 1900 | * | 
|---|
| 1901 | * Sets MAC speed and duplex settings to reflect the those in the PHY | 
|---|
| 1902 | * The contents of the PHY register containing the needed information need to | 
|---|
| 1903 | * be passed in. | 
|---|
| 1904 | */ | 
|---|
| 1905 | static s32 e1000_config_mac_to_phy(struct e1000_hw *hw) | 
|---|
| 1906 | { | 
|---|
| 1907 | u32 ctrl; | 
|---|
| 1908 | s32 ret_val; | 
|---|
| 1909 | u16 phy_data; | 
|---|
| 1910 |  | 
|---|
| 1911 | /* 82544 or newer MAC, Auto Speed Detection takes care of | 
|---|
| 1912 | * MAC speed/duplex configuration. | 
|---|
| 1913 | */ | 
|---|
| 1914 | if ((hw->mac_type >= e1000_82544) && (hw->mac_type != e1000_ce4100)) | 
|---|
| 1915 | return E1000_SUCCESS; | 
|---|
| 1916 |  | 
|---|
| 1917 | /* Read the Device Control Register and set the bits to Force Speed | 
|---|
| 1918 | * and Duplex. | 
|---|
| 1919 | */ | 
|---|
| 1920 | ctrl = er32(CTRL); | 
|---|
| 1921 | ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); | 
|---|
| 1922 | ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS); | 
|---|
| 1923 |  | 
|---|
| 1924 | switch (hw->phy_type) { | 
|---|
| 1925 | case e1000_phy_8201: | 
|---|
| 1926 | ret_val = e1000_read_phy_reg(hw, PHY_CTRL, phy_data: &phy_data); | 
|---|
| 1927 | if (ret_val) | 
|---|
| 1928 | return ret_val; | 
|---|
| 1929 |  | 
|---|
| 1930 | if (phy_data & RTL_PHY_CTRL_FD) | 
|---|
| 1931 | ctrl |= E1000_CTRL_FD; | 
|---|
| 1932 | else | 
|---|
| 1933 | ctrl &= ~E1000_CTRL_FD; | 
|---|
| 1934 |  | 
|---|
| 1935 | if (phy_data & RTL_PHY_CTRL_SPD_100) | 
|---|
| 1936 | ctrl |= E1000_CTRL_SPD_100; | 
|---|
| 1937 | else | 
|---|
| 1938 | ctrl |= E1000_CTRL_SPD_10; | 
|---|
| 1939 |  | 
|---|
| 1940 | e1000_config_collision_dist(hw); | 
|---|
| 1941 | break; | 
|---|
| 1942 | default: | 
|---|
| 1943 | /* Set up duplex in the Device Control and Transmit Control | 
|---|
| 1944 | * registers depending on negotiated values. | 
|---|
| 1945 | */ | 
|---|
| 1946 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, | 
|---|
| 1947 | phy_data: &phy_data); | 
|---|
| 1948 | if (ret_val) | 
|---|
| 1949 | return ret_val; | 
|---|
| 1950 |  | 
|---|
| 1951 | if (phy_data & M88E1000_PSSR_DPLX) | 
|---|
| 1952 | ctrl |= E1000_CTRL_FD; | 
|---|
| 1953 | else | 
|---|
| 1954 | ctrl &= ~E1000_CTRL_FD; | 
|---|
| 1955 |  | 
|---|
| 1956 | e1000_config_collision_dist(hw); | 
|---|
| 1957 |  | 
|---|
| 1958 | /* Set up speed in the Device Control register depending on | 
|---|
| 1959 | * negotiated values. | 
|---|
| 1960 | */ | 
|---|
| 1961 | if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) | 
|---|
| 1962 | ctrl |= E1000_CTRL_SPD_1000; | 
|---|
| 1963 | else if ((phy_data & M88E1000_PSSR_SPEED) == | 
|---|
| 1964 | M88E1000_PSSR_100MBS) | 
|---|
| 1965 | ctrl |= E1000_CTRL_SPD_100; | 
|---|
| 1966 | } | 
|---|
| 1967 |  | 
|---|
| 1968 | /* Write the configured values back to the Device Control Reg. */ | 
|---|
| 1969 | ew32(CTRL, ctrl); | 
|---|
| 1970 | return E1000_SUCCESS; | 
|---|
| 1971 | } | 
|---|
| 1972 |  | 
|---|
| 1973 | /** | 
|---|
| 1974 | * e1000_force_mac_fc - force flow control settings | 
|---|
| 1975 | * @hw: Struct containing variables accessed by shared code | 
|---|
| 1976 | * | 
|---|
| 1977 | * Forces the MAC's flow control settings. | 
|---|
| 1978 | * Sets the TFCE and RFCE bits in the device control register to reflect | 
|---|
| 1979 | * the adapter settings. TFCE and RFCE need to be explicitly set by | 
|---|
| 1980 | * software when a Copper PHY is used because autonegotiation is managed | 
|---|
| 1981 | * by the PHY rather than the MAC. Software must also configure these | 
|---|
| 1982 | * bits when link is forced on a fiber connection. | 
|---|
| 1983 | */ | 
|---|
| 1984 | s32 e1000_force_mac_fc(struct e1000_hw *hw) | 
|---|
| 1985 | { | 
|---|
| 1986 | u32 ctrl; | 
|---|
| 1987 |  | 
|---|
| 1988 | /* Get the current configuration of the Device Control Register */ | 
|---|
| 1989 | ctrl = er32(CTRL); | 
|---|
| 1990 |  | 
|---|
| 1991 | /* Because we didn't get link via the internal auto-negotiation | 
|---|
| 1992 | * mechanism (we either forced link or we got link via PHY | 
|---|
| 1993 | * auto-neg), we have to manually enable/disable transmit an | 
|---|
| 1994 | * receive flow control. | 
|---|
| 1995 | * | 
|---|
| 1996 | * The "Case" statement below enables/disable flow control | 
|---|
| 1997 | * according to the "hw->fc" parameter. | 
|---|
| 1998 | * | 
|---|
| 1999 | * The possible values of the "fc" parameter are: | 
|---|
| 2000 | *      0:  Flow control is completely disabled | 
|---|
| 2001 | *      1:  Rx flow control is enabled (we can receive pause | 
|---|
| 2002 | *          frames but not send pause frames). | 
|---|
| 2003 | *      2:  Tx flow control is enabled (we can send pause frames | 
|---|
| 2004 | *          but we do not receive pause frames). | 
|---|
| 2005 | *      3:  Both Rx and TX flow control (symmetric) is enabled. | 
|---|
| 2006 | *  other:  No other values should be possible at this point. | 
|---|
| 2007 | */ | 
|---|
| 2008 |  | 
|---|
| 2009 | switch (hw->fc) { | 
|---|
| 2010 | case E1000_FC_NONE: | 
|---|
| 2011 | ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); | 
|---|
| 2012 | break; | 
|---|
| 2013 | case E1000_FC_RX_PAUSE: | 
|---|
| 2014 | ctrl &= (~E1000_CTRL_TFCE); | 
|---|
| 2015 | ctrl |= E1000_CTRL_RFCE; | 
|---|
| 2016 | break; | 
|---|
| 2017 | case E1000_FC_TX_PAUSE: | 
|---|
| 2018 | ctrl &= (~E1000_CTRL_RFCE); | 
|---|
| 2019 | ctrl |= E1000_CTRL_TFCE; | 
|---|
| 2020 | break; | 
|---|
| 2021 | case E1000_FC_FULL: | 
|---|
| 2022 | ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); | 
|---|
| 2023 | break; | 
|---|
| 2024 | default: | 
|---|
| 2025 | e_dbg( "Flow control param set incorrectly\n"); | 
|---|
| 2026 | return -E1000_ERR_CONFIG; | 
|---|
| 2027 | } | 
|---|
| 2028 |  | 
|---|
| 2029 | /* Disable TX Flow Control for 82542 (rev 2.0) */ | 
|---|
| 2030 | if (hw->mac_type == e1000_82542_rev2_0) | 
|---|
| 2031 | ctrl &= (~E1000_CTRL_TFCE); | 
|---|
| 2032 |  | 
|---|
| 2033 | ew32(CTRL, ctrl); | 
|---|
| 2034 | return E1000_SUCCESS; | 
|---|
| 2035 | } | 
|---|
| 2036 |  | 
|---|
| 2037 | /** | 
|---|
| 2038 | * e1000_config_fc_after_link_up - configure flow control after autoneg | 
|---|
| 2039 | * @hw: Struct containing variables accessed by shared code | 
|---|
| 2040 | * | 
|---|
| 2041 | * Configures flow control settings after link is established | 
|---|
| 2042 | * Should be called immediately after a valid link has been established. | 
|---|
| 2043 | * Forces MAC flow control settings if link was forced. When in MII/GMII mode | 
|---|
| 2044 | * and autonegotiation is enabled, the MAC flow control settings will be set | 
|---|
| 2045 | * based on the flow control negotiated by the PHY. In TBI mode, the TFCE | 
|---|
| 2046 | * and RFCE bits will be automatically set to the negotiated flow control mode. | 
|---|
| 2047 | */ | 
|---|
| 2048 | static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw) | 
|---|
| 2049 | { | 
|---|
| 2050 | s32 ret_val; | 
|---|
| 2051 | u16 mii_status_reg; | 
|---|
| 2052 | u16 mii_nway_adv_reg; | 
|---|
| 2053 | u16 mii_nway_lp_ability_reg; | 
|---|
| 2054 | u16 speed; | 
|---|
| 2055 | u16 duplex; | 
|---|
| 2056 |  | 
|---|
| 2057 | /* Check for the case where we have fiber media and auto-neg failed | 
|---|
| 2058 | * so we had to force link.  In this case, we need to force the | 
|---|
| 2059 | * configuration of the MAC to match the "fc" parameter. | 
|---|
| 2060 | */ | 
|---|
| 2061 | if (((hw->media_type == e1000_media_type_fiber) && | 
|---|
| 2062 | (hw->autoneg_failed)) || | 
|---|
| 2063 | ((hw->media_type == e1000_media_type_internal_serdes) && | 
|---|
| 2064 | (hw->autoneg_failed)) || | 
|---|
| 2065 | ((hw->media_type == e1000_media_type_copper) && | 
|---|
| 2066 | (!hw->autoneg))) { | 
|---|
| 2067 | ret_val = e1000_force_mac_fc(hw); | 
|---|
| 2068 | if (ret_val) { | 
|---|
| 2069 | e_dbg( "Error forcing flow control settings\n"); | 
|---|
| 2070 | return ret_val; | 
|---|
| 2071 | } | 
|---|
| 2072 | } | 
|---|
| 2073 |  | 
|---|
| 2074 | /* Check for the case where we have copper media and auto-neg is | 
|---|
| 2075 | * enabled.  In this case, we need to check and see if Auto-Neg | 
|---|
| 2076 | * has completed, and if so, how the PHY and link partner has | 
|---|
| 2077 | * flow control configured. | 
|---|
| 2078 | */ | 
|---|
| 2079 | if ((hw->media_type == e1000_media_type_copper) && hw->autoneg) { | 
|---|
| 2080 | /* Read the MII Status Register and check to see if AutoNeg | 
|---|
| 2081 | * has completed.  We read this twice because this reg has | 
|---|
| 2082 | * some "sticky" (latched) bits. | 
|---|
| 2083 | */ | 
|---|
| 2084 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, phy_data: &mii_status_reg); | 
|---|
| 2085 | if (ret_val) | 
|---|
| 2086 | return ret_val; | 
|---|
| 2087 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, phy_data: &mii_status_reg); | 
|---|
| 2088 | if (ret_val) | 
|---|
| 2089 | return ret_val; | 
|---|
| 2090 |  | 
|---|
| 2091 | if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) { | 
|---|
| 2092 | /* The AutoNeg process has completed, so we now need to | 
|---|
| 2093 | * read both the Auto Negotiation Advertisement Register | 
|---|
| 2094 | * (Address 4) and the Auto_Negotiation Base Page | 
|---|
| 2095 | * Ability Register (Address 5) to determine how flow | 
|---|
| 2096 | * control was negotiated. | 
|---|
| 2097 | */ | 
|---|
| 2098 | ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, | 
|---|
| 2099 | phy_data: &mii_nway_adv_reg); | 
|---|
| 2100 | if (ret_val) | 
|---|
| 2101 | return ret_val; | 
|---|
| 2102 | ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY, | 
|---|
| 2103 | phy_data: &mii_nway_lp_ability_reg); | 
|---|
| 2104 | if (ret_val) | 
|---|
| 2105 | return ret_val; | 
|---|
| 2106 |  | 
|---|
| 2107 | /* Two bits in the Auto Negotiation Advertisement | 
|---|
| 2108 | * Register (Address 4) and two bits in the Auto | 
|---|
| 2109 | * Negotiation Base Page Ability Register (Address 5) | 
|---|
| 2110 | * determine flow control for both the PHY and the link | 
|---|
| 2111 | * partner.  The following table, taken out of the IEEE | 
|---|
| 2112 | * 802.3ab/D6.0 dated March 25, 1999, describes these | 
|---|
| 2113 | * PAUSE resolution bits and how flow control is | 
|---|
| 2114 | * determined based upon these settings. | 
|---|
| 2115 | * NOTE:  DC = Don't Care | 
|---|
| 2116 | * | 
|---|
| 2117 | *   LOCAL DEVICE  |   LINK PARTNER | 
|---|
| 2118 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution | 
|---|
| 2119 | *-------|---------|-------|---------|------------------ | 
|---|
| 2120 | *   0   |    0    |  DC   |   DC    | E1000_FC_NONE | 
|---|
| 2121 | *   0   |    1    |   0   |   DC    | E1000_FC_NONE | 
|---|
| 2122 | *   0   |    1    |   1   |    0    | E1000_FC_NONE | 
|---|
| 2123 | *   0   |    1    |   1   |    1    | E1000_FC_TX_PAUSE | 
|---|
| 2124 | *   1   |    0    |   0   |   DC    | E1000_FC_NONE | 
|---|
| 2125 | *   1   |   DC    |   1   |   DC    | E1000_FC_FULL | 
|---|
| 2126 | *   1   |    1    |   0   |    0    | E1000_FC_NONE | 
|---|
| 2127 | *   1   |    1    |   0   |    1    | E1000_FC_RX_PAUSE | 
|---|
| 2128 | * | 
|---|
| 2129 | */ | 
|---|
| 2130 | /* Are both PAUSE bits set to 1?  If so, this implies | 
|---|
| 2131 | * Symmetric Flow Control is enabled at both ends.  The | 
|---|
| 2132 | * ASM_DIR bits are irrelevant per the spec. | 
|---|
| 2133 | * | 
|---|
| 2134 | * For Symmetric Flow Control: | 
|---|
| 2135 | * | 
|---|
| 2136 | *   LOCAL DEVICE  |   LINK PARTNER | 
|---|
| 2137 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result | 
|---|
| 2138 | *-------|---------|-------|---------|------------------ | 
|---|
| 2139 | *   1   |   DC    |   1   |   DC    | E1000_FC_FULL | 
|---|
| 2140 | * | 
|---|
| 2141 | */ | 
|---|
| 2142 | if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && | 
|---|
| 2143 | (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { | 
|---|
| 2144 | /* Now we need to check if the user selected Rx | 
|---|
| 2145 | * ONLY of pause frames.  In this case, we had | 
|---|
| 2146 | * to advertise FULL flow control because we | 
|---|
| 2147 | * could not advertise Rx ONLY. Hence, we must | 
|---|
| 2148 | * now check to see if we need to turn OFF the | 
|---|
| 2149 | * TRANSMISSION of PAUSE frames. | 
|---|
| 2150 | */ | 
|---|
| 2151 | if (hw->original_fc == E1000_FC_FULL) { | 
|---|
| 2152 | hw->fc = E1000_FC_FULL; | 
|---|
| 2153 | e_dbg( "Flow Control = FULL.\n"); | 
|---|
| 2154 | } else { | 
|---|
| 2155 | hw->fc = E1000_FC_RX_PAUSE; | 
|---|
| 2156 | e_dbg | 
|---|
| 2157 | ( "Flow Control = RX PAUSE frames only.\n"); | 
|---|
| 2158 | } | 
|---|
| 2159 | } | 
|---|
| 2160 | /* For receiving PAUSE frames ONLY. | 
|---|
| 2161 | * | 
|---|
| 2162 | *   LOCAL DEVICE  |   LINK PARTNER | 
|---|
| 2163 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result | 
|---|
| 2164 | *-------|---------|-------|---------|------------------ | 
|---|
| 2165 | *   0   |    1    |   1   |    1    | E1000_FC_TX_PAUSE | 
|---|
| 2166 | * | 
|---|
| 2167 | */ | 
|---|
| 2168 | else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) && | 
|---|
| 2169 | (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && | 
|---|
| 2170 | (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && | 
|---|
| 2171 | (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { | 
|---|
| 2172 | hw->fc = E1000_FC_TX_PAUSE; | 
|---|
| 2173 | e_dbg | 
|---|
| 2174 | ( "Flow Control = TX PAUSE frames only.\n"); | 
|---|
| 2175 | } | 
|---|
| 2176 | /* For transmitting PAUSE frames ONLY. | 
|---|
| 2177 | * | 
|---|
| 2178 | *   LOCAL DEVICE  |   LINK PARTNER | 
|---|
| 2179 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result | 
|---|
| 2180 | *-------|---------|-------|---------|------------------ | 
|---|
| 2181 | *   1   |    1    |   0   |    1    | E1000_FC_RX_PAUSE | 
|---|
| 2182 | * | 
|---|
| 2183 | */ | 
|---|
| 2184 | else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && | 
|---|
| 2185 | (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && | 
|---|
| 2186 | !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && | 
|---|
| 2187 | (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { | 
|---|
| 2188 | hw->fc = E1000_FC_RX_PAUSE; | 
|---|
| 2189 | e_dbg | 
|---|
| 2190 | ( "Flow Control = RX PAUSE frames only.\n"); | 
|---|
| 2191 | } | 
|---|
| 2192 | /* Per the IEEE spec, at this point flow control should | 
|---|
| 2193 | * be disabled.  However, we want to consider that we | 
|---|
| 2194 | * could be connected to a legacy switch that doesn't | 
|---|
| 2195 | * advertise desired flow control, but can be forced on | 
|---|
| 2196 | * the link partner.  So if we advertised no flow | 
|---|
| 2197 | * control, that is what we will resolve to.  If we | 
|---|
| 2198 | * advertised some kind of receive capability (Rx Pause | 
|---|
| 2199 | * Only or Full Flow Control) and the link partner | 
|---|
| 2200 | * advertised none, we will configure ourselves to | 
|---|
| 2201 | * enable Rx Flow Control only.  We can do this safely | 
|---|
| 2202 | * for two reasons:  If the link partner really | 
|---|
| 2203 | * didn't want flow control enabled, and we enable Rx, | 
|---|
| 2204 | * no harm done since we won't be receiving any PAUSE | 
|---|
| 2205 | * frames anyway.  If the intent on the link partner was | 
|---|
| 2206 | * to have flow control enabled, then by us enabling Rx | 
|---|
| 2207 | * only, we can at least receive pause frames and | 
|---|
| 2208 | * process them. This is a good idea because in most | 
|---|
| 2209 | * cases, since we are predominantly a server NIC, more | 
|---|
| 2210 | * times than not we will be asked to delay transmission | 
|---|
| 2211 | * of packets than asking our link partner to pause | 
|---|
| 2212 | * transmission of frames. | 
|---|
| 2213 | */ | 
|---|
| 2214 | else if ((hw->original_fc == E1000_FC_NONE || | 
|---|
| 2215 | hw->original_fc == E1000_FC_TX_PAUSE) || | 
|---|
| 2216 | hw->fc_strict_ieee) { | 
|---|
| 2217 | hw->fc = E1000_FC_NONE; | 
|---|
| 2218 | e_dbg( "Flow Control = NONE.\n"); | 
|---|
| 2219 | } else { | 
|---|
| 2220 | hw->fc = E1000_FC_RX_PAUSE; | 
|---|
| 2221 | e_dbg | 
|---|
| 2222 | ( "Flow Control = RX PAUSE frames only.\n"); | 
|---|
| 2223 | } | 
|---|
| 2224 |  | 
|---|
| 2225 | /* Now we need to do one last check...  If we auto- | 
|---|
| 2226 | * negotiated to HALF DUPLEX, flow control should not be | 
|---|
| 2227 | * enabled per IEEE 802.3 spec. | 
|---|
| 2228 | */ | 
|---|
| 2229 | ret_val = | 
|---|
| 2230 | e1000_get_speed_and_duplex(hw, speed: &speed, duplex: &duplex); | 
|---|
| 2231 | if (ret_val) { | 
|---|
| 2232 | e_dbg | 
|---|
| 2233 | ( "Error getting link speed and duplex\n"); | 
|---|
| 2234 | return ret_val; | 
|---|
| 2235 | } | 
|---|
| 2236 |  | 
|---|
| 2237 | if (duplex == HALF_DUPLEX) | 
|---|
| 2238 | hw->fc = E1000_FC_NONE; | 
|---|
| 2239 |  | 
|---|
| 2240 | /* Now we call a subroutine to actually force the MAC | 
|---|
| 2241 | * controller to use the correct flow control settings. | 
|---|
| 2242 | */ | 
|---|
| 2243 | ret_val = e1000_force_mac_fc(hw); | 
|---|
| 2244 | if (ret_val) { | 
|---|
| 2245 | e_dbg | 
|---|
| 2246 | ( "Error forcing flow control settings\n"); | 
|---|
| 2247 | return ret_val; | 
|---|
| 2248 | } | 
|---|
| 2249 | } else { | 
|---|
| 2250 | e_dbg | 
|---|
| 2251 | ( "Copper PHY and Auto Neg has not completed.\n"); | 
|---|
| 2252 | } | 
|---|
| 2253 | } | 
|---|
| 2254 | return E1000_SUCCESS; | 
|---|
| 2255 | } | 
|---|
| 2256 |  | 
|---|
| 2257 | /** | 
|---|
| 2258 | * e1000_check_for_serdes_link_generic - Check for link (Serdes) | 
|---|
| 2259 | * @hw: pointer to the HW structure | 
|---|
| 2260 | * | 
|---|
| 2261 | * Checks for link up on the hardware.  If link is not up and we have | 
|---|
| 2262 | * a signal, then we need to force link up. | 
|---|
| 2263 | */ | 
|---|
| 2264 | static s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw) | 
|---|
| 2265 | { | 
|---|
| 2266 | u32 rxcw; | 
|---|
| 2267 | u32 ctrl; | 
|---|
| 2268 | u32 status; | 
|---|
| 2269 | s32 ret_val = E1000_SUCCESS; | 
|---|
| 2270 |  | 
|---|
| 2271 | ctrl = er32(CTRL); | 
|---|
| 2272 | status = er32(STATUS); | 
|---|
| 2273 | rxcw = er32(RXCW); | 
|---|
| 2274 |  | 
|---|
| 2275 | /* If we don't have link (auto-negotiation failed or link partner | 
|---|
| 2276 | * cannot auto-negotiate), and our link partner is not trying to | 
|---|
| 2277 | * auto-negotiate with us (we are receiving idles or data), | 
|---|
| 2278 | * we need to force link up. We also need to give auto-negotiation | 
|---|
| 2279 | * time to complete. | 
|---|
| 2280 | */ | 
|---|
| 2281 | /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */ | 
|---|
| 2282 | if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) { | 
|---|
| 2283 | if (hw->autoneg_failed == 0) { | 
|---|
| 2284 | hw->autoneg_failed = 1; | 
|---|
| 2285 | goto out; | 
|---|
| 2286 | } | 
|---|
| 2287 | e_dbg( "NOT RXing /C/, disable AutoNeg and force link.\n"); | 
|---|
| 2288 |  | 
|---|
| 2289 | /* Disable auto-negotiation in the TXCW register */ | 
|---|
| 2290 | ew32(TXCW, (hw->txcw & ~E1000_TXCW_ANE)); | 
|---|
| 2291 |  | 
|---|
| 2292 | /* Force link-up and also force full-duplex. */ | 
|---|
| 2293 | ctrl = er32(CTRL); | 
|---|
| 2294 | ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); | 
|---|
| 2295 | ew32(CTRL, ctrl); | 
|---|
| 2296 |  | 
|---|
| 2297 | /* Configure Flow Control after forcing link up. */ | 
|---|
| 2298 | ret_val = e1000_config_fc_after_link_up(hw); | 
|---|
| 2299 | if (ret_val) { | 
|---|
| 2300 | e_dbg( "Error configuring flow control\n"); | 
|---|
| 2301 | goto out; | 
|---|
| 2302 | } | 
|---|
| 2303 | } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { | 
|---|
| 2304 | /* If we are forcing link and we are receiving /C/ ordered | 
|---|
| 2305 | * sets, re-enable auto-negotiation in the TXCW register | 
|---|
| 2306 | * and disable forced link in the Device Control register | 
|---|
| 2307 | * in an attempt to auto-negotiate with our link partner. | 
|---|
| 2308 | */ | 
|---|
| 2309 | e_dbg( "RXing /C/, enable AutoNeg and stop forcing link.\n"); | 
|---|
| 2310 | ew32(TXCW, hw->txcw); | 
|---|
| 2311 | ew32(CTRL, (ctrl & ~E1000_CTRL_SLU)); | 
|---|
| 2312 |  | 
|---|
| 2313 | hw->serdes_has_link = true; | 
|---|
| 2314 | } else if (!(E1000_TXCW_ANE & er32(TXCW))) { | 
|---|
| 2315 | /* If we force link for non-auto-negotiation switch, check | 
|---|
| 2316 | * link status based on MAC synchronization for internal | 
|---|
| 2317 | * serdes media type. | 
|---|
| 2318 | */ | 
|---|
| 2319 | /* SYNCH bit and IV bit are sticky. */ | 
|---|
| 2320 | udelay(usec: 10); | 
|---|
| 2321 | rxcw = er32(RXCW); | 
|---|
| 2322 | if (rxcw & E1000_RXCW_SYNCH) { | 
|---|
| 2323 | if (!(rxcw & E1000_RXCW_IV)) { | 
|---|
| 2324 | hw->serdes_has_link = true; | 
|---|
| 2325 | e_dbg( "SERDES: Link up - forced.\n"); | 
|---|
| 2326 | } | 
|---|
| 2327 | } else { | 
|---|
| 2328 | hw->serdes_has_link = false; | 
|---|
| 2329 | e_dbg( "SERDES: Link down - force failed.\n"); | 
|---|
| 2330 | } | 
|---|
| 2331 | } | 
|---|
| 2332 |  | 
|---|
| 2333 | if (E1000_TXCW_ANE & er32(TXCW)) { | 
|---|
| 2334 | status = er32(STATUS); | 
|---|
| 2335 | if (status & E1000_STATUS_LU) { | 
|---|
| 2336 | /* SYNCH bit and IV bit are sticky, so reread rxcw. */ | 
|---|
| 2337 | udelay(usec: 10); | 
|---|
| 2338 | rxcw = er32(RXCW); | 
|---|
| 2339 | if (rxcw & E1000_RXCW_SYNCH) { | 
|---|
| 2340 | if (!(rxcw & E1000_RXCW_IV)) { | 
|---|
| 2341 | hw->serdes_has_link = true; | 
|---|
| 2342 | e_dbg( "SERDES: Link up - autoneg " | 
|---|
| 2343 | "completed successfully.\n"); | 
|---|
| 2344 | } else { | 
|---|
| 2345 | hw->serdes_has_link = false; | 
|---|
| 2346 | e_dbg( "SERDES: Link down - invalid" | 
|---|
| 2347 | "codewords detected in autoneg.\n"); | 
|---|
| 2348 | } | 
|---|
| 2349 | } else { | 
|---|
| 2350 | hw->serdes_has_link = false; | 
|---|
| 2351 | e_dbg( "SERDES: Link down - no sync.\n"); | 
|---|
| 2352 | } | 
|---|
| 2353 | } else { | 
|---|
| 2354 | hw->serdes_has_link = false; | 
|---|
| 2355 | e_dbg( "SERDES: Link down - autoneg failed\n"); | 
|---|
| 2356 | } | 
|---|
| 2357 | } | 
|---|
| 2358 |  | 
|---|
| 2359 | out: | 
|---|
| 2360 | return ret_val; | 
|---|
| 2361 | } | 
|---|
| 2362 |  | 
|---|
| 2363 | /** | 
|---|
| 2364 | * e1000_check_for_link | 
|---|
| 2365 | * @hw: Struct containing variables accessed by shared code | 
|---|
| 2366 | * | 
|---|
| 2367 | * Checks to see if the link status of the hardware has changed. | 
|---|
| 2368 | * Called by any function that needs to check the link status of the adapter. | 
|---|
| 2369 | */ | 
|---|
| 2370 | s32 e1000_check_for_link(struct e1000_hw *hw) | 
|---|
| 2371 | { | 
|---|
| 2372 | u32 status; | 
|---|
| 2373 | u32 rctl; | 
|---|
| 2374 | u32 icr; | 
|---|
| 2375 | s32 ret_val; | 
|---|
| 2376 | u16 phy_data; | 
|---|
| 2377 |  | 
|---|
| 2378 | er32(CTRL); | 
|---|
| 2379 | status = er32(STATUS); | 
|---|
| 2380 |  | 
|---|
| 2381 | /* On adapters with a MAC newer than 82544, SW Definable pin 1 will be | 
|---|
| 2382 | * set when the optics detect a signal. On older adapters, it will be | 
|---|
| 2383 | * cleared when there is a signal.  This applies to fiber media only. | 
|---|
| 2384 | */ | 
|---|
| 2385 | if ((hw->media_type == e1000_media_type_fiber) || | 
|---|
| 2386 | (hw->media_type == e1000_media_type_internal_serdes)) { | 
|---|
| 2387 | er32(RXCW); | 
|---|
| 2388 |  | 
|---|
| 2389 | if (hw->media_type == e1000_media_type_fiber) { | 
|---|
| 2390 | if (status & E1000_STATUS_LU) | 
|---|
| 2391 | hw->get_link_status = false; | 
|---|
| 2392 | } | 
|---|
| 2393 | } | 
|---|
| 2394 |  | 
|---|
| 2395 | /* If we have a copper PHY then we only want to go out to the PHY | 
|---|
| 2396 | * registers to see if Auto-Neg has completed and/or if our link | 
|---|
| 2397 | * status has changed.  The get_link_status flag will be set if we | 
|---|
| 2398 | * receive a Link Status Change interrupt or we have Rx Sequence | 
|---|
| 2399 | * Errors. | 
|---|
| 2400 | */ | 
|---|
| 2401 | if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) { | 
|---|
| 2402 | /* First we want to see if the MII Status Register reports | 
|---|
| 2403 | * link.  If so, then we want to get the current speed/duplex | 
|---|
| 2404 | * of the PHY. | 
|---|
| 2405 | * Read the register twice since the link bit is sticky. | 
|---|
| 2406 | */ | 
|---|
| 2407 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, phy_data: &phy_data); | 
|---|
| 2408 | if (ret_val) | 
|---|
| 2409 | return ret_val; | 
|---|
| 2410 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, phy_data: &phy_data); | 
|---|
| 2411 | if (ret_val) | 
|---|
| 2412 | return ret_val; | 
|---|
| 2413 |  | 
|---|
| 2414 | if (phy_data & MII_SR_LINK_STATUS) { | 
|---|
| 2415 | hw->get_link_status = false; | 
|---|
| 2416 | /* Check if there was DownShift, must be checked | 
|---|
| 2417 | * immediately after link-up | 
|---|
| 2418 | */ | 
|---|
| 2419 | e1000_check_downshift(hw); | 
|---|
| 2420 |  | 
|---|
| 2421 | /* If we are on 82544 or 82543 silicon and speed/duplex | 
|---|
| 2422 | * are forced to 10H or 10F, then we will implement the | 
|---|
| 2423 | * polarity reversal workaround.  We disable interrupts | 
|---|
| 2424 | * first, and upon returning, place the devices | 
|---|
| 2425 | * interrupt state to its previous value except for the | 
|---|
| 2426 | * link status change interrupt which will | 
|---|
| 2427 | * happen due to the execution of this workaround. | 
|---|
| 2428 | */ | 
|---|
| 2429 |  | 
|---|
| 2430 | if ((hw->mac_type == e1000_82544 || | 
|---|
| 2431 | hw->mac_type == e1000_82543) && | 
|---|
| 2432 | (!hw->autoneg) && | 
|---|
| 2433 | (hw->forced_speed_duplex == e1000_10_full || | 
|---|
| 2434 | hw->forced_speed_duplex == e1000_10_half)) { | 
|---|
| 2435 | ew32(IMC, 0xffffffff); | 
|---|
| 2436 | ret_val = | 
|---|
| 2437 | e1000_polarity_reversal_workaround(hw); | 
|---|
| 2438 | icr = er32(ICR); | 
|---|
| 2439 | ew32(ICS, (icr & ~E1000_ICS_LSC)); | 
|---|
| 2440 | ew32(IMS, IMS_ENABLE_MASK); | 
|---|
| 2441 | } | 
|---|
| 2442 |  | 
|---|
| 2443 | } else { | 
|---|
| 2444 | /* No link detected */ | 
|---|
| 2445 | e1000_config_dsp_after_link_change(hw, link_up: false); | 
|---|
| 2446 | return 0; | 
|---|
| 2447 | } | 
|---|
| 2448 |  | 
|---|
| 2449 | /* If we are forcing speed/duplex, then we simply return since | 
|---|
| 2450 | * we have already determined whether we have link or not. | 
|---|
| 2451 | */ | 
|---|
| 2452 | if (!hw->autoneg) | 
|---|
| 2453 | return -E1000_ERR_CONFIG; | 
|---|
| 2454 |  | 
|---|
| 2455 | /* optimize the dsp settings for the igp phy */ | 
|---|
| 2456 | e1000_config_dsp_after_link_change(hw, link_up: true); | 
|---|
| 2457 |  | 
|---|
| 2458 | /* We have a M88E1000 PHY and Auto-Neg is enabled.  If we | 
|---|
| 2459 | * have Si on board that is 82544 or newer, Auto | 
|---|
| 2460 | * Speed Detection takes care of MAC speed/duplex | 
|---|
| 2461 | * configuration.  So we only need to configure Collision | 
|---|
| 2462 | * Distance in the MAC.  Otherwise, we need to force | 
|---|
| 2463 | * speed/duplex on the MAC to the current PHY speed/duplex | 
|---|
| 2464 | * settings. | 
|---|
| 2465 | */ | 
|---|
| 2466 | if ((hw->mac_type >= e1000_82544) && | 
|---|
| 2467 | (hw->mac_type != e1000_ce4100)) | 
|---|
| 2468 | e1000_config_collision_dist(hw); | 
|---|
| 2469 | else { | 
|---|
| 2470 | ret_val = e1000_config_mac_to_phy(hw); | 
|---|
| 2471 | if (ret_val) { | 
|---|
| 2472 | e_dbg | 
|---|
| 2473 | ( "Error configuring MAC to PHY settings\n"); | 
|---|
| 2474 | return ret_val; | 
|---|
| 2475 | } | 
|---|
| 2476 | } | 
|---|
| 2477 |  | 
|---|
| 2478 | /* Configure Flow Control now that Auto-Neg has completed. | 
|---|
| 2479 | * First, we need to restore the desired flow control settings | 
|---|
| 2480 | * because we may have had to re-autoneg with a different link | 
|---|
| 2481 | * partner. | 
|---|
| 2482 | */ | 
|---|
| 2483 | ret_val = e1000_config_fc_after_link_up(hw); | 
|---|
| 2484 | if (ret_val) { | 
|---|
| 2485 | e_dbg( "Error configuring flow control\n"); | 
|---|
| 2486 | return ret_val; | 
|---|
| 2487 | } | 
|---|
| 2488 |  | 
|---|
| 2489 | /* At this point we know that we are on copper and we have | 
|---|
| 2490 | * auto-negotiated link.  These are conditions for checking the | 
|---|
| 2491 | * link partner capability register.  We use the link speed to | 
|---|
| 2492 | * determine if TBI compatibility needs to be turned on or off. | 
|---|
| 2493 | * If the link is not at gigabit speed, then TBI compatibility | 
|---|
| 2494 | * is not needed.  If we are at gigabit speed, we turn on TBI | 
|---|
| 2495 | * compatibility. | 
|---|
| 2496 | */ | 
|---|
| 2497 | if (hw->tbi_compatibility_en) { | 
|---|
| 2498 | u16 speed, duplex; | 
|---|
| 2499 |  | 
|---|
| 2500 | ret_val = | 
|---|
| 2501 | e1000_get_speed_and_duplex(hw, speed: &speed, duplex: &duplex); | 
|---|
| 2502 |  | 
|---|
| 2503 | if (ret_val) { | 
|---|
| 2504 | e_dbg | 
|---|
| 2505 | ( "Error getting link speed and duplex\n"); | 
|---|
| 2506 | return ret_val; | 
|---|
| 2507 | } | 
|---|
| 2508 | if (speed != SPEED_1000) { | 
|---|
| 2509 | /* If link speed is not set to gigabit speed, we | 
|---|
| 2510 | * do not need to enable TBI compatibility. | 
|---|
| 2511 | */ | 
|---|
| 2512 | if (hw->tbi_compatibility_on) { | 
|---|
| 2513 | /* If we previously were in the mode, | 
|---|
| 2514 | * turn it off. | 
|---|
| 2515 | */ | 
|---|
| 2516 | rctl = er32(RCTL); | 
|---|
| 2517 | rctl &= ~E1000_RCTL_SBP; | 
|---|
| 2518 | ew32(RCTL, rctl); | 
|---|
| 2519 | hw->tbi_compatibility_on = false; | 
|---|
| 2520 | } | 
|---|
| 2521 | } else { | 
|---|
| 2522 | /* If TBI compatibility is was previously off, | 
|---|
| 2523 | * turn it on. For compatibility with a TBI link | 
|---|
| 2524 | * partner, we will store bad packets. Some | 
|---|
| 2525 | * frames have an additional byte on the end and | 
|---|
| 2526 | * will look like CRC errors to the hardware. | 
|---|
| 2527 | */ | 
|---|
| 2528 | if (!hw->tbi_compatibility_on) { | 
|---|
| 2529 | hw->tbi_compatibility_on = true; | 
|---|
| 2530 | rctl = er32(RCTL); | 
|---|
| 2531 | rctl |= E1000_RCTL_SBP; | 
|---|
| 2532 | ew32(RCTL, rctl); | 
|---|
| 2533 | } | 
|---|
| 2534 | } | 
|---|
| 2535 | } | 
|---|
| 2536 | } | 
|---|
| 2537 |  | 
|---|
| 2538 | if ((hw->media_type == e1000_media_type_fiber) || | 
|---|
| 2539 | (hw->media_type == e1000_media_type_internal_serdes)) | 
|---|
| 2540 | e1000_check_for_serdes_link_generic(hw); | 
|---|
| 2541 |  | 
|---|
| 2542 | return E1000_SUCCESS; | 
|---|
| 2543 | } | 
|---|
| 2544 |  | 
|---|
| 2545 | /** | 
|---|
| 2546 | * e1000_get_speed_and_duplex | 
|---|
| 2547 | * @hw: Struct containing variables accessed by shared code | 
|---|
| 2548 | * @speed: Speed of the connection | 
|---|
| 2549 | * @duplex: Duplex setting of the connection | 
|---|
| 2550 | * | 
|---|
| 2551 | * Detects the current speed and duplex settings of the hardware. | 
|---|
| 2552 | */ | 
|---|
| 2553 | s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex) | 
|---|
| 2554 | { | 
|---|
| 2555 | u32 status; | 
|---|
| 2556 | s32 ret_val; | 
|---|
| 2557 | u16 phy_data; | 
|---|
| 2558 |  | 
|---|
| 2559 | if (hw->mac_type >= e1000_82543) { | 
|---|
| 2560 | status = er32(STATUS); | 
|---|
| 2561 | if (status & E1000_STATUS_SPEED_1000) { | 
|---|
| 2562 | *speed = SPEED_1000; | 
|---|
| 2563 | e_dbg( "1000 Mbs, "); | 
|---|
| 2564 | } else if (status & E1000_STATUS_SPEED_100) { | 
|---|
| 2565 | *speed = SPEED_100; | 
|---|
| 2566 | e_dbg( "100 Mbs, "); | 
|---|
| 2567 | } else { | 
|---|
| 2568 | *speed = SPEED_10; | 
|---|
| 2569 | e_dbg( "10 Mbs, "); | 
|---|
| 2570 | } | 
|---|
| 2571 |  | 
|---|
| 2572 | if (status & E1000_STATUS_FD) { | 
|---|
| 2573 | *duplex = FULL_DUPLEX; | 
|---|
| 2574 | e_dbg( "Full Duplex\n"); | 
|---|
| 2575 | } else { | 
|---|
| 2576 | *duplex = HALF_DUPLEX; | 
|---|
| 2577 | e_dbg( " Half Duplex\n"); | 
|---|
| 2578 | } | 
|---|
| 2579 | } else { | 
|---|
| 2580 | e_dbg( "1000 Mbs, Full Duplex\n"); | 
|---|
| 2581 | *speed = SPEED_1000; | 
|---|
| 2582 | *duplex = FULL_DUPLEX; | 
|---|
| 2583 | } | 
|---|
| 2584 |  | 
|---|
| 2585 | /* IGP01 PHY may advertise full duplex operation after speed downgrade | 
|---|
| 2586 | * even if it is operating at half duplex.  Here we set the duplex | 
|---|
| 2587 | * settings to match the duplex in the link partner's capabilities. | 
|---|
| 2588 | */ | 
|---|
| 2589 | if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) { | 
|---|
| 2590 | ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, phy_data: &phy_data); | 
|---|
| 2591 | if (ret_val) | 
|---|
| 2592 | return ret_val; | 
|---|
| 2593 |  | 
|---|
| 2594 | if (!(phy_data & NWAY_ER_LP_NWAY_CAPS)) | 
|---|
| 2595 | *duplex = HALF_DUPLEX; | 
|---|
| 2596 | else { | 
|---|
| 2597 | ret_val = | 
|---|
| 2598 | e1000_read_phy_reg(hw, PHY_LP_ABILITY, phy_data: &phy_data); | 
|---|
| 2599 | if (ret_val) | 
|---|
| 2600 | return ret_val; | 
|---|
| 2601 | if ((*speed == SPEED_100 && | 
|---|
| 2602 | !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) || | 
|---|
| 2603 | (*speed == SPEED_10 && | 
|---|
| 2604 | !(phy_data & NWAY_LPAR_10T_FD_CAPS))) | 
|---|
| 2605 | *duplex = HALF_DUPLEX; | 
|---|
| 2606 | } | 
|---|
| 2607 | } | 
|---|
| 2608 |  | 
|---|
| 2609 | return E1000_SUCCESS; | 
|---|
| 2610 | } | 
|---|
| 2611 |  | 
|---|
| 2612 | /** | 
|---|
| 2613 | * e1000_wait_autoneg | 
|---|
| 2614 | * @hw: Struct containing variables accessed by shared code | 
|---|
| 2615 | * | 
|---|
| 2616 | * Blocks until autoneg completes or times out (~4.5 seconds) | 
|---|
| 2617 | */ | 
|---|
| 2618 | static s32 e1000_wait_autoneg(struct e1000_hw *hw) | 
|---|
| 2619 | { | 
|---|
| 2620 | s32 ret_val; | 
|---|
| 2621 | u16 i; | 
|---|
| 2622 | u16 phy_data; | 
|---|
| 2623 |  | 
|---|
| 2624 | e_dbg( "Waiting for Auto-Neg to complete.\n"); | 
|---|
| 2625 |  | 
|---|
| 2626 | /* We will wait for autoneg to complete or 4.5 seconds to expire. */ | 
|---|
| 2627 | for (i = PHY_AUTO_NEG_TIME; i > 0; i--) { | 
|---|
| 2628 | /* Read the MII Status Register and wait for Auto-Neg | 
|---|
| 2629 | * Complete bit to be set. | 
|---|
| 2630 | */ | 
|---|
| 2631 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, phy_data: &phy_data); | 
|---|
| 2632 | if (ret_val) | 
|---|
| 2633 | return ret_val; | 
|---|
| 2634 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, phy_data: &phy_data); | 
|---|
| 2635 | if (ret_val) | 
|---|
| 2636 | return ret_val; | 
|---|
| 2637 | if (phy_data & MII_SR_AUTONEG_COMPLETE) | 
|---|
| 2638 | return E1000_SUCCESS; | 
|---|
| 2639 |  | 
|---|
| 2640 | msleep(msecs: 100); | 
|---|
| 2641 | } | 
|---|
| 2642 | return E1000_SUCCESS; | 
|---|
| 2643 | } | 
|---|
| 2644 |  | 
|---|
| 2645 | /** | 
|---|
| 2646 | * e1000_raise_mdi_clk - Raises the Management Data Clock | 
|---|
| 2647 | * @hw: Struct containing variables accessed by shared code | 
|---|
| 2648 | * @ctrl: Device control register's current value | 
|---|
| 2649 | */ | 
|---|
| 2650 | static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl) | 
|---|
| 2651 | { | 
|---|
| 2652 | /* Raise the clock input to the Management Data Clock (by setting the | 
|---|
| 2653 | * MDC bit), and then delay 10 microseconds. | 
|---|
| 2654 | */ | 
|---|
| 2655 | ew32(CTRL, (*ctrl | E1000_CTRL_MDC)); | 
|---|
| 2656 | E1000_WRITE_FLUSH(); | 
|---|
| 2657 | udelay(usec: 10); | 
|---|
| 2658 | } | 
|---|
| 2659 |  | 
|---|
| 2660 | /** | 
|---|
| 2661 | * e1000_lower_mdi_clk - Lowers the Management Data Clock | 
|---|
| 2662 | * @hw: Struct containing variables accessed by shared code | 
|---|
| 2663 | * @ctrl: Device control register's current value | 
|---|
| 2664 | */ | 
|---|
| 2665 | static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl) | 
|---|
| 2666 | { | 
|---|
| 2667 | /* Lower the clock input to the Management Data Clock (by clearing the | 
|---|
| 2668 | * MDC bit), and then delay 10 microseconds. | 
|---|
| 2669 | */ | 
|---|
| 2670 | ew32(CTRL, (*ctrl & ~E1000_CTRL_MDC)); | 
|---|
| 2671 | E1000_WRITE_FLUSH(); | 
|---|
| 2672 | udelay(usec: 10); | 
|---|
| 2673 | } | 
|---|
| 2674 |  | 
|---|
| 2675 | /** | 
|---|
| 2676 | * e1000_shift_out_mdi_bits - Shifts data bits out to the PHY | 
|---|
| 2677 | * @hw: Struct containing variables accessed by shared code | 
|---|
| 2678 | * @data: Data to send out to the PHY | 
|---|
| 2679 | * @count: Number of bits to shift out | 
|---|
| 2680 | * | 
|---|
| 2681 | * Bits are shifted out in MSB to LSB order. | 
|---|
| 2682 | */ | 
|---|
| 2683 | static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count) | 
|---|
| 2684 | { | 
|---|
| 2685 | u32 ctrl; | 
|---|
| 2686 | u32 mask; | 
|---|
| 2687 |  | 
|---|
| 2688 | /* We need to shift "count" number of bits out to the PHY. So, the value | 
|---|
| 2689 | * in the "data" parameter will be shifted out to the PHY one bit at a | 
|---|
| 2690 | * time. In order to do this, "data" must be broken down into bits. | 
|---|
| 2691 | */ | 
|---|
| 2692 | mask = 0x01; | 
|---|
| 2693 | mask <<= (count - 1); | 
|---|
| 2694 |  | 
|---|
| 2695 | ctrl = er32(CTRL); | 
|---|
| 2696 |  | 
|---|
| 2697 | /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */ | 
|---|
| 2698 | ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR); | 
|---|
| 2699 |  | 
|---|
| 2700 | while (mask) { | 
|---|
| 2701 | /* A "1" is shifted out to the PHY by setting the MDIO bit to | 
|---|
| 2702 | * "1" and then raising and lowering the Management Data Clock. | 
|---|
| 2703 | * A "0" is shifted out to the PHY by setting the MDIO bit to | 
|---|
| 2704 | * "0" and then raising and lowering the clock. | 
|---|
| 2705 | */ | 
|---|
| 2706 | if (data & mask) | 
|---|
| 2707 | ctrl |= E1000_CTRL_MDIO; | 
|---|
| 2708 | else | 
|---|
| 2709 | ctrl &= ~E1000_CTRL_MDIO; | 
|---|
| 2710 |  | 
|---|
| 2711 | ew32(CTRL, ctrl); | 
|---|
| 2712 | E1000_WRITE_FLUSH(); | 
|---|
| 2713 |  | 
|---|
| 2714 | udelay(usec: 10); | 
|---|
| 2715 |  | 
|---|
| 2716 | e1000_raise_mdi_clk(hw, ctrl: &ctrl); | 
|---|
| 2717 | e1000_lower_mdi_clk(hw, ctrl: &ctrl); | 
|---|
| 2718 |  | 
|---|
| 2719 | mask = mask >> 1; | 
|---|
| 2720 | } | 
|---|
| 2721 | } | 
|---|
| 2722 |  | 
|---|
| 2723 | /** | 
|---|
| 2724 | * e1000_shift_in_mdi_bits - Shifts data bits in from the PHY | 
|---|
| 2725 | * @hw: Struct containing variables accessed by shared code | 
|---|
| 2726 | * | 
|---|
| 2727 | * Bits are shifted in MSB to LSB order. | 
|---|
| 2728 | */ | 
|---|
| 2729 | static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw) | 
|---|
| 2730 | { | 
|---|
| 2731 | u32 ctrl; | 
|---|
| 2732 | u16 data = 0; | 
|---|
| 2733 | u8 i; | 
|---|
| 2734 |  | 
|---|
| 2735 | /* In order to read a register from the PHY, we need to shift in a total | 
|---|
| 2736 | * of 18 bits from the PHY. The first two bit (turnaround) times are | 
|---|
| 2737 | * used to avoid contention on the MDIO pin when a read operation is | 
|---|
| 2738 | * performed. These two bits are ignored by us and thrown away. Bits are | 
|---|
| 2739 | * "shifted in" by raising the input to the Management Data Clock | 
|---|
| 2740 | * (setting the MDC bit), and then reading the value of the MDIO bit. | 
|---|
| 2741 | */ | 
|---|
| 2742 | ctrl = er32(CTRL); | 
|---|
| 2743 |  | 
|---|
| 2744 | /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as | 
|---|
| 2745 | * input. | 
|---|
| 2746 | */ | 
|---|
| 2747 | ctrl &= ~E1000_CTRL_MDIO_DIR; | 
|---|
| 2748 | ctrl &= ~E1000_CTRL_MDIO; | 
|---|
| 2749 |  | 
|---|
| 2750 | ew32(CTRL, ctrl); | 
|---|
| 2751 | E1000_WRITE_FLUSH(); | 
|---|
| 2752 |  | 
|---|
| 2753 | /* Raise and Lower the clock before reading in the data. This accounts | 
|---|
| 2754 | * for the turnaround bits. The first clock occurred when we clocked out | 
|---|
| 2755 | * the last bit of the Register Address. | 
|---|
| 2756 | */ | 
|---|
| 2757 | e1000_raise_mdi_clk(hw, ctrl: &ctrl); | 
|---|
| 2758 | e1000_lower_mdi_clk(hw, ctrl: &ctrl); | 
|---|
| 2759 |  | 
|---|
| 2760 | for (data = 0, i = 0; i < 16; i++) { | 
|---|
| 2761 | data = data << 1; | 
|---|
| 2762 | e1000_raise_mdi_clk(hw, ctrl: &ctrl); | 
|---|
| 2763 | ctrl = er32(CTRL); | 
|---|
| 2764 | /* Check to see if we shifted in a "1". */ | 
|---|
| 2765 | if (ctrl & E1000_CTRL_MDIO) | 
|---|
| 2766 | data |= 1; | 
|---|
| 2767 | e1000_lower_mdi_clk(hw, ctrl: &ctrl); | 
|---|
| 2768 | } | 
|---|
| 2769 |  | 
|---|
| 2770 | e1000_raise_mdi_clk(hw, ctrl: &ctrl); | 
|---|
| 2771 | e1000_lower_mdi_clk(hw, ctrl: &ctrl); | 
|---|
| 2772 |  | 
|---|
| 2773 | return data; | 
|---|
| 2774 | } | 
|---|
| 2775 |  | 
|---|
| 2776 | /** | 
|---|
| 2777 | * e1000_read_phy_reg - read a phy register | 
|---|
| 2778 | * @hw: Struct containing variables accessed by shared code | 
|---|
| 2779 | * @reg_addr: address of the PHY register to read | 
|---|
| 2780 | * @phy_data: pointer to the value on the PHY register | 
|---|
| 2781 | * | 
|---|
| 2782 | * Reads the value from a PHY register, if the value is on a specific non zero | 
|---|
| 2783 | * page, sets the page first. | 
|---|
| 2784 | */ | 
|---|
| 2785 | s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 *phy_data) | 
|---|
| 2786 | { | 
|---|
| 2787 | u32 ret_val; | 
|---|
| 2788 | unsigned long flags; | 
|---|
| 2789 |  | 
|---|
| 2790 | spin_lock_irqsave(&e1000_phy_lock, flags); | 
|---|
| 2791 |  | 
|---|
| 2792 | if ((hw->phy_type == e1000_phy_igp) && | 
|---|
| 2793 | (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { | 
|---|
| 2794 | ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, | 
|---|
| 2795 | phy_data: (u16) reg_addr); | 
|---|
| 2796 | if (ret_val) | 
|---|
| 2797 | goto out; | 
|---|
| 2798 | } | 
|---|
| 2799 |  | 
|---|
| 2800 | ret_val = e1000_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr, | 
|---|
| 2801 | phy_data); | 
|---|
| 2802 | out: | 
|---|
| 2803 | spin_unlock_irqrestore(lock: &e1000_phy_lock, flags); | 
|---|
| 2804 |  | 
|---|
| 2805 | return ret_val; | 
|---|
| 2806 | } | 
|---|
| 2807 |  | 
|---|
| 2808 | static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr, | 
|---|
| 2809 | u16 *phy_data) | 
|---|
| 2810 | { | 
|---|
| 2811 | u32 i; | 
|---|
| 2812 | u32 mdic = 0; | 
|---|
| 2813 | const u32 phy_addr = (hw->mac_type == e1000_ce4100) ? hw->phy_addr : 1; | 
|---|
| 2814 |  | 
|---|
| 2815 | if (reg_addr > MAX_PHY_REG_ADDRESS) { | 
|---|
| 2816 | e_dbg( "PHY Address %d is out of range\n", reg_addr); | 
|---|
| 2817 | return -E1000_ERR_PARAM; | 
|---|
| 2818 | } | 
|---|
| 2819 |  | 
|---|
| 2820 | if (hw->mac_type > e1000_82543) { | 
|---|
| 2821 | /* Set up Op-code, Phy Address, and register address in the MDI | 
|---|
| 2822 | * Control register.  The MAC will take care of interfacing with | 
|---|
| 2823 | * the PHY to retrieve the desired data. | 
|---|
| 2824 | */ | 
|---|
| 2825 | if (hw->mac_type == e1000_ce4100) { | 
|---|
| 2826 | mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) | | 
|---|
| 2827 | (phy_addr << E1000_MDIC_PHY_SHIFT) | | 
|---|
| 2828 | (INTEL_CE_GBE_MDIC_OP_READ) | | 
|---|
| 2829 | (INTEL_CE_GBE_MDIC_GO)); | 
|---|
| 2830 |  | 
|---|
| 2831 | writel(val: mdic, E1000_MDIO_CMD); | 
|---|
| 2832 |  | 
|---|
| 2833 | /* Poll the ready bit to see if the MDI read | 
|---|
| 2834 | * completed | 
|---|
| 2835 | */ | 
|---|
| 2836 | for (i = 0; i < 64; i++) { | 
|---|
| 2837 | udelay(usec: 50); | 
|---|
| 2838 | mdic = readl(E1000_MDIO_CMD); | 
|---|
| 2839 | if (!(mdic & INTEL_CE_GBE_MDIC_GO)) | 
|---|
| 2840 | break; | 
|---|
| 2841 | } | 
|---|
| 2842 |  | 
|---|
| 2843 | if (mdic & INTEL_CE_GBE_MDIC_GO) { | 
|---|
| 2844 | e_dbg( "MDI Read did not complete\n"); | 
|---|
| 2845 | return -E1000_ERR_PHY; | 
|---|
| 2846 | } | 
|---|
| 2847 |  | 
|---|
| 2848 | mdic = readl(E1000_MDIO_STS); | 
|---|
| 2849 | if (mdic & INTEL_CE_GBE_MDIC_READ_ERROR) { | 
|---|
| 2850 | e_dbg( "MDI Read Error\n"); | 
|---|
| 2851 | return -E1000_ERR_PHY; | 
|---|
| 2852 | } | 
|---|
| 2853 | *phy_data = (u16)mdic; | 
|---|
| 2854 | } else { | 
|---|
| 2855 | mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) | | 
|---|
| 2856 | (phy_addr << E1000_MDIC_PHY_SHIFT) | | 
|---|
| 2857 | (E1000_MDIC_OP_READ)); | 
|---|
| 2858 |  | 
|---|
| 2859 | ew32(MDIC, mdic); | 
|---|
| 2860 |  | 
|---|
| 2861 | /* Poll the ready bit to see if the MDI read | 
|---|
| 2862 | * completed | 
|---|
| 2863 | */ | 
|---|
| 2864 | for (i = 0; i < 64; i++) { | 
|---|
| 2865 | udelay(usec: 50); | 
|---|
| 2866 | mdic = er32(MDIC); | 
|---|
| 2867 | if (mdic & E1000_MDIC_READY) | 
|---|
| 2868 | break; | 
|---|
| 2869 | } | 
|---|
| 2870 | if (!(mdic & E1000_MDIC_READY)) { | 
|---|
| 2871 | e_dbg( "MDI Read did not complete\n"); | 
|---|
| 2872 | return -E1000_ERR_PHY; | 
|---|
| 2873 | } | 
|---|
| 2874 | if (mdic & E1000_MDIC_ERROR) { | 
|---|
| 2875 | e_dbg( "MDI Error\n"); | 
|---|
| 2876 | return -E1000_ERR_PHY; | 
|---|
| 2877 | } | 
|---|
| 2878 | *phy_data = (u16)mdic; | 
|---|
| 2879 | } | 
|---|
| 2880 | } else { | 
|---|
| 2881 | /* We must first send a preamble through the MDIO pin to signal | 
|---|
| 2882 | * the beginning of an MII instruction.  This is done by sending | 
|---|
| 2883 | * 32 consecutive "1" bits. | 
|---|
| 2884 | */ | 
|---|
| 2885 | e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); | 
|---|
| 2886 |  | 
|---|
| 2887 | /* Now combine the next few fields that are required for a read | 
|---|
| 2888 | * operation.  We use this method instead of calling the | 
|---|
| 2889 | * e1000_shift_out_mdi_bits routine five different times. The | 
|---|
| 2890 | * format of a MII read instruction consists of a shift out of | 
|---|
| 2891 | * 14 bits and is defined as follows: | 
|---|
| 2892 | *    <Preamble><SOF><Op Code><Phy Addr><Reg Addr> | 
|---|
| 2893 | * followed by a shift in of 18 bits.  This first two bits | 
|---|
| 2894 | * shifted in are TurnAround bits used to avoid contention on | 
|---|
| 2895 | * the MDIO pin when a READ operation is performed.  These two | 
|---|
| 2896 | * bits are thrown away followed by a shift in of 16 bits which | 
|---|
| 2897 | * contains the desired data. | 
|---|
| 2898 | */ | 
|---|
| 2899 | mdic = ((reg_addr) | (phy_addr << 5) | | 
|---|
| 2900 | (PHY_OP_READ << 10) | (PHY_SOF << 12)); | 
|---|
| 2901 |  | 
|---|
| 2902 | e1000_shift_out_mdi_bits(hw, data: mdic, count: 14); | 
|---|
| 2903 |  | 
|---|
| 2904 | /* Now that we've shifted out the read command to the MII, we | 
|---|
| 2905 | * need to "shift in" the 16-bit value (18 total bits) of the | 
|---|
| 2906 | * requested PHY register address. | 
|---|
| 2907 | */ | 
|---|
| 2908 | *phy_data = e1000_shift_in_mdi_bits(hw); | 
|---|
| 2909 | } | 
|---|
| 2910 | return E1000_SUCCESS; | 
|---|
| 2911 | } | 
|---|
| 2912 |  | 
|---|
| 2913 | /** | 
|---|
| 2914 | * e1000_write_phy_reg - write a phy register | 
|---|
| 2915 | * | 
|---|
| 2916 | * @hw: Struct containing variables accessed by shared code | 
|---|
| 2917 | * @reg_addr: address of the PHY register to write | 
|---|
| 2918 | * @phy_data: data to write to the PHY | 
|---|
| 2919 | * | 
|---|
| 2920 | * Writes a value to a PHY register | 
|---|
| 2921 | */ | 
|---|
| 2922 | s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 phy_data) | 
|---|
| 2923 | { | 
|---|
| 2924 | u32 ret_val; | 
|---|
| 2925 | unsigned long flags; | 
|---|
| 2926 |  | 
|---|
| 2927 | spin_lock_irqsave(&e1000_phy_lock, flags); | 
|---|
| 2928 |  | 
|---|
| 2929 | if ((hw->phy_type == e1000_phy_igp) && | 
|---|
| 2930 | (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { | 
|---|
| 2931 | ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, | 
|---|
| 2932 | phy_data: (u16)reg_addr); | 
|---|
| 2933 | if (ret_val) { | 
|---|
| 2934 | spin_unlock_irqrestore(lock: &e1000_phy_lock, flags); | 
|---|
| 2935 | return ret_val; | 
|---|
| 2936 | } | 
|---|
| 2937 | } | 
|---|
| 2938 |  | 
|---|
| 2939 | ret_val = e1000_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr, | 
|---|
| 2940 | phy_data); | 
|---|
| 2941 | spin_unlock_irqrestore(lock: &e1000_phy_lock, flags); | 
|---|
| 2942 |  | 
|---|
| 2943 | return ret_val; | 
|---|
| 2944 | } | 
|---|
| 2945 |  | 
|---|
| 2946 | static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr, | 
|---|
| 2947 | u16 phy_data) | 
|---|
| 2948 | { | 
|---|
| 2949 | u32 i; | 
|---|
| 2950 | u32 mdic = 0; | 
|---|
| 2951 | const u32 phy_addr = (hw->mac_type == e1000_ce4100) ? hw->phy_addr : 1; | 
|---|
| 2952 |  | 
|---|
| 2953 | if (reg_addr > MAX_PHY_REG_ADDRESS) { | 
|---|
| 2954 | e_dbg( "PHY Address %d is out of range\n", reg_addr); | 
|---|
| 2955 | return -E1000_ERR_PARAM; | 
|---|
| 2956 | } | 
|---|
| 2957 |  | 
|---|
| 2958 | if (hw->mac_type > e1000_82543) { | 
|---|
| 2959 | /* Set up Op-code, Phy Address, register address, and data | 
|---|
| 2960 | * intended for the PHY register in the MDI Control register. | 
|---|
| 2961 | * The MAC will take care of interfacing with the PHY to send | 
|---|
| 2962 | * the desired data. | 
|---|
| 2963 | */ | 
|---|
| 2964 | if (hw->mac_type == e1000_ce4100) { | 
|---|
| 2965 | mdic = (((u32)phy_data) | | 
|---|
| 2966 | (reg_addr << E1000_MDIC_REG_SHIFT) | | 
|---|
| 2967 | (phy_addr << E1000_MDIC_PHY_SHIFT) | | 
|---|
| 2968 | (INTEL_CE_GBE_MDIC_OP_WRITE) | | 
|---|
| 2969 | (INTEL_CE_GBE_MDIC_GO)); | 
|---|
| 2970 |  | 
|---|
| 2971 | writel(val: mdic, E1000_MDIO_CMD); | 
|---|
| 2972 |  | 
|---|
| 2973 | /* Poll the ready bit to see if the MDI read | 
|---|
| 2974 | * completed | 
|---|
| 2975 | */ | 
|---|
| 2976 | for (i = 0; i < 640; i++) { | 
|---|
| 2977 | udelay(usec: 5); | 
|---|
| 2978 | mdic = readl(E1000_MDIO_CMD); | 
|---|
| 2979 | if (!(mdic & INTEL_CE_GBE_MDIC_GO)) | 
|---|
| 2980 | break; | 
|---|
| 2981 | } | 
|---|
| 2982 | if (mdic & INTEL_CE_GBE_MDIC_GO) { | 
|---|
| 2983 | e_dbg( "MDI Write did not complete\n"); | 
|---|
| 2984 | return -E1000_ERR_PHY; | 
|---|
| 2985 | } | 
|---|
| 2986 | } else { | 
|---|
| 2987 | mdic = (((u32)phy_data) | | 
|---|
| 2988 | (reg_addr << E1000_MDIC_REG_SHIFT) | | 
|---|
| 2989 | (phy_addr << E1000_MDIC_PHY_SHIFT) | | 
|---|
| 2990 | (E1000_MDIC_OP_WRITE)); | 
|---|
| 2991 |  | 
|---|
| 2992 | ew32(MDIC, mdic); | 
|---|
| 2993 |  | 
|---|
| 2994 | /* Poll the ready bit to see if the MDI read | 
|---|
| 2995 | * completed | 
|---|
| 2996 | */ | 
|---|
| 2997 | for (i = 0; i < 641; i++) { | 
|---|
| 2998 | udelay(usec: 5); | 
|---|
| 2999 | mdic = er32(MDIC); | 
|---|
| 3000 | if (mdic & E1000_MDIC_READY) | 
|---|
| 3001 | break; | 
|---|
| 3002 | } | 
|---|
| 3003 | if (!(mdic & E1000_MDIC_READY)) { | 
|---|
| 3004 | e_dbg( "MDI Write did not complete\n"); | 
|---|
| 3005 | return -E1000_ERR_PHY; | 
|---|
| 3006 | } | 
|---|
| 3007 | } | 
|---|
| 3008 | } else { | 
|---|
| 3009 | /* We'll need to use the SW defined pins to shift the write | 
|---|
| 3010 | * command out to the PHY. We first send a preamble to the PHY | 
|---|
| 3011 | * to signal the beginning of the MII instruction.  This is done | 
|---|
| 3012 | * by sending 32 consecutive "1" bits. | 
|---|
| 3013 | */ | 
|---|
| 3014 | e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); | 
|---|
| 3015 |  | 
|---|
| 3016 | /* Now combine the remaining required fields that will indicate | 
|---|
| 3017 | * a write operation. We use this method instead of calling the | 
|---|
| 3018 | * e1000_shift_out_mdi_bits routine for each field in the | 
|---|
| 3019 | * command. The format of a MII write instruction is as follows: | 
|---|
| 3020 | * <Preamble><SOF><OpCode><PhyAddr><RegAddr><Turnaround><Data>. | 
|---|
| 3021 | */ | 
|---|
| 3022 | mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) | | 
|---|
| 3023 | (PHY_OP_WRITE << 12) | (PHY_SOF << 14)); | 
|---|
| 3024 | mdic <<= 16; | 
|---|
| 3025 | mdic |= (u32)phy_data; | 
|---|
| 3026 |  | 
|---|
| 3027 | e1000_shift_out_mdi_bits(hw, data: mdic, count: 32); | 
|---|
| 3028 | } | 
|---|
| 3029 |  | 
|---|
| 3030 | return E1000_SUCCESS; | 
|---|
| 3031 | } | 
|---|
| 3032 |  | 
|---|
| 3033 | /** | 
|---|
| 3034 | * e1000_phy_hw_reset - reset the phy, hardware style | 
|---|
| 3035 | * @hw: Struct containing variables accessed by shared code | 
|---|
| 3036 | * | 
|---|
| 3037 | * Returns the PHY to the power-on reset state | 
|---|
| 3038 | */ | 
|---|
| 3039 | s32 e1000_phy_hw_reset(struct e1000_hw *hw) | 
|---|
| 3040 | { | 
|---|
| 3041 | u32 ctrl, ctrl_ext; | 
|---|
| 3042 | u32 led_ctrl; | 
|---|
| 3043 |  | 
|---|
| 3044 | e_dbg( "Resetting Phy...\n"); | 
|---|
| 3045 |  | 
|---|
| 3046 | if (hw->mac_type > e1000_82543) { | 
|---|
| 3047 | /* Read the device control register and assert the | 
|---|
| 3048 | * E1000_CTRL_PHY_RST bit. Then, take it out of reset. | 
|---|
| 3049 | * For e1000 hardware, we delay for 10ms between the assert | 
|---|
| 3050 | * and de-assert. | 
|---|
| 3051 | */ | 
|---|
| 3052 | ctrl = er32(CTRL); | 
|---|
| 3053 | ew32(CTRL, ctrl | E1000_CTRL_PHY_RST); | 
|---|
| 3054 | E1000_WRITE_FLUSH(); | 
|---|
| 3055 |  | 
|---|
| 3056 | msleep(msecs: 10); | 
|---|
| 3057 |  | 
|---|
| 3058 | ew32(CTRL, ctrl); | 
|---|
| 3059 | E1000_WRITE_FLUSH(); | 
|---|
| 3060 |  | 
|---|
| 3061 | } else { | 
|---|
| 3062 | /* Read the Extended Device Control Register, assert the | 
|---|
| 3063 | * PHY_RESET_DIR bit to put the PHY into reset. Then, take it | 
|---|
| 3064 | * out of reset. | 
|---|
| 3065 | */ | 
|---|
| 3066 | ctrl_ext = er32(CTRL_EXT); | 
|---|
| 3067 | ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR; | 
|---|
| 3068 | ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA; | 
|---|
| 3069 | ew32(CTRL_EXT, ctrl_ext); | 
|---|
| 3070 | E1000_WRITE_FLUSH(); | 
|---|
| 3071 | msleep(msecs: 10); | 
|---|
| 3072 | ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA; | 
|---|
| 3073 | ew32(CTRL_EXT, ctrl_ext); | 
|---|
| 3074 | E1000_WRITE_FLUSH(); | 
|---|
| 3075 | } | 
|---|
| 3076 | udelay(usec: 150); | 
|---|
| 3077 |  | 
|---|
| 3078 | if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { | 
|---|
| 3079 | /* Configure activity LED after PHY reset */ | 
|---|
| 3080 | led_ctrl = er32(LEDCTL); | 
|---|
| 3081 | led_ctrl &= IGP_ACTIVITY_LED_MASK; | 
|---|
| 3082 | led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); | 
|---|
| 3083 | ew32(LEDCTL, led_ctrl); | 
|---|
| 3084 | } | 
|---|
| 3085 |  | 
|---|
| 3086 | /* Wait for FW to finish PHY configuration. */ | 
|---|
| 3087 | return e1000_get_phy_cfg_done(hw); | 
|---|
| 3088 | } | 
|---|
| 3089 |  | 
|---|
| 3090 | /** | 
|---|
| 3091 | * e1000_phy_reset - reset the phy to commit settings | 
|---|
| 3092 | * @hw: Struct containing variables accessed by shared code | 
|---|
| 3093 | * | 
|---|
| 3094 | * Resets the PHY | 
|---|
| 3095 | * Sets bit 15 of the MII Control register | 
|---|
| 3096 | */ | 
|---|
| 3097 | s32 e1000_phy_reset(struct e1000_hw *hw) | 
|---|
| 3098 | { | 
|---|
| 3099 | s32 ret_val; | 
|---|
| 3100 | u16 phy_data; | 
|---|
| 3101 |  | 
|---|
| 3102 | switch (hw->phy_type) { | 
|---|
| 3103 | case e1000_phy_igp: | 
|---|
| 3104 | ret_val = e1000_phy_hw_reset(hw); | 
|---|
| 3105 | if (ret_val) | 
|---|
| 3106 | return ret_val; | 
|---|
| 3107 | break; | 
|---|
| 3108 | default: | 
|---|
| 3109 | ret_val = e1000_read_phy_reg(hw, PHY_CTRL, phy_data: &phy_data); | 
|---|
| 3110 | if (ret_val) | 
|---|
| 3111 | return ret_val; | 
|---|
| 3112 |  | 
|---|
| 3113 | phy_data |= MII_CR_RESET; | 
|---|
| 3114 | ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data); | 
|---|
| 3115 | if (ret_val) | 
|---|
| 3116 | return ret_val; | 
|---|
| 3117 |  | 
|---|
| 3118 | udelay(usec: 1); | 
|---|
| 3119 | break; | 
|---|
| 3120 | } | 
|---|
| 3121 |  | 
|---|
| 3122 | if (hw->phy_type == e1000_phy_igp) | 
|---|
| 3123 | e1000_phy_init_script(hw); | 
|---|
| 3124 |  | 
|---|
| 3125 | return E1000_SUCCESS; | 
|---|
| 3126 | } | 
|---|
| 3127 |  | 
|---|
| 3128 | /** | 
|---|
| 3129 | * e1000_detect_gig_phy - check the phy type | 
|---|
| 3130 | * @hw: Struct containing variables accessed by shared code | 
|---|
| 3131 | * | 
|---|
| 3132 | * Probes the expected PHY address for known PHY IDs | 
|---|
| 3133 | */ | 
|---|
| 3134 | static s32 e1000_detect_gig_phy(struct e1000_hw *hw) | 
|---|
| 3135 | { | 
|---|
| 3136 | s32 phy_init_status, ret_val; | 
|---|
| 3137 | u16 phy_id_high, phy_id_low; | 
|---|
| 3138 | bool match = false; | 
|---|
| 3139 |  | 
|---|
| 3140 | if (hw->phy_id != 0) | 
|---|
| 3141 | return E1000_SUCCESS; | 
|---|
| 3142 |  | 
|---|
| 3143 | /* Read the PHY ID Registers to identify which PHY is onboard. */ | 
|---|
| 3144 | ret_val = e1000_read_phy_reg(hw, PHY_ID1, phy_data: &phy_id_high); | 
|---|
| 3145 | if (ret_val) | 
|---|
| 3146 | return ret_val; | 
|---|
| 3147 |  | 
|---|
| 3148 | hw->phy_id = (u32)(phy_id_high << 16); | 
|---|
| 3149 | udelay(usec: 20); | 
|---|
| 3150 | ret_val = e1000_read_phy_reg(hw, PHY_ID2, phy_data: &phy_id_low); | 
|---|
| 3151 | if (ret_val) | 
|---|
| 3152 | return ret_val; | 
|---|
| 3153 |  | 
|---|
| 3154 | hw->phy_id |= (u32)(phy_id_low & PHY_REVISION_MASK); | 
|---|
| 3155 | hw->phy_revision = (u32)phy_id_low & ~PHY_REVISION_MASK; | 
|---|
| 3156 |  | 
|---|
| 3157 | switch (hw->mac_type) { | 
|---|
| 3158 | case e1000_82543: | 
|---|
| 3159 | if (hw->phy_id == M88E1000_E_PHY_ID) | 
|---|
| 3160 | match = true; | 
|---|
| 3161 | break; | 
|---|
| 3162 | case e1000_82544: | 
|---|
| 3163 | if (hw->phy_id == M88E1000_I_PHY_ID) | 
|---|
| 3164 | match = true; | 
|---|
| 3165 | break; | 
|---|
| 3166 | case e1000_82540: | 
|---|
| 3167 | case e1000_82545: | 
|---|
| 3168 | case e1000_82545_rev_3: | 
|---|
| 3169 | case e1000_82546: | 
|---|
| 3170 | case e1000_82546_rev_3: | 
|---|
| 3171 | if (hw->phy_id == M88E1011_I_PHY_ID) | 
|---|
| 3172 | match = true; | 
|---|
| 3173 | break; | 
|---|
| 3174 | case e1000_ce4100: | 
|---|
| 3175 | if ((hw->phy_id == RTL8211B_PHY_ID) || | 
|---|
| 3176 | (hw->phy_id == RTL8201N_PHY_ID) || | 
|---|
| 3177 | (hw->phy_id == M88E1118_E_PHY_ID)) | 
|---|
| 3178 | match = true; | 
|---|
| 3179 | break; | 
|---|
| 3180 | case e1000_82541: | 
|---|
| 3181 | case e1000_82541_rev_2: | 
|---|
| 3182 | case e1000_82547: | 
|---|
| 3183 | case e1000_82547_rev_2: | 
|---|
| 3184 | if (hw->phy_id == IGP01E1000_I_PHY_ID) | 
|---|
| 3185 | match = true; | 
|---|
| 3186 | break; | 
|---|
| 3187 | default: | 
|---|
| 3188 | e_dbg( "Invalid MAC type %d\n", hw->mac_type); | 
|---|
| 3189 | return -E1000_ERR_CONFIG; | 
|---|
| 3190 | } | 
|---|
| 3191 | phy_init_status = e1000_set_phy_type(hw); | 
|---|
| 3192 |  | 
|---|
| 3193 | if ((match) && (phy_init_status == E1000_SUCCESS)) { | 
|---|
| 3194 | e_dbg( "PHY ID 0x%X detected\n", hw->phy_id); | 
|---|
| 3195 | return E1000_SUCCESS; | 
|---|
| 3196 | } | 
|---|
| 3197 | e_dbg( "Invalid PHY ID 0x%X\n", hw->phy_id); | 
|---|
| 3198 | return -E1000_ERR_PHY; | 
|---|
| 3199 | } | 
|---|
| 3200 |  | 
|---|
| 3201 | /** | 
|---|
| 3202 | * e1000_phy_reset_dsp - reset DSP | 
|---|
| 3203 | * @hw: Struct containing variables accessed by shared code | 
|---|
| 3204 | * | 
|---|
| 3205 | * Resets the PHY's DSP | 
|---|
| 3206 | */ | 
|---|
| 3207 | static s32 e1000_phy_reset_dsp(struct e1000_hw *hw) | 
|---|
| 3208 | { | 
|---|
| 3209 | s32 ret_val; | 
|---|
| 3210 |  | 
|---|
| 3211 | do { | 
|---|
| 3212 | ret_val = e1000_write_phy_reg(hw, reg_addr: 29, phy_data: 0x001d); | 
|---|
| 3213 | if (ret_val) | 
|---|
| 3214 | break; | 
|---|
| 3215 | ret_val = e1000_write_phy_reg(hw, reg_addr: 30, phy_data: 0x00c1); | 
|---|
| 3216 | if (ret_val) | 
|---|
| 3217 | break; | 
|---|
| 3218 | ret_val = e1000_write_phy_reg(hw, reg_addr: 30, phy_data: 0x0000); | 
|---|
| 3219 | if (ret_val) | 
|---|
| 3220 | break; | 
|---|
| 3221 | ret_val = E1000_SUCCESS; | 
|---|
| 3222 | } while (0); | 
|---|
| 3223 |  | 
|---|
| 3224 | return ret_val; | 
|---|
| 3225 | } | 
|---|
| 3226 |  | 
|---|
| 3227 | /** | 
|---|
| 3228 | * e1000_phy_igp_get_info - get igp specific registers | 
|---|
| 3229 | * @hw: Struct containing variables accessed by shared code | 
|---|
| 3230 | * @phy_info: PHY information structure | 
|---|
| 3231 | * | 
|---|
| 3232 | * Get PHY information from various PHY registers for igp PHY only. | 
|---|
| 3233 | */ | 
|---|
| 3234 | static s32 e1000_phy_igp_get_info(struct e1000_hw *hw, | 
|---|
| 3235 | struct e1000_phy_info *phy_info) | 
|---|
| 3236 | { | 
|---|
| 3237 | s32 ret_val; | 
|---|
| 3238 | u16 phy_data, min_length, max_length, average; | 
|---|
| 3239 | e1000_rev_polarity polarity; | 
|---|
| 3240 |  | 
|---|
| 3241 | /* The downshift status is checked only once, after link is established, | 
|---|
| 3242 | * and it stored in the hw->speed_downgraded parameter. | 
|---|
| 3243 | */ | 
|---|
| 3244 | phy_info->downshift = (e1000_downshift) hw->speed_downgraded; | 
|---|
| 3245 |  | 
|---|
| 3246 | /* IGP01E1000 does not need to support it. */ | 
|---|
| 3247 | phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal; | 
|---|
| 3248 |  | 
|---|
| 3249 | /* IGP01E1000 always correct polarity reversal */ | 
|---|
| 3250 | phy_info->polarity_correction = e1000_polarity_reversal_enabled; | 
|---|
| 3251 |  | 
|---|
| 3252 | /* Check polarity status */ | 
|---|
| 3253 | ret_val = e1000_check_polarity(hw, polarity: &polarity); | 
|---|
| 3254 | if (ret_val) | 
|---|
| 3255 | return ret_val; | 
|---|
| 3256 |  | 
|---|
| 3257 | phy_info->cable_polarity = polarity; | 
|---|
| 3258 |  | 
|---|
| 3259 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, phy_data: &phy_data); | 
|---|
| 3260 | if (ret_val) | 
|---|
| 3261 | return ret_val; | 
|---|
| 3262 |  | 
|---|
| 3263 | phy_info->mdix_mode = | 
|---|
| 3264 | (e1000_auto_x_mode)FIELD_GET(IGP01E1000_PSSR_MDIX, phy_data); | 
|---|
| 3265 |  | 
|---|
| 3266 | if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) == | 
|---|
| 3267 | IGP01E1000_PSSR_SPEED_1000MBPS) { | 
|---|
| 3268 | /* Local/Remote Receiver Information are only valid @ 1000 | 
|---|
| 3269 | * Mbps | 
|---|
| 3270 | */ | 
|---|
| 3271 | ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, phy_data: &phy_data); | 
|---|
| 3272 | if (ret_val) | 
|---|
| 3273 | return ret_val; | 
|---|
| 3274 |  | 
|---|
| 3275 | phy_info->local_rx = FIELD_GET(SR_1000T_LOCAL_RX_STATUS, | 
|---|
| 3276 | phy_data) ? | 
|---|
| 3277 | e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; | 
|---|
| 3278 | phy_info->remote_rx = FIELD_GET(SR_1000T_REMOTE_RX_STATUS, | 
|---|
| 3279 | phy_data) ? | 
|---|
| 3280 | e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; | 
|---|
| 3281 |  | 
|---|
| 3282 | /* Get cable length */ | 
|---|
| 3283 | ret_val = e1000_get_cable_length(hw, min_length: &min_length, max_length: &max_length); | 
|---|
| 3284 | if (ret_val) | 
|---|
| 3285 | return ret_val; | 
|---|
| 3286 |  | 
|---|
| 3287 | /* Translate to old method */ | 
|---|
| 3288 | average = (max_length + min_length) / 2; | 
|---|
| 3289 |  | 
|---|
| 3290 | if (average <= e1000_igp_cable_length_50) | 
|---|
| 3291 | phy_info->cable_length = e1000_cable_length_50; | 
|---|
| 3292 | else if (average <= e1000_igp_cable_length_80) | 
|---|
| 3293 | phy_info->cable_length = e1000_cable_length_50_80; | 
|---|
| 3294 | else if (average <= e1000_igp_cable_length_110) | 
|---|
| 3295 | phy_info->cable_length = e1000_cable_length_80_110; | 
|---|
| 3296 | else if (average <= e1000_igp_cable_length_140) | 
|---|
| 3297 | phy_info->cable_length = e1000_cable_length_110_140; | 
|---|
| 3298 | else | 
|---|
| 3299 | phy_info->cable_length = e1000_cable_length_140; | 
|---|
| 3300 | } | 
|---|
| 3301 |  | 
|---|
| 3302 | return E1000_SUCCESS; | 
|---|
| 3303 | } | 
|---|
| 3304 |  | 
|---|
| 3305 | /** | 
|---|
| 3306 | * e1000_phy_m88_get_info - get m88 specific registers | 
|---|
| 3307 | * @hw: Struct containing variables accessed by shared code | 
|---|
| 3308 | * @phy_info: PHY information structure | 
|---|
| 3309 | * | 
|---|
| 3310 | * Get PHY information from various PHY registers for m88 PHY only. | 
|---|
| 3311 | */ | 
|---|
| 3312 | static s32 e1000_phy_m88_get_info(struct e1000_hw *hw, | 
|---|
| 3313 | struct e1000_phy_info *phy_info) | 
|---|
| 3314 | { | 
|---|
| 3315 | s32 ret_val; | 
|---|
| 3316 | u16 phy_data; | 
|---|
| 3317 | e1000_rev_polarity polarity; | 
|---|
| 3318 |  | 
|---|
| 3319 | /* The downshift status is checked only once, after link is established, | 
|---|
| 3320 | * and it stored in the hw->speed_downgraded parameter. | 
|---|
| 3321 | */ | 
|---|
| 3322 | phy_info->downshift = (e1000_downshift) hw->speed_downgraded; | 
|---|
| 3323 |  | 
|---|
| 3324 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data: &phy_data); | 
|---|
| 3325 | if (ret_val) | 
|---|
| 3326 | return ret_val; | 
|---|
| 3327 |  | 
|---|
| 3328 | phy_info->extended_10bt_distance = | 
|---|
| 3329 | FIELD_GET(M88E1000_PSCR_10BT_EXT_DIST_ENABLE, phy_data) ? | 
|---|
| 3330 | e1000_10bt_ext_dist_enable_lower : | 
|---|
| 3331 | e1000_10bt_ext_dist_enable_normal; | 
|---|
| 3332 |  | 
|---|
| 3333 | phy_info->polarity_correction = | 
|---|
| 3334 | FIELD_GET(M88E1000_PSCR_POLARITY_REVERSAL, phy_data) ? | 
|---|
| 3335 | e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled; | 
|---|
| 3336 |  | 
|---|
| 3337 | /* Check polarity status */ | 
|---|
| 3338 | ret_val = e1000_check_polarity(hw, polarity: &polarity); | 
|---|
| 3339 | if (ret_val) | 
|---|
| 3340 | return ret_val; | 
|---|
| 3341 | phy_info->cable_polarity = polarity; | 
|---|
| 3342 |  | 
|---|
| 3343 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, phy_data: &phy_data); | 
|---|
| 3344 | if (ret_val) | 
|---|
| 3345 | return ret_val; | 
|---|
| 3346 |  | 
|---|
| 3347 | phy_info->mdix_mode = | 
|---|
| 3348 | (e1000_auto_x_mode)FIELD_GET(M88E1000_PSSR_MDIX, phy_data); | 
|---|
| 3349 |  | 
|---|
| 3350 | if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) { | 
|---|
| 3351 | /* Cable Length Estimation and Local/Remote Receiver Information | 
|---|
| 3352 | * are only valid at 1000 Mbps. | 
|---|
| 3353 | */ | 
|---|
| 3354 | phy_info->cable_length = | 
|---|
| 3355 | (e1000_cable_length)FIELD_GET(M88E1000_PSSR_CABLE_LENGTH, | 
|---|
| 3356 | phy_data); | 
|---|
| 3357 |  | 
|---|
| 3358 | ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, phy_data: &phy_data); | 
|---|
| 3359 | if (ret_val) | 
|---|
| 3360 | return ret_val; | 
|---|
| 3361 |  | 
|---|
| 3362 | phy_info->local_rx = FIELD_GET(SR_1000T_LOCAL_RX_STATUS, | 
|---|
| 3363 | phy_data) ? | 
|---|
| 3364 | e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; | 
|---|
| 3365 | phy_info->remote_rx = FIELD_GET(SR_1000T_REMOTE_RX_STATUS, | 
|---|
| 3366 | phy_data) ? | 
|---|
| 3367 | e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; | 
|---|
| 3368 | } | 
|---|
| 3369 |  | 
|---|
| 3370 | return E1000_SUCCESS; | 
|---|
| 3371 | } | 
|---|
| 3372 |  | 
|---|
| 3373 | /** | 
|---|
| 3374 | * e1000_phy_get_info - request phy info | 
|---|
| 3375 | * @hw: Struct containing variables accessed by shared code | 
|---|
| 3376 | * @phy_info: PHY information structure | 
|---|
| 3377 | * | 
|---|
| 3378 | * Get PHY information from various PHY registers | 
|---|
| 3379 | */ | 
|---|
| 3380 | s32 e1000_phy_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info) | 
|---|
| 3381 | { | 
|---|
| 3382 | s32 ret_val; | 
|---|
| 3383 | u16 phy_data; | 
|---|
| 3384 |  | 
|---|
| 3385 | phy_info->cable_length = e1000_cable_length_undefined; | 
|---|
| 3386 | phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_undefined; | 
|---|
| 3387 | phy_info->cable_polarity = e1000_rev_polarity_undefined; | 
|---|
| 3388 | phy_info->downshift = e1000_downshift_undefined; | 
|---|
| 3389 | phy_info->polarity_correction = e1000_polarity_reversal_undefined; | 
|---|
| 3390 | phy_info->mdix_mode = e1000_auto_x_mode_undefined; | 
|---|
| 3391 | phy_info->local_rx = e1000_1000t_rx_status_undefined; | 
|---|
| 3392 | phy_info->remote_rx = e1000_1000t_rx_status_undefined; | 
|---|
| 3393 |  | 
|---|
| 3394 | if (hw->media_type != e1000_media_type_copper) { | 
|---|
| 3395 | e_dbg( "PHY info is only valid for copper media\n"); | 
|---|
| 3396 | return -E1000_ERR_CONFIG; | 
|---|
| 3397 | } | 
|---|
| 3398 |  | 
|---|
| 3399 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, phy_data: &phy_data); | 
|---|
| 3400 | if (ret_val) | 
|---|
| 3401 | return ret_val; | 
|---|
| 3402 |  | 
|---|
| 3403 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, phy_data: &phy_data); | 
|---|
| 3404 | if (ret_val) | 
|---|
| 3405 | return ret_val; | 
|---|
| 3406 |  | 
|---|
| 3407 | if ((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) { | 
|---|
| 3408 | e_dbg( "PHY info is only valid if link is up\n"); | 
|---|
| 3409 | return -E1000_ERR_CONFIG; | 
|---|
| 3410 | } | 
|---|
| 3411 |  | 
|---|
| 3412 | if (hw->phy_type == e1000_phy_igp) | 
|---|
| 3413 | return e1000_phy_igp_get_info(hw, phy_info); | 
|---|
| 3414 | else if ((hw->phy_type == e1000_phy_8211) || | 
|---|
| 3415 | (hw->phy_type == e1000_phy_8201)) | 
|---|
| 3416 | return E1000_SUCCESS; | 
|---|
| 3417 | else | 
|---|
| 3418 | return e1000_phy_m88_get_info(hw, phy_info); | 
|---|
| 3419 | } | 
|---|
| 3420 |  | 
|---|
| 3421 | s32 e1000_validate_mdi_setting(struct e1000_hw *hw) | 
|---|
| 3422 | { | 
|---|
| 3423 | if (!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) { | 
|---|
| 3424 | e_dbg( "Invalid MDI setting detected\n"); | 
|---|
| 3425 | hw->mdix = 1; | 
|---|
| 3426 | return -E1000_ERR_CONFIG; | 
|---|
| 3427 | } | 
|---|
| 3428 | return E1000_SUCCESS; | 
|---|
| 3429 | } | 
|---|
| 3430 |  | 
|---|
| 3431 | /** | 
|---|
| 3432 | * e1000_init_eeprom_params - initialize sw eeprom vars | 
|---|
| 3433 | * @hw: Struct containing variables accessed by shared code | 
|---|
| 3434 | * | 
|---|
| 3435 | * Sets up eeprom variables in the hw struct.  Must be called after mac_type | 
|---|
| 3436 | * is configured. | 
|---|
| 3437 | */ | 
|---|
| 3438 | s32 e1000_init_eeprom_params(struct e1000_hw *hw) | 
|---|
| 3439 | { | 
|---|
| 3440 | struct e1000_eeprom_info *eeprom = &hw->eeprom; | 
|---|
| 3441 | u32 eecd = er32(EECD); | 
|---|
| 3442 | s32 ret_val = E1000_SUCCESS; | 
|---|
| 3443 | u16 eeprom_size; | 
|---|
| 3444 |  | 
|---|
| 3445 | switch (hw->mac_type) { | 
|---|
| 3446 | case e1000_82542_rev2_0: | 
|---|
| 3447 | case e1000_82542_rev2_1: | 
|---|
| 3448 | case e1000_82543: | 
|---|
| 3449 | case e1000_82544: | 
|---|
| 3450 | eeprom->type = e1000_eeprom_microwire; | 
|---|
| 3451 | eeprom->word_size = 64; | 
|---|
| 3452 | eeprom->opcode_bits = 3; | 
|---|
| 3453 | eeprom->address_bits = 6; | 
|---|
| 3454 | eeprom->delay_usec = 50; | 
|---|
| 3455 | break; | 
|---|
| 3456 | case e1000_82540: | 
|---|
| 3457 | case e1000_82545: | 
|---|
| 3458 | case e1000_82545_rev_3: | 
|---|
| 3459 | case e1000_82546: | 
|---|
| 3460 | case e1000_82546_rev_3: | 
|---|
| 3461 | eeprom->type = e1000_eeprom_microwire; | 
|---|
| 3462 | eeprom->opcode_bits = 3; | 
|---|
| 3463 | eeprom->delay_usec = 50; | 
|---|
| 3464 | if (eecd & E1000_EECD_SIZE) { | 
|---|
| 3465 | eeprom->word_size = 256; | 
|---|
| 3466 | eeprom->address_bits = 8; | 
|---|
| 3467 | } else { | 
|---|
| 3468 | eeprom->word_size = 64; | 
|---|
| 3469 | eeprom->address_bits = 6; | 
|---|
| 3470 | } | 
|---|
| 3471 | break; | 
|---|
| 3472 | case e1000_82541: | 
|---|
| 3473 | case e1000_82541_rev_2: | 
|---|
| 3474 | case e1000_82547: | 
|---|
| 3475 | case e1000_82547_rev_2: | 
|---|
| 3476 | if (eecd & E1000_EECD_TYPE) { | 
|---|
| 3477 | eeprom->type = e1000_eeprom_spi; | 
|---|
| 3478 | eeprom->opcode_bits = 8; | 
|---|
| 3479 | eeprom->delay_usec = 1; | 
|---|
| 3480 | if (eecd & E1000_EECD_ADDR_BITS) { | 
|---|
| 3481 | eeprom->page_size = 32; | 
|---|
| 3482 | eeprom->address_bits = 16; | 
|---|
| 3483 | } else { | 
|---|
| 3484 | eeprom->page_size = 8; | 
|---|
| 3485 | eeprom->address_bits = 8; | 
|---|
| 3486 | } | 
|---|
| 3487 | } else { | 
|---|
| 3488 | eeprom->type = e1000_eeprom_microwire; | 
|---|
| 3489 | eeprom->opcode_bits = 3; | 
|---|
| 3490 | eeprom->delay_usec = 50; | 
|---|
| 3491 | if (eecd & E1000_EECD_ADDR_BITS) { | 
|---|
| 3492 | eeprom->word_size = 256; | 
|---|
| 3493 | eeprom->address_bits = 8; | 
|---|
| 3494 | } else { | 
|---|
| 3495 | eeprom->word_size = 64; | 
|---|
| 3496 | eeprom->address_bits = 6; | 
|---|
| 3497 | } | 
|---|
| 3498 | } | 
|---|
| 3499 | break; | 
|---|
| 3500 | default: | 
|---|
| 3501 | break; | 
|---|
| 3502 | } | 
|---|
| 3503 |  | 
|---|
| 3504 | if (eeprom->type == e1000_eeprom_spi) { | 
|---|
| 3505 | /* eeprom_size will be an enum [0..8] that maps to eeprom sizes | 
|---|
| 3506 | * 128B to 32KB (incremented by powers of 2). | 
|---|
| 3507 | */ | 
|---|
| 3508 | /* Set to default value for initial eeprom read. */ | 
|---|
| 3509 | eeprom->word_size = 64; | 
|---|
| 3510 | ret_val = e1000_read_eeprom(hw, EEPROM_CFG, words: 1, data: &eeprom_size); | 
|---|
| 3511 | if (ret_val) | 
|---|
| 3512 | return ret_val; | 
|---|
| 3513 | eeprom_size = | 
|---|
| 3514 | FIELD_GET(EEPROM_SIZE_MASK, eeprom_size); | 
|---|
| 3515 | /* 256B eeprom size was not supported in earlier hardware, so we | 
|---|
| 3516 | * bump eeprom_size up one to ensure that "1" (which maps to | 
|---|
| 3517 | * 256B) is never the result used in the shifting logic below. | 
|---|
| 3518 | */ | 
|---|
| 3519 | if (eeprom_size) | 
|---|
| 3520 | eeprom_size++; | 
|---|
| 3521 |  | 
|---|
| 3522 | eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT); | 
|---|
| 3523 | } | 
|---|
| 3524 | return ret_val; | 
|---|
| 3525 | } | 
|---|
| 3526 |  | 
|---|
| 3527 | /** | 
|---|
| 3528 | * e1000_raise_ee_clk - Raises the EEPROM's clock input. | 
|---|
| 3529 | * @hw: Struct containing variables accessed by shared code | 
|---|
| 3530 | * @eecd: EECD's current value | 
|---|
| 3531 | */ | 
|---|
| 3532 | static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd) | 
|---|
| 3533 | { | 
|---|
| 3534 | /* Raise the clock input to the EEPROM (by setting the SK bit), and then | 
|---|
| 3535 | * wait <delay> microseconds. | 
|---|
| 3536 | */ | 
|---|
| 3537 | *eecd = *eecd | E1000_EECD_SK; | 
|---|
| 3538 | ew32(EECD, *eecd); | 
|---|
| 3539 | E1000_WRITE_FLUSH(); | 
|---|
| 3540 | udelay(usec: hw->eeprom.delay_usec); | 
|---|
| 3541 | } | 
|---|
| 3542 |  | 
|---|
| 3543 | /** | 
|---|
| 3544 | * e1000_lower_ee_clk - Lowers the EEPROM's clock input. | 
|---|
| 3545 | * @hw: Struct containing variables accessed by shared code | 
|---|
| 3546 | * @eecd: EECD's current value | 
|---|
| 3547 | */ | 
|---|
| 3548 | static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd) | 
|---|
| 3549 | { | 
|---|
| 3550 | /* Lower the clock input to the EEPROM (by clearing the SK bit), and | 
|---|
| 3551 | * then wait 50 microseconds. | 
|---|
| 3552 | */ | 
|---|
| 3553 | *eecd = *eecd & ~E1000_EECD_SK; | 
|---|
| 3554 | ew32(EECD, *eecd); | 
|---|
| 3555 | E1000_WRITE_FLUSH(); | 
|---|
| 3556 | udelay(usec: hw->eeprom.delay_usec); | 
|---|
| 3557 | } | 
|---|
| 3558 |  | 
|---|
| 3559 | /** | 
|---|
| 3560 | * e1000_shift_out_ee_bits - Shift data bits out to the EEPROM. | 
|---|
| 3561 | * @hw: Struct containing variables accessed by shared code | 
|---|
| 3562 | * @data: data to send to the EEPROM | 
|---|
| 3563 | * @count: number of bits to shift out | 
|---|
| 3564 | */ | 
|---|
| 3565 | static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count) | 
|---|
| 3566 | { | 
|---|
| 3567 | struct e1000_eeprom_info *eeprom = &hw->eeprom; | 
|---|
| 3568 | u32 eecd; | 
|---|
| 3569 | u32 mask; | 
|---|
| 3570 |  | 
|---|
| 3571 | /* We need to shift "count" bits out to the EEPROM. So, value in the | 
|---|
| 3572 | * "data" parameter will be shifted out to the EEPROM one bit at a time. | 
|---|
| 3573 | * In order to do this, "data" must be broken down into bits. | 
|---|
| 3574 | */ | 
|---|
| 3575 | mask = 0x01 << (count - 1); | 
|---|
| 3576 | eecd = er32(EECD); | 
|---|
| 3577 | if (eeprom->type == e1000_eeprom_microwire) | 
|---|
| 3578 | eecd &= ~E1000_EECD_DO; | 
|---|
| 3579 | else if (eeprom->type == e1000_eeprom_spi) | 
|---|
| 3580 | eecd |= E1000_EECD_DO; | 
|---|
| 3581 |  | 
|---|
| 3582 | do { | 
|---|
| 3583 | /* A "1" is shifted out to the EEPROM by setting bit "DI" to a | 
|---|
| 3584 | * "1", and then raising and then lowering the clock (the SK bit | 
|---|
| 3585 | * controls the clock input to the EEPROM).  A "0" is shifted | 
|---|
| 3586 | * out to the EEPROM by setting "DI" to "0" and then raising and | 
|---|
| 3587 | * then lowering the clock. | 
|---|
| 3588 | */ | 
|---|
| 3589 | eecd &= ~E1000_EECD_DI; | 
|---|
| 3590 |  | 
|---|
| 3591 | if (data & mask) | 
|---|
| 3592 | eecd |= E1000_EECD_DI; | 
|---|
| 3593 |  | 
|---|
| 3594 | ew32(EECD, eecd); | 
|---|
| 3595 | E1000_WRITE_FLUSH(); | 
|---|
| 3596 |  | 
|---|
| 3597 | udelay(usec: eeprom->delay_usec); | 
|---|
| 3598 |  | 
|---|
| 3599 | e1000_raise_ee_clk(hw, eecd: &eecd); | 
|---|
| 3600 | e1000_lower_ee_clk(hw, eecd: &eecd); | 
|---|
| 3601 |  | 
|---|
| 3602 | mask = mask >> 1; | 
|---|
| 3603 |  | 
|---|
| 3604 | } while (mask); | 
|---|
| 3605 |  | 
|---|
| 3606 | /* We leave the "DI" bit set to "0" when we leave this routine. */ | 
|---|
| 3607 | eecd &= ~E1000_EECD_DI; | 
|---|
| 3608 | ew32(EECD, eecd); | 
|---|
| 3609 | } | 
|---|
| 3610 |  | 
|---|
| 3611 | /** | 
|---|
| 3612 | * e1000_shift_in_ee_bits - Shift data bits in from the EEPROM | 
|---|
| 3613 | * @hw: Struct containing variables accessed by shared code | 
|---|
| 3614 | * @count: number of bits to shift in | 
|---|
| 3615 | */ | 
|---|
| 3616 | static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count) | 
|---|
| 3617 | { | 
|---|
| 3618 | u32 eecd; | 
|---|
| 3619 | u32 i; | 
|---|
| 3620 | u16 data; | 
|---|
| 3621 |  | 
|---|
| 3622 | /* In order to read a register from the EEPROM, we need to shift 'count' | 
|---|
| 3623 | * bits in from the EEPROM. Bits are "shifted in" by raising the clock | 
|---|
| 3624 | * input to the EEPROM (setting the SK bit), and then reading the value | 
|---|
| 3625 | * of the "DO" bit.  During this "shifting in" process the "DI" bit | 
|---|
| 3626 | * should always be clear. | 
|---|
| 3627 | */ | 
|---|
| 3628 |  | 
|---|
| 3629 | eecd = er32(EECD); | 
|---|
| 3630 |  | 
|---|
| 3631 | eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); | 
|---|
| 3632 | data = 0; | 
|---|
| 3633 |  | 
|---|
| 3634 | for (i = 0; i < count; i++) { | 
|---|
| 3635 | data = data << 1; | 
|---|
| 3636 | e1000_raise_ee_clk(hw, eecd: &eecd); | 
|---|
| 3637 |  | 
|---|
| 3638 | eecd = er32(EECD); | 
|---|
| 3639 |  | 
|---|
| 3640 | eecd &= ~(E1000_EECD_DI); | 
|---|
| 3641 | if (eecd & E1000_EECD_DO) | 
|---|
| 3642 | data |= 1; | 
|---|
| 3643 |  | 
|---|
| 3644 | e1000_lower_ee_clk(hw, eecd: &eecd); | 
|---|
| 3645 | } | 
|---|
| 3646 |  | 
|---|
| 3647 | return data; | 
|---|
| 3648 | } | 
|---|
| 3649 |  | 
|---|
| 3650 | /** | 
|---|
| 3651 | * e1000_acquire_eeprom - Prepares EEPROM for access | 
|---|
| 3652 | * @hw: Struct containing variables accessed by shared code | 
|---|
| 3653 | * | 
|---|
| 3654 | * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This | 
|---|
| 3655 | * function should be called before issuing a command to the EEPROM. | 
|---|
| 3656 | */ | 
|---|
| 3657 | static s32 e1000_acquire_eeprom(struct e1000_hw *hw) | 
|---|
| 3658 | { | 
|---|
| 3659 | struct e1000_eeprom_info *eeprom = &hw->eeprom; | 
|---|
| 3660 | u32 eecd, i = 0; | 
|---|
| 3661 |  | 
|---|
| 3662 | eecd = er32(EECD); | 
|---|
| 3663 |  | 
|---|
| 3664 | /* Request EEPROM Access */ | 
|---|
| 3665 | if (hw->mac_type > e1000_82544) { | 
|---|
| 3666 | eecd |= E1000_EECD_REQ; | 
|---|
| 3667 | ew32(EECD, eecd); | 
|---|
| 3668 | eecd = er32(EECD); | 
|---|
| 3669 | while ((!(eecd & E1000_EECD_GNT)) && | 
|---|
| 3670 | (i < E1000_EEPROM_GRANT_ATTEMPTS)) { | 
|---|
| 3671 | i++; | 
|---|
| 3672 | udelay(usec: 5); | 
|---|
| 3673 | eecd = er32(EECD); | 
|---|
| 3674 | } | 
|---|
| 3675 | if (!(eecd & E1000_EECD_GNT)) { | 
|---|
| 3676 | eecd &= ~E1000_EECD_REQ; | 
|---|
| 3677 | ew32(EECD, eecd); | 
|---|
| 3678 | e_dbg( "Could not acquire EEPROM grant\n"); | 
|---|
| 3679 | return -E1000_ERR_EEPROM; | 
|---|
| 3680 | } | 
|---|
| 3681 | } | 
|---|
| 3682 |  | 
|---|
| 3683 | /* Setup EEPROM for Read/Write */ | 
|---|
| 3684 |  | 
|---|
| 3685 | if (eeprom->type == e1000_eeprom_microwire) { | 
|---|
| 3686 | /* Clear SK and DI */ | 
|---|
| 3687 | eecd &= ~(E1000_EECD_DI | E1000_EECD_SK); | 
|---|
| 3688 | ew32(EECD, eecd); | 
|---|
| 3689 |  | 
|---|
| 3690 | /* Set CS */ | 
|---|
| 3691 | eecd |= E1000_EECD_CS; | 
|---|
| 3692 | ew32(EECD, eecd); | 
|---|
| 3693 | } else if (eeprom->type == e1000_eeprom_spi) { | 
|---|
| 3694 | /* Clear SK and CS */ | 
|---|
| 3695 | eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); | 
|---|
| 3696 | ew32(EECD, eecd); | 
|---|
| 3697 | E1000_WRITE_FLUSH(); | 
|---|
| 3698 | udelay(usec: 1); | 
|---|
| 3699 | } | 
|---|
| 3700 |  | 
|---|
| 3701 | return E1000_SUCCESS; | 
|---|
| 3702 | } | 
|---|
| 3703 |  | 
|---|
| 3704 | /** | 
|---|
| 3705 | * e1000_standby_eeprom - Returns EEPROM to a "standby" state | 
|---|
| 3706 | * @hw: Struct containing variables accessed by shared code | 
|---|
| 3707 | */ | 
|---|
| 3708 | static void e1000_standby_eeprom(struct e1000_hw *hw) | 
|---|
| 3709 | { | 
|---|
| 3710 | struct e1000_eeprom_info *eeprom = &hw->eeprom; | 
|---|
| 3711 | u32 eecd; | 
|---|
| 3712 |  | 
|---|
| 3713 | eecd = er32(EECD); | 
|---|
| 3714 |  | 
|---|
| 3715 | if (eeprom->type == e1000_eeprom_microwire) { | 
|---|
| 3716 | eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); | 
|---|
| 3717 | ew32(EECD, eecd); | 
|---|
| 3718 | E1000_WRITE_FLUSH(); | 
|---|
| 3719 | udelay(usec: eeprom->delay_usec); | 
|---|
| 3720 |  | 
|---|
| 3721 | /* Clock high */ | 
|---|
| 3722 | eecd |= E1000_EECD_SK; | 
|---|
| 3723 | ew32(EECD, eecd); | 
|---|
| 3724 | E1000_WRITE_FLUSH(); | 
|---|
| 3725 | udelay(usec: eeprom->delay_usec); | 
|---|
| 3726 |  | 
|---|
| 3727 | /* Select EEPROM */ | 
|---|
| 3728 | eecd |= E1000_EECD_CS; | 
|---|
| 3729 | ew32(EECD, eecd); | 
|---|
| 3730 | E1000_WRITE_FLUSH(); | 
|---|
| 3731 | udelay(usec: eeprom->delay_usec); | 
|---|
| 3732 |  | 
|---|
| 3733 | /* Clock low */ | 
|---|
| 3734 | eecd &= ~E1000_EECD_SK; | 
|---|
| 3735 | ew32(EECD, eecd); | 
|---|
| 3736 | E1000_WRITE_FLUSH(); | 
|---|
| 3737 | udelay(usec: eeprom->delay_usec); | 
|---|
| 3738 | } else if (eeprom->type == e1000_eeprom_spi) { | 
|---|
| 3739 | /* Toggle CS to flush commands */ | 
|---|
| 3740 | eecd |= E1000_EECD_CS; | 
|---|
| 3741 | ew32(EECD, eecd); | 
|---|
| 3742 | E1000_WRITE_FLUSH(); | 
|---|
| 3743 | udelay(usec: eeprom->delay_usec); | 
|---|
| 3744 | eecd &= ~E1000_EECD_CS; | 
|---|
| 3745 | ew32(EECD, eecd); | 
|---|
| 3746 | E1000_WRITE_FLUSH(); | 
|---|
| 3747 | udelay(usec: eeprom->delay_usec); | 
|---|
| 3748 | } | 
|---|
| 3749 | } | 
|---|
| 3750 |  | 
|---|
| 3751 | /** | 
|---|
| 3752 | * e1000_release_eeprom - drop chip select | 
|---|
| 3753 | * @hw: Struct containing variables accessed by shared code | 
|---|
| 3754 | * | 
|---|
| 3755 | * Terminates a command by inverting the EEPROM's chip select pin | 
|---|
| 3756 | */ | 
|---|
| 3757 | static void e1000_release_eeprom(struct e1000_hw *hw) | 
|---|
| 3758 | { | 
|---|
| 3759 | u32 eecd; | 
|---|
| 3760 |  | 
|---|
| 3761 | eecd = er32(EECD); | 
|---|
| 3762 |  | 
|---|
| 3763 | if (hw->eeprom.type == e1000_eeprom_spi) { | 
|---|
| 3764 | eecd |= E1000_EECD_CS;	/* Pull CS high */ | 
|---|
| 3765 | eecd &= ~E1000_EECD_SK;	/* Lower SCK */ | 
|---|
| 3766 |  | 
|---|
| 3767 | ew32(EECD, eecd); | 
|---|
| 3768 | E1000_WRITE_FLUSH(); | 
|---|
| 3769 |  | 
|---|
| 3770 | udelay(usec: hw->eeprom.delay_usec); | 
|---|
| 3771 | } else if (hw->eeprom.type == e1000_eeprom_microwire) { | 
|---|
| 3772 | /* cleanup eeprom */ | 
|---|
| 3773 |  | 
|---|
| 3774 | /* CS on Microwire is active-high */ | 
|---|
| 3775 | eecd &= ~(E1000_EECD_CS | E1000_EECD_DI); | 
|---|
| 3776 |  | 
|---|
| 3777 | ew32(EECD, eecd); | 
|---|
| 3778 |  | 
|---|
| 3779 | /* Rising edge of clock */ | 
|---|
| 3780 | eecd |= E1000_EECD_SK; | 
|---|
| 3781 | ew32(EECD, eecd); | 
|---|
| 3782 | E1000_WRITE_FLUSH(); | 
|---|
| 3783 | udelay(usec: hw->eeprom.delay_usec); | 
|---|
| 3784 |  | 
|---|
| 3785 | /* Falling edge of clock */ | 
|---|
| 3786 | eecd &= ~E1000_EECD_SK; | 
|---|
| 3787 | ew32(EECD, eecd); | 
|---|
| 3788 | E1000_WRITE_FLUSH(); | 
|---|
| 3789 | udelay(usec: hw->eeprom.delay_usec); | 
|---|
| 3790 | } | 
|---|
| 3791 |  | 
|---|
| 3792 | /* Stop requesting EEPROM access */ | 
|---|
| 3793 | if (hw->mac_type > e1000_82544) { | 
|---|
| 3794 | eecd &= ~E1000_EECD_REQ; | 
|---|
| 3795 | ew32(EECD, eecd); | 
|---|
| 3796 | } | 
|---|
| 3797 | } | 
|---|
| 3798 |  | 
|---|
| 3799 | /** | 
|---|
| 3800 | * e1000_spi_eeprom_ready - Reads a 16 bit word from the EEPROM. | 
|---|
| 3801 | * @hw: Struct containing variables accessed by shared code | 
|---|
| 3802 | */ | 
|---|
| 3803 | static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw) | 
|---|
| 3804 | { | 
|---|
| 3805 | u16 retry_count = 0; | 
|---|
| 3806 | u8 spi_stat_reg; | 
|---|
| 3807 |  | 
|---|
| 3808 | /* Read "Status Register" repeatedly until the LSB is cleared.  The | 
|---|
| 3809 | * EEPROM will signal that the command has been completed by clearing | 
|---|
| 3810 | * bit 0 of the internal status register.  If it's not cleared within | 
|---|
| 3811 | * 5 milliseconds, then error out. | 
|---|
| 3812 | */ | 
|---|
| 3813 | retry_count = 0; | 
|---|
| 3814 | do { | 
|---|
| 3815 | e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI, | 
|---|
| 3816 | count: hw->eeprom.opcode_bits); | 
|---|
| 3817 | spi_stat_reg = (u8)e1000_shift_in_ee_bits(hw, count: 8); | 
|---|
| 3818 | if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI)) | 
|---|
| 3819 | break; | 
|---|
| 3820 |  | 
|---|
| 3821 | udelay(usec: 5); | 
|---|
| 3822 | retry_count += 5; | 
|---|
| 3823 |  | 
|---|
| 3824 | e1000_standby_eeprom(hw); | 
|---|
| 3825 | } while (retry_count < EEPROM_MAX_RETRY_SPI); | 
|---|
| 3826 |  | 
|---|
| 3827 | /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and | 
|---|
| 3828 | * only 0-5mSec on 5V devices) | 
|---|
| 3829 | */ | 
|---|
| 3830 | if (retry_count >= EEPROM_MAX_RETRY_SPI) { | 
|---|
| 3831 | e_dbg( "SPI EEPROM Status error\n"); | 
|---|
| 3832 | return -E1000_ERR_EEPROM; | 
|---|
| 3833 | } | 
|---|
| 3834 |  | 
|---|
| 3835 | return E1000_SUCCESS; | 
|---|
| 3836 | } | 
|---|
| 3837 |  | 
|---|
| 3838 | /** | 
|---|
| 3839 | * e1000_read_eeprom - Reads a 16 bit word from the EEPROM. | 
|---|
| 3840 | * @hw: Struct containing variables accessed by shared code | 
|---|
| 3841 | * @offset: offset of  word in the EEPROM to read | 
|---|
| 3842 | * @data: word read from the EEPROM | 
|---|
| 3843 | * @words: number of words to read | 
|---|
| 3844 | */ | 
|---|
| 3845 | s32 e1000_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) | 
|---|
| 3846 | { | 
|---|
| 3847 | s32 ret; | 
|---|
| 3848 |  | 
|---|
| 3849 | mutex_lock(lock: &e1000_eeprom_lock); | 
|---|
| 3850 | ret = e1000_do_read_eeprom(hw, offset, words, data); | 
|---|
| 3851 | mutex_unlock(lock: &e1000_eeprom_lock); | 
|---|
| 3852 | return ret; | 
|---|
| 3853 | } | 
|---|
| 3854 |  | 
|---|
| 3855 | static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, | 
|---|
| 3856 | u16 *data) | 
|---|
| 3857 | { | 
|---|
| 3858 | struct e1000_eeprom_info *eeprom = &hw->eeprom; | 
|---|
| 3859 | u32 i = 0; | 
|---|
| 3860 |  | 
|---|
| 3861 | if (hw->mac_type == e1000_ce4100) { | 
|---|
| 3862 | GBE_CONFIG_FLASH_READ(GBE_CONFIG_BASE_VIRT, offset, words, | 
|---|
| 3863 | data); | 
|---|
| 3864 | return E1000_SUCCESS; | 
|---|
| 3865 | } | 
|---|
| 3866 |  | 
|---|
| 3867 | /* A check for invalid values:  offset too large, too many words, and | 
|---|
| 3868 | * not enough words. | 
|---|
| 3869 | */ | 
|---|
| 3870 | if ((offset >= eeprom->word_size) || | 
|---|
| 3871 | (words > eeprom->word_size - offset) || | 
|---|
| 3872 | (words == 0)) { | 
|---|
| 3873 | e_dbg( "\"words\" parameter out of bounds. Words = %d," | 
|---|
| 3874 | "size = %d\n", offset, eeprom->word_size); | 
|---|
| 3875 | return -E1000_ERR_EEPROM; | 
|---|
| 3876 | } | 
|---|
| 3877 |  | 
|---|
| 3878 | /* EEPROM's that don't use EERD to read require us to bit-bang the SPI | 
|---|
| 3879 | * directly. In this case, we need to acquire the EEPROM so that | 
|---|
| 3880 | * FW or other port software does not interrupt. | 
|---|
| 3881 | */ | 
|---|
| 3882 | /* Prepare the EEPROM for bit-bang reading */ | 
|---|
| 3883 | if (e1000_acquire_eeprom(hw) != E1000_SUCCESS) | 
|---|
| 3884 | return -E1000_ERR_EEPROM; | 
|---|
| 3885 |  | 
|---|
| 3886 | /* Set up the SPI or Microwire EEPROM for bit-bang reading.  We have | 
|---|
| 3887 | * acquired the EEPROM at this point, so any returns should release it | 
|---|
| 3888 | */ | 
|---|
| 3889 | if (eeprom->type == e1000_eeprom_spi) { | 
|---|
| 3890 | u16 word_in; | 
|---|
| 3891 | u8 read_opcode = EEPROM_READ_OPCODE_SPI; | 
|---|
| 3892 |  | 
|---|
| 3893 | if (e1000_spi_eeprom_ready(hw)) { | 
|---|
| 3894 | e1000_release_eeprom(hw); | 
|---|
| 3895 | return -E1000_ERR_EEPROM; | 
|---|
| 3896 | } | 
|---|
| 3897 |  | 
|---|
| 3898 | e1000_standby_eeprom(hw); | 
|---|
| 3899 |  | 
|---|
| 3900 | /* Some SPI eeproms use the 8th address bit embedded in the | 
|---|
| 3901 | * opcode | 
|---|
| 3902 | */ | 
|---|
| 3903 | if ((eeprom->address_bits == 8) && (offset >= 128)) | 
|---|
| 3904 | read_opcode |= EEPROM_A8_OPCODE_SPI; | 
|---|
| 3905 |  | 
|---|
| 3906 | /* Send the READ command (opcode + addr)  */ | 
|---|
| 3907 | e1000_shift_out_ee_bits(hw, data: read_opcode, count: eeprom->opcode_bits); | 
|---|
| 3908 | e1000_shift_out_ee_bits(hw, data: (u16)(offset * 2), | 
|---|
| 3909 | count: eeprom->address_bits); | 
|---|
| 3910 |  | 
|---|
| 3911 | /* Read the data.  The address of the eeprom internally | 
|---|
| 3912 | * increments with each byte (spi) being read, saving on the | 
|---|
| 3913 | * overhead of eeprom setup and tear-down.  The address counter | 
|---|
| 3914 | * will roll over if reading beyond the size of the eeprom, thus | 
|---|
| 3915 | * allowing the entire memory to be read starting from any | 
|---|
| 3916 | * offset. | 
|---|
| 3917 | */ | 
|---|
| 3918 | for (i = 0; i < words; i++) { | 
|---|
| 3919 | word_in = e1000_shift_in_ee_bits(hw, count: 16); | 
|---|
| 3920 | data[i] = (word_in >> 8) | (word_in << 8); | 
|---|
| 3921 | } | 
|---|
| 3922 | } else if (eeprom->type == e1000_eeprom_microwire) { | 
|---|
| 3923 | for (i = 0; i < words; i++) { | 
|---|
| 3924 | /* Send the READ command (opcode + addr)  */ | 
|---|
| 3925 | e1000_shift_out_ee_bits(hw, | 
|---|
| 3926 | EEPROM_READ_OPCODE_MICROWIRE, | 
|---|
| 3927 | count: eeprom->opcode_bits); | 
|---|
| 3928 | e1000_shift_out_ee_bits(hw, data: (u16)(offset + i), | 
|---|
| 3929 | count: eeprom->address_bits); | 
|---|
| 3930 |  | 
|---|
| 3931 | /* Read the data.  For microwire, each word requires the | 
|---|
| 3932 | * overhead of eeprom setup and tear-down. | 
|---|
| 3933 | */ | 
|---|
| 3934 | data[i] = e1000_shift_in_ee_bits(hw, count: 16); | 
|---|
| 3935 | e1000_standby_eeprom(hw); | 
|---|
| 3936 | cond_resched(); | 
|---|
| 3937 | } | 
|---|
| 3938 | } | 
|---|
| 3939 |  | 
|---|
| 3940 | /* End this read operation */ | 
|---|
| 3941 | e1000_release_eeprom(hw); | 
|---|
| 3942 |  | 
|---|
| 3943 | return E1000_SUCCESS; | 
|---|
| 3944 | } | 
|---|
| 3945 |  | 
|---|
| 3946 | /** | 
|---|
| 3947 | * e1000_validate_eeprom_checksum - Verifies that the EEPROM has a valid checksum | 
|---|
| 3948 | * @hw: Struct containing variables accessed by shared code | 
|---|
| 3949 | * | 
|---|
| 3950 | * Reads the first 64 16 bit words of the EEPROM and sums the values read. | 
|---|
| 3951 | * If the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is | 
|---|
| 3952 | * valid. | 
|---|
| 3953 | */ | 
|---|
| 3954 | s32 e1000_validate_eeprom_checksum(struct e1000_hw *hw) | 
|---|
| 3955 | { | 
|---|
| 3956 | u16 checksum = 0; | 
|---|
| 3957 | u16 i, eeprom_data; | 
|---|
| 3958 |  | 
|---|
| 3959 | for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) { | 
|---|
| 3960 | if (e1000_read_eeprom(hw, offset: i, words: 1, data: &eeprom_data) < 0) { | 
|---|
| 3961 | e_dbg( "EEPROM Read Error\n"); | 
|---|
| 3962 | return -E1000_ERR_EEPROM; | 
|---|
| 3963 | } | 
|---|
| 3964 | checksum += eeprom_data; | 
|---|
| 3965 | } | 
|---|
| 3966 |  | 
|---|
| 3967 | #ifdef CONFIG_PARISC | 
|---|
| 3968 | /* This is a signature and not a checksum on HP c8000 */ | 
|---|
| 3969 | if ((hw->subsystem_vendor_id == 0x103C) && (eeprom_data == 0x16d6)) | 
|---|
| 3970 | return E1000_SUCCESS; | 
|---|
| 3971 |  | 
|---|
| 3972 | #endif | 
|---|
| 3973 | if (checksum == EEPROM_SUM) | 
|---|
| 3974 | return E1000_SUCCESS; | 
|---|
| 3975 | else { | 
|---|
| 3976 | e_dbg( "EEPROM Checksum Invalid\n"); | 
|---|
| 3977 | return -E1000_ERR_EEPROM; | 
|---|
| 3978 | } | 
|---|
| 3979 | } | 
|---|
| 3980 |  | 
|---|
| 3981 | /** | 
|---|
| 3982 | * e1000_update_eeprom_checksum - Calculates/writes the EEPROM checksum | 
|---|
| 3983 | * @hw: Struct containing variables accessed by shared code | 
|---|
| 3984 | * | 
|---|
| 3985 | * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA. | 
|---|
| 3986 | * Writes the difference to word offset 63 of the EEPROM. | 
|---|
| 3987 | */ | 
|---|
| 3988 | s32 e1000_update_eeprom_checksum(struct e1000_hw *hw) | 
|---|
| 3989 | { | 
|---|
| 3990 | u16 checksum = 0; | 
|---|
| 3991 | u16 i, eeprom_data; | 
|---|
| 3992 |  | 
|---|
| 3993 | for (i = 0; i < EEPROM_CHECKSUM_REG; i++) { | 
|---|
| 3994 | if (e1000_read_eeprom(hw, offset: i, words: 1, data: &eeprom_data) < 0) { | 
|---|
| 3995 | e_dbg( "EEPROM Read Error\n"); | 
|---|
| 3996 | return -E1000_ERR_EEPROM; | 
|---|
| 3997 | } | 
|---|
| 3998 | checksum += eeprom_data; | 
|---|
| 3999 | } | 
|---|
| 4000 | checksum = EEPROM_SUM - checksum; | 
|---|
| 4001 | if (e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, words: 1, data: &checksum) < 0) { | 
|---|
| 4002 | e_dbg( "EEPROM Write Error\n"); | 
|---|
| 4003 | return -E1000_ERR_EEPROM; | 
|---|
| 4004 | } | 
|---|
| 4005 | return E1000_SUCCESS; | 
|---|
| 4006 | } | 
|---|
| 4007 |  | 
|---|
| 4008 | /** | 
|---|
| 4009 | * e1000_write_eeprom - write words to the different EEPROM types. | 
|---|
| 4010 | * @hw: Struct containing variables accessed by shared code | 
|---|
| 4011 | * @offset: offset within the EEPROM to be written to | 
|---|
| 4012 | * @words: number of words to write | 
|---|
| 4013 | * @data: 16 bit word to be written to the EEPROM | 
|---|
| 4014 | * | 
|---|
| 4015 | * If e1000_update_eeprom_checksum is not called after this function, the | 
|---|
| 4016 | * EEPROM will most likely contain an invalid checksum. | 
|---|
| 4017 | */ | 
|---|
| 4018 | s32 e1000_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) | 
|---|
| 4019 | { | 
|---|
| 4020 | s32 ret; | 
|---|
| 4021 |  | 
|---|
| 4022 | mutex_lock(lock: &e1000_eeprom_lock); | 
|---|
| 4023 | ret = e1000_do_write_eeprom(hw, offset, words, data); | 
|---|
| 4024 | mutex_unlock(lock: &e1000_eeprom_lock); | 
|---|
| 4025 | return ret; | 
|---|
| 4026 | } | 
|---|
| 4027 |  | 
|---|
| 4028 | static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, | 
|---|
| 4029 | u16 *data) | 
|---|
| 4030 | { | 
|---|
| 4031 | struct e1000_eeprom_info *eeprom = &hw->eeprom; | 
|---|
| 4032 | s32 status = 0; | 
|---|
| 4033 |  | 
|---|
| 4034 | if (hw->mac_type == e1000_ce4100) { | 
|---|
| 4035 | GBE_CONFIG_FLASH_WRITE(GBE_CONFIG_BASE_VIRT, offset, words, | 
|---|
| 4036 | data); | 
|---|
| 4037 | return E1000_SUCCESS; | 
|---|
| 4038 | } | 
|---|
| 4039 |  | 
|---|
| 4040 | /* A check for invalid values:  offset too large, too many words, and | 
|---|
| 4041 | * not enough words. | 
|---|
| 4042 | */ | 
|---|
| 4043 | if ((offset >= eeprom->word_size) || | 
|---|
| 4044 | (words > eeprom->word_size - offset) || | 
|---|
| 4045 | (words == 0)) { | 
|---|
| 4046 | e_dbg( "\"words\" parameter out of bounds\n"); | 
|---|
| 4047 | return -E1000_ERR_EEPROM; | 
|---|
| 4048 | } | 
|---|
| 4049 |  | 
|---|
| 4050 | /* Prepare the EEPROM for writing  */ | 
|---|
| 4051 | if (e1000_acquire_eeprom(hw) != E1000_SUCCESS) | 
|---|
| 4052 | return -E1000_ERR_EEPROM; | 
|---|
| 4053 |  | 
|---|
| 4054 | if (eeprom->type == e1000_eeprom_microwire) { | 
|---|
| 4055 | status = e1000_write_eeprom_microwire(hw, offset, words, data); | 
|---|
| 4056 | } else { | 
|---|
| 4057 | status = e1000_write_eeprom_spi(hw, offset, words, data); | 
|---|
| 4058 | msleep(msecs: 10); | 
|---|
| 4059 | } | 
|---|
| 4060 |  | 
|---|
| 4061 | /* Done with writing */ | 
|---|
| 4062 | e1000_release_eeprom(hw); | 
|---|
| 4063 |  | 
|---|
| 4064 | return status; | 
|---|
| 4065 | } | 
|---|
| 4066 |  | 
|---|
| 4067 | /** | 
|---|
| 4068 | * e1000_write_eeprom_spi - Writes a 16 bit word to a given offset in an SPI EEPROM. | 
|---|
| 4069 | * @hw: Struct containing variables accessed by shared code | 
|---|
| 4070 | * @offset: offset within the EEPROM to be written to | 
|---|
| 4071 | * @words: number of words to write | 
|---|
| 4072 | * @data: pointer to array of 8 bit words to be written to the EEPROM | 
|---|
| 4073 | */ | 
|---|
| 4074 | static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset, u16 words, | 
|---|
| 4075 | u16 *data) | 
|---|
| 4076 | { | 
|---|
| 4077 | struct e1000_eeprom_info *eeprom = &hw->eeprom; | 
|---|
| 4078 | u16 widx = 0; | 
|---|
| 4079 |  | 
|---|
| 4080 | while (widx < words) { | 
|---|
| 4081 | u8 write_opcode = EEPROM_WRITE_OPCODE_SPI; | 
|---|
| 4082 |  | 
|---|
| 4083 | if (e1000_spi_eeprom_ready(hw)) | 
|---|
| 4084 | return -E1000_ERR_EEPROM; | 
|---|
| 4085 |  | 
|---|
| 4086 | e1000_standby_eeprom(hw); | 
|---|
| 4087 | cond_resched(); | 
|---|
| 4088 |  | 
|---|
| 4089 | /*  Send the WRITE ENABLE command (8 bit opcode )  */ | 
|---|
| 4090 | e1000_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI, | 
|---|
| 4091 | count: eeprom->opcode_bits); | 
|---|
| 4092 |  | 
|---|
| 4093 | e1000_standby_eeprom(hw); | 
|---|
| 4094 |  | 
|---|
| 4095 | /* Some SPI eeproms use the 8th address bit embedded in the | 
|---|
| 4096 | * opcode | 
|---|
| 4097 | */ | 
|---|
| 4098 | if ((eeprom->address_bits == 8) && (offset >= 128)) | 
|---|
| 4099 | write_opcode |= EEPROM_A8_OPCODE_SPI; | 
|---|
| 4100 |  | 
|---|
| 4101 | /* Send the Write command (8-bit opcode + addr) */ | 
|---|
| 4102 | e1000_shift_out_ee_bits(hw, data: write_opcode, count: eeprom->opcode_bits); | 
|---|
| 4103 |  | 
|---|
| 4104 | e1000_shift_out_ee_bits(hw, data: (u16)((offset + widx) * 2), | 
|---|
| 4105 | count: eeprom->address_bits); | 
|---|
| 4106 |  | 
|---|
| 4107 | /* Send the data */ | 
|---|
| 4108 |  | 
|---|
| 4109 | /* Loop to allow for up to whole page write (32 bytes) of | 
|---|
| 4110 | * eeprom | 
|---|
| 4111 | */ | 
|---|
| 4112 | while (widx < words) { | 
|---|
| 4113 | u16 word_out = data[widx]; | 
|---|
| 4114 |  | 
|---|
| 4115 | word_out = (word_out >> 8) | (word_out << 8); | 
|---|
| 4116 | e1000_shift_out_ee_bits(hw, data: word_out, count: 16); | 
|---|
| 4117 | widx++; | 
|---|
| 4118 |  | 
|---|
| 4119 | /* Some larger eeprom sizes are capable of a 32-byte | 
|---|
| 4120 | * PAGE WRITE operation, while the smaller eeproms are | 
|---|
| 4121 | * capable of an 8-byte PAGE WRITE operation.  Break the | 
|---|
| 4122 | * inner loop to pass new address | 
|---|
| 4123 | */ | 
|---|
| 4124 | if ((((offset + widx) * 2) % eeprom->page_size) == 0) { | 
|---|
| 4125 | e1000_standby_eeprom(hw); | 
|---|
| 4126 | break; | 
|---|
| 4127 | } | 
|---|
| 4128 | } | 
|---|
| 4129 | } | 
|---|
| 4130 |  | 
|---|
| 4131 | return E1000_SUCCESS; | 
|---|
| 4132 | } | 
|---|
| 4133 |  | 
|---|
| 4134 | /** | 
|---|
| 4135 | * e1000_write_eeprom_microwire - Writes a 16 bit word to a given offset in a Microwire EEPROM. | 
|---|
| 4136 | * @hw: Struct containing variables accessed by shared code | 
|---|
| 4137 | * @offset: offset within the EEPROM to be written to | 
|---|
| 4138 | * @words: number of words to write | 
|---|
| 4139 | * @data: pointer to array of 8 bit words to be written to the EEPROM | 
|---|
| 4140 | */ | 
|---|
| 4141 | static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset, | 
|---|
| 4142 | u16 words, u16 *data) | 
|---|
| 4143 | { | 
|---|
| 4144 | struct e1000_eeprom_info *eeprom = &hw->eeprom; | 
|---|
| 4145 | u32 eecd; | 
|---|
| 4146 | u16 words_written = 0; | 
|---|
| 4147 | u16 i = 0; | 
|---|
| 4148 |  | 
|---|
| 4149 | /* Send the write enable command to the EEPROM (3-bit opcode plus | 
|---|
| 4150 | * 6/8-bit dummy address beginning with 11).  It's less work to include | 
|---|
| 4151 | * the 11 of the dummy address as part of the opcode than it is to shift | 
|---|
| 4152 | * it over the correct number of bits for the address.  This puts the | 
|---|
| 4153 | * EEPROM into write/erase mode. | 
|---|
| 4154 | */ | 
|---|
| 4155 | e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE, | 
|---|
| 4156 | count: (u16)(eeprom->opcode_bits + 2)); | 
|---|
| 4157 |  | 
|---|
| 4158 | e1000_shift_out_ee_bits(hw, data: 0, count: (u16)(eeprom->address_bits - 2)); | 
|---|
| 4159 |  | 
|---|
| 4160 | /* Prepare the EEPROM */ | 
|---|
| 4161 | e1000_standby_eeprom(hw); | 
|---|
| 4162 |  | 
|---|
| 4163 | while (words_written < words) { | 
|---|
| 4164 | /* Send the Write command (3-bit opcode + addr) */ | 
|---|
| 4165 | e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE, | 
|---|
| 4166 | count: eeprom->opcode_bits); | 
|---|
| 4167 |  | 
|---|
| 4168 | e1000_shift_out_ee_bits(hw, data: (u16)(offset + words_written), | 
|---|
| 4169 | count: eeprom->address_bits); | 
|---|
| 4170 |  | 
|---|
| 4171 | /* Send the data */ | 
|---|
| 4172 | e1000_shift_out_ee_bits(hw, data: data[words_written], count: 16); | 
|---|
| 4173 |  | 
|---|
| 4174 | /* Toggle the CS line.  This in effect tells the EEPROM to | 
|---|
| 4175 | * execute the previous command. | 
|---|
| 4176 | */ | 
|---|
| 4177 | e1000_standby_eeprom(hw); | 
|---|
| 4178 |  | 
|---|
| 4179 | /* Read DO repeatedly until it is high (equal to '1').  The | 
|---|
| 4180 | * EEPROM will signal that the command has been completed by | 
|---|
| 4181 | * raising the DO signal. If DO does not go high in 10 | 
|---|
| 4182 | * milliseconds, then error out. | 
|---|
| 4183 | */ | 
|---|
| 4184 | for (i = 0; i < 200; i++) { | 
|---|
| 4185 | eecd = er32(EECD); | 
|---|
| 4186 | if (eecd & E1000_EECD_DO) | 
|---|
| 4187 | break; | 
|---|
| 4188 | udelay(usec: 50); | 
|---|
| 4189 | } | 
|---|
| 4190 | if (i == 200) { | 
|---|
| 4191 | e_dbg( "EEPROM Write did not complete\n"); | 
|---|
| 4192 | return -E1000_ERR_EEPROM; | 
|---|
| 4193 | } | 
|---|
| 4194 |  | 
|---|
| 4195 | /* Recover from write */ | 
|---|
| 4196 | e1000_standby_eeprom(hw); | 
|---|
| 4197 | cond_resched(); | 
|---|
| 4198 |  | 
|---|
| 4199 | words_written++; | 
|---|
| 4200 | } | 
|---|
| 4201 |  | 
|---|
| 4202 | /* Send the write disable command to the EEPROM (3-bit opcode plus | 
|---|
| 4203 | * 6/8-bit dummy address beginning with 10).  It's less work to include | 
|---|
| 4204 | * the 10 of the dummy address as part of the opcode than it is to shift | 
|---|
| 4205 | * it over the correct number of bits for the address.  This takes the | 
|---|
| 4206 | * EEPROM out of write/erase mode. | 
|---|
| 4207 | */ | 
|---|
| 4208 | e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE, | 
|---|
| 4209 | count: (u16)(eeprom->opcode_bits + 2)); | 
|---|
| 4210 |  | 
|---|
| 4211 | e1000_shift_out_ee_bits(hw, data: 0, count: (u16)(eeprom->address_bits - 2)); | 
|---|
| 4212 |  | 
|---|
| 4213 | return E1000_SUCCESS; | 
|---|
| 4214 | } | 
|---|
| 4215 |  | 
|---|
| 4216 | /** | 
|---|
| 4217 | * e1000_read_mac_addr - read the adapters MAC from eeprom | 
|---|
| 4218 | * @hw: Struct containing variables accessed by shared code | 
|---|
| 4219 | * | 
|---|
| 4220 | * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the | 
|---|
| 4221 | * second function of dual function devices | 
|---|
| 4222 | */ | 
|---|
| 4223 | s32 e1000_read_mac_addr(struct e1000_hw *hw) | 
|---|
| 4224 | { | 
|---|
| 4225 | u16 offset; | 
|---|
| 4226 | u16 eeprom_data, i; | 
|---|
| 4227 |  | 
|---|
| 4228 | for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) { | 
|---|
| 4229 | offset = i >> 1; | 
|---|
| 4230 | if (e1000_read_eeprom(hw, offset, words: 1, data: &eeprom_data) < 0) { | 
|---|
| 4231 | e_dbg( "EEPROM Read Error\n"); | 
|---|
| 4232 | return -E1000_ERR_EEPROM; | 
|---|
| 4233 | } | 
|---|
| 4234 | hw->perm_mac_addr[i] = (u8)(eeprom_data & 0x00FF); | 
|---|
| 4235 | hw->perm_mac_addr[i + 1] = (u8)(eeprom_data >> 8); | 
|---|
| 4236 | } | 
|---|
| 4237 |  | 
|---|
| 4238 | switch (hw->mac_type) { | 
|---|
| 4239 | default: | 
|---|
| 4240 | break; | 
|---|
| 4241 | case e1000_82546: | 
|---|
| 4242 | case e1000_82546_rev_3: | 
|---|
| 4243 | if (er32(STATUS) & E1000_STATUS_FUNC_1) | 
|---|
| 4244 | hw->perm_mac_addr[5] ^= 0x01; | 
|---|
| 4245 | break; | 
|---|
| 4246 | } | 
|---|
| 4247 |  | 
|---|
| 4248 | for (i = 0; i < NODE_ADDRESS_SIZE; i++) | 
|---|
| 4249 | hw->mac_addr[i] = hw->perm_mac_addr[i]; | 
|---|
| 4250 | return E1000_SUCCESS; | 
|---|
| 4251 | } | 
|---|
| 4252 |  | 
|---|
| 4253 | /** | 
|---|
| 4254 | * e1000_init_rx_addrs - Initializes receive address filters. | 
|---|
| 4255 | * @hw: Struct containing variables accessed by shared code | 
|---|
| 4256 | * | 
|---|
| 4257 | * Places the MAC address in receive address register 0 and clears the rest | 
|---|
| 4258 | * of the receive address registers. Clears the multicast table. Assumes | 
|---|
| 4259 | * the receiver is in reset when the routine is called. | 
|---|
| 4260 | */ | 
|---|
| 4261 | static void e1000_init_rx_addrs(struct e1000_hw *hw) | 
|---|
| 4262 | { | 
|---|
| 4263 | u32 i; | 
|---|
| 4264 | u32 rar_num; | 
|---|
| 4265 |  | 
|---|
| 4266 | /* Setup the receive address. */ | 
|---|
| 4267 | e_dbg( "Programming MAC Address into RAR[0]\n"); | 
|---|
| 4268 |  | 
|---|
| 4269 | e1000_rar_set(hw, mc_addr: hw->mac_addr, rar_index: 0); | 
|---|
| 4270 |  | 
|---|
| 4271 | rar_num = E1000_RAR_ENTRIES; | 
|---|
| 4272 |  | 
|---|
| 4273 | /* Zero out the following 14 receive addresses. RAR[15] is for | 
|---|
| 4274 | * manageability | 
|---|
| 4275 | */ | 
|---|
| 4276 | e_dbg( "Clearing RAR[1-14]\n"); | 
|---|
| 4277 | for (i = 1; i < rar_num; i++) { | 
|---|
| 4278 | E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); | 
|---|
| 4279 | E1000_WRITE_FLUSH(); | 
|---|
| 4280 | E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); | 
|---|
| 4281 | E1000_WRITE_FLUSH(); | 
|---|
| 4282 | } | 
|---|
| 4283 | } | 
|---|
| 4284 |  | 
|---|
| 4285 | /** | 
|---|
| 4286 | * e1000_hash_mc_addr - Hashes an address to determine its location in the multicast table | 
|---|
| 4287 | * @hw: Struct containing variables accessed by shared code | 
|---|
| 4288 | * @mc_addr: the multicast address to hash | 
|---|
| 4289 | */ | 
|---|
| 4290 | u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) | 
|---|
| 4291 | { | 
|---|
| 4292 | u32 hash_value = 0; | 
|---|
| 4293 |  | 
|---|
| 4294 | /* The portion of the address that is used for the hash table is | 
|---|
| 4295 | * determined by the mc_filter_type setting. | 
|---|
| 4296 | */ | 
|---|
| 4297 | switch (hw->mc_filter_type) { | 
|---|
| 4298 | /* [0] [1] [2] [3] [4] [5] | 
|---|
| 4299 | * 01  AA  00  12  34  56 | 
|---|
| 4300 | * LSB                 MSB | 
|---|
| 4301 | */ | 
|---|
| 4302 | case 0: | 
|---|
| 4303 | /* [47:36] i.e. 0x563 for above example address */ | 
|---|
| 4304 | hash_value = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4)); | 
|---|
| 4305 | break; | 
|---|
| 4306 | case 1: | 
|---|
| 4307 | /* [46:35] i.e. 0xAC6 for above example address */ | 
|---|
| 4308 | hash_value = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5)); | 
|---|
| 4309 | break; | 
|---|
| 4310 | case 2: | 
|---|
| 4311 | /* [45:34] i.e. 0x5D8 for above example address */ | 
|---|
| 4312 | hash_value = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6)); | 
|---|
| 4313 | break; | 
|---|
| 4314 | case 3: | 
|---|
| 4315 | /* [43:32] i.e. 0x634 for above example address */ | 
|---|
| 4316 | hash_value = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8)); | 
|---|
| 4317 | break; | 
|---|
| 4318 | } | 
|---|
| 4319 |  | 
|---|
| 4320 | hash_value &= 0xFFF; | 
|---|
| 4321 | return hash_value; | 
|---|
| 4322 | } | 
|---|
| 4323 |  | 
|---|
| 4324 | /** | 
|---|
| 4325 | * e1000_rar_set - Puts an ethernet address into a receive address register. | 
|---|
| 4326 | * @hw: Struct containing variables accessed by shared code | 
|---|
| 4327 | * @addr: Address to put into receive address register | 
|---|
| 4328 | * @index: Receive address register to write | 
|---|
| 4329 | */ | 
|---|
| 4330 | void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index) | 
|---|
| 4331 | { | 
|---|
| 4332 | u32 rar_low, rar_high; | 
|---|
| 4333 |  | 
|---|
| 4334 | /* HW expects these in little endian so we reverse the byte order | 
|---|
| 4335 | * from network order (big endian) to little endian | 
|---|
| 4336 | */ | 
|---|
| 4337 | rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) | | 
|---|
| 4338 | ((u32)addr[2] << 16) | ((u32)addr[3] << 24)); | 
|---|
| 4339 | rar_high = ((u32)addr[4] | ((u32)addr[5] << 8)); | 
|---|
| 4340 |  | 
|---|
| 4341 | /* Disable Rx and flush all Rx frames before enabling RSS to avoid Rx | 
|---|
| 4342 | * unit hang. | 
|---|
| 4343 | * | 
|---|
| 4344 | * Description: | 
|---|
| 4345 | * If there are any Rx frames queued up or otherwise present in the HW | 
|---|
| 4346 | * before RSS is enabled, and then we enable RSS, the HW Rx unit will | 
|---|
| 4347 | * hang.  To work around this issue, we have to disable receives and | 
|---|
| 4348 | * flush out all Rx frames before we enable RSS. To do so, we modify we | 
|---|
| 4349 | * redirect all Rx traffic to manageability and then reset the HW. | 
|---|
| 4350 | * This flushes away Rx frames, and (since the redirections to | 
|---|
| 4351 | * manageability persists across resets) keeps new ones from coming in | 
|---|
| 4352 | * while we work.  Then, we clear the Address Valid AV bit for all MAC | 
|---|
| 4353 | * addresses and undo the re-direction to manageability. | 
|---|
| 4354 | * Now, frames are coming in again, but the MAC won't accept them, so | 
|---|
| 4355 | * far so good.  We now proceed to initialize RSS (if necessary) and | 
|---|
| 4356 | * configure the Rx unit.  Last, we re-enable the AV bits and continue | 
|---|
| 4357 | * on our merry way. | 
|---|
| 4358 | */ | 
|---|
| 4359 | switch (hw->mac_type) { | 
|---|
| 4360 | default: | 
|---|
| 4361 | /* Indicate to hardware the Address is Valid. */ | 
|---|
| 4362 | rar_high |= E1000_RAH_AV; | 
|---|
| 4363 | break; | 
|---|
| 4364 | } | 
|---|
| 4365 |  | 
|---|
| 4366 | E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low); | 
|---|
| 4367 | E1000_WRITE_FLUSH(); | 
|---|
| 4368 | E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high); | 
|---|
| 4369 | E1000_WRITE_FLUSH(); | 
|---|
| 4370 | } | 
|---|
| 4371 |  | 
|---|
| 4372 | /** | 
|---|
| 4373 | * e1000_write_vfta - Writes a value to the specified offset in the VLAN filter table. | 
|---|
| 4374 | * @hw: Struct containing variables accessed by shared code | 
|---|
| 4375 | * @offset: Offset in VLAN filter table to write | 
|---|
| 4376 | * @value: Value to write into VLAN filter table | 
|---|
| 4377 | */ | 
|---|
| 4378 | void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value) | 
|---|
| 4379 | { | 
|---|
| 4380 | u32 temp; | 
|---|
| 4381 |  | 
|---|
| 4382 | if ((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) { | 
|---|
| 4383 | temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1)); | 
|---|
| 4384 | E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value); | 
|---|
| 4385 | E1000_WRITE_FLUSH(); | 
|---|
| 4386 | E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp); | 
|---|
| 4387 | E1000_WRITE_FLUSH(); | 
|---|
| 4388 | } else { | 
|---|
| 4389 | E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value); | 
|---|
| 4390 | E1000_WRITE_FLUSH(); | 
|---|
| 4391 | } | 
|---|
| 4392 | } | 
|---|
| 4393 |  | 
|---|
| 4394 | /** | 
|---|
| 4395 | * e1000_clear_vfta - Clears the VLAN filter table | 
|---|
| 4396 | * @hw: Struct containing variables accessed by shared code | 
|---|
| 4397 | */ | 
|---|
| 4398 | static void e1000_clear_vfta(struct e1000_hw *hw) | 
|---|
| 4399 | { | 
|---|
| 4400 | u32 offset; | 
|---|
| 4401 |  | 
|---|
| 4402 | for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { | 
|---|
| 4403 | E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0); | 
|---|
| 4404 | E1000_WRITE_FLUSH(); | 
|---|
| 4405 | } | 
|---|
| 4406 | } | 
|---|
| 4407 |  | 
|---|
| 4408 | static s32 e1000_id_led_init(struct e1000_hw *hw) | 
|---|
| 4409 | { | 
|---|
| 4410 | u32 ledctl; | 
|---|
| 4411 | const u32 ledctl_mask = 0x000000FF; | 
|---|
| 4412 | const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON; | 
|---|
| 4413 | const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF; | 
|---|
| 4414 | u16 eeprom_data, i, temp; | 
|---|
| 4415 | const u16 led_mask = 0x0F; | 
|---|
| 4416 |  | 
|---|
| 4417 | if (hw->mac_type < e1000_82540) { | 
|---|
| 4418 | /* Nothing to do */ | 
|---|
| 4419 | return E1000_SUCCESS; | 
|---|
| 4420 | } | 
|---|
| 4421 |  | 
|---|
| 4422 | ledctl = er32(LEDCTL); | 
|---|
| 4423 | hw->ledctl_default = ledctl; | 
|---|
| 4424 | hw->ledctl_mode1 = hw->ledctl_default; | 
|---|
| 4425 | hw->ledctl_mode2 = hw->ledctl_default; | 
|---|
| 4426 |  | 
|---|
| 4427 | if (e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, words: 1, data: &eeprom_data) < 0) { | 
|---|
| 4428 | e_dbg( "EEPROM Read Error\n"); | 
|---|
| 4429 | return -E1000_ERR_EEPROM; | 
|---|
| 4430 | } | 
|---|
| 4431 |  | 
|---|
| 4432 | if ((eeprom_data == ID_LED_RESERVED_0000) || | 
|---|
| 4433 | (eeprom_data == ID_LED_RESERVED_FFFF)) { | 
|---|
| 4434 | eeprom_data = ID_LED_DEFAULT; | 
|---|
| 4435 | } | 
|---|
| 4436 |  | 
|---|
| 4437 | for (i = 0; i < 4; i++) { | 
|---|
| 4438 | temp = (eeprom_data >> (i << 2)) & led_mask; | 
|---|
| 4439 | switch (temp) { | 
|---|
| 4440 | case ID_LED_ON1_DEF2: | 
|---|
| 4441 | case ID_LED_ON1_ON2: | 
|---|
| 4442 | case ID_LED_ON1_OFF2: | 
|---|
| 4443 | hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); | 
|---|
| 4444 | hw->ledctl_mode1 |= ledctl_on << (i << 3); | 
|---|
| 4445 | break; | 
|---|
| 4446 | case ID_LED_OFF1_DEF2: | 
|---|
| 4447 | case ID_LED_OFF1_ON2: | 
|---|
| 4448 | case ID_LED_OFF1_OFF2: | 
|---|
| 4449 | hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); | 
|---|
| 4450 | hw->ledctl_mode1 |= ledctl_off << (i << 3); | 
|---|
| 4451 | break; | 
|---|
| 4452 | default: | 
|---|
| 4453 | /* Do nothing */ | 
|---|
| 4454 | break; | 
|---|
| 4455 | } | 
|---|
| 4456 | switch (temp) { | 
|---|
| 4457 | case ID_LED_DEF1_ON2: | 
|---|
| 4458 | case ID_LED_ON1_ON2: | 
|---|
| 4459 | case ID_LED_OFF1_ON2: | 
|---|
| 4460 | hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); | 
|---|
| 4461 | hw->ledctl_mode2 |= ledctl_on << (i << 3); | 
|---|
| 4462 | break; | 
|---|
| 4463 | case ID_LED_DEF1_OFF2: | 
|---|
| 4464 | case ID_LED_ON1_OFF2: | 
|---|
| 4465 | case ID_LED_OFF1_OFF2: | 
|---|
| 4466 | hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); | 
|---|
| 4467 | hw->ledctl_mode2 |= ledctl_off << (i << 3); | 
|---|
| 4468 | break; | 
|---|
| 4469 | default: | 
|---|
| 4470 | /* Do nothing */ | 
|---|
| 4471 | break; | 
|---|
| 4472 | } | 
|---|
| 4473 | } | 
|---|
| 4474 | return E1000_SUCCESS; | 
|---|
| 4475 | } | 
|---|
| 4476 |  | 
|---|
| 4477 | /** | 
|---|
| 4478 | * e1000_setup_led | 
|---|
| 4479 | * @hw: Struct containing variables accessed by shared code | 
|---|
| 4480 | * | 
|---|
| 4481 | * Prepares SW controlable LED for use and saves the current state of the LED. | 
|---|
| 4482 | */ | 
|---|
| 4483 | s32 e1000_setup_led(struct e1000_hw *hw) | 
|---|
| 4484 | { | 
|---|
| 4485 | u32 ledctl; | 
|---|
| 4486 | s32 ret_val = E1000_SUCCESS; | 
|---|
| 4487 |  | 
|---|
| 4488 | switch (hw->mac_type) { | 
|---|
| 4489 | case e1000_82542_rev2_0: | 
|---|
| 4490 | case e1000_82542_rev2_1: | 
|---|
| 4491 | case e1000_82543: | 
|---|
| 4492 | case e1000_82544: | 
|---|
| 4493 | /* No setup necessary */ | 
|---|
| 4494 | break; | 
|---|
| 4495 | case e1000_82541: | 
|---|
| 4496 | case e1000_82547: | 
|---|
| 4497 | case e1000_82541_rev_2: | 
|---|
| 4498 | case e1000_82547_rev_2: | 
|---|
| 4499 | /* Turn off PHY Smart Power Down (if enabled) */ | 
|---|
| 4500 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, | 
|---|
| 4501 | phy_data: &hw->phy_spd_default); | 
|---|
| 4502 | if (ret_val) | 
|---|
| 4503 | return ret_val; | 
|---|
| 4504 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, | 
|---|
| 4505 | phy_data: (u16)(hw->phy_spd_default & | 
|---|
| 4506 | ~IGP01E1000_GMII_SPD)); | 
|---|
| 4507 | if (ret_val) | 
|---|
| 4508 | return ret_val; | 
|---|
| 4509 | fallthrough; | 
|---|
| 4510 | default: | 
|---|
| 4511 | if (hw->media_type == e1000_media_type_fiber) { | 
|---|
| 4512 | ledctl = er32(LEDCTL); | 
|---|
| 4513 | /* Save current LEDCTL settings */ | 
|---|
| 4514 | hw->ledctl_default = ledctl; | 
|---|
| 4515 | /* Turn off LED0 */ | 
|---|
| 4516 | ledctl &= ~(E1000_LEDCTL_LED0_IVRT | | 
|---|
| 4517 | E1000_LEDCTL_LED0_BLINK | | 
|---|
| 4518 | E1000_LEDCTL_LED0_MODE_MASK); | 
|---|
| 4519 | ledctl |= (E1000_LEDCTL_MODE_LED_OFF << | 
|---|
| 4520 | E1000_LEDCTL_LED0_MODE_SHIFT); | 
|---|
| 4521 | ew32(LEDCTL, ledctl); | 
|---|
| 4522 | } else if (hw->media_type == e1000_media_type_copper) | 
|---|
| 4523 | ew32(LEDCTL, hw->ledctl_mode1); | 
|---|
| 4524 | break; | 
|---|
| 4525 | } | 
|---|
| 4526 |  | 
|---|
| 4527 | return E1000_SUCCESS; | 
|---|
| 4528 | } | 
|---|
| 4529 |  | 
|---|
| 4530 | /** | 
|---|
| 4531 | * e1000_cleanup_led - Restores the saved state of the SW controlable LED. | 
|---|
| 4532 | * @hw: Struct containing variables accessed by shared code | 
|---|
| 4533 | */ | 
|---|
| 4534 | s32 e1000_cleanup_led(struct e1000_hw *hw) | 
|---|
| 4535 | { | 
|---|
| 4536 | s32 ret_val = E1000_SUCCESS; | 
|---|
| 4537 |  | 
|---|
| 4538 | switch (hw->mac_type) { | 
|---|
| 4539 | case e1000_82542_rev2_0: | 
|---|
| 4540 | case e1000_82542_rev2_1: | 
|---|
| 4541 | case e1000_82543: | 
|---|
| 4542 | case e1000_82544: | 
|---|
| 4543 | /* No cleanup necessary */ | 
|---|
| 4544 | break; | 
|---|
| 4545 | case e1000_82541: | 
|---|
| 4546 | case e1000_82547: | 
|---|
| 4547 | case e1000_82541_rev_2: | 
|---|
| 4548 | case e1000_82547_rev_2: | 
|---|
| 4549 | /* Turn on PHY Smart Power Down (if previously enabled) */ | 
|---|
| 4550 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, | 
|---|
| 4551 | phy_data: hw->phy_spd_default); | 
|---|
| 4552 | if (ret_val) | 
|---|
| 4553 | return ret_val; | 
|---|
| 4554 | fallthrough; | 
|---|
| 4555 | default: | 
|---|
| 4556 | /* Restore LEDCTL settings */ | 
|---|
| 4557 | ew32(LEDCTL, hw->ledctl_default); | 
|---|
| 4558 | break; | 
|---|
| 4559 | } | 
|---|
| 4560 |  | 
|---|
| 4561 | return E1000_SUCCESS; | 
|---|
| 4562 | } | 
|---|
| 4563 |  | 
|---|
| 4564 | /** | 
|---|
| 4565 | * e1000_led_on - Turns on the software controllable LED | 
|---|
| 4566 | * @hw: Struct containing variables accessed by shared code | 
|---|
| 4567 | */ | 
|---|
| 4568 | s32 e1000_led_on(struct e1000_hw *hw) | 
|---|
| 4569 | { | 
|---|
| 4570 | u32 ctrl = er32(CTRL); | 
|---|
| 4571 |  | 
|---|
| 4572 | switch (hw->mac_type) { | 
|---|
| 4573 | case e1000_82542_rev2_0: | 
|---|
| 4574 | case e1000_82542_rev2_1: | 
|---|
| 4575 | case e1000_82543: | 
|---|
| 4576 | /* Set SW Defineable Pin 0 to turn on the LED */ | 
|---|
| 4577 | ctrl |= E1000_CTRL_SWDPIN0; | 
|---|
| 4578 | ctrl |= E1000_CTRL_SWDPIO0; | 
|---|
| 4579 | break; | 
|---|
| 4580 | case e1000_82544: | 
|---|
| 4581 | if (hw->media_type == e1000_media_type_fiber) { | 
|---|
| 4582 | /* Set SW Defineable Pin 0 to turn on the LED */ | 
|---|
| 4583 | ctrl |= E1000_CTRL_SWDPIN0; | 
|---|
| 4584 | ctrl |= E1000_CTRL_SWDPIO0; | 
|---|
| 4585 | } else { | 
|---|
| 4586 | /* Clear SW Defineable Pin 0 to turn on the LED */ | 
|---|
| 4587 | ctrl &= ~E1000_CTRL_SWDPIN0; | 
|---|
| 4588 | ctrl |= E1000_CTRL_SWDPIO0; | 
|---|
| 4589 | } | 
|---|
| 4590 | break; | 
|---|
| 4591 | default: | 
|---|
| 4592 | if (hw->media_type == e1000_media_type_fiber) { | 
|---|
| 4593 | /* Clear SW Defineable Pin 0 to turn on the LED */ | 
|---|
| 4594 | ctrl &= ~E1000_CTRL_SWDPIN0; | 
|---|
| 4595 | ctrl |= E1000_CTRL_SWDPIO0; | 
|---|
| 4596 | } else if (hw->media_type == e1000_media_type_copper) { | 
|---|
| 4597 | ew32(LEDCTL, hw->ledctl_mode2); | 
|---|
| 4598 | return E1000_SUCCESS; | 
|---|
| 4599 | } | 
|---|
| 4600 | break; | 
|---|
| 4601 | } | 
|---|
| 4602 |  | 
|---|
| 4603 | ew32(CTRL, ctrl); | 
|---|
| 4604 |  | 
|---|
| 4605 | return E1000_SUCCESS; | 
|---|
| 4606 | } | 
|---|
| 4607 |  | 
|---|
| 4608 | /** | 
|---|
| 4609 | * e1000_led_off - Turns off the software controllable LED | 
|---|
| 4610 | * @hw: Struct containing variables accessed by shared code | 
|---|
| 4611 | */ | 
|---|
| 4612 | s32 e1000_led_off(struct e1000_hw *hw) | 
|---|
| 4613 | { | 
|---|
| 4614 | u32 ctrl = er32(CTRL); | 
|---|
| 4615 |  | 
|---|
| 4616 | switch (hw->mac_type) { | 
|---|
| 4617 | case e1000_82542_rev2_0: | 
|---|
| 4618 | case e1000_82542_rev2_1: | 
|---|
| 4619 | case e1000_82543: | 
|---|
| 4620 | /* Clear SW Defineable Pin 0 to turn off the LED */ | 
|---|
| 4621 | ctrl &= ~E1000_CTRL_SWDPIN0; | 
|---|
| 4622 | ctrl |= E1000_CTRL_SWDPIO0; | 
|---|
| 4623 | break; | 
|---|
| 4624 | case e1000_82544: | 
|---|
| 4625 | if (hw->media_type == e1000_media_type_fiber) { | 
|---|
| 4626 | /* Clear SW Defineable Pin 0 to turn off the LED */ | 
|---|
| 4627 | ctrl &= ~E1000_CTRL_SWDPIN0; | 
|---|
| 4628 | ctrl |= E1000_CTRL_SWDPIO0; | 
|---|
| 4629 | } else { | 
|---|
| 4630 | /* Set SW Defineable Pin 0 to turn off the LED */ | 
|---|
| 4631 | ctrl |= E1000_CTRL_SWDPIN0; | 
|---|
| 4632 | ctrl |= E1000_CTRL_SWDPIO0; | 
|---|
| 4633 | } | 
|---|
| 4634 | break; | 
|---|
| 4635 | default: | 
|---|
| 4636 | if (hw->media_type == e1000_media_type_fiber) { | 
|---|
| 4637 | /* Set SW Defineable Pin 0 to turn off the LED */ | 
|---|
| 4638 | ctrl |= E1000_CTRL_SWDPIN0; | 
|---|
| 4639 | ctrl |= E1000_CTRL_SWDPIO0; | 
|---|
| 4640 | } else if (hw->media_type == e1000_media_type_copper) { | 
|---|
| 4641 | ew32(LEDCTL, hw->ledctl_mode1); | 
|---|
| 4642 | return E1000_SUCCESS; | 
|---|
| 4643 | } | 
|---|
| 4644 | break; | 
|---|
| 4645 | } | 
|---|
| 4646 |  | 
|---|
| 4647 | ew32(CTRL, ctrl); | 
|---|
| 4648 |  | 
|---|
| 4649 | return E1000_SUCCESS; | 
|---|
| 4650 | } | 
|---|
| 4651 |  | 
|---|
| 4652 | /** | 
|---|
| 4653 | * e1000_clear_hw_cntrs - Clears all hardware statistics counters. | 
|---|
| 4654 | * @hw: Struct containing variables accessed by shared code | 
|---|
| 4655 | */ | 
|---|
| 4656 | static void e1000_clear_hw_cntrs(struct e1000_hw *hw) | 
|---|
| 4657 | { | 
|---|
| 4658 | er32(CRCERRS); | 
|---|
| 4659 | er32(SYMERRS); | 
|---|
| 4660 | er32(MPC); | 
|---|
| 4661 | er32(SCC); | 
|---|
| 4662 | er32(ECOL); | 
|---|
| 4663 | er32(MCC); | 
|---|
| 4664 | er32(LATECOL); | 
|---|
| 4665 | er32(COLC); | 
|---|
| 4666 | er32(DC); | 
|---|
| 4667 | er32(SEC); | 
|---|
| 4668 | er32(RLEC); | 
|---|
| 4669 | er32(XONRXC); | 
|---|
| 4670 | er32(XONTXC); | 
|---|
| 4671 | er32(XOFFRXC); | 
|---|
| 4672 | er32(XOFFTXC); | 
|---|
| 4673 | er32(FCRUC); | 
|---|
| 4674 |  | 
|---|
| 4675 | er32(PRC64); | 
|---|
| 4676 | er32(PRC127); | 
|---|
| 4677 | er32(PRC255); | 
|---|
| 4678 | er32(PRC511); | 
|---|
| 4679 | er32(PRC1023); | 
|---|
| 4680 | er32(PRC1522); | 
|---|
| 4681 |  | 
|---|
| 4682 | er32(GPRC); | 
|---|
| 4683 | er32(BPRC); | 
|---|
| 4684 | er32(MPRC); | 
|---|
| 4685 | er32(GPTC); | 
|---|
| 4686 | er32(GORCL); | 
|---|
| 4687 | er32(GORCH); | 
|---|
| 4688 | er32(GOTCL); | 
|---|
| 4689 | er32(GOTCH); | 
|---|
| 4690 | er32(RNBC); | 
|---|
| 4691 | er32(RUC); | 
|---|
| 4692 | er32(RFC); | 
|---|
| 4693 | er32(ROC); | 
|---|
| 4694 | er32(RJC); | 
|---|
| 4695 | er32(TORL); | 
|---|
| 4696 | er32(TORH); | 
|---|
| 4697 | er32(TOTL); | 
|---|
| 4698 | er32(TOTH); | 
|---|
| 4699 | er32(TPR); | 
|---|
| 4700 | er32(TPT); | 
|---|
| 4701 |  | 
|---|
| 4702 | er32(PTC64); | 
|---|
| 4703 | er32(PTC127); | 
|---|
| 4704 | er32(PTC255); | 
|---|
| 4705 | er32(PTC511); | 
|---|
| 4706 | er32(PTC1023); | 
|---|
| 4707 | er32(PTC1522); | 
|---|
| 4708 |  | 
|---|
| 4709 | er32(MPTC); | 
|---|
| 4710 | er32(BPTC); | 
|---|
| 4711 |  | 
|---|
| 4712 | if (hw->mac_type < e1000_82543) | 
|---|
| 4713 | return; | 
|---|
| 4714 |  | 
|---|
| 4715 | er32(ALGNERRC); | 
|---|
| 4716 | er32(RXERRC); | 
|---|
| 4717 | er32(TNCRS); | 
|---|
| 4718 | er32(CEXTERR); | 
|---|
| 4719 | er32(TSCTC); | 
|---|
| 4720 | er32(TSCTFC); | 
|---|
| 4721 |  | 
|---|
| 4722 | if (hw->mac_type <= e1000_82544) | 
|---|
| 4723 | return; | 
|---|
| 4724 |  | 
|---|
| 4725 | er32(MGTPRC); | 
|---|
| 4726 | er32(MGTPDC); | 
|---|
| 4727 | er32(MGTPTC); | 
|---|
| 4728 | } | 
|---|
| 4729 |  | 
|---|
| 4730 | /** | 
|---|
| 4731 | * e1000_reset_adaptive - Resets Adaptive IFS to its default state. | 
|---|
| 4732 | * @hw: Struct containing variables accessed by shared code | 
|---|
| 4733 | * | 
|---|
| 4734 | * Call this after e1000_init_hw. You may override the IFS defaults by setting | 
|---|
| 4735 | * hw->ifs_params_forced to true. However, you must initialize hw-> | 
|---|
| 4736 | * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio | 
|---|
| 4737 | * before calling this function. | 
|---|
| 4738 | */ | 
|---|
| 4739 | void e1000_reset_adaptive(struct e1000_hw *hw) | 
|---|
| 4740 | { | 
|---|
| 4741 | if (hw->adaptive_ifs) { | 
|---|
| 4742 | if (!hw->ifs_params_forced) { | 
|---|
| 4743 | hw->current_ifs_val = 0; | 
|---|
| 4744 | hw->ifs_min_val = IFS_MIN; | 
|---|
| 4745 | hw->ifs_max_val = IFS_MAX; | 
|---|
| 4746 | hw->ifs_step_size = IFS_STEP; | 
|---|
| 4747 | hw->ifs_ratio = IFS_RATIO; | 
|---|
| 4748 | } | 
|---|
| 4749 | hw->in_ifs_mode = false; | 
|---|
| 4750 | ew32(AIT, 0); | 
|---|
| 4751 | } else { | 
|---|
| 4752 | e_dbg( "Not in Adaptive IFS mode!\n"); | 
|---|
| 4753 | } | 
|---|
| 4754 | } | 
|---|
| 4755 |  | 
|---|
| 4756 | /** | 
|---|
| 4757 | * e1000_update_adaptive - update adaptive IFS | 
|---|
| 4758 | * @hw: Struct containing variables accessed by shared code | 
|---|
| 4759 | * | 
|---|
| 4760 | * Called during the callback/watchdog routine to update IFS value based on | 
|---|
| 4761 | * the ratio of transmits to collisions. | 
|---|
| 4762 | */ | 
|---|
| 4763 | void e1000_update_adaptive(struct e1000_hw *hw) | 
|---|
| 4764 | { | 
|---|
| 4765 | if (hw->adaptive_ifs) { | 
|---|
| 4766 | if ((hw->collision_delta * hw->ifs_ratio) > hw->tx_packet_delta) { | 
|---|
| 4767 | if (hw->tx_packet_delta > MIN_NUM_XMITS) { | 
|---|
| 4768 | hw->in_ifs_mode = true; | 
|---|
| 4769 | if (hw->current_ifs_val < hw->ifs_max_val) { | 
|---|
| 4770 | if (hw->current_ifs_val == 0) | 
|---|
| 4771 | hw->current_ifs_val = | 
|---|
| 4772 | hw->ifs_min_val; | 
|---|
| 4773 | else | 
|---|
| 4774 | hw->current_ifs_val += | 
|---|
| 4775 | hw->ifs_step_size; | 
|---|
| 4776 | ew32(AIT, hw->current_ifs_val); | 
|---|
| 4777 | } | 
|---|
| 4778 | } | 
|---|
| 4779 | } else { | 
|---|
| 4780 | if (hw->in_ifs_mode && | 
|---|
| 4781 | (hw->tx_packet_delta <= MIN_NUM_XMITS)) { | 
|---|
| 4782 | hw->current_ifs_val = 0; | 
|---|
| 4783 | hw->in_ifs_mode = false; | 
|---|
| 4784 | ew32(AIT, 0); | 
|---|
| 4785 | } | 
|---|
| 4786 | } | 
|---|
| 4787 | } else { | 
|---|
| 4788 | e_dbg( "Not in Adaptive IFS mode!\n"); | 
|---|
| 4789 | } | 
|---|
| 4790 | } | 
|---|
| 4791 |  | 
|---|
| 4792 | /** | 
|---|
| 4793 | * e1000_get_bus_info | 
|---|
| 4794 | * @hw: Struct containing variables accessed by shared code | 
|---|
| 4795 | * | 
|---|
| 4796 | * Gets the current PCI bus type, speed, and width of the hardware | 
|---|
| 4797 | */ | 
|---|
| 4798 | void e1000_get_bus_info(struct e1000_hw *hw) | 
|---|
| 4799 | { | 
|---|
| 4800 | u32 status; | 
|---|
| 4801 |  | 
|---|
| 4802 | switch (hw->mac_type) { | 
|---|
| 4803 | case e1000_82542_rev2_0: | 
|---|
| 4804 | case e1000_82542_rev2_1: | 
|---|
| 4805 | hw->bus_type = e1000_bus_type_pci; | 
|---|
| 4806 | hw->bus_speed = e1000_bus_speed_unknown; | 
|---|
| 4807 | hw->bus_width = e1000_bus_width_unknown; | 
|---|
| 4808 | break; | 
|---|
| 4809 | default: | 
|---|
| 4810 | status = er32(STATUS); | 
|---|
| 4811 | hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ? | 
|---|
| 4812 | e1000_bus_type_pcix : e1000_bus_type_pci; | 
|---|
| 4813 |  | 
|---|
| 4814 | if (hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) { | 
|---|
| 4815 | hw->bus_speed = (hw->bus_type == e1000_bus_type_pci) ? | 
|---|
| 4816 | e1000_bus_speed_66 : e1000_bus_speed_120; | 
|---|
| 4817 | } else if (hw->bus_type == e1000_bus_type_pci) { | 
|---|
| 4818 | hw->bus_speed = (status & E1000_STATUS_PCI66) ? | 
|---|
| 4819 | e1000_bus_speed_66 : e1000_bus_speed_33; | 
|---|
| 4820 | } else { | 
|---|
| 4821 | switch (status & E1000_STATUS_PCIX_SPEED) { | 
|---|
| 4822 | case E1000_STATUS_PCIX_SPEED_66: | 
|---|
| 4823 | hw->bus_speed = e1000_bus_speed_66; | 
|---|
| 4824 | break; | 
|---|
| 4825 | case E1000_STATUS_PCIX_SPEED_100: | 
|---|
| 4826 | hw->bus_speed = e1000_bus_speed_100; | 
|---|
| 4827 | break; | 
|---|
| 4828 | case E1000_STATUS_PCIX_SPEED_133: | 
|---|
| 4829 | hw->bus_speed = e1000_bus_speed_133; | 
|---|
| 4830 | break; | 
|---|
| 4831 | default: | 
|---|
| 4832 | hw->bus_speed = e1000_bus_speed_reserved; | 
|---|
| 4833 | break; | 
|---|
| 4834 | } | 
|---|
| 4835 | } | 
|---|
| 4836 | hw->bus_width = (status & E1000_STATUS_BUS64) ? | 
|---|
| 4837 | e1000_bus_width_64 : e1000_bus_width_32; | 
|---|
| 4838 | break; | 
|---|
| 4839 | } | 
|---|
| 4840 | } | 
|---|
| 4841 |  | 
|---|
| 4842 | /** | 
|---|
| 4843 | * e1000_write_reg_io | 
|---|
| 4844 | * @hw: Struct containing variables accessed by shared code | 
|---|
| 4845 | * @offset: offset to write to | 
|---|
| 4846 | * @value: value to write | 
|---|
| 4847 | * | 
|---|
| 4848 | * Writes a value to one of the devices registers using port I/O (as opposed to | 
|---|
| 4849 | * memory mapped I/O). Only 82544 and newer devices support port I/O. | 
|---|
| 4850 | */ | 
|---|
| 4851 | static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value) | 
|---|
| 4852 | { | 
|---|
| 4853 | unsigned long io_addr = hw->io_base; | 
|---|
| 4854 | unsigned long io_data = hw->io_base + 4; | 
|---|
| 4855 |  | 
|---|
| 4856 | e1000_io_write(hw, port: io_addr, value: offset); | 
|---|
| 4857 | e1000_io_write(hw, port: io_data, value); | 
|---|
| 4858 | } | 
|---|
| 4859 |  | 
|---|
| 4860 | /** | 
|---|
| 4861 | * e1000_get_cable_length - Estimates the cable length. | 
|---|
| 4862 | * @hw: Struct containing variables accessed by shared code | 
|---|
| 4863 | * @min_length: The estimated minimum length | 
|---|
| 4864 | * @max_length: The estimated maximum length | 
|---|
| 4865 | * | 
|---|
| 4866 | * returns: - E1000_ERR_XXX | 
|---|
| 4867 | *            E1000_SUCCESS | 
|---|
| 4868 | * | 
|---|
| 4869 | * This function always returns a ranged length (minimum & maximum). | 
|---|
| 4870 | * So for M88 phy's, this function interprets the one value returned from the | 
|---|
| 4871 | * register to the minimum and maximum range. | 
|---|
| 4872 | * For IGP phy's, the function calculates the range by the AGC registers. | 
|---|
| 4873 | */ | 
|---|
| 4874 | static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length, | 
|---|
| 4875 | u16 *max_length) | 
|---|
| 4876 | { | 
|---|
| 4877 | s32 ret_val; | 
|---|
| 4878 | u16 agc_value = 0; | 
|---|
| 4879 | u16 i, phy_data; | 
|---|
| 4880 | u16 cable_length; | 
|---|
| 4881 |  | 
|---|
| 4882 | *min_length = *max_length = 0; | 
|---|
| 4883 |  | 
|---|
| 4884 | /* Use old method for Phy older than IGP */ | 
|---|
| 4885 | if (hw->phy_type == e1000_phy_m88) { | 
|---|
| 4886 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, | 
|---|
| 4887 | phy_data: &phy_data); | 
|---|
| 4888 | if (ret_val) | 
|---|
| 4889 | return ret_val; | 
|---|
| 4890 | cable_length = FIELD_GET(M88E1000_PSSR_CABLE_LENGTH, phy_data); | 
|---|
| 4891 |  | 
|---|
| 4892 | /* Convert the enum value to ranged values */ | 
|---|
| 4893 | switch (cable_length) { | 
|---|
| 4894 | case e1000_cable_length_50: | 
|---|
| 4895 | *min_length = 0; | 
|---|
| 4896 | *max_length = e1000_igp_cable_length_50; | 
|---|
| 4897 | break; | 
|---|
| 4898 | case e1000_cable_length_50_80: | 
|---|
| 4899 | *min_length = e1000_igp_cable_length_50; | 
|---|
| 4900 | *max_length = e1000_igp_cable_length_80; | 
|---|
| 4901 | break; | 
|---|
| 4902 | case e1000_cable_length_80_110: | 
|---|
| 4903 | *min_length = e1000_igp_cable_length_80; | 
|---|
| 4904 | *max_length = e1000_igp_cable_length_110; | 
|---|
| 4905 | break; | 
|---|
| 4906 | case e1000_cable_length_110_140: | 
|---|
| 4907 | *min_length = e1000_igp_cable_length_110; | 
|---|
| 4908 | *max_length = e1000_igp_cable_length_140; | 
|---|
| 4909 | break; | 
|---|
| 4910 | case e1000_cable_length_140: | 
|---|
| 4911 | *min_length = e1000_igp_cable_length_140; | 
|---|
| 4912 | *max_length = e1000_igp_cable_length_170; | 
|---|
| 4913 | break; | 
|---|
| 4914 | default: | 
|---|
| 4915 | return -E1000_ERR_PHY; | 
|---|
| 4916 | } | 
|---|
| 4917 | } else if (hw->phy_type == e1000_phy_igp) {	/* For IGP PHY */ | 
|---|
| 4918 | u16 cur_agc_value; | 
|---|
| 4919 | u16 min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE; | 
|---|
| 4920 | static const u16 agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = { | 
|---|
| 4921 | IGP01E1000_PHY_AGC_A, | 
|---|
| 4922 | IGP01E1000_PHY_AGC_B, | 
|---|
| 4923 | IGP01E1000_PHY_AGC_C, | 
|---|
| 4924 | IGP01E1000_PHY_AGC_D | 
|---|
| 4925 | }; | 
|---|
| 4926 | /* Read the AGC registers for all channels */ | 
|---|
| 4927 | for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { | 
|---|
| 4928 | ret_val = | 
|---|
| 4929 | e1000_read_phy_reg(hw, reg_addr: agc_reg_array[i], phy_data: &phy_data); | 
|---|
| 4930 | if (ret_val) | 
|---|
| 4931 | return ret_val; | 
|---|
| 4932 |  | 
|---|
| 4933 | cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT; | 
|---|
| 4934 |  | 
|---|
| 4935 | /* Value bound check. */ | 
|---|
| 4936 | if ((cur_agc_value >= | 
|---|
| 4937 | IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) || | 
|---|
| 4938 | (cur_agc_value == 0)) | 
|---|
| 4939 | return -E1000_ERR_PHY; | 
|---|
| 4940 |  | 
|---|
| 4941 | agc_value += cur_agc_value; | 
|---|
| 4942 |  | 
|---|
| 4943 | /* Update minimal AGC value. */ | 
|---|
| 4944 | if (min_agc_value > cur_agc_value) | 
|---|
| 4945 | min_agc_value = cur_agc_value; | 
|---|
| 4946 | } | 
|---|
| 4947 |  | 
|---|
| 4948 | /* Remove the minimal AGC result for length < 50m */ | 
|---|
| 4949 | if (agc_value < | 
|---|
| 4950 | IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) { | 
|---|
| 4951 | agc_value -= min_agc_value; | 
|---|
| 4952 |  | 
|---|
| 4953 | /* Get the average length of the remaining 3 channels */ | 
|---|
| 4954 | agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1); | 
|---|
| 4955 | } else { | 
|---|
| 4956 | /* Get the average length of all the 4 channels. */ | 
|---|
| 4957 | agc_value /= IGP01E1000_PHY_CHANNEL_NUM; | 
|---|
| 4958 | } | 
|---|
| 4959 |  | 
|---|
| 4960 | /* Set the range of the calculated length. */ | 
|---|
| 4961 | *min_length = ((e1000_igp_cable_length_table[agc_value] - | 
|---|
| 4962 | IGP01E1000_AGC_RANGE) > 0) ? | 
|---|
| 4963 | (e1000_igp_cable_length_table[agc_value] - | 
|---|
| 4964 | IGP01E1000_AGC_RANGE) : 0; | 
|---|
| 4965 | *max_length = e1000_igp_cable_length_table[agc_value] + | 
|---|
| 4966 | IGP01E1000_AGC_RANGE; | 
|---|
| 4967 | } | 
|---|
| 4968 |  | 
|---|
| 4969 | return E1000_SUCCESS; | 
|---|
| 4970 | } | 
|---|
| 4971 |  | 
|---|
| 4972 | /** | 
|---|
| 4973 | * e1000_check_polarity - Check the cable polarity | 
|---|
| 4974 | * @hw: Struct containing variables accessed by shared code | 
|---|
| 4975 | * @polarity: output parameter : 0 - Polarity is not reversed | 
|---|
| 4976 | *                               1 - Polarity is reversed. | 
|---|
| 4977 | * | 
|---|
| 4978 | * returns: - E1000_ERR_XXX | 
|---|
| 4979 | *            E1000_SUCCESS | 
|---|
| 4980 | * | 
|---|
| 4981 | * For phy's older than IGP, this function simply reads the polarity bit in the | 
|---|
| 4982 | * Phy Status register.  For IGP phy's, this bit is valid only if link speed is | 
|---|
| 4983 | * 10 Mbps.  If the link speed is 100 Mbps there is no polarity so this bit will | 
|---|
| 4984 | * return 0.  If the link speed is 1000 Mbps the polarity status is in the | 
|---|
| 4985 | * IGP01E1000_PHY_PCS_INIT_REG. | 
|---|
| 4986 | */ | 
|---|
| 4987 | static s32 e1000_check_polarity(struct e1000_hw *hw, | 
|---|
| 4988 | e1000_rev_polarity *polarity) | 
|---|
| 4989 | { | 
|---|
| 4990 | s32 ret_val; | 
|---|
| 4991 | u16 phy_data; | 
|---|
| 4992 |  | 
|---|
| 4993 | if (hw->phy_type == e1000_phy_m88) { | 
|---|
| 4994 | /* return the Polarity bit in the Status register. */ | 
|---|
| 4995 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, | 
|---|
| 4996 | phy_data: &phy_data); | 
|---|
| 4997 | if (ret_val) | 
|---|
| 4998 | return ret_val; | 
|---|
| 4999 | *polarity = FIELD_GET(M88E1000_PSSR_REV_POLARITY, phy_data) ? | 
|---|
| 5000 | e1000_rev_polarity_reversed : e1000_rev_polarity_normal; | 
|---|
| 5001 |  | 
|---|
| 5002 | } else if (hw->phy_type == e1000_phy_igp) { | 
|---|
| 5003 | /* Read the Status register to check the speed */ | 
|---|
| 5004 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, | 
|---|
| 5005 | phy_data: &phy_data); | 
|---|
| 5006 | if (ret_val) | 
|---|
| 5007 | return ret_val; | 
|---|
| 5008 |  | 
|---|
| 5009 | /* If speed is 1000 Mbps, must read the | 
|---|
| 5010 | * IGP01E1000_PHY_PCS_INIT_REG to find the polarity status | 
|---|
| 5011 | */ | 
|---|
| 5012 | if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) == | 
|---|
| 5013 | IGP01E1000_PSSR_SPEED_1000MBPS) { | 
|---|
| 5014 | /* Read the GIG initialization PCS register (0x00B4) */ | 
|---|
| 5015 | ret_val = | 
|---|
| 5016 | e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG, | 
|---|
| 5017 | phy_data: &phy_data); | 
|---|
| 5018 | if (ret_val) | 
|---|
| 5019 | return ret_val; | 
|---|
| 5020 |  | 
|---|
| 5021 | /* Check the polarity bits */ | 
|---|
| 5022 | *polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ? | 
|---|
| 5023 | e1000_rev_polarity_reversed : | 
|---|
| 5024 | e1000_rev_polarity_normal; | 
|---|
| 5025 | } else { | 
|---|
| 5026 | /* For 10 Mbps, read the polarity bit in the status | 
|---|
| 5027 | * register. (for 100 Mbps this bit is always 0) | 
|---|
| 5028 | */ | 
|---|
| 5029 | *polarity = | 
|---|
| 5030 | (phy_data & IGP01E1000_PSSR_POLARITY_REVERSED) ? | 
|---|
| 5031 | e1000_rev_polarity_reversed : | 
|---|
| 5032 | e1000_rev_polarity_normal; | 
|---|
| 5033 | } | 
|---|
| 5034 | } | 
|---|
| 5035 | return E1000_SUCCESS; | 
|---|
| 5036 | } | 
|---|
| 5037 |  | 
|---|
| 5038 | /** | 
|---|
| 5039 | * e1000_check_downshift - Check if Downshift occurred | 
|---|
| 5040 | * @hw: Struct containing variables accessed by shared code | 
|---|
| 5041 | * | 
|---|
| 5042 | * returns: - E1000_ERR_XXX | 
|---|
| 5043 | *            E1000_SUCCESS | 
|---|
| 5044 | * | 
|---|
| 5045 | * For phy's older than IGP, this function reads the Downshift bit in the Phy | 
|---|
| 5046 | * Specific Status register.  For IGP phy's, it reads the Downgrade bit in the | 
|---|
| 5047 | * Link Health register.  In IGP this bit is latched high, so the driver must | 
|---|
| 5048 | * read it immediately after link is established. | 
|---|
| 5049 | */ | 
|---|
| 5050 | static s32 e1000_check_downshift(struct e1000_hw *hw) | 
|---|
| 5051 | { | 
|---|
| 5052 | s32 ret_val; | 
|---|
| 5053 | u16 phy_data; | 
|---|
| 5054 |  | 
|---|
| 5055 | if (hw->phy_type == e1000_phy_igp) { | 
|---|
| 5056 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH, | 
|---|
| 5057 | phy_data: &phy_data); | 
|---|
| 5058 | if (ret_val) | 
|---|
| 5059 | return ret_val; | 
|---|
| 5060 |  | 
|---|
| 5061 | hw->speed_downgraded = | 
|---|
| 5062 | (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0; | 
|---|
| 5063 | } else if (hw->phy_type == e1000_phy_m88) { | 
|---|
| 5064 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, | 
|---|
| 5065 | phy_data: &phy_data); | 
|---|
| 5066 | if (ret_val) | 
|---|
| 5067 | return ret_val; | 
|---|
| 5068 |  | 
|---|
| 5069 | hw->speed_downgraded = FIELD_GET(M88E1000_PSSR_DOWNSHIFT, | 
|---|
| 5070 | phy_data); | 
|---|
| 5071 | } | 
|---|
| 5072 |  | 
|---|
| 5073 | return E1000_SUCCESS; | 
|---|
| 5074 | } | 
|---|
| 5075 |  | 
|---|
| 5076 | static const u16 dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = { | 
|---|
| 5077 | IGP01E1000_PHY_AGC_PARAM_A, | 
|---|
| 5078 | IGP01E1000_PHY_AGC_PARAM_B, | 
|---|
| 5079 | IGP01E1000_PHY_AGC_PARAM_C, | 
|---|
| 5080 | IGP01E1000_PHY_AGC_PARAM_D | 
|---|
| 5081 | }; | 
|---|
| 5082 |  | 
|---|
| 5083 | static s32 e1000_1000Mb_check_cable_length(struct e1000_hw *hw) | 
|---|
| 5084 | { | 
|---|
| 5085 | u16 min_length, max_length; | 
|---|
| 5086 | u16 phy_data, i; | 
|---|
| 5087 | s32 ret_val; | 
|---|
| 5088 |  | 
|---|
| 5089 | ret_val = e1000_get_cable_length(hw, min_length: &min_length, max_length: &max_length); | 
|---|
| 5090 | if (ret_val) | 
|---|
| 5091 | return ret_val; | 
|---|
| 5092 |  | 
|---|
| 5093 | if (hw->dsp_config_state != e1000_dsp_config_enabled) | 
|---|
| 5094 | return 0; | 
|---|
| 5095 |  | 
|---|
| 5096 | if (min_length >= e1000_igp_cable_length_50) { | 
|---|
| 5097 | for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { | 
|---|
| 5098 | ret_val = e1000_read_phy_reg(hw, reg_addr: dsp_reg_array[i], | 
|---|
| 5099 | phy_data: &phy_data); | 
|---|
| 5100 | if (ret_val) | 
|---|
| 5101 | return ret_val; | 
|---|
| 5102 |  | 
|---|
| 5103 | phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX; | 
|---|
| 5104 |  | 
|---|
| 5105 | ret_val = e1000_write_phy_reg(hw, reg_addr: dsp_reg_array[i], | 
|---|
| 5106 | phy_data); | 
|---|
| 5107 | if (ret_val) | 
|---|
| 5108 | return ret_val; | 
|---|
| 5109 | } | 
|---|
| 5110 | hw->dsp_config_state = e1000_dsp_config_activated; | 
|---|
| 5111 | } else { | 
|---|
| 5112 | u16 ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20; | 
|---|
| 5113 | u32 idle_errs = 0; | 
|---|
| 5114 |  | 
|---|
| 5115 | /* clear previous idle error counts */ | 
|---|
| 5116 | ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, phy_data: &phy_data); | 
|---|
| 5117 | if (ret_val) | 
|---|
| 5118 | return ret_val; | 
|---|
| 5119 |  | 
|---|
| 5120 | for (i = 0; i < ffe_idle_err_timeout; i++) { | 
|---|
| 5121 | udelay(usec: 1000); | 
|---|
| 5122 | ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, | 
|---|
| 5123 | phy_data: &phy_data); | 
|---|
| 5124 | if (ret_val) | 
|---|
| 5125 | return ret_val; | 
|---|
| 5126 |  | 
|---|
| 5127 | idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT); | 
|---|
| 5128 | if (idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) { | 
|---|
| 5129 | hw->ffe_config_state = e1000_ffe_config_active; | 
|---|
| 5130 |  | 
|---|
| 5131 | ret_val = e1000_write_phy_reg(hw, | 
|---|
| 5132 | IGP01E1000_PHY_DSP_FFE, | 
|---|
| 5133 | IGP01E1000_PHY_DSP_FFE_CM_CP); | 
|---|
| 5134 | if (ret_val) | 
|---|
| 5135 | return ret_val; | 
|---|
| 5136 | break; | 
|---|
| 5137 | } | 
|---|
| 5138 |  | 
|---|
| 5139 | if (idle_errs) | 
|---|
| 5140 | ffe_idle_err_timeout = | 
|---|
| 5141 | FFE_IDLE_ERR_COUNT_TIMEOUT_100; | 
|---|
| 5142 | } | 
|---|
| 5143 | } | 
|---|
| 5144 |  | 
|---|
| 5145 | return 0; | 
|---|
| 5146 | } | 
|---|
| 5147 |  | 
|---|
| 5148 | /** | 
|---|
| 5149 | * e1000_config_dsp_after_link_change | 
|---|
| 5150 | * @hw: Struct containing variables accessed by shared code | 
|---|
| 5151 | * @link_up: was link up at the time this was called | 
|---|
| 5152 | * | 
|---|
| 5153 | * returns: - E1000_ERR_PHY if fail to read/write the PHY | 
|---|
| 5154 | *            E1000_SUCCESS at any other case. | 
|---|
| 5155 | * | 
|---|
| 5156 | * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a | 
|---|
| 5157 | * gigabit link is achieved to improve link quality. | 
|---|
| 5158 | */ | 
|---|
| 5159 |  | 
|---|
| 5160 | static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw, bool link_up) | 
|---|
| 5161 | { | 
|---|
| 5162 | s32 ret_val; | 
|---|
| 5163 | u16 phy_data, phy_saved_data, speed, duplex, i; | 
|---|
| 5164 |  | 
|---|
| 5165 | if (hw->phy_type != e1000_phy_igp) | 
|---|
| 5166 | return E1000_SUCCESS; | 
|---|
| 5167 |  | 
|---|
| 5168 | if (link_up) { | 
|---|
| 5169 | ret_val = e1000_get_speed_and_duplex(hw, speed: &speed, duplex: &duplex); | 
|---|
| 5170 | if (ret_val) { | 
|---|
| 5171 | e_dbg( "Error getting link speed and duplex\n"); | 
|---|
| 5172 | return ret_val; | 
|---|
| 5173 | } | 
|---|
| 5174 |  | 
|---|
| 5175 | if (speed == SPEED_1000) { | 
|---|
| 5176 | ret_val = e1000_1000Mb_check_cable_length(hw); | 
|---|
| 5177 | if (ret_val) | 
|---|
| 5178 | return ret_val; | 
|---|
| 5179 | } | 
|---|
| 5180 | } else { | 
|---|
| 5181 | if (hw->dsp_config_state == e1000_dsp_config_activated) { | 
|---|
| 5182 | /* Save off the current value of register 0x2F5B to be | 
|---|
| 5183 | * restored at the end of the routines. | 
|---|
| 5184 | */ | 
|---|
| 5185 | ret_val = | 
|---|
| 5186 | e1000_read_phy_reg(hw, reg_addr: 0x2F5B, phy_data: &phy_saved_data); | 
|---|
| 5187 |  | 
|---|
| 5188 | if (ret_val) | 
|---|
| 5189 | return ret_val; | 
|---|
| 5190 |  | 
|---|
| 5191 | /* Disable the PHY transmitter */ | 
|---|
| 5192 | ret_val = e1000_write_phy_reg(hw, reg_addr: 0x2F5B, phy_data: 0x0003); | 
|---|
| 5193 |  | 
|---|
| 5194 | if (ret_val) | 
|---|
| 5195 | return ret_val; | 
|---|
| 5196 |  | 
|---|
| 5197 | msleep(msecs: 20); | 
|---|
| 5198 |  | 
|---|
| 5199 | ret_val = e1000_write_phy_reg(hw, reg_addr: 0x0000, | 
|---|
| 5200 | IGP01E1000_IEEE_FORCE_GIGA); | 
|---|
| 5201 | if (ret_val) | 
|---|
| 5202 | return ret_val; | 
|---|
| 5203 | for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { | 
|---|
| 5204 | ret_val = | 
|---|
| 5205 | e1000_read_phy_reg(hw, reg_addr: dsp_reg_array[i], | 
|---|
| 5206 | phy_data: &phy_data); | 
|---|
| 5207 | if (ret_val) | 
|---|
| 5208 | return ret_val; | 
|---|
| 5209 |  | 
|---|
| 5210 | phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX; | 
|---|
| 5211 | phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS; | 
|---|
| 5212 |  | 
|---|
| 5213 | ret_val = | 
|---|
| 5214 | e1000_write_phy_reg(hw, reg_addr: dsp_reg_array[i], | 
|---|
| 5215 | phy_data); | 
|---|
| 5216 | if (ret_val) | 
|---|
| 5217 | return ret_val; | 
|---|
| 5218 | } | 
|---|
| 5219 |  | 
|---|
| 5220 | ret_val = e1000_write_phy_reg(hw, reg_addr: 0x0000, | 
|---|
| 5221 | IGP01E1000_IEEE_RESTART_AUTONEG); | 
|---|
| 5222 | if (ret_val) | 
|---|
| 5223 | return ret_val; | 
|---|
| 5224 |  | 
|---|
| 5225 | msleep(msecs: 20); | 
|---|
| 5226 |  | 
|---|
| 5227 | /* Now enable the transmitter */ | 
|---|
| 5228 | ret_val = | 
|---|
| 5229 | e1000_write_phy_reg(hw, reg_addr: 0x2F5B, phy_data: phy_saved_data); | 
|---|
| 5230 |  | 
|---|
| 5231 | if (ret_val) | 
|---|
| 5232 | return ret_val; | 
|---|
| 5233 |  | 
|---|
| 5234 | hw->dsp_config_state = e1000_dsp_config_enabled; | 
|---|
| 5235 | } | 
|---|
| 5236 |  | 
|---|
| 5237 | if (hw->ffe_config_state == e1000_ffe_config_active) { | 
|---|
| 5238 | /* Save off the current value of register 0x2F5B to be | 
|---|
| 5239 | * restored at the end of the routines. | 
|---|
| 5240 | */ | 
|---|
| 5241 | ret_val = | 
|---|
| 5242 | e1000_read_phy_reg(hw, reg_addr: 0x2F5B, phy_data: &phy_saved_data); | 
|---|
| 5243 |  | 
|---|
| 5244 | if (ret_val) | 
|---|
| 5245 | return ret_val; | 
|---|
| 5246 |  | 
|---|
| 5247 | /* Disable the PHY transmitter */ | 
|---|
| 5248 | ret_val = e1000_write_phy_reg(hw, reg_addr: 0x2F5B, phy_data: 0x0003); | 
|---|
| 5249 |  | 
|---|
| 5250 | if (ret_val) | 
|---|
| 5251 | return ret_val; | 
|---|
| 5252 |  | 
|---|
| 5253 | msleep(msecs: 20); | 
|---|
| 5254 |  | 
|---|
| 5255 | ret_val = e1000_write_phy_reg(hw, reg_addr: 0x0000, | 
|---|
| 5256 | IGP01E1000_IEEE_FORCE_GIGA); | 
|---|
| 5257 | if (ret_val) | 
|---|
| 5258 | return ret_val; | 
|---|
| 5259 | ret_val = | 
|---|
| 5260 | e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE, | 
|---|
| 5261 | IGP01E1000_PHY_DSP_FFE_DEFAULT); | 
|---|
| 5262 | if (ret_val) | 
|---|
| 5263 | return ret_val; | 
|---|
| 5264 |  | 
|---|
| 5265 | ret_val = e1000_write_phy_reg(hw, reg_addr: 0x0000, | 
|---|
| 5266 | IGP01E1000_IEEE_RESTART_AUTONEG); | 
|---|
| 5267 | if (ret_val) | 
|---|
| 5268 | return ret_val; | 
|---|
| 5269 |  | 
|---|
| 5270 | msleep(msecs: 20); | 
|---|
| 5271 |  | 
|---|
| 5272 | /* Now enable the transmitter */ | 
|---|
| 5273 | ret_val = | 
|---|
| 5274 | e1000_write_phy_reg(hw, reg_addr: 0x2F5B, phy_data: phy_saved_data); | 
|---|
| 5275 |  | 
|---|
| 5276 | if (ret_val) | 
|---|
| 5277 | return ret_val; | 
|---|
| 5278 |  | 
|---|
| 5279 | hw->ffe_config_state = e1000_ffe_config_enabled; | 
|---|
| 5280 | } | 
|---|
| 5281 | } | 
|---|
| 5282 | return E1000_SUCCESS; | 
|---|
| 5283 | } | 
|---|
| 5284 |  | 
|---|
| 5285 | /** | 
|---|
| 5286 | * e1000_set_phy_mode - Set PHY to class A mode | 
|---|
| 5287 | * @hw: Struct containing variables accessed by shared code | 
|---|
| 5288 | * | 
|---|
| 5289 | * Assumes the following operations will follow to enable the new class mode. | 
|---|
| 5290 | *  1. Do a PHY soft reset | 
|---|
| 5291 | *  2. Restart auto-negotiation or force link. | 
|---|
| 5292 | */ | 
|---|
| 5293 | static s32 e1000_set_phy_mode(struct e1000_hw *hw) | 
|---|
| 5294 | { | 
|---|
| 5295 | s32 ret_val; | 
|---|
| 5296 | u16 eeprom_data; | 
|---|
| 5297 |  | 
|---|
| 5298 | if ((hw->mac_type == e1000_82545_rev_3) && | 
|---|
| 5299 | (hw->media_type == e1000_media_type_copper)) { | 
|---|
| 5300 | ret_val = | 
|---|
| 5301 | e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, words: 1, | 
|---|
| 5302 | data: &eeprom_data); | 
|---|
| 5303 | if (ret_val) | 
|---|
| 5304 | return ret_val; | 
|---|
| 5305 |  | 
|---|
| 5306 | if ((eeprom_data != EEPROM_RESERVED_WORD) && | 
|---|
| 5307 | (eeprom_data & EEPROM_PHY_CLASS_A)) { | 
|---|
| 5308 | ret_val = | 
|---|
| 5309 | e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, | 
|---|
| 5310 | phy_data: 0x000B); | 
|---|
| 5311 | if (ret_val) | 
|---|
| 5312 | return ret_val; | 
|---|
| 5313 | ret_val = | 
|---|
| 5314 | e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, | 
|---|
| 5315 | phy_data: 0x8104); | 
|---|
| 5316 | if (ret_val) | 
|---|
| 5317 | return ret_val; | 
|---|
| 5318 |  | 
|---|
| 5319 | hw->phy_reset_disable = false; | 
|---|
| 5320 | } | 
|---|
| 5321 | } | 
|---|
| 5322 |  | 
|---|
| 5323 | return E1000_SUCCESS; | 
|---|
| 5324 | } | 
|---|
| 5325 |  | 
|---|
| 5326 | /** | 
|---|
| 5327 | * e1000_set_d3_lplu_state - set d3 link power state | 
|---|
| 5328 | * @hw: Struct containing variables accessed by shared code | 
|---|
| 5329 | * @active: true to enable lplu false to disable lplu. | 
|---|
| 5330 | * | 
|---|
| 5331 | * This function sets the lplu state according to the active flag.  When | 
|---|
| 5332 | * activating lplu this function also disables smart speed and vise versa. | 
|---|
| 5333 | * lplu will not be activated unless the device autonegotiation advertisement | 
|---|
| 5334 | * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes. | 
|---|
| 5335 | * | 
|---|
| 5336 | * returns: - E1000_ERR_PHY if fail to read/write the PHY | 
|---|
| 5337 | *            E1000_SUCCESS at any other case. | 
|---|
| 5338 | */ | 
|---|
| 5339 | static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active) | 
|---|
| 5340 | { | 
|---|
| 5341 | s32 ret_val; | 
|---|
| 5342 | u16 phy_data; | 
|---|
| 5343 |  | 
|---|
| 5344 | if (hw->phy_type != e1000_phy_igp) | 
|---|
| 5345 | return E1000_SUCCESS; | 
|---|
| 5346 |  | 
|---|
| 5347 | /* During driver activity LPLU should not be used or it will attain link | 
|---|
| 5348 | * from the lowest speeds starting from 10Mbps. The capability is used | 
|---|
| 5349 | * for Dx transitions and states | 
|---|
| 5350 | */ | 
|---|
| 5351 | if (hw->mac_type == e1000_82541_rev_2 || | 
|---|
| 5352 | hw->mac_type == e1000_82547_rev_2) { | 
|---|
| 5353 | ret_val = | 
|---|
| 5354 | e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data: &phy_data); | 
|---|
| 5355 | if (ret_val) | 
|---|
| 5356 | return ret_val; | 
|---|
| 5357 | } | 
|---|
| 5358 |  | 
|---|
| 5359 | if (!active) { | 
|---|
| 5360 | if (hw->mac_type == e1000_82541_rev_2 || | 
|---|
| 5361 | hw->mac_type == e1000_82547_rev_2) { | 
|---|
| 5362 | phy_data &= ~IGP01E1000_GMII_FLEX_SPD; | 
|---|
| 5363 | ret_val = | 
|---|
| 5364 | e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, | 
|---|
| 5365 | phy_data); | 
|---|
| 5366 | if (ret_val) | 
|---|
| 5367 | return ret_val; | 
|---|
| 5368 | } | 
|---|
| 5369 |  | 
|---|
| 5370 | /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used | 
|---|
| 5371 | * during Dx states where the power conservation is most | 
|---|
| 5372 | * important.  During driver activity we should enable | 
|---|
| 5373 | * SmartSpeed, so performance is maintained. | 
|---|
| 5374 | */ | 
|---|
| 5375 | if (hw->smart_speed == e1000_smart_speed_on) { | 
|---|
| 5376 | ret_val = | 
|---|
| 5377 | e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | 
|---|
| 5378 | phy_data: &phy_data); | 
|---|
| 5379 | if (ret_val) | 
|---|
| 5380 | return ret_val; | 
|---|
| 5381 |  | 
|---|
| 5382 | phy_data |= IGP01E1000_PSCFR_SMART_SPEED; | 
|---|
| 5383 | ret_val = | 
|---|
| 5384 | e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | 
|---|
| 5385 | phy_data); | 
|---|
| 5386 | if (ret_val) | 
|---|
| 5387 | return ret_val; | 
|---|
| 5388 | } else if (hw->smart_speed == e1000_smart_speed_off) { | 
|---|
| 5389 | ret_val = | 
|---|
| 5390 | e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | 
|---|
| 5391 | phy_data: &phy_data); | 
|---|
| 5392 | if (ret_val) | 
|---|
| 5393 | return ret_val; | 
|---|
| 5394 |  | 
|---|
| 5395 | phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; | 
|---|
| 5396 | ret_val = | 
|---|
| 5397 | e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | 
|---|
| 5398 | phy_data); | 
|---|
| 5399 | if (ret_val) | 
|---|
| 5400 | return ret_val; | 
|---|
| 5401 | } | 
|---|
| 5402 | } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) || | 
|---|
| 5403 | (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL) || | 
|---|
| 5404 | (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) { | 
|---|
| 5405 | if (hw->mac_type == e1000_82541_rev_2 || | 
|---|
| 5406 | hw->mac_type == e1000_82547_rev_2) { | 
|---|
| 5407 | phy_data |= IGP01E1000_GMII_FLEX_SPD; | 
|---|
| 5408 | ret_val = | 
|---|
| 5409 | e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, | 
|---|
| 5410 | phy_data); | 
|---|
| 5411 | if (ret_val) | 
|---|
| 5412 | return ret_val; | 
|---|
| 5413 | } | 
|---|
| 5414 |  | 
|---|
| 5415 | /* When LPLU is enabled we should disable SmartSpeed */ | 
|---|
| 5416 | ret_val = | 
|---|
| 5417 | e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | 
|---|
| 5418 | phy_data: &phy_data); | 
|---|
| 5419 | if (ret_val) | 
|---|
| 5420 | return ret_val; | 
|---|
| 5421 |  | 
|---|
| 5422 | phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; | 
|---|
| 5423 | ret_val = | 
|---|
| 5424 | e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | 
|---|
| 5425 | phy_data); | 
|---|
| 5426 | if (ret_val) | 
|---|
| 5427 | return ret_val; | 
|---|
| 5428 | } | 
|---|
| 5429 | return E1000_SUCCESS; | 
|---|
| 5430 | } | 
|---|
| 5431 |  | 
|---|
| 5432 | /** | 
|---|
| 5433 | * e1000_set_vco_speed | 
|---|
| 5434 | * @hw: Struct containing variables accessed by shared code | 
|---|
| 5435 | * | 
|---|
| 5436 | * Change VCO speed register to improve Bit Error Rate performance of SERDES. | 
|---|
| 5437 | */ | 
|---|
| 5438 | static s32 e1000_set_vco_speed(struct e1000_hw *hw) | 
|---|
| 5439 | { | 
|---|
| 5440 | s32 ret_val; | 
|---|
| 5441 | u16 default_page = 0; | 
|---|
| 5442 | u16 phy_data; | 
|---|
| 5443 |  | 
|---|
| 5444 | switch (hw->mac_type) { | 
|---|
| 5445 | case e1000_82545_rev_3: | 
|---|
| 5446 | case e1000_82546_rev_3: | 
|---|
| 5447 | break; | 
|---|
| 5448 | default: | 
|---|
| 5449 | return E1000_SUCCESS; | 
|---|
| 5450 | } | 
|---|
| 5451 |  | 
|---|
| 5452 | /* Set PHY register 30, page 5, bit 8 to 0 */ | 
|---|
| 5453 |  | 
|---|
| 5454 | ret_val = | 
|---|
| 5455 | e1000_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, phy_data: &default_page); | 
|---|
| 5456 | if (ret_val) | 
|---|
| 5457 | return ret_val; | 
|---|
| 5458 |  | 
|---|
| 5459 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, phy_data: 0x0005); | 
|---|
| 5460 | if (ret_val) | 
|---|
| 5461 | return ret_val; | 
|---|
| 5462 |  | 
|---|
| 5463 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data: &phy_data); | 
|---|
| 5464 | if (ret_val) | 
|---|
| 5465 | return ret_val; | 
|---|
| 5466 |  | 
|---|
| 5467 | phy_data &= ~M88E1000_PHY_VCO_REG_BIT8; | 
|---|
| 5468 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data); | 
|---|
| 5469 | if (ret_val) | 
|---|
| 5470 | return ret_val; | 
|---|
| 5471 |  | 
|---|
| 5472 | /* Set PHY register 30, page 4, bit 11 to 1 */ | 
|---|
| 5473 |  | 
|---|
| 5474 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, phy_data: 0x0004); | 
|---|
| 5475 | if (ret_val) | 
|---|
| 5476 | return ret_val; | 
|---|
| 5477 |  | 
|---|
| 5478 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data: &phy_data); | 
|---|
| 5479 | if (ret_val) | 
|---|
| 5480 | return ret_val; | 
|---|
| 5481 |  | 
|---|
| 5482 | phy_data |= M88E1000_PHY_VCO_REG_BIT11; | 
|---|
| 5483 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data); | 
|---|
| 5484 | if (ret_val) | 
|---|
| 5485 | return ret_val; | 
|---|
| 5486 |  | 
|---|
| 5487 | ret_val = | 
|---|
| 5488 | e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, phy_data: default_page); | 
|---|
| 5489 | if (ret_val) | 
|---|
| 5490 | return ret_val; | 
|---|
| 5491 |  | 
|---|
| 5492 | return E1000_SUCCESS; | 
|---|
| 5493 | } | 
|---|
| 5494 |  | 
|---|
| 5495 | /** | 
|---|
| 5496 | * e1000_enable_mng_pass_thru - check for bmc pass through | 
|---|
| 5497 | * @hw: Struct containing variables accessed by shared code | 
|---|
| 5498 | * | 
|---|
| 5499 | * Verifies the hardware needs to allow ARPs to be processed by the host | 
|---|
| 5500 | * returns: - true/false | 
|---|
| 5501 | */ | 
|---|
| 5502 | u32 e1000_enable_mng_pass_thru(struct e1000_hw *hw) | 
|---|
| 5503 | { | 
|---|
| 5504 | u32 manc; | 
|---|
| 5505 |  | 
|---|
| 5506 | if (hw->asf_firmware_present) { | 
|---|
| 5507 | manc = er32(MANC); | 
|---|
| 5508 |  | 
|---|
| 5509 | if (!(manc & E1000_MANC_RCV_TCO_EN) || | 
|---|
| 5510 | !(manc & E1000_MANC_EN_MAC_ADDR_FILTER)) | 
|---|
| 5511 | return false; | 
|---|
| 5512 | if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN)) | 
|---|
| 5513 | return true; | 
|---|
| 5514 | } | 
|---|
| 5515 | return false; | 
|---|
| 5516 | } | 
|---|
| 5517 |  | 
|---|
| 5518 | static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw) | 
|---|
| 5519 | { | 
|---|
| 5520 | s32 ret_val; | 
|---|
| 5521 | u16 mii_status_reg; | 
|---|
| 5522 | u16 i; | 
|---|
| 5523 |  | 
|---|
| 5524 | /* Polarity reversal workaround for forced 10F/10H links. */ | 
|---|
| 5525 |  | 
|---|
| 5526 | /* Disable the transmitter on the PHY */ | 
|---|
| 5527 |  | 
|---|
| 5528 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, phy_data: 0x0019); | 
|---|
| 5529 | if (ret_val) | 
|---|
| 5530 | return ret_val; | 
|---|
| 5531 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data: 0xFFFF); | 
|---|
| 5532 | if (ret_val) | 
|---|
| 5533 | return ret_val; | 
|---|
| 5534 |  | 
|---|
| 5535 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, phy_data: 0x0000); | 
|---|
| 5536 | if (ret_val) | 
|---|
| 5537 | return ret_val; | 
|---|
| 5538 |  | 
|---|
| 5539 | /* This loop will early-out if the NO link condition has been met. */ | 
|---|
| 5540 | for (i = PHY_FORCE_TIME; i > 0; i--) { | 
|---|
| 5541 | /* Read the MII Status Register and wait for Link Status bit | 
|---|
| 5542 | * to be clear. | 
|---|
| 5543 | */ | 
|---|
| 5544 |  | 
|---|
| 5545 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, phy_data: &mii_status_reg); | 
|---|
| 5546 | if (ret_val) | 
|---|
| 5547 | return ret_val; | 
|---|
| 5548 |  | 
|---|
| 5549 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, phy_data: &mii_status_reg); | 
|---|
| 5550 | if (ret_val) | 
|---|
| 5551 | return ret_val; | 
|---|
| 5552 |  | 
|---|
| 5553 | if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0) | 
|---|
| 5554 | break; | 
|---|
| 5555 | msleep(msecs: 100); | 
|---|
| 5556 | } | 
|---|
| 5557 |  | 
|---|
| 5558 | /* Recommended delay time after link has been lost */ | 
|---|
| 5559 | msleep(msecs: 1000); | 
|---|
| 5560 |  | 
|---|
| 5561 | /* Now we will re-enable th transmitter on the PHY */ | 
|---|
| 5562 |  | 
|---|
| 5563 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, phy_data: 0x0019); | 
|---|
| 5564 | if (ret_val) | 
|---|
| 5565 | return ret_val; | 
|---|
| 5566 | msleep(msecs: 50); | 
|---|
| 5567 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data: 0xFFF0); | 
|---|
| 5568 | if (ret_val) | 
|---|
| 5569 | return ret_val; | 
|---|
| 5570 | msleep(msecs: 50); | 
|---|
| 5571 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data: 0xFF00); | 
|---|
| 5572 | if (ret_val) | 
|---|
| 5573 | return ret_val; | 
|---|
| 5574 | msleep(msecs: 50); | 
|---|
| 5575 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data: 0x0000); | 
|---|
| 5576 | if (ret_val) | 
|---|
| 5577 | return ret_val; | 
|---|
| 5578 |  | 
|---|
| 5579 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, phy_data: 0x0000); | 
|---|
| 5580 | if (ret_val) | 
|---|
| 5581 | return ret_val; | 
|---|
| 5582 |  | 
|---|
| 5583 | /* This loop will early-out if the link condition has been met. */ | 
|---|
| 5584 | for (i = PHY_FORCE_TIME; i > 0; i--) { | 
|---|
| 5585 | /* Read the MII Status Register and wait for Link Status bit | 
|---|
| 5586 | * to be set. | 
|---|
| 5587 | */ | 
|---|
| 5588 |  | 
|---|
| 5589 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, phy_data: &mii_status_reg); | 
|---|
| 5590 | if (ret_val) | 
|---|
| 5591 | return ret_val; | 
|---|
| 5592 |  | 
|---|
| 5593 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, phy_data: &mii_status_reg); | 
|---|
| 5594 | if (ret_val) | 
|---|
| 5595 | return ret_val; | 
|---|
| 5596 |  | 
|---|
| 5597 | if (mii_status_reg & MII_SR_LINK_STATUS) | 
|---|
| 5598 | break; | 
|---|
| 5599 | msleep(msecs: 100); | 
|---|
| 5600 | } | 
|---|
| 5601 | return E1000_SUCCESS; | 
|---|
| 5602 | } | 
|---|
| 5603 |  | 
|---|
| 5604 | /** | 
|---|
| 5605 | * e1000_get_auto_rd_done | 
|---|
| 5606 | * @hw: Struct containing variables accessed by shared code | 
|---|
| 5607 | * | 
|---|
| 5608 | * Check for EEPROM Auto Read bit done. | 
|---|
| 5609 | * returns: - E1000_ERR_RESET if fail to reset MAC | 
|---|
| 5610 | *            E1000_SUCCESS at any other case. | 
|---|
| 5611 | */ | 
|---|
| 5612 | static s32 e1000_get_auto_rd_done(struct e1000_hw *hw) | 
|---|
| 5613 | { | 
|---|
| 5614 | msleep(msecs: 5); | 
|---|
| 5615 | return E1000_SUCCESS; | 
|---|
| 5616 | } | 
|---|
| 5617 |  | 
|---|
| 5618 | /** | 
|---|
| 5619 | * e1000_get_phy_cfg_done | 
|---|
| 5620 | * @hw: Struct containing variables accessed by shared code | 
|---|
| 5621 | * | 
|---|
| 5622 | * Checks if the PHY configuration is done | 
|---|
| 5623 | * returns: - E1000_ERR_RESET if fail to reset MAC | 
|---|
| 5624 | *            E1000_SUCCESS at any other case. | 
|---|
| 5625 | */ | 
|---|
| 5626 | static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw) | 
|---|
| 5627 | { | 
|---|
| 5628 | msleep(msecs: 10); | 
|---|
| 5629 | return E1000_SUCCESS; | 
|---|
| 5630 | } | 
|---|
| 5631 |  | 
|---|