| 1 | // SPDX-License-Identifier: GPL-2.0 | 
|---|
| 2 | /* Copyright(c) 1999 - 2018 Intel Corporation. */ | 
|---|
| 3 |  | 
|---|
| 4 | #include <linux/bitfield.h> | 
|---|
| 5 |  | 
|---|
| 6 | #include "e1000.h" | 
|---|
| 7 |  | 
|---|
| 8 | /** | 
|---|
| 9 | *  e1000e_get_bus_info_pcie - Get PCIe bus information | 
|---|
| 10 | *  @hw: pointer to the HW structure | 
|---|
| 11 | * | 
|---|
| 12 | *  Determines and stores the system bus information for a particular | 
|---|
| 13 | *  network interface.  The following bus information is determined and stored: | 
|---|
| 14 | *  bus speed, bus width, type (PCIe), and PCIe function. | 
|---|
| 15 | **/ | 
|---|
| 16 | s32 e1000e_get_bus_info_pcie(struct e1000_hw *hw) | 
|---|
| 17 | { | 
|---|
| 18 | struct pci_dev *pdev = hw->adapter->pdev; | 
|---|
| 19 | struct e1000_mac_info *mac = &hw->mac; | 
|---|
| 20 | struct e1000_bus_info *bus = &hw->bus; | 
|---|
| 21 | u16 pcie_link_status; | 
|---|
| 22 |  | 
|---|
| 23 | if (!pci_pcie_cap(dev: pdev)) { | 
|---|
| 24 | bus->width = e1000_bus_width_unknown; | 
|---|
| 25 | } else { | 
|---|
| 26 | pcie_capability_read_word(dev: pdev, PCI_EXP_LNKSTA, val: &pcie_link_status); | 
|---|
| 27 | bus->width = (enum e1000_bus_width)FIELD_GET(PCI_EXP_LNKSTA_NLW, | 
|---|
| 28 | pcie_link_status); | 
|---|
| 29 | } | 
|---|
| 30 |  | 
|---|
| 31 | mac->ops.set_lan_id(hw); | 
|---|
| 32 |  | 
|---|
| 33 | return 0; | 
|---|
| 34 | } | 
|---|
| 35 |  | 
|---|
| 36 | /** | 
|---|
| 37 | *  e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices | 
|---|
| 38 | * | 
|---|
| 39 | *  @hw: pointer to the HW structure | 
|---|
| 40 | * | 
|---|
| 41 | *  Determines the LAN function id by reading memory-mapped registers | 
|---|
| 42 | *  and swaps the port value if requested. | 
|---|
| 43 | **/ | 
|---|
| 44 | void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw) | 
|---|
| 45 | { | 
|---|
| 46 | struct e1000_bus_info *bus = &hw->bus; | 
|---|
| 47 | u32 reg; | 
|---|
| 48 |  | 
|---|
| 49 | /* The status register reports the correct function number | 
|---|
| 50 | * for the device regardless of function swap state. | 
|---|
| 51 | */ | 
|---|
| 52 | reg = er32(STATUS); | 
|---|
| 53 | bus->func = FIELD_GET(E1000_STATUS_FUNC_MASK, reg); | 
|---|
| 54 | } | 
|---|
| 55 |  | 
|---|
| 56 | /** | 
|---|
| 57 | *  e1000_set_lan_id_single_port - Set LAN id for a single port device | 
|---|
| 58 | *  @hw: pointer to the HW structure | 
|---|
| 59 | * | 
|---|
| 60 | *  Sets the LAN function id to zero for a single port device. | 
|---|
| 61 | **/ | 
|---|
| 62 | void e1000_set_lan_id_single_port(struct e1000_hw *hw) | 
|---|
| 63 | { | 
|---|
| 64 | struct e1000_bus_info *bus = &hw->bus; | 
|---|
| 65 |  | 
|---|
| 66 | bus->func = 0; | 
|---|
| 67 | } | 
|---|
| 68 |  | 
|---|
| 69 | /** | 
|---|
| 70 | *  e1000_clear_vfta_generic - Clear VLAN filter table | 
|---|
| 71 | *  @hw: pointer to the HW structure | 
|---|
| 72 | * | 
|---|
| 73 | *  Clears the register array which contains the VLAN filter table by | 
|---|
| 74 | *  setting all the values to 0. | 
|---|
| 75 | **/ | 
|---|
| 76 | void e1000_clear_vfta_generic(struct e1000_hw *hw) | 
|---|
| 77 | { | 
|---|
| 78 | u32 offset; | 
|---|
| 79 |  | 
|---|
| 80 | for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { | 
|---|
| 81 | E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0); | 
|---|
| 82 | e1e_flush(); | 
|---|
| 83 | } | 
|---|
| 84 | } | 
|---|
| 85 |  | 
|---|
| 86 | /** | 
|---|
| 87 | *  e1000_write_vfta_generic - Write value to VLAN filter table | 
|---|
| 88 | *  @hw: pointer to the HW structure | 
|---|
| 89 | *  @offset: register offset in VLAN filter table | 
|---|
| 90 | *  @value: register value written to VLAN filter table | 
|---|
| 91 | * | 
|---|
| 92 | *  Writes value at the given offset in the register array which stores | 
|---|
| 93 | *  the VLAN filter table. | 
|---|
| 94 | **/ | 
|---|
| 95 | void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value) | 
|---|
| 96 | { | 
|---|
| 97 | E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value); | 
|---|
| 98 | e1e_flush(); | 
|---|
| 99 | } | 
|---|
| 100 |  | 
|---|
| 101 | /** | 
|---|
| 102 | *  e1000e_init_rx_addrs - Initialize receive address's | 
|---|
| 103 | *  @hw: pointer to the HW structure | 
|---|
| 104 | *  @rar_count: receive address registers | 
|---|
| 105 | * | 
|---|
| 106 | *  Setup the receive address registers by setting the base receive address | 
|---|
| 107 | *  register to the devices MAC address and clearing all the other receive | 
|---|
| 108 | *  address registers to 0. | 
|---|
| 109 | **/ | 
|---|
| 110 | void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count) | 
|---|
| 111 | { | 
|---|
| 112 | u32 i; | 
|---|
| 113 | u8 mac_addr[ETH_ALEN] = { 0 }; | 
|---|
| 114 |  | 
|---|
| 115 | /* Setup the receive address */ | 
|---|
| 116 | e_dbg( "Programming MAC Address into RAR[0]\n"); | 
|---|
| 117 |  | 
|---|
| 118 | hw->mac.ops.rar_set(hw, hw->mac.addr, 0); | 
|---|
| 119 |  | 
|---|
| 120 | /* Zero out the other (rar_entry_count - 1) receive addresses */ | 
|---|
| 121 | e_dbg( "Clearing RAR[1-%u]\n", rar_count - 1); | 
|---|
| 122 | for (i = 1; i < rar_count; i++) | 
|---|
| 123 | hw->mac.ops.rar_set(hw, mac_addr, i); | 
|---|
| 124 | } | 
|---|
| 125 |  | 
|---|
| 126 | /** | 
|---|
| 127 | *  e1000_check_alt_mac_addr_generic - Check for alternate MAC addr | 
|---|
| 128 | *  @hw: pointer to the HW structure | 
|---|
| 129 | * | 
|---|
| 130 | *  Checks the nvm for an alternate MAC address.  An alternate MAC address | 
|---|
| 131 | *  can be setup by pre-boot software and must be treated like a permanent | 
|---|
| 132 | *  address and must override the actual permanent MAC address. If an | 
|---|
| 133 | *  alternate MAC address is found it is programmed into RAR0, replacing | 
|---|
| 134 | *  the permanent address that was installed into RAR0 by the Si on reset. | 
|---|
| 135 | *  This function will return SUCCESS unless it encounters an error while | 
|---|
| 136 | *  reading the EEPROM. | 
|---|
| 137 | **/ | 
|---|
| 138 | s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw) | 
|---|
| 139 | { | 
|---|
| 140 | u32 i; | 
|---|
| 141 | s32 ret_val; | 
|---|
| 142 | u16 offset, nvm_alt_mac_addr_offset, nvm_data; | 
|---|
| 143 | u8 alt_mac_addr[ETH_ALEN]; | 
|---|
| 144 |  | 
|---|
| 145 | ret_val = e1000_read_nvm(hw, NVM_COMPAT, words: 1, data: &nvm_data); | 
|---|
| 146 | if (ret_val) | 
|---|
| 147 | return ret_val; | 
|---|
| 148 |  | 
|---|
| 149 | /* not supported on 82573 */ | 
|---|
| 150 | if (hw->mac.type == e1000_82573) | 
|---|
| 151 | return 0; | 
|---|
| 152 |  | 
|---|
| 153 | ret_val = e1000_read_nvm(hw, NVM_ALT_MAC_ADDR_PTR, words: 1, | 
|---|
| 154 | data: &nvm_alt_mac_addr_offset); | 
|---|
| 155 | if (ret_val) { | 
|---|
| 156 | e_dbg( "NVM Read Error\n"); | 
|---|
| 157 | return ret_val; | 
|---|
| 158 | } | 
|---|
| 159 |  | 
|---|
| 160 | if ((nvm_alt_mac_addr_offset == 0xFFFF) || | 
|---|
| 161 | (nvm_alt_mac_addr_offset == 0x0000)) | 
|---|
| 162 | /* There is no Alternate MAC Address */ | 
|---|
| 163 | return 0; | 
|---|
| 164 |  | 
|---|
| 165 | if (hw->bus.func == E1000_FUNC_1) | 
|---|
| 166 | nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1; | 
|---|
| 167 | for (i = 0; i < ETH_ALEN; i += 2) { | 
|---|
| 168 | offset = nvm_alt_mac_addr_offset + (i >> 1); | 
|---|
| 169 | ret_val = e1000_read_nvm(hw, offset, words: 1, data: &nvm_data); | 
|---|
| 170 | if (ret_val) { | 
|---|
| 171 | e_dbg( "NVM Read Error\n"); | 
|---|
| 172 | return ret_val; | 
|---|
| 173 | } | 
|---|
| 174 |  | 
|---|
| 175 | alt_mac_addr[i] = (u8)(nvm_data & 0xFF); | 
|---|
| 176 | alt_mac_addr[i + 1] = (u8)(nvm_data >> 8); | 
|---|
| 177 | } | 
|---|
| 178 |  | 
|---|
| 179 | /* if multicast bit is set, the alternate address will not be used */ | 
|---|
| 180 | if (is_multicast_ether_addr(addr: alt_mac_addr)) { | 
|---|
| 181 | e_dbg( "Ignoring Alternate Mac Address with MC bit set\n"); | 
|---|
| 182 | return 0; | 
|---|
| 183 | } | 
|---|
| 184 |  | 
|---|
| 185 | /* We have a valid alternate MAC address, and we want to treat it the | 
|---|
| 186 | * same as the normal permanent MAC address stored by the HW into the | 
|---|
| 187 | * RAR. Do this by mapping this address into RAR0. | 
|---|
| 188 | */ | 
|---|
| 189 | hw->mac.ops.rar_set(hw, alt_mac_addr, 0); | 
|---|
| 190 |  | 
|---|
| 191 | return 0; | 
|---|
| 192 | } | 
|---|
| 193 |  | 
|---|
| 194 | u32 e1000e_rar_get_count_generic(struct e1000_hw *hw) | 
|---|
| 195 | { | 
|---|
| 196 | return hw->mac.rar_entry_count; | 
|---|
| 197 | } | 
|---|
| 198 |  | 
|---|
| 199 | /** | 
|---|
| 200 | *  e1000e_rar_set_generic - Set receive address register | 
|---|
| 201 | *  @hw: pointer to the HW structure | 
|---|
| 202 | *  @addr: pointer to the receive address | 
|---|
| 203 | *  @index: receive address array register | 
|---|
| 204 | * | 
|---|
| 205 | *  Sets the receive address array register at index to the address passed | 
|---|
| 206 | *  in by addr. | 
|---|
| 207 | **/ | 
|---|
| 208 | int e1000e_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index) | 
|---|
| 209 | { | 
|---|
| 210 | u32 rar_low, rar_high; | 
|---|
| 211 |  | 
|---|
| 212 | /* HW expects these in little endian so we reverse the byte order | 
|---|
| 213 | * from network order (big endian) to little endian | 
|---|
| 214 | */ | 
|---|
| 215 | rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) | | 
|---|
| 216 | ((u32)addr[2] << 16) | ((u32)addr[3] << 24)); | 
|---|
| 217 |  | 
|---|
| 218 | rar_high = ((u32)addr[4] | ((u32)addr[5] << 8)); | 
|---|
| 219 |  | 
|---|
| 220 | /* If MAC address zero, no need to set the AV bit */ | 
|---|
| 221 | if (rar_low || rar_high) | 
|---|
| 222 | rar_high |= E1000_RAH_AV; | 
|---|
| 223 |  | 
|---|
| 224 | /* Some bridges will combine consecutive 32-bit writes into | 
|---|
| 225 | * a single burst write, which will malfunction on some parts. | 
|---|
| 226 | * The flushes avoid this. | 
|---|
| 227 | */ | 
|---|
| 228 | ew32(RAL(index), rar_low); | 
|---|
| 229 | e1e_flush(); | 
|---|
| 230 | ew32(RAH(index), rar_high); | 
|---|
| 231 | e1e_flush(); | 
|---|
| 232 |  | 
|---|
| 233 | return 0; | 
|---|
| 234 | } | 
|---|
| 235 |  | 
|---|
| 236 | /** | 
|---|
| 237 | *  e1000_hash_mc_addr - Generate a multicast hash value | 
|---|
| 238 | *  @hw: pointer to the HW structure | 
|---|
| 239 | *  @mc_addr: pointer to a multicast address | 
|---|
| 240 | * | 
|---|
| 241 | *  Generates a multicast address hash value which is used to determine | 
|---|
| 242 | *  the multicast filter table array address and new table value. | 
|---|
| 243 | **/ | 
|---|
| 244 | static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) | 
|---|
| 245 | { | 
|---|
| 246 | u32 hash_value, hash_mask; | 
|---|
| 247 | u8 bit_shift = 0; | 
|---|
| 248 |  | 
|---|
| 249 | /* Register count multiplied by bits per register */ | 
|---|
| 250 | hash_mask = (hw->mac.mta_reg_count * 32) - 1; | 
|---|
| 251 |  | 
|---|
| 252 | /* For a mc_filter_type of 0, bit_shift is the number of left-shifts | 
|---|
| 253 | * where 0xFF would still fall within the hash mask. | 
|---|
| 254 | */ | 
|---|
| 255 | while (hash_mask >> bit_shift != 0xFF) | 
|---|
| 256 | bit_shift++; | 
|---|
| 257 |  | 
|---|
| 258 | /* The portion of the address that is used for the hash table | 
|---|
| 259 | * is determined by the mc_filter_type setting. | 
|---|
| 260 | * The algorithm is such that there is a total of 8 bits of shifting. | 
|---|
| 261 | * The bit_shift for a mc_filter_type of 0 represents the number of | 
|---|
| 262 | * left-shifts where the MSB of mc_addr[5] would still fall within | 
|---|
| 263 | * the hash_mask.  Case 0 does this exactly.  Since there are a total | 
|---|
| 264 | * of 8 bits of shifting, then mc_addr[4] will shift right the | 
|---|
| 265 | * remaining number of bits. Thus 8 - bit_shift.  The rest of the | 
|---|
| 266 | * cases are a variation of this algorithm...essentially raising the | 
|---|
| 267 | * number of bits to shift mc_addr[5] left, while still keeping the | 
|---|
| 268 | * 8-bit shifting total. | 
|---|
| 269 | * | 
|---|
| 270 | * For example, given the following Destination MAC Address and an | 
|---|
| 271 | * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask), | 
|---|
| 272 | * we can see that the bit_shift for case 0 is 4.  These are the hash | 
|---|
| 273 | * values resulting from each mc_filter_type... | 
|---|
| 274 | * [0] [1] [2] [3] [4] [5] | 
|---|
| 275 | * 01  AA  00  12  34  56 | 
|---|
| 276 | * LSB           MSB | 
|---|
| 277 | * | 
|---|
| 278 | * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563 | 
|---|
| 279 | * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6 | 
|---|
| 280 | * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163 | 
|---|
| 281 | * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634 | 
|---|
| 282 | */ | 
|---|
| 283 | switch (hw->mac.mc_filter_type) { | 
|---|
| 284 | default: | 
|---|
| 285 | case 0: | 
|---|
| 286 | break; | 
|---|
| 287 | case 1: | 
|---|
| 288 | bit_shift += 1; | 
|---|
| 289 | break; | 
|---|
| 290 | case 2: | 
|---|
| 291 | bit_shift += 2; | 
|---|
| 292 | break; | 
|---|
| 293 | case 3: | 
|---|
| 294 | bit_shift += 4; | 
|---|
| 295 | break; | 
|---|
| 296 | } | 
|---|
| 297 |  | 
|---|
| 298 | hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) | | 
|---|
| 299 | (((u16)mc_addr[5]) << bit_shift))); | 
|---|
| 300 |  | 
|---|
| 301 | return hash_value; | 
|---|
| 302 | } | 
|---|
| 303 |  | 
|---|
| 304 | /** | 
|---|
| 305 | *  e1000e_update_mc_addr_list_generic - Update Multicast addresses | 
|---|
| 306 | *  @hw: pointer to the HW structure | 
|---|
| 307 | *  @mc_addr_list: array of multicast addresses to program | 
|---|
| 308 | *  @mc_addr_count: number of multicast addresses to program | 
|---|
| 309 | * | 
|---|
| 310 | *  Updates entire Multicast Table Array. | 
|---|
| 311 | *  The caller must have a packed mc_addr_list of multicast addresses. | 
|---|
| 312 | **/ | 
|---|
| 313 | void e1000e_update_mc_addr_list_generic(struct e1000_hw *hw, | 
|---|
| 314 | u8 *mc_addr_list, u32 mc_addr_count) | 
|---|
| 315 | { | 
|---|
| 316 | u32 hash_value, hash_bit, hash_reg; | 
|---|
| 317 | int i; | 
|---|
| 318 |  | 
|---|
| 319 | /* clear mta_shadow */ | 
|---|
| 320 | memset(s: &hw->mac.mta_shadow, c: 0, n: sizeof(hw->mac.mta_shadow)); | 
|---|
| 321 |  | 
|---|
| 322 | /* update mta_shadow from mc_addr_list */ | 
|---|
| 323 | for (i = 0; (u32)i < mc_addr_count; i++) { | 
|---|
| 324 | hash_value = e1000_hash_mc_addr(hw, mc_addr: mc_addr_list); | 
|---|
| 325 |  | 
|---|
| 326 | hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1); | 
|---|
| 327 | hash_bit = hash_value & 0x1F; | 
|---|
| 328 |  | 
|---|
| 329 | hw->mac.mta_shadow[hash_reg] |= BIT(hash_bit); | 
|---|
| 330 | mc_addr_list += (ETH_ALEN); | 
|---|
| 331 | } | 
|---|
| 332 |  | 
|---|
| 333 | /* replace the entire MTA table */ | 
|---|
| 334 | for (i = hw->mac.mta_reg_count - 1; i >= 0; i--) { | 
|---|
| 335 | E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, hw->mac.mta_shadow[i]); | 
|---|
| 336 |  | 
|---|
| 337 | if (IS_ENABLED(CONFIG_PREEMPT_RT)) { | 
|---|
| 338 | /* | 
|---|
| 339 | * Do not queue up too many posted writes to prevent | 
|---|
| 340 | * increased latency for other devices on the | 
|---|
| 341 | * interconnect. Flush after each 8th posted write, | 
|---|
| 342 | * to keep additional execution time low while still | 
|---|
| 343 | * preventing increased latency. | 
|---|
| 344 | */ | 
|---|
| 345 | if (!(i % 8) && i) | 
|---|
| 346 | e1e_flush(); | 
|---|
| 347 | } | 
|---|
| 348 | } | 
|---|
| 349 | e1e_flush(); | 
|---|
| 350 | } | 
|---|
| 351 |  | 
|---|
| 352 | /** | 
|---|
| 353 | *  e1000e_clear_hw_cntrs_base - Clear base hardware counters | 
|---|
| 354 | *  @hw: pointer to the HW structure | 
|---|
| 355 | * | 
|---|
| 356 | *  Clears the base hardware counters by reading the counter registers. | 
|---|
| 357 | **/ | 
|---|
| 358 | void e1000e_clear_hw_cntrs_base(struct e1000_hw *hw) | 
|---|
| 359 | { | 
|---|
| 360 | er32(CRCERRS); | 
|---|
| 361 | er32(SYMERRS); | 
|---|
| 362 | er32(MPC); | 
|---|
| 363 | er32(SCC); | 
|---|
| 364 | er32(ECOL); | 
|---|
| 365 | er32(MCC); | 
|---|
| 366 | er32(LATECOL); | 
|---|
| 367 | er32(COLC); | 
|---|
| 368 | er32(DC); | 
|---|
| 369 | er32(SEC); | 
|---|
| 370 | er32(RLEC); | 
|---|
| 371 | er32(XONRXC); | 
|---|
| 372 | er32(XONTXC); | 
|---|
| 373 | er32(XOFFRXC); | 
|---|
| 374 | er32(XOFFTXC); | 
|---|
| 375 | er32(FCRUC); | 
|---|
| 376 | er32(GPRC); | 
|---|
| 377 | er32(BPRC); | 
|---|
| 378 | er32(MPRC); | 
|---|
| 379 | er32(GPTC); | 
|---|
| 380 | er32(GORCL); | 
|---|
| 381 | er32(GORCH); | 
|---|
| 382 | er32(GOTCL); | 
|---|
| 383 | er32(GOTCH); | 
|---|
| 384 | er32(RNBC); | 
|---|
| 385 | er32(RUC); | 
|---|
| 386 | er32(RFC); | 
|---|
| 387 | er32(ROC); | 
|---|
| 388 | er32(RJC); | 
|---|
| 389 | er32(TORL); | 
|---|
| 390 | er32(TORH); | 
|---|
| 391 | er32(TOTL); | 
|---|
| 392 | er32(TOTH); | 
|---|
| 393 | er32(TPR); | 
|---|
| 394 | er32(TPT); | 
|---|
| 395 | er32(MPTC); | 
|---|
| 396 | er32(BPTC); | 
|---|
| 397 | } | 
|---|
| 398 |  | 
|---|
| 399 | /** | 
|---|
| 400 | *  e1000e_check_for_copper_link - Check for link (Copper) | 
|---|
| 401 | *  @hw: pointer to the HW structure | 
|---|
| 402 | * | 
|---|
| 403 | *  Checks to see of the link status of the hardware has changed.  If a | 
|---|
| 404 | *  change in link status has been detected, then we read the PHY registers | 
|---|
| 405 | *  to get the current speed/duplex if link exists. | 
|---|
| 406 | **/ | 
|---|
| 407 | s32 e1000e_check_for_copper_link(struct e1000_hw *hw) | 
|---|
| 408 | { | 
|---|
| 409 | struct e1000_mac_info *mac = &hw->mac; | 
|---|
| 410 | s32 ret_val; | 
|---|
| 411 | bool link; | 
|---|
| 412 |  | 
|---|
| 413 | /* We only want to go out to the PHY registers to see if Auto-Neg | 
|---|
| 414 | * has completed and/or if our link status has changed.  The | 
|---|
| 415 | * get_link_status flag is set upon receiving a Link Status | 
|---|
| 416 | * Change or Rx Sequence Error interrupt. | 
|---|
| 417 | */ | 
|---|
| 418 | if (!mac->get_link_status) | 
|---|
| 419 | return 0; | 
|---|
| 420 | mac->get_link_status = false; | 
|---|
| 421 |  | 
|---|
| 422 | /* First we want to see if the MII Status Register reports | 
|---|
| 423 | * link.  If so, then we want to get the current speed/duplex | 
|---|
| 424 | * of the PHY. | 
|---|
| 425 | */ | 
|---|
| 426 | ret_val = e1000e_phy_has_link_generic(hw, iterations: 1, usec_interval: 0, success: &link); | 
|---|
| 427 | if (ret_val || !link) | 
|---|
| 428 | goto out; | 
|---|
| 429 |  | 
|---|
| 430 | /* Check if there was DownShift, must be checked | 
|---|
| 431 | * immediately after link-up | 
|---|
| 432 | */ | 
|---|
| 433 | e1000e_check_downshift(hw); | 
|---|
| 434 |  | 
|---|
| 435 | /* If we are forcing speed/duplex, then we simply return since | 
|---|
| 436 | * we have already determined whether we have link or not. | 
|---|
| 437 | */ | 
|---|
| 438 | if (!mac->autoneg) | 
|---|
| 439 | return -E1000_ERR_CONFIG; | 
|---|
| 440 |  | 
|---|
| 441 | /* Auto-Neg is enabled.  Auto Speed Detection takes care | 
|---|
| 442 | * of MAC speed/duplex configuration.  So we only need to | 
|---|
| 443 | * configure Collision Distance in the MAC. | 
|---|
| 444 | */ | 
|---|
| 445 | mac->ops.config_collision_dist(hw); | 
|---|
| 446 |  | 
|---|
| 447 | /* Configure Flow Control now that Auto-Neg has completed. | 
|---|
| 448 | * First, we need to restore the desired flow control | 
|---|
| 449 | * settings because we may have had to re-autoneg with a | 
|---|
| 450 | * different link partner. | 
|---|
| 451 | */ | 
|---|
| 452 | ret_val = e1000e_config_fc_after_link_up(hw); | 
|---|
| 453 | if (ret_val) | 
|---|
| 454 | e_dbg( "Error configuring flow control\n"); | 
|---|
| 455 |  | 
|---|
| 456 | return ret_val; | 
|---|
| 457 |  | 
|---|
| 458 | out: | 
|---|
| 459 | mac->get_link_status = true; | 
|---|
| 460 | return ret_val; | 
|---|
| 461 | } | 
|---|
| 462 |  | 
|---|
| 463 | /** | 
|---|
| 464 | *  e1000e_check_for_fiber_link - Check for link (Fiber) | 
|---|
| 465 | *  @hw: pointer to the HW structure | 
|---|
| 466 | * | 
|---|
| 467 | *  Checks for link up on the hardware.  If link is not up and we have | 
|---|
| 468 | *  a signal, then we need to force link up. | 
|---|
| 469 | **/ | 
|---|
| 470 | s32 e1000e_check_for_fiber_link(struct e1000_hw *hw) | 
|---|
| 471 | { | 
|---|
| 472 | struct e1000_mac_info *mac = &hw->mac; | 
|---|
| 473 | u32 rxcw; | 
|---|
| 474 | u32 ctrl; | 
|---|
| 475 | u32 status; | 
|---|
| 476 | s32 ret_val; | 
|---|
| 477 |  | 
|---|
| 478 | ctrl = er32(CTRL); | 
|---|
| 479 | status = er32(STATUS); | 
|---|
| 480 | rxcw = er32(RXCW); | 
|---|
| 481 |  | 
|---|
| 482 | /* If we don't have link (auto-negotiation failed or link partner | 
|---|
| 483 | * cannot auto-negotiate), the cable is plugged in (we have signal), | 
|---|
| 484 | * and our link partner is not trying to auto-negotiate with us (we | 
|---|
| 485 | * are receiving idles or data), we need to force link up. We also | 
|---|
| 486 | * need to give auto-negotiation time to complete, in case the cable | 
|---|
| 487 | * was just plugged in. The autoneg_failed flag does this. | 
|---|
| 488 | */ | 
|---|
| 489 | /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */ | 
|---|
| 490 | if ((ctrl & E1000_CTRL_SWDPIN1) && !(status & E1000_STATUS_LU) && | 
|---|
| 491 | !(rxcw & E1000_RXCW_C)) { | 
|---|
| 492 | if (!mac->autoneg_failed) { | 
|---|
| 493 | mac->autoneg_failed = true; | 
|---|
| 494 | return 0; | 
|---|
| 495 | } | 
|---|
| 496 | e_dbg( "NOT Rx'ing /C/, disable AutoNeg and force link.\n"); | 
|---|
| 497 |  | 
|---|
| 498 | /* Disable auto-negotiation in the TXCW register */ | 
|---|
| 499 | ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE)); | 
|---|
| 500 |  | 
|---|
| 501 | /* Force link-up and also force full-duplex. */ | 
|---|
| 502 | ctrl = er32(CTRL); | 
|---|
| 503 | ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); | 
|---|
| 504 | ew32(CTRL, ctrl); | 
|---|
| 505 |  | 
|---|
| 506 | /* Configure Flow Control after forcing link up. */ | 
|---|
| 507 | ret_val = e1000e_config_fc_after_link_up(hw); | 
|---|
| 508 | if (ret_val) { | 
|---|
| 509 | e_dbg( "Error configuring flow control\n"); | 
|---|
| 510 | return ret_val; | 
|---|
| 511 | } | 
|---|
| 512 | } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { | 
|---|
| 513 | /* If we are forcing link and we are receiving /C/ ordered | 
|---|
| 514 | * sets, re-enable auto-negotiation in the TXCW register | 
|---|
| 515 | * and disable forced link in the Device Control register | 
|---|
| 516 | * in an attempt to auto-negotiate with our link partner. | 
|---|
| 517 | */ | 
|---|
| 518 | e_dbg( "Rx'ing /C/, enable AutoNeg and stop forcing link.\n"); | 
|---|
| 519 | ew32(TXCW, mac->txcw); | 
|---|
| 520 | ew32(CTRL, (ctrl & ~E1000_CTRL_SLU)); | 
|---|
| 521 |  | 
|---|
| 522 | mac->serdes_has_link = true; | 
|---|
| 523 | } | 
|---|
| 524 |  | 
|---|
| 525 | return 0; | 
|---|
| 526 | } | 
|---|
| 527 |  | 
|---|
| 528 | /** | 
|---|
| 529 | *  e1000e_check_for_serdes_link - Check for link (Serdes) | 
|---|
| 530 | *  @hw: pointer to the HW structure | 
|---|
| 531 | * | 
|---|
| 532 | *  Checks for link up on the hardware.  If link is not up and we have | 
|---|
| 533 | *  a signal, then we need to force link up. | 
|---|
| 534 | **/ | 
|---|
| 535 | s32 e1000e_check_for_serdes_link(struct e1000_hw *hw) | 
|---|
| 536 | { | 
|---|
| 537 | struct e1000_mac_info *mac = &hw->mac; | 
|---|
| 538 | u32 rxcw; | 
|---|
| 539 | u32 ctrl; | 
|---|
| 540 | u32 status; | 
|---|
| 541 | s32 ret_val; | 
|---|
| 542 |  | 
|---|
| 543 | ctrl = er32(CTRL); | 
|---|
| 544 | status = er32(STATUS); | 
|---|
| 545 | rxcw = er32(RXCW); | 
|---|
| 546 |  | 
|---|
| 547 | /* If we don't have link (auto-negotiation failed or link partner | 
|---|
| 548 | * cannot auto-negotiate), and our link partner is not trying to | 
|---|
| 549 | * auto-negotiate with us (we are receiving idles or data), | 
|---|
| 550 | * we need to force link up. We also need to give auto-negotiation | 
|---|
| 551 | * time to complete. | 
|---|
| 552 | */ | 
|---|
| 553 | /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */ | 
|---|
| 554 | if (!(status & E1000_STATUS_LU) && !(rxcw & E1000_RXCW_C)) { | 
|---|
| 555 | if (!mac->autoneg_failed) { | 
|---|
| 556 | mac->autoneg_failed = true; | 
|---|
| 557 | return 0; | 
|---|
| 558 | } | 
|---|
| 559 | e_dbg( "NOT Rx'ing /C/, disable AutoNeg and force link.\n"); | 
|---|
| 560 |  | 
|---|
| 561 | /* Disable auto-negotiation in the TXCW register */ | 
|---|
| 562 | ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE)); | 
|---|
| 563 |  | 
|---|
| 564 | /* Force link-up and also force full-duplex. */ | 
|---|
| 565 | ctrl = er32(CTRL); | 
|---|
| 566 | ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); | 
|---|
| 567 | ew32(CTRL, ctrl); | 
|---|
| 568 |  | 
|---|
| 569 | /* Configure Flow Control after forcing link up. */ | 
|---|
| 570 | ret_val = e1000e_config_fc_after_link_up(hw); | 
|---|
| 571 | if (ret_val) { | 
|---|
| 572 | e_dbg( "Error configuring flow control\n"); | 
|---|
| 573 | return ret_val; | 
|---|
| 574 | } | 
|---|
| 575 | } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { | 
|---|
| 576 | /* If we are forcing link and we are receiving /C/ ordered | 
|---|
| 577 | * sets, re-enable auto-negotiation in the TXCW register | 
|---|
| 578 | * and disable forced link in the Device Control register | 
|---|
| 579 | * in an attempt to auto-negotiate with our link partner. | 
|---|
| 580 | */ | 
|---|
| 581 | e_dbg( "Rx'ing /C/, enable AutoNeg and stop forcing link.\n"); | 
|---|
| 582 | ew32(TXCW, mac->txcw); | 
|---|
| 583 | ew32(CTRL, (ctrl & ~E1000_CTRL_SLU)); | 
|---|
| 584 |  | 
|---|
| 585 | mac->serdes_has_link = true; | 
|---|
| 586 | } else if (!(E1000_TXCW_ANE & er32(TXCW))) { | 
|---|
| 587 | /* If we force link for non-auto-negotiation switch, check | 
|---|
| 588 | * link status based on MAC synchronization for internal | 
|---|
| 589 | * serdes media type. | 
|---|
| 590 | */ | 
|---|
| 591 | /* SYNCH bit and IV bit are sticky. */ | 
|---|
| 592 | usleep_range(min: 10, max: 20); | 
|---|
| 593 | rxcw = er32(RXCW); | 
|---|
| 594 | if (rxcw & E1000_RXCW_SYNCH) { | 
|---|
| 595 | if (!(rxcw & E1000_RXCW_IV)) { | 
|---|
| 596 | mac->serdes_has_link = true; | 
|---|
| 597 | e_dbg( "SERDES: Link up - forced.\n"); | 
|---|
| 598 | } | 
|---|
| 599 | } else { | 
|---|
| 600 | mac->serdes_has_link = false; | 
|---|
| 601 | e_dbg( "SERDES: Link down - force failed.\n"); | 
|---|
| 602 | } | 
|---|
| 603 | } | 
|---|
| 604 |  | 
|---|
| 605 | if (E1000_TXCW_ANE & er32(TXCW)) { | 
|---|
| 606 | status = er32(STATUS); | 
|---|
| 607 | if (status & E1000_STATUS_LU) { | 
|---|
| 608 | /* SYNCH bit and IV bit are sticky, so reread rxcw. */ | 
|---|
| 609 | usleep_range(min: 10, max: 20); | 
|---|
| 610 | rxcw = er32(RXCW); | 
|---|
| 611 | if (rxcw & E1000_RXCW_SYNCH) { | 
|---|
| 612 | if (!(rxcw & E1000_RXCW_IV)) { | 
|---|
| 613 | mac->serdes_has_link = true; | 
|---|
| 614 | e_dbg( "SERDES: Link up - autoneg completed successfully.\n"); | 
|---|
| 615 | } else { | 
|---|
| 616 | mac->serdes_has_link = false; | 
|---|
| 617 | e_dbg( "SERDES: Link down - invalid codewords detected in autoneg.\n"); | 
|---|
| 618 | } | 
|---|
| 619 | } else { | 
|---|
| 620 | mac->serdes_has_link = false; | 
|---|
| 621 | e_dbg( "SERDES: Link down - no sync.\n"); | 
|---|
| 622 | } | 
|---|
| 623 | } else { | 
|---|
| 624 | mac->serdes_has_link = false; | 
|---|
| 625 | e_dbg( "SERDES: Link down - autoneg failed\n"); | 
|---|
| 626 | } | 
|---|
| 627 | } | 
|---|
| 628 |  | 
|---|
| 629 | return 0; | 
|---|
| 630 | } | 
|---|
| 631 |  | 
|---|
| 632 | /** | 
|---|
| 633 | *  e1000_set_default_fc_generic - Set flow control default values | 
|---|
| 634 | *  @hw: pointer to the HW structure | 
|---|
| 635 | * | 
|---|
| 636 | *  Read the EEPROM for the default values for flow control and store the | 
|---|
| 637 | *  values. | 
|---|
| 638 | **/ | 
|---|
| 639 | static s32 e1000_set_default_fc_generic(struct e1000_hw *hw) | 
|---|
| 640 | { | 
|---|
| 641 | s32 ret_val; | 
|---|
| 642 | u16 nvm_data; | 
|---|
| 643 |  | 
|---|
| 644 | /* Read and store word 0x0F of the EEPROM. This word contains bits | 
|---|
| 645 | * that determine the hardware's default PAUSE (flow control) mode, | 
|---|
| 646 | * a bit that determines whether the HW defaults to enabling or | 
|---|
| 647 | * disabling auto-negotiation, and the direction of the | 
|---|
| 648 | * SW defined pins. If there is no SW over-ride of the flow | 
|---|
| 649 | * control setting, then the variable hw->fc will | 
|---|
| 650 | * be initialized based on a value in the EEPROM. | 
|---|
| 651 | */ | 
|---|
| 652 | ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, words: 1, data: &nvm_data); | 
|---|
| 653 |  | 
|---|
| 654 | if (ret_val) { | 
|---|
| 655 | e_dbg( "NVM Read Error\n"); | 
|---|
| 656 | return ret_val; | 
|---|
| 657 | } | 
|---|
| 658 |  | 
|---|
| 659 | if (!(nvm_data & NVM_WORD0F_PAUSE_MASK)) | 
|---|
| 660 | hw->fc.requested_mode = e1000_fc_none; | 
|---|
| 661 | else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == NVM_WORD0F_ASM_DIR) | 
|---|
| 662 | hw->fc.requested_mode = e1000_fc_tx_pause; | 
|---|
| 663 | else | 
|---|
| 664 | hw->fc.requested_mode = e1000_fc_full; | 
|---|
| 665 |  | 
|---|
| 666 | return 0; | 
|---|
| 667 | } | 
|---|
| 668 |  | 
|---|
| 669 | /** | 
|---|
| 670 | *  e1000e_setup_link_generic - Setup flow control and link settings | 
|---|
| 671 | *  @hw: pointer to the HW structure | 
|---|
| 672 | * | 
|---|
| 673 | *  Determines which flow control settings to use, then configures flow | 
|---|
| 674 | *  control.  Calls the appropriate media-specific link configuration | 
|---|
| 675 | *  function.  Assuming the adapter has a valid link partner, a valid link | 
|---|
| 676 | *  should be established.  Assumes the hardware has previously been reset | 
|---|
| 677 | *  and the transmitter and receiver are not enabled. | 
|---|
| 678 | **/ | 
|---|
| 679 | s32 e1000e_setup_link_generic(struct e1000_hw *hw) | 
|---|
| 680 | { | 
|---|
| 681 | s32 ret_val; | 
|---|
| 682 |  | 
|---|
| 683 | /* In the case of the phy reset being blocked, we already have a link. | 
|---|
| 684 | * We do not need to set it up again. | 
|---|
| 685 | */ | 
|---|
| 686 | if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw)) | 
|---|
| 687 | return 0; | 
|---|
| 688 |  | 
|---|
| 689 | /* If requested flow control is set to default, set flow control | 
|---|
| 690 | * based on the EEPROM flow control settings. | 
|---|
| 691 | */ | 
|---|
| 692 | if (hw->fc.requested_mode == e1000_fc_default) { | 
|---|
| 693 | ret_val = e1000_set_default_fc_generic(hw); | 
|---|
| 694 | if (ret_val) | 
|---|
| 695 | return ret_val; | 
|---|
| 696 | } | 
|---|
| 697 |  | 
|---|
| 698 | /* Save off the requested flow control mode for use later.  Depending | 
|---|
| 699 | * on the link partner's capabilities, we may or may not use this mode. | 
|---|
| 700 | */ | 
|---|
| 701 | hw->fc.current_mode = hw->fc.requested_mode; | 
|---|
| 702 |  | 
|---|
| 703 | e_dbg( "After fix-ups FlowControl is now = %x\n", hw->fc.current_mode); | 
|---|
| 704 |  | 
|---|
| 705 | /* Call the necessary media_type subroutine to configure the link. */ | 
|---|
| 706 | ret_val = hw->mac.ops.setup_physical_interface(hw); | 
|---|
| 707 | if (ret_val) | 
|---|
| 708 | return ret_val; | 
|---|
| 709 |  | 
|---|
| 710 | /* Initialize the flow control address, type, and PAUSE timer | 
|---|
| 711 | * registers to their default values.  This is done even if flow | 
|---|
| 712 | * control is disabled, because it does not hurt anything to | 
|---|
| 713 | * initialize these registers. | 
|---|
| 714 | */ | 
|---|
| 715 | e_dbg( "Initializing the Flow Control address, type and timer regs\n"); | 
|---|
| 716 | ew32(FCT, FLOW_CONTROL_TYPE); | 
|---|
| 717 | ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH); | 
|---|
| 718 | ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW); | 
|---|
| 719 |  | 
|---|
| 720 | ew32(FCTTV, hw->fc.pause_time); | 
|---|
| 721 |  | 
|---|
| 722 | return e1000e_set_fc_watermarks(hw); | 
|---|
| 723 | } | 
|---|
| 724 |  | 
|---|
| 725 | /** | 
|---|
| 726 | *  e1000_commit_fc_settings_generic - Configure flow control | 
|---|
| 727 | *  @hw: pointer to the HW structure | 
|---|
| 728 | * | 
|---|
| 729 | *  Write the flow control settings to the Transmit Config Word Register (TXCW) | 
|---|
| 730 | *  base on the flow control settings in e1000_mac_info. | 
|---|
| 731 | **/ | 
|---|
| 732 | static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw) | 
|---|
| 733 | { | 
|---|
| 734 | struct e1000_mac_info *mac = &hw->mac; | 
|---|
| 735 | u32 txcw; | 
|---|
| 736 |  | 
|---|
| 737 | /* Check for a software override of the flow control settings, and | 
|---|
| 738 | * setup the device accordingly.  If auto-negotiation is enabled, then | 
|---|
| 739 | * software will have to set the "PAUSE" bits to the correct value in | 
|---|
| 740 | * the Transmit Config Word Register (TXCW) and re-start auto- | 
|---|
| 741 | * negotiation.  However, if auto-negotiation is disabled, then | 
|---|
| 742 | * software will have to manually configure the two flow control enable | 
|---|
| 743 | * bits in the CTRL register. | 
|---|
| 744 | * | 
|---|
| 745 | * The possible values of the "fc" parameter are: | 
|---|
| 746 | *      0:  Flow control is completely disabled | 
|---|
| 747 | *      1:  Rx flow control is enabled (we can receive pause frames, | 
|---|
| 748 | *          but not send pause frames). | 
|---|
| 749 | *      2:  Tx flow control is enabled (we can send pause frames but we | 
|---|
| 750 | *          do not support receiving pause frames). | 
|---|
| 751 | *      3:  Both Rx and Tx flow control (symmetric) are enabled. | 
|---|
| 752 | */ | 
|---|
| 753 | switch (hw->fc.current_mode) { | 
|---|
| 754 | case e1000_fc_none: | 
|---|
| 755 | /* Flow control completely disabled by a software over-ride. */ | 
|---|
| 756 | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD); | 
|---|
| 757 | break; | 
|---|
| 758 | case e1000_fc_rx_pause: | 
|---|
| 759 | /* Rx Flow control is enabled and Tx Flow control is disabled | 
|---|
| 760 | * by a software over-ride. Since there really isn't a way to | 
|---|
| 761 | * advertise that we are capable of Rx Pause ONLY, we will | 
|---|
| 762 | * advertise that we support both symmetric and asymmetric Rx | 
|---|
| 763 | * PAUSE.  Later, we will disable the adapter's ability to send | 
|---|
| 764 | * PAUSE frames. | 
|---|
| 765 | */ | 
|---|
| 766 | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); | 
|---|
| 767 | break; | 
|---|
| 768 | case e1000_fc_tx_pause: | 
|---|
| 769 | /* Tx Flow control is enabled, and Rx Flow control is disabled, | 
|---|
| 770 | * by a software over-ride. | 
|---|
| 771 | */ | 
|---|
| 772 | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR); | 
|---|
| 773 | break; | 
|---|
| 774 | case e1000_fc_full: | 
|---|
| 775 | /* Flow control (both Rx and Tx) is enabled by a software | 
|---|
| 776 | * over-ride. | 
|---|
| 777 | */ | 
|---|
| 778 | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); | 
|---|
| 779 | break; | 
|---|
| 780 | default: | 
|---|
| 781 | e_dbg( "Flow control param set incorrectly\n"); | 
|---|
| 782 | return -E1000_ERR_CONFIG; | 
|---|
| 783 | } | 
|---|
| 784 |  | 
|---|
| 785 | ew32(TXCW, txcw); | 
|---|
| 786 | mac->txcw = txcw; | 
|---|
| 787 |  | 
|---|
| 788 | return 0; | 
|---|
| 789 | } | 
|---|
| 790 |  | 
|---|
| 791 | /** | 
|---|
| 792 | *  e1000_poll_fiber_serdes_link_generic - Poll for link up | 
|---|
| 793 | *  @hw: pointer to the HW structure | 
|---|
| 794 | * | 
|---|
| 795 | *  Polls for link up by reading the status register, if link fails to come | 
|---|
| 796 | *  up with auto-negotiation, then the link is forced if a signal is detected. | 
|---|
| 797 | **/ | 
|---|
| 798 | static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw) | 
|---|
| 799 | { | 
|---|
| 800 | struct e1000_mac_info *mac = &hw->mac; | 
|---|
| 801 | u32 i, status; | 
|---|
| 802 | s32 ret_val; | 
|---|
| 803 |  | 
|---|
| 804 | /* If we have a signal (the cable is plugged in, or assumed true for | 
|---|
| 805 | * serdes media) then poll for a "Link-Up" indication in the Device | 
|---|
| 806 | * Status Register.  Time-out if a link isn't seen in 500 milliseconds | 
|---|
| 807 | * seconds (Auto-negotiation should complete in less than 500 | 
|---|
| 808 | * milliseconds even if the other end is doing it in SW). | 
|---|
| 809 | */ | 
|---|
| 810 | for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) { | 
|---|
| 811 | usleep_range(min: 10000, max: 11000); | 
|---|
| 812 | status = er32(STATUS); | 
|---|
| 813 | if (status & E1000_STATUS_LU) | 
|---|
| 814 | break; | 
|---|
| 815 | } | 
|---|
| 816 | if (i == FIBER_LINK_UP_LIMIT) { | 
|---|
| 817 | e_dbg( "Never got a valid link from auto-neg!!!\n"); | 
|---|
| 818 | mac->autoneg_failed = true; | 
|---|
| 819 | /* AutoNeg failed to achieve a link, so we'll call | 
|---|
| 820 | * mac->check_for_link. This routine will force the | 
|---|
| 821 | * link up if we detect a signal. This will allow us to | 
|---|
| 822 | * communicate with non-autonegotiating link partners. | 
|---|
| 823 | */ | 
|---|
| 824 | ret_val = mac->ops.check_for_link(hw); | 
|---|
| 825 | if (ret_val) { | 
|---|
| 826 | e_dbg( "Error while checking for link\n"); | 
|---|
| 827 | return ret_val; | 
|---|
| 828 | } | 
|---|
| 829 | mac->autoneg_failed = false; | 
|---|
| 830 | } else { | 
|---|
| 831 | mac->autoneg_failed = false; | 
|---|
| 832 | e_dbg( "Valid Link Found\n"); | 
|---|
| 833 | } | 
|---|
| 834 |  | 
|---|
| 835 | return 0; | 
|---|
| 836 | } | 
|---|
| 837 |  | 
|---|
| 838 | /** | 
|---|
| 839 | *  e1000e_setup_fiber_serdes_link - Setup link for fiber/serdes | 
|---|
| 840 | *  @hw: pointer to the HW structure | 
|---|
| 841 | * | 
|---|
| 842 | *  Configures collision distance and flow control for fiber and serdes | 
|---|
| 843 | *  links.  Upon successful setup, poll for link. | 
|---|
| 844 | **/ | 
|---|
| 845 | s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw) | 
|---|
| 846 | { | 
|---|
| 847 | u32 ctrl; | 
|---|
| 848 | s32 ret_val; | 
|---|
| 849 |  | 
|---|
| 850 | ctrl = er32(CTRL); | 
|---|
| 851 |  | 
|---|
| 852 | /* Take the link out of reset */ | 
|---|
| 853 | ctrl &= ~E1000_CTRL_LRST; | 
|---|
| 854 |  | 
|---|
| 855 | hw->mac.ops.config_collision_dist(hw); | 
|---|
| 856 |  | 
|---|
| 857 | ret_val = e1000_commit_fc_settings_generic(hw); | 
|---|
| 858 | if (ret_val) | 
|---|
| 859 | return ret_val; | 
|---|
| 860 |  | 
|---|
| 861 | /* Since auto-negotiation is enabled, take the link out of reset (the | 
|---|
| 862 | * link will be in reset, because we previously reset the chip). This | 
|---|
| 863 | * will restart auto-negotiation.  If auto-negotiation is successful | 
|---|
| 864 | * then the link-up status bit will be set and the flow control enable | 
|---|
| 865 | * bits (RFCE and TFCE) will be set according to their negotiated value. | 
|---|
| 866 | */ | 
|---|
| 867 | e_dbg( "Auto-negotiation enabled\n"); | 
|---|
| 868 |  | 
|---|
| 869 | ew32(CTRL, ctrl); | 
|---|
| 870 | e1e_flush(); | 
|---|
| 871 | usleep_range(min: 1000, max: 2000); | 
|---|
| 872 |  | 
|---|
| 873 | /* For these adapters, the SW definable pin 1 is set when the optics | 
|---|
| 874 | * detect a signal.  If we have a signal, then poll for a "Link-Up" | 
|---|
| 875 | * indication. | 
|---|
| 876 | */ | 
|---|
| 877 | if (hw->phy.media_type == e1000_media_type_internal_serdes || | 
|---|
| 878 | (er32(CTRL) & E1000_CTRL_SWDPIN1)) { | 
|---|
| 879 | ret_val = e1000_poll_fiber_serdes_link_generic(hw); | 
|---|
| 880 | } else { | 
|---|
| 881 | e_dbg( "No signal detected\n"); | 
|---|
| 882 | } | 
|---|
| 883 |  | 
|---|
| 884 | return ret_val; | 
|---|
| 885 | } | 
|---|
| 886 |  | 
|---|
| 887 | /** | 
|---|
| 888 | *  e1000e_config_collision_dist_generic - Configure collision distance | 
|---|
| 889 | *  @hw: pointer to the HW structure | 
|---|
| 890 | * | 
|---|
| 891 | *  Configures the collision distance to the default value and is used | 
|---|
| 892 | *  during link setup. | 
|---|
| 893 | **/ | 
|---|
| 894 | void e1000e_config_collision_dist_generic(struct e1000_hw *hw) | 
|---|
| 895 | { | 
|---|
| 896 | u32 tctl; | 
|---|
| 897 |  | 
|---|
| 898 | tctl = er32(TCTL); | 
|---|
| 899 |  | 
|---|
| 900 | tctl &= ~E1000_TCTL_COLD; | 
|---|
| 901 | tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT; | 
|---|
| 902 |  | 
|---|
| 903 | ew32(TCTL, tctl); | 
|---|
| 904 | e1e_flush(); | 
|---|
| 905 | } | 
|---|
| 906 |  | 
|---|
| 907 | /** | 
|---|
| 908 | *  e1000e_set_fc_watermarks - Set flow control high/low watermarks | 
|---|
| 909 | *  @hw: pointer to the HW structure | 
|---|
| 910 | * | 
|---|
| 911 | *  Sets the flow control high/low threshold (watermark) registers.  If | 
|---|
| 912 | *  flow control XON frame transmission is enabled, then set XON frame | 
|---|
| 913 | *  transmission as well. | 
|---|
| 914 | **/ | 
|---|
| 915 | s32 e1000e_set_fc_watermarks(struct e1000_hw *hw) | 
|---|
| 916 | { | 
|---|
| 917 | u32 fcrtl = 0, fcrth = 0; | 
|---|
| 918 |  | 
|---|
| 919 | /* Set the flow control receive threshold registers.  Normally, | 
|---|
| 920 | * these registers will be set to a default threshold that may be | 
|---|
| 921 | * adjusted later by the driver's runtime code.  However, if the | 
|---|
| 922 | * ability to transmit pause frames is not enabled, then these | 
|---|
| 923 | * registers will be set to 0. | 
|---|
| 924 | */ | 
|---|
| 925 | if (hw->fc.current_mode & e1000_fc_tx_pause) { | 
|---|
| 926 | /* We need to set up the Receive Threshold high and low water | 
|---|
| 927 | * marks as well as (optionally) enabling the transmission of | 
|---|
| 928 | * XON frames. | 
|---|
| 929 | */ | 
|---|
| 930 | fcrtl = hw->fc.low_water; | 
|---|
| 931 | if (hw->fc.send_xon) | 
|---|
| 932 | fcrtl |= E1000_FCRTL_XONE; | 
|---|
| 933 |  | 
|---|
| 934 | fcrth = hw->fc.high_water; | 
|---|
| 935 | } | 
|---|
| 936 | ew32(FCRTL, fcrtl); | 
|---|
| 937 | ew32(FCRTH, fcrth); | 
|---|
| 938 |  | 
|---|
| 939 | return 0; | 
|---|
| 940 | } | 
|---|
| 941 |  | 
|---|
| 942 | /** | 
|---|
| 943 | *  e1000e_force_mac_fc - Force the MAC's flow control settings | 
|---|
| 944 | *  @hw: pointer to the HW structure | 
|---|
| 945 | * | 
|---|
| 946 | *  Force the MAC's flow control settings.  Sets the TFCE and RFCE bits in the | 
|---|
| 947 | *  device control register to reflect the adapter settings.  TFCE and RFCE | 
|---|
| 948 | *  need to be explicitly set by software when a copper PHY is used because | 
|---|
| 949 | *  autonegotiation is managed by the PHY rather than the MAC.  Software must | 
|---|
| 950 | *  also configure these bits when link is forced on a fiber connection. | 
|---|
| 951 | **/ | 
|---|
| 952 | s32 e1000e_force_mac_fc(struct e1000_hw *hw) | 
|---|
| 953 | { | 
|---|
| 954 | u32 ctrl; | 
|---|
| 955 |  | 
|---|
| 956 | ctrl = er32(CTRL); | 
|---|
| 957 |  | 
|---|
| 958 | /* Because we didn't get link via the internal auto-negotiation | 
|---|
| 959 | * mechanism (we either forced link or we got link via PHY | 
|---|
| 960 | * auto-neg), we have to manually enable/disable transmit an | 
|---|
| 961 | * receive flow control. | 
|---|
| 962 | * | 
|---|
| 963 | * The "Case" statement below enables/disable flow control | 
|---|
| 964 | * according to the "hw->fc.current_mode" parameter. | 
|---|
| 965 | * | 
|---|
| 966 | * The possible values of the "fc" parameter are: | 
|---|
| 967 | *      0:  Flow control is completely disabled | 
|---|
| 968 | *      1:  Rx flow control is enabled (we can receive pause | 
|---|
| 969 | *          frames but not send pause frames). | 
|---|
| 970 | *      2:  Tx flow control is enabled (we can send pause frames | 
|---|
| 971 | *          but we do not receive pause frames). | 
|---|
| 972 | *      3:  Both Rx and Tx flow control (symmetric) is enabled. | 
|---|
| 973 | *  other:  No other values should be possible at this point. | 
|---|
| 974 | */ | 
|---|
| 975 | e_dbg( "hw->fc.current_mode = %u\n", hw->fc.current_mode); | 
|---|
| 976 |  | 
|---|
| 977 | switch (hw->fc.current_mode) { | 
|---|
| 978 | case e1000_fc_none: | 
|---|
| 979 | ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); | 
|---|
| 980 | break; | 
|---|
| 981 | case e1000_fc_rx_pause: | 
|---|
| 982 | ctrl &= (~E1000_CTRL_TFCE); | 
|---|
| 983 | ctrl |= E1000_CTRL_RFCE; | 
|---|
| 984 | break; | 
|---|
| 985 | case e1000_fc_tx_pause: | 
|---|
| 986 | ctrl &= (~E1000_CTRL_RFCE); | 
|---|
| 987 | ctrl |= E1000_CTRL_TFCE; | 
|---|
| 988 | break; | 
|---|
| 989 | case e1000_fc_full: | 
|---|
| 990 | ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); | 
|---|
| 991 | break; | 
|---|
| 992 | default: | 
|---|
| 993 | e_dbg( "Flow control param set incorrectly\n"); | 
|---|
| 994 | return -E1000_ERR_CONFIG; | 
|---|
| 995 | } | 
|---|
| 996 |  | 
|---|
| 997 | ew32(CTRL, ctrl); | 
|---|
| 998 |  | 
|---|
| 999 | return 0; | 
|---|
| 1000 | } | 
|---|
| 1001 |  | 
|---|
| 1002 | /** | 
|---|
| 1003 | *  e1000e_config_fc_after_link_up - Configures flow control after link | 
|---|
| 1004 | *  @hw: pointer to the HW structure | 
|---|
| 1005 | * | 
|---|
| 1006 | *  Checks the status of auto-negotiation after link up to ensure that the | 
|---|
| 1007 | *  speed and duplex were not forced.  If the link needed to be forced, then | 
|---|
| 1008 | *  flow control needs to be forced also.  If auto-negotiation is enabled | 
|---|
| 1009 | *  and did not fail, then we configure flow control based on our link | 
|---|
| 1010 | *  partner. | 
|---|
| 1011 | **/ | 
|---|
| 1012 | s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw) | 
|---|
| 1013 | { | 
|---|
| 1014 | struct e1000_mac_info *mac = &hw->mac; | 
|---|
| 1015 | s32 ret_val = 0; | 
|---|
| 1016 | u32 pcs_status_reg, pcs_adv_reg, pcs_lp_ability_reg, pcs_ctrl_reg; | 
|---|
| 1017 | u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg; | 
|---|
| 1018 | u16 speed, duplex; | 
|---|
| 1019 |  | 
|---|
| 1020 | /* Check for the case where we have fiber media and auto-neg failed | 
|---|
| 1021 | * so we had to force link.  In this case, we need to force the | 
|---|
| 1022 | * configuration of the MAC to match the "fc" parameter. | 
|---|
| 1023 | */ | 
|---|
| 1024 | if (mac->autoneg_failed) { | 
|---|
| 1025 | if (hw->phy.media_type == e1000_media_type_fiber || | 
|---|
| 1026 | hw->phy.media_type == e1000_media_type_internal_serdes) | 
|---|
| 1027 | ret_val = e1000e_force_mac_fc(hw); | 
|---|
| 1028 | } else { | 
|---|
| 1029 | if (hw->phy.media_type == e1000_media_type_copper) | 
|---|
| 1030 | ret_val = e1000e_force_mac_fc(hw); | 
|---|
| 1031 | } | 
|---|
| 1032 |  | 
|---|
| 1033 | if (ret_val) { | 
|---|
| 1034 | e_dbg( "Error forcing flow control settings\n"); | 
|---|
| 1035 | return ret_val; | 
|---|
| 1036 | } | 
|---|
| 1037 |  | 
|---|
| 1038 | /* Check for the case where we have copper media and auto-neg is | 
|---|
| 1039 | * enabled.  In this case, we need to check and see if Auto-Neg | 
|---|
| 1040 | * has completed, and if so, how the PHY and link partner has | 
|---|
| 1041 | * flow control configured. | 
|---|
| 1042 | */ | 
|---|
| 1043 | if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) { | 
|---|
| 1044 | /* Read the MII Status Register and check to see if AutoNeg | 
|---|
| 1045 | * has completed.  We read this twice because this reg has | 
|---|
| 1046 | * some "sticky" (latched) bits. | 
|---|
| 1047 | */ | 
|---|
| 1048 | ret_val = e1e_rphy(hw, MII_BMSR, data: &mii_status_reg); | 
|---|
| 1049 | if (ret_val) | 
|---|
| 1050 | return ret_val; | 
|---|
| 1051 | ret_val = e1e_rphy(hw, MII_BMSR, data: &mii_status_reg); | 
|---|
| 1052 | if (ret_val) | 
|---|
| 1053 | return ret_val; | 
|---|
| 1054 |  | 
|---|
| 1055 | if (!(mii_status_reg & BMSR_ANEGCOMPLETE)) { | 
|---|
| 1056 | e_dbg( "Copper PHY and Auto Neg has not completed.\n"); | 
|---|
| 1057 | return ret_val; | 
|---|
| 1058 | } | 
|---|
| 1059 |  | 
|---|
| 1060 | /* The AutoNeg process has completed, so we now need to | 
|---|
| 1061 | * read both the Auto Negotiation Advertisement | 
|---|
| 1062 | * Register (Address 4) and the Auto_Negotiation Base | 
|---|
| 1063 | * Page Ability Register (Address 5) to determine how | 
|---|
| 1064 | * flow control was negotiated. | 
|---|
| 1065 | */ | 
|---|
| 1066 | ret_val = e1e_rphy(hw, MII_ADVERTISE, data: &mii_nway_adv_reg); | 
|---|
| 1067 | if (ret_val) | 
|---|
| 1068 | return ret_val; | 
|---|
| 1069 | ret_val = e1e_rphy(hw, MII_LPA, data: &mii_nway_lp_ability_reg); | 
|---|
| 1070 | if (ret_val) | 
|---|
| 1071 | return ret_val; | 
|---|
| 1072 |  | 
|---|
| 1073 | /* Two bits in the Auto Negotiation Advertisement Register | 
|---|
| 1074 | * (Address 4) and two bits in the Auto Negotiation Base | 
|---|
| 1075 | * Page Ability Register (Address 5) determine flow control | 
|---|
| 1076 | * for both the PHY and the link partner.  The following | 
|---|
| 1077 | * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, | 
|---|
| 1078 | * 1999, describes these PAUSE resolution bits and how flow | 
|---|
| 1079 | * control is determined based upon these settings. | 
|---|
| 1080 | * NOTE:  DC = Don't Care | 
|---|
| 1081 | * | 
|---|
| 1082 | *   LOCAL DEVICE  |   LINK PARTNER | 
|---|
| 1083 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution | 
|---|
| 1084 | *-------|---------|-------|---------|-------------------- | 
|---|
| 1085 | *   0   |    0    |  DC   |   DC    | e1000_fc_none | 
|---|
| 1086 | *   0   |    1    |   0   |   DC    | e1000_fc_none | 
|---|
| 1087 | *   0   |    1    |   1   |    0    | e1000_fc_none | 
|---|
| 1088 | *   0   |    1    |   1   |    1    | e1000_fc_tx_pause | 
|---|
| 1089 | *   1   |    0    |   0   |   DC    | e1000_fc_none | 
|---|
| 1090 | *   1   |   DC    |   1   |   DC    | e1000_fc_full | 
|---|
| 1091 | *   1   |    1    |   0   |    0    | e1000_fc_none | 
|---|
| 1092 | *   1   |    1    |   0   |    1    | e1000_fc_rx_pause | 
|---|
| 1093 | * | 
|---|
| 1094 | * Are both PAUSE bits set to 1?  If so, this implies | 
|---|
| 1095 | * Symmetric Flow Control is enabled at both ends.  The | 
|---|
| 1096 | * ASM_DIR bits are irrelevant per the spec. | 
|---|
| 1097 | * | 
|---|
| 1098 | * For Symmetric Flow Control: | 
|---|
| 1099 | * | 
|---|
| 1100 | *   LOCAL DEVICE  |   LINK PARTNER | 
|---|
| 1101 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result | 
|---|
| 1102 | *-------|---------|-------|---------|-------------------- | 
|---|
| 1103 | *   1   |   DC    |   1   |   DC    | E1000_fc_full | 
|---|
| 1104 | * | 
|---|
| 1105 | */ | 
|---|
| 1106 | if ((mii_nway_adv_reg & ADVERTISE_PAUSE_CAP) && | 
|---|
| 1107 | (mii_nway_lp_ability_reg & LPA_PAUSE_CAP)) { | 
|---|
| 1108 | /* Now we need to check if the user selected Rx ONLY | 
|---|
| 1109 | * of pause frames.  In this case, we had to advertise | 
|---|
| 1110 | * FULL flow control because we could not advertise Rx | 
|---|
| 1111 | * ONLY. Hence, we must now check to see if we need to | 
|---|
| 1112 | * turn OFF the TRANSMISSION of PAUSE frames. | 
|---|
| 1113 | */ | 
|---|
| 1114 | if (hw->fc.requested_mode == e1000_fc_full) { | 
|---|
| 1115 | hw->fc.current_mode = e1000_fc_full; | 
|---|
| 1116 | e_dbg( "Flow Control = FULL.\n"); | 
|---|
| 1117 | } else { | 
|---|
| 1118 | hw->fc.current_mode = e1000_fc_rx_pause; | 
|---|
| 1119 | e_dbg( "Flow Control = Rx PAUSE frames only.\n"); | 
|---|
| 1120 | } | 
|---|
| 1121 | } | 
|---|
| 1122 | /* For receiving PAUSE frames ONLY. | 
|---|
| 1123 | * | 
|---|
| 1124 | *   LOCAL DEVICE  |   LINK PARTNER | 
|---|
| 1125 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result | 
|---|
| 1126 | *-------|---------|-------|---------|-------------------- | 
|---|
| 1127 | *   0   |    1    |   1   |    1    | e1000_fc_tx_pause | 
|---|
| 1128 | */ | 
|---|
| 1129 | else if (!(mii_nway_adv_reg & ADVERTISE_PAUSE_CAP) && | 
|---|
| 1130 | (mii_nway_adv_reg & ADVERTISE_PAUSE_ASYM) && | 
|---|
| 1131 | (mii_nway_lp_ability_reg & LPA_PAUSE_CAP) && | 
|---|
| 1132 | (mii_nway_lp_ability_reg & LPA_PAUSE_ASYM)) { | 
|---|
| 1133 | hw->fc.current_mode = e1000_fc_tx_pause; | 
|---|
| 1134 | e_dbg( "Flow Control = Tx PAUSE frames only.\n"); | 
|---|
| 1135 | } | 
|---|
| 1136 | /* For transmitting PAUSE frames ONLY. | 
|---|
| 1137 | * | 
|---|
| 1138 | *   LOCAL DEVICE  |   LINK PARTNER | 
|---|
| 1139 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result | 
|---|
| 1140 | *-------|---------|-------|---------|-------------------- | 
|---|
| 1141 | *   1   |    1    |   0   |    1    | e1000_fc_rx_pause | 
|---|
| 1142 | */ | 
|---|
| 1143 | else if ((mii_nway_adv_reg & ADVERTISE_PAUSE_CAP) && | 
|---|
| 1144 | (mii_nway_adv_reg & ADVERTISE_PAUSE_ASYM) && | 
|---|
| 1145 | !(mii_nway_lp_ability_reg & LPA_PAUSE_CAP) && | 
|---|
| 1146 | (mii_nway_lp_ability_reg & LPA_PAUSE_ASYM)) { | 
|---|
| 1147 | hw->fc.current_mode = e1000_fc_rx_pause; | 
|---|
| 1148 | e_dbg( "Flow Control = Rx PAUSE frames only.\n"); | 
|---|
| 1149 | } else { | 
|---|
| 1150 | /* Per the IEEE spec, at this point flow control | 
|---|
| 1151 | * should be disabled. | 
|---|
| 1152 | */ | 
|---|
| 1153 | hw->fc.current_mode = e1000_fc_none; | 
|---|
| 1154 | e_dbg( "Flow Control = NONE.\n"); | 
|---|
| 1155 | } | 
|---|
| 1156 |  | 
|---|
| 1157 | /* Now we need to do one last check...  If we auto- | 
|---|
| 1158 | * negotiated to HALF DUPLEX, flow control should not be | 
|---|
| 1159 | * enabled per IEEE 802.3 spec. | 
|---|
| 1160 | */ | 
|---|
| 1161 | ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex); | 
|---|
| 1162 | if (ret_val) { | 
|---|
| 1163 | e_dbg( "Error getting link speed and duplex\n"); | 
|---|
| 1164 | return ret_val; | 
|---|
| 1165 | } | 
|---|
| 1166 |  | 
|---|
| 1167 | if (duplex == HALF_DUPLEX) | 
|---|
| 1168 | hw->fc.current_mode = e1000_fc_none; | 
|---|
| 1169 |  | 
|---|
| 1170 | /* Now we call a subroutine to actually force the MAC | 
|---|
| 1171 | * controller to use the correct flow control settings. | 
|---|
| 1172 | */ | 
|---|
| 1173 | ret_val = e1000e_force_mac_fc(hw); | 
|---|
| 1174 | if (ret_val) { | 
|---|
| 1175 | e_dbg( "Error forcing flow control settings\n"); | 
|---|
| 1176 | return ret_val; | 
|---|
| 1177 | } | 
|---|
| 1178 | } | 
|---|
| 1179 |  | 
|---|
| 1180 | /* Check for the case where we have SerDes media and auto-neg is | 
|---|
| 1181 | * enabled.  In this case, we need to check and see if Auto-Neg | 
|---|
| 1182 | * has completed, and if so, how the PHY and link partner has | 
|---|
| 1183 | * flow control configured. | 
|---|
| 1184 | */ | 
|---|
| 1185 | if ((hw->phy.media_type == e1000_media_type_internal_serdes) && | 
|---|
| 1186 | mac->autoneg) { | 
|---|
| 1187 | /* Read the PCS_LSTS and check to see if AutoNeg | 
|---|
| 1188 | * has completed. | 
|---|
| 1189 | */ | 
|---|
| 1190 | pcs_status_reg = er32(PCS_LSTAT); | 
|---|
| 1191 |  | 
|---|
| 1192 | if (!(pcs_status_reg & E1000_PCS_LSTS_AN_COMPLETE)) { | 
|---|
| 1193 | e_dbg( "PCS Auto Neg has not completed.\n"); | 
|---|
| 1194 | return ret_val; | 
|---|
| 1195 | } | 
|---|
| 1196 |  | 
|---|
| 1197 | /* The AutoNeg process has completed, so we now need to | 
|---|
| 1198 | * read both the Auto Negotiation Advertisement | 
|---|
| 1199 | * Register (PCS_ANADV) and the Auto_Negotiation Base | 
|---|
| 1200 | * Page Ability Register (PCS_LPAB) to determine how | 
|---|
| 1201 | * flow control was negotiated. | 
|---|
| 1202 | */ | 
|---|
| 1203 | pcs_adv_reg = er32(PCS_ANADV); | 
|---|
| 1204 | pcs_lp_ability_reg = er32(PCS_LPAB); | 
|---|
| 1205 |  | 
|---|
| 1206 | /* Two bits in the Auto Negotiation Advertisement Register | 
|---|
| 1207 | * (PCS_ANADV) and two bits in the Auto Negotiation Base | 
|---|
| 1208 | * Page Ability Register (PCS_LPAB) determine flow control | 
|---|
| 1209 | * for both the PHY and the link partner.  The following | 
|---|
| 1210 | * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, | 
|---|
| 1211 | * 1999, describes these PAUSE resolution bits and how flow | 
|---|
| 1212 | * control is determined based upon these settings. | 
|---|
| 1213 | * NOTE:  DC = Don't Care | 
|---|
| 1214 | * | 
|---|
| 1215 | *   LOCAL DEVICE  |   LINK PARTNER | 
|---|
| 1216 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution | 
|---|
| 1217 | *-------|---------|-------|---------|-------------------- | 
|---|
| 1218 | *   0   |    0    |  DC   |   DC    | e1000_fc_none | 
|---|
| 1219 | *   0   |    1    |   0   |   DC    | e1000_fc_none | 
|---|
| 1220 | *   0   |    1    |   1   |    0    | e1000_fc_none | 
|---|
| 1221 | *   0   |    1    |   1   |    1    | e1000_fc_tx_pause | 
|---|
| 1222 | *   1   |    0    |   0   |   DC    | e1000_fc_none | 
|---|
| 1223 | *   1   |   DC    |   1   |   DC    | e1000_fc_full | 
|---|
| 1224 | *   1   |    1    |   0   |    0    | e1000_fc_none | 
|---|
| 1225 | *   1   |    1    |   0   |    1    | e1000_fc_rx_pause | 
|---|
| 1226 | * | 
|---|
| 1227 | * Are both PAUSE bits set to 1?  If so, this implies | 
|---|
| 1228 | * Symmetric Flow Control is enabled at both ends.  The | 
|---|
| 1229 | * ASM_DIR bits are irrelevant per the spec. | 
|---|
| 1230 | * | 
|---|
| 1231 | * For Symmetric Flow Control: | 
|---|
| 1232 | * | 
|---|
| 1233 | *   LOCAL DEVICE  |   LINK PARTNER | 
|---|
| 1234 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result | 
|---|
| 1235 | *-------|---------|-------|---------|-------------------- | 
|---|
| 1236 | *   1   |   DC    |   1   |   DC    | e1000_fc_full | 
|---|
| 1237 | * | 
|---|
| 1238 | */ | 
|---|
| 1239 | if ((pcs_adv_reg & E1000_TXCW_PAUSE) && | 
|---|
| 1240 | (pcs_lp_ability_reg & E1000_TXCW_PAUSE)) { | 
|---|
| 1241 | /* Now we need to check if the user selected Rx ONLY | 
|---|
| 1242 | * of pause frames.  In this case, we had to advertise | 
|---|
| 1243 | * FULL flow control because we could not advertise Rx | 
|---|
| 1244 | * ONLY. Hence, we must now check to see if we need to | 
|---|
| 1245 | * turn OFF the TRANSMISSION of PAUSE frames. | 
|---|
| 1246 | */ | 
|---|
| 1247 | if (hw->fc.requested_mode == e1000_fc_full) { | 
|---|
| 1248 | hw->fc.current_mode = e1000_fc_full; | 
|---|
| 1249 | e_dbg( "Flow Control = FULL.\n"); | 
|---|
| 1250 | } else { | 
|---|
| 1251 | hw->fc.current_mode = e1000_fc_rx_pause; | 
|---|
| 1252 | e_dbg( "Flow Control = Rx PAUSE frames only.\n"); | 
|---|
| 1253 | } | 
|---|
| 1254 | } | 
|---|
| 1255 | /* For receiving PAUSE frames ONLY. | 
|---|
| 1256 | * | 
|---|
| 1257 | *   LOCAL DEVICE  |   LINK PARTNER | 
|---|
| 1258 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result | 
|---|
| 1259 | *-------|---------|-------|---------|-------------------- | 
|---|
| 1260 | *   0   |    1    |   1   |    1    | e1000_fc_tx_pause | 
|---|
| 1261 | */ | 
|---|
| 1262 | else if (!(pcs_adv_reg & E1000_TXCW_PAUSE) && | 
|---|
| 1263 | (pcs_adv_reg & E1000_TXCW_ASM_DIR) && | 
|---|
| 1264 | (pcs_lp_ability_reg & E1000_TXCW_PAUSE) && | 
|---|
| 1265 | (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) { | 
|---|
| 1266 | hw->fc.current_mode = e1000_fc_tx_pause; | 
|---|
| 1267 | e_dbg( "Flow Control = Tx PAUSE frames only.\n"); | 
|---|
| 1268 | } | 
|---|
| 1269 | /* For transmitting PAUSE frames ONLY. | 
|---|
| 1270 | * | 
|---|
| 1271 | *   LOCAL DEVICE  |   LINK PARTNER | 
|---|
| 1272 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result | 
|---|
| 1273 | *-------|---------|-------|---------|-------------------- | 
|---|
| 1274 | *   1   |    1    |   0   |    1    | e1000_fc_rx_pause | 
|---|
| 1275 | */ | 
|---|
| 1276 | else if ((pcs_adv_reg & E1000_TXCW_PAUSE) && | 
|---|
| 1277 | (pcs_adv_reg & E1000_TXCW_ASM_DIR) && | 
|---|
| 1278 | !(pcs_lp_ability_reg & E1000_TXCW_PAUSE) && | 
|---|
| 1279 | (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) { | 
|---|
| 1280 | hw->fc.current_mode = e1000_fc_rx_pause; | 
|---|
| 1281 | e_dbg( "Flow Control = Rx PAUSE frames only.\n"); | 
|---|
| 1282 | } else { | 
|---|
| 1283 | /* Per the IEEE spec, at this point flow control | 
|---|
| 1284 | * should be disabled. | 
|---|
| 1285 | */ | 
|---|
| 1286 | hw->fc.current_mode = e1000_fc_none; | 
|---|
| 1287 | e_dbg( "Flow Control = NONE.\n"); | 
|---|
| 1288 | } | 
|---|
| 1289 |  | 
|---|
| 1290 | /* Now we call a subroutine to actually force the MAC | 
|---|
| 1291 | * controller to use the correct flow control settings. | 
|---|
| 1292 | */ | 
|---|
| 1293 | pcs_ctrl_reg = er32(PCS_LCTL); | 
|---|
| 1294 | pcs_ctrl_reg |= E1000_PCS_LCTL_FORCE_FCTRL; | 
|---|
| 1295 | ew32(PCS_LCTL, pcs_ctrl_reg); | 
|---|
| 1296 |  | 
|---|
| 1297 | ret_val = e1000e_force_mac_fc(hw); | 
|---|
| 1298 | if (ret_val) { | 
|---|
| 1299 | e_dbg( "Error forcing flow control settings\n"); | 
|---|
| 1300 | return ret_val; | 
|---|
| 1301 | } | 
|---|
| 1302 | } | 
|---|
| 1303 |  | 
|---|
| 1304 | return 0; | 
|---|
| 1305 | } | 
|---|
| 1306 |  | 
|---|
| 1307 | /** | 
|---|
| 1308 | *  e1000e_get_speed_and_duplex_copper - Retrieve current speed/duplex | 
|---|
| 1309 | *  @hw: pointer to the HW structure | 
|---|
| 1310 | *  @speed: stores the current speed | 
|---|
| 1311 | *  @duplex: stores the current duplex | 
|---|
| 1312 | * | 
|---|
| 1313 | *  Read the status register for the current speed/duplex and store the current | 
|---|
| 1314 | *  speed and duplex for copper connections. | 
|---|
| 1315 | **/ | 
|---|
| 1316 | s32 e1000e_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed, | 
|---|
| 1317 | u16 *duplex) | 
|---|
| 1318 | { | 
|---|
| 1319 | u32 status; | 
|---|
| 1320 |  | 
|---|
| 1321 | status = er32(STATUS); | 
|---|
| 1322 | if (status & E1000_STATUS_SPEED_1000) | 
|---|
| 1323 | *speed = SPEED_1000; | 
|---|
| 1324 | else if (status & E1000_STATUS_SPEED_100) | 
|---|
| 1325 | *speed = SPEED_100; | 
|---|
| 1326 | else | 
|---|
| 1327 | *speed = SPEED_10; | 
|---|
| 1328 |  | 
|---|
| 1329 | if (status & E1000_STATUS_FD) | 
|---|
| 1330 | *duplex = FULL_DUPLEX; | 
|---|
| 1331 | else | 
|---|
| 1332 | *duplex = HALF_DUPLEX; | 
|---|
| 1333 |  | 
|---|
| 1334 | e_dbg( "%u Mbps, %s Duplex\n", | 
|---|
| 1335 | *speed == SPEED_1000 ? 1000 : *speed == SPEED_100 ? 100 : 10, | 
|---|
| 1336 | *duplex == FULL_DUPLEX ? "Full": "Half"); | 
|---|
| 1337 |  | 
|---|
| 1338 | return 0; | 
|---|
| 1339 | } | 
|---|
| 1340 |  | 
|---|
| 1341 | /** | 
|---|
| 1342 | *  e1000e_get_speed_and_duplex_fiber_serdes - Retrieve current speed/duplex | 
|---|
| 1343 | *  @hw: pointer to the HW structure | 
|---|
| 1344 | *  @speed: stores the current speed | 
|---|
| 1345 | *  @duplex: stores the current duplex | 
|---|
| 1346 | * | 
|---|
| 1347 | *  Sets the speed and duplex to gigabit full duplex (the only possible option) | 
|---|
| 1348 | *  for fiber/serdes links. | 
|---|
| 1349 | **/ | 
|---|
| 1350 | s32 e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw __always_unused | 
|---|
| 1351 | *hw, u16 *speed, u16 *duplex) | 
|---|
| 1352 | { | 
|---|
| 1353 | *speed = SPEED_1000; | 
|---|
| 1354 | *duplex = FULL_DUPLEX; | 
|---|
| 1355 |  | 
|---|
| 1356 | return 0; | 
|---|
| 1357 | } | 
|---|
| 1358 |  | 
|---|
| 1359 | /** | 
|---|
| 1360 | *  e1000e_get_hw_semaphore - Acquire hardware semaphore | 
|---|
| 1361 | *  @hw: pointer to the HW structure | 
|---|
| 1362 | * | 
|---|
| 1363 | *  Acquire the HW semaphore to access the PHY or NVM | 
|---|
| 1364 | **/ | 
|---|
| 1365 | s32 e1000e_get_hw_semaphore(struct e1000_hw *hw) | 
|---|
| 1366 | { | 
|---|
| 1367 | u32 swsm; | 
|---|
| 1368 | s32 timeout = hw->nvm.word_size + 1; | 
|---|
| 1369 | s32 i = 0; | 
|---|
| 1370 |  | 
|---|
| 1371 | /* Get the SW semaphore */ | 
|---|
| 1372 | while (i < timeout) { | 
|---|
| 1373 | swsm = er32(SWSM); | 
|---|
| 1374 | if (!(swsm & E1000_SWSM_SMBI)) | 
|---|
| 1375 | break; | 
|---|
| 1376 |  | 
|---|
| 1377 | udelay(usec: 100); | 
|---|
| 1378 | i++; | 
|---|
| 1379 | } | 
|---|
| 1380 |  | 
|---|
| 1381 | if (i == timeout) { | 
|---|
| 1382 | e_dbg( "Driver can't access device - SMBI bit is set.\n"); | 
|---|
| 1383 | return -E1000_ERR_NVM; | 
|---|
| 1384 | } | 
|---|
| 1385 |  | 
|---|
| 1386 | /* Get the FW semaphore. */ | 
|---|
| 1387 | for (i = 0; i < timeout; i++) { | 
|---|
| 1388 | swsm = er32(SWSM); | 
|---|
| 1389 | ew32(SWSM, swsm | E1000_SWSM_SWESMBI); | 
|---|
| 1390 |  | 
|---|
| 1391 | /* Semaphore acquired if bit latched */ | 
|---|
| 1392 | if (er32(SWSM) & E1000_SWSM_SWESMBI) | 
|---|
| 1393 | break; | 
|---|
| 1394 |  | 
|---|
| 1395 | udelay(usec: 100); | 
|---|
| 1396 | } | 
|---|
| 1397 |  | 
|---|
| 1398 | if (i == timeout) { | 
|---|
| 1399 | /* Release semaphores */ | 
|---|
| 1400 | e1000e_put_hw_semaphore(hw); | 
|---|
| 1401 | e_dbg( "Driver can't access the NVM\n"); | 
|---|
| 1402 | return -E1000_ERR_NVM; | 
|---|
| 1403 | } | 
|---|
| 1404 |  | 
|---|
| 1405 | return 0; | 
|---|
| 1406 | } | 
|---|
| 1407 |  | 
|---|
| 1408 | /** | 
|---|
| 1409 | *  e1000e_put_hw_semaphore - Release hardware semaphore | 
|---|
| 1410 | *  @hw: pointer to the HW structure | 
|---|
| 1411 | * | 
|---|
| 1412 | *  Release hardware semaphore used to access the PHY or NVM | 
|---|
| 1413 | **/ | 
|---|
| 1414 | void e1000e_put_hw_semaphore(struct e1000_hw *hw) | 
|---|
| 1415 | { | 
|---|
| 1416 | u32 swsm; | 
|---|
| 1417 |  | 
|---|
| 1418 | swsm = er32(SWSM); | 
|---|
| 1419 | swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI); | 
|---|
| 1420 | ew32(SWSM, swsm); | 
|---|
| 1421 | } | 
|---|
| 1422 |  | 
|---|
| 1423 | /** | 
|---|
| 1424 | *  e1000e_get_auto_rd_done - Check for auto read completion | 
|---|
| 1425 | *  @hw: pointer to the HW structure | 
|---|
| 1426 | * | 
|---|
| 1427 | *  Check EEPROM for Auto Read done bit. | 
|---|
| 1428 | **/ | 
|---|
| 1429 | s32 e1000e_get_auto_rd_done(struct e1000_hw *hw) | 
|---|
| 1430 | { | 
|---|
| 1431 | s32 i = 0; | 
|---|
| 1432 |  | 
|---|
| 1433 | while (i < AUTO_READ_DONE_TIMEOUT) { | 
|---|
| 1434 | if (er32(EECD) & E1000_EECD_AUTO_RD) | 
|---|
| 1435 | break; | 
|---|
| 1436 | usleep_range(min: 1000, max: 2000); | 
|---|
| 1437 | i++; | 
|---|
| 1438 | } | 
|---|
| 1439 |  | 
|---|
| 1440 | if (i == AUTO_READ_DONE_TIMEOUT) { | 
|---|
| 1441 | e_dbg( "Auto read by HW from NVM has not completed.\n"); | 
|---|
| 1442 | return -E1000_ERR_RESET; | 
|---|
| 1443 | } | 
|---|
| 1444 |  | 
|---|
| 1445 | return 0; | 
|---|
| 1446 | } | 
|---|
| 1447 |  | 
|---|
| 1448 | /** | 
|---|
| 1449 | *  e1000e_valid_led_default - Verify a valid default LED config | 
|---|
| 1450 | *  @hw: pointer to the HW structure | 
|---|
| 1451 | *  @data: pointer to the NVM (EEPROM) | 
|---|
| 1452 | * | 
|---|
| 1453 | *  Read the EEPROM for the current default LED configuration.  If the | 
|---|
| 1454 | *  LED configuration is not valid, set to a valid LED configuration. | 
|---|
| 1455 | **/ | 
|---|
| 1456 | s32 e1000e_valid_led_default(struct e1000_hw *hw, u16 *data) | 
|---|
| 1457 | { | 
|---|
| 1458 | s32 ret_val; | 
|---|
| 1459 |  | 
|---|
| 1460 | ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, words: 1, data); | 
|---|
| 1461 | if (ret_val) { | 
|---|
| 1462 | e_dbg( "NVM Read Error\n"); | 
|---|
| 1463 | return ret_val; | 
|---|
| 1464 | } | 
|---|
| 1465 |  | 
|---|
| 1466 | if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) | 
|---|
| 1467 | *data = ID_LED_DEFAULT; | 
|---|
| 1468 |  | 
|---|
| 1469 | return 0; | 
|---|
| 1470 | } | 
|---|
| 1471 |  | 
|---|
| 1472 | /** | 
|---|
| 1473 | *  e1000e_id_led_init_generic - | 
|---|
| 1474 | *  @hw: pointer to the HW structure | 
|---|
| 1475 | * | 
|---|
| 1476 | **/ | 
|---|
| 1477 | s32 e1000e_id_led_init_generic(struct e1000_hw *hw) | 
|---|
| 1478 | { | 
|---|
| 1479 | struct e1000_mac_info *mac = &hw->mac; | 
|---|
| 1480 | s32 ret_val; | 
|---|
| 1481 | const u32 ledctl_mask = 0x000000FF; | 
|---|
| 1482 | const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON; | 
|---|
| 1483 | const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF; | 
|---|
| 1484 | u16 data, i, temp; | 
|---|
| 1485 | const u16 led_mask = 0x0F; | 
|---|
| 1486 |  | 
|---|
| 1487 | ret_val = hw->nvm.ops.valid_led_default(hw, &data); | 
|---|
| 1488 | if (ret_val) | 
|---|
| 1489 | return ret_val; | 
|---|
| 1490 |  | 
|---|
| 1491 | mac->ledctl_default = er32(LEDCTL); | 
|---|
| 1492 | mac->ledctl_mode1 = mac->ledctl_default; | 
|---|
| 1493 | mac->ledctl_mode2 = mac->ledctl_default; | 
|---|
| 1494 |  | 
|---|
| 1495 | for (i = 0; i < 4; i++) { | 
|---|
| 1496 | temp = (data >> (i << 2)) & led_mask; | 
|---|
| 1497 | switch (temp) { | 
|---|
| 1498 | case ID_LED_ON1_DEF2: | 
|---|
| 1499 | case ID_LED_ON1_ON2: | 
|---|
| 1500 | case ID_LED_ON1_OFF2: | 
|---|
| 1501 | mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); | 
|---|
| 1502 | mac->ledctl_mode1 |= ledctl_on << (i << 3); | 
|---|
| 1503 | break; | 
|---|
| 1504 | case ID_LED_OFF1_DEF2: | 
|---|
| 1505 | case ID_LED_OFF1_ON2: | 
|---|
| 1506 | case ID_LED_OFF1_OFF2: | 
|---|
| 1507 | mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); | 
|---|
| 1508 | mac->ledctl_mode1 |= ledctl_off << (i << 3); | 
|---|
| 1509 | break; | 
|---|
| 1510 | default: | 
|---|
| 1511 | /* Do nothing */ | 
|---|
| 1512 | break; | 
|---|
| 1513 | } | 
|---|
| 1514 | switch (temp) { | 
|---|
| 1515 | case ID_LED_DEF1_ON2: | 
|---|
| 1516 | case ID_LED_ON1_ON2: | 
|---|
| 1517 | case ID_LED_OFF1_ON2: | 
|---|
| 1518 | mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); | 
|---|
| 1519 | mac->ledctl_mode2 |= ledctl_on << (i << 3); | 
|---|
| 1520 | break; | 
|---|
| 1521 | case ID_LED_DEF1_OFF2: | 
|---|
| 1522 | case ID_LED_ON1_OFF2: | 
|---|
| 1523 | case ID_LED_OFF1_OFF2: | 
|---|
| 1524 | mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); | 
|---|
| 1525 | mac->ledctl_mode2 |= ledctl_off << (i << 3); | 
|---|
| 1526 | break; | 
|---|
| 1527 | default: | 
|---|
| 1528 | /* Do nothing */ | 
|---|
| 1529 | break; | 
|---|
| 1530 | } | 
|---|
| 1531 | } | 
|---|
| 1532 |  | 
|---|
| 1533 | return 0; | 
|---|
| 1534 | } | 
|---|
| 1535 |  | 
|---|
| 1536 | /** | 
|---|
| 1537 | *  e1000e_setup_led_generic - Configures SW controllable LED | 
|---|
| 1538 | *  @hw: pointer to the HW structure | 
|---|
| 1539 | * | 
|---|
| 1540 | *  This prepares the SW controllable LED for use and saves the current state | 
|---|
| 1541 | *  of the LED so it can be later restored. | 
|---|
| 1542 | **/ | 
|---|
| 1543 | s32 e1000e_setup_led_generic(struct e1000_hw *hw) | 
|---|
| 1544 | { | 
|---|
| 1545 | u32 ledctl; | 
|---|
| 1546 |  | 
|---|
| 1547 | if (hw->mac.ops.setup_led != e1000e_setup_led_generic) | 
|---|
| 1548 | return -E1000_ERR_CONFIG; | 
|---|
| 1549 |  | 
|---|
| 1550 | if (hw->phy.media_type == e1000_media_type_fiber) { | 
|---|
| 1551 | ledctl = er32(LEDCTL); | 
|---|
| 1552 | hw->mac.ledctl_default = ledctl; | 
|---|
| 1553 | /* Turn off LED0 */ | 
|---|
| 1554 | ledctl &= ~(E1000_LEDCTL_LED0_IVRT | E1000_LEDCTL_LED0_BLINK | | 
|---|
| 1555 | E1000_LEDCTL_LED0_MODE_MASK); | 
|---|
| 1556 | ledctl |= (E1000_LEDCTL_MODE_LED_OFF << | 
|---|
| 1557 | E1000_LEDCTL_LED0_MODE_SHIFT); | 
|---|
| 1558 | ew32(LEDCTL, ledctl); | 
|---|
| 1559 | } else if (hw->phy.media_type == e1000_media_type_copper) { | 
|---|
| 1560 | ew32(LEDCTL, hw->mac.ledctl_mode1); | 
|---|
| 1561 | } | 
|---|
| 1562 |  | 
|---|
| 1563 | return 0; | 
|---|
| 1564 | } | 
|---|
| 1565 |  | 
|---|
| 1566 | /** | 
|---|
| 1567 | *  e1000e_cleanup_led_generic - Set LED config to default operation | 
|---|
| 1568 | *  @hw: pointer to the HW structure | 
|---|
| 1569 | * | 
|---|
| 1570 | *  Remove the current LED configuration and set the LED configuration | 
|---|
| 1571 | *  to the default value, saved from the EEPROM. | 
|---|
| 1572 | **/ | 
|---|
| 1573 | s32 e1000e_cleanup_led_generic(struct e1000_hw *hw) | 
|---|
| 1574 | { | 
|---|
| 1575 | ew32(LEDCTL, hw->mac.ledctl_default); | 
|---|
| 1576 | return 0; | 
|---|
| 1577 | } | 
|---|
| 1578 |  | 
|---|
| 1579 | /** | 
|---|
| 1580 | *  e1000e_blink_led_generic - Blink LED | 
|---|
| 1581 | *  @hw: pointer to the HW structure | 
|---|
| 1582 | * | 
|---|
| 1583 | *  Blink the LEDs which are set to be on. | 
|---|
| 1584 | **/ | 
|---|
| 1585 | s32 e1000e_blink_led_generic(struct e1000_hw *hw) | 
|---|
| 1586 | { | 
|---|
| 1587 | u32 ledctl_blink = 0; | 
|---|
| 1588 | u32 i; | 
|---|
| 1589 |  | 
|---|
| 1590 | if (hw->phy.media_type == e1000_media_type_fiber) { | 
|---|
| 1591 | /* always blink LED0 for PCI-E fiber */ | 
|---|
| 1592 | ledctl_blink = E1000_LEDCTL_LED0_BLINK | | 
|---|
| 1593 | (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT); | 
|---|
| 1594 | } else { | 
|---|
| 1595 | /* Set the blink bit for each LED that's "on" (0x0E) | 
|---|
| 1596 | * (or "off" if inverted) in ledctl_mode2.  The blink | 
|---|
| 1597 | * logic in hardware only works when mode is set to "on" | 
|---|
| 1598 | * so it must be changed accordingly when the mode is | 
|---|
| 1599 | * "off" and inverted. | 
|---|
| 1600 | */ | 
|---|
| 1601 | ledctl_blink = hw->mac.ledctl_mode2; | 
|---|
| 1602 | for (i = 0; i < 32; i += 8) { | 
|---|
| 1603 | u32 mode = (hw->mac.ledctl_mode2 >> i) & | 
|---|
| 1604 | E1000_LEDCTL_LED0_MODE_MASK; | 
|---|
| 1605 | u32 led_default = hw->mac.ledctl_default >> i; | 
|---|
| 1606 |  | 
|---|
| 1607 | if ((!(led_default & E1000_LEDCTL_LED0_IVRT) && | 
|---|
| 1608 | (mode == E1000_LEDCTL_MODE_LED_ON)) || | 
|---|
| 1609 | ((led_default & E1000_LEDCTL_LED0_IVRT) && | 
|---|
| 1610 | (mode == E1000_LEDCTL_MODE_LED_OFF))) { | 
|---|
| 1611 | ledctl_blink &= | 
|---|
| 1612 | ~(E1000_LEDCTL_LED0_MODE_MASK << i); | 
|---|
| 1613 | ledctl_blink |= (E1000_LEDCTL_LED0_BLINK | | 
|---|
| 1614 | E1000_LEDCTL_MODE_LED_ON) << i; | 
|---|
| 1615 | } | 
|---|
| 1616 | } | 
|---|
| 1617 | } | 
|---|
| 1618 |  | 
|---|
| 1619 | ew32(LEDCTL, ledctl_blink); | 
|---|
| 1620 |  | 
|---|
| 1621 | return 0; | 
|---|
| 1622 | } | 
|---|
| 1623 |  | 
|---|
| 1624 | /** | 
|---|
| 1625 | *  e1000e_led_on_generic - Turn LED on | 
|---|
| 1626 | *  @hw: pointer to the HW structure | 
|---|
| 1627 | * | 
|---|
| 1628 | *  Turn LED on. | 
|---|
| 1629 | **/ | 
|---|
| 1630 | s32 e1000e_led_on_generic(struct e1000_hw *hw) | 
|---|
| 1631 | { | 
|---|
| 1632 | u32 ctrl; | 
|---|
| 1633 |  | 
|---|
| 1634 | switch (hw->phy.media_type) { | 
|---|
| 1635 | case e1000_media_type_fiber: | 
|---|
| 1636 | ctrl = er32(CTRL); | 
|---|
| 1637 | ctrl &= ~E1000_CTRL_SWDPIN0; | 
|---|
| 1638 | ctrl |= E1000_CTRL_SWDPIO0; | 
|---|
| 1639 | ew32(CTRL, ctrl); | 
|---|
| 1640 | break; | 
|---|
| 1641 | case e1000_media_type_copper: | 
|---|
| 1642 | ew32(LEDCTL, hw->mac.ledctl_mode2); | 
|---|
| 1643 | break; | 
|---|
| 1644 | default: | 
|---|
| 1645 | break; | 
|---|
| 1646 | } | 
|---|
| 1647 |  | 
|---|
| 1648 | return 0; | 
|---|
| 1649 | } | 
|---|
| 1650 |  | 
|---|
| 1651 | /** | 
|---|
| 1652 | *  e1000e_led_off_generic - Turn LED off | 
|---|
| 1653 | *  @hw: pointer to the HW structure | 
|---|
| 1654 | * | 
|---|
| 1655 | *  Turn LED off. | 
|---|
| 1656 | **/ | 
|---|
| 1657 | s32 e1000e_led_off_generic(struct e1000_hw *hw) | 
|---|
| 1658 | { | 
|---|
| 1659 | u32 ctrl; | 
|---|
| 1660 |  | 
|---|
| 1661 | switch (hw->phy.media_type) { | 
|---|
| 1662 | case e1000_media_type_fiber: | 
|---|
| 1663 | ctrl = er32(CTRL); | 
|---|
| 1664 | ctrl |= E1000_CTRL_SWDPIN0; | 
|---|
| 1665 | ctrl |= E1000_CTRL_SWDPIO0; | 
|---|
| 1666 | ew32(CTRL, ctrl); | 
|---|
| 1667 | break; | 
|---|
| 1668 | case e1000_media_type_copper: | 
|---|
| 1669 | ew32(LEDCTL, hw->mac.ledctl_mode1); | 
|---|
| 1670 | break; | 
|---|
| 1671 | default: | 
|---|
| 1672 | break; | 
|---|
| 1673 | } | 
|---|
| 1674 |  | 
|---|
| 1675 | return 0; | 
|---|
| 1676 | } | 
|---|
| 1677 |  | 
|---|
| 1678 | /** | 
|---|
| 1679 | *  e1000e_set_pcie_no_snoop - Set PCI-express capabilities | 
|---|
| 1680 | *  @hw: pointer to the HW structure | 
|---|
| 1681 | *  @no_snoop: bitmap of snoop events | 
|---|
| 1682 | * | 
|---|
| 1683 | *  Set the PCI-express register to snoop for events enabled in 'no_snoop'. | 
|---|
| 1684 | **/ | 
|---|
| 1685 | void e1000e_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop) | 
|---|
| 1686 | { | 
|---|
| 1687 | u32 gcr; | 
|---|
| 1688 |  | 
|---|
| 1689 | if (no_snoop) { | 
|---|
| 1690 | gcr = er32(GCR); | 
|---|
| 1691 | gcr &= ~(PCIE_NO_SNOOP_ALL); | 
|---|
| 1692 | gcr |= no_snoop; | 
|---|
| 1693 | ew32(GCR, gcr); | 
|---|
| 1694 | } | 
|---|
| 1695 | } | 
|---|
| 1696 |  | 
|---|
| 1697 | /** | 
|---|
| 1698 | *  e1000e_disable_pcie_master - Disables PCI-express master access | 
|---|
| 1699 | *  @hw: pointer to the HW structure | 
|---|
| 1700 | * | 
|---|
| 1701 | *  Returns 0 if successful, else returns -10 | 
|---|
| 1702 | *  (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused | 
|---|
| 1703 | *  the master requests to be disabled. | 
|---|
| 1704 | * | 
|---|
| 1705 | *  Disables PCI-Express master access and verifies there are no pending | 
|---|
| 1706 | *  requests. | 
|---|
| 1707 | **/ | 
|---|
| 1708 | s32 e1000e_disable_pcie_master(struct e1000_hw *hw) | 
|---|
| 1709 | { | 
|---|
| 1710 | u32 ctrl; | 
|---|
| 1711 | s32 timeout = MASTER_DISABLE_TIMEOUT; | 
|---|
| 1712 |  | 
|---|
| 1713 | ctrl = er32(CTRL); | 
|---|
| 1714 | ctrl |= E1000_CTRL_GIO_MASTER_DISABLE; | 
|---|
| 1715 | ew32(CTRL, ctrl); | 
|---|
| 1716 |  | 
|---|
| 1717 | while (timeout) { | 
|---|
| 1718 | if (!(er32(STATUS) & E1000_STATUS_GIO_MASTER_ENABLE)) | 
|---|
| 1719 | break; | 
|---|
| 1720 | usleep_range(min: 100, max: 200); | 
|---|
| 1721 | timeout--; | 
|---|
| 1722 | } | 
|---|
| 1723 |  | 
|---|
| 1724 | if (!timeout) { | 
|---|
| 1725 | e_dbg( "Master requests are pending.\n"); | 
|---|
| 1726 | return -E1000_ERR_MASTER_REQUESTS_PENDING; | 
|---|
| 1727 | } | 
|---|
| 1728 |  | 
|---|
| 1729 | return 0; | 
|---|
| 1730 | } | 
|---|
| 1731 |  | 
|---|
| 1732 | /** | 
|---|
| 1733 | *  e1000e_reset_adaptive - Reset Adaptive Interframe Spacing | 
|---|
| 1734 | *  @hw: pointer to the HW structure | 
|---|
| 1735 | * | 
|---|
| 1736 | *  Reset the Adaptive Interframe Spacing throttle to default values. | 
|---|
| 1737 | **/ | 
|---|
| 1738 | void e1000e_reset_adaptive(struct e1000_hw *hw) | 
|---|
| 1739 | { | 
|---|
| 1740 | struct e1000_mac_info *mac = &hw->mac; | 
|---|
| 1741 |  | 
|---|
| 1742 | if (!mac->adaptive_ifs) { | 
|---|
| 1743 | e_dbg( "Not in Adaptive IFS mode!\n"); | 
|---|
| 1744 | return; | 
|---|
| 1745 | } | 
|---|
| 1746 |  | 
|---|
| 1747 | mac->current_ifs_val = 0; | 
|---|
| 1748 | mac->ifs_min_val = IFS_MIN; | 
|---|
| 1749 | mac->ifs_max_val = IFS_MAX; | 
|---|
| 1750 | mac->ifs_step_size = IFS_STEP; | 
|---|
| 1751 | mac->ifs_ratio = IFS_RATIO; | 
|---|
| 1752 |  | 
|---|
| 1753 | mac->in_ifs_mode = false; | 
|---|
| 1754 | ew32(AIT, 0); | 
|---|
| 1755 | } | 
|---|
| 1756 |  | 
|---|
| 1757 | /** | 
|---|
| 1758 | *  e1000e_update_adaptive - Update Adaptive Interframe Spacing | 
|---|
| 1759 | *  @hw: pointer to the HW structure | 
|---|
| 1760 | * | 
|---|
| 1761 | *  Update the Adaptive Interframe Spacing Throttle value based on the | 
|---|
| 1762 | *  time between transmitted packets and time between collisions. | 
|---|
| 1763 | **/ | 
|---|
| 1764 | void e1000e_update_adaptive(struct e1000_hw *hw) | 
|---|
| 1765 | { | 
|---|
| 1766 | struct e1000_mac_info *mac = &hw->mac; | 
|---|
| 1767 |  | 
|---|
| 1768 | if (!mac->adaptive_ifs) { | 
|---|
| 1769 | e_dbg( "Not in Adaptive IFS mode!\n"); | 
|---|
| 1770 | return; | 
|---|
| 1771 | } | 
|---|
| 1772 |  | 
|---|
| 1773 | if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) { | 
|---|
| 1774 | if (mac->tx_packet_delta > MIN_NUM_XMITS) { | 
|---|
| 1775 | mac->in_ifs_mode = true; | 
|---|
| 1776 | if (mac->current_ifs_val < mac->ifs_max_val) { | 
|---|
| 1777 | if (!mac->current_ifs_val) | 
|---|
| 1778 | mac->current_ifs_val = mac->ifs_min_val; | 
|---|
| 1779 | else | 
|---|
| 1780 | mac->current_ifs_val += | 
|---|
| 1781 | mac->ifs_step_size; | 
|---|
| 1782 | ew32(AIT, mac->current_ifs_val); | 
|---|
| 1783 | } | 
|---|
| 1784 | } | 
|---|
| 1785 | } else { | 
|---|
| 1786 | if (mac->in_ifs_mode && | 
|---|
| 1787 | (mac->tx_packet_delta <= MIN_NUM_XMITS)) { | 
|---|
| 1788 | mac->current_ifs_val = 0; | 
|---|
| 1789 | mac->in_ifs_mode = false; | 
|---|
| 1790 | ew32(AIT, 0); | 
|---|
| 1791 | } | 
|---|
| 1792 | } | 
|---|
| 1793 | } | 
|---|
| 1794 |  | 
|---|