| 1 | // SPDX-License-Identifier: GPL-2.0-only |
| 2 | /* |
| 3 | * linux/fs/exec.c |
| 4 | * |
| 5 | * Copyright (C) 1991, 1992 Linus Torvalds |
| 6 | */ |
| 7 | |
| 8 | /* |
| 9 | * #!-checking implemented by tytso. |
| 10 | */ |
| 11 | /* |
| 12 | * Demand-loading implemented 01.12.91 - no need to read anything but |
| 13 | * the header into memory. The inode of the executable is put into |
| 14 | * "current->executable", and page faults do the actual loading. Clean. |
| 15 | * |
| 16 | * Once more I can proudly say that linux stood up to being changed: it |
| 17 | * was less than 2 hours work to get demand-loading completely implemented. |
| 18 | * |
| 19 | * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, |
| 20 | * current->executable is only used by the procfs. This allows a dispatch |
| 21 | * table to check for several different types of binary formats. We keep |
| 22 | * trying until we recognize the file or we run out of supported binary |
| 23 | * formats. |
| 24 | */ |
| 25 | |
| 26 | #include <linux/kernel_read_file.h> |
| 27 | #include <linux/slab.h> |
| 28 | #include <linux/file.h> |
| 29 | #include <linux/fdtable.h> |
| 30 | #include <linux/mm.h> |
| 31 | #include <linux/stat.h> |
| 32 | #include <linux/fcntl.h> |
| 33 | #include <linux/swap.h> |
| 34 | #include <linux/string.h> |
| 35 | #include <linux/init.h> |
| 36 | #include <linux/sched/mm.h> |
| 37 | #include <linux/sched/coredump.h> |
| 38 | #include <linux/sched/signal.h> |
| 39 | #include <linux/sched/numa_balancing.h> |
| 40 | #include <linux/sched/task.h> |
| 41 | #include <linux/pagemap.h> |
| 42 | #include <linux/perf_event.h> |
| 43 | #include <linux/highmem.h> |
| 44 | #include <linux/spinlock.h> |
| 45 | #include <linux/key.h> |
| 46 | #include <linux/personality.h> |
| 47 | #include <linux/binfmts.h> |
| 48 | #include <linux/utsname.h> |
| 49 | #include <linux/pid_namespace.h> |
| 50 | #include <linux/module.h> |
| 51 | #include <linux/namei.h> |
| 52 | #include <linux/mount.h> |
| 53 | #include <linux/security.h> |
| 54 | #include <linux/syscalls.h> |
| 55 | #include <linux/tsacct_kern.h> |
| 56 | #include <linux/cn_proc.h> |
| 57 | #include <linux/audit.h> |
| 58 | #include <linux/kmod.h> |
| 59 | #include <linux/fsnotify.h> |
| 60 | #include <linux/fs_struct.h> |
| 61 | #include <linux/oom.h> |
| 62 | #include <linux/compat.h> |
| 63 | #include <linux/vmalloc.h> |
| 64 | #include <linux/io_uring.h> |
| 65 | #include <linux/syscall_user_dispatch.h> |
| 66 | #include <linux/coredump.h> |
| 67 | #include <linux/time_namespace.h> |
| 68 | #include <linux/user_events.h> |
| 69 | #include <linux/rseq.h> |
| 70 | #include <linux/ksm.h> |
| 71 | |
| 72 | #include <linux/uaccess.h> |
| 73 | #include <asm/mmu_context.h> |
| 74 | #include <asm/tlb.h> |
| 75 | |
| 76 | #include <trace/events/task.h> |
| 77 | #include "internal.h" |
| 78 | |
| 79 | #include <trace/events/sched.h> |
| 80 | |
| 81 | /* For vma exec functions. */ |
| 82 | #include "../mm/internal.h" |
| 83 | |
| 84 | static int bprm_creds_from_file(struct linux_binprm *bprm); |
| 85 | |
| 86 | int suid_dumpable = 0; |
| 87 | |
| 88 | static LIST_HEAD(formats); |
| 89 | static DEFINE_RWLOCK(binfmt_lock); |
| 90 | |
| 91 | void __register_binfmt(struct linux_binfmt * fmt, int insert) |
| 92 | { |
| 93 | write_lock(&binfmt_lock); |
| 94 | insert ? list_add(new: &fmt->lh, head: &formats) : |
| 95 | list_add_tail(new: &fmt->lh, head: &formats); |
| 96 | write_unlock(&binfmt_lock); |
| 97 | } |
| 98 | |
| 99 | EXPORT_SYMBOL(__register_binfmt); |
| 100 | |
| 101 | void unregister_binfmt(struct linux_binfmt * fmt) |
| 102 | { |
| 103 | write_lock(&binfmt_lock); |
| 104 | list_del(entry: &fmt->lh); |
| 105 | write_unlock(&binfmt_lock); |
| 106 | } |
| 107 | |
| 108 | EXPORT_SYMBOL(unregister_binfmt); |
| 109 | |
| 110 | static inline void put_binfmt(struct linux_binfmt * fmt) |
| 111 | { |
| 112 | module_put(module: fmt->module); |
| 113 | } |
| 114 | |
| 115 | bool path_noexec(const struct path *path) |
| 116 | { |
| 117 | /* If it's an anonymous inode make sure that we catch any shenanigans. */ |
| 118 | VFS_WARN_ON_ONCE(IS_ANON_FILE(d_inode(path->dentry)) && |
| 119 | !(path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC)); |
| 120 | return (path->mnt->mnt_flags & MNT_NOEXEC) || |
| 121 | (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC); |
| 122 | } |
| 123 | |
| 124 | #ifdef CONFIG_MMU |
| 125 | /* |
| 126 | * The nascent bprm->mm is not visible until exec_mmap() but it can |
| 127 | * use a lot of memory, account these pages in current->mm temporary |
| 128 | * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we |
| 129 | * change the counter back via acct_arg_size(0). |
| 130 | */ |
| 131 | static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) |
| 132 | { |
| 133 | struct mm_struct *mm = current->mm; |
| 134 | long diff = (long)(pages - bprm->vma_pages); |
| 135 | |
| 136 | if (!mm || !diff) |
| 137 | return; |
| 138 | |
| 139 | bprm->vma_pages = pages; |
| 140 | add_mm_counter(mm, member: MM_ANONPAGES, value: diff); |
| 141 | } |
| 142 | |
| 143 | static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, |
| 144 | int write) |
| 145 | { |
| 146 | struct page *page; |
| 147 | struct vm_area_struct *vma = bprm->vma; |
| 148 | struct mm_struct *mm = bprm->mm; |
| 149 | int ret; |
| 150 | |
| 151 | /* |
| 152 | * Avoid relying on expanding the stack down in GUP (which |
| 153 | * does not work for STACK_GROWSUP anyway), and just do it |
| 154 | * ahead of time. |
| 155 | */ |
| 156 | if (!mmap_read_lock_maybe_expand(mm, vma, addr: pos, write)) |
| 157 | return NULL; |
| 158 | |
| 159 | /* |
| 160 | * We are doing an exec(). 'current' is the process |
| 161 | * doing the exec and 'mm' is the new process's mm. |
| 162 | */ |
| 163 | ret = get_user_pages_remote(mm, start: pos, nr_pages: 1, |
| 164 | gup_flags: write ? FOLL_WRITE : 0, |
| 165 | pages: &page, NULL); |
| 166 | mmap_read_unlock(mm); |
| 167 | if (ret <= 0) |
| 168 | return NULL; |
| 169 | |
| 170 | if (write) |
| 171 | acct_arg_size(bprm, pages: vma_pages(vma)); |
| 172 | |
| 173 | return page; |
| 174 | } |
| 175 | |
| 176 | static void put_arg_page(struct page *page) |
| 177 | { |
| 178 | put_page(page); |
| 179 | } |
| 180 | |
| 181 | static void free_arg_pages(struct linux_binprm *bprm) |
| 182 | { |
| 183 | } |
| 184 | |
| 185 | static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, |
| 186 | struct page *page) |
| 187 | { |
| 188 | flush_cache_page(vma: bprm->vma, vmaddr: pos, page_to_pfn(page)); |
| 189 | } |
| 190 | |
| 191 | static bool valid_arg_len(struct linux_binprm *bprm, long len) |
| 192 | { |
| 193 | return len <= MAX_ARG_STRLEN; |
| 194 | } |
| 195 | |
| 196 | #else |
| 197 | |
| 198 | static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) |
| 199 | { |
| 200 | } |
| 201 | |
| 202 | static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, |
| 203 | int write) |
| 204 | { |
| 205 | struct page *page; |
| 206 | |
| 207 | page = bprm->page[pos / PAGE_SIZE]; |
| 208 | if (!page && write) { |
| 209 | page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); |
| 210 | if (!page) |
| 211 | return NULL; |
| 212 | bprm->page[pos / PAGE_SIZE] = page; |
| 213 | } |
| 214 | |
| 215 | return page; |
| 216 | } |
| 217 | |
| 218 | static void put_arg_page(struct page *page) |
| 219 | { |
| 220 | } |
| 221 | |
| 222 | static void free_arg_page(struct linux_binprm *bprm, int i) |
| 223 | { |
| 224 | if (bprm->page[i]) { |
| 225 | __free_page(bprm->page[i]); |
| 226 | bprm->page[i] = NULL; |
| 227 | } |
| 228 | } |
| 229 | |
| 230 | static void free_arg_pages(struct linux_binprm *bprm) |
| 231 | { |
| 232 | int i; |
| 233 | |
| 234 | for (i = 0; i < MAX_ARG_PAGES; i++) |
| 235 | free_arg_page(bprm, i); |
| 236 | } |
| 237 | |
| 238 | static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, |
| 239 | struct page *page) |
| 240 | { |
| 241 | } |
| 242 | |
| 243 | static bool valid_arg_len(struct linux_binprm *bprm, long len) |
| 244 | { |
| 245 | return len <= bprm->p; |
| 246 | } |
| 247 | |
| 248 | #endif /* CONFIG_MMU */ |
| 249 | |
| 250 | /* |
| 251 | * Create a new mm_struct and populate it with a temporary stack |
| 252 | * vm_area_struct. We don't have enough context at this point to set the stack |
| 253 | * flags, permissions, and offset, so we use temporary values. We'll update |
| 254 | * them later in setup_arg_pages(). |
| 255 | */ |
| 256 | static int bprm_mm_init(struct linux_binprm *bprm) |
| 257 | { |
| 258 | int err; |
| 259 | struct mm_struct *mm = NULL; |
| 260 | |
| 261 | bprm->mm = mm = mm_alloc(); |
| 262 | err = -ENOMEM; |
| 263 | if (!mm) |
| 264 | goto err; |
| 265 | |
| 266 | /* Save current stack limit for all calculations made during exec. */ |
| 267 | task_lock(current->group_leader); |
| 268 | bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK]; |
| 269 | task_unlock(current->group_leader); |
| 270 | |
| 271 | #ifndef CONFIG_MMU |
| 272 | bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); |
| 273 | #else |
| 274 | err = create_init_stack_vma(mm: bprm->mm, vmap: &bprm->vma, top_mem_p: &bprm->p); |
| 275 | if (err) |
| 276 | goto err; |
| 277 | #endif |
| 278 | |
| 279 | return 0; |
| 280 | |
| 281 | err: |
| 282 | if (mm) { |
| 283 | bprm->mm = NULL; |
| 284 | mmdrop(mm); |
| 285 | } |
| 286 | |
| 287 | return err; |
| 288 | } |
| 289 | |
| 290 | struct user_arg_ptr { |
| 291 | #ifdef CONFIG_COMPAT |
| 292 | bool is_compat; |
| 293 | #endif |
| 294 | union { |
| 295 | const char __user *const __user *native; |
| 296 | #ifdef CONFIG_COMPAT |
| 297 | const compat_uptr_t __user *compat; |
| 298 | #endif |
| 299 | } ptr; |
| 300 | }; |
| 301 | |
| 302 | static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr) |
| 303 | { |
| 304 | const char __user *native; |
| 305 | |
| 306 | #ifdef CONFIG_COMPAT |
| 307 | if (unlikely(argv.is_compat)) { |
| 308 | compat_uptr_t compat; |
| 309 | |
| 310 | if (get_user(compat, argv.ptr.compat + nr)) |
| 311 | return ERR_PTR(error: -EFAULT); |
| 312 | |
| 313 | return compat_ptr(uptr: compat); |
| 314 | } |
| 315 | #endif |
| 316 | |
| 317 | if (get_user(native, argv.ptr.native + nr)) |
| 318 | return ERR_PTR(error: -EFAULT); |
| 319 | |
| 320 | return native; |
| 321 | } |
| 322 | |
| 323 | /* |
| 324 | * count() counts the number of strings in array ARGV. |
| 325 | */ |
| 326 | static int count(struct user_arg_ptr argv, int max) |
| 327 | { |
| 328 | int i = 0; |
| 329 | |
| 330 | if (argv.ptr.native != NULL) { |
| 331 | for (;;) { |
| 332 | const char __user *p = get_user_arg_ptr(argv, nr: i); |
| 333 | |
| 334 | if (!p) |
| 335 | break; |
| 336 | |
| 337 | if (IS_ERR(ptr: p)) |
| 338 | return -EFAULT; |
| 339 | |
| 340 | if (i >= max) |
| 341 | return -E2BIG; |
| 342 | ++i; |
| 343 | |
| 344 | if (fatal_signal_pending(current)) |
| 345 | return -ERESTARTNOHAND; |
| 346 | cond_resched(); |
| 347 | } |
| 348 | } |
| 349 | return i; |
| 350 | } |
| 351 | |
| 352 | static int count_strings_kernel(const char *const *argv) |
| 353 | { |
| 354 | int i; |
| 355 | |
| 356 | if (!argv) |
| 357 | return 0; |
| 358 | |
| 359 | for (i = 0; argv[i]; ++i) { |
| 360 | if (i >= MAX_ARG_STRINGS) |
| 361 | return -E2BIG; |
| 362 | if (fatal_signal_pending(current)) |
| 363 | return -ERESTARTNOHAND; |
| 364 | cond_resched(); |
| 365 | } |
| 366 | return i; |
| 367 | } |
| 368 | |
| 369 | static inline int bprm_set_stack_limit(struct linux_binprm *bprm, |
| 370 | unsigned long limit) |
| 371 | { |
| 372 | #ifdef CONFIG_MMU |
| 373 | /* Avoid a pathological bprm->p. */ |
| 374 | if (bprm->p < limit) |
| 375 | return -E2BIG; |
| 376 | bprm->argmin = bprm->p - limit; |
| 377 | #endif |
| 378 | return 0; |
| 379 | } |
| 380 | static inline bool bprm_hit_stack_limit(struct linux_binprm *bprm) |
| 381 | { |
| 382 | #ifdef CONFIG_MMU |
| 383 | return bprm->p < bprm->argmin; |
| 384 | #else |
| 385 | return false; |
| 386 | #endif |
| 387 | } |
| 388 | |
| 389 | /* |
| 390 | * Calculate bprm->argmin from: |
| 391 | * - _STK_LIM |
| 392 | * - ARG_MAX |
| 393 | * - bprm->rlim_stack.rlim_cur |
| 394 | * - bprm->argc |
| 395 | * - bprm->envc |
| 396 | * - bprm->p |
| 397 | */ |
| 398 | static int bprm_stack_limits(struct linux_binprm *bprm) |
| 399 | { |
| 400 | unsigned long limit, ptr_size; |
| 401 | |
| 402 | /* |
| 403 | * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM |
| 404 | * (whichever is smaller) for the argv+env strings. |
| 405 | * This ensures that: |
| 406 | * - the remaining binfmt code will not run out of stack space, |
| 407 | * - the program will have a reasonable amount of stack left |
| 408 | * to work from. |
| 409 | */ |
| 410 | limit = _STK_LIM / 4 * 3; |
| 411 | limit = min(limit, bprm->rlim_stack.rlim_cur / 4); |
| 412 | /* |
| 413 | * We've historically supported up to 32 pages (ARG_MAX) |
| 414 | * of argument strings even with small stacks |
| 415 | */ |
| 416 | limit = max_t(unsigned long, limit, ARG_MAX); |
| 417 | /* Reject totally pathological counts. */ |
| 418 | if (bprm->argc < 0 || bprm->envc < 0) |
| 419 | return -E2BIG; |
| 420 | /* |
| 421 | * We must account for the size of all the argv and envp pointers to |
| 422 | * the argv and envp strings, since they will also take up space in |
| 423 | * the stack. They aren't stored until much later when we can't |
| 424 | * signal to the parent that the child has run out of stack space. |
| 425 | * Instead, calculate it here so it's possible to fail gracefully. |
| 426 | * |
| 427 | * In the case of argc = 0, make sure there is space for adding a |
| 428 | * empty string (which will bump argc to 1), to ensure confused |
| 429 | * userspace programs don't start processing from argv[1], thinking |
| 430 | * argc can never be 0, to keep them from walking envp by accident. |
| 431 | * See do_execveat_common(). |
| 432 | */ |
| 433 | if (check_add_overflow(max(bprm->argc, 1), bprm->envc, &ptr_size) || |
| 434 | check_mul_overflow(ptr_size, sizeof(void *), &ptr_size)) |
| 435 | return -E2BIG; |
| 436 | if (limit <= ptr_size) |
| 437 | return -E2BIG; |
| 438 | limit -= ptr_size; |
| 439 | |
| 440 | return bprm_set_stack_limit(bprm, limit); |
| 441 | } |
| 442 | |
| 443 | /* |
| 444 | * 'copy_strings()' copies argument/environment strings from the old |
| 445 | * processes's memory to the new process's stack. The call to get_user_pages() |
| 446 | * ensures the destination page is created and not swapped out. |
| 447 | */ |
| 448 | static int copy_strings(int argc, struct user_arg_ptr argv, |
| 449 | struct linux_binprm *bprm) |
| 450 | { |
| 451 | struct page *kmapped_page = NULL; |
| 452 | char *kaddr = NULL; |
| 453 | unsigned long kpos = 0; |
| 454 | int ret; |
| 455 | |
| 456 | while (argc-- > 0) { |
| 457 | const char __user *str; |
| 458 | int len; |
| 459 | unsigned long pos; |
| 460 | |
| 461 | ret = -EFAULT; |
| 462 | str = get_user_arg_ptr(argv, nr: argc); |
| 463 | if (IS_ERR(ptr: str)) |
| 464 | goto out; |
| 465 | |
| 466 | len = strnlen_user(str, MAX_ARG_STRLEN); |
| 467 | if (!len) |
| 468 | goto out; |
| 469 | |
| 470 | ret = -E2BIG; |
| 471 | if (!valid_arg_len(bprm, len)) |
| 472 | goto out; |
| 473 | |
| 474 | /* We're going to work our way backwards. */ |
| 475 | pos = bprm->p; |
| 476 | str += len; |
| 477 | bprm->p -= len; |
| 478 | if (bprm_hit_stack_limit(bprm)) |
| 479 | goto out; |
| 480 | |
| 481 | while (len > 0) { |
| 482 | int offset, bytes_to_copy; |
| 483 | |
| 484 | if (fatal_signal_pending(current)) { |
| 485 | ret = -ERESTARTNOHAND; |
| 486 | goto out; |
| 487 | } |
| 488 | cond_resched(); |
| 489 | |
| 490 | offset = pos % PAGE_SIZE; |
| 491 | if (offset == 0) |
| 492 | offset = PAGE_SIZE; |
| 493 | |
| 494 | bytes_to_copy = offset; |
| 495 | if (bytes_to_copy > len) |
| 496 | bytes_to_copy = len; |
| 497 | |
| 498 | offset -= bytes_to_copy; |
| 499 | pos -= bytes_to_copy; |
| 500 | str -= bytes_to_copy; |
| 501 | len -= bytes_to_copy; |
| 502 | |
| 503 | if (!kmapped_page || kpos != (pos & PAGE_MASK)) { |
| 504 | struct page *page; |
| 505 | |
| 506 | page = get_arg_page(bprm, pos, write: 1); |
| 507 | if (!page) { |
| 508 | ret = -E2BIG; |
| 509 | goto out; |
| 510 | } |
| 511 | |
| 512 | if (kmapped_page) { |
| 513 | flush_dcache_page(page: kmapped_page); |
| 514 | kunmap_local(kaddr); |
| 515 | put_arg_page(page: kmapped_page); |
| 516 | } |
| 517 | kmapped_page = page; |
| 518 | kaddr = kmap_local_page(page: kmapped_page); |
| 519 | kpos = pos & PAGE_MASK; |
| 520 | flush_arg_page(bprm, pos: kpos, page: kmapped_page); |
| 521 | } |
| 522 | if (copy_from_user(to: kaddr+offset, from: str, n: bytes_to_copy)) { |
| 523 | ret = -EFAULT; |
| 524 | goto out; |
| 525 | } |
| 526 | } |
| 527 | } |
| 528 | ret = 0; |
| 529 | out: |
| 530 | if (kmapped_page) { |
| 531 | flush_dcache_page(page: kmapped_page); |
| 532 | kunmap_local(kaddr); |
| 533 | put_arg_page(page: kmapped_page); |
| 534 | } |
| 535 | return ret; |
| 536 | } |
| 537 | |
| 538 | /* |
| 539 | * Copy and argument/environment string from the kernel to the processes stack. |
| 540 | */ |
| 541 | int copy_string_kernel(const char *arg, struct linux_binprm *bprm) |
| 542 | { |
| 543 | int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */; |
| 544 | unsigned long pos = bprm->p; |
| 545 | |
| 546 | if (len == 0) |
| 547 | return -EFAULT; |
| 548 | if (!valid_arg_len(bprm, len)) |
| 549 | return -E2BIG; |
| 550 | |
| 551 | /* We're going to work our way backwards. */ |
| 552 | arg += len; |
| 553 | bprm->p -= len; |
| 554 | if (bprm_hit_stack_limit(bprm)) |
| 555 | return -E2BIG; |
| 556 | |
| 557 | while (len > 0) { |
| 558 | unsigned int bytes_to_copy = min_t(unsigned int, len, |
| 559 | min_not_zero(offset_in_page(pos), PAGE_SIZE)); |
| 560 | struct page *page; |
| 561 | |
| 562 | pos -= bytes_to_copy; |
| 563 | arg -= bytes_to_copy; |
| 564 | len -= bytes_to_copy; |
| 565 | |
| 566 | page = get_arg_page(bprm, pos, write: 1); |
| 567 | if (!page) |
| 568 | return -E2BIG; |
| 569 | flush_arg_page(bprm, pos: pos & PAGE_MASK, page); |
| 570 | memcpy_to_page(page, offset_in_page(pos), from: arg, len: bytes_to_copy); |
| 571 | put_arg_page(page); |
| 572 | } |
| 573 | |
| 574 | return 0; |
| 575 | } |
| 576 | EXPORT_SYMBOL(copy_string_kernel); |
| 577 | |
| 578 | static int copy_strings_kernel(int argc, const char *const *argv, |
| 579 | struct linux_binprm *bprm) |
| 580 | { |
| 581 | while (argc-- > 0) { |
| 582 | int ret = copy_string_kernel(argv[argc], bprm); |
| 583 | if (ret < 0) |
| 584 | return ret; |
| 585 | if (fatal_signal_pending(current)) |
| 586 | return -ERESTARTNOHAND; |
| 587 | cond_resched(); |
| 588 | } |
| 589 | return 0; |
| 590 | } |
| 591 | |
| 592 | #ifdef CONFIG_MMU |
| 593 | |
| 594 | /* |
| 595 | * Finalizes the stack vm_area_struct. The flags and permissions are updated, |
| 596 | * the stack is optionally relocated, and some extra space is added. |
| 597 | */ |
| 598 | int setup_arg_pages(struct linux_binprm *bprm, |
| 599 | unsigned long stack_top, |
| 600 | int executable_stack) |
| 601 | { |
| 602 | int ret; |
| 603 | unsigned long stack_shift; |
| 604 | struct mm_struct *mm = current->mm; |
| 605 | struct vm_area_struct *vma = bprm->vma; |
| 606 | struct vm_area_struct *prev = NULL; |
| 607 | vm_flags_t vm_flags; |
| 608 | unsigned long stack_base; |
| 609 | unsigned long stack_size; |
| 610 | unsigned long stack_expand; |
| 611 | unsigned long rlim_stack; |
| 612 | struct mmu_gather tlb; |
| 613 | struct vma_iterator vmi; |
| 614 | |
| 615 | #ifdef CONFIG_STACK_GROWSUP |
| 616 | /* Limit stack size */ |
| 617 | stack_base = bprm->rlim_stack.rlim_max; |
| 618 | |
| 619 | stack_base = calc_max_stack_size(stack_base); |
| 620 | |
| 621 | /* Add space for stack randomization. */ |
| 622 | if (current->flags & PF_RANDOMIZE) |
| 623 | stack_base += (STACK_RND_MASK << PAGE_SHIFT); |
| 624 | |
| 625 | /* Make sure we didn't let the argument array grow too large. */ |
| 626 | if (vma->vm_end - vma->vm_start > stack_base) |
| 627 | return -ENOMEM; |
| 628 | |
| 629 | stack_base = PAGE_ALIGN(stack_top - stack_base); |
| 630 | |
| 631 | stack_shift = vma->vm_start - stack_base; |
| 632 | mm->arg_start = bprm->p - stack_shift; |
| 633 | bprm->p = vma->vm_end - stack_shift; |
| 634 | #else |
| 635 | stack_top = arch_align_stack(sp: stack_top); |
| 636 | stack_top = PAGE_ALIGN(stack_top); |
| 637 | |
| 638 | if (unlikely(stack_top < mmap_min_addr) || |
| 639 | unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr)) |
| 640 | return -ENOMEM; |
| 641 | |
| 642 | stack_shift = vma->vm_end - stack_top; |
| 643 | |
| 644 | bprm->p -= stack_shift; |
| 645 | mm->arg_start = bprm->p; |
| 646 | #endif |
| 647 | |
| 648 | bprm->exec -= stack_shift; |
| 649 | |
| 650 | if (mmap_write_lock_killable(mm)) |
| 651 | return -EINTR; |
| 652 | |
| 653 | vm_flags = VM_STACK_FLAGS; |
| 654 | |
| 655 | /* |
| 656 | * Adjust stack execute permissions; explicitly enable for |
| 657 | * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone |
| 658 | * (arch default) otherwise. |
| 659 | */ |
| 660 | if (unlikely(executable_stack == EXSTACK_ENABLE_X)) |
| 661 | vm_flags |= VM_EXEC; |
| 662 | else if (executable_stack == EXSTACK_DISABLE_X) |
| 663 | vm_flags &= ~VM_EXEC; |
| 664 | vm_flags |= mm->def_flags; |
| 665 | vm_flags |= VM_STACK_INCOMPLETE_SETUP; |
| 666 | |
| 667 | vma_iter_init(vmi: &vmi, mm, addr: vma->vm_start); |
| 668 | |
| 669 | tlb_gather_mmu(tlb: &tlb, mm); |
| 670 | ret = mprotect_fixup(vmi: &vmi, tlb: &tlb, vma, pprev: &prev, start: vma->vm_start, end: vma->vm_end, |
| 671 | newflags: vm_flags); |
| 672 | tlb_finish_mmu(tlb: &tlb); |
| 673 | |
| 674 | if (ret) |
| 675 | goto out_unlock; |
| 676 | BUG_ON(prev != vma); |
| 677 | |
| 678 | if (unlikely(vm_flags & VM_EXEC)) { |
| 679 | pr_warn_once("process '%pD4' started with executable stack\n" , |
| 680 | bprm->file); |
| 681 | } |
| 682 | |
| 683 | /* Move stack pages down in memory. */ |
| 684 | if (stack_shift) { |
| 685 | /* |
| 686 | * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once |
| 687 | * the binfmt code determines where the new stack should reside, we shift it to |
| 688 | * its final location. |
| 689 | */ |
| 690 | ret = relocate_vma_down(vma, shift: stack_shift); |
| 691 | if (ret) |
| 692 | goto out_unlock; |
| 693 | } |
| 694 | |
| 695 | /* mprotect_fixup is overkill to remove the temporary stack flags */ |
| 696 | vm_flags_clear(vma, VM_STACK_INCOMPLETE_SETUP); |
| 697 | |
| 698 | stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */ |
| 699 | stack_size = vma->vm_end - vma->vm_start; |
| 700 | /* |
| 701 | * Align this down to a page boundary as expand_stack |
| 702 | * will align it up. |
| 703 | */ |
| 704 | rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK; |
| 705 | |
| 706 | stack_expand = min(rlim_stack, stack_size + stack_expand); |
| 707 | |
| 708 | #ifdef CONFIG_STACK_GROWSUP |
| 709 | stack_base = vma->vm_start + stack_expand; |
| 710 | #else |
| 711 | stack_base = vma->vm_end - stack_expand; |
| 712 | #endif |
| 713 | current->mm->start_stack = bprm->p; |
| 714 | ret = expand_stack_locked(vma, address: stack_base); |
| 715 | if (ret) |
| 716 | ret = -EFAULT; |
| 717 | |
| 718 | out_unlock: |
| 719 | mmap_write_unlock(mm); |
| 720 | return ret; |
| 721 | } |
| 722 | EXPORT_SYMBOL(setup_arg_pages); |
| 723 | |
| 724 | #else |
| 725 | |
| 726 | /* |
| 727 | * Transfer the program arguments and environment from the holding pages |
| 728 | * onto the stack. The provided stack pointer is adjusted accordingly. |
| 729 | */ |
| 730 | int transfer_args_to_stack(struct linux_binprm *bprm, |
| 731 | unsigned long *sp_location) |
| 732 | { |
| 733 | unsigned long index, stop, sp; |
| 734 | int ret = 0; |
| 735 | |
| 736 | stop = bprm->p >> PAGE_SHIFT; |
| 737 | sp = *sp_location; |
| 738 | |
| 739 | for (index = MAX_ARG_PAGES - 1; index >= stop; index--) { |
| 740 | unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0; |
| 741 | char *src = kmap_local_page(bprm->page[index]) + offset; |
| 742 | sp -= PAGE_SIZE - offset; |
| 743 | if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0) |
| 744 | ret = -EFAULT; |
| 745 | kunmap_local(src); |
| 746 | if (ret) |
| 747 | goto out; |
| 748 | } |
| 749 | |
| 750 | bprm->exec += *sp_location - MAX_ARG_PAGES * PAGE_SIZE; |
| 751 | *sp_location = sp; |
| 752 | |
| 753 | out: |
| 754 | return ret; |
| 755 | } |
| 756 | EXPORT_SYMBOL(transfer_args_to_stack); |
| 757 | |
| 758 | #endif /* CONFIG_MMU */ |
| 759 | |
| 760 | /* |
| 761 | * On success, caller must call do_close_execat() on the returned |
| 762 | * struct file to close it. |
| 763 | */ |
| 764 | static struct file *do_open_execat(int fd, struct filename *name, int flags) |
| 765 | { |
| 766 | int err; |
| 767 | struct file *file __free(fput) = NULL; |
| 768 | struct open_flags open_exec_flags = { |
| 769 | .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, |
| 770 | .acc_mode = MAY_EXEC, |
| 771 | .intent = LOOKUP_OPEN, |
| 772 | .lookup_flags = LOOKUP_FOLLOW, |
| 773 | }; |
| 774 | |
| 775 | if ((flags & |
| 776 | ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH | AT_EXECVE_CHECK)) != 0) |
| 777 | return ERR_PTR(error: -EINVAL); |
| 778 | if (flags & AT_SYMLINK_NOFOLLOW) |
| 779 | open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW; |
| 780 | if (flags & AT_EMPTY_PATH) |
| 781 | open_exec_flags.lookup_flags |= LOOKUP_EMPTY; |
| 782 | |
| 783 | file = do_filp_open(dfd: fd, pathname: name, op: &open_exec_flags); |
| 784 | if (IS_ERR(ptr: file)) |
| 785 | return file; |
| 786 | |
| 787 | if (path_noexec(path: &file->f_path)) |
| 788 | return ERR_PTR(error: -EACCES); |
| 789 | |
| 790 | /* |
| 791 | * In the past the regular type check was here. It moved to may_open() in |
| 792 | * 633fb6ac3980 ("exec: move S_ISREG() check earlier"). Since then it is |
| 793 | * an invariant that all non-regular files error out before we get here. |
| 794 | */ |
| 795 | if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode))) |
| 796 | return ERR_PTR(error: -EACCES); |
| 797 | |
| 798 | err = exe_file_deny_write_access(exe_file: file); |
| 799 | if (err) |
| 800 | return ERR_PTR(error: err); |
| 801 | |
| 802 | return no_free_ptr(file); |
| 803 | } |
| 804 | |
| 805 | /** |
| 806 | * open_exec - Open a path name for execution |
| 807 | * |
| 808 | * @name: path name to open with the intent of executing it. |
| 809 | * |
| 810 | * Returns ERR_PTR on failure or allocated struct file on success. |
| 811 | * |
| 812 | * As this is a wrapper for the internal do_open_execat(), callers |
| 813 | * must call exe_file_allow_write_access() before fput() on release. Also see |
| 814 | * do_close_execat(). |
| 815 | */ |
| 816 | struct file *open_exec(const char *name) |
| 817 | { |
| 818 | struct filename *filename = getname_kernel(name); |
| 819 | struct file *f = ERR_CAST(ptr: filename); |
| 820 | |
| 821 | if (!IS_ERR(ptr: filename)) { |
| 822 | f = do_open_execat(AT_FDCWD, name: filename, flags: 0); |
| 823 | putname(name: filename); |
| 824 | } |
| 825 | return f; |
| 826 | } |
| 827 | EXPORT_SYMBOL(open_exec); |
| 828 | |
| 829 | #if defined(CONFIG_BINFMT_FLAT) || defined(CONFIG_BINFMT_ELF_FDPIC) |
| 830 | ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len) |
| 831 | { |
| 832 | ssize_t res = vfs_read(file, (void __user *)addr, len, &pos); |
| 833 | if (res > 0) |
| 834 | flush_icache_user_range(addr, addr + len); |
| 835 | return res; |
| 836 | } |
| 837 | EXPORT_SYMBOL(read_code); |
| 838 | #endif |
| 839 | |
| 840 | /* |
| 841 | * Maps the mm_struct mm into the current task struct. |
| 842 | * On success, this function returns with exec_update_lock |
| 843 | * held for writing. |
| 844 | */ |
| 845 | static int exec_mmap(struct mm_struct *mm) |
| 846 | { |
| 847 | struct task_struct *tsk; |
| 848 | struct mm_struct *old_mm, *active_mm; |
| 849 | int ret; |
| 850 | |
| 851 | /* Notify parent that we're no longer interested in the old VM */ |
| 852 | tsk = current; |
| 853 | old_mm = current->mm; |
| 854 | exec_mm_release(tsk, old_mm); |
| 855 | |
| 856 | ret = down_write_killable(sem: &tsk->signal->exec_update_lock); |
| 857 | if (ret) |
| 858 | return ret; |
| 859 | |
| 860 | if (old_mm) { |
| 861 | /* |
| 862 | * If there is a pending fatal signal perhaps a signal |
| 863 | * whose default action is to create a coredump get |
| 864 | * out and die instead of going through with the exec. |
| 865 | */ |
| 866 | ret = mmap_read_lock_killable(mm: old_mm); |
| 867 | if (ret) { |
| 868 | up_write(sem: &tsk->signal->exec_update_lock); |
| 869 | return ret; |
| 870 | } |
| 871 | } |
| 872 | |
| 873 | task_lock(p: tsk); |
| 874 | membarrier_exec_mmap(mm); |
| 875 | |
| 876 | local_irq_disable(); |
| 877 | active_mm = tsk->active_mm; |
| 878 | tsk->active_mm = mm; |
| 879 | tsk->mm = mm; |
| 880 | mm_init_cid(mm, p: tsk); |
| 881 | /* |
| 882 | * This prevents preemption while active_mm is being loaded and |
| 883 | * it and mm are being updated, which could cause problems for |
| 884 | * lazy tlb mm refcounting when these are updated by context |
| 885 | * switches. Not all architectures can handle irqs off over |
| 886 | * activate_mm yet. |
| 887 | */ |
| 888 | if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM)) |
| 889 | local_irq_enable(); |
| 890 | activate_mm(active_mm, mm); |
| 891 | if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM)) |
| 892 | local_irq_enable(); |
| 893 | lru_gen_add_mm(mm); |
| 894 | task_unlock(p: tsk); |
| 895 | lru_gen_use_mm(mm); |
| 896 | if (old_mm) { |
| 897 | mmap_read_unlock(mm: old_mm); |
| 898 | BUG_ON(active_mm != old_mm); |
| 899 | setmax_mm_hiwater_rss(maxrss: &tsk->signal->maxrss, mm: old_mm); |
| 900 | mm_update_next_owner(mm: old_mm); |
| 901 | mmput(old_mm); |
| 902 | return 0; |
| 903 | } |
| 904 | mmdrop_lazy_tlb(mm: active_mm); |
| 905 | return 0; |
| 906 | } |
| 907 | |
| 908 | static int de_thread(struct task_struct *tsk) |
| 909 | { |
| 910 | struct signal_struct *sig = tsk->signal; |
| 911 | struct sighand_struct *oldsighand = tsk->sighand; |
| 912 | spinlock_t *lock = &oldsighand->siglock; |
| 913 | |
| 914 | if (thread_group_empty(p: tsk)) |
| 915 | goto no_thread_group; |
| 916 | |
| 917 | /* |
| 918 | * Kill all other threads in the thread group. |
| 919 | */ |
| 920 | spin_lock_irq(lock); |
| 921 | if ((sig->flags & SIGNAL_GROUP_EXIT) || sig->group_exec_task) { |
| 922 | /* |
| 923 | * Another group action in progress, just |
| 924 | * return so that the signal is processed. |
| 925 | */ |
| 926 | spin_unlock_irq(lock); |
| 927 | return -EAGAIN; |
| 928 | } |
| 929 | |
| 930 | sig->group_exec_task = tsk; |
| 931 | sig->notify_count = zap_other_threads(p: tsk); |
| 932 | if (!thread_group_leader(p: tsk)) |
| 933 | sig->notify_count--; |
| 934 | |
| 935 | while (sig->notify_count) { |
| 936 | __set_current_state(TASK_KILLABLE); |
| 937 | spin_unlock_irq(lock); |
| 938 | schedule(); |
| 939 | if (__fatal_signal_pending(p: tsk)) |
| 940 | goto killed; |
| 941 | spin_lock_irq(lock); |
| 942 | } |
| 943 | spin_unlock_irq(lock); |
| 944 | |
| 945 | /* |
| 946 | * At this point all other threads have exited, all we have to |
| 947 | * do is to wait for the thread group leader to become inactive, |
| 948 | * and to assume its PID: |
| 949 | */ |
| 950 | if (!thread_group_leader(p: tsk)) { |
| 951 | struct task_struct *leader = tsk->group_leader; |
| 952 | |
| 953 | for (;;) { |
| 954 | cgroup_threadgroup_change_begin(tsk); |
| 955 | write_lock_irq(&tasklist_lock); |
| 956 | /* |
| 957 | * Do this under tasklist_lock to ensure that |
| 958 | * exit_notify() can't miss ->group_exec_task |
| 959 | */ |
| 960 | sig->notify_count = -1; |
| 961 | if (likely(leader->exit_state)) |
| 962 | break; |
| 963 | __set_current_state(TASK_KILLABLE); |
| 964 | write_unlock_irq(&tasklist_lock); |
| 965 | cgroup_threadgroup_change_end(tsk); |
| 966 | schedule(); |
| 967 | if (__fatal_signal_pending(p: tsk)) |
| 968 | goto killed; |
| 969 | } |
| 970 | |
| 971 | /* |
| 972 | * The only record we have of the real-time age of a |
| 973 | * process, regardless of execs it's done, is start_time. |
| 974 | * All the past CPU time is accumulated in signal_struct |
| 975 | * from sister threads now dead. But in this non-leader |
| 976 | * exec, nothing survives from the original leader thread, |
| 977 | * whose birth marks the true age of this process now. |
| 978 | * When we take on its identity by switching to its PID, we |
| 979 | * also take its birthdate (always earlier than our own). |
| 980 | */ |
| 981 | tsk->start_time = leader->start_time; |
| 982 | tsk->start_boottime = leader->start_boottime; |
| 983 | |
| 984 | BUG_ON(!same_thread_group(leader, tsk)); |
| 985 | /* |
| 986 | * An exec() starts a new thread group with the |
| 987 | * TGID of the previous thread group. Rehash the |
| 988 | * two threads with a switched PID, and release |
| 989 | * the former thread group leader: |
| 990 | */ |
| 991 | |
| 992 | /* Become a process group leader with the old leader's pid. |
| 993 | * The old leader becomes a thread of the this thread group. |
| 994 | */ |
| 995 | exchange_tids(task: tsk, old: leader); |
| 996 | transfer_pid(old: leader, new: tsk, PIDTYPE_TGID); |
| 997 | transfer_pid(old: leader, new: tsk, PIDTYPE_PGID); |
| 998 | transfer_pid(old: leader, new: tsk, PIDTYPE_SID); |
| 999 | |
| 1000 | list_replace_rcu(old: &leader->tasks, new: &tsk->tasks); |
| 1001 | list_replace_init(old: &leader->sibling, new: &tsk->sibling); |
| 1002 | |
| 1003 | tsk->group_leader = tsk; |
| 1004 | leader->group_leader = tsk; |
| 1005 | |
| 1006 | tsk->exit_signal = SIGCHLD; |
| 1007 | leader->exit_signal = -1; |
| 1008 | |
| 1009 | BUG_ON(leader->exit_state != EXIT_ZOMBIE); |
| 1010 | leader->exit_state = EXIT_DEAD; |
| 1011 | /* |
| 1012 | * We are going to release_task()->ptrace_unlink() silently, |
| 1013 | * the tracer can sleep in do_wait(). EXIT_DEAD guarantees |
| 1014 | * the tracer won't block again waiting for this thread. |
| 1015 | */ |
| 1016 | if (unlikely(leader->ptrace)) |
| 1017 | __wake_up_parent(p: leader, parent: leader->parent); |
| 1018 | write_unlock_irq(&tasklist_lock); |
| 1019 | cgroup_threadgroup_change_end(tsk); |
| 1020 | |
| 1021 | release_task(p: leader); |
| 1022 | } |
| 1023 | |
| 1024 | sig->group_exec_task = NULL; |
| 1025 | sig->notify_count = 0; |
| 1026 | |
| 1027 | no_thread_group: |
| 1028 | /* we have changed execution domain */ |
| 1029 | tsk->exit_signal = SIGCHLD; |
| 1030 | |
| 1031 | BUG_ON(!thread_group_leader(tsk)); |
| 1032 | return 0; |
| 1033 | |
| 1034 | killed: |
| 1035 | /* protects against exit_notify() and __exit_signal() */ |
| 1036 | read_lock(&tasklist_lock); |
| 1037 | sig->group_exec_task = NULL; |
| 1038 | sig->notify_count = 0; |
| 1039 | read_unlock(&tasklist_lock); |
| 1040 | return -EAGAIN; |
| 1041 | } |
| 1042 | |
| 1043 | |
| 1044 | /* |
| 1045 | * This function makes sure the current process has its own signal table, |
| 1046 | * so that flush_signal_handlers can later reset the handlers without |
| 1047 | * disturbing other processes. (Other processes might share the signal |
| 1048 | * table via the CLONE_SIGHAND option to clone().) |
| 1049 | */ |
| 1050 | static int unshare_sighand(struct task_struct *me) |
| 1051 | { |
| 1052 | struct sighand_struct *oldsighand = me->sighand; |
| 1053 | |
| 1054 | if (refcount_read(r: &oldsighand->count) != 1) { |
| 1055 | struct sighand_struct *newsighand; |
| 1056 | /* |
| 1057 | * This ->sighand is shared with the CLONE_SIGHAND |
| 1058 | * but not CLONE_THREAD task, switch to the new one. |
| 1059 | */ |
| 1060 | newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); |
| 1061 | if (!newsighand) |
| 1062 | return -ENOMEM; |
| 1063 | |
| 1064 | refcount_set(r: &newsighand->count, n: 1); |
| 1065 | |
| 1066 | write_lock_irq(&tasklist_lock); |
| 1067 | spin_lock(lock: &oldsighand->siglock); |
| 1068 | memcpy(to: newsighand->action, from: oldsighand->action, |
| 1069 | len: sizeof(newsighand->action)); |
| 1070 | rcu_assign_pointer(me->sighand, newsighand); |
| 1071 | spin_unlock(lock: &oldsighand->siglock); |
| 1072 | write_unlock_irq(&tasklist_lock); |
| 1073 | |
| 1074 | __cleanup_sighand(oldsighand); |
| 1075 | } |
| 1076 | return 0; |
| 1077 | } |
| 1078 | |
| 1079 | /* |
| 1080 | * This is unlocked -- the string will always be NUL-terminated, but |
| 1081 | * may show overlapping contents if racing concurrent reads. |
| 1082 | */ |
| 1083 | void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec) |
| 1084 | { |
| 1085 | size_t len = min(strlen(buf), sizeof(tsk->comm) - 1); |
| 1086 | |
| 1087 | trace_task_rename(task: tsk, comm: buf); |
| 1088 | memcpy(to: tsk->comm, from: buf, len); |
| 1089 | memset(s: &tsk->comm[len], c: 0, n: sizeof(tsk->comm) - len); |
| 1090 | perf_event_comm(tsk, exec); |
| 1091 | } |
| 1092 | |
| 1093 | /* |
| 1094 | * Calling this is the point of no return. None of the failures will be |
| 1095 | * seen by userspace since either the process is already taking a fatal |
| 1096 | * signal (via de_thread() or coredump), or will have SEGV raised |
| 1097 | * (after exec_mmap()) by search_binary_handler (see below). |
| 1098 | */ |
| 1099 | int begin_new_exec(struct linux_binprm * bprm) |
| 1100 | { |
| 1101 | struct task_struct *me = current; |
| 1102 | int retval; |
| 1103 | |
| 1104 | /* Once we are committed compute the creds */ |
| 1105 | retval = bprm_creds_from_file(bprm); |
| 1106 | if (retval) |
| 1107 | return retval; |
| 1108 | |
| 1109 | /* |
| 1110 | * This tracepoint marks the point before flushing the old exec where |
| 1111 | * the current task is still unchanged, but errors are fatal (point of |
| 1112 | * no return). The later "sched_process_exec" tracepoint is called after |
| 1113 | * the current task has successfully switched to the new exec. |
| 1114 | */ |
| 1115 | trace_sched_prepare_exec(current, bprm); |
| 1116 | |
| 1117 | /* |
| 1118 | * Ensure all future errors are fatal. |
| 1119 | */ |
| 1120 | bprm->point_of_no_return = true; |
| 1121 | |
| 1122 | /* Make this the only thread in the thread group */ |
| 1123 | retval = de_thread(tsk: me); |
| 1124 | if (retval) |
| 1125 | goto out; |
| 1126 | /* see the comment in check_unsafe_exec() */ |
| 1127 | current->fs->in_exec = 0; |
| 1128 | /* |
| 1129 | * Cancel any io_uring activity across execve |
| 1130 | */ |
| 1131 | io_uring_task_cancel(); |
| 1132 | |
| 1133 | /* Ensure the files table is not shared. */ |
| 1134 | retval = unshare_files(); |
| 1135 | if (retval) |
| 1136 | goto out; |
| 1137 | |
| 1138 | /* |
| 1139 | * Must be called _before_ exec_mmap() as bprm->mm is |
| 1140 | * not visible until then. Doing it here also ensures |
| 1141 | * we don't race against replace_mm_exe_file(). |
| 1142 | */ |
| 1143 | retval = set_mm_exe_file(mm: bprm->mm, new_exe_file: bprm->file); |
| 1144 | if (retval) |
| 1145 | goto out; |
| 1146 | |
| 1147 | /* If the binary is not readable then enforce mm->dumpable=0 */ |
| 1148 | would_dump(bprm, bprm->file); |
| 1149 | if (bprm->have_execfd) |
| 1150 | would_dump(bprm, bprm->executable); |
| 1151 | |
| 1152 | /* |
| 1153 | * Release all of the old mmap stuff |
| 1154 | */ |
| 1155 | acct_arg_size(bprm, pages: 0); |
| 1156 | retval = exec_mmap(mm: bprm->mm); |
| 1157 | if (retval) |
| 1158 | goto out; |
| 1159 | |
| 1160 | bprm->mm = NULL; |
| 1161 | |
| 1162 | retval = exec_task_namespaces(); |
| 1163 | if (retval) |
| 1164 | goto out_unlock; |
| 1165 | |
| 1166 | #ifdef CONFIG_POSIX_TIMERS |
| 1167 | spin_lock_irq(lock: &me->sighand->siglock); |
| 1168 | posix_cpu_timers_exit(task: me); |
| 1169 | spin_unlock_irq(lock: &me->sighand->siglock); |
| 1170 | exit_itimers(me); |
| 1171 | flush_itimer_signals(); |
| 1172 | #endif |
| 1173 | |
| 1174 | /* |
| 1175 | * Make the signal table private. |
| 1176 | */ |
| 1177 | retval = unshare_sighand(me); |
| 1178 | if (retval) |
| 1179 | goto out_unlock; |
| 1180 | |
| 1181 | me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | |
| 1182 | PF_NOFREEZE | PF_NO_SETAFFINITY); |
| 1183 | flush_thread(); |
| 1184 | me->personality &= ~bprm->per_clear; |
| 1185 | |
| 1186 | clear_syscall_work_syscall_user_dispatch(me); |
| 1187 | |
| 1188 | /* |
| 1189 | * We have to apply CLOEXEC before we change whether the process is |
| 1190 | * dumpable (in setup_new_exec) to avoid a race with a process in userspace |
| 1191 | * trying to access the should-be-closed file descriptors of a process |
| 1192 | * undergoing exec(2). |
| 1193 | */ |
| 1194 | do_close_on_exec(me->files); |
| 1195 | |
| 1196 | if (bprm->secureexec) { |
| 1197 | /* Make sure parent cannot signal privileged process. */ |
| 1198 | me->pdeath_signal = 0; |
| 1199 | |
| 1200 | /* |
| 1201 | * For secureexec, reset the stack limit to sane default to |
| 1202 | * avoid bad behavior from the prior rlimits. This has to |
| 1203 | * happen before arch_pick_mmap_layout(), which examines |
| 1204 | * RLIMIT_STACK, but after the point of no return to avoid |
| 1205 | * needing to clean up the change on failure. |
| 1206 | */ |
| 1207 | if (bprm->rlim_stack.rlim_cur > _STK_LIM) |
| 1208 | bprm->rlim_stack.rlim_cur = _STK_LIM; |
| 1209 | } |
| 1210 | |
| 1211 | me->sas_ss_sp = me->sas_ss_size = 0; |
| 1212 | |
| 1213 | /* |
| 1214 | * Figure out dumpability. Note that this checking only of current |
| 1215 | * is wrong, but userspace depends on it. This should be testing |
| 1216 | * bprm->secureexec instead. |
| 1217 | */ |
| 1218 | if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP || |
| 1219 | !(uid_eq(current_euid(), current_uid()) && |
| 1220 | gid_eq(current_egid(), current_gid()))) |
| 1221 | set_dumpable(current->mm, value: suid_dumpable); |
| 1222 | else |
| 1223 | set_dumpable(current->mm, SUID_DUMP_USER); |
| 1224 | |
| 1225 | perf_event_exec(); |
| 1226 | |
| 1227 | /* |
| 1228 | * If the original filename was empty, alloc_bprm() made up a path |
| 1229 | * that will probably not be useful to admins running ps or similar. |
| 1230 | * Let's fix it up to be something reasonable. |
| 1231 | */ |
| 1232 | if (bprm->comm_from_dentry) { |
| 1233 | /* |
| 1234 | * Hold RCU lock to keep the name from being freed behind our back. |
| 1235 | * Use acquire semantics to make sure the terminating NUL from |
| 1236 | * __d_alloc() is seen. |
| 1237 | * |
| 1238 | * Note, we're deliberately sloppy here. We don't need to care about |
| 1239 | * detecting a concurrent rename and just want a terminated name. |
| 1240 | */ |
| 1241 | rcu_read_lock(); |
| 1242 | __set_task_comm(tsk: me, smp_load_acquire(&bprm->file->f_path.dentry->d_name.name), |
| 1243 | exec: true); |
| 1244 | rcu_read_unlock(); |
| 1245 | } else { |
| 1246 | __set_task_comm(tsk: me, buf: kbasename(path: bprm->filename), exec: true); |
| 1247 | } |
| 1248 | |
| 1249 | /* An exec changes our domain. We are no longer part of the thread |
| 1250 | group */ |
| 1251 | WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1); |
| 1252 | flush_signal_handlers(me, force_default: 0); |
| 1253 | |
| 1254 | retval = set_cred_ucounts(bprm->cred); |
| 1255 | if (retval < 0) |
| 1256 | goto out_unlock; |
| 1257 | |
| 1258 | /* |
| 1259 | * install the new credentials for this executable |
| 1260 | */ |
| 1261 | security_bprm_committing_creds(bprm); |
| 1262 | |
| 1263 | commit_creds(bprm->cred); |
| 1264 | bprm->cred = NULL; |
| 1265 | |
| 1266 | /* |
| 1267 | * Disable monitoring for regular users |
| 1268 | * when executing setuid binaries. Must |
| 1269 | * wait until new credentials are committed |
| 1270 | * by commit_creds() above |
| 1271 | */ |
| 1272 | if (get_dumpable(mm: me->mm) != SUID_DUMP_USER) |
| 1273 | perf_event_exit_task(child: me); |
| 1274 | /* |
| 1275 | * cred_guard_mutex must be held at least to this point to prevent |
| 1276 | * ptrace_attach() from altering our determination of the task's |
| 1277 | * credentials; any time after this it may be unlocked. |
| 1278 | */ |
| 1279 | security_bprm_committed_creds(bprm); |
| 1280 | |
| 1281 | /* Pass the opened binary to the interpreter. */ |
| 1282 | if (bprm->have_execfd) { |
| 1283 | retval = get_unused_fd_flags(flags: 0); |
| 1284 | if (retval < 0) |
| 1285 | goto out_unlock; |
| 1286 | fd_install(fd: retval, file: bprm->executable); |
| 1287 | bprm->executable = NULL; |
| 1288 | bprm->execfd = retval; |
| 1289 | } |
| 1290 | return 0; |
| 1291 | |
| 1292 | out_unlock: |
| 1293 | up_write(sem: &me->signal->exec_update_lock); |
| 1294 | if (!bprm->cred) |
| 1295 | mutex_unlock(lock: &me->signal->cred_guard_mutex); |
| 1296 | |
| 1297 | out: |
| 1298 | return retval; |
| 1299 | } |
| 1300 | EXPORT_SYMBOL(begin_new_exec); |
| 1301 | |
| 1302 | void would_dump(struct linux_binprm *bprm, struct file *file) |
| 1303 | { |
| 1304 | struct inode *inode = file_inode(f: file); |
| 1305 | struct mnt_idmap *idmap = file_mnt_idmap(file); |
| 1306 | if (inode_permission(idmap, inode, MAY_READ) < 0) { |
| 1307 | struct user_namespace *old, *user_ns; |
| 1308 | bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP; |
| 1309 | |
| 1310 | /* Ensure mm->user_ns contains the executable */ |
| 1311 | user_ns = old = bprm->mm->user_ns; |
| 1312 | while ((user_ns != &init_user_ns) && |
| 1313 | !privileged_wrt_inode_uidgid(ns: user_ns, idmap, inode)) |
| 1314 | user_ns = user_ns->parent; |
| 1315 | |
| 1316 | if (old != user_ns) { |
| 1317 | bprm->mm->user_ns = get_user_ns(ns: user_ns); |
| 1318 | put_user_ns(ns: old); |
| 1319 | } |
| 1320 | } |
| 1321 | } |
| 1322 | EXPORT_SYMBOL(would_dump); |
| 1323 | |
| 1324 | void setup_new_exec(struct linux_binprm * bprm) |
| 1325 | { |
| 1326 | /* Setup things that can depend upon the personality */ |
| 1327 | struct task_struct *me = current; |
| 1328 | |
| 1329 | arch_pick_mmap_layout(mm: me->mm, rlim_stack: &bprm->rlim_stack); |
| 1330 | |
| 1331 | arch_setup_new_exec(); |
| 1332 | |
| 1333 | /* Set the new mm task size. We have to do that late because it may |
| 1334 | * depend on TIF_32BIT which is only updated in flush_thread() on |
| 1335 | * some architectures like powerpc |
| 1336 | */ |
| 1337 | me->mm->task_size = TASK_SIZE; |
| 1338 | up_write(sem: &me->signal->exec_update_lock); |
| 1339 | mutex_unlock(lock: &me->signal->cred_guard_mutex); |
| 1340 | } |
| 1341 | EXPORT_SYMBOL(setup_new_exec); |
| 1342 | |
| 1343 | /* Runs immediately before start_thread() takes over. */ |
| 1344 | void finalize_exec(struct linux_binprm *bprm) |
| 1345 | { |
| 1346 | /* Store any stack rlimit changes before starting thread. */ |
| 1347 | task_lock(current->group_leader); |
| 1348 | current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack; |
| 1349 | task_unlock(current->group_leader); |
| 1350 | } |
| 1351 | EXPORT_SYMBOL(finalize_exec); |
| 1352 | |
| 1353 | /* |
| 1354 | * Prepare credentials and lock ->cred_guard_mutex. |
| 1355 | * setup_new_exec() commits the new creds and drops the lock. |
| 1356 | * Or, if exec fails before, free_bprm() should release ->cred |
| 1357 | * and unlock. |
| 1358 | */ |
| 1359 | static int prepare_bprm_creds(struct linux_binprm *bprm) |
| 1360 | { |
| 1361 | if (mutex_lock_interruptible(lock: ¤t->signal->cred_guard_mutex)) |
| 1362 | return -ERESTARTNOINTR; |
| 1363 | |
| 1364 | bprm->cred = prepare_exec_creds(); |
| 1365 | if (likely(bprm->cred)) |
| 1366 | return 0; |
| 1367 | |
| 1368 | mutex_unlock(lock: ¤t->signal->cred_guard_mutex); |
| 1369 | return -ENOMEM; |
| 1370 | } |
| 1371 | |
| 1372 | /* Matches do_open_execat() */ |
| 1373 | static void do_close_execat(struct file *file) |
| 1374 | { |
| 1375 | if (!file) |
| 1376 | return; |
| 1377 | exe_file_allow_write_access(exe_file: file); |
| 1378 | fput(file); |
| 1379 | } |
| 1380 | |
| 1381 | static void free_bprm(struct linux_binprm *bprm) |
| 1382 | { |
| 1383 | if (bprm->mm) { |
| 1384 | acct_arg_size(bprm, pages: 0); |
| 1385 | mmput(bprm->mm); |
| 1386 | } |
| 1387 | free_arg_pages(bprm); |
| 1388 | if (bprm->cred) { |
| 1389 | /* in case exec fails before de_thread() succeeds */ |
| 1390 | current->fs->in_exec = 0; |
| 1391 | mutex_unlock(lock: ¤t->signal->cred_guard_mutex); |
| 1392 | abort_creds(bprm->cred); |
| 1393 | } |
| 1394 | do_close_execat(file: bprm->file); |
| 1395 | if (bprm->executable) |
| 1396 | fput(bprm->executable); |
| 1397 | /* If a binfmt changed the interp, free it. */ |
| 1398 | if (bprm->interp != bprm->filename) |
| 1399 | kfree(objp: bprm->interp); |
| 1400 | kfree(objp: bprm->fdpath); |
| 1401 | kfree(objp: bprm); |
| 1402 | } |
| 1403 | |
| 1404 | static struct linux_binprm *alloc_bprm(int fd, struct filename *filename, int flags) |
| 1405 | { |
| 1406 | struct linux_binprm *bprm; |
| 1407 | struct file *file; |
| 1408 | int retval = -ENOMEM; |
| 1409 | |
| 1410 | file = do_open_execat(fd, name: filename, flags); |
| 1411 | if (IS_ERR(ptr: file)) |
| 1412 | return ERR_CAST(ptr: file); |
| 1413 | |
| 1414 | bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); |
| 1415 | if (!bprm) { |
| 1416 | do_close_execat(file); |
| 1417 | return ERR_PTR(error: -ENOMEM); |
| 1418 | } |
| 1419 | |
| 1420 | bprm->file = file; |
| 1421 | |
| 1422 | if (fd == AT_FDCWD || filename->name[0] == '/') { |
| 1423 | bprm->filename = filename->name; |
| 1424 | } else { |
| 1425 | if (filename->name[0] == '\0') { |
| 1426 | bprm->fdpath = kasprintf(GFP_KERNEL, fmt: "/dev/fd/%d" , fd); |
| 1427 | bprm->comm_from_dentry = 1; |
| 1428 | } else { |
| 1429 | bprm->fdpath = kasprintf(GFP_KERNEL, fmt: "/dev/fd/%d/%s" , |
| 1430 | fd, filename->name); |
| 1431 | } |
| 1432 | if (!bprm->fdpath) |
| 1433 | goto out_free; |
| 1434 | |
| 1435 | /* |
| 1436 | * Record that a name derived from an O_CLOEXEC fd will be |
| 1437 | * inaccessible after exec. This allows the code in exec to |
| 1438 | * choose to fail when the executable is not mmaped into the |
| 1439 | * interpreter and an open file descriptor is not passed to |
| 1440 | * the interpreter. This makes for a better user experience |
| 1441 | * than having the interpreter start and then immediately fail |
| 1442 | * when it finds the executable is inaccessible. |
| 1443 | */ |
| 1444 | if (get_close_on_exec(fd)) |
| 1445 | bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE; |
| 1446 | |
| 1447 | bprm->filename = bprm->fdpath; |
| 1448 | } |
| 1449 | bprm->interp = bprm->filename; |
| 1450 | |
| 1451 | /* |
| 1452 | * At this point, security_file_open() has already been called (with |
| 1453 | * __FMODE_EXEC) and access control checks for AT_EXECVE_CHECK will |
| 1454 | * stop just after the security_bprm_creds_for_exec() call in |
| 1455 | * bprm_execve(). Indeed, the kernel should not try to parse the |
| 1456 | * content of the file with exec_binprm() nor change the calling |
| 1457 | * thread, which means that the following security functions will not |
| 1458 | * be called: |
| 1459 | * - security_bprm_check() |
| 1460 | * - security_bprm_creds_from_file() |
| 1461 | * - security_bprm_committing_creds() |
| 1462 | * - security_bprm_committed_creds() |
| 1463 | */ |
| 1464 | bprm->is_check = !!(flags & AT_EXECVE_CHECK); |
| 1465 | |
| 1466 | retval = bprm_mm_init(bprm); |
| 1467 | if (!retval) |
| 1468 | return bprm; |
| 1469 | |
| 1470 | out_free: |
| 1471 | free_bprm(bprm); |
| 1472 | return ERR_PTR(error: retval); |
| 1473 | } |
| 1474 | |
| 1475 | int bprm_change_interp(const char *interp, struct linux_binprm *bprm) |
| 1476 | { |
| 1477 | /* If a binfmt changed the interp, free it first. */ |
| 1478 | if (bprm->interp != bprm->filename) |
| 1479 | kfree(objp: bprm->interp); |
| 1480 | bprm->interp = kstrdup(s: interp, GFP_KERNEL); |
| 1481 | if (!bprm->interp) |
| 1482 | return -ENOMEM; |
| 1483 | return 0; |
| 1484 | } |
| 1485 | EXPORT_SYMBOL(bprm_change_interp); |
| 1486 | |
| 1487 | /* |
| 1488 | * determine how safe it is to execute the proposed program |
| 1489 | * - the caller must hold ->cred_guard_mutex to protect against |
| 1490 | * PTRACE_ATTACH or seccomp thread-sync |
| 1491 | */ |
| 1492 | static void check_unsafe_exec(struct linux_binprm *bprm) |
| 1493 | { |
| 1494 | struct task_struct *p = current, *t; |
| 1495 | unsigned n_fs; |
| 1496 | |
| 1497 | if (p->ptrace) |
| 1498 | bprm->unsafe |= LSM_UNSAFE_PTRACE; |
| 1499 | |
| 1500 | /* |
| 1501 | * This isn't strictly necessary, but it makes it harder for LSMs to |
| 1502 | * mess up. |
| 1503 | */ |
| 1504 | if (task_no_new_privs(current)) |
| 1505 | bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS; |
| 1506 | |
| 1507 | /* |
| 1508 | * If another task is sharing our fs, we cannot safely |
| 1509 | * suid exec because the differently privileged task |
| 1510 | * will be able to manipulate the current directory, etc. |
| 1511 | * It would be nice to force an unshare instead... |
| 1512 | * |
| 1513 | * Otherwise we set fs->in_exec = 1 to deny clone(CLONE_FS) |
| 1514 | * from another sub-thread until de_thread() succeeds, this |
| 1515 | * state is protected by cred_guard_mutex we hold. |
| 1516 | */ |
| 1517 | n_fs = 1; |
| 1518 | read_seqlock_excl(sl: &p->fs->seq); |
| 1519 | rcu_read_lock(); |
| 1520 | for_other_threads(p, t) { |
| 1521 | if (t->fs == p->fs) |
| 1522 | n_fs++; |
| 1523 | } |
| 1524 | rcu_read_unlock(); |
| 1525 | |
| 1526 | /* "users" and "in_exec" locked for copy_fs() */ |
| 1527 | if (p->fs->users > n_fs) |
| 1528 | bprm->unsafe |= LSM_UNSAFE_SHARE; |
| 1529 | else |
| 1530 | p->fs->in_exec = 1; |
| 1531 | read_sequnlock_excl(sl: &p->fs->seq); |
| 1532 | } |
| 1533 | |
| 1534 | static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file) |
| 1535 | { |
| 1536 | /* Handle suid and sgid on files */ |
| 1537 | struct mnt_idmap *idmap; |
| 1538 | struct inode *inode = file_inode(f: file); |
| 1539 | unsigned int mode; |
| 1540 | vfsuid_t vfsuid; |
| 1541 | vfsgid_t vfsgid; |
| 1542 | int err; |
| 1543 | |
| 1544 | if (!mnt_may_suid(mnt: file->f_path.mnt)) |
| 1545 | return; |
| 1546 | |
| 1547 | if (task_no_new_privs(current)) |
| 1548 | return; |
| 1549 | |
| 1550 | mode = READ_ONCE(inode->i_mode); |
| 1551 | if (!(mode & (S_ISUID|S_ISGID))) |
| 1552 | return; |
| 1553 | |
| 1554 | idmap = file_mnt_idmap(file); |
| 1555 | |
| 1556 | /* Be careful if suid/sgid is set */ |
| 1557 | inode_lock(inode); |
| 1558 | |
| 1559 | /* Atomically reload and check mode/uid/gid now that lock held. */ |
| 1560 | mode = inode->i_mode; |
| 1561 | vfsuid = i_uid_into_vfsuid(idmap, inode); |
| 1562 | vfsgid = i_gid_into_vfsgid(idmap, inode); |
| 1563 | err = inode_permission(idmap, inode, MAY_EXEC); |
| 1564 | inode_unlock(inode); |
| 1565 | |
| 1566 | /* Did the exec bit vanish out from under us? Give up. */ |
| 1567 | if (err) |
| 1568 | return; |
| 1569 | |
| 1570 | /* We ignore suid/sgid if there are no mappings for them in the ns */ |
| 1571 | if (!vfsuid_has_mapping(userns: bprm->cred->user_ns, vfsuid) || |
| 1572 | !vfsgid_has_mapping(userns: bprm->cred->user_ns, vfsgid)) |
| 1573 | return; |
| 1574 | |
| 1575 | if (mode & S_ISUID) { |
| 1576 | bprm->per_clear |= PER_CLEAR_ON_SETID; |
| 1577 | bprm->cred->euid = vfsuid_into_kuid(vfsuid); |
| 1578 | } |
| 1579 | |
| 1580 | if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { |
| 1581 | bprm->per_clear |= PER_CLEAR_ON_SETID; |
| 1582 | bprm->cred->egid = vfsgid_into_kgid(vfsgid); |
| 1583 | } |
| 1584 | } |
| 1585 | |
| 1586 | /* |
| 1587 | * Compute brpm->cred based upon the final binary. |
| 1588 | */ |
| 1589 | static int bprm_creds_from_file(struct linux_binprm *bprm) |
| 1590 | { |
| 1591 | /* Compute creds based on which file? */ |
| 1592 | struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file; |
| 1593 | |
| 1594 | bprm_fill_uid(bprm, file); |
| 1595 | return security_bprm_creds_from_file(bprm, file); |
| 1596 | } |
| 1597 | |
| 1598 | /* |
| 1599 | * Fill the binprm structure from the inode. |
| 1600 | * Read the first BINPRM_BUF_SIZE bytes |
| 1601 | * |
| 1602 | * This may be called multiple times for binary chains (scripts for example). |
| 1603 | */ |
| 1604 | static int prepare_binprm(struct linux_binprm *bprm) |
| 1605 | { |
| 1606 | loff_t pos = 0; |
| 1607 | |
| 1608 | memset(s: bprm->buf, c: 0, BINPRM_BUF_SIZE); |
| 1609 | return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos); |
| 1610 | } |
| 1611 | |
| 1612 | /* |
| 1613 | * Arguments are '\0' separated strings found at the location bprm->p |
| 1614 | * points to; chop off the first by relocating brpm->p to right after |
| 1615 | * the first '\0' encountered. |
| 1616 | */ |
| 1617 | int remove_arg_zero(struct linux_binprm *bprm) |
| 1618 | { |
| 1619 | unsigned long offset; |
| 1620 | char *kaddr; |
| 1621 | struct page *page; |
| 1622 | |
| 1623 | if (!bprm->argc) |
| 1624 | return 0; |
| 1625 | |
| 1626 | do { |
| 1627 | offset = bprm->p & ~PAGE_MASK; |
| 1628 | page = get_arg_page(bprm, pos: bprm->p, write: 0); |
| 1629 | if (!page) |
| 1630 | return -EFAULT; |
| 1631 | kaddr = kmap_local_page(page); |
| 1632 | |
| 1633 | for (; offset < PAGE_SIZE && kaddr[offset]; |
| 1634 | offset++, bprm->p++) |
| 1635 | ; |
| 1636 | |
| 1637 | kunmap_local(kaddr); |
| 1638 | put_arg_page(page); |
| 1639 | } while (offset == PAGE_SIZE); |
| 1640 | |
| 1641 | bprm->p++; |
| 1642 | bprm->argc--; |
| 1643 | |
| 1644 | return 0; |
| 1645 | } |
| 1646 | EXPORT_SYMBOL(remove_arg_zero); |
| 1647 | |
| 1648 | /* |
| 1649 | * cycle the list of binary formats handler, until one recognizes the image |
| 1650 | */ |
| 1651 | static int search_binary_handler(struct linux_binprm *bprm) |
| 1652 | { |
| 1653 | struct linux_binfmt *fmt; |
| 1654 | int retval; |
| 1655 | |
| 1656 | retval = prepare_binprm(bprm); |
| 1657 | if (retval < 0) |
| 1658 | return retval; |
| 1659 | |
| 1660 | retval = security_bprm_check(bprm); |
| 1661 | if (retval) |
| 1662 | return retval; |
| 1663 | |
| 1664 | read_lock(&binfmt_lock); |
| 1665 | list_for_each_entry(fmt, &formats, lh) { |
| 1666 | if (!try_module_get(module: fmt->module)) |
| 1667 | continue; |
| 1668 | read_unlock(&binfmt_lock); |
| 1669 | |
| 1670 | retval = fmt->load_binary(bprm); |
| 1671 | |
| 1672 | read_lock(&binfmt_lock); |
| 1673 | put_binfmt(fmt); |
| 1674 | if (bprm->point_of_no_return || (retval != -ENOEXEC)) { |
| 1675 | read_unlock(&binfmt_lock); |
| 1676 | return retval; |
| 1677 | } |
| 1678 | } |
| 1679 | read_unlock(&binfmt_lock); |
| 1680 | |
| 1681 | return -ENOEXEC; |
| 1682 | } |
| 1683 | |
| 1684 | /* binfmt handlers will call back into begin_new_exec() on success. */ |
| 1685 | static int exec_binprm(struct linux_binprm *bprm) |
| 1686 | { |
| 1687 | pid_t old_pid, old_vpid; |
| 1688 | int ret, depth; |
| 1689 | |
| 1690 | /* Need to fetch pid before load_binary changes it */ |
| 1691 | old_pid = current->pid; |
| 1692 | rcu_read_lock(); |
| 1693 | old_vpid = task_pid_nr_ns(current, ns: task_active_pid_ns(current->parent)); |
| 1694 | rcu_read_unlock(); |
| 1695 | |
| 1696 | /* This allows 4 levels of binfmt rewrites before failing hard. */ |
| 1697 | for (depth = 0;; depth++) { |
| 1698 | struct file *exec; |
| 1699 | if (depth > 5) |
| 1700 | return -ELOOP; |
| 1701 | |
| 1702 | ret = search_binary_handler(bprm); |
| 1703 | if (ret < 0) |
| 1704 | return ret; |
| 1705 | if (!bprm->interpreter) |
| 1706 | break; |
| 1707 | |
| 1708 | exec = bprm->file; |
| 1709 | bprm->file = bprm->interpreter; |
| 1710 | bprm->interpreter = NULL; |
| 1711 | |
| 1712 | exe_file_allow_write_access(exe_file: exec); |
| 1713 | if (unlikely(bprm->have_execfd)) { |
| 1714 | if (bprm->executable) { |
| 1715 | fput(exec); |
| 1716 | return -ENOEXEC; |
| 1717 | } |
| 1718 | bprm->executable = exec; |
| 1719 | } else |
| 1720 | fput(exec); |
| 1721 | } |
| 1722 | |
| 1723 | audit_bprm(bprm); |
| 1724 | trace_sched_process_exec(current, old_pid, bprm); |
| 1725 | ptrace_event(PTRACE_EVENT_EXEC, message: old_vpid); |
| 1726 | proc_exec_connector(current); |
| 1727 | return 0; |
| 1728 | } |
| 1729 | |
| 1730 | static int bprm_execve(struct linux_binprm *bprm) |
| 1731 | { |
| 1732 | int retval; |
| 1733 | |
| 1734 | retval = prepare_bprm_creds(bprm); |
| 1735 | if (retval) |
| 1736 | return retval; |
| 1737 | |
| 1738 | /* |
| 1739 | * Check for unsafe execution states before exec_binprm(), which |
| 1740 | * will call back into begin_new_exec(), into bprm_creds_from_file(), |
| 1741 | * where setuid-ness is evaluated. |
| 1742 | */ |
| 1743 | check_unsafe_exec(bprm); |
| 1744 | current->in_execve = 1; |
| 1745 | sched_mm_cid_before_execve(current); |
| 1746 | |
| 1747 | sched_exec(); |
| 1748 | |
| 1749 | /* Set the unchanging part of bprm->cred */ |
| 1750 | retval = security_bprm_creds_for_exec(bprm); |
| 1751 | if (retval || bprm->is_check) |
| 1752 | goto out; |
| 1753 | |
| 1754 | retval = exec_binprm(bprm); |
| 1755 | if (retval < 0) |
| 1756 | goto out; |
| 1757 | |
| 1758 | sched_mm_cid_after_execve(current); |
| 1759 | rseq_execve(current); |
| 1760 | /* execve succeeded */ |
| 1761 | current->in_execve = 0; |
| 1762 | user_events_execve(current); |
| 1763 | acct_update_integrals(current); |
| 1764 | task_numa_free(current, final: false); |
| 1765 | return retval; |
| 1766 | |
| 1767 | out: |
| 1768 | /* |
| 1769 | * If past the point of no return ensure the code never |
| 1770 | * returns to the userspace process. Use an existing fatal |
| 1771 | * signal if present otherwise terminate the process with |
| 1772 | * SIGSEGV. |
| 1773 | */ |
| 1774 | if (bprm->point_of_no_return && !fatal_signal_pending(current)) |
| 1775 | force_fatal_sig(SIGSEGV); |
| 1776 | |
| 1777 | sched_mm_cid_after_execve(current); |
| 1778 | rseq_set_notify_resume(current); |
| 1779 | current->in_execve = 0; |
| 1780 | |
| 1781 | return retval; |
| 1782 | } |
| 1783 | |
| 1784 | static int do_execveat_common(int fd, struct filename *filename, |
| 1785 | struct user_arg_ptr argv, |
| 1786 | struct user_arg_ptr envp, |
| 1787 | int flags) |
| 1788 | { |
| 1789 | struct linux_binprm *bprm; |
| 1790 | int retval; |
| 1791 | |
| 1792 | if (IS_ERR(ptr: filename)) |
| 1793 | return PTR_ERR(ptr: filename); |
| 1794 | |
| 1795 | /* |
| 1796 | * We move the actual failure in case of RLIMIT_NPROC excess from |
| 1797 | * set*uid() to execve() because too many poorly written programs |
| 1798 | * don't check setuid() return code. Here we additionally recheck |
| 1799 | * whether NPROC limit is still exceeded. |
| 1800 | */ |
| 1801 | if ((current->flags & PF_NPROC_EXCEEDED) && |
| 1802 | is_rlimit_overlimit(current_ucounts(), type: UCOUNT_RLIMIT_NPROC, max: rlimit(RLIMIT_NPROC))) { |
| 1803 | retval = -EAGAIN; |
| 1804 | goto out_ret; |
| 1805 | } |
| 1806 | |
| 1807 | /* We're below the limit (still or again), so we don't want to make |
| 1808 | * further execve() calls fail. */ |
| 1809 | current->flags &= ~PF_NPROC_EXCEEDED; |
| 1810 | |
| 1811 | bprm = alloc_bprm(fd, filename, flags); |
| 1812 | if (IS_ERR(ptr: bprm)) { |
| 1813 | retval = PTR_ERR(ptr: bprm); |
| 1814 | goto out_ret; |
| 1815 | } |
| 1816 | |
| 1817 | retval = count(argv, MAX_ARG_STRINGS); |
| 1818 | if (retval < 0) |
| 1819 | goto out_free; |
| 1820 | bprm->argc = retval; |
| 1821 | |
| 1822 | retval = count(argv: envp, MAX_ARG_STRINGS); |
| 1823 | if (retval < 0) |
| 1824 | goto out_free; |
| 1825 | bprm->envc = retval; |
| 1826 | |
| 1827 | retval = bprm_stack_limits(bprm); |
| 1828 | if (retval < 0) |
| 1829 | goto out_free; |
| 1830 | |
| 1831 | retval = copy_string_kernel(bprm->filename, bprm); |
| 1832 | if (retval < 0) |
| 1833 | goto out_free; |
| 1834 | bprm->exec = bprm->p; |
| 1835 | |
| 1836 | retval = copy_strings(argc: bprm->envc, argv: envp, bprm); |
| 1837 | if (retval < 0) |
| 1838 | goto out_free; |
| 1839 | |
| 1840 | retval = copy_strings(argc: bprm->argc, argv, bprm); |
| 1841 | if (retval < 0) |
| 1842 | goto out_free; |
| 1843 | |
| 1844 | /* |
| 1845 | * When argv is empty, add an empty string ("") as argv[0] to |
| 1846 | * ensure confused userspace programs that start processing |
| 1847 | * from argv[1] won't end up walking envp. See also |
| 1848 | * bprm_stack_limits(). |
| 1849 | */ |
| 1850 | if (bprm->argc == 0) { |
| 1851 | retval = copy_string_kernel("" , bprm); |
| 1852 | if (retval < 0) |
| 1853 | goto out_free; |
| 1854 | bprm->argc = 1; |
| 1855 | |
| 1856 | pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n" , |
| 1857 | current->comm, bprm->filename); |
| 1858 | } |
| 1859 | |
| 1860 | retval = bprm_execve(bprm); |
| 1861 | out_free: |
| 1862 | free_bprm(bprm); |
| 1863 | |
| 1864 | out_ret: |
| 1865 | putname(name: filename); |
| 1866 | return retval; |
| 1867 | } |
| 1868 | |
| 1869 | int kernel_execve(const char *kernel_filename, |
| 1870 | const char *const *argv, const char *const *envp) |
| 1871 | { |
| 1872 | struct filename *filename; |
| 1873 | struct linux_binprm *bprm; |
| 1874 | int fd = AT_FDCWD; |
| 1875 | int retval; |
| 1876 | |
| 1877 | /* It is non-sense for kernel threads to call execve */ |
| 1878 | if (WARN_ON_ONCE(current->flags & PF_KTHREAD)) |
| 1879 | return -EINVAL; |
| 1880 | |
| 1881 | filename = getname_kernel(kernel_filename); |
| 1882 | if (IS_ERR(ptr: filename)) |
| 1883 | return PTR_ERR(ptr: filename); |
| 1884 | |
| 1885 | bprm = alloc_bprm(fd, filename, flags: 0); |
| 1886 | if (IS_ERR(ptr: bprm)) { |
| 1887 | retval = PTR_ERR(ptr: bprm); |
| 1888 | goto out_ret; |
| 1889 | } |
| 1890 | |
| 1891 | retval = count_strings_kernel(argv); |
| 1892 | if (WARN_ON_ONCE(retval == 0)) |
| 1893 | retval = -EINVAL; |
| 1894 | if (retval < 0) |
| 1895 | goto out_free; |
| 1896 | bprm->argc = retval; |
| 1897 | |
| 1898 | retval = count_strings_kernel(argv: envp); |
| 1899 | if (retval < 0) |
| 1900 | goto out_free; |
| 1901 | bprm->envc = retval; |
| 1902 | |
| 1903 | retval = bprm_stack_limits(bprm); |
| 1904 | if (retval < 0) |
| 1905 | goto out_free; |
| 1906 | |
| 1907 | retval = copy_string_kernel(bprm->filename, bprm); |
| 1908 | if (retval < 0) |
| 1909 | goto out_free; |
| 1910 | bprm->exec = bprm->p; |
| 1911 | |
| 1912 | retval = copy_strings_kernel(argc: bprm->envc, argv: envp, bprm); |
| 1913 | if (retval < 0) |
| 1914 | goto out_free; |
| 1915 | |
| 1916 | retval = copy_strings_kernel(argc: bprm->argc, argv, bprm); |
| 1917 | if (retval < 0) |
| 1918 | goto out_free; |
| 1919 | |
| 1920 | retval = bprm_execve(bprm); |
| 1921 | out_free: |
| 1922 | free_bprm(bprm); |
| 1923 | out_ret: |
| 1924 | putname(name: filename); |
| 1925 | return retval; |
| 1926 | } |
| 1927 | |
| 1928 | static int do_execve(struct filename *filename, |
| 1929 | const char __user *const __user *__argv, |
| 1930 | const char __user *const __user *__envp) |
| 1931 | { |
| 1932 | struct user_arg_ptr argv = { .ptr.native = __argv }; |
| 1933 | struct user_arg_ptr envp = { .ptr.native = __envp }; |
| 1934 | return do_execveat_common(AT_FDCWD, filename, argv, envp, flags: 0); |
| 1935 | } |
| 1936 | |
| 1937 | static int do_execveat(int fd, struct filename *filename, |
| 1938 | const char __user *const __user *__argv, |
| 1939 | const char __user *const __user *__envp, |
| 1940 | int flags) |
| 1941 | { |
| 1942 | struct user_arg_ptr argv = { .ptr.native = __argv }; |
| 1943 | struct user_arg_ptr envp = { .ptr.native = __envp }; |
| 1944 | |
| 1945 | return do_execveat_common(fd, filename, argv, envp, flags); |
| 1946 | } |
| 1947 | |
| 1948 | #ifdef CONFIG_COMPAT |
| 1949 | static int compat_do_execve(struct filename *filename, |
| 1950 | const compat_uptr_t __user *__argv, |
| 1951 | const compat_uptr_t __user *__envp) |
| 1952 | { |
| 1953 | struct user_arg_ptr argv = { |
| 1954 | .is_compat = true, |
| 1955 | .ptr.compat = __argv, |
| 1956 | }; |
| 1957 | struct user_arg_ptr envp = { |
| 1958 | .is_compat = true, |
| 1959 | .ptr.compat = __envp, |
| 1960 | }; |
| 1961 | return do_execveat_common(AT_FDCWD, filename, argv, envp, flags: 0); |
| 1962 | } |
| 1963 | |
| 1964 | static int compat_do_execveat(int fd, struct filename *filename, |
| 1965 | const compat_uptr_t __user *__argv, |
| 1966 | const compat_uptr_t __user *__envp, |
| 1967 | int flags) |
| 1968 | { |
| 1969 | struct user_arg_ptr argv = { |
| 1970 | .is_compat = true, |
| 1971 | .ptr.compat = __argv, |
| 1972 | }; |
| 1973 | struct user_arg_ptr envp = { |
| 1974 | .is_compat = true, |
| 1975 | .ptr.compat = __envp, |
| 1976 | }; |
| 1977 | return do_execveat_common(fd, filename, argv, envp, flags); |
| 1978 | } |
| 1979 | #endif |
| 1980 | |
| 1981 | void set_binfmt(struct linux_binfmt *new) |
| 1982 | { |
| 1983 | struct mm_struct *mm = current->mm; |
| 1984 | |
| 1985 | if (mm->binfmt) |
| 1986 | module_put(module: mm->binfmt->module); |
| 1987 | |
| 1988 | mm->binfmt = new; |
| 1989 | if (new) |
| 1990 | __module_get(module: new->module); |
| 1991 | } |
| 1992 | EXPORT_SYMBOL(set_binfmt); |
| 1993 | |
| 1994 | /* |
| 1995 | * set_dumpable stores three-value SUID_DUMP_* into mm->flags. |
| 1996 | */ |
| 1997 | void set_dumpable(struct mm_struct *mm, int value) |
| 1998 | { |
| 1999 | if (WARN_ON((unsigned)value > SUID_DUMP_ROOT)) |
| 2000 | return; |
| 2001 | |
| 2002 | __mm_flags_set_mask_dumpable(mm, value); |
| 2003 | } |
| 2004 | |
| 2005 | SYSCALL_DEFINE3(execve, |
| 2006 | const char __user *, filename, |
| 2007 | const char __user *const __user *, argv, |
| 2008 | const char __user *const __user *, envp) |
| 2009 | { |
| 2010 | return do_execve(filename: getname(name: filename), argv: argv, envp: envp); |
| 2011 | } |
| 2012 | |
| 2013 | SYSCALL_DEFINE5(execveat, |
| 2014 | int, fd, const char __user *, filename, |
| 2015 | const char __user *const __user *, argv, |
| 2016 | const char __user *const __user *, envp, |
| 2017 | int, flags) |
| 2018 | { |
| 2019 | return do_execveat(fd, |
| 2020 | filename: getname_uflags(filename, flags), |
| 2021 | argv: argv, envp: envp, flags); |
| 2022 | } |
| 2023 | |
| 2024 | #ifdef CONFIG_COMPAT |
| 2025 | COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename, |
| 2026 | const compat_uptr_t __user *, argv, |
| 2027 | const compat_uptr_t __user *, envp) |
| 2028 | { |
| 2029 | return compat_do_execve(filename: getname(name: filename), argv: argv, envp: envp); |
| 2030 | } |
| 2031 | |
| 2032 | COMPAT_SYSCALL_DEFINE5(execveat, int, fd, |
| 2033 | const char __user *, filename, |
| 2034 | const compat_uptr_t __user *, argv, |
| 2035 | const compat_uptr_t __user *, envp, |
| 2036 | int, flags) |
| 2037 | { |
| 2038 | return compat_do_execveat(fd, |
| 2039 | filename: getname_uflags(filename, flags), |
| 2040 | argv: argv, envp: envp, flags); |
| 2041 | } |
| 2042 | #endif |
| 2043 | |
| 2044 | #ifdef CONFIG_SYSCTL |
| 2045 | |
| 2046 | static int proc_dointvec_minmax_coredump(const struct ctl_table *table, int write, |
| 2047 | void *buffer, size_t *lenp, loff_t *ppos) |
| 2048 | { |
| 2049 | int error = proc_dointvec_minmax(table, write, buffer, lenp, ppos); |
| 2050 | |
| 2051 | if (!error && !write) |
| 2052 | validate_coredump_safety(); |
| 2053 | return error; |
| 2054 | } |
| 2055 | |
| 2056 | static const struct ctl_table fs_exec_sysctls[] = { |
| 2057 | { |
| 2058 | .procname = "suid_dumpable" , |
| 2059 | .data = &suid_dumpable, |
| 2060 | .maxlen = sizeof(int), |
| 2061 | .mode = 0644, |
| 2062 | .proc_handler = proc_dointvec_minmax_coredump, |
| 2063 | .extra1 = SYSCTL_ZERO, |
| 2064 | .extra2 = SYSCTL_TWO, |
| 2065 | }, |
| 2066 | }; |
| 2067 | |
| 2068 | static int __init init_fs_exec_sysctls(void) |
| 2069 | { |
| 2070 | register_sysctl_init("fs" , fs_exec_sysctls); |
| 2071 | return 0; |
| 2072 | } |
| 2073 | |
| 2074 | fs_initcall(init_fs_exec_sysctls); |
| 2075 | #endif /* CONFIG_SYSCTL */ |
| 2076 | |
| 2077 | #ifdef CONFIG_EXEC_KUNIT_TEST |
| 2078 | #include "tests/exec_kunit.c" |
| 2079 | #endif |
| 2080 | |