| 1 | // SPDX-License-Identifier: GPL-2.0-only |
| 2 | /* |
| 3 | * linux/fs/namespace.c |
| 4 | * |
| 5 | * (C) Copyright Al Viro 2000, 2001 |
| 6 | * |
| 7 | * Based on code from fs/super.c, copyright Linus Torvalds and others. |
| 8 | * Heavily rewritten. |
| 9 | */ |
| 10 | |
| 11 | #include <linux/syscalls.h> |
| 12 | #include <linux/export.h> |
| 13 | #include <linux/capability.h> |
| 14 | #include <linux/mnt_namespace.h> |
| 15 | #include <linux/user_namespace.h> |
| 16 | #include <linux/namei.h> |
| 17 | #include <linux/security.h> |
| 18 | #include <linux/cred.h> |
| 19 | #include <linux/idr.h> |
| 20 | #include <linux/init.h> /* init_rootfs */ |
| 21 | #include <linux/fs_struct.h> /* get_fs_root et.al. */ |
| 22 | #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */ |
| 23 | #include <linux/file.h> |
| 24 | #include <linux/uaccess.h> |
| 25 | #include <linux/proc_ns.h> |
| 26 | #include <linux/magic.h> |
| 27 | #include <linux/memblock.h> |
| 28 | #include <linux/proc_fs.h> |
| 29 | #include <linux/task_work.h> |
| 30 | #include <linux/sched/task.h> |
| 31 | #include <uapi/linux/mount.h> |
| 32 | #include <linux/fs_context.h> |
| 33 | #include <linux/shmem_fs.h> |
| 34 | #include <linux/mnt_idmapping.h> |
| 35 | #include <linux/pidfs.h> |
| 36 | #include <linux/nstree.h> |
| 37 | |
| 38 | #include "pnode.h" |
| 39 | #include "internal.h" |
| 40 | |
| 41 | /* Maximum number of mounts in a mount namespace */ |
| 42 | static unsigned int sysctl_mount_max __read_mostly = 100000; |
| 43 | |
| 44 | static unsigned int m_hash_mask __ro_after_init; |
| 45 | static unsigned int m_hash_shift __ro_after_init; |
| 46 | static unsigned int mp_hash_mask __ro_after_init; |
| 47 | static unsigned int mp_hash_shift __ro_after_init; |
| 48 | |
| 49 | static __initdata unsigned long mhash_entries; |
| 50 | static int __init set_mhash_entries(char *str) |
| 51 | { |
| 52 | if (!str) |
| 53 | return 0; |
| 54 | mhash_entries = simple_strtoul(str, &str, 0); |
| 55 | return 1; |
| 56 | } |
| 57 | __setup("mhash_entries=" , set_mhash_entries); |
| 58 | |
| 59 | static __initdata unsigned long mphash_entries; |
| 60 | static int __init set_mphash_entries(char *str) |
| 61 | { |
| 62 | if (!str) |
| 63 | return 0; |
| 64 | mphash_entries = simple_strtoul(str, &str, 0); |
| 65 | return 1; |
| 66 | } |
| 67 | __setup("mphash_entries=" , set_mphash_entries); |
| 68 | |
| 69 | static char * __initdata initramfs_options; |
| 70 | static int __init initramfs_options_setup(char *str) |
| 71 | { |
| 72 | initramfs_options = str; |
| 73 | return 1; |
| 74 | } |
| 75 | |
| 76 | __setup("initramfs_options=" , initramfs_options_setup); |
| 77 | |
| 78 | static u64 event; |
| 79 | static DEFINE_XARRAY_FLAGS(mnt_id_xa, XA_FLAGS_ALLOC); |
| 80 | static DEFINE_IDA(mnt_group_ida); |
| 81 | |
| 82 | /* Don't allow confusion with old 32bit mount ID */ |
| 83 | #define MNT_UNIQUE_ID_OFFSET (1ULL << 31) |
| 84 | static u64 mnt_id_ctr = MNT_UNIQUE_ID_OFFSET; |
| 85 | |
| 86 | static struct hlist_head *mount_hashtable __ro_after_init; |
| 87 | static struct hlist_head *mountpoint_hashtable __ro_after_init; |
| 88 | static struct kmem_cache *mnt_cache __ro_after_init; |
| 89 | static DECLARE_RWSEM(namespace_sem); |
| 90 | static HLIST_HEAD(unmounted); /* protected by namespace_sem */ |
| 91 | static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */ |
| 92 | static struct mnt_namespace *emptied_ns; /* protected by namespace_sem */ |
| 93 | |
| 94 | static inline void namespace_lock(void); |
| 95 | static void namespace_unlock(void); |
| 96 | DEFINE_LOCK_GUARD_0(namespace_excl, namespace_lock(), namespace_unlock()) |
| 97 | DEFINE_LOCK_GUARD_0(namespace_shared, down_read(&namespace_sem), |
| 98 | up_read(&namespace_sem)) |
| 99 | |
| 100 | DEFINE_FREE(mntput, struct vfsmount *, if (!IS_ERR(_T)) mntput(_T)) |
| 101 | |
| 102 | #ifdef CONFIG_FSNOTIFY |
| 103 | LIST_HEAD(notify_list); /* protected by namespace_sem */ |
| 104 | #endif |
| 105 | |
| 106 | enum mount_kattr_flags_t { |
| 107 | MOUNT_KATTR_RECURSE = (1 << 0), |
| 108 | MOUNT_KATTR_IDMAP_REPLACE = (1 << 1), |
| 109 | }; |
| 110 | |
| 111 | struct mount_kattr { |
| 112 | unsigned int attr_set; |
| 113 | unsigned int attr_clr; |
| 114 | unsigned int propagation; |
| 115 | unsigned int lookup_flags; |
| 116 | enum mount_kattr_flags_t kflags; |
| 117 | struct user_namespace *mnt_userns; |
| 118 | struct mnt_idmap *mnt_idmap; |
| 119 | }; |
| 120 | |
| 121 | /* /sys/fs */ |
| 122 | struct kobject *fs_kobj __ro_after_init; |
| 123 | EXPORT_SYMBOL_GPL(fs_kobj); |
| 124 | |
| 125 | /* |
| 126 | * vfsmount lock may be taken for read to prevent changes to the |
| 127 | * vfsmount hash, ie. during mountpoint lookups or walking back |
| 128 | * up the tree. |
| 129 | * |
| 130 | * It should be taken for write in all cases where the vfsmount |
| 131 | * tree or hash is modified or when a vfsmount structure is modified. |
| 132 | */ |
| 133 | __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock); |
| 134 | |
| 135 | static inline struct mnt_namespace *node_to_mnt_ns(const struct rb_node *node) |
| 136 | { |
| 137 | struct ns_common *ns; |
| 138 | |
| 139 | if (!node) |
| 140 | return NULL; |
| 141 | ns = rb_entry(node, struct ns_common, ns_tree_node); |
| 142 | return container_of(ns, struct mnt_namespace, ns); |
| 143 | } |
| 144 | |
| 145 | static void mnt_ns_release(struct mnt_namespace *ns) |
| 146 | { |
| 147 | /* keep alive for {list,stat}mount() */ |
| 148 | if (ns && refcount_dec_and_test(r: &ns->passive)) { |
| 149 | fsnotify_mntns_delete(mntns: ns); |
| 150 | put_user_ns(ns: ns->user_ns); |
| 151 | kfree(objp: ns); |
| 152 | } |
| 153 | } |
| 154 | DEFINE_FREE(mnt_ns_release, struct mnt_namespace *, if (_T) mnt_ns_release(_T)) |
| 155 | |
| 156 | static void mnt_ns_release_rcu(struct rcu_head *rcu) |
| 157 | { |
| 158 | mnt_ns_release(container_of(rcu, struct mnt_namespace, ns.ns_rcu)); |
| 159 | } |
| 160 | |
| 161 | static void mnt_ns_tree_remove(struct mnt_namespace *ns) |
| 162 | { |
| 163 | /* remove from global mount namespace list */ |
| 164 | if (ns_tree_active(ns)) |
| 165 | ns_tree_remove(ns); |
| 166 | |
| 167 | call_rcu(head: &ns->ns.ns_rcu, func: mnt_ns_release_rcu); |
| 168 | } |
| 169 | |
| 170 | /* |
| 171 | * Lookup a mount namespace by id and take a passive reference count. Taking a |
| 172 | * passive reference means the mount namespace can be emptied if e.g., the last |
| 173 | * task holding an active reference exits. To access the mounts of the |
| 174 | * namespace the @namespace_sem must first be acquired. If the namespace has |
| 175 | * already shut down before acquiring @namespace_sem, {list,stat}mount() will |
| 176 | * see that the mount rbtree of the namespace is empty. |
| 177 | * |
| 178 | * Note the lookup is lockless protected by a sequence counter. We only |
| 179 | * need to guard against false negatives as false positives aren't |
| 180 | * possible. So if we didn't find a mount namespace and the sequence |
| 181 | * counter has changed we need to retry. If the sequence counter is |
| 182 | * still the same we know the search actually failed. |
| 183 | */ |
| 184 | static struct mnt_namespace *lookup_mnt_ns(u64 mnt_ns_id) |
| 185 | { |
| 186 | struct mnt_namespace *mnt_ns; |
| 187 | struct ns_common *ns; |
| 188 | |
| 189 | guard(rcu)(); |
| 190 | ns = ns_tree_lookup_rcu(ns_id: mnt_ns_id, CLONE_NEWNS); |
| 191 | if (!ns) |
| 192 | return NULL; |
| 193 | |
| 194 | /* |
| 195 | * The last reference count is put with RCU delay so we can |
| 196 | * unconditonally acquire a reference here. |
| 197 | */ |
| 198 | mnt_ns = container_of(ns, struct mnt_namespace, ns); |
| 199 | refcount_inc(r: &mnt_ns->passive); |
| 200 | return mnt_ns; |
| 201 | } |
| 202 | |
| 203 | static inline void lock_mount_hash(void) |
| 204 | { |
| 205 | write_seqlock(sl: &mount_lock); |
| 206 | } |
| 207 | |
| 208 | static inline void unlock_mount_hash(void) |
| 209 | { |
| 210 | write_sequnlock(sl: &mount_lock); |
| 211 | } |
| 212 | |
| 213 | static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry) |
| 214 | { |
| 215 | unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES); |
| 216 | tmp += ((unsigned long)dentry / L1_CACHE_BYTES); |
| 217 | tmp = tmp + (tmp >> m_hash_shift); |
| 218 | return &mount_hashtable[tmp & m_hash_mask]; |
| 219 | } |
| 220 | |
| 221 | static inline struct hlist_head *mp_hash(struct dentry *dentry) |
| 222 | { |
| 223 | unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES); |
| 224 | tmp = tmp + (tmp >> mp_hash_shift); |
| 225 | return &mountpoint_hashtable[tmp & mp_hash_mask]; |
| 226 | } |
| 227 | |
| 228 | static int mnt_alloc_id(struct mount *mnt) |
| 229 | { |
| 230 | int res; |
| 231 | |
| 232 | xa_lock(&mnt_id_xa); |
| 233 | res = __xa_alloc(&mnt_id_xa, id: &mnt->mnt_id, entry: mnt, XA_LIMIT(1, INT_MAX), GFP_KERNEL); |
| 234 | if (!res) |
| 235 | mnt->mnt_id_unique = ++mnt_id_ctr; |
| 236 | xa_unlock(&mnt_id_xa); |
| 237 | return res; |
| 238 | } |
| 239 | |
| 240 | static void mnt_free_id(struct mount *mnt) |
| 241 | { |
| 242 | xa_erase(&mnt_id_xa, index: mnt->mnt_id); |
| 243 | } |
| 244 | |
| 245 | /* |
| 246 | * Allocate a new peer group ID |
| 247 | */ |
| 248 | static int mnt_alloc_group_id(struct mount *mnt) |
| 249 | { |
| 250 | int res = ida_alloc_min(ida: &mnt_group_ida, min: 1, GFP_KERNEL); |
| 251 | |
| 252 | if (res < 0) |
| 253 | return res; |
| 254 | mnt->mnt_group_id = res; |
| 255 | return 0; |
| 256 | } |
| 257 | |
| 258 | /* |
| 259 | * Release a peer group ID |
| 260 | */ |
| 261 | void mnt_release_group_id(struct mount *mnt) |
| 262 | { |
| 263 | ida_free(&mnt_group_ida, id: mnt->mnt_group_id); |
| 264 | mnt->mnt_group_id = 0; |
| 265 | } |
| 266 | |
| 267 | /* |
| 268 | * vfsmount lock must be held for read |
| 269 | */ |
| 270 | static inline void mnt_add_count(struct mount *mnt, int n) |
| 271 | { |
| 272 | #ifdef CONFIG_SMP |
| 273 | this_cpu_add(mnt->mnt_pcp->mnt_count, n); |
| 274 | #else |
| 275 | preempt_disable(); |
| 276 | mnt->mnt_count += n; |
| 277 | preempt_enable(); |
| 278 | #endif |
| 279 | } |
| 280 | |
| 281 | /* |
| 282 | * vfsmount lock must be held for write |
| 283 | */ |
| 284 | int mnt_get_count(struct mount *mnt) |
| 285 | { |
| 286 | #ifdef CONFIG_SMP |
| 287 | int count = 0; |
| 288 | int cpu; |
| 289 | |
| 290 | for_each_possible_cpu(cpu) { |
| 291 | count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count; |
| 292 | } |
| 293 | |
| 294 | return count; |
| 295 | #else |
| 296 | return mnt->mnt_count; |
| 297 | #endif |
| 298 | } |
| 299 | |
| 300 | static struct mount *alloc_vfsmnt(const char *name) |
| 301 | { |
| 302 | struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL); |
| 303 | if (mnt) { |
| 304 | int err; |
| 305 | |
| 306 | err = mnt_alloc_id(mnt); |
| 307 | if (err) |
| 308 | goto out_free_cache; |
| 309 | |
| 310 | if (name) |
| 311 | mnt->mnt_devname = kstrdup_const(s: name, |
| 312 | GFP_KERNEL_ACCOUNT); |
| 313 | else |
| 314 | mnt->mnt_devname = "none" ; |
| 315 | if (!mnt->mnt_devname) |
| 316 | goto out_free_id; |
| 317 | |
| 318 | #ifdef CONFIG_SMP |
| 319 | mnt->mnt_pcp = alloc_percpu(struct mnt_pcp); |
| 320 | if (!mnt->mnt_pcp) |
| 321 | goto out_free_devname; |
| 322 | |
| 323 | this_cpu_add(mnt->mnt_pcp->mnt_count, 1); |
| 324 | #else |
| 325 | mnt->mnt_count = 1; |
| 326 | mnt->mnt_writers = 0; |
| 327 | #endif |
| 328 | |
| 329 | INIT_HLIST_NODE(h: &mnt->mnt_hash); |
| 330 | INIT_LIST_HEAD(list: &mnt->mnt_child); |
| 331 | INIT_LIST_HEAD(list: &mnt->mnt_mounts); |
| 332 | INIT_LIST_HEAD(list: &mnt->mnt_list); |
| 333 | INIT_LIST_HEAD(list: &mnt->mnt_expire); |
| 334 | INIT_LIST_HEAD(list: &mnt->mnt_share); |
| 335 | INIT_HLIST_HEAD(&mnt->mnt_slave_list); |
| 336 | INIT_HLIST_NODE(h: &mnt->mnt_slave); |
| 337 | INIT_HLIST_NODE(h: &mnt->mnt_mp_list); |
| 338 | INIT_HLIST_HEAD(&mnt->mnt_stuck_children); |
| 339 | RB_CLEAR_NODE(&mnt->mnt_node); |
| 340 | mnt->mnt.mnt_idmap = &nop_mnt_idmap; |
| 341 | } |
| 342 | return mnt; |
| 343 | |
| 344 | #ifdef CONFIG_SMP |
| 345 | out_free_devname: |
| 346 | kfree_const(x: mnt->mnt_devname); |
| 347 | #endif |
| 348 | out_free_id: |
| 349 | mnt_free_id(mnt); |
| 350 | out_free_cache: |
| 351 | kmem_cache_free(s: mnt_cache, objp: mnt); |
| 352 | return NULL; |
| 353 | } |
| 354 | |
| 355 | /* |
| 356 | * Most r/o checks on a fs are for operations that take |
| 357 | * discrete amounts of time, like a write() or unlink(). |
| 358 | * We must keep track of when those operations start |
| 359 | * (for permission checks) and when they end, so that |
| 360 | * we can determine when writes are able to occur to |
| 361 | * a filesystem. |
| 362 | */ |
| 363 | /* |
| 364 | * __mnt_is_readonly: check whether a mount is read-only |
| 365 | * @mnt: the mount to check for its write status |
| 366 | * |
| 367 | * This shouldn't be used directly ouside of the VFS. |
| 368 | * It does not guarantee that the filesystem will stay |
| 369 | * r/w, just that it is right *now*. This can not and |
| 370 | * should not be used in place of IS_RDONLY(inode). |
| 371 | * mnt_want/drop_write() will _keep_ the filesystem |
| 372 | * r/w. |
| 373 | */ |
| 374 | bool __mnt_is_readonly(const struct vfsmount *mnt) |
| 375 | { |
| 376 | return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(sb: mnt->mnt_sb); |
| 377 | } |
| 378 | EXPORT_SYMBOL_GPL(__mnt_is_readonly); |
| 379 | |
| 380 | static inline void mnt_inc_writers(struct mount *mnt) |
| 381 | { |
| 382 | #ifdef CONFIG_SMP |
| 383 | this_cpu_inc(mnt->mnt_pcp->mnt_writers); |
| 384 | #else |
| 385 | mnt->mnt_writers++; |
| 386 | #endif |
| 387 | } |
| 388 | |
| 389 | static inline void mnt_dec_writers(struct mount *mnt) |
| 390 | { |
| 391 | #ifdef CONFIG_SMP |
| 392 | this_cpu_dec(mnt->mnt_pcp->mnt_writers); |
| 393 | #else |
| 394 | mnt->mnt_writers--; |
| 395 | #endif |
| 396 | } |
| 397 | |
| 398 | static unsigned int mnt_get_writers(struct mount *mnt) |
| 399 | { |
| 400 | #ifdef CONFIG_SMP |
| 401 | unsigned int count = 0; |
| 402 | int cpu; |
| 403 | |
| 404 | for_each_possible_cpu(cpu) { |
| 405 | count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers; |
| 406 | } |
| 407 | |
| 408 | return count; |
| 409 | #else |
| 410 | return mnt->mnt_writers; |
| 411 | #endif |
| 412 | } |
| 413 | |
| 414 | static int mnt_is_readonly(const struct vfsmount *mnt) |
| 415 | { |
| 416 | if (READ_ONCE(mnt->mnt_sb->s_readonly_remount)) |
| 417 | return 1; |
| 418 | /* |
| 419 | * The barrier pairs with the barrier in sb_start_ro_state_change() |
| 420 | * making sure if we don't see s_readonly_remount set yet, we also will |
| 421 | * not see any superblock / mount flag changes done by remount. |
| 422 | * It also pairs with the barrier in sb_end_ro_state_change() |
| 423 | * assuring that if we see s_readonly_remount already cleared, we will |
| 424 | * see the values of superblock / mount flags updated by remount. |
| 425 | */ |
| 426 | smp_rmb(); |
| 427 | return __mnt_is_readonly(mnt); |
| 428 | } |
| 429 | |
| 430 | /* |
| 431 | * Most r/o & frozen checks on a fs are for operations that take discrete |
| 432 | * amounts of time, like a write() or unlink(). We must keep track of when |
| 433 | * those operations start (for permission checks) and when they end, so that we |
| 434 | * can determine when writes are able to occur to a filesystem. |
| 435 | */ |
| 436 | /** |
| 437 | * mnt_get_write_access - get write access to a mount without freeze protection |
| 438 | * @m: the mount on which to take a write |
| 439 | * |
| 440 | * This tells the low-level filesystem that a write is about to be performed to |
| 441 | * it, and makes sure that writes are allowed (mnt it read-write) before |
| 442 | * returning success. This operation does not protect against filesystem being |
| 443 | * frozen. When the write operation is finished, mnt_put_write_access() must be |
| 444 | * called. This is effectively a refcount. |
| 445 | */ |
| 446 | int mnt_get_write_access(struct vfsmount *m) |
| 447 | { |
| 448 | struct mount *mnt = real_mount(mnt: m); |
| 449 | int ret = 0; |
| 450 | |
| 451 | preempt_disable(); |
| 452 | mnt_inc_writers(mnt); |
| 453 | /* |
| 454 | * The store to mnt_inc_writers must be visible before we pass |
| 455 | * WRITE_HOLD loop below, so that the slowpath can see our |
| 456 | * incremented count after it has set WRITE_HOLD. |
| 457 | */ |
| 458 | smp_mb(); |
| 459 | might_lock(&mount_lock.lock); |
| 460 | while (__test_write_hold(READ_ONCE(mnt->mnt_pprev_for_sb))) { |
| 461 | if (!IS_ENABLED(CONFIG_PREEMPT_RT)) { |
| 462 | cpu_relax(); |
| 463 | } else { |
| 464 | /* |
| 465 | * This prevents priority inversion, if the task |
| 466 | * setting WRITE_HOLD got preempted on a remote |
| 467 | * CPU, and it prevents life lock if the task setting |
| 468 | * WRITE_HOLD has a lower priority and is bound to |
| 469 | * the same CPU as the task that is spinning here. |
| 470 | */ |
| 471 | preempt_enable(); |
| 472 | read_seqlock_excl(sl: &mount_lock); |
| 473 | read_sequnlock_excl(sl: &mount_lock); |
| 474 | preempt_disable(); |
| 475 | } |
| 476 | } |
| 477 | /* |
| 478 | * The barrier pairs with the barrier sb_start_ro_state_change() making |
| 479 | * sure that if we see WRITE_HOLD cleared, we will also see |
| 480 | * s_readonly_remount set (or even SB_RDONLY / MNT_READONLY flags) in |
| 481 | * mnt_is_readonly() and bail in case we are racing with remount |
| 482 | * read-only. |
| 483 | */ |
| 484 | smp_rmb(); |
| 485 | if (mnt_is_readonly(mnt: m)) { |
| 486 | mnt_dec_writers(mnt); |
| 487 | ret = -EROFS; |
| 488 | } |
| 489 | preempt_enable(); |
| 490 | |
| 491 | return ret; |
| 492 | } |
| 493 | EXPORT_SYMBOL_GPL(mnt_get_write_access); |
| 494 | |
| 495 | /** |
| 496 | * mnt_want_write - get write access to a mount |
| 497 | * @m: the mount on which to take a write |
| 498 | * |
| 499 | * This tells the low-level filesystem that a write is about to be performed to |
| 500 | * it, and makes sure that writes are allowed (mount is read-write, filesystem |
| 501 | * is not frozen) before returning success. When the write operation is |
| 502 | * finished, mnt_drop_write() must be called. This is effectively a refcount. |
| 503 | */ |
| 504 | int mnt_want_write(struct vfsmount *m) |
| 505 | { |
| 506 | int ret; |
| 507 | |
| 508 | sb_start_write(sb: m->mnt_sb); |
| 509 | ret = mnt_get_write_access(m); |
| 510 | if (ret) |
| 511 | sb_end_write(sb: m->mnt_sb); |
| 512 | return ret; |
| 513 | } |
| 514 | EXPORT_SYMBOL_GPL(mnt_want_write); |
| 515 | |
| 516 | /** |
| 517 | * mnt_get_write_access_file - get write access to a file's mount |
| 518 | * @file: the file who's mount on which to take a write |
| 519 | * |
| 520 | * This is like mnt_get_write_access, but if @file is already open for write it |
| 521 | * skips incrementing mnt_writers (since the open file already has a reference) |
| 522 | * and instead only does the check for emergency r/o remounts. This must be |
| 523 | * paired with mnt_put_write_access_file. |
| 524 | */ |
| 525 | int mnt_get_write_access_file(struct file *file) |
| 526 | { |
| 527 | if (file->f_mode & FMODE_WRITER) { |
| 528 | /* |
| 529 | * Superblock may have become readonly while there are still |
| 530 | * writable fd's, e.g. due to a fs error with errors=remount-ro |
| 531 | */ |
| 532 | if (__mnt_is_readonly(file->f_path.mnt)) |
| 533 | return -EROFS; |
| 534 | return 0; |
| 535 | } |
| 536 | return mnt_get_write_access(file->f_path.mnt); |
| 537 | } |
| 538 | |
| 539 | /** |
| 540 | * mnt_want_write_file - get write access to a file's mount |
| 541 | * @file: the file who's mount on which to take a write |
| 542 | * |
| 543 | * This is like mnt_want_write, but if the file is already open for writing it |
| 544 | * skips incrementing mnt_writers (since the open file already has a reference) |
| 545 | * and instead only does the freeze protection and the check for emergency r/o |
| 546 | * remounts. This must be paired with mnt_drop_write_file. |
| 547 | */ |
| 548 | int mnt_want_write_file(struct file *file) |
| 549 | { |
| 550 | int ret; |
| 551 | |
| 552 | sb_start_write(sb: file_inode(f: file)->i_sb); |
| 553 | ret = mnt_get_write_access_file(file); |
| 554 | if (ret) |
| 555 | sb_end_write(sb: file_inode(f: file)->i_sb); |
| 556 | return ret; |
| 557 | } |
| 558 | EXPORT_SYMBOL_GPL(mnt_want_write_file); |
| 559 | |
| 560 | /** |
| 561 | * mnt_put_write_access - give up write access to a mount |
| 562 | * @mnt: the mount on which to give up write access |
| 563 | * |
| 564 | * Tells the low-level filesystem that we are done |
| 565 | * performing writes to it. Must be matched with |
| 566 | * mnt_get_write_access() call above. |
| 567 | */ |
| 568 | void mnt_put_write_access(struct vfsmount *mnt) |
| 569 | { |
| 570 | preempt_disable(); |
| 571 | mnt_dec_writers(mnt: real_mount(mnt)); |
| 572 | preempt_enable(); |
| 573 | } |
| 574 | EXPORT_SYMBOL_GPL(mnt_put_write_access); |
| 575 | |
| 576 | /** |
| 577 | * mnt_drop_write - give up write access to a mount |
| 578 | * @mnt: the mount on which to give up write access |
| 579 | * |
| 580 | * Tells the low-level filesystem that we are done performing writes to it and |
| 581 | * also allows filesystem to be frozen again. Must be matched with |
| 582 | * mnt_want_write() call above. |
| 583 | */ |
| 584 | void mnt_drop_write(struct vfsmount *mnt) |
| 585 | { |
| 586 | mnt_put_write_access(mnt); |
| 587 | sb_end_write(sb: mnt->mnt_sb); |
| 588 | } |
| 589 | EXPORT_SYMBOL_GPL(mnt_drop_write); |
| 590 | |
| 591 | void mnt_put_write_access_file(struct file *file) |
| 592 | { |
| 593 | if (!(file->f_mode & FMODE_WRITER)) |
| 594 | mnt_put_write_access(file->f_path.mnt); |
| 595 | } |
| 596 | |
| 597 | void mnt_drop_write_file(struct file *file) |
| 598 | { |
| 599 | mnt_put_write_access_file(file); |
| 600 | sb_end_write(sb: file_inode(f: file)->i_sb); |
| 601 | } |
| 602 | EXPORT_SYMBOL(mnt_drop_write_file); |
| 603 | |
| 604 | /** |
| 605 | * mnt_hold_writers - prevent write access to the given mount |
| 606 | * @mnt: mnt to prevent write access to |
| 607 | * |
| 608 | * Prevents write access to @mnt if there are no active writers for @mnt. |
| 609 | * This function needs to be called and return successfully before changing |
| 610 | * properties of @mnt that need to remain stable for callers with write access |
| 611 | * to @mnt. |
| 612 | * |
| 613 | * After this functions has been called successfully callers must pair it with |
| 614 | * a call to mnt_unhold_writers() in order to stop preventing write access to |
| 615 | * @mnt. |
| 616 | * |
| 617 | * Context: This function expects to be in mount_locked_reader scope serializing |
| 618 | * setting WRITE_HOLD. |
| 619 | * Return: On success 0 is returned. |
| 620 | * On error, -EBUSY is returned. |
| 621 | */ |
| 622 | static inline int mnt_hold_writers(struct mount *mnt) |
| 623 | { |
| 624 | set_write_hold(mnt); |
| 625 | /* |
| 626 | * After storing WRITE_HOLD, we'll read the counters. This store |
| 627 | * should be visible before we do. |
| 628 | */ |
| 629 | smp_mb(); |
| 630 | |
| 631 | /* |
| 632 | * With writers on hold, if this value is zero, then there are |
| 633 | * definitely no active writers (although held writers may subsequently |
| 634 | * increment the count, they'll have to wait, and decrement it after |
| 635 | * seeing MNT_READONLY). |
| 636 | * |
| 637 | * It is OK to have counter incremented on one CPU and decremented on |
| 638 | * another: the sum will add up correctly. The danger would be when we |
| 639 | * sum up each counter, if we read a counter before it is incremented, |
| 640 | * but then read another CPU's count which it has been subsequently |
| 641 | * decremented from -- we would see more decrements than we should. |
| 642 | * WRITE_HOLD protects against this scenario, because |
| 643 | * mnt_want_write first increments count, then smp_mb, then spins on |
| 644 | * WRITE_HOLD, so it can't be decremented by another CPU while |
| 645 | * we're counting up here. |
| 646 | */ |
| 647 | if (mnt_get_writers(mnt) > 0) |
| 648 | return -EBUSY; |
| 649 | |
| 650 | return 0; |
| 651 | } |
| 652 | |
| 653 | /** |
| 654 | * mnt_unhold_writers - stop preventing write access to the given mount |
| 655 | * @mnt: mnt to stop preventing write access to |
| 656 | * |
| 657 | * Stop preventing write access to @mnt allowing callers to gain write access |
| 658 | * to @mnt again. |
| 659 | * |
| 660 | * This function can only be called after a call to mnt_hold_writers(). |
| 661 | * |
| 662 | * Context: This function expects to be in the same mount_locked_reader scope |
| 663 | * as the matching mnt_hold_writers(). |
| 664 | */ |
| 665 | static inline void mnt_unhold_writers(struct mount *mnt) |
| 666 | { |
| 667 | if (!test_write_hold(m: mnt)) |
| 668 | return; |
| 669 | /* |
| 670 | * MNT_READONLY must become visible before ~WRITE_HOLD, so writers |
| 671 | * that become unheld will see MNT_READONLY. |
| 672 | */ |
| 673 | smp_wmb(); |
| 674 | clear_write_hold(m: mnt); |
| 675 | } |
| 676 | |
| 677 | static inline void mnt_del_instance(struct mount *m) |
| 678 | { |
| 679 | struct mount **p = m->mnt_pprev_for_sb; |
| 680 | struct mount *next = m->mnt_next_for_sb; |
| 681 | |
| 682 | if (next) |
| 683 | next->mnt_pprev_for_sb = p; |
| 684 | *p = next; |
| 685 | } |
| 686 | |
| 687 | static inline void mnt_add_instance(struct mount *m, struct super_block *s) |
| 688 | { |
| 689 | struct mount *first = s->s_mounts; |
| 690 | |
| 691 | if (first) |
| 692 | first->mnt_pprev_for_sb = &m->mnt_next_for_sb; |
| 693 | m->mnt_next_for_sb = first; |
| 694 | m->mnt_pprev_for_sb = &s->s_mounts; |
| 695 | s->s_mounts = m; |
| 696 | } |
| 697 | |
| 698 | static int mnt_make_readonly(struct mount *mnt) |
| 699 | { |
| 700 | int ret; |
| 701 | |
| 702 | ret = mnt_hold_writers(mnt); |
| 703 | if (!ret) |
| 704 | mnt->mnt.mnt_flags |= MNT_READONLY; |
| 705 | mnt_unhold_writers(mnt); |
| 706 | return ret; |
| 707 | } |
| 708 | |
| 709 | int sb_prepare_remount_readonly(struct super_block *sb) |
| 710 | { |
| 711 | int err = 0; |
| 712 | |
| 713 | /* Racy optimization. Recheck the counter under WRITE_HOLD */ |
| 714 | if (atomic_long_read(v: &sb->s_remove_count)) |
| 715 | return -EBUSY; |
| 716 | |
| 717 | guard(mount_locked_reader)(); |
| 718 | |
| 719 | for (struct mount *m = sb->s_mounts; m; m = m->mnt_next_for_sb) { |
| 720 | if (!(m->mnt.mnt_flags & MNT_READONLY)) { |
| 721 | err = mnt_hold_writers(mnt: m); |
| 722 | if (err) |
| 723 | break; |
| 724 | } |
| 725 | } |
| 726 | if (!err && atomic_long_read(v: &sb->s_remove_count)) |
| 727 | err = -EBUSY; |
| 728 | |
| 729 | if (!err) |
| 730 | sb_start_ro_state_change(sb); |
| 731 | for (struct mount *m = sb->s_mounts; m; m = m->mnt_next_for_sb) { |
| 732 | if (test_write_hold(m)) |
| 733 | clear_write_hold(m); |
| 734 | } |
| 735 | |
| 736 | return err; |
| 737 | } |
| 738 | |
| 739 | static void free_vfsmnt(struct mount *mnt) |
| 740 | { |
| 741 | mnt_idmap_put(idmap: mnt_idmap(mnt: &mnt->mnt)); |
| 742 | kfree_const(x: mnt->mnt_devname); |
| 743 | #ifdef CONFIG_SMP |
| 744 | free_percpu(pdata: mnt->mnt_pcp); |
| 745 | #endif |
| 746 | kmem_cache_free(s: mnt_cache, objp: mnt); |
| 747 | } |
| 748 | |
| 749 | static void delayed_free_vfsmnt(struct rcu_head *head) |
| 750 | { |
| 751 | free_vfsmnt(container_of(head, struct mount, mnt_rcu)); |
| 752 | } |
| 753 | |
| 754 | /* call under rcu_read_lock */ |
| 755 | int __legitimize_mnt(struct vfsmount *bastard, unsigned seq) |
| 756 | { |
| 757 | struct mount *mnt; |
| 758 | if (read_seqretry(sl: &mount_lock, start: seq)) |
| 759 | return 1; |
| 760 | if (bastard == NULL) |
| 761 | return 0; |
| 762 | mnt = real_mount(mnt: bastard); |
| 763 | mnt_add_count(mnt, n: 1); |
| 764 | smp_mb(); // see mntput_no_expire() and do_umount() |
| 765 | if (likely(!read_seqretry(&mount_lock, seq))) |
| 766 | return 0; |
| 767 | lock_mount_hash(); |
| 768 | if (unlikely(bastard->mnt_flags & (MNT_SYNC_UMOUNT | MNT_DOOMED))) { |
| 769 | mnt_add_count(mnt, n: -1); |
| 770 | unlock_mount_hash(); |
| 771 | return 1; |
| 772 | } |
| 773 | unlock_mount_hash(); |
| 774 | /* caller will mntput() */ |
| 775 | return -1; |
| 776 | } |
| 777 | |
| 778 | /* call under rcu_read_lock */ |
| 779 | static bool legitimize_mnt(struct vfsmount *bastard, unsigned seq) |
| 780 | { |
| 781 | int res = __legitimize_mnt(bastard, seq); |
| 782 | if (likely(!res)) |
| 783 | return true; |
| 784 | if (unlikely(res < 0)) { |
| 785 | rcu_read_unlock(); |
| 786 | mntput(mnt: bastard); |
| 787 | rcu_read_lock(); |
| 788 | } |
| 789 | return false; |
| 790 | } |
| 791 | |
| 792 | /** |
| 793 | * __lookup_mnt - mount hash lookup |
| 794 | * @mnt: parent mount |
| 795 | * @dentry: dentry of mountpoint |
| 796 | * |
| 797 | * If @mnt has a child mount @c mounted on @dentry find and return it. |
| 798 | * Caller must either hold the spinlock component of @mount_lock or |
| 799 | * hold rcu_read_lock(), sample the seqcount component before the call |
| 800 | * and recheck it afterwards. |
| 801 | * |
| 802 | * Return: The child of @mnt mounted on @dentry or %NULL. |
| 803 | */ |
| 804 | struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry) |
| 805 | { |
| 806 | struct hlist_head *head = m_hash(mnt, dentry); |
| 807 | struct mount *p; |
| 808 | |
| 809 | hlist_for_each_entry_rcu(p, head, mnt_hash) |
| 810 | if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) |
| 811 | return p; |
| 812 | return NULL; |
| 813 | } |
| 814 | |
| 815 | /** |
| 816 | * lookup_mnt - Return the child mount mounted at given location |
| 817 | * @path: location in the namespace |
| 818 | * |
| 819 | * Acquires and returns a new reference to mount at given location |
| 820 | * or %NULL if nothing is mounted there. |
| 821 | */ |
| 822 | struct vfsmount *lookup_mnt(const struct path *path) |
| 823 | { |
| 824 | struct mount *child_mnt; |
| 825 | struct vfsmount *m; |
| 826 | unsigned seq; |
| 827 | |
| 828 | rcu_read_lock(); |
| 829 | do { |
| 830 | seq = read_seqbegin(sl: &mount_lock); |
| 831 | child_mnt = __lookup_mnt(mnt: path->mnt, dentry: path->dentry); |
| 832 | m = child_mnt ? &child_mnt->mnt : NULL; |
| 833 | } while (!legitimize_mnt(bastard: m, seq)); |
| 834 | rcu_read_unlock(); |
| 835 | return m; |
| 836 | } |
| 837 | |
| 838 | /* |
| 839 | * __is_local_mountpoint - Test to see if dentry is a mountpoint in the |
| 840 | * current mount namespace. |
| 841 | * |
| 842 | * The common case is dentries are not mountpoints at all and that |
| 843 | * test is handled inline. For the slow case when we are actually |
| 844 | * dealing with a mountpoint of some kind, walk through all of the |
| 845 | * mounts in the current mount namespace and test to see if the dentry |
| 846 | * is a mountpoint. |
| 847 | * |
| 848 | * The mount_hashtable is not usable in the context because we |
| 849 | * need to identify all mounts that may be in the current mount |
| 850 | * namespace not just a mount that happens to have some specified |
| 851 | * parent mount. |
| 852 | */ |
| 853 | bool __is_local_mountpoint(const struct dentry *dentry) |
| 854 | { |
| 855 | struct mnt_namespace *ns = current->nsproxy->mnt_ns; |
| 856 | struct mount *mnt, *n; |
| 857 | |
| 858 | guard(namespace_shared)(); |
| 859 | |
| 860 | rbtree_postorder_for_each_entry_safe(mnt, n, &ns->mounts, mnt_node) |
| 861 | if (mnt->mnt_mountpoint == dentry) |
| 862 | return true; |
| 863 | |
| 864 | return false; |
| 865 | } |
| 866 | |
| 867 | struct pinned_mountpoint { |
| 868 | struct hlist_node node; |
| 869 | struct mountpoint *mp; |
| 870 | struct mount *parent; |
| 871 | }; |
| 872 | |
| 873 | static bool lookup_mountpoint(struct dentry *dentry, struct pinned_mountpoint *m) |
| 874 | { |
| 875 | struct hlist_head *chain = mp_hash(dentry); |
| 876 | struct mountpoint *mp; |
| 877 | |
| 878 | hlist_for_each_entry(mp, chain, m_hash) { |
| 879 | if (mp->m_dentry == dentry) { |
| 880 | hlist_add_head(n: &m->node, h: &mp->m_list); |
| 881 | m->mp = mp; |
| 882 | return true; |
| 883 | } |
| 884 | } |
| 885 | return false; |
| 886 | } |
| 887 | |
| 888 | static int get_mountpoint(struct dentry *dentry, struct pinned_mountpoint *m) |
| 889 | { |
| 890 | struct mountpoint *mp __free(kfree) = NULL; |
| 891 | bool found; |
| 892 | int ret; |
| 893 | |
| 894 | if (d_mountpoint(dentry)) { |
| 895 | /* might be worth a WARN_ON() */ |
| 896 | if (d_unlinked(dentry)) |
| 897 | return -ENOENT; |
| 898 | mountpoint: |
| 899 | read_seqlock_excl(sl: &mount_lock); |
| 900 | found = lookup_mountpoint(dentry, m); |
| 901 | read_sequnlock_excl(sl: &mount_lock); |
| 902 | if (found) |
| 903 | return 0; |
| 904 | } |
| 905 | |
| 906 | if (!mp) |
| 907 | mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL); |
| 908 | if (!mp) |
| 909 | return -ENOMEM; |
| 910 | |
| 911 | /* Exactly one processes may set d_mounted */ |
| 912 | ret = d_set_mounted(dentry); |
| 913 | |
| 914 | /* Someone else set d_mounted? */ |
| 915 | if (ret == -EBUSY) |
| 916 | goto mountpoint; |
| 917 | |
| 918 | /* The dentry is not available as a mountpoint? */ |
| 919 | if (ret) |
| 920 | return ret; |
| 921 | |
| 922 | /* Add the new mountpoint to the hash table */ |
| 923 | read_seqlock_excl(sl: &mount_lock); |
| 924 | mp->m_dentry = dget(dentry); |
| 925 | hlist_add_head(n: &mp->m_hash, h: mp_hash(dentry)); |
| 926 | INIT_HLIST_HEAD(&mp->m_list); |
| 927 | hlist_add_head(n: &m->node, h: &mp->m_list); |
| 928 | m->mp = no_free_ptr(mp); |
| 929 | read_sequnlock_excl(sl: &mount_lock); |
| 930 | return 0; |
| 931 | } |
| 932 | |
| 933 | /* |
| 934 | * vfsmount lock must be held. Additionally, the caller is responsible |
| 935 | * for serializing calls for given disposal list. |
| 936 | */ |
| 937 | static void maybe_free_mountpoint(struct mountpoint *mp, struct list_head *list) |
| 938 | { |
| 939 | if (hlist_empty(h: &mp->m_list)) { |
| 940 | struct dentry *dentry = mp->m_dentry; |
| 941 | spin_lock(lock: &dentry->d_lock); |
| 942 | dentry->d_flags &= ~DCACHE_MOUNTED; |
| 943 | spin_unlock(lock: &dentry->d_lock); |
| 944 | dput_to_list(dentry, list); |
| 945 | hlist_del(n: &mp->m_hash); |
| 946 | kfree(objp: mp); |
| 947 | } |
| 948 | } |
| 949 | |
| 950 | /* |
| 951 | * locks: mount_lock [read_seqlock_excl], namespace_sem [excl] |
| 952 | */ |
| 953 | static void unpin_mountpoint(struct pinned_mountpoint *m) |
| 954 | { |
| 955 | if (m->mp) { |
| 956 | hlist_del(n: &m->node); |
| 957 | maybe_free_mountpoint(mp: m->mp, list: &ex_mountpoints); |
| 958 | } |
| 959 | } |
| 960 | |
| 961 | static inline int check_mnt(const struct mount *mnt) |
| 962 | { |
| 963 | return mnt->mnt_ns == current->nsproxy->mnt_ns; |
| 964 | } |
| 965 | |
| 966 | static inline bool check_anonymous_mnt(struct mount *mnt) |
| 967 | { |
| 968 | u64 seq; |
| 969 | |
| 970 | if (!is_anon_ns(ns: mnt->mnt_ns)) |
| 971 | return false; |
| 972 | |
| 973 | seq = mnt->mnt_ns->seq_origin; |
| 974 | return !seq || (seq == current->nsproxy->mnt_ns->ns.ns_id); |
| 975 | } |
| 976 | |
| 977 | /* |
| 978 | * vfsmount lock must be held for write |
| 979 | */ |
| 980 | static void touch_mnt_namespace(struct mnt_namespace *ns) |
| 981 | { |
| 982 | if (ns) { |
| 983 | ns->event = ++event; |
| 984 | wake_up_interruptible(&ns->poll); |
| 985 | } |
| 986 | } |
| 987 | |
| 988 | /* |
| 989 | * vfsmount lock must be held for write |
| 990 | */ |
| 991 | static void __touch_mnt_namespace(struct mnt_namespace *ns) |
| 992 | { |
| 993 | if (ns && ns->event != event) { |
| 994 | ns->event = event; |
| 995 | wake_up_interruptible(&ns->poll); |
| 996 | } |
| 997 | } |
| 998 | |
| 999 | /* |
| 1000 | * locks: mount_lock[write_seqlock] |
| 1001 | */ |
| 1002 | static void __umount_mnt(struct mount *mnt, struct list_head *shrink_list) |
| 1003 | { |
| 1004 | struct mountpoint *mp; |
| 1005 | struct mount *parent = mnt->mnt_parent; |
| 1006 | if (unlikely(parent->overmount == mnt)) |
| 1007 | parent->overmount = NULL; |
| 1008 | mnt->mnt_parent = mnt; |
| 1009 | mnt->mnt_mountpoint = mnt->mnt.mnt_root; |
| 1010 | list_del_init(entry: &mnt->mnt_child); |
| 1011 | hlist_del_init_rcu(n: &mnt->mnt_hash); |
| 1012 | hlist_del_init(n: &mnt->mnt_mp_list); |
| 1013 | mp = mnt->mnt_mp; |
| 1014 | mnt->mnt_mp = NULL; |
| 1015 | maybe_free_mountpoint(mp, list: shrink_list); |
| 1016 | } |
| 1017 | |
| 1018 | /* |
| 1019 | * locks: mount_lock[write_seqlock], namespace_sem[excl] (for ex_mountpoints) |
| 1020 | */ |
| 1021 | static void umount_mnt(struct mount *mnt) |
| 1022 | { |
| 1023 | __umount_mnt(mnt, shrink_list: &ex_mountpoints); |
| 1024 | } |
| 1025 | |
| 1026 | /* |
| 1027 | * vfsmount lock must be held for write |
| 1028 | */ |
| 1029 | void mnt_set_mountpoint(struct mount *mnt, |
| 1030 | struct mountpoint *mp, |
| 1031 | struct mount *child_mnt) |
| 1032 | { |
| 1033 | child_mnt->mnt_mountpoint = mp->m_dentry; |
| 1034 | child_mnt->mnt_parent = mnt; |
| 1035 | child_mnt->mnt_mp = mp; |
| 1036 | hlist_add_head(n: &child_mnt->mnt_mp_list, h: &mp->m_list); |
| 1037 | } |
| 1038 | |
| 1039 | static void make_visible(struct mount *mnt) |
| 1040 | { |
| 1041 | struct mount *parent = mnt->mnt_parent; |
| 1042 | if (unlikely(mnt->mnt_mountpoint == parent->mnt.mnt_root)) |
| 1043 | parent->overmount = mnt; |
| 1044 | hlist_add_head_rcu(n: &mnt->mnt_hash, |
| 1045 | h: m_hash(mnt: &parent->mnt, dentry: mnt->mnt_mountpoint)); |
| 1046 | list_add_tail(new: &mnt->mnt_child, head: &parent->mnt_mounts); |
| 1047 | } |
| 1048 | |
| 1049 | /** |
| 1050 | * attach_mnt - mount a mount, attach to @mount_hashtable and parent's |
| 1051 | * list of child mounts |
| 1052 | * @parent: the parent |
| 1053 | * @mnt: the new mount |
| 1054 | * @mp: the new mountpoint |
| 1055 | * |
| 1056 | * Mount @mnt at @mp on @parent. Then attach @mnt |
| 1057 | * to @parent's child mount list and to @mount_hashtable. |
| 1058 | * |
| 1059 | * Note, when make_visible() is called @mnt->mnt_parent already points |
| 1060 | * to the correct parent. |
| 1061 | * |
| 1062 | * Context: This function expects namespace_lock() and lock_mount_hash() |
| 1063 | * to have been acquired in that order. |
| 1064 | */ |
| 1065 | static void attach_mnt(struct mount *mnt, struct mount *parent, |
| 1066 | struct mountpoint *mp) |
| 1067 | { |
| 1068 | mnt_set_mountpoint(mnt: parent, mp, child_mnt: mnt); |
| 1069 | make_visible(mnt); |
| 1070 | } |
| 1071 | |
| 1072 | void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt) |
| 1073 | { |
| 1074 | struct mountpoint *old_mp = mnt->mnt_mp; |
| 1075 | |
| 1076 | list_del_init(entry: &mnt->mnt_child); |
| 1077 | hlist_del_init(n: &mnt->mnt_mp_list); |
| 1078 | hlist_del_init_rcu(n: &mnt->mnt_hash); |
| 1079 | |
| 1080 | attach_mnt(mnt, parent, mp); |
| 1081 | |
| 1082 | maybe_free_mountpoint(mp: old_mp, list: &ex_mountpoints); |
| 1083 | } |
| 1084 | |
| 1085 | static inline struct mount *node_to_mount(struct rb_node *node) |
| 1086 | { |
| 1087 | return node ? rb_entry(node, struct mount, mnt_node) : NULL; |
| 1088 | } |
| 1089 | |
| 1090 | static void mnt_add_to_ns(struct mnt_namespace *ns, struct mount *mnt) |
| 1091 | { |
| 1092 | struct rb_node **link = &ns->mounts.rb_node; |
| 1093 | struct rb_node *parent = NULL; |
| 1094 | bool mnt_first_node = true, mnt_last_node = true; |
| 1095 | |
| 1096 | WARN_ON(mnt_ns_attached(mnt)); |
| 1097 | mnt->mnt_ns = ns; |
| 1098 | while (*link) { |
| 1099 | parent = *link; |
| 1100 | if (mnt->mnt_id_unique < node_to_mount(node: parent)->mnt_id_unique) { |
| 1101 | link = &parent->rb_left; |
| 1102 | mnt_last_node = false; |
| 1103 | } else { |
| 1104 | link = &parent->rb_right; |
| 1105 | mnt_first_node = false; |
| 1106 | } |
| 1107 | } |
| 1108 | |
| 1109 | if (mnt_last_node) |
| 1110 | ns->mnt_last_node = &mnt->mnt_node; |
| 1111 | if (mnt_first_node) |
| 1112 | ns->mnt_first_node = &mnt->mnt_node; |
| 1113 | rb_link_node(node: &mnt->mnt_node, parent, rb_link: link); |
| 1114 | rb_insert_color(&mnt->mnt_node, &ns->mounts); |
| 1115 | |
| 1116 | mnt_notify_add(m: mnt); |
| 1117 | } |
| 1118 | |
| 1119 | static struct mount *next_mnt(struct mount *p, struct mount *root) |
| 1120 | { |
| 1121 | struct list_head *next = p->mnt_mounts.next; |
| 1122 | if (next == &p->mnt_mounts) { |
| 1123 | while (1) { |
| 1124 | if (p == root) |
| 1125 | return NULL; |
| 1126 | next = p->mnt_child.next; |
| 1127 | if (next != &p->mnt_parent->mnt_mounts) |
| 1128 | break; |
| 1129 | p = p->mnt_parent; |
| 1130 | } |
| 1131 | } |
| 1132 | return list_entry(next, struct mount, mnt_child); |
| 1133 | } |
| 1134 | |
| 1135 | static struct mount *skip_mnt_tree(struct mount *p) |
| 1136 | { |
| 1137 | struct list_head *prev = p->mnt_mounts.prev; |
| 1138 | while (prev != &p->mnt_mounts) { |
| 1139 | p = list_entry(prev, struct mount, mnt_child); |
| 1140 | prev = p->mnt_mounts.prev; |
| 1141 | } |
| 1142 | return p; |
| 1143 | } |
| 1144 | |
| 1145 | /* |
| 1146 | * vfsmount lock must be held for write |
| 1147 | */ |
| 1148 | static void commit_tree(struct mount *mnt) |
| 1149 | { |
| 1150 | struct mnt_namespace *n = mnt->mnt_parent->mnt_ns; |
| 1151 | |
| 1152 | if (!mnt_ns_attached(mnt)) { |
| 1153 | for (struct mount *m = mnt; m; m = next_mnt(p: m, root: mnt)) |
| 1154 | mnt_add_to_ns(ns: n, mnt: m); |
| 1155 | n->nr_mounts += n->pending_mounts; |
| 1156 | n->pending_mounts = 0; |
| 1157 | } |
| 1158 | |
| 1159 | make_visible(mnt); |
| 1160 | touch_mnt_namespace(ns: n); |
| 1161 | } |
| 1162 | |
| 1163 | static void setup_mnt(struct mount *m, struct dentry *root) |
| 1164 | { |
| 1165 | struct super_block *s = root->d_sb; |
| 1166 | |
| 1167 | atomic_inc(v: &s->s_active); |
| 1168 | m->mnt.mnt_sb = s; |
| 1169 | m->mnt.mnt_root = dget(dentry: root); |
| 1170 | m->mnt_mountpoint = m->mnt.mnt_root; |
| 1171 | m->mnt_parent = m; |
| 1172 | |
| 1173 | guard(mount_locked_reader)(); |
| 1174 | mnt_add_instance(m, s); |
| 1175 | } |
| 1176 | |
| 1177 | /** |
| 1178 | * vfs_create_mount - Create a mount for a configured superblock |
| 1179 | * @fc: The configuration context with the superblock attached |
| 1180 | * |
| 1181 | * Create a mount to an already configured superblock. If necessary, the |
| 1182 | * caller should invoke vfs_get_tree() before calling this. |
| 1183 | * |
| 1184 | * Note that this does not attach the mount to anything. |
| 1185 | */ |
| 1186 | struct vfsmount *vfs_create_mount(struct fs_context *fc) |
| 1187 | { |
| 1188 | struct mount *mnt; |
| 1189 | |
| 1190 | if (!fc->root) |
| 1191 | return ERR_PTR(error: -EINVAL); |
| 1192 | |
| 1193 | mnt = alloc_vfsmnt(name: fc->source); |
| 1194 | if (!mnt) |
| 1195 | return ERR_PTR(error: -ENOMEM); |
| 1196 | |
| 1197 | if (fc->sb_flags & SB_KERNMOUNT) |
| 1198 | mnt->mnt.mnt_flags = MNT_INTERNAL; |
| 1199 | |
| 1200 | setup_mnt(m: mnt, root: fc->root); |
| 1201 | |
| 1202 | return &mnt->mnt; |
| 1203 | } |
| 1204 | EXPORT_SYMBOL(vfs_create_mount); |
| 1205 | |
| 1206 | struct vfsmount *fc_mount(struct fs_context *fc) |
| 1207 | { |
| 1208 | int err = vfs_get_tree(fc); |
| 1209 | if (!err) { |
| 1210 | up_write(sem: &fc->root->d_sb->s_umount); |
| 1211 | return vfs_create_mount(fc); |
| 1212 | } |
| 1213 | return ERR_PTR(error: err); |
| 1214 | } |
| 1215 | EXPORT_SYMBOL(fc_mount); |
| 1216 | |
| 1217 | struct vfsmount *fc_mount_longterm(struct fs_context *fc) |
| 1218 | { |
| 1219 | struct vfsmount *mnt = fc_mount(fc); |
| 1220 | if (!IS_ERR(ptr: mnt)) |
| 1221 | real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL; |
| 1222 | return mnt; |
| 1223 | } |
| 1224 | EXPORT_SYMBOL(fc_mount_longterm); |
| 1225 | |
| 1226 | struct vfsmount *vfs_kern_mount(struct file_system_type *type, |
| 1227 | int flags, const char *name, |
| 1228 | void *data) |
| 1229 | { |
| 1230 | struct fs_context *fc; |
| 1231 | struct vfsmount *mnt; |
| 1232 | int ret = 0; |
| 1233 | |
| 1234 | if (!type) |
| 1235 | return ERR_PTR(error: -EINVAL); |
| 1236 | |
| 1237 | fc = fs_context_for_mount(fs_type: type, sb_flags: flags); |
| 1238 | if (IS_ERR(ptr: fc)) |
| 1239 | return ERR_CAST(ptr: fc); |
| 1240 | |
| 1241 | if (name) |
| 1242 | ret = vfs_parse_fs_string(fc, key: "source" , value: name); |
| 1243 | if (!ret) |
| 1244 | ret = parse_monolithic_mount_data(fc, data); |
| 1245 | if (!ret) |
| 1246 | mnt = fc_mount(fc); |
| 1247 | else |
| 1248 | mnt = ERR_PTR(error: ret); |
| 1249 | |
| 1250 | put_fs_context(fc); |
| 1251 | return mnt; |
| 1252 | } |
| 1253 | EXPORT_SYMBOL_GPL(vfs_kern_mount); |
| 1254 | |
| 1255 | static struct mount *clone_mnt(struct mount *old, struct dentry *root, |
| 1256 | int flag) |
| 1257 | { |
| 1258 | struct mount *mnt; |
| 1259 | int err; |
| 1260 | |
| 1261 | mnt = alloc_vfsmnt(name: old->mnt_devname); |
| 1262 | if (!mnt) |
| 1263 | return ERR_PTR(error: -ENOMEM); |
| 1264 | |
| 1265 | mnt->mnt.mnt_flags = READ_ONCE(old->mnt.mnt_flags) & |
| 1266 | ~MNT_INTERNAL_FLAGS; |
| 1267 | |
| 1268 | if (flag & (CL_SLAVE | CL_PRIVATE)) |
| 1269 | mnt->mnt_group_id = 0; /* not a peer of original */ |
| 1270 | else |
| 1271 | mnt->mnt_group_id = old->mnt_group_id; |
| 1272 | |
| 1273 | if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) { |
| 1274 | err = mnt_alloc_group_id(mnt); |
| 1275 | if (err) |
| 1276 | goto out_free; |
| 1277 | } |
| 1278 | |
| 1279 | if (mnt->mnt_group_id) |
| 1280 | set_mnt_shared(mnt); |
| 1281 | |
| 1282 | mnt->mnt.mnt_idmap = mnt_idmap_get(idmap: mnt_idmap(mnt: &old->mnt)); |
| 1283 | |
| 1284 | setup_mnt(m: mnt, root); |
| 1285 | |
| 1286 | if (flag & CL_PRIVATE) // we are done with it |
| 1287 | return mnt; |
| 1288 | |
| 1289 | if (peers(m1: mnt, m2: old)) |
| 1290 | list_add(new: &mnt->mnt_share, head: &old->mnt_share); |
| 1291 | |
| 1292 | if ((flag & CL_SLAVE) && old->mnt_group_id) { |
| 1293 | hlist_add_head(n: &mnt->mnt_slave, h: &old->mnt_slave_list); |
| 1294 | mnt->mnt_master = old; |
| 1295 | } else if (IS_MNT_SLAVE(old)) { |
| 1296 | hlist_add_behind(n: &mnt->mnt_slave, prev: &old->mnt_slave); |
| 1297 | mnt->mnt_master = old->mnt_master; |
| 1298 | } |
| 1299 | return mnt; |
| 1300 | |
| 1301 | out_free: |
| 1302 | mnt_free_id(mnt); |
| 1303 | free_vfsmnt(mnt); |
| 1304 | return ERR_PTR(error: err); |
| 1305 | } |
| 1306 | |
| 1307 | static void cleanup_mnt(struct mount *mnt) |
| 1308 | { |
| 1309 | struct hlist_node *p; |
| 1310 | struct mount *m; |
| 1311 | /* |
| 1312 | * The warning here probably indicates that somebody messed |
| 1313 | * up a mnt_want/drop_write() pair. If this happens, the |
| 1314 | * filesystem was probably unable to make r/w->r/o transitions. |
| 1315 | * The locking used to deal with mnt_count decrement provides barriers, |
| 1316 | * so mnt_get_writers() below is safe. |
| 1317 | */ |
| 1318 | WARN_ON(mnt_get_writers(mnt)); |
| 1319 | if (unlikely(mnt->mnt_pins.first)) |
| 1320 | mnt_pin_kill(m: mnt); |
| 1321 | hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) { |
| 1322 | hlist_del(n: &m->mnt_umount); |
| 1323 | mntput(mnt: &m->mnt); |
| 1324 | } |
| 1325 | fsnotify_vfsmount_delete(mnt: &mnt->mnt); |
| 1326 | dput(mnt->mnt.mnt_root); |
| 1327 | deactivate_super(sb: mnt->mnt.mnt_sb); |
| 1328 | mnt_free_id(mnt); |
| 1329 | call_rcu(head: &mnt->mnt_rcu, func: delayed_free_vfsmnt); |
| 1330 | } |
| 1331 | |
| 1332 | static void __cleanup_mnt(struct rcu_head *head) |
| 1333 | { |
| 1334 | cleanup_mnt(container_of(head, struct mount, mnt_rcu)); |
| 1335 | } |
| 1336 | |
| 1337 | static LLIST_HEAD(delayed_mntput_list); |
| 1338 | static void delayed_mntput(struct work_struct *unused) |
| 1339 | { |
| 1340 | struct llist_node *node = llist_del_all(head: &delayed_mntput_list); |
| 1341 | struct mount *m, *t; |
| 1342 | |
| 1343 | llist_for_each_entry_safe(m, t, node, mnt_llist) |
| 1344 | cleanup_mnt(mnt: m); |
| 1345 | } |
| 1346 | static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput); |
| 1347 | |
| 1348 | static void mntput_no_expire(struct mount *mnt) |
| 1349 | { |
| 1350 | LIST_HEAD(list); |
| 1351 | int count; |
| 1352 | |
| 1353 | rcu_read_lock(); |
| 1354 | if (likely(READ_ONCE(mnt->mnt_ns))) { |
| 1355 | /* |
| 1356 | * Since we don't do lock_mount_hash() here, |
| 1357 | * ->mnt_ns can change under us. However, if it's |
| 1358 | * non-NULL, then there's a reference that won't |
| 1359 | * be dropped until after an RCU delay done after |
| 1360 | * turning ->mnt_ns NULL. So if we observe it |
| 1361 | * non-NULL under rcu_read_lock(), the reference |
| 1362 | * we are dropping is not the final one. |
| 1363 | */ |
| 1364 | mnt_add_count(mnt, n: -1); |
| 1365 | rcu_read_unlock(); |
| 1366 | return; |
| 1367 | } |
| 1368 | lock_mount_hash(); |
| 1369 | /* |
| 1370 | * make sure that if __legitimize_mnt() has not seen us grab |
| 1371 | * mount_lock, we'll see their refcount increment here. |
| 1372 | */ |
| 1373 | smp_mb(); |
| 1374 | mnt_add_count(mnt, n: -1); |
| 1375 | count = mnt_get_count(mnt); |
| 1376 | if (count != 0) { |
| 1377 | WARN_ON(count < 0); |
| 1378 | rcu_read_unlock(); |
| 1379 | unlock_mount_hash(); |
| 1380 | return; |
| 1381 | } |
| 1382 | if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) { |
| 1383 | rcu_read_unlock(); |
| 1384 | unlock_mount_hash(); |
| 1385 | return; |
| 1386 | } |
| 1387 | mnt->mnt.mnt_flags |= MNT_DOOMED; |
| 1388 | rcu_read_unlock(); |
| 1389 | |
| 1390 | mnt_del_instance(m: mnt); |
| 1391 | if (unlikely(!list_empty(&mnt->mnt_expire))) |
| 1392 | list_del(entry: &mnt->mnt_expire); |
| 1393 | |
| 1394 | if (unlikely(!list_empty(&mnt->mnt_mounts))) { |
| 1395 | struct mount *p, *tmp; |
| 1396 | list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) { |
| 1397 | __umount_mnt(mnt: p, shrink_list: &list); |
| 1398 | hlist_add_head(n: &p->mnt_umount, h: &mnt->mnt_stuck_children); |
| 1399 | } |
| 1400 | } |
| 1401 | unlock_mount_hash(); |
| 1402 | shrink_dentry_list(&list); |
| 1403 | |
| 1404 | if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) { |
| 1405 | struct task_struct *task = current; |
| 1406 | if (likely(!(task->flags & PF_KTHREAD))) { |
| 1407 | init_task_work(twork: &mnt->mnt_rcu, func: __cleanup_mnt); |
| 1408 | if (!task_work_add(task, twork: &mnt->mnt_rcu, mode: TWA_RESUME)) |
| 1409 | return; |
| 1410 | } |
| 1411 | if (llist_add(new: &mnt->mnt_llist, head: &delayed_mntput_list)) |
| 1412 | schedule_delayed_work(dwork: &delayed_mntput_work, delay: 1); |
| 1413 | return; |
| 1414 | } |
| 1415 | cleanup_mnt(mnt); |
| 1416 | } |
| 1417 | |
| 1418 | void mntput(struct vfsmount *mnt) |
| 1419 | { |
| 1420 | if (mnt) { |
| 1421 | struct mount *m = real_mount(mnt); |
| 1422 | /* avoid cacheline pingpong */ |
| 1423 | if (unlikely(m->mnt_expiry_mark)) |
| 1424 | WRITE_ONCE(m->mnt_expiry_mark, 0); |
| 1425 | mntput_no_expire(mnt: m); |
| 1426 | } |
| 1427 | } |
| 1428 | EXPORT_SYMBOL(mntput); |
| 1429 | |
| 1430 | struct vfsmount *mntget(struct vfsmount *mnt) |
| 1431 | { |
| 1432 | if (mnt) |
| 1433 | mnt_add_count(mnt: real_mount(mnt), n: 1); |
| 1434 | return mnt; |
| 1435 | } |
| 1436 | EXPORT_SYMBOL(mntget); |
| 1437 | |
| 1438 | /* |
| 1439 | * Make a mount point inaccessible to new lookups. |
| 1440 | * Because there may still be current users, the caller MUST WAIT |
| 1441 | * for an RCU grace period before destroying the mount point. |
| 1442 | */ |
| 1443 | void mnt_make_shortterm(struct vfsmount *mnt) |
| 1444 | { |
| 1445 | if (mnt) |
| 1446 | real_mount(mnt)->mnt_ns = NULL; |
| 1447 | } |
| 1448 | |
| 1449 | /** |
| 1450 | * path_is_mountpoint() - Check if path is a mount in the current namespace. |
| 1451 | * @path: path to check |
| 1452 | * |
| 1453 | * d_mountpoint() can only be used reliably to establish if a dentry is |
| 1454 | * not mounted in any namespace and that common case is handled inline. |
| 1455 | * d_mountpoint() isn't aware of the possibility there may be multiple |
| 1456 | * mounts using a given dentry in a different namespace. This function |
| 1457 | * checks if the passed in path is a mountpoint rather than the dentry |
| 1458 | * alone. |
| 1459 | */ |
| 1460 | bool path_is_mountpoint(const struct path *path) |
| 1461 | { |
| 1462 | unsigned seq; |
| 1463 | bool res; |
| 1464 | |
| 1465 | if (!d_mountpoint(dentry: path->dentry)) |
| 1466 | return false; |
| 1467 | |
| 1468 | rcu_read_lock(); |
| 1469 | do { |
| 1470 | seq = read_seqbegin(sl: &mount_lock); |
| 1471 | res = __path_is_mountpoint(path); |
| 1472 | } while (read_seqretry(sl: &mount_lock, start: seq)); |
| 1473 | rcu_read_unlock(); |
| 1474 | |
| 1475 | return res; |
| 1476 | } |
| 1477 | EXPORT_SYMBOL(path_is_mountpoint); |
| 1478 | |
| 1479 | struct vfsmount *mnt_clone_internal(const struct path *path) |
| 1480 | { |
| 1481 | struct mount *p; |
| 1482 | p = clone_mnt(old: real_mount(mnt: path->mnt), root: path->dentry, CL_PRIVATE); |
| 1483 | if (IS_ERR(ptr: p)) |
| 1484 | return ERR_CAST(ptr: p); |
| 1485 | p->mnt.mnt_flags |= MNT_INTERNAL; |
| 1486 | return &p->mnt; |
| 1487 | } |
| 1488 | |
| 1489 | /* |
| 1490 | * Returns the mount which either has the specified mnt_id, or has the next |
| 1491 | * smallest id afer the specified one. |
| 1492 | */ |
| 1493 | static struct mount *mnt_find_id_at(struct mnt_namespace *ns, u64 mnt_id) |
| 1494 | { |
| 1495 | struct rb_node *node = ns->mounts.rb_node; |
| 1496 | struct mount *ret = NULL; |
| 1497 | |
| 1498 | while (node) { |
| 1499 | struct mount *m = node_to_mount(node); |
| 1500 | |
| 1501 | if (mnt_id <= m->mnt_id_unique) { |
| 1502 | ret = node_to_mount(node); |
| 1503 | if (mnt_id == m->mnt_id_unique) |
| 1504 | break; |
| 1505 | node = node->rb_left; |
| 1506 | } else { |
| 1507 | node = node->rb_right; |
| 1508 | } |
| 1509 | } |
| 1510 | return ret; |
| 1511 | } |
| 1512 | |
| 1513 | /* |
| 1514 | * Returns the mount which either has the specified mnt_id, or has the next |
| 1515 | * greater id before the specified one. |
| 1516 | */ |
| 1517 | static struct mount *mnt_find_id_at_reverse(struct mnt_namespace *ns, u64 mnt_id) |
| 1518 | { |
| 1519 | struct rb_node *node = ns->mounts.rb_node; |
| 1520 | struct mount *ret = NULL; |
| 1521 | |
| 1522 | while (node) { |
| 1523 | struct mount *m = node_to_mount(node); |
| 1524 | |
| 1525 | if (mnt_id >= m->mnt_id_unique) { |
| 1526 | ret = node_to_mount(node); |
| 1527 | if (mnt_id == m->mnt_id_unique) |
| 1528 | break; |
| 1529 | node = node->rb_right; |
| 1530 | } else { |
| 1531 | node = node->rb_left; |
| 1532 | } |
| 1533 | } |
| 1534 | return ret; |
| 1535 | } |
| 1536 | |
| 1537 | #ifdef CONFIG_PROC_FS |
| 1538 | |
| 1539 | /* iterator; we want it to have access to namespace_sem, thus here... */ |
| 1540 | static void *m_start(struct seq_file *m, loff_t *pos) |
| 1541 | { |
| 1542 | struct proc_mounts *p = m->private; |
| 1543 | |
| 1544 | down_read(sem: &namespace_sem); |
| 1545 | |
| 1546 | return mnt_find_id_at(ns: p->ns, mnt_id: *pos); |
| 1547 | } |
| 1548 | |
| 1549 | static void *m_next(struct seq_file *m, void *v, loff_t *pos) |
| 1550 | { |
| 1551 | struct mount *next = NULL, *mnt = v; |
| 1552 | struct rb_node *node = rb_next(&mnt->mnt_node); |
| 1553 | |
| 1554 | ++*pos; |
| 1555 | if (node) { |
| 1556 | next = node_to_mount(node); |
| 1557 | *pos = next->mnt_id_unique; |
| 1558 | } |
| 1559 | return next; |
| 1560 | } |
| 1561 | |
| 1562 | static void m_stop(struct seq_file *m, void *v) |
| 1563 | { |
| 1564 | up_read(sem: &namespace_sem); |
| 1565 | } |
| 1566 | |
| 1567 | static int m_show(struct seq_file *m, void *v) |
| 1568 | { |
| 1569 | struct proc_mounts *p = m->private; |
| 1570 | struct mount *r = v; |
| 1571 | return p->show(m, &r->mnt); |
| 1572 | } |
| 1573 | |
| 1574 | const struct seq_operations mounts_op = { |
| 1575 | .start = m_start, |
| 1576 | .next = m_next, |
| 1577 | .stop = m_stop, |
| 1578 | .show = m_show, |
| 1579 | }; |
| 1580 | |
| 1581 | #endif /* CONFIG_PROC_FS */ |
| 1582 | |
| 1583 | /** |
| 1584 | * may_umount_tree - check if a mount tree is busy |
| 1585 | * @m: root of mount tree |
| 1586 | * |
| 1587 | * This is called to check if a tree of mounts has any |
| 1588 | * open files, pwds, chroots or sub mounts that are |
| 1589 | * busy. |
| 1590 | */ |
| 1591 | int may_umount_tree(struct vfsmount *m) |
| 1592 | { |
| 1593 | struct mount *mnt = real_mount(mnt: m); |
| 1594 | bool busy = false; |
| 1595 | |
| 1596 | /* write lock needed for mnt_get_count */ |
| 1597 | lock_mount_hash(); |
| 1598 | for (struct mount *p = mnt; p; p = next_mnt(p, root: mnt)) { |
| 1599 | if (mnt_get_count(mnt: p) > (p == mnt ? 2 : 1)) { |
| 1600 | busy = true; |
| 1601 | break; |
| 1602 | } |
| 1603 | } |
| 1604 | unlock_mount_hash(); |
| 1605 | |
| 1606 | return !busy; |
| 1607 | } |
| 1608 | |
| 1609 | EXPORT_SYMBOL(may_umount_tree); |
| 1610 | |
| 1611 | /** |
| 1612 | * may_umount - check if a mount point is busy |
| 1613 | * @mnt: root of mount |
| 1614 | * |
| 1615 | * This is called to check if a mount point has any |
| 1616 | * open files, pwds, chroots or sub mounts. If the |
| 1617 | * mount has sub mounts this will return busy |
| 1618 | * regardless of whether the sub mounts are busy. |
| 1619 | * |
| 1620 | * Doesn't take quota and stuff into account. IOW, in some cases it will |
| 1621 | * give false negatives. The main reason why it's here is that we need |
| 1622 | * a non-destructive way to look for easily umountable filesystems. |
| 1623 | */ |
| 1624 | int may_umount(struct vfsmount *mnt) |
| 1625 | { |
| 1626 | int ret = 1; |
| 1627 | down_read(sem: &namespace_sem); |
| 1628 | lock_mount_hash(); |
| 1629 | if (propagate_mount_busy(real_mount(mnt), 2)) |
| 1630 | ret = 0; |
| 1631 | unlock_mount_hash(); |
| 1632 | up_read(sem: &namespace_sem); |
| 1633 | return ret; |
| 1634 | } |
| 1635 | |
| 1636 | EXPORT_SYMBOL(may_umount); |
| 1637 | |
| 1638 | #ifdef CONFIG_FSNOTIFY |
| 1639 | static void mnt_notify(struct mount *p) |
| 1640 | { |
| 1641 | if (!p->prev_ns && p->mnt_ns) { |
| 1642 | fsnotify_mnt_attach(ns: p->mnt_ns, mnt: &p->mnt); |
| 1643 | } else if (p->prev_ns && !p->mnt_ns) { |
| 1644 | fsnotify_mnt_detach(ns: p->prev_ns, mnt: &p->mnt); |
| 1645 | } else if (p->prev_ns == p->mnt_ns) { |
| 1646 | fsnotify_mnt_move(ns: p->mnt_ns, mnt: &p->mnt); |
| 1647 | } else { |
| 1648 | fsnotify_mnt_detach(ns: p->prev_ns, mnt: &p->mnt); |
| 1649 | fsnotify_mnt_attach(ns: p->mnt_ns, mnt: &p->mnt); |
| 1650 | } |
| 1651 | p->prev_ns = p->mnt_ns; |
| 1652 | } |
| 1653 | |
| 1654 | static void notify_mnt_list(void) |
| 1655 | { |
| 1656 | struct mount *m, *tmp; |
| 1657 | /* |
| 1658 | * Notify about mounts that were added/reparented/detached/remain |
| 1659 | * connected after unmount. |
| 1660 | */ |
| 1661 | list_for_each_entry_safe(m, tmp, ¬ify_list, to_notify) { |
| 1662 | mnt_notify(p: m); |
| 1663 | list_del_init(entry: &m->to_notify); |
| 1664 | } |
| 1665 | } |
| 1666 | |
| 1667 | static bool need_notify_mnt_list(void) |
| 1668 | { |
| 1669 | return !list_empty(head: ¬ify_list); |
| 1670 | } |
| 1671 | #else |
| 1672 | static void notify_mnt_list(void) |
| 1673 | { |
| 1674 | } |
| 1675 | |
| 1676 | static bool need_notify_mnt_list(void) |
| 1677 | { |
| 1678 | return false; |
| 1679 | } |
| 1680 | #endif |
| 1681 | |
| 1682 | static void free_mnt_ns(struct mnt_namespace *); |
| 1683 | static void namespace_unlock(void) |
| 1684 | { |
| 1685 | struct hlist_head head; |
| 1686 | struct hlist_node *p; |
| 1687 | struct mount *m; |
| 1688 | struct mnt_namespace *ns = emptied_ns; |
| 1689 | LIST_HEAD(list); |
| 1690 | |
| 1691 | hlist_move_list(old: &unmounted, new: &head); |
| 1692 | list_splice_init(list: &ex_mountpoints, head: &list); |
| 1693 | emptied_ns = NULL; |
| 1694 | |
| 1695 | if (need_notify_mnt_list()) { |
| 1696 | /* |
| 1697 | * No point blocking out concurrent readers while notifications |
| 1698 | * are sent. This will also allow statmount()/listmount() to run |
| 1699 | * concurrently. |
| 1700 | */ |
| 1701 | downgrade_write(sem: &namespace_sem); |
| 1702 | notify_mnt_list(); |
| 1703 | up_read(sem: &namespace_sem); |
| 1704 | } else { |
| 1705 | up_write(sem: &namespace_sem); |
| 1706 | } |
| 1707 | if (unlikely(ns)) { |
| 1708 | /* Make sure we notice when we leak mounts. */ |
| 1709 | VFS_WARN_ON_ONCE(!mnt_ns_empty(ns)); |
| 1710 | free_mnt_ns(ns); |
| 1711 | } |
| 1712 | |
| 1713 | shrink_dentry_list(&list); |
| 1714 | |
| 1715 | if (likely(hlist_empty(&head))) |
| 1716 | return; |
| 1717 | |
| 1718 | synchronize_rcu_expedited(); |
| 1719 | |
| 1720 | hlist_for_each_entry_safe(m, p, &head, mnt_umount) { |
| 1721 | hlist_del(n: &m->mnt_umount); |
| 1722 | mntput(&m->mnt); |
| 1723 | } |
| 1724 | } |
| 1725 | |
| 1726 | static inline void namespace_lock(void) |
| 1727 | { |
| 1728 | down_write(sem: &namespace_sem); |
| 1729 | } |
| 1730 | |
| 1731 | enum umount_tree_flags { |
| 1732 | UMOUNT_SYNC = 1, |
| 1733 | UMOUNT_PROPAGATE = 2, |
| 1734 | UMOUNT_CONNECTED = 4, |
| 1735 | }; |
| 1736 | |
| 1737 | static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how) |
| 1738 | { |
| 1739 | /* Leaving mounts connected is only valid for lazy umounts */ |
| 1740 | if (how & UMOUNT_SYNC) |
| 1741 | return true; |
| 1742 | |
| 1743 | /* A mount without a parent has nothing to be connected to */ |
| 1744 | if (!mnt_has_parent(mnt)) |
| 1745 | return true; |
| 1746 | |
| 1747 | /* Because the reference counting rules change when mounts are |
| 1748 | * unmounted and connected, umounted mounts may not be |
| 1749 | * connected to mounted mounts. |
| 1750 | */ |
| 1751 | if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT)) |
| 1752 | return true; |
| 1753 | |
| 1754 | /* Has it been requested that the mount remain connected? */ |
| 1755 | if (how & UMOUNT_CONNECTED) |
| 1756 | return false; |
| 1757 | |
| 1758 | /* Is the mount locked such that it needs to remain connected? */ |
| 1759 | if (IS_MNT_LOCKED(mnt)) |
| 1760 | return false; |
| 1761 | |
| 1762 | /* By default disconnect the mount */ |
| 1763 | return true; |
| 1764 | } |
| 1765 | |
| 1766 | /* |
| 1767 | * mount_lock must be held |
| 1768 | * namespace_sem must be held for write |
| 1769 | */ |
| 1770 | static void umount_tree(struct mount *mnt, enum umount_tree_flags how) |
| 1771 | { |
| 1772 | LIST_HEAD(tmp_list); |
| 1773 | struct mount *p; |
| 1774 | |
| 1775 | if (how & UMOUNT_PROPAGATE) |
| 1776 | propagate_mount_unlock(mnt); |
| 1777 | |
| 1778 | /* Gather the mounts to umount */ |
| 1779 | for (p = mnt; p; p = next_mnt(p, root: mnt)) { |
| 1780 | p->mnt.mnt_flags |= MNT_UMOUNT; |
| 1781 | if (mnt_ns_attached(mnt: p)) |
| 1782 | move_from_ns(mnt: p); |
| 1783 | list_add_tail(new: &p->mnt_list, head: &tmp_list); |
| 1784 | } |
| 1785 | |
| 1786 | /* Hide the mounts from mnt_mounts */ |
| 1787 | list_for_each_entry(p, &tmp_list, mnt_list) { |
| 1788 | list_del_init(entry: &p->mnt_child); |
| 1789 | } |
| 1790 | |
| 1791 | /* Add propagated mounts to the tmp_list */ |
| 1792 | if (how & UMOUNT_PROPAGATE) |
| 1793 | propagate_umount(&tmp_list); |
| 1794 | |
| 1795 | bulk_make_private(&tmp_list); |
| 1796 | |
| 1797 | while (!list_empty(head: &tmp_list)) { |
| 1798 | struct mnt_namespace *ns; |
| 1799 | bool disconnect; |
| 1800 | p = list_first_entry(&tmp_list, struct mount, mnt_list); |
| 1801 | list_del_init(entry: &p->mnt_expire); |
| 1802 | list_del_init(entry: &p->mnt_list); |
| 1803 | ns = p->mnt_ns; |
| 1804 | if (ns) { |
| 1805 | ns->nr_mounts--; |
| 1806 | __touch_mnt_namespace(ns); |
| 1807 | } |
| 1808 | p->mnt_ns = NULL; |
| 1809 | if (how & UMOUNT_SYNC) |
| 1810 | p->mnt.mnt_flags |= MNT_SYNC_UMOUNT; |
| 1811 | |
| 1812 | disconnect = disconnect_mount(mnt: p, how); |
| 1813 | if (mnt_has_parent(mnt: p)) { |
| 1814 | if (!disconnect) { |
| 1815 | /* Don't forget about p */ |
| 1816 | list_add_tail(new: &p->mnt_child, head: &p->mnt_parent->mnt_mounts); |
| 1817 | } else { |
| 1818 | umount_mnt(mnt: p); |
| 1819 | } |
| 1820 | } |
| 1821 | if (disconnect) |
| 1822 | hlist_add_head(n: &p->mnt_umount, h: &unmounted); |
| 1823 | |
| 1824 | /* |
| 1825 | * At this point p->mnt_ns is NULL, notification will be queued |
| 1826 | * only if |
| 1827 | * |
| 1828 | * - p->prev_ns is non-NULL *and* |
| 1829 | * - p->prev_ns->n_fsnotify_marks is non-NULL |
| 1830 | * |
| 1831 | * This will preclude queuing the mount if this is a cleanup |
| 1832 | * after a failed copy_tree() or destruction of an anonymous |
| 1833 | * namespace, etc. |
| 1834 | */ |
| 1835 | mnt_notify_add(m: p); |
| 1836 | } |
| 1837 | } |
| 1838 | |
| 1839 | static void shrink_submounts(struct mount *mnt); |
| 1840 | |
| 1841 | static int do_umount_root(struct super_block *sb) |
| 1842 | { |
| 1843 | int ret = 0; |
| 1844 | |
| 1845 | down_write(sem: &sb->s_umount); |
| 1846 | if (!sb_rdonly(sb)) { |
| 1847 | struct fs_context *fc; |
| 1848 | |
| 1849 | fc = fs_context_for_reconfigure(dentry: sb->s_root, SB_RDONLY, |
| 1850 | SB_RDONLY); |
| 1851 | if (IS_ERR(ptr: fc)) { |
| 1852 | ret = PTR_ERR(ptr: fc); |
| 1853 | } else { |
| 1854 | ret = parse_monolithic_mount_data(fc, NULL); |
| 1855 | if (!ret) |
| 1856 | ret = reconfigure_super(fc); |
| 1857 | put_fs_context(fc); |
| 1858 | } |
| 1859 | } |
| 1860 | up_write(sem: &sb->s_umount); |
| 1861 | return ret; |
| 1862 | } |
| 1863 | |
| 1864 | static int do_umount(struct mount *mnt, int flags) |
| 1865 | { |
| 1866 | struct super_block *sb = mnt->mnt.mnt_sb; |
| 1867 | int retval; |
| 1868 | |
| 1869 | retval = security_sb_umount(mnt: &mnt->mnt, flags); |
| 1870 | if (retval) |
| 1871 | return retval; |
| 1872 | |
| 1873 | /* |
| 1874 | * Allow userspace to request a mountpoint be expired rather than |
| 1875 | * unmounting unconditionally. Unmount only happens if: |
| 1876 | * (1) the mark is already set (the mark is cleared by mntput()) |
| 1877 | * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount] |
| 1878 | */ |
| 1879 | if (flags & MNT_EXPIRE) { |
| 1880 | if (&mnt->mnt == current->fs->root.mnt || |
| 1881 | flags & (MNT_FORCE | MNT_DETACH)) |
| 1882 | return -EINVAL; |
| 1883 | |
| 1884 | /* |
| 1885 | * probably don't strictly need the lock here if we examined |
| 1886 | * all race cases, but it's a slowpath. |
| 1887 | */ |
| 1888 | lock_mount_hash(); |
| 1889 | if (!list_empty(head: &mnt->mnt_mounts) || mnt_get_count(mnt) != 2) { |
| 1890 | unlock_mount_hash(); |
| 1891 | return -EBUSY; |
| 1892 | } |
| 1893 | unlock_mount_hash(); |
| 1894 | |
| 1895 | if (!xchg(&mnt->mnt_expiry_mark, 1)) |
| 1896 | return -EAGAIN; |
| 1897 | } |
| 1898 | |
| 1899 | /* |
| 1900 | * If we may have to abort operations to get out of this |
| 1901 | * mount, and they will themselves hold resources we must |
| 1902 | * allow the fs to do things. In the Unix tradition of |
| 1903 | * 'Gee thats tricky lets do it in userspace' the umount_begin |
| 1904 | * might fail to complete on the first run through as other tasks |
| 1905 | * must return, and the like. Thats for the mount program to worry |
| 1906 | * about for the moment. |
| 1907 | */ |
| 1908 | |
| 1909 | if (flags & MNT_FORCE && sb->s_op->umount_begin) { |
| 1910 | sb->s_op->umount_begin(sb); |
| 1911 | } |
| 1912 | |
| 1913 | /* |
| 1914 | * No sense to grab the lock for this test, but test itself looks |
| 1915 | * somewhat bogus. Suggestions for better replacement? |
| 1916 | * Ho-hum... In principle, we might treat that as umount + switch |
| 1917 | * to rootfs. GC would eventually take care of the old vfsmount. |
| 1918 | * Actually it makes sense, especially if rootfs would contain a |
| 1919 | * /reboot - static binary that would close all descriptors and |
| 1920 | * call reboot(9). Then init(8) could umount root and exec /reboot. |
| 1921 | */ |
| 1922 | if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) { |
| 1923 | /* |
| 1924 | * Special case for "unmounting" root ... |
| 1925 | * we just try to remount it readonly. |
| 1926 | */ |
| 1927 | if (!ns_capable(ns: sb->s_user_ns, CAP_SYS_ADMIN)) |
| 1928 | return -EPERM; |
| 1929 | return do_umount_root(sb); |
| 1930 | } |
| 1931 | |
| 1932 | namespace_lock(); |
| 1933 | lock_mount_hash(); |
| 1934 | |
| 1935 | /* Repeat the earlier racy checks, now that we are holding the locks */ |
| 1936 | retval = -EINVAL; |
| 1937 | if (!check_mnt(mnt)) |
| 1938 | goto out; |
| 1939 | |
| 1940 | if (mnt->mnt.mnt_flags & MNT_LOCKED) |
| 1941 | goto out; |
| 1942 | |
| 1943 | if (!mnt_has_parent(mnt)) /* not the absolute root */ |
| 1944 | goto out; |
| 1945 | |
| 1946 | event++; |
| 1947 | if (flags & MNT_DETACH) { |
| 1948 | umount_tree(mnt, how: UMOUNT_PROPAGATE); |
| 1949 | retval = 0; |
| 1950 | } else { |
| 1951 | smp_mb(); // paired with __legitimize_mnt() |
| 1952 | shrink_submounts(mnt); |
| 1953 | retval = -EBUSY; |
| 1954 | if (!propagate_mount_busy(mnt, 2)) { |
| 1955 | umount_tree(mnt, how: UMOUNT_PROPAGATE|UMOUNT_SYNC); |
| 1956 | retval = 0; |
| 1957 | } |
| 1958 | } |
| 1959 | out: |
| 1960 | unlock_mount_hash(); |
| 1961 | namespace_unlock(); |
| 1962 | return retval; |
| 1963 | } |
| 1964 | |
| 1965 | /* |
| 1966 | * __detach_mounts - lazily unmount all mounts on the specified dentry |
| 1967 | * |
| 1968 | * During unlink, rmdir, and d_drop it is possible to loose the path |
| 1969 | * to an existing mountpoint, and wind up leaking the mount. |
| 1970 | * detach_mounts allows lazily unmounting those mounts instead of |
| 1971 | * leaking them. |
| 1972 | * |
| 1973 | * The caller may hold dentry->d_inode->i_rwsem. |
| 1974 | */ |
| 1975 | void __detach_mounts(struct dentry *dentry) |
| 1976 | { |
| 1977 | struct pinned_mountpoint mp = {}; |
| 1978 | struct mount *mnt; |
| 1979 | |
| 1980 | guard(namespace_excl)(); |
| 1981 | guard(mount_writer)(); |
| 1982 | |
| 1983 | if (!lookup_mountpoint(dentry, m: &mp)) |
| 1984 | return; |
| 1985 | |
| 1986 | event++; |
| 1987 | while (mp.node.next) { |
| 1988 | mnt = hlist_entry(mp.node.next, struct mount, mnt_mp_list); |
| 1989 | if (mnt->mnt.mnt_flags & MNT_UMOUNT) { |
| 1990 | umount_mnt(mnt); |
| 1991 | hlist_add_head(n: &mnt->mnt_umount, h: &unmounted); |
| 1992 | } |
| 1993 | else umount_tree(mnt, how: UMOUNT_CONNECTED); |
| 1994 | } |
| 1995 | unpin_mountpoint(m: &mp); |
| 1996 | } |
| 1997 | |
| 1998 | /* |
| 1999 | * Is the caller allowed to modify his namespace? |
| 2000 | */ |
| 2001 | bool may_mount(void) |
| 2002 | { |
| 2003 | return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN); |
| 2004 | } |
| 2005 | |
| 2006 | static void warn_mandlock(void) |
| 2007 | { |
| 2008 | pr_warn_once("=======================================================\n" |
| 2009 | "WARNING: The mand mount option has been deprecated and\n" |
| 2010 | " and is ignored by this kernel. Remove the mand\n" |
| 2011 | " option from the mount to silence this warning.\n" |
| 2012 | "=======================================================\n" ); |
| 2013 | } |
| 2014 | |
| 2015 | static int can_umount(const struct path *path, int flags) |
| 2016 | { |
| 2017 | struct mount *mnt = real_mount(mnt: path->mnt); |
| 2018 | struct super_block *sb = path->dentry->d_sb; |
| 2019 | |
| 2020 | if (!may_mount()) |
| 2021 | return -EPERM; |
| 2022 | if (!path_mounted(path)) |
| 2023 | return -EINVAL; |
| 2024 | if (!check_mnt(mnt)) |
| 2025 | return -EINVAL; |
| 2026 | if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */ |
| 2027 | return -EINVAL; |
| 2028 | if (flags & MNT_FORCE && !ns_capable(ns: sb->s_user_ns, CAP_SYS_ADMIN)) |
| 2029 | return -EPERM; |
| 2030 | return 0; |
| 2031 | } |
| 2032 | |
| 2033 | // caller is responsible for flags being sane |
| 2034 | int path_umount(const struct path *path, int flags) |
| 2035 | { |
| 2036 | struct mount *mnt = real_mount(mnt: path->mnt); |
| 2037 | int ret; |
| 2038 | |
| 2039 | ret = can_umount(path, flags); |
| 2040 | if (!ret) |
| 2041 | ret = do_umount(mnt, flags); |
| 2042 | |
| 2043 | /* we mustn't call path_put() as that would clear mnt_expiry_mark */ |
| 2044 | dput(path->dentry); |
| 2045 | mntput_no_expire(mnt); |
| 2046 | return ret; |
| 2047 | } |
| 2048 | |
| 2049 | static int ksys_umount(char __user *name, int flags) |
| 2050 | { |
| 2051 | int lookup_flags = LOOKUP_MOUNTPOINT; |
| 2052 | struct path path; |
| 2053 | int ret; |
| 2054 | |
| 2055 | // basic validity checks done first |
| 2056 | if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW)) |
| 2057 | return -EINVAL; |
| 2058 | |
| 2059 | if (!(flags & UMOUNT_NOFOLLOW)) |
| 2060 | lookup_flags |= LOOKUP_FOLLOW; |
| 2061 | ret = user_path_at(AT_FDCWD, name, lookup_flags, &path); |
| 2062 | if (ret) |
| 2063 | return ret; |
| 2064 | return path_umount(path: &path, flags); |
| 2065 | } |
| 2066 | |
| 2067 | SYSCALL_DEFINE2(umount, char __user *, name, int, flags) |
| 2068 | { |
| 2069 | return ksys_umount(name, flags); |
| 2070 | } |
| 2071 | |
| 2072 | #ifdef __ARCH_WANT_SYS_OLDUMOUNT |
| 2073 | |
| 2074 | /* |
| 2075 | * The 2.0 compatible umount. No flags. |
| 2076 | */ |
| 2077 | SYSCALL_DEFINE1(oldumount, char __user *, name) |
| 2078 | { |
| 2079 | return ksys_umount(name, flags: 0); |
| 2080 | } |
| 2081 | |
| 2082 | #endif |
| 2083 | |
| 2084 | static bool is_mnt_ns_file(struct dentry *dentry) |
| 2085 | { |
| 2086 | struct ns_common *ns; |
| 2087 | |
| 2088 | /* Is this a proxy for a mount namespace? */ |
| 2089 | if (dentry->d_op != &ns_dentry_operations) |
| 2090 | return false; |
| 2091 | |
| 2092 | ns = d_inode(dentry)->i_private; |
| 2093 | |
| 2094 | return ns->ops == &mntns_operations; |
| 2095 | } |
| 2096 | |
| 2097 | struct ns_common *from_mnt_ns(struct mnt_namespace *mnt) |
| 2098 | { |
| 2099 | return &mnt->ns; |
| 2100 | } |
| 2101 | |
| 2102 | struct mnt_namespace *get_sequential_mnt_ns(struct mnt_namespace *mntns, bool previous) |
| 2103 | { |
| 2104 | struct ns_common *ns; |
| 2105 | |
| 2106 | guard(rcu)(); |
| 2107 | |
| 2108 | for (;;) { |
| 2109 | ns = ns_tree_adjoined_rcu(mntns, previous); |
| 2110 | if (IS_ERR(ptr: ns)) |
| 2111 | return ERR_CAST(ptr: ns); |
| 2112 | |
| 2113 | mntns = to_mnt_ns(ns); |
| 2114 | |
| 2115 | /* |
| 2116 | * The last passive reference count is put with RCU |
| 2117 | * delay so accessing the mount namespace is not just |
| 2118 | * safe but all relevant members are still valid. |
| 2119 | */ |
| 2120 | if (!ns_capable_noaudit(ns: mntns->user_ns, CAP_SYS_ADMIN)) |
| 2121 | continue; |
| 2122 | |
| 2123 | /* |
| 2124 | * We need an active reference count as we're persisting |
| 2125 | * the mount namespace and it might already be on its |
| 2126 | * deathbed. |
| 2127 | */ |
| 2128 | if (!ns_ref_get(mntns)) |
| 2129 | continue; |
| 2130 | |
| 2131 | return mntns; |
| 2132 | } |
| 2133 | } |
| 2134 | |
| 2135 | struct mnt_namespace *mnt_ns_from_dentry(struct dentry *dentry) |
| 2136 | { |
| 2137 | if (!is_mnt_ns_file(dentry)) |
| 2138 | return NULL; |
| 2139 | |
| 2140 | return to_mnt_ns(get_proc_ns(dentry->d_inode)); |
| 2141 | } |
| 2142 | |
| 2143 | static bool mnt_ns_loop(struct dentry *dentry) |
| 2144 | { |
| 2145 | /* Could bind mounting the mount namespace inode cause a |
| 2146 | * mount namespace loop? |
| 2147 | */ |
| 2148 | struct mnt_namespace *mnt_ns = mnt_ns_from_dentry(dentry); |
| 2149 | |
| 2150 | if (!mnt_ns) |
| 2151 | return false; |
| 2152 | |
| 2153 | return current->nsproxy->mnt_ns->ns.ns_id >= mnt_ns->ns.ns_id; |
| 2154 | } |
| 2155 | |
| 2156 | struct mount *copy_tree(struct mount *src_root, struct dentry *dentry, |
| 2157 | int flag) |
| 2158 | { |
| 2159 | struct mount *res, *src_parent, *src_root_child, *src_mnt, |
| 2160 | *dst_parent, *dst_mnt; |
| 2161 | |
| 2162 | if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(src_root)) |
| 2163 | return ERR_PTR(error: -EINVAL); |
| 2164 | |
| 2165 | if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry)) |
| 2166 | return ERR_PTR(error: -EINVAL); |
| 2167 | |
| 2168 | res = dst_mnt = clone_mnt(old: src_root, root: dentry, flag); |
| 2169 | if (IS_ERR(ptr: dst_mnt)) |
| 2170 | return dst_mnt; |
| 2171 | |
| 2172 | src_parent = src_root; |
| 2173 | |
| 2174 | list_for_each_entry(src_root_child, &src_root->mnt_mounts, mnt_child) { |
| 2175 | if (!is_subdir(src_root_child->mnt_mountpoint, dentry)) |
| 2176 | continue; |
| 2177 | |
| 2178 | for (src_mnt = src_root_child; src_mnt; |
| 2179 | src_mnt = next_mnt(p: src_mnt, root: src_root_child)) { |
| 2180 | if (!(flag & CL_COPY_UNBINDABLE) && |
| 2181 | IS_MNT_UNBINDABLE(src_mnt)) { |
| 2182 | if (src_mnt->mnt.mnt_flags & MNT_LOCKED) { |
| 2183 | /* Both unbindable and locked. */ |
| 2184 | dst_mnt = ERR_PTR(error: -EPERM); |
| 2185 | goto out; |
| 2186 | } else { |
| 2187 | src_mnt = skip_mnt_tree(p: src_mnt); |
| 2188 | continue; |
| 2189 | } |
| 2190 | } |
| 2191 | if (!(flag & CL_COPY_MNT_NS_FILE) && |
| 2192 | is_mnt_ns_file(dentry: src_mnt->mnt.mnt_root)) { |
| 2193 | src_mnt = skip_mnt_tree(p: src_mnt); |
| 2194 | continue; |
| 2195 | } |
| 2196 | while (src_parent != src_mnt->mnt_parent) { |
| 2197 | src_parent = src_parent->mnt_parent; |
| 2198 | dst_mnt = dst_mnt->mnt_parent; |
| 2199 | } |
| 2200 | |
| 2201 | src_parent = src_mnt; |
| 2202 | dst_parent = dst_mnt; |
| 2203 | dst_mnt = clone_mnt(old: src_mnt, root: src_mnt->mnt.mnt_root, flag); |
| 2204 | if (IS_ERR(ptr: dst_mnt)) |
| 2205 | goto out; |
| 2206 | lock_mount_hash(); |
| 2207 | if (src_mnt->mnt.mnt_flags & MNT_LOCKED) |
| 2208 | dst_mnt->mnt.mnt_flags |= MNT_LOCKED; |
| 2209 | if (unlikely(flag & CL_EXPIRE)) { |
| 2210 | /* stick the duplicate mount on the same expiry |
| 2211 | * list as the original if that was on one */ |
| 2212 | if (!list_empty(head: &src_mnt->mnt_expire)) |
| 2213 | list_add(new: &dst_mnt->mnt_expire, |
| 2214 | head: &src_mnt->mnt_expire); |
| 2215 | } |
| 2216 | attach_mnt(mnt: dst_mnt, parent: dst_parent, mp: src_parent->mnt_mp); |
| 2217 | unlock_mount_hash(); |
| 2218 | } |
| 2219 | } |
| 2220 | return res; |
| 2221 | |
| 2222 | out: |
| 2223 | if (res) { |
| 2224 | lock_mount_hash(); |
| 2225 | umount_tree(mnt: res, how: UMOUNT_SYNC); |
| 2226 | unlock_mount_hash(); |
| 2227 | } |
| 2228 | return dst_mnt; |
| 2229 | } |
| 2230 | |
| 2231 | static inline bool extend_array(struct path **res, struct path **to_free, |
| 2232 | unsigned n, unsigned *count, unsigned new_count) |
| 2233 | { |
| 2234 | struct path *p; |
| 2235 | |
| 2236 | if (likely(n < *count)) |
| 2237 | return true; |
| 2238 | p = kmalloc_array(new_count, sizeof(struct path), GFP_KERNEL); |
| 2239 | if (p && *count) |
| 2240 | memcpy(to: p, from: *res, len: *count * sizeof(struct path)); |
| 2241 | *count = new_count; |
| 2242 | kfree(objp: *to_free); |
| 2243 | *to_free = *res = p; |
| 2244 | return p; |
| 2245 | } |
| 2246 | |
| 2247 | const struct path *collect_paths(const struct path *path, |
| 2248 | struct path *prealloc, unsigned count) |
| 2249 | { |
| 2250 | struct mount *root = real_mount(mnt: path->mnt); |
| 2251 | struct mount *child; |
| 2252 | struct path *res = prealloc, *to_free = NULL; |
| 2253 | unsigned n = 0; |
| 2254 | |
| 2255 | guard(namespace_shared)(); |
| 2256 | |
| 2257 | if (!check_mnt(mnt: root)) |
| 2258 | return ERR_PTR(error: -EINVAL); |
| 2259 | if (!extend_array(res: &res, to_free: &to_free, n: 0, count: &count, new_count: 32)) |
| 2260 | return ERR_PTR(error: -ENOMEM); |
| 2261 | res[n++] = *path; |
| 2262 | list_for_each_entry(child, &root->mnt_mounts, mnt_child) { |
| 2263 | if (!is_subdir(child->mnt_mountpoint, path->dentry)) |
| 2264 | continue; |
| 2265 | for (struct mount *m = child; m; m = next_mnt(p: m, root: child)) { |
| 2266 | if (!extend_array(res: &res, to_free: &to_free, n, count: &count, new_count: 2 * count)) |
| 2267 | return ERR_PTR(error: -ENOMEM); |
| 2268 | res[n].mnt = &m->mnt; |
| 2269 | res[n].dentry = m->mnt.mnt_root; |
| 2270 | n++; |
| 2271 | } |
| 2272 | } |
| 2273 | if (!extend_array(res: &res, to_free: &to_free, n, count: &count, new_count: count + 1)) |
| 2274 | return ERR_PTR(error: -ENOMEM); |
| 2275 | memset(s: res + n, c: 0, n: (count - n) * sizeof(struct path)); |
| 2276 | for (struct path *p = res; p->mnt; p++) |
| 2277 | path_get(p); |
| 2278 | return res; |
| 2279 | } |
| 2280 | |
| 2281 | void drop_collected_paths(const struct path *paths, const struct path *prealloc) |
| 2282 | { |
| 2283 | for (const struct path *p = paths; p->mnt; p++) |
| 2284 | path_put(p); |
| 2285 | if (paths != prealloc) |
| 2286 | kfree(objp: paths); |
| 2287 | } |
| 2288 | |
| 2289 | static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool); |
| 2290 | |
| 2291 | void dissolve_on_fput(struct vfsmount *mnt) |
| 2292 | { |
| 2293 | struct mount *m = real_mount(mnt); |
| 2294 | |
| 2295 | /* |
| 2296 | * m used to be the root of anon namespace; if it still is one, |
| 2297 | * we need to dissolve the mount tree and free that namespace. |
| 2298 | * Let's try to avoid taking namespace_sem if we can determine |
| 2299 | * that there's nothing to do without it - rcu_read_lock() is |
| 2300 | * enough to make anon_ns_root() memory-safe and once m has |
| 2301 | * left its namespace, it's no longer our concern, since it will |
| 2302 | * never become a root of anon ns again. |
| 2303 | */ |
| 2304 | |
| 2305 | scoped_guard(rcu) { |
| 2306 | if (!anon_ns_root(m)) |
| 2307 | return; |
| 2308 | } |
| 2309 | |
| 2310 | scoped_guard(namespace_excl) { |
| 2311 | if (!anon_ns_root(m)) |
| 2312 | return; |
| 2313 | |
| 2314 | emptied_ns = m->mnt_ns; |
| 2315 | lock_mount_hash(); |
| 2316 | umount_tree(mnt: m, how: UMOUNT_CONNECTED); |
| 2317 | unlock_mount_hash(); |
| 2318 | } |
| 2319 | } |
| 2320 | |
| 2321 | /* locks: namespace_shared && pinned(mnt) || mount_locked_reader */ |
| 2322 | static bool __has_locked_children(struct mount *mnt, struct dentry *dentry) |
| 2323 | { |
| 2324 | struct mount *child; |
| 2325 | |
| 2326 | list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { |
| 2327 | if (!is_subdir(child->mnt_mountpoint, dentry)) |
| 2328 | continue; |
| 2329 | |
| 2330 | if (child->mnt.mnt_flags & MNT_LOCKED) |
| 2331 | return true; |
| 2332 | } |
| 2333 | return false; |
| 2334 | } |
| 2335 | |
| 2336 | bool has_locked_children(struct mount *mnt, struct dentry *dentry) |
| 2337 | { |
| 2338 | guard(mount_locked_reader)(); |
| 2339 | return __has_locked_children(mnt, dentry); |
| 2340 | } |
| 2341 | |
| 2342 | /* |
| 2343 | * Check that there aren't references to earlier/same mount namespaces in the |
| 2344 | * specified subtree. Such references can act as pins for mount namespaces |
| 2345 | * that aren't checked by the mount-cycle checking code, thereby allowing |
| 2346 | * cycles to be made. |
| 2347 | * |
| 2348 | * locks: mount_locked_reader || namespace_shared && pinned(subtree) |
| 2349 | */ |
| 2350 | static bool check_for_nsfs_mounts(struct mount *subtree) |
| 2351 | { |
| 2352 | for (struct mount *p = subtree; p; p = next_mnt(p, root: subtree)) |
| 2353 | if (mnt_ns_loop(dentry: p->mnt.mnt_root)) |
| 2354 | return false; |
| 2355 | return true; |
| 2356 | } |
| 2357 | |
| 2358 | /** |
| 2359 | * clone_private_mount - create a private clone of a path |
| 2360 | * @path: path to clone |
| 2361 | * |
| 2362 | * This creates a new vfsmount, which will be the clone of @path. The new mount |
| 2363 | * will not be attached anywhere in the namespace and will be private (i.e. |
| 2364 | * changes to the originating mount won't be propagated into this). |
| 2365 | * |
| 2366 | * This assumes caller has called or done the equivalent of may_mount(). |
| 2367 | * |
| 2368 | * Release with mntput(). |
| 2369 | */ |
| 2370 | struct vfsmount *clone_private_mount(const struct path *path) |
| 2371 | { |
| 2372 | struct mount *old_mnt = real_mount(mnt: path->mnt); |
| 2373 | struct mount *new_mnt; |
| 2374 | |
| 2375 | guard(namespace_shared)(); |
| 2376 | |
| 2377 | if (IS_MNT_UNBINDABLE(old_mnt)) |
| 2378 | return ERR_PTR(error: -EINVAL); |
| 2379 | |
| 2380 | /* |
| 2381 | * Make sure the source mount is acceptable. |
| 2382 | * Anything mounted in our mount namespace is allowed. |
| 2383 | * Otherwise, it must be the root of an anonymous mount |
| 2384 | * namespace, and we need to make sure no namespace |
| 2385 | * loops get created. |
| 2386 | */ |
| 2387 | if (!check_mnt(mnt: old_mnt)) { |
| 2388 | if (!anon_ns_root(m: old_mnt)) |
| 2389 | return ERR_PTR(error: -EINVAL); |
| 2390 | |
| 2391 | if (!check_for_nsfs_mounts(subtree: old_mnt)) |
| 2392 | return ERR_PTR(error: -EINVAL); |
| 2393 | } |
| 2394 | |
| 2395 | if (!ns_capable(ns: old_mnt->mnt_ns->user_ns, CAP_SYS_ADMIN)) |
| 2396 | return ERR_PTR(error: -EPERM); |
| 2397 | |
| 2398 | if (__has_locked_children(mnt: old_mnt, dentry: path->dentry)) |
| 2399 | return ERR_PTR(error: -EINVAL); |
| 2400 | |
| 2401 | new_mnt = clone_mnt(old: old_mnt, root: path->dentry, CL_PRIVATE); |
| 2402 | if (IS_ERR(ptr: new_mnt)) |
| 2403 | return ERR_PTR(error: -EINVAL); |
| 2404 | |
| 2405 | /* Longterm mount to be removed by kern_unmount*() */ |
| 2406 | new_mnt->mnt_ns = MNT_NS_INTERNAL; |
| 2407 | return &new_mnt->mnt; |
| 2408 | } |
| 2409 | EXPORT_SYMBOL_GPL(clone_private_mount); |
| 2410 | |
| 2411 | static void lock_mnt_tree(struct mount *mnt) |
| 2412 | { |
| 2413 | struct mount *p; |
| 2414 | |
| 2415 | for (p = mnt; p; p = next_mnt(p, root: mnt)) { |
| 2416 | int flags = p->mnt.mnt_flags; |
| 2417 | /* Don't allow unprivileged users to change mount flags */ |
| 2418 | flags |= MNT_LOCK_ATIME; |
| 2419 | |
| 2420 | if (flags & MNT_READONLY) |
| 2421 | flags |= MNT_LOCK_READONLY; |
| 2422 | |
| 2423 | if (flags & MNT_NODEV) |
| 2424 | flags |= MNT_LOCK_NODEV; |
| 2425 | |
| 2426 | if (flags & MNT_NOSUID) |
| 2427 | flags |= MNT_LOCK_NOSUID; |
| 2428 | |
| 2429 | if (flags & MNT_NOEXEC) |
| 2430 | flags |= MNT_LOCK_NOEXEC; |
| 2431 | /* Don't allow unprivileged users to reveal what is under a mount */ |
| 2432 | if (list_empty(head: &p->mnt_expire) && p != mnt) |
| 2433 | flags |= MNT_LOCKED; |
| 2434 | p->mnt.mnt_flags = flags; |
| 2435 | } |
| 2436 | } |
| 2437 | |
| 2438 | static void cleanup_group_ids(struct mount *mnt, struct mount *end) |
| 2439 | { |
| 2440 | struct mount *p; |
| 2441 | |
| 2442 | for (p = mnt; p != end; p = next_mnt(p, root: mnt)) { |
| 2443 | if (p->mnt_group_id && !IS_MNT_SHARED(p)) |
| 2444 | mnt_release_group_id(mnt: p); |
| 2445 | } |
| 2446 | } |
| 2447 | |
| 2448 | static int invent_group_ids(struct mount *mnt, bool recurse) |
| 2449 | { |
| 2450 | struct mount *p; |
| 2451 | |
| 2452 | for (p = mnt; p; p = recurse ? next_mnt(p, root: mnt) : NULL) { |
| 2453 | if (!p->mnt_group_id) { |
| 2454 | int err = mnt_alloc_group_id(mnt: p); |
| 2455 | if (err) { |
| 2456 | cleanup_group_ids(mnt, end: p); |
| 2457 | return err; |
| 2458 | } |
| 2459 | } |
| 2460 | } |
| 2461 | |
| 2462 | return 0; |
| 2463 | } |
| 2464 | |
| 2465 | int count_mounts(struct mnt_namespace *ns, struct mount *mnt) |
| 2466 | { |
| 2467 | unsigned int max = READ_ONCE(sysctl_mount_max); |
| 2468 | unsigned int mounts = 0; |
| 2469 | struct mount *p; |
| 2470 | |
| 2471 | if (ns->nr_mounts >= max) |
| 2472 | return -ENOSPC; |
| 2473 | max -= ns->nr_mounts; |
| 2474 | if (ns->pending_mounts >= max) |
| 2475 | return -ENOSPC; |
| 2476 | max -= ns->pending_mounts; |
| 2477 | |
| 2478 | for (p = mnt; p; p = next_mnt(p, root: mnt)) |
| 2479 | mounts++; |
| 2480 | |
| 2481 | if (mounts > max) |
| 2482 | return -ENOSPC; |
| 2483 | |
| 2484 | ns->pending_mounts += mounts; |
| 2485 | return 0; |
| 2486 | } |
| 2487 | |
| 2488 | enum mnt_tree_flags_t { |
| 2489 | MNT_TREE_BENEATH = BIT(0), |
| 2490 | MNT_TREE_PROPAGATION = BIT(1), |
| 2491 | }; |
| 2492 | |
| 2493 | /** |
| 2494 | * attach_recursive_mnt - attach a source mount tree |
| 2495 | * @source_mnt: mount tree to be attached |
| 2496 | * @dest: the context for mounting at the place where the tree should go |
| 2497 | * |
| 2498 | * NOTE: in the table below explains the semantics when a source mount |
| 2499 | * of a given type is attached to a destination mount of a given type. |
| 2500 | * --------------------------------------------------------------------------- |
| 2501 | * | BIND MOUNT OPERATION | |
| 2502 | * |************************************************************************** |
| 2503 | * | source-->| shared | private | slave | unbindable | |
| 2504 | * | dest | | | | | |
| 2505 | * | | | | | | | |
| 2506 | * | v | | | | | |
| 2507 | * |************************************************************************** |
| 2508 | * | shared | shared (++) | shared (+) | shared(+++)| invalid | |
| 2509 | * | | | | | | |
| 2510 | * |non-shared| shared (+) | private | slave (*) | invalid | |
| 2511 | * *************************************************************************** |
| 2512 | * A bind operation clones the source mount and mounts the clone on the |
| 2513 | * destination mount. |
| 2514 | * |
| 2515 | * (++) the cloned mount is propagated to all the mounts in the propagation |
| 2516 | * tree of the destination mount and the cloned mount is added to |
| 2517 | * the peer group of the source mount. |
| 2518 | * (+) the cloned mount is created under the destination mount and is marked |
| 2519 | * as shared. The cloned mount is added to the peer group of the source |
| 2520 | * mount. |
| 2521 | * (+++) the mount is propagated to all the mounts in the propagation tree |
| 2522 | * of the destination mount and the cloned mount is made slave |
| 2523 | * of the same master as that of the source mount. The cloned mount |
| 2524 | * is marked as 'shared and slave'. |
| 2525 | * (*) the cloned mount is made a slave of the same master as that of the |
| 2526 | * source mount. |
| 2527 | * |
| 2528 | * --------------------------------------------------------------------------- |
| 2529 | * | MOVE MOUNT OPERATION | |
| 2530 | * |************************************************************************** |
| 2531 | * | source-->| shared | private | slave | unbindable | |
| 2532 | * | dest | | | | | |
| 2533 | * | | | | | | | |
| 2534 | * | v | | | | | |
| 2535 | * |************************************************************************** |
| 2536 | * | shared | shared (+) | shared (+) | shared(+++) | invalid | |
| 2537 | * | | | | | | |
| 2538 | * |non-shared| shared (+*) | private | slave (*) | unbindable | |
| 2539 | * *************************************************************************** |
| 2540 | * |
| 2541 | * (+) the mount is moved to the destination. And is then propagated to |
| 2542 | * all the mounts in the propagation tree of the destination mount. |
| 2543 | * (+*) the mount is moved to the destination. |
| 2544 | * (+++) the mount is moved to the destination and is then propagated to |
| 2545 | * all the mounts belonging to the destination mount's propagation tree. |
| 2546 | * the mount is marked as 'shared and slave'. |
| 2547 | * (*) the mount continues to be a slave at the new location. |
| 2548 | * |
| 2549 | * if the source mount is a tree, the operations explained above is |
| 2550 | * applied to each mount in the tree. |
| 2551 | * Must be called without spinlocks held, since this function can sleep |
| 2552 | * in allocations. |
| 2553 | * |
| 2554 | * Context: The function expects namespace_lock() to be held. |
| 2555 | * Return: If @source_mnt was successfully attached 0 is returned. |
| 2556 | * Otherwise a negative error code is returned. |
| 2557 | */ |
| 2558 | static int attach_recursive_mnt(struct mount *source_mnt, |
| 2559 | const struct pinned_mountpoint *dest) |
| 2560 | { |
| 2561 | struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns; |
| 2562 | struct mount *dest_mnt = dest->parent; |
| 2563 | struct mountpoint *dest_mp = dest->mp; |
| 2564 | HLIST_HEAD(tree_list); |
| 2565 | struct mnt_namespace *ns = dest_mnt->mnt_ns; |
| 2566 | struct pinned_mountpoint root = {}; |
| 2567 | struct mountpoint *shorter = NULL; |
| 2568 | struct mount *child, *p; |
| 2569 | struct mount *top; |
| 2570 | struct hlist_node *n; |
| 2571 | int err = 0; |
| 2572 | bool moving = mnt_has_parent(mnt: source_mnt); |
| 2573 | |
| 2574 | /* |
| 2575 | * Preallocate a mountpoint in case the new mounts need to be |
| 2576 | * mounted beneath mounts on the same mountpoint. |
| 2577 | */ |
| 2578 | for (top = source_mnt; unlikely(top->overmount); top = top->overmount) { |
| 2579 | if (!shorter && is_mnt_ns_file(dentry: top->mnt.mnt_root)) |
| 2580 | shorter = top->mnt_mp; |
| 2581 | } |
| 2582 | err = get_mountpoint(dentry: top->mnt.mnt_root, m: &root); |
| 2583 | if (err) |
| 2584 | return err; |
| 2585 | |
| 2586 | /* Is there space to add these mounts to the mount namespace? */ |
| 2587 | if (!moving) { |
| 2588 | err = count_mounts(ns, mnt: source_mnt); |
| 2589 | if (err) |
| 2590 | goto out; |
| 2591 | } |
| 2592 | |
| 2593 | if (IS_MNT_SHARED(dest_mnt)) { |
| 2594 | err = invent_group_ids(mnt: source_mnt, recurse: true); |
| 2595 | if (err) |
| 2596 | goto out; |
| 2597 | err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list); |
| 2598 | } |
| 2599 | lock_mount_hash(); |
| 2600 | if (err) |
| 2601 | goto out_cleanup_ids; |
| 2602 | |
| 2603 | if (IS_MNT_SHARED(dest_mnt)) { |
| 2604 | for (p = source_mnt; p; p = next_mnt(p, root: source_mnt)) |
| 2605 | set_mnt_shared(p); |
| 2606 | } |
| 2607 | |
| 2608 | if (moving) { |
| 2609 | umount_mnt(mnt: source_mnt); |
| 2610 | mnt_notify_add(m: source_mnt); |
| 2611 | /* if the mount is moved, it should no longer be expired |
| 2612 | * automatically */ |
| 2613 | list_del_init(entry: &source_mnt->mnt_expire); |
| 2614 | } else { |
| 2615 | if (source_mnt->mnt_ns) { |
| 2616 | /* move from anon - the caller will destroy */ |
| 2617 | emptied_ns = source_mnt->mnt_ns; |
| 2618 | for (p = source_mnt; p; p = next_mnt(p, root: source_mnt)) |
| 2619 | move_from_ns(mnt: p); |
| 2620 | } |
| 2621 | } |
| 2622 | |
| 2623 | mnt_set_mountpoint(mnt: dest_mnt, mp: dest_mp, child_mnt: source_mnt); |
| 2624 | /* |
| 2625 | * Now the original copy is in the same state as the secondaries - |
| 2626 | * its root attached to mountpoint, but not hashed and all mounts |
| 2627 | * in it are either in our namespace or in no namespace at all. |
| 2628 | * Add the original to the list of copies and deal with the |
| 2629 | * rest of work for all of them uniformly. |
| 2630 | */ |
| 2631 | hlist_add_head(n: &source_mnt->mnt_hash, h: &tree_list); |
| 2632 | |
| 2633 | hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) { |
| 2634 | struct mount *q; |
| 2635 | hlist_del_init(n: &child->mnt_hash); |
| 2636 | /* Notice when we are propagating across user namespaces */ |
| 2637 | if (child->mnt_parent->mnt_ns->user_ns != user_ns) |
| 2638 | lock_mnt_tree(mnt: child); |
| 2639 | q = __lookup_mnt(mnt: &child->mnt_parent->mnt, |
| 2640 | dentry: child->mnt_mountpoint); |
| 2641 | commit_tree(mnt: child); |
| 2642 | if (q) { |
| 2643 | struct mount *r = topmost_overmount(m: child); |
| 2644 | struct mountpoint *mp = root.mp; |
| 2645 | |
| 2646 | if (unlikely(shorter) && child != source_mnt) |
| 2647 | mp = shorter; |
| 2648 | mnt_change_mountpoint(parent: r, mp, mnt: q); |
| 2649 | } |
| 2650 | } |
| 2651 | unpin_mountpoint(m: &root); |
| 2652 | unlock_mount_hash(); |
| 2653 | |
| 2654 | return 0; |
| 2655 | |
| 2656 | out_cleanup_ids: |
| 2657 | while (!hlist_empty(h: &tree_list)) { |
| 2658 | child = hlist_entry(tree_list.first, struct mount, mnt_hash); |
| 2659 | child->mnt_parent->mnt_ns->pending_mounts = 0; |
| 2660 | umount_tree(mnt: child, how: UMOUNT_SYNC); |
| 2661 | } |
| 2662 | unlock_mount_hash(); |
| 2663 | cleanup_group_ids(mnt: source_mnt, NULL); |
| 2664 | out: |
| 2665 | ns->pending_mounts = 0; |
| 2666 | |
| 2667 | read_seqlock_excl(sl: &mount_lock); |
| 2668 | unpin_mountpoint(m: &root); |
| 2669 | read_sequnlock_excl(sl: &mount_lock); |
| 2670 | |
| 2671 | return err; |
| 2672 | } |
| 2673 | |
| 2674 | static inline struct mount *where_to_mount(const struct path *path, |
| 2675 | struct dentry **dentry, |
| 2676 | bool beneath) |
| 2677 | { |
| 2678 | struct mount *m; |
| 2679 | |
| 2680 | if (unlikely(beneath)) { |
| 2681 | m = topmost_overmount(m: real_mount(mnt: path->mnt)); |
| 2682 | *dentry = m->mnt_mountpoint; |
| 2683 | return m->mnt_parent; |
| 2684 | } |
| 2685 | m = __lookup_mnt(mnt: path->mnt, dentry: path->dentry); |
| 2686 | if (unlikely(m)) { |
| 2687 | m = topmost_overmount(m); |
| 2688 | *dentry = m->mnt.mnt_root; |
| 2689 | return m; |
| 2690 | } |
| 2691 | *dentry = path->dentry; |
| 2692 | return real_mount(mnt: path->mnt); |
| 2693 | } |
| 2694 | |
| 2695 | /** |
| 2696 | * do_lock_mount - acquire environment for mounting |
| 2697 | * @path: target path |
| 2698 | * @res: context to set up |
| 2699 | * @beneath: whether the intention is to mount beneath @path |
| 2700 | * |
| 2701 | * To mount something at given location, we need |
| 2702 | * namespace_sem locked exclusive |
| 2703 | * inode of dentry we are mounting on locked exclusive |
| 2704 | * struct mountpoint for that dentry |
| 2705 | * struct mount we are mounting on |
| 2706 | * |
| 2707 | * Results are stored in caller-supplied context (pinned_mountpoint); |
| 2708 | * on success we have res->parent and res->mp pointing to parent and |
| 2709 | * mountpoint respectively and res->node inserted into the ->m_list |
| 2710 | * of the mountpoint, making sure the mountpoint won't disappear. |
| 2711 | * On failure we have res->parent set to ERR_PTR(-E...), res->mp |
| 2712 | * left NULL, res->node - empty. |
| 2713 | * In case of success do_lock_mount returns with locks acquired (in |
| 2714 | * proper order - inode lock nests outside of namespace_sem). |
| 2715 | * |
| 2716 | * Request to mount on overmounted location is treated as "mount on |
| 2717 | * top of whatever's overmounting it"; request to mount beneath |
| 2718 | * a location - "mount immediately beneath the topmost mount at that |
| 2719 | * place". |
| 2720 | * |
| 2721 | * In all cases the location must not have been unmounted and the |
| 2722 | * chosen mountpoint must be allowed to be mounted on. For "beneath" |
| 2723 | * case we also require the location to be at the root of a mount |
| 2724 | * that has a parent (i.e. is not a root of some namespace). |
| 2725 | */ |
| 2726 | static void do_lock_mount(const struct path *path, |
| 2727 | struct pinned_mountpoint *res, |
| 2728 | bool beneath) |
| 2729 | { |
| 2730 | int err; |
| 2731 | |
| 2732 | if (unlikely(beneath) && !path_mounted(path)) { |
| 2733 | res->parent = ERR_PTR(error: -EINVAL); |
| 2734 | return; |
| 2735 | } |
| 2736 | |
| 2737 | do { |
| 2738 | struct dentry *dentry, *d; |
| 2739 | struct mount *m, *n; |
| 2740 | |
| 2741 | scoped_guard(mount_locked_reader) { |
| 2742 | m = where_to_mount(path, dentry: &dentry, beneath); |
| 2743 | if (&m->mnt != path->mnt) { |
| 2744 | mntget(&m->mnt); |
| 2745 | dget(dentry); |
| 2746 | } |
| 2747 | } |
| 2748 | |
| 2749 | inode_lock(inode: dentry->d_inode); |
| 2750 | namespace_lock(); |
| 2751 | |
| 2752 | // check if the chain of mounts (if any) has changed. |
| 2753 | scoped_guard(mount_locked_reader) |
| 2754 | n = where_to_mount(path, dentry: &d, beneath); |
| 2755 | |
| 2756 | if (unlikely(n != m || dentry != d)) |
| 2757 | err = -EAGAIN; // something moved, retry |
| 2758 | else if (unlikely(cant_mount(dentry) || !is_mounted(path->mnt))) |
| 2759 | err = -ENOENT; // not to be mounted on |
| 2760 | else if (beneath && &m->mnt == path->mnt && !m->overmount) |
| 2761 | err = -EINVAL; |
| 2762 | else |
| 2763 | err = get_mountpoint(dentry, m: res); |
| 2764 | |
| 2765 | if (unlikely(err)) { |
| 2766 | res->parent = ERR_PTR(error: err); |
| 2767 | namespace_unlock(); |
| 2768 | inode_unlock(inode: dentry->d_inode); |
| 2769 | } else { |
| 2770 | res->parent = m; |
| 2771 | } |
| 2772 | /* |
| 2773 | * Drop the temporary references. This is subtle - on success |
| 2774 | * we are doing that under namespace_sem, which would normally |
| 2775 | * be forbidden. However, in that case we are guaranteed that |
| 2776 | * refcounts won't reach zero, since we know that path->mnt |
| 2777 | * is mounted and thus all mounts reachable from it are pinned |
| 2778 | * and stable, along with their mountpoints and roots. |
| 2779 | */ |
| 2780 | if (&m->mnt != path->mnt) { |
| 2781 | dput(dentry); |
| 2782 | mntput(&m->mnt); |
| 2783 | } |
| 2784 | } while (err == -EAGAIN); |
| 2785 | } |
| 2786 | |
| 2787 | static void __unlock_mount(struct pinned_mountpoint *m) |
| 2788 | { |
| 2789 | inode_unlock(inode: m->mp->m_dentry->d_inode); |
| 2790 | read_seqlock_excl(sl: &mount_lock); |
| 2791 | unpin_mountpoint(m); |
| 2792 | read_sequnlock_excl(sl: &mount_lock); |
| 2793 | namespace_unlock(); |
| 2794 | } |
| 2795 | |
| 2796 | static inline void unlock_mount(struct pinned_mountpoint *m) |
| 2797 | { |
| 2798 | if (!IS_ERR(ptr: m->parent)) |
| 2799 | __unlock_mount(m); |
| 2800 | } |
| 2801 | |
| 2802 | #define LOCK_MOUNT_MAYBE_BENEATH(mp, path, beneath) \ |
| 2803 | struct pinned_mountpoint mp __cleanup(unlock_mount) = {}; \ |
| 2804 | do_lock_mount((path), &mp, (beneath)) |
| 2805 | #define LOCK_MOUNT(mp, path) LOCK_MOUNT_MAYBE_BENEATH(mp, (path), false) |
| 2806 | #define LOCK_MOUNT_EXACT(mp, path) \ |
| 2807 | struct pinned_mountpoint mp __cleanup(unlock_mount) = {}; \ |
| 2808 | lock_mount_exact((path), &mp) |
| 2809 | |
| 2810 | static int graft_tree(struct mount *mnt, const struct pinned_mountpoint *mp) |
| 2811 | { |
| 2812 | if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER) |
| 2813 | return -EINVAL; |
| 2814 | |
| 2815 | if (d_is_dir(dentry: mp->mp->m_dentry) != |
| 2816 | d_is_dir(dentry: mnt->mnt.mnt_root)) |
| 2817 | return -ENOTDIR; |
| 2818 | |
| 2819 | return attach_recursive_mnt(source_mnt: mnt, dest: mp); |
| 2820 | } |
| 2821 | |
| 2822 | static int may_change_propagation(const struct mount *m) |
| 2823 | { |
| 2824 | struct mnt_namespace *ns = m->mnt_ns; |
| 2825 | |
| 2826 | // it must be mounted in some namespace |
| 2827 | if (IS_ERR_OR_NULL(ptr: ns)) // is_mounted() |
| 2828 | return -EINVAL; |
| 2829 | // and the caller must be admin in userns of that namespace |
| 2830 | if (!ns_capable(ns: ns->user_ns, CAP_SYS_ADMIN)) |
| 2831 | return -EPERM; |
| 2832 | return 0; |
| 2833 | } |
| 2834 | |
| 2835 | /* |
| 2836 | * Sanity check the flags to change_mnt_propagation. |
| 2837 | */ |
| 2838 | |
| 2839 | static int flags_to_propagation_type(int ms_flags) |
| 2840 | { |
| 2841 | int type = ms_flags & ~(MS_REC | MS_SILENT); |
| 2842 | |
| 2843 | /* Fail if any non-propagation flags are set */ |
| 2844 | if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) |
| 2845 | return 0; |
| 2846 | /* Only one propagation flag should be set */ |
| 2847 | if (!is_power_of_2(n: type)) |
| 2848 | return 0; |
| 2849 | return type; |
| 2850 | } |
| 2851 | |
| 2852 | /* |
| 2853 | * recursively change the type of the mountpoint. |
| 2854 | */ |
| 2855 | static int do_change_type(const struct path *path, int ms_flags) |
| 2856 | { |
| 2857 | struct mount *m; |
| 2858 | struct mount *mnt = real_mount(mnt: path->mnt); |
| 2859 | int recurse = ms_flags & MS_REC; |
| 2860 | int type; |
| 2861 | int err; |
| 2862 | |
| 2863 | if (!path_mounted(path)) |
| 2864 | return -EINVAL; |
| 2865 | |
| 2866 | type = flags_to_propagation_type(ms_flags); |
| 2867 | if (!type) |
| 2868 | return -EINVAL; |
| 2869 | |
| 2870 | guard(namespace_excl)(); |
| 2871 | |
| 2872 | err = may_change_propagation(m: mnt); |
| 2873 | if (err) |
| 2874 | return err; |
| 2875 | |
| 2876 | if (type == MS_SHARED) { |
| 2877 | err = invent_group_ids(mnt, recurse); |
| 2878 | if (err) |
| 2879 | return err; |
| 2880 | } |
| 2881 | |
| 2882 | for (m = mnt; m; m = (recurse ? next_mnt(p: m, root: mnt) : NULL)) |
| 2883 | change_mnt_propagation(m, type); |
| 2884 | |
| 2885 | return 0; |
| 2886 | } |
| 2887 | |
| 2888 | /* may_copy_tree() - check if a mount tree can be copied |
| 2889 | * @path: path to the mount tree to be copied |
| 2890 | * |
| 2891 | * This helper checks if the caller may copy the mount tree starting |
| 2892 | * from @path->mnt. The caller may copy the mount tree under the |
| 2893 | * following circumstances: |
| 2894 | * |
| 2895 | * (1) The caller is located in the mount namespace of the mount tree. |
| 2896 | * This also implies that the mount does not belong to an anonymous |
| 2897 | * mount namespace. |
| 2898 | * (2) The caller tries to copy an nfs mount referring to a mount |
| 2899 | * namespace, i.e., the caller is trying to copy a mount namespace |
| 2900 | * entry from nsfs. |
| 2901 | * (3) The caller tries to copy a pidfs mount referring to a pidfd. |
| 2902 | * (4) The caller is trying to copy a mount tree that belongs to an |
| 2903 | * anonymous mount namespace. |
| 2904 | * |
| 2905 | * For that to be safe, this helper enforces that the origin mount |
| 2906 | * namespace the anonymous mount namespace was created from is the |
| 2907 | * same as the caller's mount namespace by comparing the sequence |
| 2908 | * numbers. |
| 2909 | * |
| 2910 | * This is not strictly necessary. The current semantics of the new |
| 2911 | * mount api enforce that the caller must be located in the same |
| 2912 | * mount namespace as the mount tree it interacts with. Using the |
| 2913 | * origin sequence number preserves these semantics even for |
| 2914 | * anonymous mount namespaces. However, one could envision extending |
| 2915 | * the api to directly operate across mount namespace if needed. |
| 2916 | * |
| 2917 | * The ownership of a non-anonymous mount namespace such as the |
| 2918 | * caller's cannot change. |
| 2919 | * => We know that the caller's mount namespace is stable. |
| 2920 | * |
| 2921 | * If the origin sequence number of the anonymous mount namespace is |
| 2922 | * the same as the sequence number of the caller's mount namespace. |
| 2923 | * => The owning namespaces are the same. |
| 2924 | * |
| 2925 | * ==> The earlier capability check on the owning namespace of the |
| 2926 | * caller's mount namespace ensures that the caller has the |
| 2927 | * ability to copy the mount tree. |
| 2928 | * |
| 2929 | * Returns true if the mount tree can be copied, false otherwise. |
| 2930 | */ |
| 2931 | static inline bool may_copy_tree(const struct path *path) |
| 2932 | { |
| 2933 | struct mount *mnt = real_mount(mnt: path->mnt); |
| 2934 | const struct dentry_operations *d_op; |
| 2935 | |
| 2936 | if (check_mnt(mnt)) |
| 2937 | return true; |
| 2938 | |
| 2939 | d_op = path->dentry->d_op; |
| 2940 | if (d_op == &ns_dentry_operations) |
| 2941 | return true; |
| 2942 | |
| 2943 | if (d_op == &pidfs_dentry_operations) |
| 2944 | return true; |
| 2945 | |
| 2946 | if (!is_mounted(mnt: path->mnt)) |
| 2947 | return false; |
| 2948 | |
| 2949 | return check_anonymous_mnt(mnt); |
| 2950 | } |
| 2951 | |
| 2952 | |
| 2953 | static struct mount *__do_loopback(const struct path *old_path, int recurse) |
| 2954 | { |
| 2955 | struct mount *old = real_mount(mnt: old_path->mnt); |
| 2956 | |
| 2957 | if (IS_MNT_UNBINDABLE(old)) |
| 2958 | return ERR_PTR(error: -EINVAL); |
| 2959 | |
| 2960 | if (!may_copy_tree(path: old_path)) |
| 2961 | return ERR_PTR(error: -EINVAL); |
| 2962 | |
| 2963 | if (!recurse && __has_locked_children(mnt: old, dentry: old_path->dentry)) |
| 2964 | return ERR_PTR(error: -EINVAL); |
| 2965 | |
| 2966 | if (recurse) |
| 2967 | return copy_tree(src_root: old, dentry: old_path->dentry, CL_COPY_MNT_NS_FILE); |
| 2968 | else |
| 2969 | return clone_mnt(old, root: old_path->dentry, flag: 0); |
| 2970 | } |
| 2971 | |
| 2972 | /* |
| 2973 | * do loopback mount. |
| 2974 | */ |
| 2975 | static int do_loopback(const struct path *path, const char *old_name, |
| 2976 | int recurse) |
| 2977 | { |
| 2978 | struct path old_path __free(path_put) = {}; |
| 2979 | struct mount *mnt = NULL; |
| 2980 | int err; |
| 2981 | if (!old_name || !*old_name) |
| 2982 | return -EINVAL; |
| 2983 | err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path); |
| 2984 | if (err) |
| 2985 | return err; |
| 2986 | |
| 2987 | if (mnt_ns_loop(dentry: old_path.dentry)) |
| 2988 | return -EINVAL; |
| 2989 | |
| 2990 | LOCK_MOUNT(mp, path); |
| 2991 | if (IS_ERR(ptr: mp.parent)) |
| 2992 | return PTR_ERR(ptr: mp.parent); |
| 2993 | |
| 2994 | if (!check_mnt(mnt: mp.parent)) |
| 2995 | return -EINVAL; |
| 2996 | |
| 2997 | mnt = __do_loopback(old_path: &old_path, recurse); |
| 2998 | if (IS_ERR(ptr: mnt)) |
| 2999 | return PTR_ERR(ptr: mnt); |
| 3000 | |
| 3001 | err = graft_tree(mnt, mp: &mp); |
| 3002 | if (err) { |
| 3003 | lock_mount_hash(); |
| 3004 | umount_tree(mnt, how: UMOUNT_SYNC); |
| 3005 | unlock_mount_hash(); |
| 3006 | } |
| 3007 | return err; |
| 3008 | } |
| 3009 | |
| 3010 | static struct mnt_namespace *get_detached_copy(const struct path *path, bool recursive) |
| 3011 | { |
| 3012 | struct mnt_namespace *ns, *mnt_ns = current->nsproxy->mnt_ns, *src_mnt_ns; |
| 3013 | struct user_namespace *user_ns = mnt_ns->user_ns; |
| 3014 | struct mount *mnt, *p; |
| 3015 | |
| 3016 | ns = alloc_mnt_ns(user_ns, true); |
| 3017 | if (IS_ERR(ptr: ns)) |
| 3018 | return ns; |
| 3019 | |
| 3020 | guard(namespace_excl)(); |
| 3021 | |
| 3022 | /* |
| 3023 | * Record the sequence number of the source mount namespace. |
| 3024 | * This needs to hold namespace_sem to ensure that the mount |
| 3025 | * doesn't get attached. |
| 3026 | */ |
| 3027 | if (is_mounted(mnt: path->mnt)) { |
| 3028 | src_mnt_ns = real_mount(mnt: path->mnt)->mnt_ns; |
| 3029 | if (is_anon_ns(ns: src_mnt_ns)) |
| 3030 | ns->seq_origin = src_mnt_ns->seq_origin; |
| 3031 | else |
| 3032 | ns->seq_origin = src_mnt_ns->ns.ns_id; |
| 3033 | } |
| 3034 | |
| 3035 | mnt = __do_loopback(old_path: path, recurse: recursive); |
| 3036 | if (IS_ERR(ptr: mnt)) { |
| 3037 | emptied_ns = ns; |
| 3038 | return ERR_CAST(ptr: mnt); |
| 3039 | } |
| 3040 | |
| 3041 | for (p = mnt; p; p = next_mnt(p, root: mnt)) { |
| 3042 | mnt_add_to_ns(ns, mnt: p); |
| 3043 | ns->nr_mounts++; |
| 3044 | } |
| 3045 | ns->root = mnt; |
| 3046 | return ns; |
| 3047 | } |
| 3048 | |
| 3049 | static struct file *open_detached_copy(struct path *path, bool recursive) |
| 3050 | { |
| 3051 | struct mnt_namespace *ns = get_detached_copy(path, recursive); |
| 3052 | struct file *file; |
| 3053 | |
| 3054 | if (IS_ERR(ptr: ns)) |
| 3055 | return ERR_CAST(ptr: ns); |
| 3056 | |
| 3057 | mntput(path->mnt); |
| 3058 | path->mnt = mntget(&ns->root->mnt); |
| 3059 | file = dentry_open(path, O_PATH, current_cred()); |
| 3060 | if (IS_ERR(ptr: file)) |
| 3061 | dissolve_on_fput(mnt: path->mnt); |
| 3062 | else |
| 3063 | file->f_mode |= FMODE_NEED_UNMOUNT; |
| 3064 | return file; |
| 3065 | } |
| 3066 | |
| 3067 | static struct file *vfs_open_tree(int dfd, const char __user *filename, unsigned int flags) |
| 3068 | { |
| 3069 | int ret; |
| 3070 | struct path path __free(path_put) = {}; |
| 3071 | int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW; |
| 3072 | bool detached = flags & OPEN_TREE_CLONE; |
| 3073 | |
| 3074 | BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC); |
| 3075 | |
| 3076 | if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE | |
| 3077 | AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE | |
| 3078 | OPEN_TREE_CLOEXEC)) |
| 3079 | return ERR_PTR(error: -EINVAL); |
| 3080 | |
| 3081 | if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE) |
| 3082 | return ERR_PTR(error: -EINVAL); |
| 3083 | |
| 3084 | if (flags & AT_NO_AUTOMOUNT) |
| 3085 | lookup_flags &= ~LOOKUP_AUTOMOUNT; |
| 3086 | if (flags & AT_SYMLINK_NOFOLLOW) |
| 3087 | lookup_flags &= ~LOOKUP_FOLLOW; |
| 3088 | if (flags & AT_EMPTY_PATH) |
| 3089 | lookup_flags |= LOOKUP_EMPTY; |
| 3090 | |
| 3091 | if (detached && !may_mount()) |
| 3092 | return ERR_PTR(error: -EPERM); |
| 3093 | |
| 3094 | ret = user_path_at(dfd, filename, lookup_flags, &path); |
| 3095 | if (unlikely(ret)) |
| 3096 | return ERR_PTR(error: ret); |
| 3097 | |
| 3098 | if (detached) |
| 3099 | return open_detached_copy(path: &path, recursive: flags & AT_RECURSIVE); |
| 3100 | |
| 3101 | return dentry_open(path: &path, O_PATH, current_cred()); |
| 3102 | } |
| 3103 | |
| 3104 | SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags) |
| 3105 | { |
| 3106 | int fd; |
| 3107 | struct file *file __free(fput) = NULL; |
| 3108 | |
| 3109 | file = vfs_open_tree(dfd, filename, flags); |
| 3110 | if (IS_ERR(ptr: file)) |
| 3111 | return PTR_ERR(ptr: file); |
| 3112 | |
| 3113 | fd = get_unused_fd_flags(flags: flags & O_CLOEXEC); |
| 3114 | if (fd < 0) |
| 3115 | return fd; |
| 3116 | |
| 3117 | fd_install(fd, no_free_ptr(file)); |
| 3118 | return fd; |
| 3119 | } |
| 3120 | |
| 3121 | /* |
| 3122 | * Don't allow locked mount flags to be cleared. |
| 3123 | * |
| 3124 | * No locks need to be held here while testing the various MNT_LOCK |
| 3125 | * flags because those flags can never be cleared once they are set. |
| 3126 | */ |
| 3127 | static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags) |
| 3128 | { |
| 3129 | unsigned int fl = mnt->mnt.mnt_flags; |
| 3130 | |
| 3131 | if ((fl & MNT_LOCK_READONLY) && |
| 3132 | !(mnt_flags & MNT_READONLY)) |
| 3133 | return false; |
| 3134 | |
| 3135 | if ((fl & MNT_LOCK_NODEV) && |
| 3136 | !(mnt_flags & MNT_NODEV)) |
| 3137 | return false; |
| 3138 | |
| 3139 | if ((fl & MNT_LOCK_NOSUID) && |
| 3140 | !(mnt_flags & MNT_NOSUID)) |
| 3141 | return false; |
| 3142 | |
| 3143 | if ((fl & MNT_LOCK_NOEXEC) && |
| 3144 | !(mnt_flags & MNT_NOEXEC)) |
| 3145 | return false; |
| 3146 | |
| 3147 | if ((fl & MNT_LOCK_ATIME) && |
| 3148 | ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) |
| 3149 | return false; |
| 3150 | |
| 3151 | return true; |
| 3152 | } |
| 3153 | |
| 3154 | static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags) |
| 3155 | { |
| 3156 | bool readonly_request = (mnt_flags & MNT_READONLY); |
| 3157 | |
| 3158 | if (readonly_request == __mnt_is_readonly(&mnt->mnt)) |
| 3159 | return 0; |
| 3160 | |
| 3161 | if (readonly_request) |
| 3162 | return mnt_make_readonly(mnt); |
| 3163 | |
| 3164 | mnt->mnt.mnt_flags &= ~MNT_READONLY; |
| 3165 | return 0; |
| 3166 | } |
| 3167 | |
| 3168 | static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags) |
| 3169 | { |
| 3170 | mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK; |
| 3171 | mnt->mnt.mnt_flags = mnt_flags; |
| 3172 | touch_mnt_namespace(ns: mnt->mnt_ns); |
| 3173 | } |
| 3174 | |
| 3175 | static void mnt_warn_timestamp_expiry(const struct path *mountpoint, |
| 3176 | struct vfsmount *mnt) |
| 3177 | { |
| 3178 | struct super_block *sb = mnt->mnt_sb; |
| 3179 | |
| 3180 | if (!__mnt_is_readonly(mnt) && |
| 3181 | (!(sb->s_iflags & SB_I_TS_EXPIRY_WARNED)) && |
| 3182 | (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) { |
| 3183 | char *buf, *mntpath; |
| 3184 | |
| 3185 | buf = (char *)__get_free_page(GFP_KERNEL); |
| 3186 | if (buf) |
| 3187 | mntpath = d_path(mountpoint, buf, PAGE_SIZE); |
| 3188 | else |
| 3189 | mntpath = ERR_PTR(error: -ENOMEM); |
| 3190 | if (IS_ERR(ptr: mntpath)) |
| 3191 | mntpath = "(unknown)" ; |
| 3192 | |
| 3193 | pr_warn("%s filesystem being %s at %s supports timestamps until %ptTd (0x%llx)\n" , |
| 3194 | sb->s_type->name, |
| 3195 | is_mounted(mnt) ? "remounted" : "mounted" , |
| 3196 | mntpath, &sb->s_time_max, |
| 3197 | (unsigned long long)sb->s_time_max); |
| 3198 | |
| 3199 | sb->s_iflags |= SB_I_TS_EXPIRY_WARNED; |
| 3200 | if (buf) |
| 3201 | free_page((unsigned long)buf); |
| 3202 | } |
| 3203 | } |
| 3204 | |
| 3205 | /* |
| 3206 | * Handle reconfiguration of the mountpoint only without alteration of the |
| 3207 | * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND |
| 3208 | * to mount(2). |
| 3209 | */ |
| 3210 | static int do_reconfigure_mnt(const struct path *path, unsigned int mnt_flags) |
| 3211 | { |
| 3212 | struct super_block *sb = path->mnt->mnt_sb; |
| 3213 | struct mount *mnt = real_mount(mnt: path->mnt); |
| 3214 | int ret; |
| 3215 | |
| 3216 | if (!check_mnt(mnt)) |
| 3217 | return -EINVAL; |
| 3218 | |
| 3219 | if (!path_mounted(path)) |
| 3220 | return -EINVAL; |
| 3221 | |
| 3222 | if (!can_change_locked_flags(mnt, mnt_flags)) |
| 3223 | return -EPERM; |
| 3224 | |
| 3225 | /* |
| 3226 | * We're only checking whether the superblock is read-only not |
| 3227 | * changing it, so only take down_read(&sb->s_umount). |
| 3228 | */ |
| 3229 | down_read(sem: &sb->s_umount); |
| 3230 | lock_mount_hash(); |
| 3231 | ret = change_mount_ro_state(mnt, mnt_flags); |
| 3232 | if (ret == 0) |
| 3233 | set_mount_attributes(mnt, mnt_flags); |
| 3234 | unlock_mount_hash(); |
| 3235 | up_read(sem: &sb->s_umount); |
| 3236 | |
| 3237 | mnt_warn_timestamp_expiry(mountpoint: path, mnt: &mnt->mnt); |
| 3238 | |
| 3239 | return ret; |
| 3240 | } |
| 3241 | |
| 3242 | /* |
| 3243 | * change filesystem flags. dir should be a physical root of filesystem. |
| 3244 | * If you've mounted a non-root directory somewhere and want to do remount |
| 3245 | * on it - tough luck. |
| 3246 | */ |
| 3247 | static int do_remount(const struct path *path, int sb_flags, |
| 3248 | int mnt_flags, void *data) |
| 3249 | { |
| 3250 | int err; |
| 3251 | struct super_block *sb = path->mnt->mnt_sb; |
| 3252 | struct mount *mnt = real_mount(mnt: path->mnt); |
| 3253 | struct fs_context *fc; |
| 3254 | |
| 3255 | if (!check_mnt(mnt)) |
| 3256 | return -EINVAL; |
| 3257 | |
| 3258 | if (!path_mounted(path)) |
| 3259 | return -EINVAL; |
| 3260 | |
| 3261 | if (!can_change_locked_flags(mnt, mnt_flags)) |
| 3262 | return -EPERM; |
| 3263 | |
| 3264 | fc = fs_context_for_reconfigure(dentry: path->dentry, sb_flags, MS_RMT_MASK); |
| 3265 | if (IS_ERR(ptr: fc)) |
| 3266 | return PTR_ERR(ptr: fc); |
| 3267 | |
| 3268 | /* |
| 3269 | * Indicate to the filesystem that the remount request is coming |
| 3270 | * from the legacy mount system call. |
| 3271 | */ |
| 3272 | fc->oldapi = true; |
| 3273 | |
| 3274 | err = parse_monolithic_mount_data(fc, data); |
| 3275 | if (!err) { |
| 3276 | down_write(sem: &sb->s_umount); |
| 3277 | err = -EPERM; |
| 3278 | if (ns_capable(ns: sb->s_user_ns, CAP_SYS_ADMIN)) { |
| 3279 | err = reconfigure_super(fc); |
| 3280 | if (!err) { |
| 3281 | lock_mount_hash(); |
| 3282 | set_mount_attributes(mnt, mnt_flags); |
| 3283 | unlock_mount_hash(); |
| 3284 | } |
| 3285 | } |
| 3286 | up_write(sem: &sb->s_umount); |
| 3287 | } |
| 3288 | |
| 3289 | mnt_warn_timestamp_expiry(mountpoint: path, mnt: &mnt->mnt); |
| 3290 | |
| 3291 | put_fs_context(fc); |
| 3292 | return err; |
| 3293 | } |
| 3294 | |
| 3295 | static inline int tree_contains_unbindable(struct mount *mnt) |
| 3296 | { |
| 3297 | struct mount *p; |
| 3298 | for (p = mnt; p; p = next_mnt(p, root: mnt)) { |
| 3299 | if (IS_MNT_UNBINDABLE(p)) |
| 3300 | return 1; |
| 3301 | } |
| 3302 | return 0; |
| 3303 | } |
| 3304 | |
| 3305 | static int do_set_group(const struct path *from_path, const struct path *to_path) |
| 3306 | { |
| 3307 | struct mount *from = real_mount(mnt: from_path->mnt); |
| 3308 | struct mount *to = real_mount(mnt: to_path->mnt); |
| 3309 | int err; |
| 3310 | |
| 3311 | guard(namespace_excl)(); |
| 3312 | |
| 3313 | err = may_change_propagation(m: from); |
| 3314 | if (err) |
| 3315 | return err; |
| 3316 | err = may_change_propagation(m: to); |
| 3317 | if (err) |
| 3318 | return err; |
| 3319 | |
| 3320 | /* To and From paths should be mount roots */ |
| 3321 | if (!path_mounted(path: from_path)) |
| 3322 | return -EINVAL; |
| 3323 | if (!path_mounted(path: to_path)) |
| 3324 | return -EINVAL; |
| 3325 | |
| 3326 | /* Setting sharing groups is only allowed across same superblock */ |
| 3327 | if (from->mnt.mnt_sb != to->mnt.mnt_sb) |
| 3328 | return -EINVAL; |
| 3329 | |
| 3330 | /* From mount root should be wider than To mount root */ |
| 3331 | if (!is_subdir(to->mnt.mnt_root, from->mnt.mnt_root)) |
| 3332 | return -EINVAL; |
| 3333 | |
| 3334 | /* From mount should not have locked children in place of To's root */ |
| 3335 | if (__has_locked_children(mnt: from, dentry: to->mnt.mnt_root)) |
| 3336 | return -EINVAL; |
| 3337 | |
| 3338 | /* Setting sharing groups is only allowed on private mounts */ |
| 3339 | if (IS_MNT_SHARED(to) || IS_MNT_SLAVE(to)) |
| 3340 | return -EINVAL; |
| 3341 | |
| 3342 | /* From should not be private */ |
| 3343 | if (!IS_MNT_SHARED(from) && !IS_MNT_SLAVE(from)) |
| 3344 | return -EINVAL; |
| 3345 | |
| 3346 | if (IS_MNT_SLAVE(from)) { |
| 3347 | hlist_add_behind(n: &to->mnt_slave, prev: &from->mnt_slave); |
| 3348 | to->mnt_master = from->mnt_master; |
| 3349 | } |
| 3350 | |
| 3351 | if (IS_MNT_SHARED(from)) { |
| 3352 | to->mnt_group_id = from->mnt_group_id; |
| 3353 | list_add(new: &to->mnt_share, head: &from->mnt_share); |
| 3354 | set_mnt_shared(to); |
| 3355 | } |
| 3356 | return 0; |
| 3357 | } |
| 3358 | |
| 3359 | /** |
| 3360 | * path_overmounted - check if path is overmounted |
| 3361 | * @path: path to check |
| 3362 | * |
| 3363 | * Check if path is overmounted, i.e., if there's a mount on top of |
| 3364 | * @path->mnt with @path->dentry as mountpoint. |
| 3365 | * |
| 3366 | * Context: namespace_sem must be held at least shared. |
| 3367 | * MUST NOT be called under lock_mount_hash() (there one should just |
| 3368 | * call __lookup_mnt() and check if it returns NULL). |
| 3369 | * Return: If path is overmounted true is returned, false if not. |
| 3370 | */ |
| 3371 | static inline bool path_overmounted(const struct path *path) |
| 3372 | { |
| 3373 | unsigned seq = read_seqbegin(sl: &mount_lock); |
| 3374 | bool no_child; |
| 3375 | |
| 3376 | rcu_read_lock(); |
| 3377 | no_child = !__lookup_mnt(mnt: path->mnt, dentry: path->dentry); |
| 3378 | rcu_read_unlock(); |
| 3379 | if (need_seqretry(lock: &mount_lock, seq)) { |
| 3380 | read_seqlock_excl(sl: &mount_lock); |
| 3381 | no_child = !__lookup_mnt(mnt: path->mnt, dentry: path->dentry); |
| 3382 | read_sequnlock_excl(sl: &mount_lock); |
| 3383 | } |
| 3384 | return unlikely(!no_child); |
| 3385 | } |
| 3386 | |
| 3387 | /* |
| 3388 | * Check if there is a possibly empty chain of descent from p1 to p2. |
| 3389 | * Locks: namespace_sem (shared) or mount_lock (read_seqlock_excl). |
| 3390 | */ |
| 3391 | static bool mount_is_ancestor(const struct mount *p1, const struct mount *p2) |
| 3392 | { |
| 3393 | while (p2 != p1 && mnt_has_parent(mnt: p2)) |
| 3394 | p2 = p2->mnt_parent; |
| 3395 | return p2 == p1; |
| 3396 | } |
| 3397 | |
| 3398 | /** |
| 3399 | * can_move_mount_beneath - check that we can mount beneath the top mount |
| 3400 | * @mnt_from: mount we are trying to move |
| 3401 | * @mnt_to: mount under which to mount |
| 3402 | * @mp: mountpoint of @mnt_to |
| 3403 | * |
| 3404 | * - Make sure that nothing can be mounted beneath the caller's current |
| 3405 | * root or the rootfs of the namespace. |
| 3406 | * - Make sure that the caller can unmount the topmost mount ensuring |
| 3407 | * that the caller could reveal the underlying mountpoint. |
| 3408 | * - Ensure that nothing has been mounted on top of @mnt_from before we |
| 3409 | * grabbed @namespace_sem to avoid creating pointless shadow mounts. |
| 3410 | * - Prevent mounting beneath a mount if the propagation relationship |
| 3411 | * between the source mount, parent mount, and top mount would lead to |
| 3412 | * nonsensical mount trees. |
| 3413 | * |
| 3414 | * Context: This function expects namespace_lock() to be held. |
| 3415 | * Return: On success 0, and on error a negative error code is returned. |
| 3416 | */ |
| 3417 | static int can_move_mount_beneath(const struct mount *mnt_from, |
| 3418 | const struct mount *mnt_to, |
| 3419 | const struct mountpoint *mp) |
| 3420 | { |
| 3421 | struct mount *parent_mnt_to = mnt_to->mnt_parent; |
| 3422 | |
| 3423 | if (IS_MNT_LOCKED(mnt_to)) |
| 3424 | return -EINVAL; |
| 3425 | |
| 3426 | /* Avoid creating shadow mounts during mount propagation. */ |
| 3427 | if (mnt_from->overmount) |
| 3428 | return -EINVAL; |
| 3429 | |
| 3430 | /* |
| 3431 | * Mounting beneath the rootfs only makes sense when the |
| 3432 | * semantics of pivot_root(".", ".") are used. |
| 3433 | */ |
| 3434 | if (&mnt_to->mnt == current->fs->root.mnt) |
| 3435 | return -EINVAL; |
| 3436 | if (parent_mnt_to == current->nsproxy->mnt_ns->root) |
| 3437 | return -EINVAL; |
| 3438 | |
| 3439 | if (mount_is_ancestor(p1: mnt_to, p2: mnt_from)) |
| 3440 | return -EINVAL; |
| 3441 | |
| 3442 | /* |
| 3443 | * If the parent mount propagates to the child mount this would |
| 3444 | * mean mounting @mnt_from on @mnt_to->mnt_parent and then |
| 3445 | * propagating a copy @c of @mnt_from on top of @mnt_to. This |
| 3446 | * defeats the whole purpose of mounting beneath another mount. |
| 3447 | */ |
| 3448 | if (propagation_would_overmount(from: parent_mnt_to, to: mnt_to, mp)) |
| 3449 | return -EINVAL; |
| 3450 | |
| 3451 | /* |
| 3452 | * If @mnt_to->mnt_parent propagates to @mnt_from this would |
| 3453 | * mean propagating a copy @c of @mnt_from on top of @mnt_from. |
| 3454 | * Afterwards @mnt_from would be mounted on top of |
| 3455 | * @mnt_to->mnt_parent and @mnt_to would be unmounted from |
| 3456 | * @mnt->mnt_parent and remounted on @mnt_from. But since @c is |
| 3457 | * already mounted on @mnt_from, @mnt_to would ultimately be |
| 3458 | * remounted on top of @c. Afterwards, @mnt_from would be |
| 3459 | * covered by a copy @c of @mnt_from and @c would be covered by |
| 3460 | * @mnt_from itself. This defeats the whole purpose of mounting |
| 3461 | * @mnt_from beneath @mnt_to. |
| 3462 | */ |
| 3463 | if (check_mnt(mnt: mnt_from) && |
| 3464 | propagation_would_overmount(from: parent_mnt_to, to: mnt_from, mp)) |
| 3465 | return -EINVAL; |
| 3466 | |
| 3467 | return 0; |
| 3468 | } |
| 3469 | |
| 3470 | /* may_use_mount() - check if a mount tree can be used |
| 3471 | * @mnt: vfsmount to be used |
| 3472 | * |
| 3473 | * This helper checks if the caller may use the mount tree starting |
| 3474 | * from @path->mnt. The caller may use the mount tree under the |
| 3475 | * following circumstances: |
| 3476 | * |
| 3477 | * (1) The caller is located in the mount namespace of the mount tree. |
| 3478 | * This also implies that the mount does not belong to an anonymous |
| 3479 | * mount namespace. |
| 3480 | * (2) The caller is trying to use a mount tree that belongs to an |
| 3481 | * anonymous mount namespace. |
| 3482 | * |
| 3483 | * For that to be safe, this helper enforces that the origin mount |
| 3484 | * namespace the anonymous mount namespace was created from is the |
| 3485 | * same as the caller's mount namespace by comparing the sequence |
| 3486 | * numbers. |
| 3487 | * |
| 3488 | * The ownership of a non-anonymous mount namespace such as the |
| 3489 | * caller's cannot change. |
| 3490 | * => We know that the caller's mount namespace is stable. |
| 3491 | * |
| 3492 | * If the origin sequence number of the anonymous mount namespace is |
| 3493 | * the same as the sequence number of the caller's mount namespace. |
| 3494 | * => The owning namespaces are the same. |
| 3495 | * |
| 3496 | * ==> The earlier capability check on the owning namespace of the |
| 3497 | * caller's mount namespace ensures that the caller has the |
| 3498 | * ability to use the mount tree. |
| 3499 | * |
| 3500 | * Returns true if the mount tree can be used, false otherwise. |
| 3501 | */ |
| 3502 | static inline bool may_use_mount(struct mount *mnt) |
| 3503 | { |
| 3504 | if (check_mnt(mnt)) |
| 3505 | return true; |
| 3506 | |
| 3507 | /* |
| 3508 | * Make sure that noone unmounted the target path or somehow |
| 3509 | * managed to get their hands on something purely kernel |
| 3510 | * internal. |
| 3511 | */ |
| 3512 | if (!is_mounted(mnt: &mnt->mnt)) |
| 3513 | return false; |
| 3514 | |
| 3515 | return check_anonymous_mnt(mnt); |
| 3516 | } |
| 3517 | |
| 3518 | static int do_move_mount(const struct path *old_path, |
| 3519 | const struct path *new_path, |
| 3520 | enum mnt_tree_flags_t flags) |
| 3521 | { |
| 3522 | struct mount *old = real_mount(mnt: old_path->mnt); |
| 3523 | int err; |
| 3524 | bool beneath = flags & MNT_TREE_BENEATH; |
| 3525 | |
| 3526 | if (!path_mounted(path: old_path)) |
| 3527 | return -EINVAL; |
| 3528 | |
| 3529 | if (d_is_dir(dentry: new_path->dentry) != d_is_dir(dentry: old_path->dentry)) |
| 3530 | return -EINVAL; |
| 3531 | |
| 3532 | LOCK_MOUNT_MAYBE_BENEATH(mp, new_path, beneath); |
| 3533 | if (IS_ERR(ptr: mp.parent)) |
| 3534 | return PTR_ERR(ptr: mp.parent); |
| 3535 | |
| 3536 | if (check_mnt(mnt: old)) { |
| 3537 | /* if the source is in our namespace... */ |
| 3538 | /* ... it should be detachable from parent */ |
| 3539 | if (!mnt_has_parent(mnt: old) || IS_MNT_LOCKED(old)) |
| 3540 | return -EINVAL; |
| 3541 | /* ... which should not be shared */ |
| 3542 | if (IS_MNT_SHARED(old->mnt_parent)) |
| 3543 | return -EINVAL; |
| 3544 | /* ... and the target should be in our namespace */ |
| 3545 | if (!check_mnt(mnt: mp.parent)) |
| 3546 | return -EINVAL; |
| 3547 | } else { |
| 3548 | /* |
| 3549 | * otherwise the source must be the root of some anon namespace. |
| 3550 | */ |
| 3551 | if (!anon_ns_root(m: old)) |
| 3552 | return -EINVAL; |
| 3553 | /* |
| 3554 | * Bail out early if the target is within the same namespace - |
| 3555 | * subsequent checks would've rejected that, but they lose |
| 3556 | * some corner cases if we check it early. |
| 3557 | */ |
| 3558 | if (old->mnt_ns == mp.parent->mnt_ns) |
| 3559 | return -EINVAL; |
| 3560 | /* |
| 3561 | * Target should be either in our namespace or in an acceptable |
| 3562 | * anon namespace, sensu check_anonymous_mnt(). |
| 3563 | */ |
| 3564 | if (!may_use_mount(mnt: mp.parent)) |
| 3565 | return -EINVAL; |
| 3566 | } |
| 3567 | |
| 3568 | if (beneath) { |
| 3569 | struct mount *over = real_mount(mnt: new_path->mnt); |
| 3570 | |
| 3571 | if (mp.parent != over->mnt_parent) |
| 3572 | over = mp.parent->overmount; |
| 3573 | err = can_move_mount_beneath(mnt_from: old, mnt_to: over, mp: mp.mp); |
| 3574 | if (err) |
| 3575 | return err; |
| 3576 | } |
| 3577 | |
| 3578 | /* |
| 3579 | * Don't move a mount tree containing unbindable mounts to a destination |
| 3580 | * mount which is shared. |
| 3581 | */ |
| 3582 | if (IS_MNT_SHARED(mp.parent) && tree_contains_unbindable(mnt: old)) |
| 3583 | return -EINVAL; |
| 3584 | if (!check_for_nsfs_mounts(subtree: old)) |
| 3585 | return -ELOOP; |
| 3586 | if (mount_is_ancestor(p1: old, p2: mp.parent)) |
| 3587 | return -ELOOP; |
| 3588 | |
| 3589 | return attach_recursive_mnt(source_mnt: old, dest: &mp); |
| 3590 | } |
| 3591 | |
| 3592 | static int do_move_mount_old(const struct path *path, const char *old_name) |
| 3593 | { |
| 3594 | struct path old_path __free(path_put) = {}; |
| 3595 | int err; |
| 3596 | |
| 3597 | if (!old_name || !*old_name) |
| 3598 | return -EINVAL; |
| 3599 | |
| 3600 | err = kern_path(old_name, LOOKUP_FOLLOW, &old_path); |
| 3601 | if (err) |
| 3602 | return err; |
| 3603 | |
| 3604 | return do_move_mount(old_path: &old_path, new_path: path, flags: 0); |
| 3605 | } |
| 3606 | |
| 3607 | /* |
| 3608 | * add a mount into a namespace's mount tree |
| 3609 | */ |
| 3610 | static int do_add_mount(struct mount *newmnt, const struct pinned_mountpoint *mp, |
| 3611 | int mnt_flags) |
| 3612 | { |
| 3613 | struct mount *parent = mp->parent; |
| 3614 | |
| 3615 | if (IS_ERR(ptr: parent)) |
| 3616 | return PTR_ERR(ptr: parent); |
| 3617 | |
| 3618 | mnt_flags &= ~MNT_INTERNAL_FLAGS; |
| 3619 | |
| 3620 | if (unlikely(!check_mnt(parent))) { |
| 3621 | /* that's acceptable only for automounts done in private ns */ |
| 3622 | if (!(mnt_flags & MNT_SHRINKABLE)) |
| 3623 | return -EINVAL; |
| 3624 | /* ... and for those we'd better have mountpoint still alive */ |
| 3625 | if (!parent->mnt_ns) |
| 3626 | return -EINVAL; |
| 3627 | } |
| 3628 | |
| 3629 | /* Refuse the same filesystem on the same mount point */ |
| 3630 | if (parent->mnt.mnt_sb == newmnt->mnt.mnt_sb && |
| 3631 | parent->mnt.mnt_root == mp->mp->m_dentry) |
| 3632 | return -EBUSY; |
| 3633 | |
| 3634 | if (d_is_symlink(dentry: newmnt->mnt.mnt_root)) |
| 3635 | return -EINVAL; |
| 3636 | |
| 3637 | newmnt->mnt.mnt_flags = mnt_flags; |
| 3638 | return graft_tree(mnt: newmnt, mp); |
| 3639 | } |
| 3640 | |
| 3641 | static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags); |
| 3642 | |
| 3643 | /* |
| 3644 | * Create a new mount using a superblock configuration and request it |
| 3645 | * be added to the namespace tree. |
| 3646 | */ |
| 3647 | static int do_new_mount_fc(struct fs_context *fc, const struct path *mountpoint, |
| 3648 | unsigned int mnt_flags) |
| 3649 | { |
| 3650 | struct super_block *sb; |
| 3651 | struct vfsmount *mnt __free(mntput) = fc_mount(fc); |
| 3652 | int error; |
| 3653 | |
| 3654 | if (IS_ERR(ptr: mnt)) |
| 3655 | return PTR_ERR(ptr: mnt); |
| 3656 | |
| 3657 | sb = fc->root->d_sb; |
| 3658 | error = security_sb_kern_mount(sb); |
| 3659 | if (unlikely(error)) |
| 3660 | return error; |
| 3661 | |
| 3662 | if (unlikely(mount_too_revealing(sb, &mnt_flags))) { |
| 3663 | errorfcp(fc, "VFS" , "Mount too revealing" ); |
| 3664 | return -EPERM; |
| 3665 | } |
| 3666 | |
| 3667 | mnt_warn_timestamp_expiry(mountpoint, mnt); |
| 3668 | |
| 3669 | LOCK_MOUNT(mp, mountpoint); |
| 3670 | error = do_add_mount(newmnt: real_mount(mnt), mp: &mp, mnt_flags); |
| 3671 | if (!error) |
| 3672 | retain_and_null_ptr(mnt); // consumed on success |
| 3673 | return error; |
| 3674 | } |
| 3675 | |
| 3676 | /* |
| 3677 | * create a new mount for userspace and request it to be added into the |
| 3678 | * namespace's tree |
| 3679 | */ |
| 3680 | static int do_new_mount(const struct path *path, const char *fstype, |
| 3681 | int sb_flags, int mnt_flags, |
| 3682 | const char *name, void *data) |
| 3683 | { |
| 3684 | struct file_system_type *type; |
| 3685 | struct fs_context *fc; |
| 3686 | const char *subtype = NULL; |
| 3687 | int err = 0; |
| 3688 | |
| 3689 | if (!fstype) |
| 3690 | return -EINVAL; |
| 3691 | |
| 3692 | type = get_fs_type(name: fstype); |
| 3693 | if (!type) |
| 3694 | return -ENODEV; |
| 3695 | |
| 3696 | if (type->fs_flags & FS_HAS_SUBTYPE) { |
| 3697 | subtype = strchr(fstype, '.'); |
| 3698 | if (subtype) { |
| 3699 | subtype++; |
| 3700 | if (!*subtype) { |
| 3701 | put_filesystem(fs: type); |
| 3702 | return -EINVAL; |
| 3703 | } |
| 3704 | } |
| 3705 | } |
| 3706 | |
| 3707 | fc = fs_context_for_mount(fs_type: type, sb_flags); |
| 3708 | put_filesystem(fs: type); |
| 3709 | if (IS_ERR(ptr: fc)) |
| 3710 | return PTR_ERR(ptr: fc); |
| 3711 | |
| 3712 | /* |
| 3713 | * Indicate to the filesystem that the mount request is coming |
| 3714 | * from the legacy mount system call. |
| 3715 | */ |
| 3716 | fc->oldapi = true; |
| 3717 | |
| 3718 | if (subtype) |
| 3719 | err = vfs_parse_fs_string(fc, key: "subtype" , value: subtype); |
| 3720 | if (!err && name) |
| 3721 | err = vfs_parse_fs_string(fc, key: "source" , value: name); |
| 3722 | if (!err) |
| 3723 | err = parse_monolithic_mount_data(fc, data); |
| 3724 | if (!err && !mount_capable(fc)) |
| 3725 | err = -EPERM; |
| 3726 | if (!err) |
| 3727 | err = do_new_mount_fc(fc, mountpoint: path, mnt_flags); |
| 3728 | |
| 3729 | put_fs_context(fc); |
| 3730 | return err; |
| 3731 | } |
| 3732 | |
| 3733 | static void lock_mount_exact(const struct path *path, |
| 3734 | struct pinned_mountpoint *mp) |
| 3735 | { |
| 3736 | struct dentry *dentry = path->dentry; |
| 3737 | int err; |
| 3738 | |
| 3739 | inode_lock(inode: dentry->d_inode); |
| 3740 | namespace_lock(); |
| 3741 | if (unlikely(cant_mount(dentry))) |
| 3742 | err = -ENOENT; |
| 3743 | else if (path_overmounted(path)) |
| 3744 | err = -EBUSY; |
| 3745 | else |
| 3746 | err = get_mountpoint(dentry, m: mp); |
| 3747 | if (unlikely(err)) { |
| 3748 | namespace_unlock(); |
| 3749 | inode_unlock(inode: dentry->d_inode); |
| 3750 | mp->parent = ERR_PTR(error: err); |
| 3751 | } else { |
| 3752 | mp->parent = real_mount(mnt: path->mnt); |
| 3753 | } |
| 3754 | } |
| 3755 | |
| 3756 | int finish_automount(struct vfsmount *__m, const struct path *path) |
| 3757 | { |
| 3758 | struct vfsmount *m __free(mntput) = __m; |
| 3759 | struct mount *mnt; |
| 3760 | int err; |
| 3761 | |
| 3762 | if (!m) |
| 3763 | return 0; |
| 3764 | if (IS_ERR(ptr: m)) |
| 3765 | return PTR_ERR(ptr: m); |
| 3766 | |
| 3767 | mnt = real_mount(mnt: m); |
| 3768 | |
| 3769 | if (m->mnt_root == path->dentry) |
| 3770 | return -ELOOP; |
| 3771 | |
| 3772 | /* |
| 3773 | * we don't want to use LOCK_MOUNT() - in this case finding something |
| 3774 | * that overmounts our mountpoint to be means "quitely drop what we've |
| 3775 | * got", not "try to mount it on top". |
| 3776 | */ |
| 3777 | LOCK_MOUNT_EXACT(mp, path); |
| 3778 | if (mp.parent == ERR_PTR(error: -EBUSY)) |
| 3779 | return 0; |
| 3780 | |
| 3781 | err = do_add_mount(newmnt: mnt, mp: &mp, mnt_flags: path->mnt->mnt_flags | MNT_SHRINKABLE); |
| 3782 | if (likely(!err)) |
| 3783 | retain_and_null_ptr(m); |
| 3784 | return err; |
| 3785 | } |
| 3786 | |
| 3787 | /** |
| 3788 | * mnt_set_expiry - Put a mount on an expiration list |
| 3789 | * @mnt: The mount to list. |
| 3790 | * @expiry_list: The list to add the mount to. |
| 3791 | */ |
| 3792 | void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list) |
| 3793 | { |
| 3794 | guard(mount_locked_reader)(); |
| 3795 | list_add_tail(new: &real_mount(mnt)->mnt_expire, head: expiry_list); |
| 3796 | } |
| 3797 | EXPORT_SYMBOL(mnt_set_expiry); |
| 3798 | |
| 3799 | /* |
| 3800 | * process a list of expirable mountpoints with the intent of discarding any |
| 3801 | * mountpoints that aren't in use and haven't been touched since last we came |
| 3802 | * here |
| 3803 | */ |
| 3804 | void mark_mounts_for_expiry(struct list_head *mounts) |
| 3805 | { |
| 3806 | struct mount *mnt, *next; |
| 3807 | LIST_HEAD(graveyard); |
| 3808 | |
| 3809 | if (list_empty(head: mounts)) |
| 3810 | return; |
| 3811 | |
| 3812 | guard(namespace_excl)(); |
| 3813 | guard(mount_writer)(); |
| 3814 | |
| 3815 | /* extract from the expiration list every vfsmount that matches the |
| 3816 | * following criteria: |
| 3817 | * - already mounted |
| 3818 | * - only referenced by its parent vfsmount |
| 3819 | * - still marked for expiry (marked on the last call here; marks are |
| 3820 | * cleared by mntput()) |
| 3821 | */ |
| 3822 | list_for_each_entry_safe(mnt, next, mounts, mnt_expire) { |
| 3823 | if (!is_mounted(mnt: &mnt->mnt)) |
| 3824 | continue; |
| 3825 | if (!xchg(&mnt->mnt_expiry_mark, 1) || |
| 3826 | propagate_mount_busy(mnt, 1)) |
| 3827 | continue; |
| 3828 | list_move(list: &mnt->mnt_expire, head: &graveyard); |
| 3829 | } |
| 3830 | while (!list_empty(head: &graveyard)) { |
| 3831 | mnt = list_first_entry(&graveyard, struct mount, mnt_expire); |
| 3832 | touch_mnt_namespace(ns: mnt->mnt_ns); |
| 3833 | umount_tree(mnt, how: UMOUNT_PROPAGATE|UMOUNT_SYNC); |
| 3834 | } |
| 3835 | } |
| 3836 | |
| 3837 | EXPORT_SYMBOL_GPL(mark_mounts_for_expiry); |
| 3838 | |
| 3839 | /* |
| 3840 | * Ripoff of 'select_parent()' |
| 3841 | * |
| 3842 | * search the list of submounts for a given mountpoint, and move any |
| 3843 | * shrinkable submounts to the 'graveyard' list. |
| 3844 | */ |
| 3845 | static int select_submounts(struct mount *parent, struct list_head *graveyard) |
| 3846 | { |
| 3847 | struct mount *this_parent = parent; |
| 3848 | struct list_head *next; |
| 3849 | int found = 0; |
| 3850 | |
| 3851 | repeat: |
| 3852 | next = this_parent->mnt_mounts.next; |
| 3853 | resume: |
| 3854 | while (next != &this_parent->mnt_mounts) { |
| 3855 | struct list_head *tmp = next; |
| 3856 | struct mount *mnt = list_entry(tmp, struct mount, mnt_child); |
| 3857 | |
| 3858 | next = tmp->next; |
| 3859 | if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE)) |
| 3860 | continue; |
| 3861 | /* |
| 3862 | * Descend a level if the d_mounts list is non-empty. |
| 3863 | */ |
| 3864 | if (!list_empty(head: &mnt->mnt_mounts)) { |
| 3865 | this_parent = mnt; |
| 3866 | goto repeat; |
| 3867 | } |
| 3868 | |
| 3869 | if (!propagate_mount_busy(mnt, 1)) { |
| 3870 | list_move_tail(list: &mnt->mnt_expire, head: graveyard); |
| 3871 | found++; |
| 3872 | } |
| 3873 | } |
| 3874 | /* |
| 3875 | * All done at this level ... ascend and resume the search |
| 3876 | */ |
| 3877 | if (this_parent != parent) { |
| 3878 | next = this_parent->mnt_child.next; |
| 3879 | this_parent = this_parent->mnt_parent; |
| 3880 | goto resume; |
| 3881 | } |
| 3882 | return found; |
| 3883 | } |
| 3884 | |
| 3885 | /* |
| 3886 | * process a list of expirable mountpoints with the intent of discarding any |
| 3887 | * submounts of a specific parent mountpoint |
| 3888 | * |
| 3889 | * mount_lock must be held for write |
| 3890 | */ |
| 3891 | static void shrink_submounts(struct mount *mnt) |
| 3892 | { |
| 3893 | LIST_HEAD(graveyard); |
| 3894 | struct mount *m; |
| 3895 | |
| 3896 | /* extract submounts of 'mountpoint' from the expiration list */ |
| 3897 | while (select_submounts(parent: mnt, graveyard: &graveyard)) { |
| 3898 | while (!list_empty(head: &graveyard)) { |
| 3899 | m = list_first_entry(&graveyard, struct mount, |
| 3900 | mnt_expire); |
| 3901 | touch_mnt_namespace(ns: m->mnt_ns); |
| 3902 | umount_tree(mnt: m, how: UMOUNT_PROPAGATE|UMOUNT_SYNC); |
| 3903 | } |
| 3904 | } |
| 3905 | } |
| 3906 | |
| 3907 | static void *copy_mount_options(const void __user * data) |
| 3908 | { |
| 3909 | char *copy; |
| 3910 | unsigned left, offset; |
| 3911 | |
| 3912 | if (!data) |
| 3913 | return NULL; |
| 3914 | |
| 3915 | copy = kmalloc(PAGE_SIZE, GFP_KERNEL); |
| 3916 | if (!copy) |
| 3917 | return ERR_PTR(error: -ENOMEM); |
| 3918 | |
| 3919 | left = copy_from_user(to: copy, from: data, PAGE_SIZE); |
| 3920 | |
| 3921 | /* |
| 3922 | * Not all architectures have an exact copy_from_user(). Resort to |
| 3923 | * byte at a time. |
| 3924 | */ |
| 3925 | offset = PAGE_SIZE - left; |
| 3926 | while (left) { |
| 3927 | char c; |
| 3928 | if (get_user(c, (const char __user *)data + offset)) |
| 3929 | break; |
| 3930 | copy[offset] = c; |
| 3931 | left--; |
| 3932 | offset++; |
| 3933 | } |
| 3934 | |
| 3935 | if (left == PAGE_SIZE) { |
| 3936 | kfree(objp: copy); |
| 3937 | return ERR_PTR(error: -EFAULT); |
| 3938 | } |
| 3939 | |
| 3940 | return copy; |
| 3941 | } |
| 3942 | |
| 3943 | static char *copy_mount_string(const void __user *data) |
| 3944 | { |
| 3945 | return data ? strndup_user(data, PATH_MAX) : NULL; |
| 3946 | } |
| 3947 | |
| 3948 | /* |
| 3949 | * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to |
| 3950 | * be given to the mount() call (ie: read-only, no-dev, no-suid etc). |
| 3951 | * |
| 3952 | * data is a (void *) that can point to any structure up to |
| 3953 | * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent |
| 3954 | * information (or be NULL). |
| 3955 | * |
| 3956 | * Pre-0.97 versions of mount() didn't have a flags word. |
| 3957 | * When the flags word was introduced its top half was required |
| 3958 | * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9. |
| 3959 | * Therefore, if this magic number is present, it carries no information |
| 3960 | * and must be discarded. |
| 3961 | */ |
| 3962 | int path_mount(const char *dev_name, const struct path *path, |
| 3963 | const char *type_page, unsigned long flags, void *data_page) |
| 3964 | { |
| 3965 | unsigned int mnt_flags = 0, sb_flags; |
| 3966 | int ret; |
| 3967 | |
| 3968 | /* Discard magic */ |
| 3969 | if ((flags & MS_MGC_MSK) == MS_MGC_VAL) |
| 3970 | flags &= ~MS_MGC_MSK; |
| 3971 | |
| 3972 | /* Basic sanity checks */ |
| 3973 | if (data_page) |
| 3974 | ((char *)data_page)[PAGE_SIZE - 1] = 0; |
| 3975 | |
| 3976 | if (flags & MS_NOUSER) |
| 3977 | return -EINVAL; |
| 3978 | |
| 3979 | ret = security_sb_mount(dev_name, path, type: type_page, flags, data: data_page); |
| 3980 | if (ret) |
| 3981 | return ret; |
| 3982 | if (!may_mount()) |
| 3983 | return -EPERM; |
| 3984 | if (flags & SB_MANDLOCK) |
| 3985 | warn_mandlock(); |
| 3986 | |
| 3987 | /* Default to relatime unless overriden */ |
| 3988 | if (!(flags & MS_NOATIME)) |
| 3989 | mnt_flags |= MNT_RELATIME; |
| 3990 | |
| 3991 | /* Separate the per-mountpoint flags */ |
| 3992 | if (flags & MS_NOSUID) |
| 3993 | mnt_flags |= MNT_NOSUID; |
| 3994 | if (flags & MS_NODEV) |
| 3995 | mnt_flags |= MNT_NODEV; |
| 3996 | if (flags & MS_NOEXEC) |
| 3997 | mnt_flags |= MNT_NOEXEC; |
| 3998 | if (flags & MS_NOATIME) |
| 3999 | mnt_flags |= MNT_NOATIME; |
| 4000 | if (flags & MS_NODIRATIME) |
| 4001 | mnt_flags |= MNT_NODIRATIME; |
| 4002 | if (flags & MS_STRICTATIME) |
| 4003 | mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME); |
| 4004 | if (flags & MS_RDONLY) |
| 4005 | mnt_flags |= MNT_READONLY; |
| 4006 | if (flags & MS_NOSYMFOLLOW) |
| 4007 | mnt_flags |= MNT_NOSYMFOLLOW; |
| 4008 | |
| 4009 | /* The default atime for remount is preservation */ |
| 4010 | if ((flags & MS_REMOUNT) && |
| 4011 | ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME | |
| 4012 | MS_STRICTATIME)) == 0)) { |
| 4013 | mnt_flags &= ~MNT_ATIME_MASK; |
| 4014 | mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK; |
| 4015 | } |
| 4016 | |
| 4017 | sb_flags = flags & (SB_RDONLY | |
| 4018 | SB_SYNCHRONOUS | |
| 4019 | SB_MANDLOCK | |
| 4020 | SB_DIRSYNC | |
| 4021 | SB_SILENT | |
| 4022 | SB_POSIXACL | |
| 4023 | SB_LAZYTIME | |
| 4024 | SB_I_VERSION); |
| 4025 | |
| 4026 | if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND)) |
| 4027 | return do_reconfigure_mnt(path, mnt_flags); |
| 4028 | if (flags & MS_REMOUNT) |
| 4029 | return do_remount(path, sb_flags, mnt_flags, data: data_page); |
| 4030 | if (flags & MS_BIND) |
| 4031 | return do_loopback(path, old_name: dev_name, recurse: flags & MS_REC); |
| 4032 | if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) |
| 4033 | return do_change_type(path, ms_flags: flags); |
| 4034 | if (flags & MS_MOVE) |
| 4035 | return do_move_mount_old(path, old_name: dev_name); |
| 4036 | |
| 4037 | return do_new_mount(path, fstype: type_page, sb_flags, mnt_flags, name: dev_name, |
| 4038 | data: data_page); |
| 4039 | } |
| 4040 | |
| 4041 | int do_mount(const char *dev_name, const char __user *dir_name, |
| 4042 | const char *type_page, unsigned long flags, void *data_page) |
| 4043 | { |
| 4044 | struct path path __free(path_put) = {}; |
| 4045 | int ret; |
| 4046 | |
| 4047 | ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path); |
| 4048 | if (ret) |
| 4049 | return ret; |
| 4050 | return path_mount(dev_name, path: &path, type_page, flags, data_page); |
| 4051 | } |
| 4052 | |
| 4053 | static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns) |
| 4054 | { |
| 4055 | return inc_ucount(ns, current_euid(), type: UCOUNT_MNT_NAMESPACES); |
| 4056 | } |
| 4057 | |
| 4058 | static void dec_mnt_namespaces(struct ucounts *ucounts) |
| 4059 | { |
| 4060 | dec_ucount(ucounts, type: UCOUNT_MNT_NAMESPACES); |
| 4061 | } |
| 4062 | |
| 4063 | static void free_mnt_ns(struct mnt_namespace *ns) |
| 4064 | { |
| 4065 | if (!is_anon_ns(ns)) |
| 4066 | ns_common_free(ns); |
| 4067 | dec_mnt_namespaces(ucounts: ns->ucounts); |
| 4068 | mnt_ns_tree_remove(ns); |
| 4069 | } |
| 4070 | |
| 4071 | static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon) |
| 4072 | { |
| 4073 | struct mnt_namespace *new_ns; |
| 4074 | struct ucounts *ucounts; |
| 4075 | int ret; |
| 4076 | |
| 4077 | ucounts = inc_mnt_namespaces(ns: user_ns); |
| 4078 | if (!ucounts) |
| 4079 | return ERR_PTR(error: -ENOSPC); |
| 4080 | |
| 4081 | new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL_ACCOUNT); |
| 4082 | if (!new_ns) { |
| 4083 | dec_mnt_namespaces(ucounts); |
| 4084 | return ERR_PTR(error: -ENOMEM); |
| 4085 | } |
| 4086 | |
| 4087 | if (anon) |
| 4088 | ret = ns_common_init_inum(new_ns, MNT_NS_ANON_INO); |
| 4089 | else |
| 4090 | ret = ns_common_init(new_ns); |
| 4091 | if (ret) { |
| 4092 | kfree(objp: new_ns); |
| 4093 | dec_mnt_namespaces(ucounts); |
| 4094 | return ERR_PTR(error: ret); |
| 4095 | } |
| 4096 | if (!anon) |
| 4097 | ns_tree_gen_id(ns: &new_ns->ns); |
| 4098 | refcount_set(r: &new_ns->passive, n: 1); |
| 4099 | new_ns->mounts = RB_ROOT; |
| 4100 | init_waitqueue_head(&new_ns->poll); |
| 4101 | new_ns->user_ns = get_user_ns(ns: user_ns); |
| 4102 | new_ns->ucounts = ucounts; |
| 4103 | return new_ns; |
| 4104 | } |
| 4105 | |
| 4106 | __latent_entropy |
| 4107 | struct mnt_namespace *copy_mnt_ns(u64 flags, struct mnt_namespace *ns, |
| 4108 | struct user_namespace *user_ns, struct fs_struct *new_fs) |
| 4109 | { |
| 4110 | struct mnt_namespace *new_ns; |
| 4111 | struct vfsmount *rootmnt __free(mntput) = NULL; |
| 4112 | struct vfsmount *pwdmnt __free(mntput) = NULL; |
| 4113 | struct mount *p, *q; |
| 4114 | struct mount *old; |
| 4115 | struct mount *new; |
| 4116 | int copy_flags; |
| 4117 | |
| 4118 | BUG_ON(!ns); |
| 4119 | |
| 4120 | if (likely(!(flags & CLONE_NEWNS))) { |
| 4121 | get_mnt_ns(ns); |
| 4122 | return ns; |
| 4123 | } |
| 4124 | |
| 4125 | old = ns->root; |
| 4126 | |
| 4127 | new_ns = alloc_mnt_ns(user_ns, anon: false); |
| 4128 | if (IS_ERR(ptr: new_ns)) |
| 4129 | return new_ns; |
| 4130 | |
| 4131 | guard(namespace_excl)(); |
| 4132 | /* First pass: copy the tree topology */ |
| 4133 | copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE; |
| 4134 | if (user_ns != ns->user_ns) |
| 4135 | copy_flags |= CL_SLAVE; |
| 4136 | new = copy_tree(src_root: old, dentry: old->mnt.mnt_root, flag: copy_flags); |
| 4137 | if (IS_ERR(ptr: new)) { |
| 4138 | emptied_ns = new_ns; |
| 4139 | return ERR_CAST(ptr: new); |
| 4140 | } |
| 4141 | if (user_ns != ns->user_ns) { |
| 4142 | guard(mount_writer)(); |
| 4143 | lock_mnt_tree(mnt: new); |
| 4144 | } |
| 4145 | new_ns->root = new; |
| 4146 | |
| 4147 | /* |
| 4148 | * Second pass: switch the tsk->fs->* elements and mark new vfsmounts |
| 4149 | * as belonging to new namespace. We have already acquired a private |
| 4150 | * fs_struct, so tsk->fs->lock is not needed. |
| 4151 | */ |
| 4152 | p = old; |
| 4153 | q = new; |
| 4154 | while (p) { |
| 4155 | mnt_add_to_ns(ns: new_ns, mnt: q); |
| 4156 | new_ns->nr_mounts++; |
| 4157 | if (new_fs) { |
| 4158 | if (&p->mnt == new_fs->root.mnt) { |
| 4159 | new_fs->root.mnt = mntget(&q->mnt); |
| 4160 | rootmnt = &p->mnt; |
| 4161 | } |
| 4162 | if (&p->mnt == new_fs->pwd.mnt) { |
| 4163 | new_fs->pwd.mnt = mntget(&q->mnt); |
| 4164 | pwdmnt = &p->mnt; |
| 4165 | } |
| 4166 | } |
| 4167 | p = next_mnt(p, root: old); |
| 4168 | q = next_mnt(p: q, root: new); |
| 4169 | if (!q) |
| 4170 | break; |
| 4171 | // an mntns binding we'd skipped? |
| 4172 | while (p->mnt.mnt_root != q->mnt.mnt_root) |
| 4173 | p = next_mnt(p: skip_mnt_tree(p), root: old); |
| 4174 | } |
| 4175 | ns_tree_add_raw(new_ns); |
| 4176 | return new_ns; |
| 4177 | } |
| 4178 | |
| 4179 | struct dentry *mount_subtree(struct vfsmount *m, const char *name) |
| 4180 | { |
| 4181 | struct mount *mnt = real_mount(mnt: m); |
| 4182 | struct mnt_namespace *ns; |
| 4183 | struct super_block *s; |
| 4184 | struct path path; |
| 4185 | int err; |
| 4186 | |
| 4187 | ns = alloc_mnt_ns(user_ns: &init_user_ns, anon: true); |
| 4188 | if (IS_ERR(ptr: ns)) { |
| 4189 | mntput(m); |
| 4190 | return ERR_CAST(ptr: ns); |
| 4191 | } |
| 4192 | ns->root = mnt; |
| 4193 | ns->nr_mounts++; |
| 4194 | mnt_add_to_ns(ns, mnt); |
| 4195 | |
| 4196 | err = vfs_path_lookup(m->mnt_root, m, |
| 4197 | name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path); |
| 4198 | |
| 4199 | put_mnt_ns(ns); |
| 4200 | |
| 4201 | if (err) |
| 4202 | return ERR_PTR(error: err); |
| 4203 | |
| 4204 | /* trade a vfsmount reference for active sb one */ |
| 4205 | s = path.mnt->mnt_sb; |
| 4206 | atomic_inc(v: &s->s_active); |
| 4207 | mntput(path.mnt); |
| 4208 | /* lock the sucker */ |
| 4209 | down_write(sem: &s->s_umount); |
| 4210 | /* ... and return the root of (sub)tree on it */ |
| 4211 | return path.dentry; |
| 4212 | } |
| 4213 | EXPORT_SYMBOL(mount_subtree); |
| 4214 | |
| 4215 | SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name, |
| 4216 | char __user *, type, unsigned long, flags, void __user *, data) |
| 4217 | { |
| 4218 | int ret; |
| 4219 | char *kernel_type; |
| 4220 | char *kernel_dev; |
| 4221 | void *options; |
| 4222 | |
| 4223 | kernel_type = copy_mount_string(data: type); |
| 4224 | ret = PTR_ERR(ptr: kernel_type); |
| 4225 | if (IS_ERR(ptr: kernel_type)) |
| 4226 | goto out_type; |
| 4227 | |
| 4228 | kernel_dev = copy_mount_string(data: dev_name); |
| 4229 | ret = PTR_ERR(ptr: kernel_dev); |
| 4230 | if (IS_ERR(ptr: kernel_dev)) |
| 4231 | goto out_dev; |
| 4232 | |
| 4233 | options = copy_mount_options(data); |
| 4234 | ret = PTR_ERR(ptr: options); |
| 4235 | if (IS_ERR(ptr: options)) |
| 4236 | goto out_data; |
| 4237 | |
| 4238 | ret = do_mount(dev_name: kernel_dev, dir_name, type_page: kernel_type, flags, data_page: options); |
| 4239 | |
| 4240 | kfree(objp: options); |
| 4241 | out_data: |
| 4242 | kfree(objp: kernel_dev); |
| 4243 | out_dev: |
| 4244 | kfree(objp: kernel_type); |
| 4245 | out_type: |
| 4246 | return ret; |
| 4247 | } |
| 4248 | |
| 4249 | #define FSMOUNT_VALID_FLAGS \ |
| 4250 | (MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV | \ |
| 4251 | MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME | \ |
| 4252 | MOUNT_ATTR_NOSYMFOLLOW) |
| 4253 | |
| 4254 | #define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP) |
| 4255 | |
| 4256 | #define MOUNT_SETATTR_PROPAGATION_FLAGS \ |
| 4257 | (MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED) |
| 4258 | |
| 4259 | static unsigned int attr_flags_to_mnt_flags(u64 attr_flags) |
| 4260 | { |
| 4261 | unsigned int mnt_flags = 0; |
| 4262 | |
| 4263 | if (attr_flags & MOUNT_ATTR_RDONLY) |
| 4264 | mnt_flags |= MNT_READONLY; |
| 4265 | if (attr_flags & MOUNT_ATTR_NOSUID) |
| 4266 | mnt_flags |= MNT_NOSUID; |
| 4267 | if (attr_flags & MOUNT_ATTR_NODEV) |
| 4268 | mnt_flags |= MNT_NODEV; |
| 4269 | if (attr_flags & MOUNT_ATTR_NOEXEC) |
| 4270 | mnt_flags |= MNT_NOEXEC; |
| 4271 | if (attr_flags & MOUNT_ATTR_NODIRATIME) |
| 4272 | mnt_flags |= MNT_NODIRATIME; |
| 4273 | if (attr_flags & MOUNT_ATTR_NOSYMFOLLOW) |
| 4274 | mnt_flags |= MNT_NOSYMFOLLOW; |
| 4275 | |
| 4276 | return mnt_flags; |
| 4277 | } |
| 4278 | |
| 4279 | /* |
| 4280 | * Create a kernel mount representation for a new, prepared superblock |
| 4281 | * (specified by fs_fd) and attach to an open_tree-like file descriptor. |
| 4282 | */ |
| 4283 | SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags, |
| 4284 | unsigned int, attr_flags) |
| 4285 | { |
| 4286 | struct mnt_namespace *ns; |
| 4287 | struct fs_context *fc; |
| 4288 | struct file *file; |
| 4289 | struct path newmount; |
| 4290 | struct mount *mnt; |
| 4291 | unsigned int mnt_flags = 0; |
| 4292 | long ret; |
| 4293 | |
| 4294 | if (!may_mount()) |
| 4295 | return -EPERM; |
| 4296 | |
| 4297 | if ((flags & ~(FSMOUNT_CLOEXEC)) != 0) |
| 4298 | return -EINVAL; |
| 4299 | |
| 4300 | if (attr_flags & ~FSMOUNT_VALID_FLAGS) |
| 4301 | return -EINVAL; |
| 4302 | |
| 4303 | mnt_flags = attr_flags_to_mnt_flags(attr_flags); |
| 4304 | |
| 4305 | switch (attr_flags & MOUNT_ATTR__ATIME) { |
| 4306 | case MOUNT_ATTR_STRICTATIME: |
| 4307 | break; |
| 4308 | case MOUNT_ATTR_NOATIME: |
| 4309 | mnt_flags |= MNT_NOATIME; |
| 4310 | break; |
| 4311 | case MOUNT_ATTR_RELATIME: |
| 4312 | mnt_flags |= MNT_RELATIME; |
| 4313 | break; |
| 4314 | default: |
| 4315 | return -EINVAL; |
| 4316 | } |
| 4317 | |
| 4318 | CLASS(fd, f)(fd: fs_fd); |
| 4319 | if (fd_empty(f)) |
| 4320 | return -EBADF; |
| 4321 | |
| 4322 | if (fd_file(f)->f_op != &fscontext_fops) |
| 4323 | return -EINVAL; |
| 4324 | |
| 4325 | fc = fd_file(f)->private_data; |
| 4326 | |
| 4327 | ret = mutex_lock_interruptible(lock: &fc->uapi_mutex); |
| 4328 | if (ret < 0) |
| 4329 | return ret; |
| 4330 | |
| 4331 | /* There must be a valid superblock or we can't mount it */ |
| 4332 | ret = -EINVAL; |
| 4333 | if (!fc->root) |
| 4334 | goto err_unlock; |
| 4335 | |
| 4336 | ret = -EPERM; |
| 4337 | if (mount_too_revealing(sb: fc->root->d_sb, new_mnt_flags: &mnt_flags)) { |
| 4338 | errorfcp(fc, "VFS" , "Mount too revealing" ); |
| 4339 | goto err_unlock; |
| 4340 | } |
| 4341 | |
| 4342 | ret = -EBUSY; |
| 4343 | if (fc->phase != FS_CONTEXT_AWAITING_MOUNT) |
| 4344 | goto err_unlock; |
| 4345 | |
| 4346 | if (fc->sb_flags & SB_MANDLOCK) |
| 4347 | warn_mandlock(); |
| 4348 | |
| 4349 | newmount.mnt = vfs_create_mount(fc); |
| 4350 | if (IS_ERR(ptr: newmount.mnt)) { |
| 4351 | ret = PTR_ERR(ptr: newmount.mnt); |
| 4352 | goto err_unlock; |
| 4353 | } |
| 4354 | newmount.dentry = dget(dentry: fc->root); |
| 4355 | newmount.mnt->mnt_flags = mnt_flags; |
| 4356 | |
| 4357 | /* We've done the mount bit - now move the file context into more or |
| 4358 | * less the same state as if we'd done an fspick(). We don't want to |
| 4359 | * do any memory allocation or anything like that at this point as we |
| 4360 | * don't want to have to handle any errors incurred. |
| 4361 | */ |
| 4362 | vfs_clean_context(fc); |
| 4363 | |
| 4364 | ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, anon: true); |
| 4365 | if (IS_ERR(ptr: ns)) { |
| 4366 | ret = PTR_ERR(ptr: ns); |
| 4367 | goto err_path; |
| 4368 | } |
| 4369 | mnt = real_mount(mnt: newmount.mnt); |
| 4370 | ns->root = mnt; |
| 4371 | ns->nr_mounts = 1; |
| 4372 | mnt_add_to_ns(ns, mnt); |
| 4373 | mntget(newmount.mnt); |
| 4374 | |
| 4375 | /* Attach to an apparent O_PATH fd with a note that we need to unmount |
| 4376 | * it, not just simply put it. |
| 4377 | */ |
| 4378 | file = dentry_open(path: &newmount, O_PATH, creds: fc->cred); |
| 4379 | if (IS_ERR(ptr: file)) { |
| 4380 | dissolve_on_fput(mnt: newmount.mnt); |
| 4381 | ret = PTR_ERR(ptr: file); |
| 4382 | goto err_path; |
| 4383 | } |
| 4384 | file->f_mode |= FMODE_NEED_UNMOUNT; |
| 4385 | |
| 4386 | ret = get_unused_fd_flags(flags: (flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0); |
| 4387 | if (ret >= 0) |
| 4388 | fd_install(fd: ret, file); |
| 4389 | else |
| 4390 | fput(file); |
| 4391 | |
| 4392 | err_path: |
| 4393 | path_put(&newmount); |
| 4394 | err_unlock: |
| 4395 | mutex_unlock(lock: &fc->uapi_mutex); |
| 4396 | return ret; |
| 4397 | } |
| 4398 | |
| 4399 | static inline int vfs_move_mount(const struct path *from_path, |
| 4400 | const struct path *to_path, |
| 4401 | enum mnt_tree_flags_t mflags) |
| 4402 | { |
| 4403 | int ret; |
| 4404 | |
| 4405 | ret = security_move_mount(from_path, to_path); |
| 4406 | if (ret) |
| 4407 | return ret; |
| 4408 | |
| 4409 | if (mflags & MNT_TREE_PROPAGATION) |
| 4410 | return do_set_group(from_path, to_path); |
| 4411 | |
| 4412 | return do_move_mount(old_path: from_path, new_path: to_path, flags: mflags); |
| 4413 | } |
| 4414 | |
| 4415 | /* |
| 4416 | * Move a mount from one place to another. In combination with |
| 4417 | * fsopen()/fsmount() this is used to install a new mount and in combination |
| 4418 | * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy |
| 4419 | * a mount subtree. |
| 4420 | * |
| 4421 | * Note the flags value is a combination of MOVE_MOUNT_* flags. |
| 4422 | */ |
| 4423 | SYSCALL_DEFINE5(move_mount, |
| 4424 | int, from_dfd, const char __user *, from_pathname, |
| 4425 | int, to_dfd, const char __user *, to_pathname, |
| 4426 | unsigned int, flags) |
| 4427 | { |
| 4428 | struct path to_path __free(path_put) = {}; |
| 4429 | struct path from_path __free(path_put) = {}; |
| 4430 | struct filename *to_name __free(putname) = NULL; |
| 4431 | struct filename *from_name __free(putname) = NULL; |
| 4432 | unsigned int lflags, uflags; |
| 4433 | enum mnt_tree_flags_t mflags = 0; |
| 4434 | int ret = 0; |
| 4435 | |
| 4436 | if (!may_mount()) |
| 4437 | return -EPERM; |
| 4438 | |
| 4439 | if (flags & ~MOVE_MOUNT__MASK) |
| 4440 | return -EINVAL; |
| 4441 | |
| 4442 | if ((flags & (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP)) == |
| 4443 | (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP)) |
| 4444 | return -EINVAL; |
| 4445 | |
| 4446 | if (flags & MOVE_MOUNT_SET_GROUP) mflags |= MNT_TREE_PROPAGATION; |
| 4447 | if (flags & MOVE_MOUNT_BENEATH) mflags |= MNT_TREE_BENEATH; |
| 4448 | |
| 4449 | uflags = 0; |
| 4450 | if (flags & MOVE_MOUNT_T_EMPTY_PATH) |
| 4451 | uflags = AT_EMPTY_PATH; |
| 4452 | |
| 4453 | to_name = getname_maybe_null(name: to_pathname, flags: uflags); |
| 4454 | if (IS_ERR(ptr: to_name)) |
| 4455 | return PTR_ERR(ptr: to_name); |
| 4456 | |
| 4457 | if (!to_name && to_dfd >= 0) { |
| 4458 | CLASS(fd_raw, f_to)(fd: to_dfd); |
| 4459 | if (fd_empty(f: f_to)) |
| 4460 | return -EBADF; |
| 4461 | |
| 4462 | to_path = fd_file(f_to)->f_path; |
| 4463 | path_get(&to_path); |
| 4464 | } else { |
| 4465 | lflags = 0; |
| 4466 | if (flags & MOVE_MOUNT_T_SYMLINKS) |
| 4467 | lflags |= LOOKUP_FOLLOW; |
| 4468 | if (flags & MOVE_MOUNT_T_AUTOMOUNTS) |
| 4469 | lflags |= LOOKUP_AUTOMOUNT; |
| 4470 | ret = filename_lookup(dfd: to_dfd, name: to_name, flags: lflags, path: &to_path, NULL); |
| 4471 | if (ret) |
| 4472 | return ret; |
| 4473 | } |
| 4474 | |
| 4475 | uflags = 0; |
| 4476 | if (flags & MOVE_MOUNT_F_EMPTY_PATH) |
| 4477 | uflags = AT_EMPTY_PATH; |
| 4478 | |
| 4479 | from_name = getname_maybe_null(name: from_pathname, flags: uflags); |
| 4480 | if (IS_ERR(ptr: from_name)) |
| 4481 | return PTR_ERR(ptr: from_name); |
| 4482 | |
| 4483 | if (!from_name && from_dfd >= 0) { |
| 4484 | CLASS(fd_raw, f_from)(fd: from_dfd); |
| 4485 | if (fd_empty(f: f_from)) |
| 4486 | return -EBADF; |
| 4487 | |
| 4488 | return vfs_move_mount(from_path: &fd_file(f_from)->f_path, to_path: &to_path, mflags); |
| 4489 | } |
| 4490 | |
| 4491 | lflags = 0; |
| 4492 | if (flags & MOVE_MOUNT_F_SYMLINKS) |
| 4493 | lflags |= LOOKUP_FOLLOW; |
| 4494 | if (flags & MOVE_MOUNT_F_AUTOMOUNTS) |
| 4495 | lflags |= LOOKUP_AUTOMOUNT; |
| 4496 | ret = filename_lookup(dfd: from_dfd, name: from_name, flags: lflags, path: &from_path, NULL); |
| 4497 | if (ret) |
| 4498 | return ret; |
| 4499 | |
| 4500 | return vfs_move_mount(from_path: &from_path, to_path: &to_path, mflags); |
| 4501 | } |
| 4502 | |
| 4503 | /* |
| 4504 | * Return true if path is reachable from root |
| 4505 | * |
| 4506 | * locks: mount_locked_reader || namespace_shared && is_mounted(mnt) |
| 4507 | */ |
| 4508 | bool is_path_reachable(struct mount *mnt, struct dentry *dentry, |
| 4509 | const struct path *root) |
| 4510 | { |
| 4511 | while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) { |
| 4512 | dentry = mnt->mnt_mountpoint; |
| 4513 | mnt = mnt->mnt_parent; |
| 4514 | } |
| 4515 | return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry); |
| 4516 | } |
| 4517 | |
| 4518 | bool path_is_under(const struct path *path1, const struct path *path2) |
| 4519 | { |
| 4520 | guard(mount_locked_reader)(); |
| 4521 | return is_path_reachable(mnt: real_mount(mnt: path1->mnt), dentry: path1->dentry, root: path2); |
| 4522 | } |
| 4523 | EXPORT_SYMBOL(path_is_under); |
| 4524 | |
| 4525 | /* |
| 4526 | * pivot_root Semantics: |
| 4527 | * Moves the root file system of the current process to the directory put_old, |
| 4528 | * makes new_root as the new root file system of the current process, and sets |
| 4529 | * root/cwd of all processes which had them on the current root to new_root. |
| 4530 | * |
| 4531 | * Restrictions: |
| 4532 | * The new_root and put_old must be directories, and must not be on the |
| 4533 | * same file system as the current process root. The put_old must be |
| 4534 | * underneath new_root, i.e. adding a non-zero number of /.. to the string |
| 4535 | * pointed to by put_old must yield the same directory as new_root. No other |
| 4536 | * file system may be mounted on put_old. After all, new_root is a mountpoint. |
| 4537 | * |
| 4538 | * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem. |
| 4539 | * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives |
| 4540 | * in this situation. |
| 4541 | * |
| 4542 | * Notes: |
| 4543 | * - we don't move root/cwd if they are not at the root (reason: if something |
| 4544 | * cared enough to change them, it's probably wrong to force them elsewhere) |
| 4545 | * - it's okay to pick a root that isn't the root of a file system, e.g. |
| 4546 | * /nfs/my_root where /nfs is the mount point. It must be a mountpoint, |
| 4547 | * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root |
| 4548 | * first. |
| 4549 | */ |
| 4550 | SYSCALL_DEFINE2(pivot_root, const char __user *, new_root, |
| 4551 | const char __user *, put_old) |
| 4552 | { |
| 4553 | struct path new __free(path_put) = {}; |
| 4554 | struct path old __free(path_put) = {}; |
| 4555 | struct path root __free(path_put) = {}; |
| 4556 | struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent; |
| 4557 | int error; |
| 4558 | |
| 4559 | if (!may_mount()) |
| 4560 | return -EPERM; |
| 4561 | |
| 4562 | error = user_path_at(AT_FDCWD, new_root, |
| 4563 | LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new); |
| 4564 | if (error) |
| 4565 | return error; |
| 4566 | |
| 4567 | error = user_path_at(AT_FDCWD, put_old, |
| 4568 | LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old); |
| 4569 | if (error) |
| 4570 | return error; |
| 4571 | |
| 4572 | error = security_sb_pivotroot(old_path: &old, new_path: &new); |
| 4573 | if (error) |
| 4574 | return error; |
| 4575 | |
| 4576 | get_fs_root(current->fs, root: &root); |
| 4577 | |
| 4578 | LOCK_MOUNT(old_mp, &old); |
| 4579 | old_mnt = old_mp.parent; |
| 4580 | if (IS_ERR(ptr: old_mnt)) |
| 4581 | return PTR_ERR(ptr: old_mnt); |
| 4582 | |
| 4583 | new_mnt = real_mount(mnt: new.mnt); |
| 4584 | root_mnt = real_mount(mnt: root.mnt); |
| 4585 | ex_parent = new_mnt->mnt_parent; |
| 4586 | root_parent = root_mnt->mnt_parent; |
| 4587 | if (IS_MNT_SHARED(old_mnt) || |
| 4588 | IS_MNT_SHARED(ex_parent) || |
| 4589 | IS_MNT_SHARED(root_parent)) |
| 4590 | return -EINVAL; |
| 4591 | if (!check_mnt(mnt: root_mnt) || !check_mnt(mnt: new_mnt)) |
| 4592 | return -EINVAL; |
| 4593 | if (new_mnt->mnt.mnt_flags & MNT_LOCKED) |
| 4594 | return -EINVAL; |
| 4595 | if (d_unlinked(dentry: new.dentry)) |
| 4596 | return -ENOENT; |
| 4597 | if (new_mnt == root_mnt || old_mnt == root_mnt) |
| 4598 | return -EBUSY; /* loop, on the same file system */ |
| 4599 | if (!path_mounted(path: &root)) |
| 4600 | return -EINVAL; /* not a mountpoint */ |
| 4601 | if (!mnt_has_parent(mnt: root_mnt)) |
| 4602 | return -EINVAL; /* absolute root */ |
| 4603 | if (!path_mounted(path: &new)) |
| 4604 | return -EINVAL; /* not a mountpoint */ |
| 4605 | if (!mnt_has_parent(mnt: new_mnt)) |
| 4606 | return -EINVAL; /* absolute root */ |
| 4607 | /* make sure we can reach put_old from new_root */ |
| 4608 | if (!is_path_reachable(mnt: old_mnt, dentry: old_mp.mp->m_dentry, root: &new)) |
| 4609 | return -EINVAL; |
| 4610 | /* make certain new is below the root */ |
| 4611 | if (!is_path_reachable(mnt: new_mnt, dentry: new.dentry, root: &root)) |
| 4612 | return -EINVAL; |
| 4613 | lock_mount_hash(); |
| 4614 | umount_mnt(mnt: new_mnt); |
| 4615 | if (root_mnt->mnt.mnt_flags & MNT_LOCKED) { |
| 4616 | new_mnt->mnt.mnt_flags |= MNT_LOCKED; |
| 4617 | root_mnt->mnt.mnt_flags &= ~MNT_LOCKED; |
| 4618 | } |
| 4619 | /* mount new_root on / */ |
| 4620 | attach_mnt(mnt: new_mnt, parent: root_parent, mp: root_mnt->mnt_mp); |
| 4621 | umount_mnt(mnt: root_mnt); |
| 4622 | /* mount old root on put_old */ |
| 4623 | attach_mnt(mnt: root_mnt, parent: old_mnt, mp: old_mp.mp); |
| 4624 | touch_mnt_namespace(current->nsproxy->mnt_ns); |
| 4625 | /* A moved mount should not expire automatically */ |
| 4626 | list_del_init(entry: &new_mnt->mnt_expire); |
| 4627 | unlock_mount_hash(); |
| 4628 | mnt_notify_add(m: root_mnt); |
| 4629 | mnt_notify_add(m: new_mnt); |
| 4630 | chroot_fs_refs(&root, &new); |
| 4631 | return 0; |
| 4632 | } |
| 4633 | |
| 4634 | static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt) |
| 4635 | { |
| 4636 | unsigned int flags = mnt->mnt.mnt_flags; |
| 4637 | |
| 4638 | /* flags to clear */ |
| 4639 | flags &= ~kattr->attr_clr; |
| 4640 | /* flags to raise */ |
| 4641 | flags |= kattr->attr_set; |
| 4642 | |
| 4643 | return flags; |
| 4644 | } |
| 4645 | |
| 4646 | static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt) |
| 4647 | { |
| 4648 | struct vfsmount *m = &mnt->mnt; |
| 4649 | struct user_namespace *fs_userns = m->mnt_sb->s_user_ns; |
| 4650 | |
| 4651 | if (!kattr->mnt_idmap) |
| 4652 | return 0; |
| 4653 | |
| 4654 | /* |
| 4655 | * Creating an idmapped mount with the filesystem wide idmapping |
| 4656 | * doesn't make sense so block that. We don't allow mushy semantics. |
| 4657 | */ |
| 4658 | if (kattr->mnt_userns == m->mnt_sb->s_user_ns) |
| 4659 | return -EINVAL; |
| 4660 | |
| 4661 | /* |
| 4662 | * We only allow an mount to change it's idmapping if it has |
| 4663 | * never been accessible to userspace. |
| 4664 | */ |
| 4665 | if (!(kattr->kflags & MOUNT_KATTR_IDMAP_REPLACE) && is_idmapped_mnt(mnt: m)) |
| 4666 | return -EPERM; |
| 4667 | |
| 4668 | /* The underlying filesystem doesn't support idmapped mounts yet. */ |
| 4669 | if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP)) |
| 4670 | return -EINVAL; |
| 4671 | |
| 4672 | /* The filesystem has turned off idmapped mounts. */ |
| 4673 | if (m->mnt_sb->s_iflags & SB_I_NOIDMAP) |
| 4674 | return -EINVAL; |
| 4675 | |
| 4676 | /* We're not controlling the superblock. */ |
| 4677 | if (!ns_capable(ns: fs_userns, CAP_SYS_ADMIN)) |
| 4678 | return -EPERM; |
| 4679 | |
| 4680 | /* Mount has already been visible in the filesystem hierarchy. */ |
| 4681 | if (!is_anon_ns(ns: mnt->mnt_ns)) |
| 4682 | return -EINVAL; |
| 4683 | |
| 4684 | return 0; |
| 4685 | } |
| 4686 | |
| 4687 | /** |
| 4688 | * mnt_allow_writers() - check whether the attribute change allows writers |
| 4689 | * @kattr: the new mount attributes |
| 4690 | * @mnt: the mount to which @kattr will be applied |
| 4691 | * |
| 4692 | * Check whether thew new mount attributes in @kattr allow concurrent writers. |
| 4693 | * |
| 4694 | * Return: true if writers need to be held, false if not |
| 4695 | */ |
| 4696 | static inline bool mnt_allow_writers(const struct mount_kattr *kattr, |
| 4697 | const struct mount *mnt) |
| 4698 | { |
| 4699 | return (!(kattr->attr_set & MNT_READONLY) || |
| 4700 | (mnt->mnt.mnt_flags & MNT_READONLY)) && |
| 4701 | !kattr->mnt_idmap; |
| 4702 | } |
| 4703 | |
| 4704 | static int mount_setattr_prepare(struct mount_kattr *kattr, struct mount *mnt) |
| 4705 | { |
| 4706 | struct mount *m; |
| 4707 | int err; |
| 4708 | |
| 4709 | for (m = mnt; m; m = next_mnt(p: m, root: mnt)) { |
| 4710 | if (!can_change_locked_flags(mnt: m, mnt_flags: recalc_flags(kattr, mnt: m))) { |
| 4711 | err = -EPERM; |
| 4712 | break; |
| 4713 | } |
| 4714 | |
| 4715 | err = can_idmap_mount(kattr, mnt: m); |
| 4716 | if (err) |
| 4717 | break; |
| 4718 | |
| 4719 | if (!mnt_allow_writers(kattr, mnt: m)) { |
| 4720 | err = mnt_hold_writers(mnt: m); |
| 4721 | if (err) { |
| 4722 | m = next_mnt(p: m, root: mnt); |
| 4723 | break; |
| 4724 | } |
| 4725 | } |
| 4726 | |
| 4727 | if (!(kattr->kflags & MOUNT_KATTR_RECURSE)) |
| 4728 | return 0; |
| 4729 | } |
| 4730 | |
| 4731 | if (err) { |
| 4732 | /* undo all mnt_hold_writers() we'd done */ |
| 4733 | for (struct mount *p = mnt; p != m; p = next_mnt(p, root: mnt)) |
| 4734 | mnt_unhold_writers(mnt: p); |
| 4735 | } |
| 4736 | return err; |
| 4737 | } |
| 4738 | |
| 4739 | static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt) |
| 4740 | { |
| 4741 | struct mnt_idmap *old_idmap; |
| 4742 | |
| 4743 | if (!kattr->mnt_idmap) |
| 4744 | return; |
| 4745 | |
| 4746 | old_idmap = mnt_idmap(mnt: &mnt->mnt); |
| 4747 | |
| 4748 | /* Pairs with smp_load_acquire() in mnt_idmap(). */ |
| 4749 | smp_store_release(&mnt->mnt.mnt_idmap, mnt_idmap_get(kattr->mnt_idmap)); |
| 4750 | mnt_idmap_put(idmap: old_idmap); |
| 4751 | } |
| 4752 | |
| 4753 | static void mount_setattr_commit(struct mount_kattr *kattr, struct mount *mnt) |
| 4754 | { |
| 4755 | struct mount *m; |
| 4756 | |
| 4757 | for (m = mnt; m; m = next_mnt(p: m, root: mnt)) { |
| 4758 | unsigned int flags; |
| 4759 | |
| 4760 | do_idmap_mount(kattr, mnt: m); |
| 4761 | flags = recalc_flags(kattr, mnt: m); |
| 4762 | WRITE_ONCE(m->mnt.mnt_flags, flags); |
| 4763 | |
| 4764 | /* If we had to hold writers unblock them. */ |
| 4765 | mnt_unhold_writers(mnt: m); |
| 4766 | |
| 4767 | if (kattr->propagation) |
| 4768 | change_mnt_propagation(m, kattr->propagation); |
| 4769 | if (!(kattr->kflags & MOUNT_KATTR_RECURSE)) |
| 4770 | break; |
| 4771 | } |
| 4772 | touch_mnt_namespace(ns: mnt->mnt_ns); |
| 4773 | } |
| 4774 | |
| 4775 | static int do_mount_setattr(const struct path *path, struct mount_kattr *kattr) |
| 4776 | { |
| 4777 | struct mount *mnt = real_mount(mnt: path->mnt); |
| 4778 | int err = 0; |
| 4779 | |
| 4780 | if (!path_mounted(path)) |
| 4781 | return -EINVAL; |
| 4782 | |
| 4783 | if (kattr->mnt_userns) { |
| 4784 | struct mnt_idmap *mnt_idmap; |
| 4785 | |
| 4786 | mnt_idmap = alloc_mnt_idmap(mnt_userns: kattr->mnt_userns); |
| 4787 | if (IS_ERR(ptr: mnt_idmap)) |
| 4788 | return PTR_ERR(ptr: mnt_idmap); |
| 4789 | kattr->mnt_idmap = mnt_idmap; |
| 4790 | } |
| 4791 | |
| 4792 | if (kattr->propagation) { |
| 4793 | /* |
| 4794 | * Only take namespace_lock() if we're actually changing |
| 4795 | * propagation. |
| 4796 | */ |
| 4797 | namespace_lock(); |
| 4798 | if (kattr->propagation == MS_SHARED) { |
| 4799 | err = invent_group_ids(mnt, recurse: kattr->kflags & MOUNT_KATTR_RECURSE); |
| 4800 | if (err) { |
| 4801 | namespace_unlock(); |
| 4802 | return err; |
| 4803 | } |
| 4804 | } |
| 4805 | } |
| 4806 | |
| 4807 | err = -EINVAL; |
| 4808 | lock_mount_hash(); |
| 4809 | |
| 4810 | if (!anon_ns_root(m: mnt) && !check_mnt(mnt)) |
| 4811 | goto out; |
| 4812 | |
| 4813 | /* |
| 4814 | * First, we get the mount tree in a shape where we can change mount |
| 4815 | * properties without failure. If we succeeded to do so we commit all |
| 4816 | * changes and if we failed we clean up. |
| 4817 | */ |
| 4818 | err = mount_setattr_prepare(kattr, mnt); |
| 4819 | if (!err) |
| 4820 | mount_setattr_commit(kattr, mnt); |
| 4821 | |
| 4822 | out: |
| 4823 | unlock_mount_hash(); |
| 4824 | |
| 4825 | if (kattr->propagation) { |
| 4826 | if (err) |
| 4827 | cleanup_group_ids(mnt, NULL); |
| 4828 | namespace_unlock(); |
| 4829 | } |
| 4830 | |
| 4831 | return err; |
| 4832 | } |
| 4833 | |
| 4834 | static int build_mount_idmapped(const struct mount_attr *attr, size_t usize, |
| 4835 | struct mount_kattr *kattr) |
| 4836 | { |
| 4837 | struct ns_common *ns; |
| 4838 | struct user_namespace *mnt_userns; |
| 4839 | |
| 4840 | if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP)) |
| 4841 | return 0; |
| 4842 | |
| 4843 | if (attr->attr_clr & MOUNT_ATTR_IDMAP) { |
| 4844 | /* |
| 4845 | * We can only remove an idmapping if it's never been |
| 4846 | * exposed to userspace. |
| 4847 | */ |
| 4848 | if (!(kattr->kflags & MOUNT_KATTR_IDMAP_REPLACE)) |
| 4849 | return -EINVAL; |
| 4850 | |
| 4851 | /* |
| 4852 | * Removal of idmappings is equivalent to setting |
| 4853 | * nop_mnt_idmap. |
| 4854 | */ |
| 4855 | if (!(attr->attr_set & MOUNT_ATTR_IDMAP)) { |
| 4856 | kattr->mnt_idmap = &nop_mnt_idmap; |
| 4857 | return 0; |
| 4858 | } |
| 4859 | } |
| 4860 | |
| 4861 | if (attr->userns_fd > INT_MAX) |
| 4862 | return -EINVAL; |
| 4863 | |
| 4864 | CLASS(fd, f)(fd: attr->userns_fd); |
| 4865 | if (fd_empty(f)) |
| 4866 | return -EBADF; |
| 4867 | |
| 4868 | if (!proc_ns_file(fd_file(f))) |
| 4869 | return -EINVAL; |
| 4870 | |
| 4871 | ns = get_proc_ns(file_inode(fd_file(f))); |
| 4872 | if (ns->ns_type != CLONE_NEWUSER) |
| 4873 | return -EINVAL; |
| 4874 | |
| 4875 | /* |
| 4876 | * The initial idmapping cannot be used to create an idmapped |
| 4877 | * mount. We use the initial idmapping as an indicator of a mount |
| 4878 | * that is not idmapped. It can simply be passed into helpers that |
| 4879 | * are aware of idmapped mounts as a convenient shortcut. A user |
| 4880 | * can just create a dedicated identity mapping to achieve the same |
| 4881 | * result. |
| 4882 | */ |
| 4883 | mnt_userns = container_of(ns, struct user_namespace, ns); |
| 4884 | if (mnt_userns == &init_user_ns) |
| 4885 | return -EPERM; |
| 4886 | |
| 4887 | /* We're not controlling the target namespace. */ |
| 4888 | if (!ns_capable(ns: mnt_userns, CAP_SYS_ADMIN)) |
| 4889 | return -EPERM; |
| 4890 | |
| 4891 | kattr->mnt_userns = get_user_ns(ns: mnt_userns); |
| 4892 | return 0; |
| 4893 | } |
| 4894 | |
| 4895 | static int build_mount_kattr(const struct mount_attr *attr, size_t usize, |
| 4896 | struct mount_kattr *kattr) |
| 4897 | { |
| 4898 | if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS) |
| 4899 | return -EINVAL; |
| 4900 | if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1) |
| 4901 | return -EINVAL; |
| 4902 | kattr->propagation = attr->propagation; |
| 4903 | |
| 4904 | if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS) |
| 4905 | return -EINVAL; |
| 4906 | |
| 4907 | kattr->attr_set = attr_flags_to_mnt_flags(attr_flags: attr->attr_set); |
| 4908 | kattr->attr_clr = attr_flags_to_mnt_flags(attr_flags: attr->attr_clr); |
| 4909 | |
| 4910 | /* |
| 4911 | * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap, |
| 4912 | * users wanting to transition to a different atime setting cannot |
| 4913 | * simply specify the atime setting in @attr_set, but must also |
| 4914 | * specify MOUNT_ATTR__ATIME in the @attr_clr field. |
| 4915 | * So ensure that MOUNT_ATTR__ATIME can't be partially set in |
| 4916 | * @attr_clr and that @attr_set can't have any atime bits set if |
| 4917 | * MOUNT_ATTR__ATIME isn't set in @attr_clr. |
| 4918 | */ |
| 4919 | if (attr->attr_clr & MOUNT_ATTR__ATIME) { |
| 4920 | if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME) |
| 4921 | return -EINVAL; |
| 4922 | |
| 4923 | /* |
| 4924 | * Clear all previous time settings as they are mutually |
| 4925 | * exclusive. |
| 4926 | */ |
| 4927 | kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME; |
| 4928 | switch (attr->attr_set & MOUNT_ATTR__ATIME) { |
| 4929 | case MOUNT_ATTR_RELATIME: |
| 4930 | kattr->attr_set |= MNT_RELATIME; |
| 4931 | break; |
| 4932 | case MOUNT_ATTR_NOATIME: |
| 4933 | kattr->attr_set |= MNT_NOATIME; |
| 4934 | break; |
| 4935 | case MOUNT_ATTR_STRICTATIME: |
| 4936 | break; |
| 4937 | default: |
| 4938 | return -EINVAL; |
| 4939 | } |
| 4940 | } else { |
| 4941 | if (attr->attr_set & MOUNT_ATTR__ATIME) |
| 4942 | return -EINVAL; |
| 4943 | } |
| 4944 | |
| 4945 | return build_mount_idmapped(attr, usize, kattr); |
| 4946 | } |
| 4947 | |
| 4948 | static void finish_mount_kattr(struct mount_kattr *kattr) |
| 4949 | { |
| 4950 | if (kattr->mnt_userns) { |
| 4951 | put_user_ns(ns: kattr->mnt_userns); |
| 4952 | kattr->mnt_userns = NULL; |
| 4953 | } |
| 4954 | |
| 4955 | if (kattr->mnt_idmap) |
| 4956 | mnt_idmap_put(idmap: kattr->mnt_idmap); |
| 4957 | } |
| 4958 | |
| 4959 | static int wants_mount_setattr(struct mount_attr __user *uattr, size_t usize, |
| 4960 | struct mount_kattr *kattr) |
| 4961 | { |
| 4962 | int ret; |
| 4963 | struct mount_attr attr; |
| 4964 | |
| 4965 | BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0); |
| 4966 | |
| 4967 | if (unlikely(usize > PAGE_SIZE)) |
| 4968 | return -E2BIG; |
| 4969 | if (unlikely(usize < MOUNT_ATTR_SIZE_VER0)) |
| 4970 | return -EINVAL; |
| 4971 | |
| 4972 | if (!may_mount()) |
| 4973 | return -EPERM; |
| 4974 | |
| 4975 | ret = copy_struct_from_user(dst: &attr, ksize: sizeof(attr), src: uattr, usize); |
| 4976 | if (ret) |
| 4977 | return ret; |
| 4978 | |
| 4979 | /* Don't bother walking through the mounts if this is a nop. */ |
| 4980 | if (attr.attr_set == 0 && |
| 4981 | attr.attr_clr == 0 && |
| 4982 | attr.propagation == 0) |
| 4983 | return 0; /* Tell caller to not bother. */ |
| 4984 | |
| 4985 | ret = build_mount_kattr(attr: &attr, usize, kattr); |
| 4986 | if (ret < 0) |
| 4987 | return ret; |
| 4988 | |
| 4989 | return 1; |
| 4990 | } |
| 4991 | |
| 4992 | SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path, |
| 4993 | unsigned int, flags, struct mount_attr __user *, uattr, |
| 4994 | size_t, usize) |
| 4995 | { |
| 4996 | int err; |
| 4997 | struct path target; |
| 4998 | struct mount_kattr kattr; |
| 4999 | unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW; |
| 5000 | |
| 5001 | if (flags & ~(AT_EMPTY_PATH | |
| 5002 | AT_RECURSIVE | |
| 5003 | AT_SYMLINK_NOFOLLOW | |
| 5004 | AT_NO_AUTOMOUNT)) |
| 5005 | return -EINVAL; |
| 5006 | |
| 5007 | if (flags & AT_NO_AUTOMOUNT) |
| 5008 | lookup_flags &= ~LOOKUP_AUTOMOUNT; |
| 5009 | if (flags & AT_SYMLINK_NOFOLLOW) |
| 5010 | lookup_flags &= ~LOOKUP_FOLLOW; |
| 5011 | if (flags & AT_EMPTY_PATH) |
| 5012 | lookup_flags |= LOOKUP_EMPTY; |
| 5013 | |
| 5014 | kattr = (struct mount_kattr) { |
| 5015 | .lookup_flags = lookup_flags, |
| 5016 | }; |
| 5017 | |
| 5018 | if (flags & AT_RECURSIVE) |
| 5019 | kattr.kflags |= MOUNT_KATTR_RECURSE; |
| 5020 | |
| 5021 | err = wants_mount_setattr(uattr, usize, kattr: &kattr); |
| 5022 | if (err <= 0) |
| 5023 | return err; |
| 5024 | |
| 5025 | err = user_path_at(dfd, path, kattr.lookup_flags, &target); |
| 5026 | if (!err) { |
| 5027 | err = do_mount_setattr(path: &target, kattr: &kattr); |
| 5028 | path_put(&target); |
| 5029 | } |
| 5030 | finish_mount_kattr(kattr: &kattr); |
| 5031 | return err; |
| 5032 | } |
| 5033 | |
| 5034 | SYSCALL_DEFINE5(open_tree_attr, int, dfd, const char __user *, filename, |
| 5035 | unsigned, flags, struct mount_attr __user *, uattr, |
| 5036 | size_t, usize) |
| 5037 | { |
| 5038 | struct file __free(fput) *file = NULL; |
| 5039 | int fd; |
| 5040 | |
| 5041 | if (!uattr && usize) |
| 5042 | return -EINVAL; |
| 5043 | |
| 5044 | file = vfs_open_tree(dfd, filename, flags); |
| 5045 | if (IS_ERR(ptr: file)) |
| 5046 | return PTR_ERR(ptr: file); |
| 5047 | |
| 5048 | if (uattr) { |
| 5049 | int ret; |
| 5050 | struct mount_kattr kattr = {}; |
| 5051 | |
| 5052 | if (flags & OPEN_TREE_CLONE) |
| 5053 | kattr.kflags = MOUNT_KATTR_IDMAP_REPLACE; |
| 5054 | if (flags & AT_RECURSIVE) |
| 5055 | kattr.kflags |= MOUNT_KATTR_RECURSE; |
| 5056 | |
| 5057 | ret = wants_mount_setattr(uattr, usize, kattr: &kattr); |
| 5058 | if (ret > 0) { |
| 5059 | ret = do_mount_setattr(path: &file->f_path, kattr: &kattr); |
| 5060 | finish_mount_kattr(kattr: &kattr); |
| 5061 | } |
| 5062 | if (ret) |
| 5063 | return ret; |
| 5064 | } |
| 5065 | |
| 5066 | fd = get_unused_fd_flags(flags: flags & O_CLOEXEC); |
| 5067 | if (fd < 0) |
| 5068 | return fd; |
| 5069 | |
| 5070 | fd_install(fd, no_free_ptr(file)); |
| 5071 | return fd; |
| 5072 | } |
| 5073 | |
| 5074 | int show_path(struct seq_file *m, struct dentry *root) |
| 5075 | { |
| 5076 | if (root->d_sb->s_op->show_path) |
| 5077 | return root->d_sb->s_op->show_path(m, root); |
| 5078 | |
| 5079 | seq_dentry(m, root, " \t\n\\" ); |
| 5080 | return 0; |
| 5081 | } |
| 5082 | |
| 5083 | static struct vfsmount *lookup_mnt_in_ns(u64 id, struct mnt_namespace *ns) |
| 5084 | { |
| 5085 | struct mount *mnt = mnt_find_id_at(ns, mnt_id: id); |
| 5086 | |
| 5087 | if (!mnt || mnt->mnt_id_unique != id) |
| 5088 | return NULL; |
| 5089 | |
| 5090 | return &mnt->mnt; |
| 5091 | } |
| 5092 | |
| 5093 | struct kstatmount { |
| 5094 | struct statmount __user *buf; |
| 5095 | size_t bufsize; |
| 5096 | struct vfsmount *mnt; |
| 5097 | struct mnt_idmap *idmap; |
| 5098 | u64 mask; |
| 5099 | struct path root; |
| 5100 | struct seq_file seq; |
| 5101 | |
| 5102 | /* Must be last --ends in a flexible-array member. */ |
| 5103 | struct statmount sm; |
| 5104 | }; |
| 5105 | |
| 5106 | static u64 mnt_to_attr_flags(struct vfsmount *mnt) |
| 5107 | { |
| 5108 | unsigned int mnt_flags = READ_ONCE(mnt->mnt_flags); |
| 5109 | u64 attr_flags = 0; |
| 5110 | |
| 5111 | if (mnt_flags & MNT_READONLY) |
| 5112 | attr_flags |= MOUNT_ATTR_RDONLY; |
| 5113 | if (mnt_flags & MNT_NOSUID) |
| 5114 | attr_flags |= MOUNT_ATTR_NOSUID; |
| 5115 | if (mnt_flags & MNT_NODEV) |
| 5116 | attr_flags |= MOUNT_ATTR_NODEV; |
| 5117 | if (mnt_flags & MNT_NOEXEC) |
| 5118 | attr_flags |= MOUNT_ATTR_NOEXEC; |
| 5119 | if (mnt_flags & MNT_NODIRATIME) |
| 5120 | attr_flags |= MOUNT_ATTR_NODIRATIME; |
| 5121 | if (mnt_flags & MNT_NOSYMFOLLOW) |
| 5122 | attr_flags |= MOUNT_ATTR_NOSYMFOLLOW; |
| 5123 | |
| 5124 | if (mnt_flags & MNT_NOATIME) |
| 5125 | attr_flags |= MOUNT_ATTR_NOATIME; |
| 5126 | else if (mnt_flags & MNT_RELATIME) |
| 5127 | attr_flags |= MOUNT_ATTR_RELATIME; |
| 5128 | else |
| 5129 | attr_flags |= MOUNT_ATTR_STRICTATIME; |
| 5130 | |
| 5131 | if (is_idmapped_mnt(mnt)) |
| 5132 | attr_flags |= MOUNT_ATTR_IDMAP; |
| 5133 | |
| 5134 | return attr_flags; |
| 5135 | } |
| 5136 | |
| 5137 | static u64 mnt_to_propagation_flags(struct mount *m) |
| 5138 | { |
| 5139 | u64 propagation = 0; |
| 5140 | |
| 5141 | if (IS_MNT_SHARED(m)) |
| 5142 | propagation |= MS_SHARED; |
| 5143 | if (IS_MNT_SLAVE(m)) |
| 5144 | propagation |= MS_SLAVE; |
| 5145 | if (IS_MNT_UNBINDABLE(m)) |
| 5146 | propagation |= MS_UNBINDABLE; |
| 5147 | if (!propagation) |
| 5148 | propagation |= MS_PRIVATE; |
| 5149 | |
| 5150 | return propagation; |
| 5151 | } |
| 5152 | |
| 5153 | static void statmount_sb_basic(struct kstatmount *s) |
| 5154 | { |
| 5155 | struct super_block *sb = s->mnt->mnt_sb; |
| 5156 | |
| 5157 | s->sm.mask |= STATMOUNT_SB_BASIC; |
| 5158 | s->sm.sb_dev_major = MAJOR(sb->s_dev); |
| 5159 | s->sm.sb_dev_minor = MINOR(sb->s_dev); |
| 5160 | s->sm.sb_magic = sb->s_magic; |
| 5161 | s->sm.sb_flags = sb->s_flags & (SB_RDONLY|SB_SYNCHRONOUS|SB_DIRSYNC|SB_LAZYTIME); |
| 5162 | } |
| 5163 | |
| 5164 | static void statmount_mnt_basic(struct kstatmount *s) |
| 5165 | { |
| 5166 | struct mount *m = real_mount(mnt: s->mnt); |
| 5167 | |
| 5168 | s->sm.mask |= STATMOUNT_MNT_BASIC; |
| 5169 | s->sm.mnt_id = m->mnt_id_unique; |
| 5170 | s->sm.mnt_parent_id = m->mnt_parent->mnt_id_unique; |
| 5171 | s->sm.mnt_id_old = m->mnt_id; |
| 5172 | s->sm.mnt_parent_id_old = m->mnt_parent->mnt_id; |
| 5173 | s->sm.mnt_attr = mnt_to_attr_flags(mnt: &m->mnt); |
| 5174 | s->sm.mnt_propagation = mnt_to_propagation_flags(m); |
| 5175 | s->sm.mnt_peer_group = m->mnt_group_id; |
| 5176 | s->sm.mnt_master = IS_MNT_SLAVE(m) ? m->mnt_master->mnt_group_id : 0; |
| 5177 | } |
| 5178 | |
| 5179 | static void statmount_propagate_from(struct kstatmount *s) |
| 5180 | { |
| 5181 | struct mount *m = real_mount(mnt: s->mnt); |
| 5182 | |
| 5183 | s->sm.mask |= STATMOUNT_PROPAGATE_FROM; |
| 5184 | if (IS_MNT_SLAVE(m)) |
| 5185 | s->sm.propagate_from = get_dominating_id(mnt: m, root: ¤t->fs->root); |
| 5186 | } |
| 5187 | |
| 5188 | static int statmount_mnt_root(struct kstatmount *s, struct seq_file *seq) |
| 5189 | { |
| 5190 | int ret; |
| 5191 | size_t start = seq->count; |
| 5192 | |
| 5193 | ret = show_path(m: seq, root: s->mnt->mnt_root); |
| 5194 | if (ret) |
| 5195 | return ret; |
| 5196 | |
| 5197 | if (unlikely(seq_has_overflowed(seq))) |
| 5198 | return -EAGAIN; |
| 5199 | |
| 5200 | /* |
| 5201 | * Unescape the result. It would be better if supplied string was not |
| 5202 | * escaped in the first place, but that's a pretty invasive change. |
| 5203 | */ |
| 5204 | seq->buf[seq->count] = '\0'; |
| 5205 | seq->count = start; |
| 5206 | seq_commit(m: seq, num: string_unescape_inplace(buf: seq->buf + start, UNESCAPE_OCTAL)); |
| 5207 | return 0; |
| 5208 | } |
| 5209 | |
| 5210 | static int statmount_mnt_point(struct kstatmount *s, struct seq_file *seq) |
| 5211 | { |
| 5212 | struct vfsmount *mnt = s->mnt; |
| 5213 | struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt }; |
| 5214 | int err; |
| 5215 | |
| 5216 | err = seq_path_root(m: seq, path: &mnt_path, root: &s->root, esc: "" ); |
| 5217 | return err == SEQ_SKIP ? 0 : err; |
| 5218 | } |
| 5219 | |
| 5220 | static int statmount_fs_type(struct kstatmount *s, struct seq_file *seq) |
| 5221 | { |
| 5222 | struct super_block *sb = s->mnt->mnt_sb; |
| 5223 | |
| 5224 | seq_puts(m: seq, s: sb->s_type->name); |
| 5225 | return 0; |
| 5226 | } |
| 5227 | |
| 5228 | static void statmount_fs_subtype(struct kstatmount *s, struct seq_file *seq) |
| 5229 | { |
| 5230 | struct super_block *sb = s->mnt->mnt_sb; |
| 5231 | |
| 5232 | if (sb->s_subtype) |
| 5233 | seq_puts(m: seq, s: sb->s_subtype); |
| 5234 | } |
| 5235 | |
| 5236 | static int statmount_sb_source(struct kstatmount *s, struct seq_file *seq) |
| 5237 | { |
| 5238 | struct super_block *sb = s->mnt->mnt_sb; |
| 5239 | struct mount *r = real_mount(mnt: s->mnt); |
| 5240 | |
| 5241 | if (sb->s_op->show_devname) { |
| 5242 | size_t start = seq->count; |
| 5243 | int ret; |
| 5244 | |
| 5245 | ret = sb->s_op->show_devname(seq, s->mnt->mnt_root); |
| 5246 | if (ret) |
| 5247 | return ret; |
| 5248 | |
| 5249 | if (unlikely(seq_has_overflowed(seq))) |
| 5250 | return -EAGAIN; |
| 5251 | |
| 5252 | /* Unescape the result */ |
| 5253 | seq->buf[seq->count] = '\0'; |
| 5254 | seq->count = start; |
| 5255 | seq_commit(m: seq, num: string_unescape_inplace(buf: seq->buf + start, UNESCAPE_OCTAL)); |
| 5256 | } else { |
| 5257 | seq_puts(m: seq, s: r->mnt_devname); |
| 5258 | } |
| 5259 | return 0; |
| 5260 | } |
| 5261 | |
| 5262 | static void statmount_mnt_ns_id(struct kstatmount *s, struct mnt_namespace *ns) |
| 5263 | { |
| 5264 | s->sm.mask |= STATMOUNT_MNT_NS_ID; |
| 5265 | s->sm.mnt_ns_id = ns->ns.ns_id; |
| 5266 | } |
| 5267 | |
| 5268 | static int statmount_mnt_opts(struct kstatmount *s, struct seq_file *seq) |
| 5269 | { |
| 5270 | struct vfsmount *mnt = s->mnt; |
| 5271 | struct super_block *sb = mnt->mnt_sb; |
| 5272 | size_t start = seq->count; |
| 5273 | int err; |
| 5274 | |
| 5275 | err = security_sb_show_options(m: seq, sb); |
| 5276 | if (err) |
| 5277 | return err; |
| 5278 | |
| 5279 | if (sb->s_op->show_options) { |
| 5280 | err = sb->s_op->show_options(seq, mnt->mnt_root); |
| 5281 | if (err) |
| 5282 | return err; |
| 5283 | } |
| 5284 | |
| 5285 | if (unlikely(seq_has_overflowed(seq))) |
| 5286 | return -EAGAIN; |
| 5287 | |
| 5288 | if (seq->count == start) |
| 5289 | return 0; |
| 5290 | |
| 5291 | /* skip leading comma */ |
| 5292 | memmove(dest: seq->buf + start, src: seq->buf + start + 1, |
| 5293 | count: seq->count - start - 1); |
| 5294 | seq->count--; |
| 5295 | |
| 5296 | return 0; |
| 5297 | } |
| 5298 | |
| 5299 | static inline int statmount_opt_process(struct seq_file *seq, size_t start) |
| 5300 | { |
| 5301 | char *buf_end, *opt_end, *src, *dst; |
| 5302 | int count = 0; |
| 5303 | |
| 5304 | if (unlikely(seq_has_overflowed(seq))) |
| 5305 | return -EAGAIN; |
| 5306 | |
| 5307 | buf_end = seq->buf + seq->count; |
| 5308 | dst = seq->buf + start; |
| 5309 | src = dst + 1; /* skip initial comma */ |
| 5310 | |
| 5311 | if (src >= buf_end) { |
| 5312 | seq->count = start; |
| 5313 | return 0; |
| 5314 | } |
| 5315 | |
| 5316 | *buf_end = '\0'; |
| 5317 | for (; src < buf_end; src = opt_end + 1) { |
| 5318 | opt_end = strchrnul(src, ','); |
| 5319 | *opt_end = '\0'; |
| 5320 | dst += string_unescape(src, dst, size: 0, UNESCAPE_OCTAL) + 1; |
| 5321 | if (WARN_ON_ONCE(++count == INT_MAX)) |
| 5322 | return -EOVERFLOW; |
| 5323 | } |
| 5324 | seq->count = dst - 1 - seq->buf; |
| 5325 | return count; |
| 5326 | } |
| 5327 | |
| 5328 | static int statmount_opt_array(struct kstatmount *s, struct seq_file *seq) |
| 5329 | { |
| 5330 | struct vfsmount *mnt = s->mnt; |
| 5331 | struct super_block *sb = mnt->mnt_sb; |
| 5332 | size_t start = seq->count; |
| 5333 | int err; |
| 5334 | |
| 5335 | if (!sb->s_op->show_options) |
| 5336 | return 0; |
| 5337 | |
| 5338 | err = sb->s_op->show_options(seq, mnt->mnt_root); |
| 5339 | if (err) |
| 5340 | return err; |
| 5341 | |
| 5342 | err = statmount_opt_process(seq, start); |
| 5343 | if (err < 0) |
| 5344 | return err; |
| 5345 | |
| 5346 | s->sm.opt_num = err; |
| 5347 | return 0; |
| 5348 | } |
| 5349 | |
| 5350 | static int statmount_opt_sec_array(struct kstatmount *s, struct seq_file *seq) |
| 5351 | { |
| 5352 | struct vfsmount *mnt = s->mnt; |
| 5353 | struct super_block *sb = mnt->mnt_sb; |
| 5354 | size_t start = seq->count; |
| 5355 | int err; |
| 5356 | |
| 5357 | err = security_sb_show_options(m: seq, sb); |
| 5358 | if (err) |
| 5359 | return err; |
| 5360 | |
| 5361 | err = statmount_opt_process(seq, start); |
| 5362 | if (err < 0) |
| 5363 | return err; |
| 5364 | |
| 5365 | s->sm.opt_sec_num = err; |
| 5366 | return 0; |
| 5367 | } |
| 5368 | |
| 5369 | static inline int statmount_mnt_uidmap(struct kstatmount *s, struct seq_file *seq) |
| 5370 | { |
| 5371 | int ret; |
| 5372 | |
| 5373 | ret = statmount_mnt_idmap(idmap: s->idmap, seq, uid_map: true); |
| 5374 | if (ret < 0) |
| 5375 | return ret; |
| 5376 | |
| 5377 | s->sm.mnt_uidmap_num = ret; |
| 5378 | /* |
| 5379 | * Always raise STATMOUNT_MNT_UIDMAP even if there are no valid |
| 5380 | * mappings. This allows userspace to distinguish between a |
| 5381 | * non-idmapped mount and an idmapped mount where none of the |
| 5382 | * individual mappings are valid in the caller's idmapping. |
| 5383 | */ |
| 5384 | if (is_valid_mnt_idmap(idmap: s->idmap)) |
| 5385 | s->sm.mask |= STATMOUNT_MNT_UIDMAP; |
| 5386 | return 0; |
| 5387 | } |
| 5388 | |
| 5389 | static inline int statmount_mnt_gidmap(struct kstatmount *s, struct seq_file *seq) |
| 5390 | { |
| 5391 | int ret; |
| 5392 | |
| 5393 | ret = statmount_mnt_idmap(idmap: s->idmap, seq, uid_map: false); |
| 5394 | if (ret < 0) |
| 5395 | return ret; |
| 5396 | |
| 5397 | s->sm.mnt_gidmap_num = ret; |
| 5398 | /* |
| 5399 | * Always raise STATMOUNT_MNT_GIDMAP even if there are no valid |
| 5400 | * mappings. This allows userspace to distinguish between a |
| 5401 | * non-idmapped mount and an idmapped mount where none of the |
| 5402 | * individual mappings are valid in the caller's idmapping. |
| 5403 | */ |
| 5404 | if (is_valid_mnt_idmap(idmap: s->idmap)) |
| 5405 | s->sm.mask |= STATMOUNT_MNT_GIDMAP; |
| 5406 | return 0; |
| 5407 | } |
| 5408 | |
| 5409 | static int statmount_string(struct kstatmount *s, u64 flag) |
| 5410 | { |
| 5411 | int ret = 0; |
| 5412 | size_t kbufsize; |
| 5413 | struct seq_file *seq = &s->seq; |
| 5414 | struct statmount *sm = &s->sm; |
| 5415 | u32 start, *offp; |
| 5416 | |
| 5417 | /* Reserve an empty string at the beginning for any unset offsets */ |
| 5418 | if (!seq->count) |
| 5419 | seq_putc(m: seq, c: 0); |
| 5420 | |
| 5421 | start = seq->count; |
| 5422 | |
| 5423 | switch (flag) { |
| 5424 | case STATMOUNT_FS_TYPE: |
| 5425 | offp = &sm->fs_type; |
| 5426 | ret = statmount_fs_type(s, seq); |
| 5427 | break; |
| 5428 | case STATMOUNT_MNT_ROOT: |
| 5429 | offp = &sm->mnt_root; |
| 5430 | ret = statmount_mnt_root(s, seq); |
| 5431 | break; |
| 5432 | case STATMOUNT_MNT_POINT: |
| 5433 | offp = &sm->mnt_point; |
| 5434 | ret = statmount_mnt_point(s, seq); |
| 5435 | break; |
| 5436 | case STATMOUNT_MNT_OPTS: |
| 5437 | offp = &sm->mnt_opts; |
| 5438 | ret = statmount_mnt_opts(s, seq); |
| 5439 | break; |
| 5440 | case STATMOUNT_OPT_ARRAY: |
| 5441 | offp = &sm->opt_array; |
| 5442 | ret = statmount_opt_array(s, seq); |
| 5443 | break; |
| 5444 | case STATMOUNT_OPT_SEC_ARRAY: |
| 5445 | offp = &sm->opt_sec_array; |
| 5446 | ret = statmount_opt_sec_array(s, seq); |
| 5447 | break; |
| 5448 | case STATMOUNT_FS_SUBTYPE: |
| 5449 | offp = &sm->fs_subtype; |
| 5450 | statmount_fs_subtype(s, seq); |
| 5451 | break; |
| 5452 | case STATMOUNT_SB_SOURCE: |
| 5453 | offp = &sm->sb_source; |
| 5454 | ret = statmount_sb_source(s, seq); |
| 5455 | break; |
| 5456 | case STATMOUNT_MNT_UIDMAP: |
| 5457 | sm->mnt_uidmap = start; |
| 5458 | ret = statmount_mnt_uidmap(s, seq); |
| 5459 | break; |
| 5460 | case STATMOUNT_MNT_GIDMAP: |
| 5461 | sm->mnt_gidmap = start; |
| 5462 | ret = statmount_mnt_gidmap(s, seq); |
| 5463 | break; |
| 5464 | default: |
| 5465 | WARN_ON_ONCE(true); |
| 5466 | return -EINVAL; |
| 5467 | } |
| 5468 | |
| 5469 | /* |
| 5470 | * If nothing was emitted, return to avoid setting the flag |
| 5471 | * and terminating the buffer. |
| 5472 | */ |
| 5473 | if (seq->count == start) |
| 5474 | return ret; |
| 5475 | if (unlikely(check_add_overflow(sizeof(*sm), seq->count, &kbufsize))) |
| 5476 | return -EOVERFLOW; |
| 5477 | if (kbufsize >= s->bufsize) |
| 5478 | return -EOVERFLOW; |
| 5479 | |
| 5480 | /* signal a retry */ |
| 5481 | if (unlikely(seq_has_overflowed(seq))) |
| 5482 | return -EAGAIN; |
| 5483 | |
| 5484 | if (ret) |
| 5485 | return ret; |
| 5486 | |
| 5487 | seq->buf[seq->count++] = '\0'; |
| 5488 | sm->mask |= flag; |
| 5489 | *offp = start; |
| 5490 | return 0; |
| 5491 | } |
| 5492 | |
| 5493 | static int copy_statmount_to_user(struct kstatmount *s) |
| 5494 | { |
| 5495 | struct statmount *sm = &s->sm; |
| 5496 | struct seq_file *seq = &s->seq; |
| 5497 | char __user *str = ((char __user *)s->buf) + sizeof(*sm); |
| 5498 | size_t copysize = min_t(size_t, s->bufsize, sizeof(*sm)); |
| 5499 | |
| 5500 | if (seq->count && copy_to_user(to: str, from: seq->buf, n: seq->count)) |
| 5501 | return -EFAULT; |
| 5502 | |
| 5503 | /* Return the number of bytes copied to the buffer */ |
| 5504 | sm->size = copysize + seq->count; |
| 5505 | if (copy_to_user(to: s->buf, from: sm, n: copysize)) |
| 5506 | return -EFAULT; |
| 5507 | |
| 5508 | return 0; |
| 5509 | } |
| 5510 | |
| 5511 | static struct mount *listmnt_next(struct mount *curr, bool reverse) |
| 5512 | { |
| 5513 | struct rb_node *node; |
| 5514 | |
| 5515 | if (reverse) |
| 5516 | node = rb_prev(&curr->mnt_node); |
| 5517 | else |
| 5518 | node = rb_next(&curr->mnt_node); |
| 5519 | |
| 5520 | return node_to_mount(node); |
| 5521 | } |
| 5522 | |
| 5523 | static int grab_requested_root(struct mnt_namespace *ns, struct path *root) |
| 5524 | { |
| 5525 | struct mount *first, *child; |
| 5526 | |
| 5527 | rwsem_assert_held(sem: &namespace_sem); |
| 5528 | |
| 5529 | /* We're looking at our own ns, just use get_fs_root. */ |
| 5530 | if (ns == current->nsproxy->mnt_ns) { |
| 5531 | get_fs_root(current->fs, root); |
| 5532 | return 0; |
| 5533 | } |
| 5534 | |
| 5535 | /* |
| 5536 | * We have to find the first mount in our ns and use that, however it |
| 5537 | * may not exist, so handle that properly. |
| 5538 | */ |
| 5539 | if (mnt_ns_empty(ns)) |
| 5540 | return -ENOENT; |
| 5541 | |
| 5542 | first = child = ns->root; |
| 5543 | for (;;) { |
| 5544 | child = listmnt_next(curr: child, reverse: false); |
| 5545 | if (!child) |
| 5546 | return -ENOENT; |
| 5547 | if (child->mnt_parent == first) |
| 5548 | break; |
| 5549 | } |
| 5550 | |
| 5551 | root->mnt = mntget(&child->mnt); |
| 5552 | root->dentry = dget(dentry: root->mnt->mnt_root); |
| 5553 | return 0; |
| 5554 | } |
| 5555 | |
| 5556 | /* This must be updated whenever a new flag is added */ |
| 5557 | #define STATMOUNT_SUPPORTED (STATMOUNT_SB_BASIC | \ |
| 5558 | STATMOUNT_MNT_BASIC | \ |
| 5559 | STATMOUNT_PROPAGATE_FROM | \ |
| 5560 | STATMOUNT_MNT_ROOT | \ |
| 5561 | STATMOUNT_MNT_POINT | \ |
| 5562 | STATMOUNT_FS_TYPE | \ |
| 5563 | STATMOUNT_MNT_NS_ID | \ |
| 5564 | STATMOUNT_MNT_OPTS | \ |
| 5565 | STATMOUNT_FS_SUBTYPE | \ |
| 5566 | STATMOUNT_SB_SOURCE | \ |
| 5567 | STATMOUNT_OPT_ARRAY | \ |
| 5568 | STATMOUNT_OPT_SEC_ARRAY | \ |
| 5569 | STATMOUNT_SUPPORTED_MASK | \ |
| 5570 | STATMOUNT_MNT_UIDMAP | \ |
| 5571 | STATMOUNT_MNT_GIDMAP) |
| 5572 | |
| 5573 | /* locks: namespace_shared */ |
| 5574 | static int do_statmount(struct kstatmount *s, u64 mnt_id, u64 mnt_ns_id, |
| 5575 | struct mnt_namespace *ns) |
| 5576 | { |
| 5577 | struct mount *m; |
| 5578 | int err; |
| 5579 | |
| 5580 | /* Has the namespace already been emptied? */ |
| 5581 | if (mnt_ns_id && mnt_ns_empty(ns)) |
| 5582 | return -ENOENT; |
| 5583 | |
| 5584 | s->mnt = lookup_mnt_in_ns(id: mnt_id, ns); |
| 5585 | if (!s->mnt) |
| 5586 | return -ENOENT; |
| 5587 | |
| 5588 | err = grab_requested_root(ns, root: &s->root); |
| 5589 | if (err) |
| 5590 | return err; |
| 5591 | |
| 5592 | /* |
| 5593 | * Don't trigger audit denials. We just want to determine what |
| 5594 | * mounts to show users. |
| 5595 | */ |
| 5596 | m = real_mount(mnt: s->mnt); |
| 5597 | if (!is_path_reachable(mnt: m, dentry: m->mnt.mnt_root, root: &s->root) && |
| 5598 | !ns_capable_noaudit(ns: ns->user_ns, CAP_SYS_ADMIN)) |
| 5599 | return -EPERM; |
| 5600 | |
| 5601 | err = security_sb_statfs(dentry: s->mnt->mnt_root); |
| 5602 | if (err) |
| 5603 | return err; |
| 5604 | |
| 5605 | /* |
| 5606 | * Note that mount properties in mnt->mnt_flags, mnt->mnt_idmap |
| 5607 | * can change concurrently as we only hold the read-side of the |
| 5608 | * namespace semaphore and mount properties may change with only |
| 5609 | * the mount lock held. |
| 5610 | * |
| 5611 | * We could sample the mount lock sequence counter to detect |
| 5612 | * those changes and retry. But it's not worth it. Worst that |
| 5613 | * happens is that the mnt->mnt_idmap pointer is already changed |
| 5614 | * while mnt->mnt_flags isn't or vica versa. So what. |
| 5615 | * |
| 5616 | * Both mnt->mnt_flags and mnt->mnt_idmap are set and retrieved |
| 5617 | * via READ_ONCE()/WRITE_ONCE() and guard against theoretical |
| 5618 | * torn read/write. That's all we care about right now. |
| 5619 | */ |
| 5620 | s->idmap = mnt_idmap(mnt: s->mnt); |
| 5621 | if (s->mask & STATMOUNT_MNT_BASIC) |
| 5622 | statmount_mnt_basic(s); |
| 5623 | |
| 5624 | if (s->mask & STATMOUNT_SB_BASIC) |
| 5625 | statmount_sb_basic(s); |
| 5626 | |
| 5627 | if (s->mask & STATMOUNT_PROPAGATE_FROM) |
| 5628 | statmount_propagate_from(s); |
| 5629 | |
| 5630 | if (s->mask & STATMOUNT_FS_TYPE) |
| 5631 | err = statmount_string(s, STATMOUNT_FS_TYPE); |
| 5632 | |
| 5633 | if (!err && s->mask & STATMOUNT_MNT_ROOT) |
| 5634 | err = statmount_string(s, STATMOUNT_MNT_ROOT); |
| 5635 | |
| 5636 | if (!err && s->mask & STATMOUNT_MNT_POINT) |
| 5637 | err = statmount_string(s, STATMOUNT_MNT_POINT); |
| 5638 | |
| 5639 | if (!err && s->mask & STATMOUNT_MNT_OPTS) |
| 5640 | err = statmount_string(s, STATMOUNT_MNT_OPTS); |
| 5641 | |
| 5642 | if (!err && s->mask & STATMOUNT_OPT_ARRAY) |
| 5643 | err = statmount_string(s, STATMOUNT_OPT_ARRAY); |
| 5644 | |
| 5645 | if (!err && s->mask & STATMOUNT_OPT_SEC_ARRAY) |
| 5646 | err = statmount_string(s, STATMOUNT_OPT_SEC_ARRAY); |
| 5647 | |
| 5648 | if (!err && s->mask & STATMOUNT_FS_SUBTYPE) |
| 5649 | err = statmount_string(s, STATMOUNT_FS_SUBTYPE); |
| 5650 | |
| 5651 | if (!err && s->mask & STATMOUNT_SB_SOURCE) |
| 5652 | err = statmount_string(s, STATMOUNT_SB_SOURCE); |
| 5653 | |
| 5654 | if (!err && s->mask & STATMOUNT_MNT_UIDMAP) |
| 5655 | err = statmount_string(s, STATMOUNT_MNT_UIDMAP); |
| 5656 | |
| 5657 | if (!err && s->mask & STATMOUNT_MNT_GIDMAP) |
| 5658 | err = statmount_string(s, STATMOUNT_MNT_GIDMAP); |
| 5659 | |
| 5660 | if (!err && s->mask & STATMOUNT_MNT_NS_ID) |
| 5661 | statmount_mnt_ns_id(s, ns); |
| 5662 | |
| 5663 | if (!err && s->mask & STATMOUNT_SUPPORTED_MASK) { |
| 5664 | s->sm.mask |= STATMOUNT_SUPPORTED_MASK; |
| 5665 | s->sm.supported_mask = STATMOUNT_SUPPORTED; |
| 5666 | } |
| 5667 | |
| 5668 | if (err) |
| 5669 | return err; |
| 5670 | |
| 5671 | /* Are there bits in the return mask not present in STATMOUNT_SUPPORTED? */ |
| 5672 | WARN_ON_ONCE(~STATMOUNT_SUPPORTED & s->sm.mask); |
| 5673 | |
| 5674 | return 0; |
| 5675 | } |
| 5676 | |
| 5677 | static inline bool retry_statmount(const long ret, size_t *seq_size) |
| 5678 | { |
| 5679 | if (likely(ret != -EAGAIN)) |
| 5680 | return false; |
| 5681 | if (unlikely(check_mul_overflow(*seq_size, 2, seq_size))) |
| 5682 | return false; |
| 5683 | if (unlikely(*seq_size > MAX_RW_COUNT)) |
| 5684 | return false; |
| 5685 | return true; |
| 5686 | } |
| 5687 | |
| 5688 | #define STATMOUNT_STRING_REQ (STATMOUNT_MNT_ROOT | STATMOUNT_MNT_POINT | \ |
| 5689 | STATMOUNT_FS_TYPE | STATMOUNT_MNT_OPTS | \ |
| 5690 | STATMOUNT_FS_SUBTYPE | STATMOUNT_SB_SOURCE | \ |
| 5691 | STATMOUNT_OPT_ARRAY | STATMOUNT_OPT_SEC_ARRAY | \ |
| 5692 | STATMOUNT_MNT_UIDMAP | STATMOUNT_MNT_GIDMAP) |
| 5693 | |
| 5694 | static int prepare_kstatmount(struct kstatmount *ks, struct mnt_id_req *kreq, |
| 5695 | struct statmount __user *buf, size_t bufsize, |
| 5696 | size_t seq_size) |
| 5697 | { |
| 5698 | if (!access_ok(buf, bufsize)) |
| 5699 | return -EFAULT; |
| 5700 | |
| 5701 | memset(s: ks, c: 0, n: sizeof(*ks)); |
| 5702 | ks->mask = kreq->param; |
| 5703 | ks->buf = buf; |
| 5704 | ks->bufsize = bufsize; |
| 5705 | |
| 5706 | if (ks->mask & STATMOUNT_STRING_REQ) { |
| 5707 | if (bufsize == sizeof(ks->sm)) |
| 5708 | return -EOVERFLOW; |
| 5709 | |
| 5710 | ks->seq.buf = kvmalloc(seq_size, GFP_KERNEL_ACCOUNT); |
| 5711 | if (!ks->seq.buf) |
| 5712 | return -ENOMEM; |
| 5713 | |
| 5714 | ks->seq.size = seq_size; |
| 5715 | } |
| 5716 | |
| 5717 | return 0; |
| 5718 | } |
| 5719 | |
| 5720 | static int copy_mnt_id_req(const struct mnt_id_req __user *req, |
| 5721 | struct mnt_id_req *kreq) |
| 5722 | { |
| 5723 | int ret; |
| 5724 | size_t usize; |
| 5725 | |
| 5726 | BUILD_BUG_ON(sizeof(struct mnt_id_req) != MNT_ID_REQ_SIZE_VER1); |
| 5727 | |
| 5728 | ret = get_user(usize, &req->size); |
| 5729 | if (ret) |
| 5730 | return -EFAULT; |
| 5731 | if (unlikely(usize > PAGE_SIZE)) |
| 5732 | return -E2BIG; |
| 5733 | if (unlikely(usize < MNT_ID_REQ_SIZE_VER0)) |
| 5734 | return -EINVAL; |
| 5735 | memset(s: kreq, c: 0, n: sizeof(*kreq)); |
| 5736 | ret = copy_struct_from_user(dst: kreq, ksize: sizeof(*kreq), src: req, usize); |
| 5737 | if (ret) |
| 5738 | return ret; |
| 5739 | if (kreq->spare != 0) |
| 5740 | return -EINVAL; |
| 5741 | /* The first valid unique mount id is MNT_UNIQUE_ID_OFFSET + 1. */ |
| 5742 | if (kreq->mnt_id <= MNT_UNIQUE_ID_OFFSET) |
| 5743 | return -EINVAL; |
| 5744 | return 0; |
| 5745 | } |
| 5746 | |
| 5747 | /* |
| 5748 | * If the user requested a specific mount namespace id, look that up and return |
| 5749 | * that, or if not simply grab a passive reference on our mount namespace and |
| 5750 | * return that. |
| 5751 | */ |
| 5752 | static struct mnt_namespace *grab_requested_mnt_ns(const struct mnt_id_req *kreq) |
| 5753 | { |
| 5754 | struct mnt_namespace *mnt_ns; |
| 5755 | |
| 5756 | if (kreq->mnt_ns_id && kreq->spare) |
| 5757 | return ERR_PTR(error: -EINVAL); |
| 5758 | |
| 5759 | if (kreq->mnt_ns_id) |
| 5760 | return lookup_mnt_ns(mnt_ns_id: kreq->mnt_ns_id); |
| 5761 | |
| 5762 | if (kreq->spare) { |
| 5763 | struct ns_common *ns; |
| 5764 | |
| 5765 | CLASS(fd, f)(fd: kreq->spare); |
| 5766 | if (fd_empty(f)) |
| 5767 | return ERR_PTR(error: -EBADF); |
| 5768 | |
| 5769 | if (!proc_ns_file(fd_file(f))) |
| 5770 | return ERR_PTR(error: -EINVAL); |
| 5771 | |
| 5772 | ns = get_proc_ns(file_inode(fd_file(f))); |
| 5773 | if (ns->ns_type != CLONE_NEWNS) |
| 5774 | return ERR_PTR(error: -EINVAL); |
| 5775 | |
| 5776 | mnt_ns = to_mnt_ns(ns); |
| 5777 | } else { |
| 5778 | mnt_ns = current->nsproxy->mnt_ns; |
| 5779 | } |
| 5780 | |
| 5781 | refcount_inc(r: &mnt_ns->passive); |
| 5782 | return mnt_ns; |
| 5783 | } |
| 5784 | |
| 5785 | SYSCALL_DEFINE4(statmount, const struct mnt_id_req __user *, req, |
| 5786 | struct statmount __user *, buf, size_t, bufsize, |
| 5787 | unsigned int, flags) |
| 5788 | { |
| 5789 | struct mnt_namespace *ns __free(mnt_ns_release) = NULL; |
| 5790 | struct kstatmount *ks __free(kfree) = NULL; |
| 5791 | struct mnt_id_req kreq; |
| 5792 | /* We currently support retrieval of 3 strings. */ |
| 5793 | size_t seq_size = 3 * PATH_MAX; |
| 5794 | int ret; |
| 5795 | |
| 5796 | if (flags) |
| 5797 | return -EINVAL; |
| 5798 | |
| 5799 | ret = copy_mnt_id_req(req, kreq: &kreq); |
| 5800 | if (ret) |
| 5801 | return ret; |
| 5802 | |
| 5803 | ns = grab_requested_mnt_ns(kreq: &kreq); |
| 5804 | if (!ns) |
| 5805 | return -ENOENT; |
| 5806 | |
| 5807 | if (kreq.mnt_ns_id && (ns != current->nsproxy->mnt_ns) && |
| 5808 | !ns_capable_noaudit(ns: ns->user_ns, CAP_SYS_ADMIN)) |
| 5809 | return -ENOENT; |
| 5810 | |
| 5811 | ks = kmalloc(sizeof(*ks), GFP_KERNEL_ACCOUNT); |
| 5812 | if (!ks) |
| 5813 | return -ENOMEM; |
| 5814 | |
| 5815 | retry: |
| 5816 | ret = prepare_kstatmount(ks, kreq: &kreq, buf, bufsize, seq_size); |
| 5817 | if (ret) |
| 5818 | return ret; |
| 5819 | |
| 5820 | scoped_guard(namespace_shared) |
| 5821 | ret = do_statmount(s: ks, mnt_id: kreq.mnt_id, mnt_ns_id: kreq.mnt_ns_id, ns); |
| 5822 | |
| 5823 | if (!ret) |
| 5824 | ret = copy_statmount_to_user(s: ks); |
| 5825 | kvfree(addr: ks->seq.buf); |
| 5826 | path_put(&ks->root); |
| 5827 | if (retry_statmount(ret, seq_size: &seq_size)) |
| 5828 | goto retry; |
| 5829 | return ret; |
| 5830 | } |
| 5831 | |
| 5832 | struct klistmount { |
| 5833 | u64 last_mnt_id; |
| 5834 | u64 mnt_parent_id; |
| 5835 | u64 *kmnt_ids; |
| 5836 | u32 nr_mnt_ids; |
| 5837 | struct mnt_namespace *ns; |
| 5838 | struct path root; |
| 5839 | }; |
| 5840 | |
| 5841 | /* locks: namespace_shared */ |
| 5842 | static ssize_t do_listmount(struct klistmount *kls, bool reverse) |
| 5843 | { |
| 5844 | struct mnt_namespace *ns = kls->ns; |
| 5845 | u64 mnt_parent_id = kls->mnt_parent_id; |
| 5846 | u64 last_mnt_id = kls->last_mnt_id; |
| 5847 | u64 *mnt_ids = kls->kmnt_ids; |
| 5848 | size_t nr_mnt_ids = kls->nr_mnt_ids; |
| 5849 | struct path orig; |
| 5850 | struct mount *r, *first; |
| 5851 | ssize_t ret; |
| 5852 | |
| 5853 | rwsem_assert_held(sem: &namespace_sem); |
| 5854 | |
| 5855 | ret = grab_requested_root(ns, root: &kls->root); |
| 5856 | if (ret) |
| 5857 | return ret; |
| 5858 | |
| 5859 | if (mnt_parent_id == LSMT_ROOT) { |
| 5860 | orig = kls->root; |
| 5861 | } else { |
| 5862 | orig.mnt = lookup_mnt_in_ns(id: mnt_parent_id, ns); |
| 5863 | if (!orig.mnt) |
| 5864 | return -ENOENT; |
| 5865 | orig.dentry = orig.mnt->mnt_root; |
| 5866 | } |
| 5867 | |
| 5868 | /* |
| 5869 | * Don't trigger audit denials. We just want to determine what |
| 5870 | * mounts to show users. |
| 5871 | */ |
| 5872 | if (!is_path_reachable(mnt: real_mount(mnt: orig.mnt), dentry: orig.dentry, root: &kls->root) && |
| 5873 | !ns_capable_noaudit(ns: ns->user_ns, CAP_SYS_ADMIN)) |
| 5874 | return -EPERM; |
| 5875 | |
| 5876 | ret = security_sb_statfs(dentry: orig.dentry); |
| 5877 | if (ret) |
| 5878 | return ret; |
| 5879 | |
| 5880 | if (!last_mnt_id) { |
| 5881 | if (reverse) |
| 5882 | first = node_to_mount(node: ns->mnt_last_node); |
| 5883 | else |
| 5884 | first = node_to_mount(node: ns->mnt_first_node); |
| 5885 | } else { |
| 5886 | if (reverse) |
| 5887 | first = mnt_find_id_at_reverse(ns, mnt_id: last_mnt_id - 1); |
| 5888 | else |
| 5889 | first = mnt_find_id_at(ns, mnt_id: last_mnt_id + 1); |
| 5890 | } |
| 5891 | |
| 5892 | for (ret = 0, r = first; r && nr_mnt_ids; r = listmnt_next(curr: r, reverse)) { |
| 5893 | if (r->mnt_id_unique == mnt_parent_id) |
| 5894 | continue; |
| 5895 | if (!is_path_reachable(mnt: r, dentry: r->mnt.mnt_root, root: &orig)) |
| 5896 | continue; |
| 5897 | *mnt_ids = r->mnt_id_unique; |
| 5898 | mnt_ids++; |
| 5899 | nr_mnt_ids--; |
| 5900 | ret++; |
| 5901 | } |
| 5902 | return ret; |
| 5903 | } |
| 5904 | |
| 5905 | static void __free_klistmount_free(const struct klistmount *kls) |
| 5906 | { |
| 5907 | path_put(&kls->root); |
| 5908 | kvfree(addr: kls->kmnt_ids); |
| 5909 | mnt_ns_release(ns: kls->ns); |
| 5910 | } |
| 5911 | |
| 5912 | static inline int prepare_klistmount(struct klistmount *kls, struct mnt_id_req *kreq, |
| 5913 | size_t nr_mnt_ids) |
| 5914 | { |
| 5915 | |
| 5916 | u64 last_mnt_id = kreq->param; |
| 5917 | |
| 5918 | /* The first valid unique mount id is MNT_UNIQUE_ID_OFFSET + 1. */ |
| 5919 | if (last_mnt_id != 0 && last_mnt_id <= MNT_UNIQUE_ID_OFFSET) |
| 5920 | return -EINVAL; |
| 5921 | |
| 5922 | kls->last_mnt_id = last_mnt_id; |
| 5923 | |
| 5924 | kls->nr_mnt_ids = nr_mnt_ids; |
| 5925 | kls->kmnt_ids = kvmalloc_array(nr_mnt_ids, sizeof(*kls->kmnt_ids), |
| 5926 | GFP_KERNEL_ACCOUNT); |
| 5927 | if (!kls->kmnt_ids) |
| 5928 | return -ENOMEM; |
| 5929 | |
| 5930 | kls->ns = grab_requested_mnt_ns(kreq); |
| 5931 | if (!kls->ns) |
| 5932 | return -ENOENT; |
| 5933 | |
| 5934 | kls->mnt_parent_id = kreq->mnt_id; |
| 5935 | return 0; |
| 5936 | } |
| 5937 | |
| 5938 | SYSCALL_DEFINE4(listmount, const struct mnt_id_req __user *, req, |
| 5939 | u64 __user *, mnt_ids, size_t, nr_mnt_ids, unsigned int, flags) |
| 5940 | { |
| 5941 | struct klistmount kls __free(klistmount_free) = {}; |
| 5942 | const size_t maxcount = 1000000; |
| 5943 | struct mnt_id_req kreq; |
| 5944 | ssize_t ret; |
| 5945 | |
| 5946 | if (flags & ~LISTMOUNT_REVERSE) |
| 5947 | return -EINVAL; |
| 5948 | |
| 5949 | /* |
| 5950 | * If the mount namespace really has more than 1 million mounts the |
| 5951 | * caller must iterate over the mount namespace (and reconsider their |
| 5952 | * system design...). |
| 5953 | */ |
| 5954 | if (unlikely(nr_mnt_ids > maxcount)) |
| 5955 | return -EOVERFLOW; |
| 5956 | |
| 5957 | if (!access_ok(mnt_ids, nr_mnt_ids * sizeof(*mnt_ids))) |
| 5958 | return -EFAULT; |
| 5959 | |
| 5960 | ret = copy_mnt_id_req(req, kreq: &kreq); |
| 5961 | if (ret) |
| 5962 | return ret; |
| 5963 | |
| 5964 | ret = prepare_klistmount(kls: &kls, kreq: &kreq, nr_mnt_ids); |
| 5965 | if (ret) |
| 5966 | return ret; |
| 5967 | |
| 5968 | if (kreq.mnt_ns_id && (kls.ns != current->nsproxy->mnt_ns) && |
| 5969 | !ns_capable_noaudit(ns: kls.ns->user_ns, CAP_SYS_ADMIN)) |
| 5970 | return -ENOENT; |
| 5971 | |
| 5972 | /* |
| 5973 | * We only need to guard against mount topology changes as |
| 5974 | * listmount() doesn't care about any mount properties. |
| 5975 | */ |
| 5976 | scoped_guard(namespace_shared) |
| 5977 | ret = do_listmount(kls: &kls, reverse: (flags & LISTMOUNT_REVERSE)); |
| 5978 | if (ret <= 0) |
| 5979 | return ret; |
| 5980 | |
| 5981 | if (copy_to_user(to: mnt_ids, from: kls.kmnt_ids, n: ret * sizeof(*mnt_ids))) |
| 5982 | return -EFAULT; |
| 5983 | |
| 5984 | return ret; |
| 5985 | } |
| 5986 | |
| 5987 | struct mnt_namespace init_mnt_ns = { |
| 5988 | .ns.inum = ns_init_inum(&init_mnt_ns), |
| 5989 | .ns.ops = &mntns_operations, |
| 5990 | .user_ns = &init_user_ns, |
| 5991 | .ns.__ns_ref = REFCOUNT_INIT(1), |
| 5992 | .ns.ns_type = ns_common_type(&init_mnt_ns), |
| 5993 | .passive = REFCOUNT_INIT(1), |
| 5994 | .mounts = RB_ROOT, |
| 5995 | .poll = __WAIT_QUEUE_HEAD_INITIALIZER(init_mnt_ns.poll), |
| 5996 | }; |
| 5997 | |
| 5998 | static void __init init_mount_tree(void) |
| 5999 | { |
| 6000 | struct vfsmount *mnt; |
| 6001 | struct mount *m; |
| 6002 | struct path root; |
| 6003 | |
| 6004 | mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs" , initramfs_options); |
| 6005 | if (IS_ERR(ptr: mnt)) |
| 6006 | panic(fmt: "Can't create rootfs" ); |
| 6007 | |
| 6008 | m = real_mount(mnt); |
| 6009 | init_mnt_ns.root = m; |
| 6010 | init_mnt_ns.nr_mounts = 1; |
| 6011 | mnt_add_to_ns(ns: &init_mnt_ns, mnt: m); |
| 6012 | init_task.nsproxy->mnt_ns = &init_mnt_ns; |
| 6013 | get_mnt_ns(ns: &init_mnt_ns); |
| 6014 | |
| 6015 | root.mnt = mnt; |
| 6016 | root.dentry = mnt->mnt_root; |
| 6017 | |
| 6018 | set_fs_pwd(current->fs, &root); |
| 6019 | set_fs_root(current->fs, &root); |
| 6020 | |
| 6021 | ns_tree_add(&init_mnt_ns); |
| 6022 | } |
| 6023 | |
| 6024 | void __init mnt_init(void) |
| 6025 | { |
| 6026 | int err; |
| 6027 | |
| 6028 | mnt_cache = kmem_cache_create("mnt_cache" , sizeof(struct mount), |
| 6029 | 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL); |
| 6030 | |
| 6031 | mount_hashtable = alloc_large_system_hash(tablename: "Mount-cache" , |
| 6032 | bucketsize: sizeof(struct hlist_head), |
| 6033 | numentries: mhash_entries, scale: 19, |
| 6034 | HASH_ZERO, |
| 6035 | hash_shift: &m_hash_shift, hash_mask: &m_hash_mask, low_limit: 0, high_limit: 0); |
| 6036 | mountpoint_hashtable = alloc_large_system_hash(tablename: "Mountpoint-cache" , |
| 6037 | bucketsize: sizeof(struct hlist_head), |
| 6038 | numentries: mphash_entries, scale: 19, |
| 6039 | HASH_ZERO, |
| 6040 | hash_shift: &mp_hash_shift, hash_mask: &mp_hash_mask, low_limit: 0, high_limit: 0); |
| 6041 | |
| 6042 | if (!mount_hashtable || !mountpoint_hashtable) |
| 6043 | panic(fmt: "Failed to allocate mount hash table\n" ); |
| 6044 | |
| 6045 | kernfs_init(); |
| 6046 | |
| 6047 | err = sysfs_init(); |
| 6048 | if (err) |
| 6049 | printk(KERN_WARNING "%s: sysfs_init error: %d\n" , |
| 6050 | __func__, err); |
| 6051 | fs_kobj = kobject_create_and_add(name: "fs" , NULL); |
| 6052 | if (!fs_kobj) |
| 6053 | printk(KERN_WARNING "%s: kobj create error\n" , __func__); |
| 6054 | shmem_init(); |
| 6055 | init_rootfs(); |
| 6056 | init_mount_tree(); |
| 6057 | } |
| 6058 | |
| 6059 | void put_mnt_ns(struct mnt_namespace *ns) |
| 6060 | { |
| 6061 | if (!ns_ref_put(ns)) |
| 6062 | return; |
| 6063 | guard(namespace_excl)(); |
| 6064 | emptied_ns = ns; |
| 6065 | guard(mount_writer)(); |
| 6066 | umount_tree(mnt: ns->root, how: 0); |
| 6067 | } |
| 6068 | |
| 6069 | struct vfsmount *kern_mount(struct file_system_type *type) |
| 6070 | { |
| 6071 | struct vfsmount *mnt; |
| 6072 | mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL); |
| 6073 | if (!IS_ERR(ptr: mnt)) { |
| 6074 | /* |
| 6075 | * it is a longterm mount, don't release mnt until |
| 6076 | * we unmount before file sys is unregistered |
| 6077 | */ |
| 6078 | real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL; |
| 6079 | } |
| 6080 | return mnt; |
| 6081 | } |
| 6082 | EXPORT_SYMBOL_GPL(kern_mount); |
| 6083 | |
| 6084 | void kern_unmount(struct vfsmount *mnt) |
| 6085 | { |
| 6086 | /* release long term mount so mount point can be released */ |
| 6087 | if (!IS_ERR(ptr: mnt)) { |
| 6088 | mnt_make_shortterm(mnt); |
| 6089 | synchronize_rcu(); /* yecchhh... */ |
| 6090 | mntput(mnt); |
| 6091 | } |
| 6092 | } |
| 6093 | EXPORT_SYMBOL(kern_unmount); |
| 6094 | |
| 6095 | void kern_unmount_array(struct vfsmount *mnt[], unsigned int num) |
| 6096 | { |
| 6097 | unsigned int i; |
| 6098 | |
| 6099 | for (i = 0; i < num; i++) |
| 6100 | mnt_make_shortterm(mnt: mnt[i]); |
| 6101 | synchronize_rcu_expedited(); |
| 6102 | for (i = 0; i < num; i++) |
| 6103 | mntput(mnt[i]); |
| 6104 | } |
| 6105 | EXPORT_SYMBOL(kern_unmount_array); |
| 6106 | |
| 6107 | bool our_mnt(struct vfsmount *mnt) |
| 6108 | { |
| 6109 | return check_mnt(mnt: real_mount(mnt)); |
| 6110 | } |
| 6111 | |
| 6112 | bool current_chrooted(void) |
| 6113 | { |
| 6114 | /* Does the current process have a non-standard root */ |
| 6115 | struct path fs_root __free(path_put) = {}; |
| 6116 | struct mount *root; |
| 6117 | |
| 6118 | get_fs_root(current->fs, root: &fs_root); |
| 6119 | |
| 6120 | /* Find the namespace root */ |
| 6121 | |
| 6122 | guard(mount_locked_reader)(); |
| 6123 | |
| 6124 | root = topmost_overmount(current->nsproxy->mnt_ns->root); |
| 6125 | |
| 6126 | return fs_root.mnt != &root->mnt || !path_mounted(path: &fs_root); |
| 6127 | } |
| 6128 | |
| 6129 | static bool mnt_already_visible(struct mnt_namespace *ns, |
| 6130 | const struct super_block *sb, |
| 6131 | int *new_mnt_flags) |
| 6132 | { |
| 6133 | int new_flags = *new_mnt_flags; |
| 6134 | struct mount *mnt, *n; |
| 6135 | |
| 6136 | guard(namespace_shared)(); |
| 6137 | rbtree_postorder_for_each_entry_safe(mnt, n, &ns->mounts, mnt_node) { |
| 6138 | struct mount *child; |
| 6139 | int mnt_flags; |
| 6140 | |
| 6141 | if (mnt->mnt.mnt_sb->s_type != sb->s_type) |
| 6142 | continue; |
| 6143 | |
| 6144 | /* This mount is not fully visible if it's root directory |
| 6145 | * is not the root directory of the filesystem. |
| 6146 | */ |
| 6147 | if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root) |
| 6148 | continue; |
| 6149 | |
| 6150 | /* A local view of the mount flags */ |
| 6151 | mnt_flags = mnt->mnt.mnt_flags; |
| 6152 | |
| 6153 | /* Don't miss readonly hidden in the superblock flags */ |
| 6154 | if (sb_rdonly(sb: mnt->mnt.mnt_sb)) |
| 6155 | mnt_flags |= MNT_LOCK_READONLY; |
| 6156 | |
| 6157 | /* Verify the mount flags are equal to or more permissive |
| 6158 | * than the proposed new mount. |
| 6159 | */ |
| 6160 | if ((mnt_flags & MNT_LOCK_READONLY) && |
| 6161 | !(new_flags & MNT_READONLY)) |
| 6162 | continue; |
| 6163 | if ((mnt_flags & MNT_LOCK_ATIME) && |
| 6164 | ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK))) |
| 6165 | continue; |
| 6166 | |
| 6167 | /* This mount is not fully visible if there are any |
| 6168 | * locked child mounts that cover anything except for |
| 6169 | * empty directories. |
| 6170 | */ |
| 6171 | list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { |
| 6172 | struct inode *inode = child->mnt_mountpoint->d_inode; |
| 6173 | /* Only worry about locked mounts */ |
| 6174 | if (!(child->mnt.mnt_flags & MNT_LOCKED)) |
| 6175 | continue; |
| 6176 | /* Is the directory permanently empty? */ |
| 6177 | if (!is_empty_dir_inode(inode)) |
| 6178 | goto next; |
| 6179 | } |
| 6180 | /* Preserve the locked attributes */ |
| 6181 | *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \ |
| 6182 | MNT_LOCK_ATIME); |
| 6183 | return true; |
| 6184 | next: ; |
| 6185 | } |
| 6186 | return false; |
| 6187 | } |
| 6188 | |
| 6189 | static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags) |
| 6190 | { |
| 6191 | const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV; |
| 6192 | struct mnt_namespace *ns = current->nsproxy->mnt_ns; |
| 6193 | unsigned long s_iflags; |
| 6194 | |
| 6195 | if (ns->user_ns == &init_user_ns) |
| 6196 | return false; |
| 6197 | |
| 6198 | /* Can this filesystem be too revealing? */ |
| 6199 | s_iflags = sb->s_iflags; |
| 6200 | if (!(s_iflags & SB_I_USERNS_VISIBLE)) |
| 6201 | return false; |
| 6202 | |
| 6203 | if ((s_iflags & required_iflags) != required_iflags) { |
| 6204 | WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n" , |
| 6205 | required_iflags); |
| 6206 | return true; |
| 6207 | } |
| 6208 | |
| 6209 | return !mnt_already_visible(ns, sb, new_mnt_flags); |
| 6210 | } |
| 6211 | |
| 6212 | bool mnt_may_suid(struct vfsmount *mnt) |
| 6213 | { |
| 6214 | /* |
| 6215 | * Foreign mounts (accessed via fchdir or through /proc |
| 6216 | * symlinks) are always treated as if they are nosuid. This |
| 6217 | * prevents namespaces from trusting potentially unsafe |
| 6218 | * suid/sgid bits, file caps, or security labels that originate |
| 6219 | * in other namespaces. |
| 6220 | */ |
| 6221 | return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(mnt: real_mount(mnt)) && |
| 6222 | current_in_userns(target_ns: mnt->mnt_sb->s_user_ns); |
| 6223 | } |
| 6224 | |
| 6225 | static struct ns_common *mntns_get(struct task_struct *task) |
| 6226 | { |
| 6227 | struct ns_common *ns = NULL; |
| 6228 | struct nsproxy *nsproxy; |
| 6229 | |
| 6230 | task_lock(p: task); |
| 6231 | nsproxy = task->nsproxy; |
| 6232 | if (nsproxy) { |
| 6233 | ns = &nsproxy->mnt_ns->ns; |
| 6234 | get_mnt_ns(ns: to_mnt_ns(ns)); |
| 6235 | } |
| 6236 | task_unlock(p: task); |
| 6237 | |
| 6238 | return ns; |
| 6239 | } |
| 6240 | |
| 6241 | static void mntns_put(struct ns_common *ns) |
| 6242 | { |
| 6243 | put_mnt_ns(ns: to_mnt_ns(ns)); |
| 6244 | } |
| 6245 | |
| 6246 | static int mntns_install(struct nsset *nsset, struct ns_common *ns) |
| 6247 | { |
| 6248 | struct nsproxy *nsproxy = nsset->nsproxy; |
| 6249 | struct fs_struct *fs = nsset->fs; |
| 6250 | struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns; |
| 6251 | struct user_namespace *user_ns = nsset->cred->user_ns; |
| 6252 | struct path root; |
| 6253 | int err; |
| 6254 | |
| 6255 | if (!ns_capable(ns: mnt_ns->user_ns, CAP_SYS_ADMIN) || |
| 6256 | !ns_capable(ns: user_ns, CAP_SYS_CHROOT) || |
| 6257 | !ns_capable(ns: user_ns, CAP_SYS_ADMIN)) |
| 6258 | return -EPERM; |
| 6259 | |
| 6260 | if (is_anon_ns(ns: mnt_ns)) |
| 6261 | return -EINVAL; |
| 6262 | |
| 6263 | if (fs->users != 1) |
| 6264 | return -EINVAL; |
| 6265 | |
| 6266 | get_mnt_ns(ns: mnt_ns); |
| 6267 | old_mnt_ns = nsproxy->mnt_ns; |
| 6268 | nsproxy->mnt_ns = mnt_ns; |
| 6269 | |
| 6270 | /* Find the root */ |
| 6271 | err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt, |
| 6272 | "/" , LOOKUP_DOWN, &root); |
| 6273 | if (err) { |
| 6274 | /* revert to old namespace */ |
| 6275 | nsproxy->mnt_ns = old_mnt_ns; |
| 6276 | put_mnt_ns(ns: mnt_ns); |
| 6277 | return err; |
| 6278 | } |
| 6279 | |
| 6280 | put_mnt_ns(ns: old_mnt_ns); |
| 6281 | |
| 6282 | /* Update the pwd and root */ |
| 6283 | set_fs_pwd(fs, &root); |
| 6284 | set_fs_root(fs, &root); |
| 6285 | |
| 6286 | path_put(&root); |
| 6287 | return 0; |
| 6288 | } |
| 6289 | |
| 6290 | static struct user_namespace *mntns_owner(struct ns_common *ns) |
| 6291 | { |
| 6292 | return to_mnt_ns(ns)->user_ns; |
| 6293 | } |
| 6294 | |
| 6295 | const struct proc_ns_operations mntns_operations = { |
| 6296 | .name = "mnt" , |
| 6297 | .get = mntns_get, |
| 6298 | .put = mntns_put, |
| 6299 | .install = mntns_install, |
| 6300 | .owner = mntns_owner, |
| 6301 | }; |
| 6302 | |
| 6303 | #ifdef CONFIG_SYSCTL |
| 6304 | static const struct ctl_table fs_namespace_sysctls[] = { |
| 6305 | { |
| 6306 | .procname = "mount-max" , |
| 6307 | .data = &sysctl_mount_max, |
| 6308 | .maxlen = sizeof(unsigned int), |
| 6309 | .mode = 0644, |
| 6310 | .proc_handler = proc_dointvec_minmax, |
| 6311 | .extra1 = SYSCTL_ONE, |
| 6312 | }, |
| 6313 | }; |
| 6314 | |
| 6315 | static int __init init_fs_namespace_sysctls(void) |
| 6316 | { |
| 6317 | register_sysctl_init("fs" , fs_namespace_sysctls); |
| 6318 | return 0; |
| 6319 | } |
| 6320 | fs_initcall(init_fs_namespace_sysctls); |
| 6321 | |
| 6322 | #endif /* CONFIG_SYSCTL */ |
| 6323 | |