| 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * fs/timerfd.c |
| 4 | * |
| 5 | * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org> |
| 6 | * |
| 7 | * |
| 8 | * Thanks to Thomas Gleixner for code reviews and useful comments. |
| 9 | * |
| 10 | */ |
| 11 | |
| 12 | #include <linux/alarmtimer.h> |
| 13 | #include <linux/file.h> |
| 14 | #include <linux/poll.h> |
| 15 | #include <linux/init.h> |
| 16 | #include <linux/fs.h> |
| 17 | #include <linux/sched.h> |
| 18 | #include <linux/kernel.h> |
| 19 | #include <linux/slab.h> |
| 20 | #include <linux/list.h> |
| 21 | #include <linux/spinlock.h> |
| 22 | #include <linux/time.h> |
| 23 | #include <linux/hrtimer.h> |
| 24 | #include <linux/anon_inodes.h> |
| 25 | #include <linux/timerfd.h> |
| 26 | #include <linux/syscalls.h> |
| 27 | #include <linux/compat.h> |
| 28 | #include <linux/rcupdate.h> |
| 29 | #include <linux/time_namespace.h> |
| 30 | |
| 31 | struct timerfd_ctx { |
| 32 | union { |
| 33 | struct hrtimer tmr; |
| 34 | struct alarm alarm; |
| 35 | } t; |
| 36 | ktime_t tintv; |
| 37 | ktime_t moffs; |
| 38 | wait_queue_head_t wqh; |
| 39 | u64 ticks; |
| 40 | int clockid; |
| 41 | short unsigned expired; |
| 42 | short unsigned settime_flags; /* to show in fdinfo */ |
| 43 | struct rcu_head rcu; |
| 44 | struct list_head clist; |
| 45 | spinlock_t cancel_lock; |
| 46 | bool might_cancel; |
| 47 | }; |
| 48 | |
| 49 | static LIST_HEAD(cancel_list); |
| 50 | static DEFINE_SPINLOCK(cancel_lock); |
| 51 | |
| 52 | static inline bool isalarm(struct timerfd_ctx *ctx) |
| 53 | { |
| 54 | return ctx->clockid == CLOCK_REALTIME_ALARM || |
| 55 | ctx->clockid == CLOCK_BOOTTIME_ALARM; |
| 56 | } |
| 57 | |
| 58 | /* |
| 59 | * This gets called when the timer event triggers. We set the "expired" |
| 60 | * flag, but we do not re-arm the timer (in case it's necessary, |
| 61 | * tintv != 0) until the timer is accessed. |
| 62 | */ |
| 63 | static void timerfd_triggered(struct timerfd_ctx *ctx) |
| 64 | { |
| 65 | unsigned long flags; |
| 66 | |
| 67 | spin_lock_irqsave(&ctx->wqh.lock, flags); |
| 68 | ctx->expired = 1; |
| 69 | ctx->ticks++; |
| 70 | wake_up_locked_poll(&ctx->wqh, EPOLLIN); |
| 71 | spin_unlock_irqrestore(lock: &ctx->wqh.lock, flags); |
| 72 | } |
| 73 | |
| 74 | static enum hrtimer_restart timerfd_tmrproc(struct hrtimer *htmr) |
| 75 | { |
| 76 | struct timerfd_ctx *ctx = container_of(htmr, struct timerfd_ctx, |
| 77 | t.tmr); |
| 78 | timerfd_triggered(ctx); |
| 79 | return HRTIMER_NORESTART; |
| 80 | } |
| 81 | |
| 82 | static void timerfd_alarmproc(struct alarm *alarm, ktime_t now) |
| 83 | { |
| 84 | struct timerfd_ctx *ctx = container_of(alarm, struct timerfd_ctx, |
| 85 | t.alarm); |
| 86 | timerfd_triggered(ctx); |
| 87 | } |
| 88 | |
| 89 | /* |
| 90 | * Called when the clock was set to cancel the timers in the cancel |
| 91 | * list. This will wake up processes waiting on these timers. The |
| 92 | * wake-up requires ctx->ticks to be non zero, therefore we increment |
| 93 | * it before calling wake_up_locked(). |
| 94 | */ |
| 95 | void timerfd_clock_was_set(void) |
| 96 | { |
| 97 | ktime_t moffs = ktime_mono_to_real(mono: 0); |
| 98 | struct timerfd_ctx *ctx; |
| 99 | unsigned long flags; |
| 100 | |
| 101 | rcu_read_lock(); |
| 102 | list_for_each_entry_rcu(ctx, &cancel_list, clist) { |
| 103 | if (!ctx->might_cancel) |
| 104 | continue; |
| 105 | spin_lock_irqsave(&ctx->wqh.lock, flags); |
| 106 | if (ctx->moffs != moffs) { |
| 107 | ctx->moffs = KTIME_MAX; |
| 108 | ctx->ticks++; |
| 109 | wake_up_locked_poll(&ctx->wqh, EPOLLIN); |
| 110 | } |
| 111 | spin_unlock_irqrestore(lock: &ctx->wqh.lock, flags); |
| 112 | } |
| 113 | rcu_read_unlock(); |
| 114 | } |
| 115 | |
| 116 | static void timerfd_resume_work(struct work_struct *work) |
| 117 | { |
| 118 | timerfd_clock_was_set(); |
| 119 | } |
| 120 | |
| 121 | static DECLARE_WORK(timerfd_work, timerfd_resume_work); |
| 122 | |
| 123 | /* |
| 124 | * Invoked from timekeeping_resume(). Defer the actual update to work so |
| 125 | * timerfd_clock_was_set() runs in task context. |
| 126 | */ |
| 127 | void timerfd_resume(void) |
| 128 | { |
| 129 | schedule_work(work: &timerfd_work); |
| 130 | } |
| 131 | |
| 132 | static void __timerfd_remove_cancel(struct timerfd_ctx *ctx) |
| 133 | { |
| 134 | if (ctx->might_cancel) { |
| 135 | ctx->might_cancel = false; |
| 136 | spin_lock(lock: &cancel_lock); |
| 137 | list_del_rcu(entry: &ctx->clist); |
| 138 | spin_unlock(lock: &cancel_lock); |
| 139 | } |
| 140 | } |
| 141 | |
| 142 | static void timerfd_remove_cancel(struct timerfd_ctx *ctx) |
| 143 | { |
| 144 | spin_lock(lock: &ctx->cancel_lock); |
| 145 | __timerfd_remove_cancel(ctx); |
| 146 | spin_unlock(lock: &ctx->cancel_lock); |
| 147 | } |
| 148 | |
| 149 | static bool timerfd_canceled(struct timerfd_ctx *ctx) |
| 150 | { |
| 151 | if (!ctx->might_cancel || ctx->moffs != KTIME_MAX) |
| 152 | return false; |
| 153 | ctx->moffs = ktime_mono_to_real(mono: 0); |
| 154 | return true; |
| 155 | } |
| 156 | |
| 157 | static void timerfd_setup_cancel(struct timerfd_ctx *ctx, int flags) |
| 158 | { |
| 159 | spin_lock(lock: &ctx->cancel_lock); |
| 160 | if ((ctx->clockid == CLOCK_REALTIME || |
| 161 | ctx->clockid == CLOCK_REALTIME_ALARM) && |
| 162 | (flags & TFD_TIMER_ABSTIME) && (flags & TFD_TIMER_CANCEL_ON_SET)) { |
| 163 | if (!ctx->might_cancel) { |
| 164 | ctx->might_cancel = true; |
| 165 | spin_lock(lock: &cancel_lock); |
| 166 | list_add_rcu(new: &ctx->clist, head: &cancel_list); |
| 167 | spin_unlock(lock: &cancel_lock); |
| 168 | } |
| 169 | } else { |
| 170 | __timerfd_remove_cancel(ctx); |
| 171 | } |
| 172 | spin_unlock(lock: &ctx->cancel_lock); |
| 173 | } |
| 174 | |
| 175 | static ktime_t timerfd_get_remaining(struct timerfd_ctx *ctx) |
| 176 | { |
| 177 | ktime_t remaining; |
| 178 | |
| 179 | if (isalarm(ctx)) |
| 180 | remaining = alarm_expires_remaining(alarm: &ctx->t.alarm); |
| 181 | else |
| 182 | remaining = hrtimer_expires_remaining_adjusted(timer: &ctx->t.tmr); |
| 183 | |
| 184 | return remaining < 0 ? 0: remaining; |
| 185 | } |
| 186 | |
| 187 | static int timerfd_setup(struct timerfd_ctx *ctx, int flags, |
| 188 | const struct itimerspec64 *ktmr) |
| 189 | { |
| 190 | enum hrtimer_mode htmode; |
| 191 | ktime_t texp; |
| 192 | int clockid = ctx->clockid; |
| 193 | |
| 194 | htmode = (flags & TFD_TIMER_ABSTIME) ? |
| 195 | HRTIMER_MODE_ABS: HRTIMER_MODE_REL; |
| 196 | |
| 197 | texp = timespec64_to_ktime(ts: ktmr->it_value); |
| 198 | ctx->expired = 0; |
| 199 | ctx->ticks = 0; |
| 200 | ctx->tintv = timespec64_to_ktime(ts: ktmr->it_interval); |
| 201 | |
| 202 | if (isalarm(ctx)) { |
| 203 | alarm_init(alarm: &ctx->t.alarm, |
| 204 | type: ctx->clockid == CLOCK_REALTIME_ALARM ? |
| 205 | ALARM_REALTIME : ALARM_BOOTTIME, |
| 206 | function: timerfd_alarmproc); |
| 207 | } else { |
| 208 | hrtimer_setup(timer: &ctx->t.tmr, function: timerfd_tmrproc, clock_id: clockid, mode: htmode); |
| 209 | hrtimer_set_expires(timer: &ctx->t.tmr, time: texp); |
| 210 | } |
| 211 | |
| 212 | if (texp != 0) { |
| 213 | if (flags & TFD_TIMER_ABSTIME) |
| 214 | texp = timens_ktime_to_host(clockid, tim: texp); |
| 215 | if (isalarm(ctx)) { |
| 216 | if (flags & TFD_TIMER_ABSTIME) |
| 217 | alarm_start(alarm: &ctx->t.alarm, start: texp); |
| 218 | else |
| 219 | alarm_start_relative(alarm: &ctx->t.alarm, start: texp); |
| 220 | } else { |
| 221 | hrtimer_start(timer: &ctx->t.tmr, tim: texp, mode: htmode); |
| 222 | } |
| 223 | |
| 224 | if (timerfd_canceled(ctx)) |
| 225 | return -ECANCELED; |
| 226 | } |
| 227 | |
| 228 | ctx->settime_flags = flags & TFD_SETTIME_FLAGS; |
| 229 | return 0; |
| 230 | } |
| 231 | |
| 232 | static int timerfd_release(struct inode *inode, struct file *file) |
| 233 | { |
| 234 | struct timerfd_ctx *ctx = file->private_data; |
| 235 | |
| 236 | timerfd_remove_cancel(ctx); |
| 237 | |
| 238 | if (isalarm(ctx)) |
| 239 | alarm_cancel(alarm: &ctx->t.alarm); |
| 240 | else |
| 241 | hrtimer_cancel(timer: &ctx->t.tmr); |
| 242 | kfree_rcu(ctx, rcu); |
| 243 | return 0; |
| 244 | } |
| 245 | |
| 246 | static __poll_t timerfd_poll(struct file *file, poll_table *wait) |
| 247 | { |
| 248 | struct timerfd_ctx *ctx = file->private_data; |
| 249 | __poll_t events = 0; |
| 250 | unsigned long flags; |
| 251 | |
| 252 | poll_wait(filp: file, wait_address: &ctx->wqh, p: wait); |
| 253 | |
| 254 | spin_lock_irqsave(&ctx->wqh.lock, flags); |
| 255 | if (ctx->ticks) |
| 256 | events |= EPOLLIN; |
| 257 | spin_unlock_irqrestore(lock: &ctx->wqh.lock, flags); |
| 258 | |
| 259 | return events; |
| 260 | } |
| 261 | |
| 262 | static ssize_t timerfd_read_iter(struct kiocb *iocb, struct iov_iter *to) |
| 263 | { |
| 264 | struct file *file = iocb->ki_filp; |
| 265 | struct timerfd_ctx *ctx = file->private_data; |
| 266 | ssize_t res; |
| 267 | u64 ticks = 0; |
| 268 | |
| 269 | if (iov_iter_count(i: to) < sizeof(ticks)) |
| 270 | return -EINVAL; |
| 271 | |
| 272 | spin_lock_irq(lock: &ctx->wqh.lock); |
| 273 | if (file->f_flags & O_NONBLOCK || iocb->ki_flags & IOCB_NOWAIT) |
| 274 | res = -EAGAIN; |
| 275 | else |
| 276 | res = wait_event_interruptible_locked_irq(ctx->wqh, ctx->ticks); |
| 277 | |
| 278 | /* |
| 279 | * If clock has changed, we do not care about the |
| 280 | * ticks and we do not rearm the timer. Userspace must |
| 281 | * reevaluate anyway. |
| 282 | */ |
| 283 | if (timerfd_canceled(ctx)) { |
| 284 | ctx->ticks = 0; |
| 285 | ctx->expired = 0; |
| 286 | res = -ECANCELED; |
| 287 | } |
| 288 | |
| 289 | if (ctx->ticks) { |
| 290 | ticks = ctx->ticks; |
| 291 | |
| 292 | if (ctx->expired && ctx->tintv) { |
| 293 | /* |
| 294 | * If tintv != 0, this is a periodic timer that |
| 295 | * needs to be re-armed. We avoid doing it in the timer |
| 296 | * callback to avoid DoS attacks specifying a very |
| 297 | * short timer period. |
| 298 | */ |
| 299 | if (isalarm(ctx)) { |
| 300 | ticks += alarm_forward_now( |
| 301 | alarm: &ctx->t.alarm, interval: ctx->tintv) - 1; |
| 302 | alarm_restart(alarm: &ctx->t.alarm); |
| 303 | } else { |
| 304 | ticks += hrtimer_forward_now(timer: &ctx->t.tmr, |
| 305 | interval: ctx->tintv) - 1; |
| 306 | hrtimer_restart(timer: &ctx->t.tmr); |
| 307 | } |
| 308 | } |
| 309 | ctx->expired = 0; |
| 310 | ctx->ticks = 0; |
| 311 | } |
| 312 | spin_unlock_irq(lock: &ctx->wqh.lock); |
| 313 | if (ticks) { |
| 314 | res = copy_to_iter(addr: &ticks, bytes: sizeof(ticks), i: to); |
| 315 | if (!res) |
| 316 | res = -EFAULT; |
| 317 | } |
| 318 | return res; |
| 319 | } |
| 320 | |
| 321 | #ifdef CONFIG_PROC_FS |
| 322 | static void timerfd_show(struct seq_file *m, struct file *file) |
| 323 | { |
| 324 | struct timerfd_ctx *ctx = file->private_data; |
| 325 | struct timespec64 value, interval; |
| 326 | |
| 327 | spin_lock_irq(lock: &ctx->wqh.lock); |
| 328 | value = ktime_to_timespec64(timerfd_get_remaining(ctx)); |
| 329 | interval = ktime_to_timespec64(ctx->tintv); |
| 330 | spin_unlock_irq(lock: &ctx->wqh.lock); |
| 331 | |
| 332 | seq_printf(m, |
| 333 | fmt: "clockid: %d\n" |
| 334 | "ticks: %llu\n" |
| 335 | "settime flags: 0%o\n" |
| 336 | "it_value: (%llu, %llu)\n" |
| 337 | "it_interval: (%llu, %llu)\n" , |
| 338 | ctx->clockid, |
| 339 | (unsigned long long)ctx->ticks, |
| 340 | ctx->settime_flags, |
| 341 | (unsigned long long)value.tv_sec, |
| 342 | (unsigned long long)value.tv_nsec, |
| 343 | (unsigned long long)interval.tv_sec, |
| 344 | (unsigned long long)interval.tv_nsec); |
| 345 | } |
| 346 | #else |
| 347 | #define timerfd_show NULL |
| 348 | #endif |
| 349 | |
| 350 | #ifdef CONFIG_CHECKPOINT_RESTORE |
| 351 | static long timerfd_ioctl(struct file *file, unsigned int cmd, unsigned long arg) |
| 352 | { |
| 353 | struct timerfd_ctx *ctx = file->private_data; |
| 354 | int ret = 0; |
| 355 | |
| 356 | switch (cmd) { |
| 357 | case TFD_IOC_SET_TICKS: { |
| 358 | u64 ticks; |
| 359 | |
| 360 | if (copy_from_user(&ticks, (u64 __user *)arg, sizeof(ticks))) |
| 361 | return -EFAULT; |
| 362 | if (!ticks) |
| 363 | return -EINVAL; |
| 364 | |
| 365 | spin_lock_irq(&ctx->wqh.lock); |
| 366 | if (!timerfd_canceled(ctx)) { |
| 367 | ctx->ticks = ticks; |
| 368 | wake_up_locked_poll(&ctx->wqh, EPOLLIN); |
| 369 | } else |
| 370 | ret = -ECANCELED; |
| 371 | spin_unlock_irq(&ctx->wqh.lock); |
| 372 | break; |
| 373 | } |
| 374 | default: |
| 375 | ret = -ENOTTY; |
| 376 | break; |
| 377 | } |
| 378 | |
| 379 | return ret; |
| 380 | } |
| 381 | #else |
| 382 | #define timerfd_ioctl NULL |
| 383 | #endif |
| 384 | |
| 385 | static const struct file_operations timerfd_fops = { |
| 386 | .release = timerfd_release, |
| 387 | .poll = timerfd_poll, |
| 388 | .read_iter = timerfd_read_iter, |
| 389 | .llseek = noop_llseek, |
| 390 | .show_fdinfo = timerfd_show, |
| 391 | .unlocked_ioctl = timerfd_ioctl, |
| 392 | }; |
| 393 | |
| 394 | SYSCALL_DEFINE2(timerfd_create, int, clockid, int, flags) |
| 395 | { |
| 396 | int ufd; |
| 397 | struct timerfd_ctx *ctx; |
| 398 | struct file *file; |
| 399 | |
| 400 | /* Check the TFD_* constants for consistency. */ |
| 401 | BUILD_BUG_ON(TFD_CLOEXEC != O_CLOEXEC); |
| 402 | BUILD_BUG_ON(TFD_NONBLOCK != O_NONBLOCK); |
| 403 | |
| 404 | if ((flags & ~TFD_CREATE_FLAGS) || |
| 405 | (clockid != CLOCK_MONOTONIC && |
| 406 | clockid != CLOCK_REALTIME && |
| 407 | clockid != CLOCK_REALTIME_ALARM && |
| 408 | clockid != CLOCK_BOOTTIME && |
| 409 | clockid != CLOCK_BOOTTIME_ALARM)) |
| 410 | return -EINVAL; |
| 411 | |
| 412 | if ((clockid == CLOCK_REALTIME_ALARM || |
| 413 | clockid == CLOCK_BOOTTIME_ALARM) && |
| 414 | !capable(CAP_WAKE_ALARM)) |
| 415 | return -EPERM; |
| 416 | |
| 417 | ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); |
| 418 | if (!ctx) |
| 419 | return -ENOMEM; |
| 420 | |
| 421 | init_waitqueue_head(&ctx->wqh); |
| 422 | spin_lock_init(&ctx->cancel_lock); |
| 423 | ctx->clockid = clockid; |
| 424 | |
| 425 | if (isalarm(ctx)) |
| 426 | alarm_init(alarm: &ctx->t.alarm, |
| 427 | type: ctx->clockid == CLOCK_REALTIME_ALARM ? |
| 428 | ALARM_REALTIME : ALARM_BOOTTIME, |
| 429 | function: timerfd_alarmproc); |
| 430 | else |
| 431 | hrtimer_setup(timer: &ctx->t.tmr, function: timerfd_tmrproc, clock_id: clockid, mode: HRTIMER_MODE_ABS); |
| 432 | |
| 433 | ctx->moffs = ktime_mono_to_real(mono: 0); |
| 434 | |
| 435 | ufd = get_unused_fd_flags(flags: flags & TFD_SHARED_FCNTL_FLAGS); |
| 436 | if (ufd < 0) { |
| 437 | kfree(objp: ctx); |
| 438 | return ufd; |
| 439 | } |
| 440 | |
| 441 | file = anon_inode_getfile_fmode(name: "[timerfd]" , fops: &timerfd_fops, priv: ctx, |
| 442 | O_RDWR | (flags & TFD_SHARED_FCNTL_FLAGS), |
| 443 | FMODE_NOWAIT); |
| 444 | if (IS_ERR(ptr: file)) { |
| 445 | put_unused_fd(fd: ufd); |
| 446 | kfree(objp: ctx); |
| 447 | return PTR_ERR(ptr: file); |
| 448 | } |
| 449 | |
| 450 | fd_install(fd: ufd, file); |
| 451 | return ufd; |
| 452 | } |
| 453 | |
| 454 | static int do_timerfd_settime(int ufd, int flags, |
| 455 | const struct itimerspec64 *new, |
| 456 | struct itimerspec64 *old) |
| 457 | { |
| 458 | struct timerfd_ctx *ctx; |
| 459 | int ret; |
| 460 | |
| 461 | if ((flags & ~TFD_SETTIME_FLAGS) || |
| 462 | !itimerspec64_valid(its: new)) |
| 463 | return -EINVAL; |
| 464 | |
| 465 | CLASS(fd, f)(fd: ufd); |
| 466 | if (fd_empty(f)) |
| 467 | return -EBADF; |
| 468 | |
| 469 | if (fd_file(f)->f_op != &timerfd_fops) |
| 470 | return -EINVAL; |
| 471 | |
| 472 | ctx = fd_file(f)->private_data; |
| 473 | |
| 474 | if (isalarm(ctx) && !capable(CAP_WAKE_ALARM)) |
| 475 | return -EPERM; |
| 476 | |
| 477 | timerfd_setup_cancel(ctx, flags); |
| 478 | |
| 479 | /* |
| 480 | * We need to stop the existing timer before reprogramming |
| 481 | * it to the new values. |
| 482 | */ |
| 483 | for (;;) { |
| 484 | spin_lock_irq(lock: &ctx->wqh.lock); |
| 485 | |
| 486 | if (isalarm(ctx)) { |
| 487 | if (alarm_try_to_cancel(alarm: &ctx->t.alarm) >= 0) |
| 488 | break; |
| 489 | } else { |
| 490 | if (hrtimer_try_to_cancel(timer: &ctx->t.tmr) >= 0) |
| 491 | break; |
| 492 | } |
| 493 | spin_unlock_irq(lock: &ctx->wqh.lock); |
| 494 | |
| 495 | if (isalarm(ctx)) |
| 496 | hrtimer_cancel_wait_running(timer: &ctx->t.alarm.timer); |
| 497 | else |
| 498 | hrtimer_cancel_wait_running(timer: &ctx->t.tmr); |
| 499 | } |
| 500 | |
| 501 | /* |
| 502 | * If the timer is expired and it's periodic, we need to advance it |
| 503 | * because the caller may want to know the previous expiration time. |
| 504 | * We do not update "ticks" and "expired" since the timer will be |
| 505 | * re-programmed again in the following timerfd_setup() call. |
| 506 | */ |
| 507 | if (ctx->expired && ctx->tintv) { |
| 508 | if (isalarm(ctx)) |
| 509 | alarm_forward_now(alarm: &ctx->t.alarm, interval: ctx->tintv); |
| 510 | else |
| 511 | hrtimer_forward_now(timer: &ctx->t.tmr, interval: ctx->tintv); |
| 512 | } |
| 513 | |
| 514 | old->it_value = ktime_to_timespec64(timerfd_get_remaining(ctx)); |
| 515 | old->it_interval = ktime_to_timespec64(ctx->tintv); |
| 516 | |
| 517 | /* |
| 518 | * Re-program the timer to the new value ... |
| 519 | */ |
| 520 | ret = timerfd_setup(ctx, flags, ktmr: new); |
| 521 | |
| 522 | spin_unlock_irq(lock: &ctx->wqh.lock); |
| 523 | return ret; |
| 524 | } |
| 525 | |
| 526 | static int do_timerfd_gettime(int ufd, struct itimerspec64 *t) |
| 527 | { |
| 528 | struct timerfd_ctx *ctx; |
| 529 | CLASS(fd, f)(fd: ufd); |
| 530 | |
| 531 | if (fd_empty(f)) |
| 532 | return -EBADF; |
| 533 | if (fd_file(f)->f_op != &timerfd_fops) |
| 534 | return -EINVAL; |
| 535 | ctx = fd_file(f)->private_data; |
| 536 | |
| 537 | spin_lock_irq(lock: &ctx->wqh.lock); |
| 538 | if (ctx->expired && ctx->tintv) { |
| 539 | ctx->expired = 0; |
| 540 | |
| 541 | if (isalarm(ctx)) { |
| 542 | ctx->ticks += |
| 543 | alarm_forward_now( |
| 544 | alarm: &ctx->t.alarm, interval: ctx->tintv) - 1; |
| 545 | alarm_restart(alarm: &ctx->t.alarm); |
| 546 | } else { |
| 547 | ctx->ticks += |
| 548 | hrtimer_forward_now(timer: &ctx->t.tmr, interval: ctx->tintv) |
| 549 | - 1; |
| 550 | hrtimer_restart(timer: &ctx->t.tmr); |
| 551 | } |
| 552 | } |
| 553 | t->it_value = ktime_to_timespec64(timerfd_get_remaining(ctx)); |
| 554 | t->it_interval = ktime_to_timespec64(ctx->tintv); |
| 555 | spin_unlock_irq(lock: &ctx->wqh.lock); |
| 556 | return 0; |
| 557 | } |
| 558 | |
| 559 | SYSCALL_DEFINE4(timerfd_settime, int, ufd, int, flags, |
| 560 | const struct __kernel_itimerspec __user *, utmr, |
| 561 | struct __kernel_itimerspec __user *, otmr) |
| 562 | { |
| 563 | struct itimerspec64 new, old; |
| 564 | int ret; |
| 565 | |
| 566 | if (get_itimerspec64(it: &new, uit: utmr)) |
| 567 | return -EFAULT; |
| 568 | ret = do_timerfd_settime(ufd, flags, new: &new, old: &old); |
| 569 | if (ret) |
| 570 | return ret; |
| 571 | if (otmr && put_itimerspec64(it: &old, uit: otmr)) |
| 572 | return -EFAULT; |
| 573 | |
| 574 | return ret; |
| 575 | } |
| 576 | |
| 577 | SYSCALL_DEFINE2(timerfd_gettime, int, ufd, struct __kernel_itimerspec __user *, otmr) |
| 578 | { |
| 579 | struct itimerspec64 kotmr; |
| 580 | int ret = do_timerfd_gettime(ufd, t: &kotmr); |
| 581 | if (ret) |
| 582 | return ret; |
| 583 | return put_itimerspec64(it: &kotmr, uit: otmr) ? -EFAULT : 0; |
| 584 | } |
| 585 | |
| 586 | #ifdef CONFIG_COMPAT_32BIT_TIME |
| 587 | SYSCALL_DEFINE4(timerfd_settime32, int, ufd, int, flags, |
| 588 | const struct old_itimerspec32 __user *, utmr, |
| 589 | struct old_itimerspec32 __user *, otmr) |
| 590 | { |
| 591 | struct itimerspec64 new, old; |
| 592 | int ret; |
| 593 | |
| 594 | if (get_old_itimerspec32(its: &new, uits: utmr)) |
| 595 | return -EFAULT; |
| 596 | ret = do_timerfd_settime(ufd, flags, new: &new, old: &old); |
| 597 | if (ret) |
| 598 | return ret; |
| 599 | if (otmr && put_old_itimerspec32(its: &old, uits: otmr)) |
| 600 | return -EFAULT; |
| 601 | return ret; |
| 602 | } |
| 603 | |
| 604 | SYSCALL_DEFINE2(timerfd_gettime32, int, ufd, |
| 605 | struct old_itimerspec32 __user *, otmr) |
| 606 | { |
| 607 | struct itimerspec64 kotmr; |
| 608 | int ret = do_timerfd_gettime(ufd, t: &kotmr); |
| 609 | if (ret) |
| 610 | return ret; |
| 611 | return put_old_itimerspec32(its: &kotmr, uits: otmr) ? -EFAULT : 0; |
| 612 | } |
| 613 | #endif |
| 614 | |