1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_DMA_MAPPING_H
3#define _LINUX_DMA_MAPPING_H
4
5#include <linux/device.h>
6#include <linux/err.h>
7#include <linux/dma-direction.h>
8#include <linux/scatterlist.h>
9#include <linux/bug.h>
10
11/**
12 * List of possible attributes associated with a DMA mapping. The semantics
13 * of each attribute should be defined in Documentation/core-api/dma-attributes.rst.
14 */
15
16/*
17 * DMA_ATTR_WEAK_ORDERING: Specifies that reads and writes to the mapping
18 * may be weakly ordered, that is that reads and writes may pass each other.
19 */
20#define DMA_ATTR_WEAK_ORDERING (1UL << 1)
21/*
22 * DMA_ATTR_WRITE_COMBINE: Specifies that writes to the mapping may be
23 * buffered to improve performance.
24 */
25#define DMA_ATTR_WRITE_COMBINE (1UL << 2)
26/*
27 * DMA_ATTR_NO_KERNEL_MAPPING: Lets the platform to avoid creating a kernel
28 * virtual mapping for the allocated buffer.
29 */
30#define DMA_ATTR_NO_KERNEL_MAPPING (1UL << 4)
31/*
32 * DMA_ATTR_SKIP_CPU_SYNC: Allows platform code to skip synchronization of
33 * the CPU cache for the given buffer assuming that it has been already
34 * transferred to 'device' domain.
35 */
36#define DMA_ATTR_SKIP_CPU_SYNC (1UL << 5)
37/*
38 * DMA_ATTR_FORCE_CONTIGUOUS: Forces contiguous allocation of the buffer
39 * in physical memory.
40 */
41#define DMA_ATTR_FORCE_CONTIGUOUS (1UL << 6)
42/*
43 * DMA_ATTR_ALLOC_SINGLE_PAGES: This is a hint to the DMA-mapping subsystem
44 * that it's probably not worth the time to try to allocate memory to in a way
45 * that gives better TLB efficiency.
46 */
47#define DMA_ATTR_ALLOC_SINGLE_PAGES (1UL << 7)
48/*
49 * DMA_ATTR_NO_WARN: This tells the DMA-mapping subsystem to suppress
50 * allocation failure reports (similarly to __GFP_NOWARN).
51 */
52#define DMA_ATTR_NO_WARN (1UL << 8)
53
54/*
55 * DMA_ATTR_PRIVILEGED: used to indicate that the buffer is fully
56 * accessible at an elevated privilege level (and ideally inaccessible or
57 * at least read-only at lesser-privileged levels).
58 */
59#define DMA_ATTR_PRIVILEGED (1UL << 9)
60
61/*
62 * DMA_ATTR_MMIO - Indicates memory-mapped I/O (MMIO) region for DMA mapping
63 *
64 * This attribute indicates the physical address is not normal system
65 * memory. It may not be used with kmap*()/phys_to_virt()/phys_to_page()
66 * functions, it may not be cacheable, and access using CPU load/store
67 * instructions may not be allowed.
68 *
69 * Usually this will be used to describe MMIO addresses, or other non-cacheable
70 * register addresses. When DMA mapping this sort of address we call
71 * the operation Peer to Peer as a one device is DMA'ing to another device.
72 * For PCI devices the p2pdma APIs must be used to determine if DMA_ATTR_MMIO
73 * is appropriate.
74 *
75 * For architectures that require cache flushing for DMA coherence
76 * DMA_ATTR_MMIO will not perform any cache flushing. The address
77 * provided must never be mapped cacheable into the CPU.
78 */
79#define DMA_ATTR_MMIO (1UL << 10)
80
81/*
82 * A dma_addr_t can hold any valid DMA or bus address for the platform. It can
83 * be given to a device to use as a DMA source or target. It is specific to a
84 * given device and there may be a translation between the CPU physical address
85 * space and the bus address space.
86 *
87 * DMA_MAPPING_ERROR is the magic error code if a mapping failed. It should not
88 * be used directly in drivers, but checked for using dma_mapping_error()
89 * instead.
90 */
91#define DMA_MAPPING_ERROR (~(dma_addr_t)0)
92
93#define DMA_BIT_MASK(n) (((n) == 64) ? ~0ULL : ((1ULL<<(n))-1))
94
95struct dma_iova_state {
96 dma_addr_t addr;
97 u64 __size;
98};
99
100/*
101 * Use the high bit to mark if we used swiotlb for one or more ranges.
102 */
103#define DMA_IOVA_USE_SWIOTLB (1ULL << 63)
104
105static inline size_t dma_iova_size(struct dma_iova_state *state)
106{
107 /* Casting is needed for 32-bits systems */
108 return (size_t)(state->__size & ~DMA_IOVA_USE_SWIOTLB);
109}
110
111#ifdef CONFIG_DMA_API_DEBUG
112void debug_dma_mapping_error(struct device *dev, dma_addr_t dma_addr);
113void debug_dma_map_single(struct device *dev, const void *addr,
114 unsigned long len);
115#else
116static inline void debug_dma_mapping_error(struct device *dev,
117 dma_addr_t dma_addr)
118{
119}
120static inline void debug_dma_map_single(struct device *dev, const void *addr,
121 unsigned long len)
122{
123}
124#endif /* CONFIG_DMA_API_DEBUG */
125
126#ifdef CONFIG_HAS_DMA
127static inline int dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
128{
129 debug_dma_mapping_error(dev, dma_addr);
130
131 if (unlikely(dma_addr == DMA_MAPPING_ERROR))
132 return -ENOMEM;
133 return 0;
134}
135
136dma_addr_t dma_map_page_attrs(struct device *dev, struct page *page,
137 size_t offset, size_t size, enum dma_data_direction dir,
138 unsigned long attrs);
139void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr, size_t size,
140 enum dma_data_direction dir, unsigned long attrs);
141dma_addr_t dma_map_phys(struct device *dev, phys_addr_t phys, size_t size,
142 enum dma_data_direction dir, unsigned long attrs);
143void dma_unmap_phys(struct device *dev, dma_addr_t addr, size_t size,
144 enum dma_data_direction dir, unsigned long attrs);
145unsigned int dma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
146 int nents, enum dma_data_direction dir, unsigned long attrs);
147void dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg,
148 int nents, enum dma_data_direction dir,
149 unsigned long attrs);
150int dma_map_sgtable(struct device *dev, struct sg_table *sgt,
151 enum dma_data_direction dir, unsigned long attrs);
152dma_addr_t dma_map_resource(struct device *dev, phys_addr_t phys_addr,
153 size_t size, enum dma_data_direction dir, unsigned long attrs);
154void dma_unmap_resource(struct device *dev, dma_addr_t addr, size_t size,
155 enum dma_data_direction dir, unsigned long attrs);
156void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
157 gfp_t flag, unsigned long attrs);
158void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
159 dma_addr_t dma_handle, unsigned long attrs);
160void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
161 gfp_t gfp, unsigned long attrs);
162void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
163 dma_addr_t dma_handle);
164int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt,
165 void *cpu_addr, dma_addr_t dma_addr, size_t size,
166 unsigned long attrs);
167int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
168 void *cpu_addr, dma_addr_t dma_addr, size_t size,
169 unsigned long attrs);
170bool dma_can_mmap(struct device *dev);
171bool dma_pci_p2pdma_supported(struct device *dev);
172int dma_set_mask(struct device *dev, u64 mask);
173int dma_set_coherent_mask(struct device *dev, u64 mask);
174u64 dma_get_required_mask(struct device *dev);
175bool dma_addressing_limited(struct device *dev);
176size_t dma_max_mapping_size(struct device *dev);
177size_t dma_opt_mapping_size(struct device *dev);
178unsigned long dma_get_merge_boundary(struct device *dev);
179struct sg_table *dma_alloc_noncontiguous(struct device *dev, size_t size,
180 enum dma_data_direction dir, gfp_t gfp, unsigned long attrs);
181void dma_free_noncontiguous(struct device *dev, size_t size,
182 struct sg_table *sgt, enum dma_data_direction dir);
183void *dma_vmap_noncontiguous(struct device *dev, size_t size,
184 struct sg_table *sgt);
185void dma_vunmap_noncontiguous(struct device *dev, void *vaddr);
186int dma_mmap_noncontiguous(struct device *dev, struct vm_area_struct *vma,
187 size_t size, struct sg_table *sgt);
188#else /* CONFIG_HAS_DMA */
189static inline dma_addr_t dma_map_page_attrs(struct device *dev,
190 struct page *page, size_t offset, size_t size,
191 enum dma_data_direction dir, unsigned long attrs)
192{
193 return DMA_MAPPING_ERROR;
194}
195static inline void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr,
196 size_t size, enum dma_data_direction dir, unsigned long attrs)
197{
198}
199static inline dma_addr_t dma_map_phys(struct device *dev, phys_addr_t phys,
200 size_t size, enum dma_data_direction dir, unsigned long attrs)
201{
202 return DMA_MAPPING_ERROR;
203}
204static inline void dma_unmap_phys(struct device *dev, dma_addr_t addr,
205 size_t size, enum dma_data_direction dir, unsigned long attrs)
206{
207}
208static inline unsigned int dma_map_sg_attrs(struct device *dev,
209 struct scatterlist *sg, int nents, enum dma_data_direction dir,
210 unsigned long attrs)
211{
212 return 0;
213}
214static inline void dma_unmap_sg_attrs(struct device *dev,
215 struct scatterlist *sg, int nents, enum dma_data_direction dir,
216 unsigned long attrs)
217{
218}
219static inline int dma_map_sgtable(struct device *dev, struct sg_table *sgt,
220 enum dma_data_direction dir, unsigned long attrs)
221{
222 return -EOPNOTSUPP;
223}
224static inline dma_addr_t dma_map_resource(struct device *dev,
225 phys_addr_t phys_addr, size_t size, enum dma_data_direction dir,
226 unsigned long attrs)
227{
228 return DMA_MAPPING_ERROR;
229}
230static inline void dma_unmap_resource(struct device *dev, dma_addr_t addr,
231 size_t size, enum dma_data_direction dir, unsigned long attrs)
232{
233}
234static inline int dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
235{
236 return -ENOMEM;
237}
238static inline void *dma_alloc_attrs(struct device *dev, size_t size,
239 dma_addr_t *dma_handle, gfp_t flag, unsigned long attrs)
240{
241 return NULL;
242}
243static void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
244 dma_addr_t dma_handle, unsigned long attrs)
245{
246}
247static inline void *dmam_alloc_attrs(struct device *dev, size_t size,
248 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
249{
250 return NULL;
251}
252static inline void dmam_free_coherent(struct device *dev, size_t size,
253 void *vaddr, dma_addr_t dma_handle)
254{
255}
256static inline int dma_get_sgtable_attrs(struct device *dev,
257 struct sg_table *sgt, void *cpu_addr, dma_addr_t dma_addr,
258 size_t size, unsigned long attrs)
259{
260 return -ENXIO;
261}
262static inline int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
263 void *cpu_addr, dma_addr_t dma_addr, size_t size,
264 unsigned long attrs)
265{
266 return -ENXIO;
267}
268static inline bool dma_can_mmap(struct device *dev)
269{
270 return false;
271}
272static inline bool dma_pci_p2pdma_supported(struct device *dev)
273{
274 return false;
275}
276static inline int dma_set_mask(struct device *dev, u64 mask)
277{
278 return -EIO;
279}
280static inline int dma_set_coherent_mask(struct device *dev, u64 mask)
281{
282 return -EIO;
283}
284static inline u64 dma_get_required_mask(struct device *dev)
285{
286 return 0;
287}
288static inline bool dma_addressing_limited(struct device *dev)
289{
290 return false;
291}
292static inline size_t dma_max_mapping_size(struct device *dev)
293{
294 return 0;
295}
296static inline size_t dma_opt_mapping_size(struct device *dev)
297{
298 return 0;
299}
300static inline unsigned long dma_get_merge_boundary(struct device *dev)
301{
302 return 0;
303}
304static inline struct sg_table *dma_alloc_noncontiguous(struct device *dev,
305 size_t size, enum dma_data_direction dir, gfp_t gfp,
306 unsigned long attrs)
307{
308 return NULL;
309}
310static inline void dma_free_noncontiguous(struct device *dev, size_t size,
311 struct sg_table *sgt, enum dma_data_direction dir)
312{
313}
314static inline void *dma_vmap_noncontiguous(struct device *dev, size_t size,
315 struct sg_table *sgt)
316{
317 return NULL;
318}
319static inline void dma_vunmap_noncontiguous(struct device *dev, void *vaddr)
320{
321}
322static inline int dma_mmap_noncontiguous(struct device *dev,
323 struct vm_area_struct *vma, size_t size, struct sg_table *sgt)
324{
325 return -EINVAL;
326}
327#endif /* CONFIG_HAS_DMA */
328
329#ifdef CONFIG_IOMMU_DMA
330/**
331 * dma_use_iova - check if the IOVA API is used for this state
332 * @state: IOVA state
333 *
334 * Return %true if the DMA transfers uses the dma_iova_*() calls or %false if
335 * they can't be used.
336 */
337static inline bool dma_use_iova(struct dma_iova_state *state)
338{
339 return state->__size != 0;
340}
341
342bool dma_iova_try_alloc(struct device *dev, struct dma_iova_state *state,
343 phys_addr_t phys, size_t size);
344void dma_iova_free(struct device *dev, struct dma_iova_state *state);
345void dma_iova_destroy(struct device *dev, struct dma_iova_state *state,
346 size_t mapped_len, enum dma_data_direction dir,
347 unsigned long attrs);
348int dma_iova_sync(struct device *dev, struct dma_iova_state *state,
349 size_t offset, size_t size);
350int dma_iova_link(struct device *dev, struct dma_iova_state *state,
351 phys_addr_t phys, size_t offset, size_t size,
352 enum dma_data_direction dir, unsigned long attrs);
353void dma_iova_unlink(struct device *dev, struct dma_iova_state *state,
354 size_t offset, size_t size, enum dma_data_direction dir,
355 unsigned long attrs);
356#else /* CONFIG_IOMMU_DMA */
357static inline bool dma_use_iova(struct dma_iova_state *state)
358{
359 return false;
360}
361static inline bool dma_iova_try_alloc(struct device *dev,
362 struct dma_iova_state *state, phys_addr_t phys, size_t size)
363{
364 return false;
365}
366static inline void dma_iova_free(struct device *dev,
367 struct dma_iova_state *state)
368{
369}
370static inline void dma_iova_destroy(struct device *dev,
371 struct dma_iova_state *state, size_t mapped_len,
372 enum dma_data_direction dir, unsigned long attrs)
373{
374}
375static inline int dma_iova_sync(struct device *dev,
376 struct dma_iova_state *state, size_t offset, size_t size)
377{
378 return -EOPNOTSUPP;
379}
380static inline int dma_iova_link(struct device *dev,
381 struct dma_iova_state *state, phys_addr_t phys, size_t offset,
382 size_t size, enum dma_data_direction dir, unsigned long attrs)
383{
384 return -EOPNOTSUPP;
385}
386static inline void dma_iova_unlink(struct device *dev,
387 struct dma_iova_state *state, size_t offset, size_t size,
388 enum dma_data_direction dir, unsigned long attrs)
389{
390}
391#endif /* CONFIG_IOMMU_DMA */
392
393#if defined(CONFIG_HAS_DMA) && defined(CONFIG_DMA_NEED_SYNC)
394void __dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
395 enum dma_data_direction dir);
396void __dma_sync_single_for_device(struct device *dev, dma_addr_t addr,
397 size_t size, enum dma_data_direction dir);
398void __dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
399 int nelems, enum dma_data_direction dir);
400void __dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
401 int nelems, enum dma_data_direction dir);
402bool __dma_need_sync(struct device *dev, dma_addr_t dma_addr);
403
404static inline bool dma_dev_need_sync(const struct device *dev)
405{
406 /* Always call DMA sync operations when debugging is enabled */
407 return !dev->dma_skip_sync || IS_ENABLED(CONFIG_DMA_API_DEBUG);
408}
409
410static inline void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr,
411 size_t size, enum dma_data_direction dir)
412{
413 if (dma_dev_need_sync(dev))
414 __dma_sync_single_for_cpu(dev, addr, size, dir);
415}
416
417static inline void dma_sync_single_for_device(struct device *dev,
418 dma_addr_t addr, size_t size, enum dma_data_direction dir)
419{
420 if (dma_dev_need_sync(dev))
421 __dma_sync_single_for_device(dev, addr, size, dir);
422}
423
424static inline void dma_sync_sg_for_cpu(struct device *dev,
425 struct scatterlist *sg, int nelems, enum dma_data_direction dir)
426{
427 if (dma_dev_need_sync(dev))
428 __dma_sync_sg_for_cpu(dev, sg, nelems, dir);
429}
430
431static inline void dma_sync_sg_for_device(struct device *dev,
432 struct scatterlist *sg, int nelems, enum dma_data_direction dir)
433{
434 if (dma_dev_need_sync(dev))
435 __dma_sync_sg_for_device(dev, sg, nelems, dir);
436}
437
438static inline bool dma_need_sync(struct device *dev, dma_addr_t dma_addr)
439{
440 return dma_dev_need_sync(dev) ? __dma_need_sync(dev, dma_addr) : false;
441}
442bool dma_need_unmap(struct device *dev);
443#else /* !CONFIG_HAS_DMA || !CONFIG_DMA_NEED_SYNC */
444static inline bool dma_dev_need_sync(const struct device *dev)
445{
446 return false;
447}
448static inline void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr,
449 size_t size, enum dma_data_direction dir)
450{
451}
452static inline void dma_sync_single_for_device(struct device *dev,
453 dma_addr_t addr, size_t size, enum dma_data_direction dir)
454{
455}
456static inline void dma_sync_sg_for_cpu(struct device *dev,
457 struct scatterlist *sg, int nelems, enum dma_data_direction dir)
458{
459}
460static inline void dma_sync_sg_for_device(struct device *dev,
461 struct scatterlist *sg, int nelems, enum dma_data_direction dir)
462{
463}
464static inline bool dma_need_sync(struct device *dev, dma_addr_t dma_addr)
465{
466 return false;
467}
468static inline bool dma_need_unmap(struct device *dev)
469{
470 return false;
471}
472#endif /* !CONFIG_HAS_DMA || !CONFIG_DMA_NEED_SYNC */
473
474struct page *dma_alloc_pages(struct device *dev, size_t size,
475 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp);
476void dma_free_pages(struct device *dev, size_t size, struct page *page,
477 dma_addr_t dma_handle, enum dma_data_direction dir);
478int dma_mmap_pages(struct device *dev, struct vm_area_struct *vma,
479 size_t size, struct page *page);
480
481static inline void *dma_alloc_noncoherent(struct device *dev, size_t size,
482 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
483{
484 struct page *page = dma_alloc_pages(dev, size, dma_handle, dir, gfp);
485 return page ? page_address(page) : NULL;
486}
487
488static inline void dma_free_noncoherent(struct device *dev, size_t size,
489 void *vaddr, dma_addr_t dma_handle, enum dma_data_direction dir)
490{
491 dma_free_pages(dev, size, virt_to_page(vaddr), dma_handle, dir);
492}
493
494static inline dma_addr_t dma_map_single_attrs(struct device *dev, void *ptr,
495 size_t size, enum dma_data_direction dir, unsigned long attrs)
496{
497 /* DMA must never operate on areas that might be remapped. */
498 if (dev_WARN_ONCE(dev, is_vmalloc_addr(ptr),
499 "rejecting DMA map of vmalloc memory\n"))
500 return DMA_MAPPING_ERROR;
501 debug_dma_map_single(dev, addr: ptr, len: size);
502 return dma_map_page_attrs(dev, virt_to_page(ptr), offset_in_page(ptr),
503 size, dir, attrs);
504}
505
506static inline void dma_unmap_single_attrs(struct device *dev, dma_addr_t addr,
507 size_t size, enum dma_data_direction dir, unsigned long attrs)
508{
509 return dma_unmap_page_attrs(dev, addr, size, dir, attrs);
510}
511
512static inline void dma_sync_single_range_for_cpu(struct device *dev,
513 dma_addr_t addr, unsigned long offset, size_t size,
514 enum dma_data_direction dir)
515{
516 return dma_sync_single_for_cpu(dev, addr: addr + offset, size, dir);
517}
518
519static inline void dma_sync_single_range_for_device(struct device *dev,
520 dma_addr_t addr, unsigned long offset, size_t size,
521 enum dma_data_direction dir)
522{
523 return dma_sync_single_for_device(dev, addr: addr + offset, size, dir);
524}
525
526/**
527 * dma_unmap_sgtable - Unmap the given buffer for DMA
528 * @dev: The device for which to perform the DMA operation
529 * @sgt: The sg_table object describing the buffer
530 * @dir: DMA direction
531 * @attrs: Optional DMA attributes for the unmap operation
532 *
533 * Unmaps a buffer described by a scatterlist stored in the given sg_table
534 * object for the @dir DMA operation by the @dev device. After this function
535 * the ownership of the buffer is transferred back to the CPU domain.
536 */
537static inline void dma_unmap_sgtable(struct device *dev, struct sg_table *sgt,
538 enum dma_data_direction dir, unsigned long attrs)
539{
540 dma_unmap_sg_attrs(dev, sg: sgt->sgl, nents: sgt->orig_nents, dir, attrs);
541}
542
543/**
544 * dma_sync_sgtable_for_cpu - Synchronize the given buffer for CPU access
545 * @dev: The device for which to perform the DMA operation
546 * @sgt: The sg_table object describing the buffer
547 * @dir: DMA direction
548 *
549 * Performs the needed cache synchronization and moves the ownership of the
550 * buffer back to the CPU domain, so it is safe to perform any access to it
551 * by the CPU. Before doing any further DMA operations, one has to transfer
552 * the ownership of the buffer back to the DMA domain by calling the
553 * dma_sync_sgtable_for_device().
554 */
555static inline void dma_sync_sgtable_for_cpu(struct device *dev,
556 struct sg_table *sgt, enum dma_data_direction dir)
557{
558 dma_sync_sg_for_cpu(dev, sg: sgt->sgl, nelems: sgt->orig_nents, dir);
559}
560
561/**
562 * dma_sync_sgtable_for_device - Synchronize the given buffer for DMA
563 * @dev: The device for which to perform the DMA operation
564 * @sgt: The sg_table object describing the buffer
565 * @dir: DMA direction
566 *
567 * Performs the needed cache synchronization and moves the ownership of the
568 * buffer back to the DMA domain, so it is safe to perform the DMA operation.
569 * Once finished, one has to call dma_sync_sgtable_for_cpu() or
570 * dma_unmap_sgtable().
571 */
572static inline void dma_sync_sgtable_for_device(struct device *dev,
573 struct sg_table *sgt, enum dma_data_direction dir)
574{
575 dma_sync_sg_for_device(dev, sg: sgt->sgl, nelems: sgt->orig_nents, dir);
576}
577
578#define dma_map_single(d, a, s, r) dma_map_single_attrs(d, a, s, r, 0)
579#define dma_unmap_single(d, a, s, r) dma_unmap_single_attrs(d, a, s, r, 0)
580#define dma_map_sg(d, s, n, r) dma_map_sg_attrs(d, s, n, r, 0)
581#define dma_unmap_sg(d, s, n, r) dma_unmap_sg_attrs(d, s, n, r, 0)
582#define dma_map_page(d, p, o, s, r) dma_map_page_attrs(d, p, o, s, r, 0)
583#define dma_unmap_page(d, a, s, r) dma_unmap_page_attrs(d, a, s, r, 0)
584#define dma_get_sgtable(d, t, v, h, s) dma_get_sgtable_attrs(d, t, v, h, s, 0)
585#define dma_mmap_coherent(d, v, c, h, s) dma_mmap_attrs(d, v, c, h, s, 0)
586
587bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size);
588
589static inline void *dma_alloc_coherent(struct device *dev, size_t size,
590 dma_addr_t *dma_handle, gfp_t gfp)
591{
592 return dma_alloc_attrs(dev, size, dma_handle, flag: gfp,
593 attrs: (gfp & __GFP_NOWARN) ? DMA_ATTR_NO_WARN : 0);
594}
595
596static inline void dma_free_coherent(struct device *dev, size_t size,
597 void *cpu_addr, dma_addr_t dma_handle)
598{
599 return dma_free_attrs(dev, size, cpu_addr, dma_handle, attrs: 0);
600}
601
602
603static inline u64 dma_get_mask(struct device *dev)
604{
605 if (dev->dma_mask && *dev->dma_mask)
606 return *dev->dma_mask;
607 return DMA_BIT_MASK(32);
608}
609
610/*
611 * Set both the DMA mask and the coherent DMA mask to the same thing.
612 * Note that we don't check the return value from dma_set_coherent_mask()
613 * as the DMA API guarantees that the coherent DMA mask can be set to
614 * the same or smaller than the streaming DMA mask.
615 */
616static inline int dma_set_mask_and_coherent(struct device *dev, u64 mask)
617{
618 int rc = dma_set_mask(dev, mask);
619 if (rc == 0)
620 dma_set_coherent_mask(dev, mask);
621 return rc;
622}
623
624/*
625 * Similar to the above, except it deals with the case where the device
626 * does not have dev->dma_mask appropriately setup.
627 */
628static inline int dma_coerce_mask_and_coherent(struct device *dev, u64 mask)
629{
630 dev->dma_mask = &dev->coherent_dma_mask;
631 return dma_set_mask_and_coherent(dev, mask);
632}
633
634static inline unsigned int dma_get_max_seg_size(struct device *dev)
635{
636 if (dev->dma_parms && dev->dma_parms->max_segment_size)
637 return dev->dma_parms->max_segment_size;
638 return SZ_64K;
639}
640
641static inline void dma_set_max_seg_size(struct device *dev, unsigned int size)
642{
643 if (WARN_ON_ONCE(!dev->dma_parms))
644 return;
645 dev->dma_parms->max_segment_size = size;
646}
647
648static inline unsigned long dma_get_seg_boundary(struct device *dev)
649{
650 if (dev->dma_parms && dev->dma_parms->segment_boundary_mask)
651 return dev->dma_parms->segment_boundary_mask;
652 return ULONG_MAX;
653}
654
655/**
656 * dma_get_seg_boundary_nr_pages - return the segment boundary in "page" units
657 * @dev: device to guery the boundary for
658 * @page_shift: ilog() of the IOMMU page size
659 *
660 * Return the segment boundary in IOMMU page units (which may be different from
661 * the CPU page size) for the passed in device.
662 *
663 * If @dev is NULL a boundary of U32_MAX is assumed, this case is just for
664 * non-DMA API callers.
665 */
666static inline unsigned long dma_get_seg_boundary_nr_pages(struct device *dev,
667 unsigned int page_shift)
668{
669 if (!dev)
670 return (U32_MAX >> page_shift) + 1;
671 return (dma_get_seg_boundary(dev) >> page_shift) + 1;
672}
673
674static inline void dma_set_seg_boundary(struct device *dev, unsigned long mask)
675{
676 if (WARN_ON_ONCE(!dev->dma_parms))
677 return;
678 dev->dma_parms->segment_boundary_mask = mask;
679}
680
681static inline unsigned int dma_get_min_align_mask(struct device *dev)
682{
683 if (dev->dma_parms)
684 return dev->dma_parms->min_align_mask;
685 return 0;
686}
687
688static inline void dma_set_min_align_mask(struct device *dev,
689 unsigned int min_align_mask)
690{
691 if (WARN_ON_ONCE(!dev->dma_parms))
692 return;
693 dev->dma_parms->min_align_mask = min_align_mask;
694}
695
696#ifndef dma_get_cache_alignment
697static inline int dma_get_cache_alignment(void)
698{
699#ifdef ARCH_HAS_DMA_MINALIGN
700 return ARCH_DMA_MINALIGN;
701#endif
702 return 1;
703}
704#endif
705
706static inline void *dmam_alloc_coherent(struct device *dev, size_t size,
707 dma_addr_t *dma_handle, gfp_t gfp)
708{
709 return dmam_alloc_attrs(dev, size, dma_handle, gfp,
710 attrs: (gfp & __GFP_NOWARN) ? DMA_ATTR_NO_WARN : 0);
711}
712
713static inline void *dma_alloc_wc(struct device *dev, size_t size,
714 dma_addr_t *dma_addr, gfp_t gfp)
715{
716 unsigned long attrs = DMA_ATTR_WRITE_COMBINE;
717
718 if (gfp & __GFP_NOWARN)
719 attrs |= DMA_ATTR_NO_WARN;
720
721 return dma_alloc_attrs(dev, size, dma_handle: dma_addr, flag: gfp, attrs);
722}
723
724static inline void dma_free_wc(struct device *dev, size_t size,
725 void *cpu_addr, dma_addr_t dma_addr)
726{
727 return dma_free_attrs(dev, size, cpu_addr, dma_handle: dma_addr,
728 DMA_ATTR_WRITE_COMBINE);
729}
730
731static inline int dma_mmap_wc(struct device *dev,
732 struct vm_area_struct *vma,
733 void *cpu_addr, dma_addr_t dma_addr,
734 size_t size)
735{
736 return dma_mmap_attrs(dev, vma, cpu_addr, dma_addr, size,
737 DMA_ATTR_WRITE_COMBINE);
738}
739
740#ifdef CONFIG_NEED_DMA_MAP_STATE
741#define DEFINE_DMA_UNMAP_ADDR(ADDR_NAME) dma_addr_t ADDR_NAME
742#define DEFINE_DMA_UNMAP_LEN(LEN_NAME) __u32 LEN_NAME
743#define dma_unmap_addr(PTR, ADDR_NAME) ((PTR)->ADDR_NAME)
744#define dma_unmap_addr_set(PTR, ADDR_NAME, VAL) (((PTR)->ADDR_NAME) = (VAL))
745#define dma_unmap_len(PTR, LEN_NAME) ((PTR)->LEN_NAME)
746#define dma_unmap_len_set(PTR, LEN_NAME, VAL) (((PTR)->LEN_NAME) = (VAL))
747#else
748#define DEFINE_DMA_UNMAP_ADDR(ADDR_NAME)
749#define DEFINE_DMA_UNMAP_LEN(LEN_NAME)
750#define dma_unmap_addr(PTR, ADDR_NAME) \
751 ({ typeof(PTR) __p __maybe_unused = PTR; 0; })
752#define dma_unmap_addr_set(PTR, ADDR_NAME, VAL) \
753 do { typeof(PTR) __p __maybe_unused = PTR; } while (0)
754#define dma_unmap_len(PTR, LEN_NAME) \
755 ({ typeof(PTR) __p __maybe_unused = PTR; 0; })
756#define dma_unmap_len_set(PTR, LEN_NAME, VAL) \
757 do { typeof(PTR) __p __maybe_unused = PTR; } while (0)
758#endif
759
760#endif /* _LINUX_DMA_MAPPING_H */
761