| 1 | /* SPDX-License-Identifier: GPL-2.0 */ | 
|---|
| 2 | #ifndef _LINUX_MATH_H | 
|---|
| 3 | #define _LINUX_MATH_H | 
|---|
| 4 |  | 
|---|
| 5 | #include <linux/types.h> | 
|---|
| 6 | #include <asm/div64.h> | 
|---|
| 7 | #include <uapi/linux/kernel.h> | 
|---|
| 8 |  | 
|---|
| 9 | /* | 
|---|
| 10 | * This looks more complex than it should be. But we need to | 
|---|
| 11 | * get the type for the ~ right in round_down (it needs to be | 
|---|
| 12 | * as wide as the result!), and we want to evaluate the macro | 
|---|
| 13 | * arguments just once each. | 
|---|
| 14 | */ | 
|---|
| 15 | #define __round_mask(x, y) ((__typeof__(x))((y)-1)) | 
|---|
| 16 |  | 
|---|
| 17 | /** | 
|---|
| 18 | * round_up - round up to next specified power of 2 | 
|---|
| 19 | * @x: the value to round | 
|---|
| 20 | * @y: multiple to round up to (must be a power of 2) | 
|---|
| 21 | * | 
|---|
| 22 | * Rounds @x up to next multiple of @y (which must be a power of 2). | 
|---|
| 23 | * To perform arbitrary rounding up, use roundup() below. | 
|---|
| 24 | */ | 
|---|
| 25 | #define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1) | 
|---|
| 26 |  | 
|---|
| 27 | /** | 
|---|
| 28 | * round_down - round down to next specified power of 2 | 
|---|
| 29 | * @x: the value to round | 
|---|
| 30 | * @y: multiple to round down to (must be a power of 2) | 
|---|
| 31 | * | 
|---|
| 32 | * Rounds @x down to next multiple of @y (which must be a power of 2). | 
|---|
| 33 | * To perform arbitrary rounding down, use rounddown() below. | 
|---|
| 34 | */ | 
|---|
| 35 | #define round_down(x, y) ((x) & ~__round_mask(x, y)) | 
|---|
| 36 |  | 
|---|
| 37 | /** | 
|---|
| 38 | * DIV_ROUND_UP_POW2 - divide and round up | 
|---|
| 39 | * @n: numerator | 
|---|
| 40 | * @d: denominator (must be a power of 2) | 
|---|
| 41 | * | 
|---|
| 42 | * Divides @n by @d and rounds up to next multiple of @d (which must be a power | 
|---|
| 43 | * of 2). Avoids integer overflows that may occur with __KERNEL_DIV_ROUND_UP(). | 
|---|
| 44 | * Performance is roughly equivalent to __KERNEL_DIV_ROUND_UP(). | 
|---|
| 45 | */ | 
|---|
| 46 | #define DIV_ROUND_UP_POW2(n, d) \ | 
|---|
| 47 | ((n) / (d) + !!((n) & ((d) - 1))) | 
|---|
| 48 |  | 
|---|
| 49 | #define DIV_ROUND_UP __KERNEL_DIV_ROUND_UP | 
|---|
| 50 |  | 
|---|
| 51 | #define DIV_ROUND_DOWN_ULL(ll, d) \ | 
|---|
| 52 | ({ unsigned long long _tmp = (ll); do_div(_tmp, d); _tmp; }) | 
|---|
| 53 |  | 
|---|
| 54 | #define DIV_ROUND_UP_ULL(ll, d) \ | 
|---|
| 55 | DIV_ROUND_DOWN_ULL((unsigned long long)(ll) + (d) - 1, (d)) | 
|---|
| 56 |  | 
|---|
| 57 | #if BITS_PER_LONG == 32 | 
|---|
| 58 | # define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP_ULL(ll, d) | 
|---|
| 59 | #else | 
|---|
| 60 | # define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP(ll,d) | 
|---|
| 61 | #endif | 
|---|
| 62 |  | 
|---|
| 63 | /** | 
|---|
| 64 | * roundup - round up to the next specified multiple | 
|---|
| 65 | * @x: the value to up | 
|---|
| 66 | * @y: multiple to round up to | 
|---|
| 67 | * | 
|---|
| 68 | * Rounds @x up to next multiple of @y. If @y will always be a power | 
|---|
| 69 | * of 2, consider using the faster round_up(). | 
|---|
| 70 | */ | 
|---|
| 71 | #define roundup(x, y) (					\ | 
|---|
| 72 | {							\ | 
|---|
| 73 | typeof(y) __y = y;				\ | 
|---|
| 74 | (((x) + (__y - 1)) / __y) * __y;		\ | 
|---|
| 75 | }							\ | 
|---|
| 76 | ) | 
|---|
| 77 | /** | 
|---|
| 78 | * rounddown - round down to next specified multiple | 
|---|
| 79 | * @x: the value to round | 
|---|
| 80 | * @y: multiple to round down to | 
|---|
| 81 | * | 
|---|
| 82 | * Rounds @x down to next multiple of @y. If @y will always be a power | 
|---|
| 83 | * of 2, consider using the faster round_down(). | 
|---|
| 84 | */ | 
|---|
| 85 | #define rounddown(x, y) (				\ | 
|---|
| 86 | {							\ | 
|---|
| 87 | typeof(x) __x = (x);				\ | 
|---|
| 88 | __x - (__x % (y));				\ | 
|---|
| 89 | }							\ | 
|---|
| 90 | ) | 
|---|
| 91 |  | 
|---|
| 92 | /* | 
|---|
| 93 | * Divide positive or negative dividend by positive or negative divisor | 
|---|
| 94 | * and round to closest integer. Result is undefined for negative | 
|---|
| 95 | * divisors if the dividend variable type is unsigned and for negative | 
|---|
| 96 | * dividends if the divisor variable type is unsigned. | 
|---|
| 97 | */ | 
|---|
| 98 | #define DIV_ROUND_CLOSEST(x, divisor)(			\ | 
|---|
| 99 | {							\ | 
|---|
| 100 | typeof(x) __x = x;				\ | 
|---|
| 101 | typeof(divisor) __d = divisor;			\ | 
|---|
| 102 | (((typeof(x))-1) > 0 ||				\ | 
|---|
| 103 | ((typeof(divisor))-1) > 0 ||			\ | 
|---|
| 104 | (((__x) > 0) == ((__d) > 0))) ?		\ | 
|---|
| 105 | (((__x) + ((__d) / 2)) / (__d)) :	\ | 
|---|
| 106 | (((__x) - ((__d) / 2)) / (__d));	\ | 
|---|
| 107 | }							\ | 
|---|
| 108 | ) | 
|---|
| 109 | /* | 
|---|
| 110 | * Same as above but for u64 dividends. divisor must be a 32-bit | 
|---|
| 111 | * number. | 
|---|
| 112 | */ | 
|---|
| 113 | #define DIV_ROUND_CLOSEST_ULL(x, divisor)(		\ | 
|---|
| 114 | {							\ | 
|---|
| 115 | typeof(divisor) __d = divisor;			\ | 
|---|
| 116 | unsigned long long _tmp = (x) + (__d) / 2;	\ | 
|---|
| 117 | do_div(_tmp, __d);				\ | 
|---|
| 118 | _tmp;						\ | 
|---|
| 119 | }							\ | 
|---|
| 120 | ) | 
|---|
| 121 |  | 
|---|
| 122 | #define __STRUCT_FRACT(type)				\ | 
|---|
| 123 | struct type##_fract {					\ | 
|---|
| 124 | __##type numerator;				\ | 
|---|
| 125 | __##type denominator;				\ | 
|---|
| 126 | }; | 
|---|
| 127 | __STRUCT_FRACT(s8) | 
|---|
| 128 | __STRUCT_FRACT(u8) | 
|---|
| 129 | __STRUCT_FRACT(s16) | 
|---|
| 130 | __STRUCT_FRACT(u16) | 
|---|
| 131 | __STRUCT_FRACT(s32) | 
|---|
| 132 | __STRUCT_FRACT(u32) | 
|---|
| 133 | #undef __STRUCT_FRACT | 
|---|
| 134 |  | 
|---|
| 135 | /* Calculate "x * n / d" without unnecessary overflow or loss of precision. */ | 
|---|
| 136 | #define mult_frac(x, n, d)	\ | 
|---|
| 137 | ({				\ | 
|---|
| 138 | typeof(x) x_ = (x);	\ | 
|---|
| 139 | typeof(n) n_ = (n);	\ | 
|---|
| 140 | typeof(d) d_ = (d);	\ | 
|---|
| 141 | \ | 
|---|
| 142 | typeof(x_) q = x_ / d_;	\ | 
|---|
| 143 | typeof(x_) r = x_ % d_;	\ | 
|---|
| 144 | q * n_ + r * n_ / d_;	\ | 
|---|
| 145 | }) | 
|---|
| 146 |  | 
|---|
| 147 | #define sector_div(a, b) do_div(a, b) | 
|---|
| 148 |  | 
|---|
| 149 | /** | 
|---|
| 150 | * abs - return absolute value of an argument | 
|---|
| 151 | * @x: the value.  If it is unsigned type, it is converted to signed type first. | 
|---|
| 152 | *     char is treated as if it was signed (regardless of whether it really is) | 
|---|
| 153 | *     but the macro's return type is preserved as char. | 
|---|
| 154 | * | 
|---|
| 155 | * Return: an absolute value of x. | 
|---|
| 156 | */ | 
|---|
| 157 | #define abs(x)	__abs_choose_expr(x, long long,				\ | 
|---|
| 158 | __abs_choose_expr(x, long,				\ | 
|---|
| 159 | __abs_choose_expr(x, int,				\ | 
|---|
| 160 | __abs_choose_expr(x, short,				\ | 
|---|
| 161 | __abs_choose_expr(x, char,				\ | 
|---|
| 162 | __builtin_choose_expr(					\ | 
|---|
| 163 | __builtin_types_compatible_p(typeof(x), char),	\ | 
|---|
| 164 | (char)({ signed char __x = (x); __x<0?-__x:__x; }), \ | 
|---|
| 165 | ((void)0))))))) | 
|---|
| 166 |  | 
|---|
| 167 | #define __abs_choose_expr(x, type, other) __builtin_choose_expr(	\ | 
|---|
| 168 | __builtin_types_compatible_p(typeof(x),   signed type) ||	\ | 
|---|
| 169 | __builtin_types_compatible_p(typeof(x), unsigned type),		\ | 
|---|
| 170 | ({ signed type __x = (x); __x < 0 ? -__x : __x; }), other) | 
|---|
| 171 |  | 
|---|
| 172 | /** | 
|---|
| 173 | * abs_diff - return absolute value of the difference between the arguments | 
|---|
| 174 | * @a: the first argument | 
|---|
| 175 | * @b: the second argument | 
|---|
| 176 | * | 
|---|
| 177 | * @a and @b have to be of the same type. With this restriction we compare | 
|---|
| 178 | * signed to signed and unsigned to unsigned. The result is the subtraction | 
|---|
| 179 | * the smaller of the two from the bigger, hence result is always a positive | 
|---|
| 180 | * value. | 
|---|
| 181 | * | 
|---|
| 182 | * Return: an absolute value of the difference between the @a and @b. | 
|---|
| 183 | */ | 
|---|
| 184 | #define abs_diff(a, b) ({			\ | 
|---|
| 185 | typeof(a) __a = (a);			\ | 
|---|
| 186 | typeof(b) __b = (b);			\ | 
|---|
| 187 | (void)(&__a == &__b);			\ | 
|---|
| 188 | __a > __b ? (__a - __b) : (__b - __a);	\ | 
|---|
| 189 | }) | 
|---|
| 190 |  | 
|---|
| 191 | /** | 
|---|
| 192 | * reciprocal_scale - "scale" a value into range [0, ep_ro) | 
|---|
| 193 | * @val: value | 
|---|
| 194 | * @ep_ro: right open interval endpoint | 
|---|
| 195 | * | 
|---|
| 196 | * Perform a "reciprocal multiplication" in order to "scale" a value into | 
|---|
| 197 | * range [0, @ep_ro), where the upper interval endpoint is right-open. | 
|---|
| 198 | * This is useful, e.g. for accessing a index of an array containing | 
|---|
| 199 | * @ep_ro elements, for example. Think of it as sort of modulus, only that | 
|---|
| 200 | * the result isn't that of modulo. ;) Note that if initial input is a | 
|---|
| 201 | * small value, then result will return 0. | 
|---|
| 202 | * | 
|---|
| 203 | * Return: a result based on @val in interval [0, @ep_ro). | 
|---|
| 204 | */ | 
|---|
| 205 | static inline u32 reciprocal_scale(u32 val, u32 ep_ro) | 
|---|
| 206 | { | 
|---|
| 207 | return (u32)(((u64) val * ep_ro) >> 32); | 
|---|
| 208 | } | 
|---|
| 209 |  | 
|---|
| 210 | u64 int_pow(u64 base, unsigned int exp); | 
|---|
| 211 | unsigned long int_sqrt(unsigned long); | 
|---|
| 212 |  | 
|---|
| 213 | #if BITS_PER_LONG < 64 | 
|---|
| 214 | u32 int_sqrt64(u64 x); | 
|---|
| 215 | #else | 
|---|
| 216 | static inline u32 int_sqrt64(u64 x) | 
|---|
| 217 | { | 
|---|
| 218 | return (u32)int_sqrt(x); | 
|---|
| 219 | } | 
|---|
| 220 | #endif | 
|---|
| 221 |  | 
|---|
| 222 | #endif	/* _LINUX_MATH_H */ | 
|---|
| 223 |  | 
|---|