| 1 | /* SPDX-License-Identifier: GPL-2.0 */ | 
|---|
| 2 | #ifndef _LINUX_MIN_HEAP_H | 
|---|
| 3 | #define _LINUX_MIN_HEAP_H | 
|---|
| 4 |  | 
|---|
| 5 | #include <linux/bug.h> | 
|---|
| 6 | #include <linux/string.h> | 
|---|
| 7 | #include <linux/types.h> | 
|---|
| 8 |  | 
|---|
| 9 | /* | 
|---|
| 10 | * The Min Heap API provides utilities for managing min-heaps, a binary tree | 
|---|
| 11 | * structure where each node's value is less than or equal to its children's | 
|---|
| 12 | * values, ensuring the smallest element is at the root. | 
|---|
| 13 | * | 
|---|
| 14 | * Users should avoid directly calling functions prefixed with __min_heap_*(). | 
|---|
| 15 | * Instead, use the provided macro wrappers. | 
|---|
| 16 | * | 
|---|
| 17 | * For further details and examples, refer to Documentation/core-api/min_heap.rst. | 
|---|
| 18 | */ | 
|---|
| 19 |  | 
|---|
| 20 | /** | 
|---|
| 21 | * Data structure to hold a min-heap. | 
|---|
| 22 | * @nr: Number of elements currently in the heap. | 
|---|
| 23 | * @size: Maximum number of elements that can be held in current storage. | 
|---|
| 24 | * @data: Pointer to the start of array holding the heap elements. | 
|---|
| 25 | * @preallocated: Start of the static preallocated array holding the heap elements. | 
|---|
| 26 | */ | 
|---|
| 27 | #define MIN_HEAP_PREALLOCATED(_type, _name, _nr)	\ | 
|---|
| 28 | struct _name {	\ | 
|---|
| 29 | size_t nr;	\ | 
|---|
| 30 | size_t size;	\ | 
|---|
| 31 | _type *data;	\ | 
|---|
| 32 | _type preallocated[_nr];	\ | 
|---|
| 33 | } | 
|---|
| 34 |  | 
|---|
| 35 | #define DEFINE_MIN_HEAP(_type, _name) MIN_HEAP_PREALLOCATED(_type, _name, 0) | 
|---|
| 36 |  | 
|---|
| 37 | typedef DEFINE_MIN_HEAP(char, min_heap_char) min_heap_char; | 
|---|
| 38 |  | 
|---|
| 39 | #define __minheap_cast(_heap)		(typeof((_heap)->data[0]) *) | 
|---|
| 40 | #define __minheap_obj_size(_heap)	sizeof((_heap)->data[0]) | 
|---|
| 41 |  | 
|---|
| 42 | /** | 
|---|
| 43 | * struct min_heap_callbacks - Data/functions to customise the min_heap. | 
|---|
| 44 | * @less: Partial order function for this heap. | 
|---|
| 45 | * @swp: Swap elements function. | 
|---|
| 46 | */ | 
|---|
| 47 | struct min_heap_callbacks { | 
|---|
| 48 | bool (*less)(const void *lhs, const void *rhs, void *args); | 
|---|
| 49 | void (*swp)(void *lhs, void *rhs, void *args); | 
|---|
| 50 | }; | 
|---|
| 51 |  | 
|---|
| 52 | /** | 
|---|
| 53 | * is_aligned - is this pointer & size okay for word-wide copying? | 
|---|
| 54 | * @base: pointer to data | 
|---|
| 55 | * @size: size of each element | 
|---|
| 56 | * @align: required alignment (typically 4 or 8) | 
|---|
| 57 | * | 
|---|
| 58 | * Returns true if elements can be copied using word loads and stores. | 
|---|
| 59 | * The size must be a multiple of the alignment, and the base address must | 
|---|
| 60 | * be if we do not have CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS. | 
|---|
| 61 | * | 
|---|
| 62 | * For some reason, gcc doesn't know to optimize "if (a & mask || b & mask)" | 
|---|
| 63 | * to "if ((a | b) & mask)", so we do that by hand. | 
|---|
| 64 | */ | 
|---|
| 65 | __attribute_const__ __always_inline | 
|---|
| 66 | static bool is_aligned(const void *base, size_t size, unsigned char align) | 
|---|
| 67 | { | 
|---|
| 68 | unsigned char lsbits = (unsigned char)size; | 
|---|
| 69 |  | 
|---|
| 70 | (void)base; | 
|---|
| 71 | #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS | 
|---|
| 72 | lsbits |= (unsigned char)(uintptr_t)base; | 
|---|
| 73 | #endif | 
|---|
| 74 | return (lsbits & (align - 1)) == 0; | 
|---|
| 75 | } | 
|---|
| 76 |  | 
|---|
| 77 | /** | 
|---|
| 78 | * swap_words_32 - swap two elements in 32-bit chunks | 
|---|
| 79 | * @a: pointer to the first element to swap | 
|---|
| 80 | * @b: pointer to the second element to swap | 
|---|
| 81 | * @n: element size (must be a multiple of 4) | 
|---|
| 82 | * | 
|---|
| 83 | * Exchange the two objects in memory.  This exploits base+index addressing, | 
|---|
| 84 | * which basically all CPUs have, to minimize loop overhead computations. | 
|---|
| 85 | * | 
|---|
| 86 | * For some reason, on x86 gcc 7.3.0 adds a redundant test of n at the | 
|---|
| 87 | * bottom of the loop, even though the zero flag is still valid from the | 
|---|
| 88 | * subtract (since the intervening mov instructions don't alter the flags). | 
|---|
| 89 | * Gcc 8.1.0 doesn't have that problem. | 
|---|
| 90 | */ | 
|---|
| 91 | static __always_inline | 
|---|
| 92 | void swap_words_32(void *a, void *b, size_t n) | 
|---|
| 93 | { | 
|---|
| 94 | do { | 
|---|
| 95 | u32 t = *(u32 *)(a + (n -= 4)); | 
|---|
| 96 | *(u32 *)(a + n) = *(u32 *)(b + n); | 
|---|
| 97 | *(u32 *)(b + n) = t; | 
|---|
| 98 | } while (n); | 
|---|
| 99 | } | 
|---|
| 100 |  | 
|---|
| 101 | /** | 
|---|
| 102 | * swap_words_64 - swap two elements in 64-bit chunks | 
|---|
| 103 | * @a: pointer to the first element to swap | 
|---|
| 104 | * @b: pointer to the second element to swap | 
|---|
| 105 | * @n: element size (must be a multiple of 8) | 
|---|
| 106 | * | 
|---|
| 107 | * Exchange the two objects in memory.  This exploits base+index | 
|---|
| 108 | * addressing, which basically all CPUs have, to minimize loop overhead | 
|---|
| 109 | * computations. | 
|---|
| 110 | * | 
|---|
| 111 | * We'd like to use 64-bit loads if possible.  If they're not, emulating | 
|---|
| 112 | * one requires base+index+4 addressing which x86 has but most other | 
|---|
| 113 | * processors do not.  If CONFIG_64BIT, we definitely have 64-bit loads, | 
|---|
| 114 | * but it's possible to have 64-bit loads without 64-bit pointers (e.g. | 
|---|
| 115 | * x32 ABI).  Are there any cases the kernel needs to worry about? | 
|---|
| 116 | */ | 
|---|
| 117 | static __always_inline | 
|---|
| 118 | void swap_words_64(void *a, void *b, size_t n) | 
|---|
| 119 | { | 
|---|
| 120 | do { | 
|---|
| 121 | #ifdef CONFIG_64BIT | 
|---|
| 122 | u64 t = *(u64 *)(a + (n -= 8)); | 
|---|
| 123 | *(u64 *)(a + n) = *(u64 *)(b + n); | 
|---|
| 124 | *(u64 *)(b + n) = t; | 
|---|
| 125 | #else | 
|---|
| 126 | /* Use two 32-bit transfers to avoid base+index+4 addressing */ | 
|---|
| 127 | u32 t = *(u32 *)(a + (n -= 4)); | 
|---|
| 128 | *(u32 *)(a + n) = *(u32 *)(b + n); | 
|---|
| 129 | *(u32 *)(b + n) = t; | 
|---|
| 130 |  | 
|---|
| 131 | t = *(u32 *)(a + (n -= 4)); | 
|---|
| 132 | *(u32 *)(a + n) = *(u32 *)(b + n); | 
|---|
| 133 | *(u32 *)(b + n) = t; | 
|---|
| 134 | #endif | 
|---|
| 135 | } while (n); | 
|---|
| 136 | } | 
|---|
| 137 |  | 
|---|
| 138 | /** | 
|---|
| 139 | * swap_bytes - swap two elements a byte at a time | 
|---|
| 140 | * @a: pointer to the first element to swap | 
|---|
| 141 | * @b: pointer to the second element to swap | 
|---|
| 142 | * @n: element size | 
|---|
| 143 | * | 
|---|
| 144 | * This is the fallback if alignment doesn't allow using larger chunks. | 
|---|
| 145 | */ | 
|---|
| 146 | static __always_inline | 
|---|
| 147 | void swap_bytes(void *a, void *b, size_t n) | 
|---|
| 148 | { | 
|---|
| 149 | do { | 
|---|
| 150 | char t = ((char *)a)[--n]; | 
|---|
| 151 | ((char *)a)[n] = ((char *)b)[n]; | 
|---|
| 152 | ((char *)b)[n] = t; | 
|---|
| 153 | } while (n); | 
|---|
| 154 | } | 
|---|
| 155 |  | 
|---|
| 156 | /* | 
|---|
| 157 | * The values are arbitrary as long as they can't be confused with | 
|---|
| 158 | * a pointer, but small integers make for the smallest compare | 
|---|
| 159 | * instructions. | 
|---|
| 160 | */ | 
|---|
| 161 | #define SWAP_WORDS_64 ((void (*)(void *, void *, void *))0) | 
|---|
| 162 | #define SWAP_WORDS_32 ((void (*)(void *, void *, void *))1) | 
|---|
| 163 | #define SWAP_BYTES    ((void (*)(void *, void *, void *))2) | 
|---|
| 164 |  | 
|---|
| 165 | /* | 
|---|
| 166 | * Selects the appropriate swap function based on the element size. | 
|---|
| 167 | */ | 
|---|
| 168 | static __always_inline | 
|---|
| 169 | void *select_swap_func(const void *base, size_t size) | 
|---|
| 170 | { | 
|---|
| 171 | if (is_aligned(base, size, align: 8)) | 
|---|
| 172 | return SWAP_WORDS_64; | 
|---|
| 173 | else if (is_aligned(base, size, align: 4)) | 
|---|
| 174 | return SWAP_WORDS_32; | 
|---|
| 175 | else | 
|---|
| 176 | return SWAP_BYTES; | 
|---|
| 177 | } | 
|---|
| 178 |  | 
|---|
| 179 | static __always_inline | 
|---|
| 180 | void do_swap(void *a, void *b, size_t size, void (*swap_func)(void *lhs, void *rhs, void *args), | 
|---|
| 181 | void *priv) | 
|---|
| 182 | { | 
|---|
| 183 | if (swap_func == SWAP_WORDS_64) | 
|---|
| 184 | swap_words_64(a, b, n: size); | 
|---|
| 185 | else if (swap_func == SWAP_WORDS_32) | 
|---|
| 186 | swap_words_32(a, b, n: size); | 
|---|
| 187 | else if (swap_func == SWAP_BYTES) | 
|---|
| 188 | swap_bytes(a, b, n: size); | 
|---|
| 189 | else | 
|---|
| 190 | swap_func(a, b, priv); | 
|---|
| 191 | } | 
|---|
| 192 |  | 
|---|
| 193 | /** | 
|---|
| 194 | * parent - given the offset of the child, find the offset of the parent. | 
|---|
| 195 | * @i: the offset of the heap element whose parent is sought.  Non-zero. | 
|---|
| 196 | * @lsbit: a precomputed 1-bit mask, equal to "size & -size" | 
|---|
| 197 | * @size: size of each element | 
|---|
| 198 | * | 
|---|
| 199 | * In terms of array indexes, the parent of element j = @i/@size is simply | 
|---|
| 200 | * (j-1)/2.  But when working in byte offsets, we can't use implicit | 
|---|
| 201 | * truncation of integer divides. | 
|---|
| 202 | * | 
|---|
| 203 | * Fortunately, we only need one bit of the quotient, not the full divide. | 
|---|
| 204 | * @size has a least significant bit.  That bit will be clear if @i is | 
|---|
| 205 | * an even multiple of @size, and set if it's an odd multiple. | 
|---|
| 206 | * | 
|---|
| 207 | * Logically, we're doing "if (i & lsbit) i -= size;", but since the | 
|---|
| 208 | * branch is unpredictable, it's done with a bit of clever branch-free | 
|---|
| 209 | * code instead. | 
|---|
| 210 | */ | 
|---|
| 211 | __attribute_const__ __always_inline | 
|---|
| 212 | static size_t parent(size_t i, unsigned int lsbit, size_t size) | 
|---|
| 213 | { | 
|---|
| 214 | i -= size; | 
|---|
| 215 | i -= size & -(i & lsbit); | 
|---|
| 216 | return i / 2; | 
|---|
| 217 | } | 
|---|
| 218 |  | 
|---|
| 219 | /* Initialize a min-heap. */ | 
|---|
| 220 | static __always_inline | 
|---|
| 221 | void __min_heap_init_inline(min_heap_char *heap, void *data, size_t size) | 
|---|
| 222 | { | 
|---|
| 223 | heap->nr = 0; | 
|---|
| 224 | heap->size = size; | 
|---|
| 225 | if (data) | 
|---|
| 226 | heap->data = data; | 
|---|
| 227 | else | 
|---|
| 228 | heap->data = heap->preallocated; | 
|---|
| 229 | } | 
|---|
| 230 |  | 
|---|
| 231 | #define min_heap_init_inline(_heap, _data, _size)	\ | 
|---|
| 232 | __min_heap_init_inline(container_of(&(_heap)->nr, min_heap_char, nr), _data, _size) | 
|---|
| 233 |  | 
|---|
| 234 | /* Get the minimum element from the heap. */ | 
|---|
| 235 | static __always_inline | 
|---|
| 236 | void *__min_heap_peek_inline(struct min_heap_char *heap) | 
|---|
| 237 | { | 
|---|
| 238 | return heap->nr ? heap->data : NULL; | 
|---|
| 239 | } | 
|---|
| 240 |  | 
|---|
| 241 | #define min_heap_peek_inline(_heap)	\ | 
|---|
| 242 | (__minheap_cast(_heap)	\ | 
|---|
| 243 | __min_heap_peek_inline(container_of(&(_heap)->nr, min_heap_char, nr))) | 
|---|
| 244 |  | 
|---|
| 245 | /* Check if the heap is full. */ | 
|---|
| 246 | static __always_inline | 
|---|
| 247 | bool __min_heap_full_inline(min_heap_char *heap) | 
|---|
| 248 | { | 
|---|
| 249 | return heap->nr == heap->size; | 
|---|
| 250 | } | 
|---|
| 251 |  | 
|---|
| 252 | #define min_heap_full_inline(_heap)	\ | 
|---|
| 253 | __min_heap_full_inline(container_of(&(_heap)->nr, min_heap_char, nr)) | 
|---|
| 254 |  | 
|---|
| 255 | /* Sift the element at pos down the heap. */ | 
|---|
| 256 | static __always_inline | 
|---|
| 257 | void __min_heap_sift_down_inline(min_heap_char *heap, size_t pos, size_t elem_size, | 
|---|
| 258 | const struct min_heap_callbacks *func, void *args) | 
|---|
| 259 | { | 
|---|
| 260 | const unsigned long lsbit = elem_size & -elem_size; | 
|---|
| 261 | void *data = heap->data; | 
|---|
| 262 | void (*swp)(void *lhs, void *rhs, void *args) = func->swp; | 
|---|
| 263 | /* pre-scale counters for performance */ | 
|---|
| 264 | size_t a = pos * elem_size; | 
|---|
| 265 | size_t b, c, d; | 
|---|
| 266 | size_t n = heap->nr * elem_size; | 
|---|
| 267 |  | 
|---|
| 268 | if (!swp) | 
|---|
| 269 | swp = select_swap_func(base: data, size: elem_size); | 
|---|
| 270 |  | 
|---|
| 271 | /* Find the sift-down path all the way to the leaves. */ | 
|---|
| 272 | for (b = a; c = 2 * b + elem_size, (d = c + elem_size) < n;) | 
|---|
| 273 | b = func->less(data + c, data + d, args) ? c : d; | 
|---|
| 274 |  | 
|---|
| 275 | /* Special case for the last leaf with no sibling. */ | 
|---|
| 276 | if (d == n) | 
|---|
| 277 | b = c; | 
|---|
| 278 |  | 
|---|
| 279 | /* Backtrack to the correct location. */ | 
|---|
| 280 | while (b != a && func->less(data + a, data + b, args)) | 
|---|
| 281 | b = parent(i: b, lsbit, size: elem_size); | 
|---|
| 282 |  | 
|---|
| 283 | /* Shift the element into its correct place. */ | 
|---|
| 284 | c = b; | 
|---|
| 285 | while (b != a) { | 
|---|
| 286 | b = parent(i: b, lsbit, size: elem_size); | 
|---|
| 287 | do_swap(a: data + b, b: data + c, size: elem_size, swap_func: swp, priv: args); | 
|---|
| 288 | } | 
|---|
| 289 | } | 
|---|
| 290 |  | 
|---|
| 291 | #define min_heap_sift_down_inline(_heap, _pos, _func, _args)	\ | 
|---|
| 292 | __min_heap_sift_down_inline(container_of(&(_heap)->nr, min_heap_char, nr), _pos,	\ | 
|---|
| 293 | __minheap_obj_size(_heap), _func, _args) | 
|---|
| 294 |  | 
|---|
| 295 | /* Sift up ith element from the heap, O(log2(nr)). */ | 
|---|
| 296 | static __always_inline | 
|---|
| 297 | void __min_heap_sift_up_inline(min_heap_char *heap, size_t elem_size, size_t idx, | 
|---|
| 298 | const struct min_heap_callbacks *func, void *args) | 
|---|
| 299 | { | 
|---|
| 300 | const unsigned long lsbit = elem_size & -elem_size; | 
|---|
| 301 | void *data = heap->data; | 
|---|
| 302 | void (*swp)(void *lhs, void *rhs, void *args) = func->swp; | 
|---|
| 303 | /* pre-scale counters for performance */ | 
|---|
| 304 | size_t a = idx * elem_size, b; | 
|---|
| 305 |  | 
|---|
| 306 | if (!swp) | 
|---|
| 307 | swp = select_swap_func(base: data, size: elem_size); | 
|---|
| 308 |  | 
|---|
| 309 | while (a) { | 
|---|
| 310 | b = parent(i: a, lsbit, size: elem_size); | 
|---|
| 311 | if (func->less(data + b, data + a, args)) | 
|---|
| 312 | break; | 
|---|
| 313 | do_swap(a: data + a, b: data + b, size: elem_size, swap_func: swp, priv: args); | 
|---|
| 314 | a = b; | 
|---|
| 315 | } | 
|---|
| 316 | } | 
|---|
| 317 |  | 
|---|
| 318 | #define min_heap_sift_up_inline(_heap, _idx, _func, _args)	\ | 
|---|
| 319 | __min_heap_sift_up_inline(container_of(&(_heap)->nr, min_heap_char, nr),	\ | 
|---|
| 320 | __minheap_obj_size(_heap), _idx, _func, _args) | 
|---|
| 321 |  | 
|---|
| 322 | /* Floyd's approach to heapification that is O(nr). */ | 
|---|
| 323 | static __always_inline | 
|---|
| 324 | void __min_heapify_all_inline(min_heap_char *heap, size_t elem_size, | 
|---|
| 325 | const struct min_heap_callbacks *func, void *args) | 
|---|
| 326 | { | 
|---|
| 327 | ssize_t i; | 
|---|
| 328 |  | 
|---|
| 329 | for (i = heap->nr / 2 - 1; i >= 0; i--) | 
|---|
| 330 | __min_heap_sift_down_inline(heap, pos: i, elem_size, func, args); | 
|---|
| 331 | } | 
|---|
| 332 |  | 
|---|
| 333 | #define min_heapify_all_inline(_heap, _func, _args)	\ | 
|---|
| 334 | __min_heapify_all_inline(container_of(&(_heap)->nr, min_heap_char, nr),	\ | 
|---|
| 335 | __minheap_obj_size(_heap), _func, _args) | 
|---|
| 336 |  | 
|---|
| 337 | /* Remove minimum element from the heap, O(log2(nr)). */ | 
|---|
| 338 | static __always_inline | 
|---|
| 339 | bool __min_heap_pop_inline(min_heap_char *heap, size_t elem_size, | 
|---|
| 340 | const struct min_heap_callbacks *func, void *args) | 
|---|
| 341 | { | 
|---|
| 342 | void *data = heap->data; | 
|---|
| 343 |  | 
|---|
| 344 | if (WARN_ONCE(heap->nr <= 0, "Popping an empty heap")) | 
|---|
| 345 | return false; | 
|---|
| 346 |  | 
|---|
| 347 | /* Place last element at the root (position 0) and then sift down. */ | 
|---|
| 348 | heap->nr--; | 
|---|
| 349 | memcpy(to: data, from: data + (heap->nr * elem_size), len: elem_size); | 
|---|
| 350 | __min_heap_sift_down_inline(heap, pos: 0, elem_size, func, args); | 
|---|
| 351 |  | 
|---|
| 352 | return true; | 
|---|
| 353 | } | 
|---|
| 354 |  | 
|---|
| 355 | #define min_heap_pop_inline(_heap, _func, _args)	\ | 
|---|
| 356 | __min_heap_pop_inline(container_of(&(_heap)->nr, min_heap_char, nr),	\ | 
|---|
| 357 | __minheap_obj_size(_heap), _func, _args) | 
|---|
| 358 |  | 
|---|
| 359 | /* | 
|---|
| 360 | * Remove the minimum element and then push the given element. The | 
|---|
| 361 | * implementation performs 1 sift (O(log2(nr))) and is therefore more | 
|---|
| 362 | * efficient than a pop followed by a push that does 2. | 
|---|
| 363 | */ | 
|---|
| 364 | static __always_inline | 
|---|
| 365 | void __min_heap_pop_push_inline(min_heap_char *heap, const void *element, size_t elem_size, | 
|---|
| 366 | const struct min_heap_callbacks *func, void *args) | 
|---|
| 367 | { | 
|---|
| 368 | memcpy(to: heap->data, from: element, len: elem_size); | 
|---|
| 369 | __min_heap_sift_down_inline(heap, pos: 0, elem_size, func, args); | 
|---|
| 370 | } | 
|---|
| 371 |  | 
|---|
| 372 | #define min_heap_pop_push_inline(_heap, _element, _func, _args)	\ | 
|---|
| 373 | __min_heap_pop_push_inline(container_of(&(_heap)->nr, min_heap_char, nr), _element,	\ | 
|---|
| 374 | __minheap_obj_size(_heap), _func, _args) | 
|---|
| 375 |  | 
|---|
| 376 | /* Push an element on to the heap, O(log2(nr)). */ | 
|---|
| 377 | static __always_inline | 
|---|
| 378 | bool __min_heap_push_inline(min_heap_char *heap, const void *element, size_t elem_size, | 
|---|
| 379 | const struct min_heap_callbacks *func, void *args) | 
|---|
| 380 | { | 
|---|
| 381 | void *data = heap->data; | 
|---|
| 382 | size_t pos; | 
|---|
| 383 |  | 
|---|
| 384 | if (WARN_ONCE(heap->nr >= heap->size, "Pushing on a full heap")) | 
|---|
| 385 | return false; | 
|---|
| 386 |  | 
|---|
| 387 | /* Place at the end of data. */ | 
|---|
| 388 | pos = heap->nr; | 
|---|
| 389 | memcpy(to: data + (pos * elem_size), from: element, len: elem_size); | 
|---|
| 390 | heap->nr++; | 
|---|
| 391 |  | 
|---|
| 392 | /* Sift child at pos up. */ | 
|---|
| 393 | __min_heap_sift_up_inline(heap, elem_size, idx: pos, func, args); | 
|---|
| 394 |  | 
|---|
| 395 | return true; | 
|---|
| 396 | } | 
|---|
| 397 |  | 
|---|
| 398 | #define min_heap_push_inline(_heap, _element, _func, _args)	\ | 
|---|
| 399 | __min_heap_push_inline(container_of(&(_heap)->nr, min_heap_char, nr), _element,	\ | 
|---|
| 400 | __minheap_obj_size(_heap), _func, _args) | 
|---|
| 401 |  | 
|---|
| 402 | /* Remove ith element from the heap, O(log2(nr)). */ | 
|---|
| 403 | static __always_inline | 
|---|
| 404 | bool __min_heap_del_inline(min_heap_char *heap, size_t elem_size, size_t idx, | 
|---|
| 405 | const struct min_heap_callbacks *func, void *args) | 
|---|
| 406 | { | 
|---|
| 407 | void *data = heap->data; | 
|---|
| 408 | void (*swp)(void *lhs, void *rhs, void *args) = func->swp; | 
|---|
| 409 |  | 
|---|
| 410 | if (WARN_ONCE(heap->nr <= 0, "Popping an empty heap")) | 
|---|
| 411 | return false; | 
|---|
| 412 |  | 
|---|
| 413 | if (!swp) | 
|---|
| 414 | swp = select_swap_func(base: data, size: elem_size); | 
|---|
| 415 |  | 
|---|
| 416 | /* Place last element at the root (position 0) and then sift down. */ | 
|---|
| 417 | heap->nr--; | 
|---|
| 418 | if (idx == heap->nr) | 
|---|
| 419 | return true; | 
|---|
| 420 | do_swap(a: data + (idx * elem_size), b: data + (heap->nr * elem_size), size: elem_size, swap_func: swp, priv: args); | 
|---|
| 421 | __min_heap_sift_up_inline(heap, elem_size, idx, func, args); | 
|---|
| 422 | __min_heap_sift_down_inline(heap, pos: idx, elem_size, func, args); | 
|---|
| 423 |  | 
|---|
| 424 | return true; | 
|---|
| 425 | } | 
|---|
| 426 |  | 
|---|
| 427 | #define min_heap_del_inline(_heap, _idx, _func, _args)	\ | 
|---|
| 428 | __min_heap_del_inline(container_of(&(_heap)->nr, min_heap_char, nr),	\ | 
|---|
| 429 | __minheap_obj_size(_heap), _idx, _func, _args) | 
|---|
| 430 |  | 
|---|
| 431 | void __min_heap_init(min_heap_char *heap, void *data, size_t size); | 
|---|
| 432 | void *__min_heap_peek(struct min_heap_char *heap); | 
|---|
| 433 | bool __min_heap_full(min_heap_char *heap); | 
|---|
| 434 | void __min_heap_sift_down(min_heap_char *heap, size_t pos, size_t elem_size, | 
|---|
| 435 | const struct min_heap_callbacks *func, void *args); | 
|---|
| 436 | void __min_heap_sift_up(min_heap_char *heap, size_t elem_size, size_t idx, | 
|---|
| 437 | const struct min_heap_callbacks *func, void *args); | 
|---|
| 438 | void __min_heapify_all(min_heap_char *heap, size_t elem_size, | 
|---|
| 439 | const struct min_heap_callbacks *func, void *args); | 
|---|
| 440 | bool __min_heap_pop(min_heap_char *heap, size_t elem_size, | 
|---|
| 441 | const struct min_heap_callbacks *func, void *args); | 
|---|
| 442 | void __min_heap_pop_push(min_heap_char *heap, const void *element, size_t elem_size, | 
|---|
| 443 | const struct min_heap_callbacks *func, void *args); | 
|---|
| 444 | bool __min_heap_push(min_heap_char *heap, const void *element, size_t elem_size, | 
|---|
| 445 | const struct min_heap_callbacks *func, void *args); | 
|---|
| 446 | bool __min_heap_del(min_heap_char *heap, size_t elem_size, size_t idx, | 
|---|
| 447 | const struct min_heap_callbacks *func, void *args); | 
|---|
| 448 |  | 
|---|
| 449 | #define min_heap_init(_heap, _data, _size)	\ | 
|---|
| 450 | __min_heap_init(container_of(&(_heap)->nr, min_heap_char, nr), _data, _size) | 
|---|
| 451 | #define min_heap_peek(_heap)	\ | 
|---|
| 452 | (__minheap_cast(_heap) __min_heap_peek(container_of(&(_heap)->nr, min_heap_char, nr))) | 
|---|
| 453 | #define min_heap_full(_heap)	\ | 
|---|
| 454 | __min_heap_full(container_of(&(_heap)->nr, min_heap_char, nr)) | 
|---|
| 455 | #define min_heap_sift_down(_heap, _pos, _func, _args)	\ | 
|---|
| 456 | __min_heap_sift_down(container_of(&(_heap)->nr, min_heap_char, nr), _pos,	\ | 
|---|
| 457 | __minheap_obj_size(_heap), _func, _args) | 
|---|
| 458 | #define min_heap_sift_up(_heap, _idx, _func, _args)	\ | 
|---|
| 459 | __min_heap_sift_up(container_of(&(_heap)->nr, min_heap_char, nr),	\ | 
|---|
| 460 | __minheap_obj_size(_heap), _idx, _func, _args) | 
|---|
| 461 | #define min_heapify_all(_heap, _func, _args)	\ | 
|---|
| 462 | __min_heapify_all(container_of(&(_heap)->nr, min_heap_char, nr),	\ | 
|---|
| 463 | __minheap_obj_size(_heap), _func, _args) | 
|---|
| 464 | #define min_heap_pop(_heap, _func, _args)	\ | 
|---|
| 465 | __min_heap_pop(container_of(&(_heap)->nr, min_heap_char, nr),	\ | 
|---|
| 466 | __minheap_obj_size(_heap), _func, _args) | 
|---|
| 467 | #define min_heap_pop_push(_heap, _element, _func, _args)	\ | 
|---|
| 468 | __min_heap_pop_push(container_of(&(_heap)->nr, min_heap_char, nr), _element,	\ | 
|---|
| 469 | __minheap_obj_size(_heap), _func, _args) | 
|---|
| 470 | #define min_heap_push(_heap, _element, _func, _args)	\ | 
|---|
| 471 | __min_heap_push(container_of(&(_heap)->nr, min_heap_char, nr), _element,	\ | 
|---|
| 472 | __minheap_obj_size(_heap), _func, _args) | 
|---|
| 473 | #define min_heap_del(_heap, _idx, _func, _args)	\ | 
|---|
| 474 | __min_heap_del(container_of(&(_heap)->nr, min_heap_char, nr),	\ | 
|---|
| 475 | __minheap_obj_size(_heap), _idx, _func, _args) | 
|---|
| 476 |  | 
|---|
| 477 | #endif /* _LINUX_MIN_HEAP_H */ | 
|---|
| 478 |  | 
|---|