| 1 | /* SPDX-License-Identifier: GPL-2.0 */ | 
|---|
| 2 | #ifndef _LINUX_MMZONE_H | 
|---|
| 3 | #define _LINUX_MMZONE_H | 
|---|
| 4 |  | 
|---|
| 5 | #ifndef __ASSEMBLY__ | 
|---|
| 6 | #ifndef __GENERATING_BOUNDS_H | 
|---|
| 7 |  | 
|---|
| 8 | #include <linux/spinlock.h> | 
|---|
| 9 | #include <linux/list.h> | 
|---|
| 10 | #include <linux/list_nulls.h> | 
|---|
| 11 | #include <linux/wait.h> | 
|---|
| 12 | #include <linux/bitops.h> | 
|---|
| 13 | #include <linux/cache.h> | 
|---|
| 14 | #include <linux/threads.h> | 
|---|
| 15 | #include <linux/numa.h> | 
|---|
| 16 | #include <linux/init.h> | 
|---|
| 17 | #include <linux/seqlock.h> | 
|---|
| 18 | #include <linux/nodemask.h> | 
|---|
| 19 | #include <linux/pageblock-flags.h> | 
|---|
| 20 | #include <linux/page-flags-layout.h> | 
|---|
| 21 | #include <linux/atomic.h> | 
|---|
| 22 | #include <linux/mm_types.h> | 
|---|
| 23 | #include <linux/page-flags.h> | 
|---|
| 24 | #include <linux/local_lock.h> | 
|---|
| 25 | #include <linux/zswap.h> | 
|---|
| 26 | #include <asm/page.h> | 
|---|
| 27 |  | 
|---|
| 28 | /* Free memory management - zoned buddy allocator.  */ | 
|---|
| 29 | #ifndef CONFIG_ARCH_FORCE_MAX_ORDER | 
|---|
| 30 | #define MAX_PAGE_ORDER 10 | 
|---|
| 31 | #else | 
|---|
| 32 | #define MAX_PAGE_ORDER CONFIG_ARCH_FORCE_MAX_ORDER | 
|---|
| 33 | #endif | 
|---|
| 34 | #define MAX_ORDER_NR_PAGES (1 << MAX_PAGE_ORDER) | 
|---|
| 35 |  | 
|---|
| 36 | #define IS_MAX_ORDER_ALIGNED(pfn) IS_ALIGNED(pfn, MAX_ORDER_NR_PAGES) | 
|---|
| 37 |  | 
|---|
| 38 | #define NR_PAGE_ORDERS (MAX_PAGE_ORDER + 1) | 
|---|
| 39 |  | 
|---|
| 40 | /* Defines the order for the number of pages that have a migrate type. */ | 
|---|
| 41 | #ifndef CONFIG_PAGE_BLOCK_MAX_ORDER | 
|---|
| 42 | #define PAGE_BLOCK_MAX_ORDER MAX_PAGE_ORDER | 
|---|
| 43 | #else | 
|---|
| 44 | #define PAGE_BLOCK_MAX_ORDER CONFIG_PAGE_BLOCK_MAX_ORDER | 
|---|
| 45 | #endif /* CONFIG_PAGE_BLOCK_MAX_ORDER */ | 
|---|
| 46 |  | 
|---|
| 47 | /* | 
|---|
| 48 | * The MAX_PAGE_ORDER, which defines the max order of pages to be allocated | 
|---|
| 49 | * by the buddy allocator, has to be larger or equal to the PAGE_BLOCK_MAX_ORDER, | 
|---|
| 50 | * which defines the order for the number of pages that can have a migrate type | 
|---|
| 51 | */ | 
|---|
| 52 | #if (PAGE_BLOCK_MAX_ORDER > MAX_PAGE_ORDER) | 
|---|
| 53 | #error MAX_PAGE_ORDER must be >= PAGE_BLOCK_MAX_ORDER | 
|---|
| 54 | #endif | 
|---|
| 55 |  | 
|---|
| 56 | /* | 
|---|
| 57 | * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed | 
|---|
| 58 | * costly to service.  That is between allocation orders which should | 
|---|
| 59 | * coalesce naturally under reasonable reclaim pressure and those which | 
|---|
| 60 | * will not. | 
|---|
| 61 | */ | 
|---|
| 62 | #define PAGE_ALLOC_COSTLY_ORDER 3 | 
|---|
| 63 |  | 
|---|
| 64 | enum migratetype { | 
|---|
| 65 | MIGRATE_UNMOVABLE, | 
|---|
| 66 | MIGRATE_MOVABLE, | 
|---|
| 67 | MIGRATE_RECLAIMABLE, | 
|---|
| 68 | MIGRATE_PCPTYPES,	/* the number of types on the pcp lists */ | 
|---|
| 69 | MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES, | 
|---|
| 70 | #ifdef CONFIG_CMA | 
|---|
| 71 | /* | 
|---|
| 72 | * MIGRATE_CMA migration type is designed to mimic the way | 
|---|
| 73 | * ZONE_MOVABLE works.  Only movable pages can be allocated | 
|---|
| 74 | * from MIGRATE_CMA pageblocks and page allocator never | 
|---|
| 75 | * implicitly change migration type of MIGRATE_CMA pageblock. | 
|---|
| 76 | * | 
|---|
| 77 | * The way to use it is to change migratetype of a range of | 
|---|
| 78 | * pageblocks to MIGRATE_CMA which can be done by | 
|---|
| 79 | * __free_pageblock_cma() function. | 
|---|
| 80 | */ | 
|---|
| 81 | MIGRATE_CMA, | 
|---|
| 82 | __MIGRATE_TYPE_END = MIGRATE_CMA, | 
|---|
| 83 | #else | 
|---|
| 84 | __MIGRATE_TYPE_END = MIGRATE_HIGHATOMIC, | 
|---|
| 85 | #endif | 
|---|
| 86 | #ifdef CONFIG_MEMORY_ISOLATION | 
|---|
| 87 | MIGRATE_ISOLATE,	/* can't allocate from here */ | 
|---|
| 88 | #endif | 
|---|
| 89 | MIGRATE_TYPES | 
|---|
| 90 | }; | 
|---|
| 91 |  | 
|---|
| 92 | /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */ | 
|---|
| 93 | extern const char * const migratetype_names[MIGRATE_TYPES]; | 
|---|
| 94 |  | 
|---|
| 95 | #ifdef CONFIG_CMA | 
|---|
| 96 | #  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA) | 
|---|
| 97 | #  define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA) | 
|---|
| 98 | /* | 
|---|
| 99 | * __dump_folio() in mm/debug.c passes a folio pointer to on-stack struct folio, | 
|---|
| 100 | * so folio_pfn() cannot be used and pfn is needed. | 
|---|
| 101 | */ | 
|---|
| 102 | #  define is_migrate_cma_folio(folio, pfn) \ | 
|---|
| 103 | (get_pfnblock_migratetype(&folio->page, pfn) == MIGRATE_CMA) | 
|---|
| 104 | #else | 
|---|
| 105 | #  define is_migrate_cma(migratetype) false | 
|---|
| 106 | #  define is_migrate_cma_page(_page) false | 
|---|
| 107 | #  define is_migrate_cma_folio(folio, pfn) false | 
|---|
| 108 | #endif | 
|---|
| 109 |  | 
|---|
| 110 | static inline bool is_migrate_movable(int mt) | 
|---|
| 111 | { | 
|---|
| 112 | return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE; | 
|---|
| 113 | } | 
|---|
| 114 |  | 
|---|
| 115 | /* | 
|---|
| 116 | * Check whether a migratetype can be merged with another migratetype. | 
|---|
| 117 | * | 
|---|
| 118 | * It is only mergeable when it can fall back to other migratetypes for | 
|---|
| 119 | * allocation. See fallbacks[MIGRATE_TYPES][3] in page_alloc.c. | 
|---|
| 120 | */ | 
|---|
| 121 | static inline bool migratetype_is_mergeable(int mt) | 
|---|
| 122 | { | 
|---|
| 123 | return mt < MIGRATE_PCPTYPES; | 
|---|
| 124 | } | 
|---|
| 125 |  | 
|---|
| 126 | #define for_each_migratetype_order(order, type) \ | 
|---|
| 127 | for (order = 0; order < NR_PAGE_ORDERS; order++) \ | 
|---|
| 128 | for (type = 0; type < MIGRATE_TYPES; type++) | 
|---|
| 129 |  | 
|---|
| 130 | extern int page_group_by_mobility_disabled; | 
|---|
| 131 |  | 
|---|
| 132 | #define get_pageblock_migratetype(page) \ | 
|---|
| 133 | get_pfnblock_migratetype(page, page_to_pfn(page)) | 
|---|
| 134 |  | 
|---|
| 135 | #define folio_migratetype(folio) \ | 
|---|
| 136 | get_pageblock_migratetype(&folio->page) | 
|---|
| 137 |  | 
|---|
| 138 | struct free_area { | 
|---|
| 139 | struct list_head	free_list[MIGRATE_TYPES]; | 
|---|
| 140 | unsigned long		nr_free; | 
|---|
| 141 | }; | 
|---|
| 142 |  | 
|---|
| 143 | struct pglist_data; | 
|---|
| 144 |  | 
|---|
| 145 | #ifdef CONFIG_NUMA | 
|---|
| 146 | enum numa_stat_item { | 
|---|
| 147 | NUMA_HIT,		/* allocated in intended node */ | 
|---|
| 148 | NUMA_MISS,		/* allocated in non intended node */ | 
|---|
| 149 | NUMA_FOREIGN,		/* was intended here, hit elsewhere */ | 
|---|
| 150 | NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */ | 
|---|
| 151 | NUMA_LOCAL,		/* allocation from local node */ | 
|---|
| 152 | NUMA_OTHER,		/* allocation from other node */ | 
|---|
| 153 | NR_VM_NUMA_EVENT_ITEMS | 
|---|
| 154 | }; | 
|---|
| 155 | #else | 
|---|
| 156 | #define NR_VM_NUMA_EVENT_ITEMS 0 | 
|---|
| 157 | #endif | 
|---|
| 158 |  | 
|---|
| 159 | enum zone_stat_item { | 
|---|
| 160 | /* First 128 byte cacheline (assuming 64 bit words) */ | 
|---|
| 161 | NR_FREE_PAGES, | 
|---|
| 162 | NR_FREE_PAGES_BLOCKS, | 
|---|
| 163 | NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */ | 
|---|
| 164 | NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE, | 
|---|
| 165 | NR_ZONE_ACTIVE_ANON, | 
|---|
| 166 | NR_ZONE_INACTIVE_FILE, | 
|---|
| 167 | NR_ZONE_ACTIVE_FILE, | 
|---|
| 168 | NR_ZONE_UNEVICTABLE, | 
|---|
| 169 | NR_ZONE_WRITE_PENDING,	/* Count of dirty, writeback and unstable pages */ | 
|---|
| 170 | NR_MLOCK,		/* mlock()ed pages found and moved off LRU */ | 
|---|
| 171 | /* Second 128 byte cacheline */ | 
|---|
| 172 | #if IS_ENABLED(CONFIG_ZSMALLOC) | 
|---|
| 173 | NR_ZSPAGES,		/* allocated in zsmalloc */ | 
|---|
| 174 | #endif | 
|---|
| 175 | NR_FREE_CMA_PAGES, | 
|---|
| 176 | #ifdef CONFIG_UNACCEPTED_MEMORY | 
|---|
| 177 | NR_UNACCEPTED, | 
|---|
| 178 | #endif | 
|---|
| 179 | NR_VM_ZONE_STAT_ITEMS }; | 
|---|
| 180 |  | 
|---|
| 181 | enum node_stat_item { | 
|---|
| 182 | NR_LRU_BASE, | 
|---|
| 183 | NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */ | 
|---|
| 184 | NR_ACTIVE_ANON,		/*  "     "     "   "       "         */ | 
|---|
| 185 | NR_INACTIVE_FILE,	/*  "     "     "   "       "         */ | 
|---|
| 186 | NR_ACTIVE_FILE,		/*  "     "     "   "       "         */ | 
|---|
| 187 | NR_UNEVICTABLE,		/*  "     "     "   "       "         */ | 
|---|
| 188 | NR_SLAB_RECLAIMABLE_B, | 
|---|
| 189 | NR_SLAB_UNRECLAIMABLE_B, | 
|---|
| 190 | NR_ISOLATED_ANON,	/* Temporary isolated pages from anon lru */ | 
|---|
| 191 | NR_ISOLATED_FILE,	/* Temporary isolated pages from file lru */ | 
|---|
| 192 | WORKINGSET_NODES, | 
|---|
| 193 | WORKINGSET_REFAULT_BASE, | 
|---|
| 194 | WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE, | 
|---|
| 195 | WORKINGSET_REFAULT_FILE, | 
|---|
| 196 | WORKINGSET_ACTIVATE_BASE, | 
|---|
| 197 | WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE, | 
|---|
| 198 | WORKINGSET_ACTIVATE_FILE, | 
|---|
| 199 | WORKINGSET_RESTORE_BASE, | 
|---|
| 200 | WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE, | 
|---|
| 201 | WORKINGSET_RESTORE_FILE, | 
|---|
| 202 | WORKINGSET_NODERECLAIM, | 
|---|
| 203 | NR_ANON_MAPPED,	/* Mapped anonymous pages */ | 
|---|
| 204 | NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables. | 
|---|
| 205 | only modified from process context */ | 
|---|
| 206 | NR_FILE_PAGES, | 
|---|
| 207 | NR_FILE_DIRTY, | 
|---|
| 208 | NR_WRITEBACK, | 
|---|
| 209 | NR_SHMEM,		/* shmem pages (included tmpfs/GEM pages) */ | 
|---|
| 210 | NR_SHMEM_THPS, | 
|---|
| 211 | NR_SHMEM_PMDMAPPED, | 
|---|
| 212 | NR_FILE_THPS, | 
|---|
| 213 | NR_FILE_PMDMAPPED, | 
|---|
| 214 | NR_ANON_THPS, | 
|---|
| 215 | NR_VMSCAN_WRITE, | 
|---|
| 216 | NR_VMSCAN_IMMEDIATE,	/* Prioritise for reclaim when writeback ends */ | 
|---|
| 217 | NR_DIRTIED,		/* page dirtyings since bootup */ | 
|---|
| 218 | NR_WRITTEN,		/* page writings since bootup */ | 
|---|
| 219 | NR_THROTTLED_WRITTEN,	/* NR_WRITTEN while reclaim throttled */ | 
|---|
| 220 | NR_KERNEL_MISC_RECLAIMABLE,	/* reclaimable non-slab kernel pages */ | 
|---|
| 221 | NR_FOLL_PIN_ACQUIRED,	/* via: pin_user_page(), gup flag: FOLL_PIN */ | 
|---|
| 222 | NR_FOLL_PIN_RELEASED,	/* pages returned via unpin_user_page() */ | 
|---|
| 223 | NR_KERNEL_STACK_KB,	/* measured in KiB */ | 
|---|
| 224 | #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK) | 
|---|
| 225 | NR_KERNEL_SCS_KB,	/* measured in KiB */ | 
|---|
| 226 | #endif | 
|---|
| 227 | NR_PAGETABLE,		/* used for pagetables */ | 
|---|
| 228 | NR_SECONDARY_PAGETABLE, /* secondary pagetables, KVM & IOMMU */ | 
|---|
| 229 | #ifdef CONFIG_IOMMU_SUPPORT | 
|---|
| 230 | NR_IOMMU_PAGES,		/* # of pages allocated by IOMMU */ | 
|---|
| 231 | #endif | 
|---|
| 232 | #ifdef CONFIG_SWAP | 
|---|
| 233 | NR_SWAPCACHE, | 
|---|
| 234 | #endif | 
|---|
| 235 | #ifdef CONFIG_NUMA_BALANCING | 
|---|
| 236 | PGPROMOTE_SUCCESS,	/* promote successfully */ | 
|---|
| 237 | /** | 
|---|
| 238 | * Candidate pages for promotion based on hint fault latency.  This | 
|---|
| 239 | * counter is used to control the promotion rate and adjust the hot | 
|---|
| 240 | * threshold. | 
|---|
| 241 | */ | 
|---|
| 242 | PGPROMOTE_CANDIDATE, | 
|---|
| 243 | /** | 
|---|
| 244 | * Not rate-limited (NRL) candidate pages for those can be promoted | 
|---|
| 245 | * without considering hot threshold because of enough free pages in | 
|---|
| 246 | * fast-tier node.  These promotions bypass the regular hotness checks | 
|---|
| 247 | * and do NOT influence the promotion rate-limiter or | 
|---|
| 248 | * threshold-adjustment logic. | 
|---|
| 249 | * This is for statistics/monitoring purposes. | 
|---|
| 250 | */ | 
|---|
| 251 | PGPROMOTE_CANDIDATE_NRL, | 
|---|
| 252 | #endif | 
|---|
| 253 | /* PGDEMOTE_*: pages demoted */ | 
|---|
| 254 | PGDEMOTE_KSWAPD, | 
|---|
| 255 | PGDEMOTE_DIRECT, | 
|---|
| 256 | PGDEMOTE_KHUGEPAGED, | 
|---|
| 257 | PGDEMOTE_PROACTIVE, | 
|---|
| 258 | #ifdef CONFIG_HUGETLB_PAGE | 
|---|
| 259 | NR_HUGETLB, | 
|---|
| 260 | #endif | 
|---|
| 261 | NR_BALLOON_PAGES, | 
|---|
| 262 | NR_KERNEL_FILE_PAGES, | 
|---|
| 263 | NR_VM_NODE_STAT_ITEMS | 
|---|
| 264 | }; | 
|---|
| 265 |  | 
|---|
| 266 | /* | 
|---|
| 267 | * Returns true if the item should be printed in THPs (/proc/vmstat | 
|---|
| 268 | * currently prints number of anon, file and shmem THPs. But the item | 
|---|
| 269 | * is charged in pages). | 
|---|
| 270 | */ | 
|---|
| 271 | static __always_inline bool vmstat_item_print_in_thp(enum node_stat_item item) | 
|---|
| 272 | { | 
|---|
| 273 | if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) | 
|---|
| 274 | return false; | 
|---|
| 275 |  | 
|---|
| 276 | return item == NR_ANON_THPS || | 
|---|
| 277 | item == NR_FILE_THPS || | 
|---|
| 278 | item == NR_SHMEM_THPS || | 
|---|
| 279 | item == NR_SHMEM_PMDMAPPED || | 
|---|
| 280 | item == NR_FILE_PMDMAPPED; | 
|---|
| 281 | } | 
|---|
| 282 |  | 
|---|
| 283 | /* | 
|---|
| 284 | * Returns true if the value is measured in bytes (most vmstat values are | 
|---|
| 285 | * measured in pages). This defines the API part, the internal representation | 
|---|
| 286 | * might be different. | 
|---|
| 287 | */ | 
|---|
| 288 | static __always_inline bool vmstat_item_in_bytes(int idx) | 
|---|
| 289 | { | 
|---|
| 290 | /* | 
|---|
| 291 | * Global and per-node slab counters track slab pages. | 
|---|
| 292 | * It's expected that changes are multiples of PAGE_SIZE. | 
|---|
| 293 | * Internally values are stored in pages. | 
|---|
| 294 | * | 
|---|
| 295 | * Per-memcg and per-lruvec counters track memory, consumed | 
|---|
| 296 | * by individual slab objects. These counters are actually | 
|---|
| 297 | * byte-precise. | 
|---|
| 298 | */ | 
|---|
| 299 | return (idx == NR_SLAB_RECLAIMABLE_B || | 
|---|
| 300 | idx == NR_SLAB_UNRECLAIMABLE_B); | 
|---|
| 301 | } | 
|---|
| 302 |  | 
|---|
| 303 | /* | 
|---|
| 304 | * We do arithmetic on the LRU lists in various places in the code, | 
|---|
| 305 | * so it is important to keep the active lists LRU_ACTIVE higher in | 
|---|
| 306 | * the array than the corresponding inactive lists, and to keep | 
|---|
| 307 | * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists. | 
|---|
| 308 | * | 
|---|
| 309 | * This has to be kept in sync with the statistics in zone_stat_item | 
|---|
| 310 | * above and the descriptions in vmstat_text in mm/vmstat.c | 
|---|
| 311 | */ | 
|---|
| 312 | #define LRU_BASE 0 | 
|---|
| 313 | #define LRU_ACTIVE 1 | 
|---|
| 314 | #define LRU_FILE 2 | 
|---|
| 315 |  | 
|---|
| 316 | enum lru_list { | 
|---|
| 317 | LRU_INACTIVE_ANON = LRU_BASE, | 
|---|
| 318 | LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE, | 
|---|
| 319 | LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE, | 
|---|
| 320 | LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE, | 
|---|
| 321 | LRU_UNEVICTABLE, | 
|---|
| 322 | NR_LRU_LISTS | 
|---|
| 323 | }; | 
|---|
| 324 |  | 
|---|
| 325 | enum vmscan_throttle_state { | 
|---|
| 326 | VMSCAN_THROTTLE_WRITEBACK, | 
|---|
| 327 | VMSCAN_THROTTLE_ISOLATED, | 
|---|
| 328 | VMSCAN_THROTTLE_NOPROGRESS, | 
|---|
| 329 | VMSCAN_THROTTLE_CONGESTED, | 
|---|
| 330 | NR_VMSCAN_THROTTLE, | 
|---|
| 331 | }; | 
|---|
| 332 |  | 
|---|
| 333 | #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++) | 
|---|
| 334 |  | 
|---|
| 335 | #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++) | 
|---|
| 336 |  | 
|---|
| 337 | static inline bool is_file_lru(enum lru_list lru) | 
|---|
| 338 | { | 
|---|
| 339 | return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE); | 
|---|
| 340 | } | 
|---|
| 341 |  | 
|---|
| 342 | static inline bool is_active_lru(enum lru_list lru) | 
|---|
| 343 | { | 
|---|
| 344 | return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE); | 
|---|
| 345 | } | 
|---|
| 346 |  | 
|---|
| 347 | #define WORKINGSET_ANON 0 | 
|---|
| 348 | #define WORKINGSET_FILE 1 | 
|---|
| 349 | #define ANON_AND_FILE 2 | 
|---|
| 350 |  | 
|---|
| 351 | enum lruvec_flags { | 
|---|
| 352 | /* | 
|---|
| 353 | * An lruvec has many dirty pages backed by a congested BDI: | 
|---|
| 354 | * 1. LRUVEC_CGROUP_CONGESTED is set by cgroup-level reclaim. | 
|---|
| 355 | *    It can be cleared by cgroup reclaim or kswapd. | 
|---|
| 356 | * 2. LRUVEC_NODE_CONGESTED is set by kswapd node-level reclaim. | 
|---|
| 357 | *    It can only be cleared by kswapd. | 
|---|
| 358 | * | 
|---|
| 359 | * Essentially, kswapd can unthrottle an lruvec throttled by cgroup | 
|---|
| 360 | * reclaim, but not vice versa. This only applies to the root cgroup. | 
|---|
| 361 | * The goal is to prevent cgroup reclaim on the root cgroup (e.g. | 
|---|
| 362 | * memory.reclaim) to unthrottle an unbalanced node (that was throttled | 
|---|
| 363 | * by kswapd). | 
|---|
| 364 | */ | 
|---|
| 365 | LRUVEC_CGROUP_CONGESTED, | 
|---|
| 366 | LRUVEC_NODE_CONGESTED, | 
|---|
| 367 | }; | 
|---|
| 368 |  | 
|---|
| 369 | #endif /* !__GENERATING_BOUNDS_H */ | 
|---|
| 370 |  | 
|---|
| 371 | /* | 
|---|
| 372 | * Evictable folios are divided into multiple generations. The youngest and the | 
|---|
| 373 | * oldest generation numbers, max_seq and min_seq, are monotonically increasing. | 
|---|
| 374 | * They form a sliding window of a variable size [MIN_NR_GENS, MAX_NR_GENS]. An | 
|---|
| 375 | * offset within MAX_NR_GENS, i.e., gen, indexes the LRU list of the | 
|---|
| 376 | * corresponding generation. The gen counter in folio->flags stores gen+1 while | 
|---|
| 377 | * a folio is on one of lrugen->folios[]. Otherwise it stores 0. | 
|---|
| 378 | * | 
|---|
| 379 | * After a folio is faulted in, the aging needs to check the accessed bit at | 
|---|
| 380 | * least twice before handing this folio over to the eviction. The first check | 
|---|
| 381 | * clears the accessed bit from the initial fault; the second check makes sure | 
|---|
| 382 | * this folio hasn't been used since then. This process, AKA second chance, | 
|---|
| 383 | * requires a minimum of two generations, hence MIN_NR_GENS. And to maintain ABI | 
|---|
| 384 | * compatibility with the active/inactive LRU, e.g., /proc/vmstat, these two | 
|---|
| 385 | * generations are considered active; the rest of generations, if they exist, | 
|---|
| 386 | * are considered inactive. See lru_gen_is_active(). | 
|---|
| 387 | * | 
|---|
| 388 | * PG_active is always cleared while a folio is on one of lrugen->folios[] so | 
|---|
| 389 | * that the sliding window needs not to worry about it. And it's set again when | 
|---|
| 390 | * a folio considered active is isolated for non-reclaiming purposes, e.g., | 
|---|
| 391 | * migration. See lru_gen_add_folio() and lru_gen_del_folio(). | 
|---|
| 392 | * | 
|---|
| 393 | * MAX_NR_GENS is set to 4 so that the multi-gen LRU can support twice the | 
|---|
| 394 | * number of categories of the active/inactive LRU when keeping track of | 
|---|
| 395 | * accesses through page tables. This requires order_base_2(MAX_NR_GENS+1) bits | 
|---|
| 396 | * in folio->flags, masked by LRU_GEN_MASK. | 
|---|
| 397 | */ | 
|---|
| 398 | #define MIN_NR_GENS		2U | 
|---|
| 399 | #define MAX_NR_GENS		4U | 
|---|
| 400 |  | 
|---|
| 401 | /* | 
|---|
| 402 | * Each generation is divided into multiple tiers. A folio accessed N times | 
|---|
| 403 | * through file descriptors is in tier order_base_2(N). A folio in the first | 
|---|
| 404 | * tier (N=0,1) is marked by PG_referenced unless it was faulted in through page | 
|---|
| 405 | * tables or read ahead. A folio in the last tier (MAX_NR_TIERS-1) is marked by | 
|---|
| 406 | * PG_workingset. A folio in any other tier (1<N<5) between the first and last | 
|---|
| 407 | * is marked by additional bits of LRU_REFS_WIDTH in folio->flags. | 
|---|
| 408 | * | 
|---|
| 409 | * In contrast to moving across generations which requires the LRU lock, moving | 
|---|
| 410 | * across tiers only involves atomic operations on folio->flags and therefore | 
|---|
| 411 | * has a negligible cost in the buffered access path. In the eviction path, | 
|---|
| 412 | * comparisons of refaulted/(evicted+protected) from the first tier and the rest | 
|---|
| 413 | * infer whether folios accessed multiple times through file descriptors are | 
|---|
| 414 | * statistically hot and thus worth protecting. | 
|---|
| 415 | * | 
|---|
| 416 | * MAX_NR_TIERS is set to 4 so that the multi-gen LRU can support twice the | 
|---|
| 417 | * number of categories of the active/inactive LRU when keeping track of | 
|---|
| 418 | * accesses through file descriptors. This uses MAX_NR_TIERS-2 spare bits in | 
|---|
| 419 | * folio->flags, masked by LRU_REFS_MASK. | 
|---|
| 420 | */ | 
|---|
| 421 | #define MAX_NR_TIERS		4U | 
|---|
| 422 |  | 
|---|
| 423 | #ifndef __GENERATING_BOUNDS_H | 
|---|
| 424 |  | 
|---|
| 425 | #define LRU_GEN_MASK		((BIT(LRU_GEN_WIDTH) - 1) << LRU_GEN_PGOFF) | 
|---|
| 426 | #define LRU_REFS_MASK		((BIT(LRU_REFS_WIDTH) - 1) << LRU_REFS_PGOFF) | 
|---|
| 427 |  | 
|---|
| 428 | /* | 
|---|
| 429 | * For folios accessed multiple times through file descriptors, | 
|---|
| 430 | * lru_gen_inc_refs() sets additional bits of LRU_REFS_WIDTH in folio->flags | 
|---|
| 431 | * after PG_referenced, then PG_workingset after LRU_REFS_WIDTH. After all its | 
|---|
| 432 | * bits are set, i.e., LRU_REFS_FLAGS|BIT(PG_workingset), a folio is lazily | 
|---|
| 433 | * promoted into the second oldest generation in the eviction path. And when | 
|---|
| 434 | * folio_inc_gen() does that, it clears LRU_REFS_FLAGS so that | 
|---|
| 435 | * lru_gen_inc_refs() can start over. Note that for this case, LRU_REFS_MASK is | 
|---|
| 436 | * only valid when PG_referenced is set. | 
|---|
| 437 | * | 
|---|
| 438 | * For folios accessed multiple times through page tables, folio_update_gen() | 
|---|
| 439 | * from a page table walk or lru_gen_set_refs() from a rmap walk sets | 
|---|
| 440 | * PG_referenced after the accessed bit is cleared for the first time. | 
|---|
| 441 | * Thereafter, those two paths set PG_workingset and promote folios to the | 
|---|
| 442 | * youngest generation. Like folio_inc_gen(), folio_update_gen() also clears | 
|---|
| 443 | * PG_referenced. Note that for this case, LRU_REFS_MASK is not used. | 
|---|
| 444 | * | 
|---|
| 445 | * For both cases above, after PG_workingset is set on a folio, it remains until | 
|---|
| 446 | * this folio is either reclaimed, or "deactivated" by lru_gen_clear_refs(). It | 
|---|
| 447 | * can be set again if lru_gen_test_recent() returns true upon a refault. | 
|---|
| 448 | */ | 
|---|
| 449 | #define LRU_REFS_FLAGS		(LRU_REFS_MASK | BIT(PG_referenced)) | 
|---|
| 450 |  | 
|---|
| 451 | struct lruvec; | 
|---|
| 452 | struct page_vma_mapped_walk; | 
|---|
| 453 |  | 
|---|
| 454 | #ifdef CONFIG_LRU_GEN | 
|---|
| 455 |  | 
|---|
| 456 | enum { | 
|---|
| 457 | LRU_GEN_ANON, | 
|---|
| 458 | LRU_GEN_FILE, | 
|---|
| 459 | }; | 
|---|
| 460 |  | 
|---|
| 461 | enum { | 
|---|
| 462 | LRU_GEN_CORE, | 
|---|
| 463 | LRU_GEN_MM_WALK, | 
|---|
| 464 | LRU_GEN_NONLEAF_YOUNG, | 
|---|
| 465 | NR_LRU_GEN_CAPS | 
|---|
| 466 | }; | 
|---|
| 467 |  | 
|---|
| 468 | #define MIN_LRU_BATCH		BITS_PER_LONG | 
|---|
| 469 | #define MAX_LRU_BATCH		(MIN_LRU_BATCH * 64) | 
|---|
| 470 |  | 
|---|
| 471 | /* whether to keep historical stats from evicted generations */ | 
|---|
| 472 | #ifdef CONFIG_LRU_GEN_STATS | 
|---|
| 473 | #define NR_HIST_GENS		MAX_NR_GENS | 
|---|
| 474 | #else | 
|---|
| 475 | #define NR_HIST_GENS		1U | 
|---|
| 476 | #endif | 
|---|
| 477 |  | 
|---|
| 478 | /* | 
|---|
| 479 | * The youngest generation number is stored in max_seq for both anon and file | 
|---|
| 480 | * types as they are aged on an equal footing. The oldest generation numbers are | 
|---|
| 481 | * stored in min_seq[] separately for anon and file types so that they can be | 
|---|
| 482 | * incremented independently. Ideally min_seq[] are kept in sync when both anon | 
|---|
| 483 | * and file types are evictable. However, to adapt to situations like extreme | 
|---|
| 484 | * swappiness, they are allowed to be out of sync by at most | 
|---|
| 485 | * MAX_NR_GENS-MIN_NR_GENS-1. | 
|---|
| 486 | * | 
|---|
| 487 | * The number of pages in each generation is eventually consistent and therefore | 
|---|
| 488 | * can be transiently negative when reset_batch_size() is pending. | 
|---|
| 489 | */ | 
|---|
| 490 | struct lru_gen_folio { | 
|---|
| 491 | /* the aging increments the youngest generation number */ | 
|---|
| 492 | unsigned long max_seq; | 
|---|
| 493 | /* the eviction increments the oldest generation numbers */ | 
|---|
| 494 | unsigned long min_seq[ANON_AND_FILE]; | 
|---|
| 495 | /* the birth time of each generation in jiffies */ | 
|---|
| 496 | unsigned long timestamps[MAX_NR_GENS]; | 
|---|
| 497 | /* the multi-gen LRU lists, lazily sorted on eviction */ | 
|---|
| 498 | struct list_head folios[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES]; | 
|---|
| 499 | /* the multi-gen LRU sizes, eventually consistent */ | 
|---|
| 500 | long nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES]; | 
|---|
| 501 | /* the exponential moving average of refaulted */ | 
|---|
| 502 | unsigned long avg_refaulted[ANON_AND_FILE][MAX_NR_TIERS]; | 
|---|
| 503 | /* the exponential moving average of evicted+protected */ | 
|---|
| 504 | unsigned long avg_total[ANON_AND_FILE][MAX_NR_TIERS]; | 
|---|
| 505 | /* can only be modified under the LRU lock */ | 
|---|
| 506 | unsigned long protected[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS]; | 
|---|
| 507 | /* can be modified without holding the LRU lock */ | 
|---|
| 508 | atomic_long_t evicted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS]; | 
|---|
| 509 | atomic_long_t refaulted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS]; | 
|---|
| 510 | /* whether the multi-gen LRU is enabled */ | 
|---|
| 511 | bool enabled; | 
|---|
| 512 | /* the memcg generation this lru_gen_folio belongs to */ | 
|---|
| 513 | u8 gen; | 
|---|
| 514 | /* the list segment this lru_gen_folio belongs to */ | 
|---|
| 515 | u8 seg; | 
|---|
| 516 | /* per-node lru_gen_folio list for global reclaim */ | 
|---|
| 517 | struct hlist_nulls_node list; | 
|---|
| 518 | }; | 
|---|
| 519 |  | 
|---|
| 520 | enum { | 
|---|
| 521 | MM_LEAF_TOTAL,		/* total leaf entries */ | 
|---|
| 522 | MM_LEAF_YOUNG,		/* young leaf entries */ | 
|---|
| 523 | MM_NONLEAF_FOUND,	/* non-leaf entries found in Bloom filters */ | 
|---|
| 524 | MM_NONLEAF_ADDED,	/* non-leaf entries added to Bloom filters */ | 
|---|
| 525 | NR_MM_STATS | 
|---|
| 526 | }; | 
|---|
| 527 |  | 
|---|
| 528 | /* double-buffering Bloom filters */ | 
|---|
| 529 | #define NR_BLOOM_FILTERS	2 | 
|---|
| 530 |  | 
|---|
| 531 | struct lru_gen_mm_state { | 
|---|
| 532 | /* synced with max_seq after each iteration */ | 
|---|
| 533 | unsigned long seq; | 
|---|
| 534 | /* where the current iteration continues after */ | 
|---|
| 535 | struct list_head *head; | 
|---|
| 536 | /* where the last iteration ended before */ | 
|---|
| 537 | struct list_head *tail; | 
|---|
| 538 | /* Bloom filters flip after each iteration */ | 
|---|
| 539 | unsigned long *filters[NR_BLOOM_FILTERS]; | 
|---|
| 540 | /* the mm stats for debugging */ | 
|---|
| 541 | unsigned long stats[NR_HIST_GENS][NR_MM_STATS]; | 
|---|
| 542 | }; | 
|---|
| 543 |  | 
|---|
| 544 | struct lru_gen_mm_walk { | 
|---|
| 545 | /* the lruvec under reclaim */ | 
|---|
| 546 | struct lruvec *lruvec; | 
|---|
| 547 | /* max_seq from lru_gen_folio: can be out of date */ | 
|---|
| 548 | unsigned long seq; | 
|---|
| 549 | /* the next address within an mm to scan */ | 
|---|
| 550 | unsigned long next_addr; | 
|---|
| 551 | /* to batch promoted pages */ | 
|---|
| 552 | int nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES]; | 
|---|
| 553 | /* to batch the mm stats */ | 
|---|
| 554 | int mm_stats[NR_MM_STATS]; | 
|---|
| 555 | /* total batched items */ | 
|---|
| 556 | int batched; | 
|---|
| 557 | int swappiness; | 
|---|
| 558 | bool force_scan; | 
|---|
| 559 | }; | 
|---|
| 560 |  | 
|---|
| 561 | /* | 
|---|
| 562 | * For each node, memcgs are divided into two generations: the old and the | 
|---|
| 563 | * young. For each generation, memcgs are randomly sharded into multiple bins | 
|---|
| 564 | * to improve scalability. For each bin, the hlist_nulls is virtually divided | 
|---|
| 565 | * into three segments: the head, the tail and the default. | 
|---|
| 566 | * | 
|---|
| 567 | * An onlining memcg is added to the tail of a random bin in the old generation. | 
|---|
| 568 | * The eviction starts at the head of a random bin in the old generation. The | 
|---|
| 569 | * per-node memcg generation counter, whose reminder (mod MEMCG_NR_GENS) indexes | 
|---|
| 570 | * the old generation, is incremented when all its bins become empty. | 
|---|
| 571 | * | 
|---|
| 572 | * There are four operations: | 
|---|
| 573 | * 1. MEMCG_LRU_HEAD, which moves a memcg to the head of a random bin in its | 
|---|
| 574 | *    current generation (old or young) and updates its "seg" to "head"; | 
|---|
| 575 | * 2. MEMCG_LRU_TAIL, which moves a memcg to the tail of a random bin in its | 
|---|
| 576 | *    current generation (old or young) and updates its "seg" to "tail"; | 
|---|
| 577 | * 3. MEMCG_LRU_OLD, which moves a memcg to the head of a random bin in the old | 
|---|
| 578 | *    generation, updates its "gen" to "old" and resets its "seg" to "default"; | 
|---|
| 579 | * 4. MEMCG_LRU_YOUNG, which moves a memcg to the tail of a random bin in the | 
|---|
| 580 | *    young generation, updates its "gen" to "young" and resets its "seg" to | 
|---|
| 581 | *    "default". | 
|---|
| 582 | * | 
|---|
| 583 | * The events that trigger the above operations are: | 
|---|
| 584 | * 1. Exceeding the soft limit, which triggers MEMCG_LRU_HEAD; | 
|---|
| 585 | * 2. The first attempt to reclaim a memcg below low, which triggers | 
|---|
| 586 | *    MEMCG_LRU_TAIL; | 
|---|
| 587 | * 3. The first attempt to reclaim a memcg offlined or below reclaimable size | 
|---|
| 588 | *    threshold, which triggers MEMCG_LRU_TAIL; | 
|---|
| 589 | * 4. The second attempt to reclaim a memcg offlined or below reclaimable size | 
|---|
| 590 | *    threshold, which triggers MEMCG_LRU_YOUNG; | 
|---|
| 591 | * 5. Attempting to reclaim a memcg below min, which triggers MEMCG_LRU_YOUNG; | 
|---|
| 592 | * 6. Finishing the aging on the eviction path, which triggers MEMCG_LRU_YOUNG; | 
|---|
| 593 | * 7. Offlining a memcg, which triggers MEMCG_LRU_OLD. | 
|---|
| 594 | * | 
|---|
| 595 | * Notes: | 
|---|
| 596 | * 1. Memcg LRU only applies to global reclaim, and the round-robin incrementing | 
|---|
| 597 | *    of their max_seq counters ensures the eventual fairness to all eligible | 
|---|
| 598 | *    memcgs. For memcg reclaim, it still relies on mem_cgroup_iter(). | 
|---|
| 599 | * 2. There are only two valid generations: old (seq) and young (seq+1). | 
|---|
| 600 | *    MEMCG_NR_GENS is set to three so that when reading the generation counter | 
|---|
| 601 | *    locklessly, a stale value (seq-1) does not wraparound to young. | 
|---|
| 602 | */ | 
|---|
| 603 | #define MEMCG_NR_GENS	3 | 
|---|
| 604 | #define MEMCG_NR_BINS	8 | 
|---|
| 605 |  | 
|---|
| 606 | struct lru_gen_memcg { | 
|---|
| 607 | /* the per-node memcg generation counter */ | 
|---|
| 608 | unsigned long seq; | 
|---|
| 609 | /* each memcg has one lru_gen_folio per node */ | 
|---|
| 610 | unsigned long nr_memcgs[MEMCG_NR_GENS]; | 
|---|
| 611 | /* per-node lru_gen_folio list for global reclaim */ | 
|---|
| 612 | struct hlist_nulls_head	fifo[MEMCG_NR_GENS][MEMCG_NR_BINS]; | 
|---|
| 613 | /* protects the above */ | 
|---|
| 614 | spinlock_t lock; | 
|---|
| 615 | }; | 
|---|
| 616 |  | 
|---|
| 617 | void lru_gen_init_pgdat(struct pglist_data *pgdat); | 
|---|
| 618 | void lru_gen_init_lruvec(struct lruvec *lruvec); | 
|---|
| 619 | bool lru_gen_look_around(struct page_vma_mapped_walk *pvmw); | 
|---|
| 620 |  | 
|---|
| 621 | void lru_gen_init_memcg(struct mem_cgroup *memcg); | 
|---|
| 622 | void lru_gen_exit_memcg(struct mem_cgroup *memcg); | 
|---|
| 623 | void lru_gen_online_memcg(struct mem_cgroup *memcg); | 
|---|
| 624 | void lru_gen_offline_memcg(struct mem_cgroup *memcg); | 
|---|
| 625 | void lru_gen_release_memcg(struct mem_cgroup *memcg); | 
|---|
| 626 | void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid); | 
|---|
| 627 |  | 
|---|
| 628 | #else /* !CONFIG_LRU_GEN */ | 
|---|
| 629 |  | 
|---|
| 630 | static inline void lru_gen_init_pgdat(struct pglist_data *pgdat) | 
|---|
| 631 | { | 
|---|
| 632 | } | 
|---|
| 633 |  | 
|---|
| 634 | static inline void lru_gen_init_lruvec(struct lruvec *lruvec) | 
|---|
| 635 | { | 
|---|
| 636 | } | 
|---|
| 637 |  | 
|---|
| 638 | static inline bool lru_gen_look_around(struct page_vma_mapped_walk *pvmw) | 
|---|
| 639 | { | 
|---|
| 640 | return false; | 
|---|
| 641 | } | 
|---|
| 642 |  | 
|---|
| 643 | static inline void lru_gen_init_memcg(struct mem_cgroup *memcg) | 
|---|
| 644 | { | 
|---|
| 645 | } | 
|---|
| 646 |  | 
|---|
| 647 | static inline void lru_gen_exit_memcg(struct mem_cgroup *memcg) | 
|---|
| 648 | { | 
|---|
| 649 | } | 
|---|
| 650 |  | 
|---|
| 651 | static inline void lru_gen_online_memcg(struct mem_cgroup *memcg) | 
|---|
| 652 | { | 
|---|
| 653 | } | 
|---|
| 654 |  | 
|---|
| 655 | static inline void lru_gen_offline_memcg(struct mem_cgroup *memcg) | 
|---|
| 656 | { | 
|---|
| 657 | } | 
|---|
| 658 |  | 
|---|
| 659 | static inline void lru_gen_release_memcg(struct mem_cgroup *memcg) | 
|---|
| 660 | { | 
|---|
| 661 | } | 
|---|
| 662 |  | 
|---|
| 663 | static inline void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid) | 
|---|
| 664 | { | 
|---|
| 665 | } | 
|---|
| 666 |  | 
|---|
| 667 | #endif /* CONFIG_LRU_GEN */ | 
|---|
| 668 |  | 
|---|
| 669 | struct lruvec { | 
|---|
| 670 | struct list_head		lists[NR_LRU_LISTS]; | 
|---|
| 671 | /* per lruvec lru_lock for memcg */ | 
|---|
| 672 | spinlock_t			lru_lock; | 
|---|
| 673 | /* | 
|---|
| 674 | * These track the cost of reclaiming one LRU - file or anon - | 
|---|
| 675 | * over the other. As the observed cost of reclaiming one LRU | 
|---|
| 676 | * increases, the reclaim scan balance tips toward the other. | 
|---|
| 677 | */ | 
|---|
| 678 | unsigned long			anon_cost; | 
|---|
| 679 | unsigned long			file_cost; | 
|---|
| 680 | /* Non-resident age, driven by LRU movement */ | 
|---|
| 681 | atomic_long_t			nonresident_age; | 
|---|
| 682 | /* Refaults at the time of last reclaim cycle */ | 
|---|
| 683 | unsigned long			refaults[ANON_AND_FILE]; | 
|---|
| 684 | /* Various lruvec state flags (enum lruvec_flags) */ | 
|---|
| 685 | unsigned long			flags; | 
|---|
| 686 | #ifdef CONFIG_LRU_GEN | 
|---|
| 687 | /* evictable pages divided into generations */ | 
|---|
| 688 | struct lru_gen_folio		lrugen; | 
|---|
| 689 | #ifdef CONFIG_LRU_GEN_WALKS_MMU | 
|---|
| 690 | /* to concurrently iterate lru_gen_mm_list */ | 
|---|
| 691 | struct lru_gen_mm_state		mm_state; | 
|---|
| 692 | #endif | 
|---|
| 693 | #endif /* CONFIG_LRU_GEN */ | 
|---|
| 694 | #ifdef CONFIG_MEMCG | 
|---|
| 695 | struct pglist_data *pgdat; | 
|---|
| 696 | #endif | 
|---|
| 697 | struct zswap_lruvec_state zswap_lruvec_state; | 
|---|
| 698 | }; | 
|---|
| 699 |  | 
|---|
| 700 | /* Isolate for asynchronous migration */ | 
|---|
| 701 | #define ISOLATE_ASYNC_MIGRATE	((__force isolate_mode_t)0x4) | 
|---|
| 702 | /* Isolate unevictable pages */ | 
|---|
| 703 | #define ISOLATE_UNEVICTABLE	((__force isolate_mode_t)0x8) | 
|---|
| 704 |  | 
|---|
| 705 | /* LRU Isolation modes. */ | 
|---|
| 706 | typedef unsigned __bitwise isolate_mode_t; | 
|---|
| 707 |  | 
|---|
| 708 | enum zone_watermarks { | 
|---|
| 709 | WMARK_MIN, | 
|---|
| 710 | WMARK_LOW, | 
|---|
| 711 | WMARK_HIGH, | 
|---|
| 712 | WMARK_PROMO, | 
|---|
| 713 | NR_WMARK | 
|---|
| 714 | }; | 
|---|
| 715 |  | 
|---|
| 716 | /* | 
|---|
| 717 | * One per migratetype for each PAGE_ALLOC_COSTLY_ORDER. Two additional lists | 
|---|
| 718 | * are added for THP. One PCP list is used by GPF_MOVABLE, and the other PCP list | 
|---|
| 719 | * is used by GFP_UNMOVABLE and GFP_RECLAIMABLE. | 
|---|
| 720 | */ | 
|---|
| 721 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
|---|
| 722 | #define NR_PCP_THP 2 | 
|---|
| 723 | #else | 
|---|
| 724 | #define NR_PCP_THP 0 | 
|---|
| 725 | #endif | 
|---|
| 726 | #define NR_LOWORDER_PCP_LISTS (MIGRATE_PCPTYPES * (PAGE_ALLOC_COSTLY_ORDER + 1)) | 
|---|
| 727 | #define NR_PCP_LISTS (NR_LOWORDER_PCP_LISTS + NR_PCP_THP) | 
|---|
| 728 |  | 
|---|
| 729 | /* | 
|---|
| 730 | * Flags used in pcp->flags field. | 
|---|
| 731 | * | 
|---|
| 732 | * PCPF_PREV_FREE_HIGH_ORDER: a high-order page is freed in the | 
|---|
| 733 | * previous page freeing.  To avoid to drain PCP for an accident | 
|---|
| 734 | * high-order page freeing. | 
|---|
| 735 | * | 
|---|
| 736 | * PCPF_FREE_HIGH_BATCH: preserve "pcp->batch" pages in PCP before | 
|---|
| 737 | * draining PCP for consecutive high-order pages freeing without | 
|---|
| 738 | * allocation if data cache slice of CPU is large enough.  To reduce | 
|---|
| 739 | * zone lock contention and keep cache-hot pages reusing. | 
|---|
| 740 | */ | 
|---|
| 741 | #define	PCPF_PREV_FREE_HIGH_ORDER	BIT(0) | 
|---|
| 742 | #define	PCPF_FREE_HIGH_BATCH		BIT(1) | 
|---|
| 743 |  | 
|---|
| 744 | struct per_cpu_pages { | 
|---|
| 745 | spinlock_t lock;	/* Protects lists field */ | 
|---|
| 746 | int count;		/* number of pages in the list */ | 
|---|
| 747 | int high;		/* high watermark, emptying needed */ | 
|---|
| 748 | int high_min;		/* min high watermark */ | 
|---|
| 749 | int high_max;		/* max high watermark */ | 
|---|
| 750 | int batch;		/* chunk size for buddy add/remove */ | 
|---|
| 751 | u8 flags;		/* protected by pcp->lock */ | 
|---|
| 752 | u8 alloc_factor;	/* batch scaling factor during allocate */ | 
|---|
| 753 | #ifdef CONFIG_NUMA | 
|---|
| 754 | u8 expire;		/* When 0, remote pagesets are drained */ | 
|---|
| 755 | #endif | 
|---|
| 756 | short free_count;	/* consecutive free count */ | 
|---|
| 757 |  | 
|---|
| 758 | /* Lists of pages, one per migrate type stored on the pcp-lists */ | 
|---|
| 759 | struct list_head lists[NR_PCP_LISTS]; | 
|---|
| 760 | } ____cacheline_aligned_in_smp; | 
|---|
| 761 |  | 
|---|
| 762 | struct per_cpu_zonestat { | 
|---|
| 763 | #ifdef CONFIG_SMP | 
|---|
| 764 | s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS]; | 
|---|
| 765 | s8 stat_threshold; | 
|---|
| 766 | #endif | 
|---|
| 767 | #ifdef CONFIG_NUMA | 
|---|
| 768 | /* | 
|---|
| 769 | * Low priority inaccurate counters that are only folded | 
|---|
| 770 | * on demand. Use a large type to avoid the overhead of | 
|---|
| 771 | * folding during refresh_cpu_vm_stats. | 
|---|
| 772 | */ | 
|---|
| 773 | unsigned long vm_numa_event[NR_VM_NUMA_EVENT_ITEMS]; | 
|---|
| 774 | #endif | 
|---|
| 775 | }; | 
|---|
| 776 |  | 
|---|
| 777 | struct per_cpu_nodestat { | 
|---|
| 778 | s8 stat_threshold; | 
|---|
| 779 | s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS]; | 
|---|
| 780 | }; | 
|---|
| 781 |  | 
|---|
| 782 | #endif /* !__GENERATING_BOUNDS.H */ | 
|---|
| 783 |  | 
|---|
| 784 | enum zone_type { | 
|---|
| 785 | /* | 
|---|
| 786 | * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able | 
|---|
| 787 | * to DMA to all of the addressable memory (ZONE_NORMAL). | 
|---|
| 788 | * On architectures where this area covers the whole 32 bit address | 
|---|
| 789 | * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller | 
|---|
| 790 | * DMA addressing constraints. This distinction is important as a 32bit | 
|---|
| 791 | * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit | 
|---|
| 792 | * platforms may need both zones as they support peripherals with | 
|---|
| 793 | * different DMA addressing limitations. | 
|---|
| 794 | */ | 
|---|
| 795 | #ifdef CONFIG_ZONE_DMA | 
|---|
| 796 | ZONE_DMA, | 
|---|
| 797 | #endif | 
|---|
| 798 | #ifdef CONFIG_ZONE_DMA32 | 
|---|
| 799 | ZONE_DMA32, | 
|---|
| 800 | #endif | 
|---|
| 801 | /* | 
|---|
| 802 | * Normal addressable memory is in ZONE_NORMAL. DMA operations can be | 
|---|
| 803 | * performed on pages in ZONE_NORMAL if the DMA devices support | 
|---|
| 804 | * transfers to all addressable memory. | 
|---|
| 805 | */ | 
|---|
| 806 | ZONE_NORMAL, | 
|---|
| 807 | #ifdef CONFIG_HIGHMEM | 
|---|
| 808 | /* | 
|---|
| 809 | * A memory area that is only addressable by the kernel through | 
|---|
| 810 | * mapping portions into its own address space. This is for example | 
|---|
| 811 | * used by i386 to allow the kernel to address the memory beyond | 
|---|
| 812 | * 900MB. The kernel will set up special mappings (page | 
|---|
| 813 | * table entries on i386) for each page that the kernel needs to | 
|---|
| 814 | * access. | 
|---|
| 815 | */ | 
|---|
| 816 | ZONE_HIGHMEM, | 
|---|
| 817 | #endif | 
|---|
| 818 | /* | 
|---|
| 819 | * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains | 
|---|
| 820 | * movable pages with few exceptional cases described below. Main use | 
|---|
| 821 | * cases for ZONE_MOVABLE are to make memory offlining/unplug more | 
|---|
| 822 | * likely to succeed, and to locally limit unmovable allocations - e.g., | 
|---|
| 823 | * to increase the number of THP/huge pages. Notable special cases are: | 
|---|
| 824 | * | 
|---|
| 825 | * 1. Pinned pages: (long-term) pinning of movable pages might | 
|---|
| 826 | *    essentially turn such pages unmovable. Therefore, we do not allow | 
|---|
| 827 | *    pinning long-term pages in ZONE_MOVABLE. When pages are pinned and | 
|---|
| 828 | *    faulted, they come from the right zone right away. However, it is | 
|---|
| 829 | *    still possible that address space already has pages in | 
|---|
| 830 | *    ZONE_MOVABLE at the time when pages are pinned (i.e. user has | 
|---|
| 831 | *    touches that memory before pinning). In such case we migrate them | 
|---|
| 832 | *    to a different zone. When migration fails - pinning fails. | 
|---|
| 833 | * 2. memblock allocations: kernelcore/movablecore setups might create | 
|---|
| 834 | *    situations where ZONE_MOVABLE contains unmovable allocations | 
|---|
| 835 | *    after boot. Memory offlining and allocations fail early. | 
|---|
| 836 | * 3. Memory holes: kernelcore/movablecore setups might create very rare | 
|---|
| 837 | *    situations where ZONE_MOVABLE contains memory holes after boot, | 
|---|
| 838 | *    for example, if we have sections that are only partially | 
|---|
| 839 | *    populated. Memory offlining and allocations fail early. | 
|---|
| 840 | * 4. PG_hwpoison pages: while poisoned pages can be skipped during | 
|---|
| 841 | *    memory offlining, such pages cannot be allocated. | 
|---|
| 842 | * 5. Unmovable PG_offline pages: in paravirtualized environments, | 
|---|
| 843 | *    hotplugged memory blocks might only partially be managed by the | 
|---|
| 844 | *    buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The | 
|---|
| 845 | *    parts not manged by the buddy are unmovable PG_offline pages. In | 
|---|
| 846 | *    some cases (virtio-mem), such pages can be skipped during | 
|---|
| 847 | *    memory offlining, however, cannot be moved/allocated. These | 
|---|
| 848 | *    techniques might use alloc_contig_range() to hide previously | 
|---|
| 849 | *    exposed pages from the buddy again (e.g., to implement some sort | 
|---|
| 850 | *    of memory unplug in virtio-mem). | 
|---|
| 851 | * 6. ZERO_PAGE(0), kernelcore/movablecore setups might create | 
|---|
| 852 | *    situations where ZERO_PAGE(0) which is allocated differently | 
|---|
| 853 | *    on different platforms may end up in a movable zone. ZERO_PAGE(0) | 
|---|
| 854 | *    cannot be migrated. | 
|---|
| 855 | * 7. Memory-hotplug: when using memmap_on_memory and onlining the | 
|---|
| 856 | *    memory to the MOVABLE zone, the vmemmap pages are also placed in | 
|---|
| 857 | *    such zone. Such pages cannot be really moved around as they are | 
|---|
| 858 | *    self-stored in the range, but they are treated as movable when | 
|---|
| 859 | *    the range they describe is about to be offlined. | 
|---|
| 860 | * | 
|---|
| 861 | * In general, no unmovable allocations that degrade memory offlining | 
|---|
| 862 | * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range()) | 
|---|
| 863 | * have to expect that migrating pages in ZONE_MOVABLE can fail (even | 
|---|
| 864 | * if has_unmovable_pages() states that there are no unmovable pages, | 
|---|
| 865 | * there can be false negatives). | 
|---|
| 866 | */ | 
|---|
| 867 | ZONE_MOVABLE, | 
|---|
| 868 | #ifdef CONFIG_ZONE_DEVICE | 
|---|
| 869 | ZONE_DEVICE, | 
|---|
| 870 | #endif | 
|---|
| 871 | __MAX_NR_ZONES | 
|---|
| 872 |  | 
|---|
| 873 | }; | 
|---|
| 874 |  | 
|---|
| 875 | #ifndef __GENERATING_BOUNDS_H | 
|---|
| 876 |  | 
|---|
| 877 | #define ASYNC_AND_SYNC 2 | 
|---|
| 878 |  | 
|---|
| 879 | struct zone { | 
|---|
| 880 | /* Read-mostly fields */ | 
|---|
| 881 |  | 
|---|
| 882 | /* zone watermarks, access with *_wmark_pages(zone) macros */ | 
|---|
| 883 | unsigned long _watermark[NR_WMARK]; | 
|---|
| 884 | unsigned long watermark_boost; | 
|---|
| 885 |  | 
|---|
| 886 | unsigned long nr_reserved_highatomic; | 
|---|
| 887 | unsigned long nr_free_highatomic; | 
|---|
| 888 |  | 
|---|
| 889 | /* | 
|---|
| 890 | * We don't know if the memory that we're going to allocate will be | 
|---|
| 891 | * freeable or/and it will be released eventually, so to avoid totally | 
|---|
| 892 | * wasting several GB of ram we must reserve some of the lower zone | 
|---|
| 893 | * memory (otherwise we risk to run OOM on the lower zones despite | 
|---|
| 894 | * there being tons of freeable ram on the higher zones).  This array is | 
|---|
| 895 | * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl | 
|---|
| 896 | * changes. | 
|---|
| 897 | */ | 
|---|
| 898 | long lowmem_reserve[MAX_NR_ZONES]; | 
|---|
| 899 |  | 
|---|
| 900 | #ifdef CONFIG_NUMA | 
|---|
| 901 | int node; | 
|---|
| 902 | #endif | 
|---|
| 903 | struct pglist_data	*zone_pgdat; | 
|---|
| 904 | struct per_cpu_pages	__percpu *per_cpu_pageset; | 
|---|
| 905 | struct per_cpu_zonestat	__percpu *per_cpu_zonestats; | 
|---|
| 906 | /* | 
|---|
| 907 | * the high and batch values are copied to individual pagesets for | 
|---|
| 908 | * faster access | 
|---|
| 909 | */ | 
|---|
| 910 | int pageset_high_min; | 
|---|
| 911 | int pageset_high_max; | 
|---|
| 912 | int pageset_batch; | 
|---|
| 913 |  | 
|---|
| 914 | #ifndef CONFIG_SPARSEMEM | 
|---|
| 915 | /* | 
|---|
| 916 | * Flags for a pageblock_nr_pages block. See pageblock-flags.h. | 
|---|
| 917 | * In SPARSEMEM, this map is stored in struct mem_section | 
|---|
| 918 | */ | 
|---|
| 919 | unsigned long		*pageblock_flags; | 
|---|
| 920 | #endif /* CONFIG_SPARSEMEM */ | 
|---|
| 921 |  | 
|---|
| 922 | /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ | 
|---|
| 923 | unsigned long		zone_start_pfn; | 
|---|
| 924 |  | 
|---|
| 925 | /* | 
|---|
| 926 | * spanned_pages is the total pages spanned by the zone, including | 
|---|
| 927 | * holes, which is calculated as: | 
|---|
| 928 | * 	spanned_pages = zone_end_pfn - zone_start_pfn; | 
|---|
| 929 | * | 
|---|
| 930 | * present_pages is physical pages existing within the zone, which | 
|---|
| 931 | * is calculated as: | 
|---|
| 932 | *	present_pages = spanned_pages - absent_pages(pages in holes); | 
|---|
| 933 | * | 
|---|
| 934 | * present_early_pages is present pages existing within the zone | 
|---|
| 935 | * located on memory available since early boot, excluding hotplugged | 
|---|
| 936 | * memory. | 
|---|
| 937 | * | 
|---|
| 938 | * managed_pages is present pages managed by the buddy system, which | 
|---|
| 939 | * is calculated as (reserved_pages includes pages allocated by the | 
|---|
| 940 | * bootmem allocator): | 
|---|
| 941 | *	managed_pages = present_pages - reserved_pages; | 
|---|
| 942 | * | 
|---|
| 943 | * cma pages is present pages that are assigned for CMA use | 
|---|
| 944 | * (MIGRATE_CMA). | 
|---|
| 945 | * | 
|---|
| 946 | * So present_pages may be used by memory hotplug or memory power | 
|---|
| 947 | * management logic to figure out unmanaged pages by checking | 
|---|
| 948 | * (present_pages - managed_pages). And managed_pages should be used | 
|---|
| 949 | * by page allocator and vm scanner to calculate all kinds of watermarks | 
|---|
| 950 | * and thresholds. | 
|---|
| 951 | * | 
|---|
| 952 | * Locking rules: | 
|---|
| 953 | * | 
|---|
| 954 | * zone_start_pfn and spanned_pages are protected by span_seqlock. | 
|---|
| 955 | * It is a seqlock because it has to be read outside of zone->lock, | 
|---|
| 956 | * and it is done in the main allocator path.  But, it is written | 
|---|
| 957 | * quite infrequently. | 
|---|
| 958 | * | 
|---|
| 959 | * The span_seq lock is declared along with zone->lock because it is | 
|---|
| 960 | * frequently read in proximity to zone->lock.  It's good to | 
|---|
| 961 | * give them a chance of being in the same cacheline. | 
|---|
| 962 | * | 
|---|
| 963 | * Write access to present_pages at runtime should be protected by | 
|---|
| 964 | * mem_hotplug_begin/done(). Any reader who can't tolerant drift of | 
|---|
| 965 | * present_pages should use get_online_mems() to get a stable value. | 
|---|
| 966 | */ | 
|---|
| 967 | atomic_long_t		managed_pages; | 
|---|
| 968 | unsigned long		spanned_pages; | 
|---|
| 969 | unsigned long		present_pages; | 
|---|
| 970 | #if defined(CONFIG_MEMORY_HOTPLUG) | 
|---|
| 971 | unsigned long		present_early_pages; | 
|---|
| 972 | #endif | 
|---|
| 973 | #ifdef CONFIG_CMA | 
|---|
| 974 | unsigned long		cma_pages; | 
|---|
| 975 | #endif | 
|---|
| 976 |  | 
|---|
| 977 | const char		*name; | 
|---|
| 978 |  | 
|---|
| 979 | #ifdef CONFIG_MEMORY_ISOLATION | 
|---|
| 980 | /* | 
|---|
| 981 | * Number of isolated pageblock. It is used to solve incorrect | 
|---|
| 982 | * freepage counting problem due to racy retrieving migratetype | 
|---|
| 983 | * of pageblock. Protected by zone->lock. | 
|---|
| 984 | */ | 
|---|
| 985 | unsigned long		nr_isolate_pageblock; | 
|---|
| 986 | #endif | 
|---|
| 987 |  | 
|---|
| 988 | #ifdef CONFIG_MEMORY_HOTPLUG | 
|---|
| 989 | /* see spanned/present_pages for more description */ | 
|---|
| 990 | seqlock_t		span_seqlock; | 
|---|
| 991 | #endif | 
|---|
| 992 |  | 
|---|
| 993 | int initialized; | 
|---|
| 994 |  | 
|---|
| 995 | /* Write-intensive fields used from the page allocator */ | 
|---|
| 996 | CACHELINE_PADDING(_pad1_); | 
|---|
| 997 |  | 
|---|
| 998 | /* free areas of different sizes */ | 
|---|
| 999 | struct free_area	free_area[NR_PAGE_ORDERS]; | 
|---|
| 1000 |  | 
|---|
| 1001 | #ifdef CONFIG_UNACCEPTED_MEMORY | 
|---|
| 1002 | /* Pages to be accepted. All pages on the list are MAX_PAGE_ORDER */ | 
|---|
| 1003 | struct list_head	unaccepted_pages; | 
|---|
| 1004 |  | 
|---|
| 1005 | /* To be called once the last page in the zone is accepted */ | 
|---|
| 1006 | struct work_struct	unaccepted_cleanup; | 
|---|
| 1007 | #endif | 
|---|
| 1008 |  | 
|---|
| 1009 | /* zone flags, see below */ | 
|---|
| 1010 | unsigned long		flags; | 
|---|
| 1011 |  | 
|---|
| 1012 | /* Primarily protects free_area */ | 
|---|
| 1013 | spinlock_t		lock; | 
|---|
| 1014 |  | 
|---|
| 1015 | /* Pages to be freed when next trylock succeeds */ | 
|---|
| 1016 | struct llist_head	trylock_free_pages; | 
|---|
| 1017 |  | 
|---|
| 1018 | /* Write-intensive fields used by compaction and vmstats. */ | 
|---|
| 1019 | CACHELINE_PADDING(_pad2_); | 
|---|
| 1020 |  | 
|---|
| 1021 | /* | 
|---|
| 1022 | * When free pages are below this point, additional steps are taken | 
|---|
| 1023 | * when reading the number of free pages to avoid per-cpu counter | 
|---|
| 1024 | * drift allowing watermarks to be breached | 
|---|
| 1025 | */ | 
|---|
| 1026 | unsigned long percpu_drift_mark; | 
|---|
| 1027 |  | 
|---|
| 1028 | #if defined CONFIG_COMPACTION || defined CONFIG_CMA | 
|---|
| 1029 | /* pfn where compaction free scanner should start */ | 
|---|
| 1030 | unsigned long		compact_cached_free_pfn; | 
|---|
| 1031 | /* pfn where compaction migration scanner should start */ | 
|---|
| 1032 | unsigned long		compact_cached_migrate_pfn[ASYNC_AND_SYNC]; | 
|---|
| 1033 | unsigned long		compact_init_migrate_pfn; | 
|---|
| 1034 | unsigned long		compact_init_free_pfn; | 
|---|
| 1035 | #endif | 
|---|
| 1036 |  | 
|---|
| 1037 | #ifdef CONFIG_COMPACTION | 
|---|
| 1038 | /* | 
|---|
| 1039 | * On compaction failure, 1<<compact_defer_shift compactions | 
|---|
| 1040 | * are skipped before trying again. The number attempted since | 
|---|
| 1041 | * last failure is tracked with compact_considered. | 
|---|
| 1042 | * compact_order_failed is the minimum compaction failed order. | 
|---|
| 1043 | */ | 
|---|
| 1044 | unsigned int		compact_considered; | 
|---|
| 1045 | unsigned int		compact_defer_shift; | 
|---|
| 1046 | int			compact_order_failed; | 
|---|
| 1047 | #endif | 
|---|
| 1048 |  | 
|---|
| 1049 | #if defined CONFIG_COMPACTION || defined CONFIG_CMA | 
|---|
| 1050 | /* Set to true when the PG_migrate_skip bits should be cleared */ | 
|---|
| 1051 | bool			compact_blockskip_flush; | 
|---|
| 1052 | #endif | 
|---|
| 1053 |  | 
|---|
| 1054 | bool			contiguous; | 
|---|
| 1055 |  | 
|---|
| 1056 | CACHELINE_PADDING(_pad3_); | 
|---|
| 1057 | /* Zone statistics */ | 
|---|
| 1058 | atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS]; | 
|---|
| 1059 | atomic_long_t		vm_numa_event[NR_VM_NUMA_EVENT_ITEMS]; | 
|---|
| 1060 | } ____cacheline_internodealigned_in_smp; | 
|---|
| 1061 |  | 
|---|
| 1062 | enum pgdat_flags { | 
|---|
| 1063 | PGDAT_DIRTY,			/* reclaim scanning has recently found | 
|---|
| 1064 | * many dirty file pages at the tail | 
|---|
| 1065 | * of the LRU. | 
|---|
| 1066 | */ | 
|---|
| 1067 | PGDAT_WRITEBACK,		/* reclaim scanning has recently found | 
|---|
| 1068 | * many pages under writeback | 
|---|
| 1069 | */ | 
|---|
| 1070 | PGDAT_RECLAIM_LOCKED,		/* prevents concurrent reclaim */ | 
|---|
| 1071 | }; | 
|---|
| 1072 |  | 
|---|
| 1073 | enum zone_flags { | 
|---|
| 1074 | ZONE_BOOSTED_WATERMARK,		/* zone recently boosted watermarks. | 
|---|
| 1075 | * Cleared when kswapd is woken. | 
|---|
| 1076 | */ | 
|---|
| 1077 | ZONE_RECLAIM_ACTIVE,		/* kswapd may be scanning the zone. */ | 
|---|
| 1078 | ZONE_BELOW_HIGH,		/* zone is below high watermark. */ | 
|---|
| 1079 | }; | 
|---|
| 1080 |  | 
|---|
| 1081 | static inline unsigned long wmark_pages(const struct zone *z, | 
|---|
| 1082 | enum zone_watermarks w) | 
|---|
| 1083 | { | 
|---|
| 1084 | return z->_watermark[w] + z->watermark_boost; | 
|---|
| 1085 | } | 
|---|
| 1086 |  | 
|---|
| 1087 | static inline unsigned long min_wmark_pages(const struct zone *z) | 
|---|
| 1088 | { | 
|---|
| 1089 | return wmark_pages(z, w: WMARK_MIN); | 
|---|
| 1090 | } | 
|---|
| 1091 |  | 
|---|
| 1092 | static inline unsigned long low_wmark_pages(const struct zone *z) | 
|---|
| 1093 | { | 
|---|
| 1094 | return wmark_pages(z, w: WMARK_LOW); | 
|---|
| 1095 | } | 
|---|
| 1096 |  | 
|---|
| 1097 | static inline unsigned long high_wmark_pages(const struct zone *z) | 
|---|
| 1098 | { | 
|---|
| 1099 | return wmark_pages(z, w: WMARK_HIGH); | 
|---|
| 1100 | } | 
|---|
| 1101 |  | 
|---|
| 1102 | static inline unsigned long promo_wmark_pages(const struct zone *z) | 
|---|
| 1103 | { | 
|---|
| 1104 | return wmark_pages(z, w: WMARK_PROMO); | 
|---|
| 1105 | } | 
|---|
| 1106 |  | 
|---|
| 1107 | static inline unsigned long zone_managed_pages(const struct zone *zone) | 
|---|
| 1108 | { | 
|---|
| 1109 | return (unsigned long)atomic_long_read(v: &zone->managed_pages); | 
|---|
| 1110 | } | 
|---|
| 1111 |  | 
|---|
| 1112 | static inline unsigned long zone_cma_pages(struct zone *zone) | 
|---|
| 1113 | { | 
|---|
| 1114 | #ifdef CONFIG_CMA | 
|---|
| 1115 | return zone->cma_pages; | 
|---|
| 1116 | #else | 
|---|
| 1117 | return 0; | 
|---|
| 1118 | #endif | 
|---|
| 1119 | } | 
|---|
| 1120 |  | 
|---|
| 1121 | static inline unsigned long zone_end_pfn(const struct zone *zone) | 
|---|
| 1122 | { | 
|---|
| 1123 | return zone->zone_start_pfn + zone->spanned_pages; | 
|---|
| 1124 | } | 
|---|
| 1125 |  | 
|---|
| 1126 | static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn) | 
|---|
| 1127 | { | 
|---|
| 1128 | return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone); | 
|---|
| 1129 | } | 
|---|
| 1130 |  | 
|---|
| 1131 | static inline bool zone_is_initialized(const struct zone *zone) | 
|---|
| 1132 | { | 
|---|
| 1133 | return zone->initialized; | 
|---|
| 1134 | } | 
|---|
| 1135 |  | 
|---|
| 1136 | static inline bool zone_is_empty(const struct zone *zone) | 
|---|
| 1137 | { | 
|---|
| 1138 | return zone->spanned_pages == 0; | 
|---|
| 1139 | } | 
|---|
| 1140 |  | 
|---|
| 1141 | #ifndef BUILD_VDSO32_64 | 
|---|
| 1142 | /* | 
|---|
| 1143 | * The zone field is never updated after free_area_init_core() | 
|---|
| 1144 | * sets it, so none of the operations on it need to be atomic. | 
|---|
| 1145 | */ | 
|---|
| 1146 |  | 
|---|
| 1147 | /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ | 
|---|
| 1148 | #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH) | 
|---|
| 1149 | #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH) | 
|---|
| 1150 | #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH) | 
|---|
| 1151 | #define LAST_CPUPID_PGOFF	(ZONES_PGOFF - LAST_CPUPID_WIDTH) | 
|---|
| 1152 | #define KASAN_TAG_PGOFF		(LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH) | 
|---|
| 1153 | #define LRU_GEN_PGOFF		(KASAN_TAG_PGOFF - LRU_GEN_WIDTH) | 
|---|
| 1154 | #define LRU_REFS_PGOFF		(LRU_GEN_PGOFF - LRU_REFS_WIDTH) | 
|---|
| 1155 |  | 
|---|
| 1156 | /* | 
|---|
| 1157 | * Define the bit shifts to access each section.  For non-existent | 
|---|
| 1158 | * sections we define the shift as 0; that plus a 0 mask ensures | 
|---|
| 1159 | * the compiler will optimise away reference to them. | 
|---|
| 1160 | */ | 
|---|
| 1161 | #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) | 
|---|
| 1162 | #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0)) | 
|---|
| 1163 | #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0)) | 
|---|
| 1164 | #define LAST_CPUPID_PGSHIFT	(LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) | 
|---|
| 1165 | #define KASAN_TAG_PGSHIFT	(KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0)) | 
|---|
| 1166 |  | 
|---|
| 1167 | /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ | 
|---|
| 1168 | #ifdef NODE_NOT_IN_PAGE_FLAGS | 
|---|
| 1169 | #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT) | 
|---|
| 1170 | #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF) ? \ | 
|---|
| 1171 | SECTIONS_PGOFF : ZONES_PGOFF) | 
|---|
| 1172 | #else | 
|---|
| 1173 | #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT) | 
|---|
| 1174 | #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF) ? \ | 
|---|
| 1175 | NODES_PGOFF : ZONES_PGOFF) | 
|---|
| 1176 | #endif | 
|---|
| 1177 |  | 
|---|
| 1178 | #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0)) | 
|---|
| 1179 |  | 
|---|
| 1180 | #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1) | 
|---|
| 1181 | #define NODES_MASK		((1UL << NODES_WIDTH) - 1) | 
|---|
| 1182 | #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1) | 
|---|
| 1183 | #define LAST_CPUPID_MASK	((1UL << LAST_CPUPID_SHIFT) - 1) | 
|---|
| 1184 | #define KASAN_TAG_MASK		((1UL << KASAN_TAG_WIDTH) - 1) | 
|---|
| 1185 | #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1) | 
|---|
| 1186 |  | 
|---|
| 1187 | static inline enum zone_type memdesc_zonenum(memdesc_flags_t flags) | 
|---|
| 1188 | { | 
|---|
| 1189 | ASSERT_EXCLUSIVE_BITS(flags.f, ZONES_MASK << ZONES_PGSHIFT); | 
|---|
| 1190 | return (flags.f >> ZONES_PGSHIFT) & ZONES_MASK; | 
|---|
| 1191 | } | 
|---|
| 1192 |  | 
|---|
| 1193 | static inline enum zone_type page_zonenum(const struct page *page) | 
|---|
| 1194 | { | 
|---|
| 1195 | return memdesc_zonenum(flags: page->flags); | 
|---|
| 1196 | } | 
|---|
| 1197 |  | 
|---|
| 1198 | static inline enum zone_type folio_zonenum(const struct folio *folio) | 
|---|
| 1199 | { | 
|---|
| 1200 | return memdesc_zonenum(flags: folio->flags); | 
|---|
| 1201 | } | 
|---|
| 1202 |  | 
|---|
| 1203 | #ifdef CONFIG_ZONE_DEVICE | 
|---|
| 1204 | static inline bool memdesc_is_zone_device(memdesc_flags_t mdf) | 
|---|
| 1205 | { | 
|---|
| 1206 | return memdesc_zonenum(mdf) == ZONE_DEVICE; | 
|---|
| 1207 | } | 
|---|
| 1208 |  | 
|---|
| 1209 | static inline struct dev_pagemap *page_pgmap(const struct page *page) | 
|---|
| 1210 | { | 
|---|
| 1211 | VM_WARN_ON_ONCE_PAGE(!memdesc_is_zone_device(page->flags), page); | 
|---|
| 1212 | return page_folio(page)->pgmap; | 
|---|
| 1213 | } | 
|---|
| 1214 |  | 
|---|
| 1215 | /* | 
|---|
| 1216 | * Consecutive zone device pages should not be merged into the same sgl | 
|---|
| 1217 | * or bvec segment with other types of pages or if they belong to different | 
|---|
| 1218 | * pgmaps. Otherwise getting the pgmap of a given segment is not possible | 
|---|
| 1219 | * without scanning the entire segment. This helper returns true either if | 
|---|
| 1220 | * both pages are not zone device pages or both pages are zone device pages | 
|---|
| 1221 | * with the same pgmap. | 
|---|
| 1222 | */ | 
|---|
| 1223 | static inline bool zone_device_pages_have_same_pgmap(const struct page *a, | 
|---|
| 1224 | const struct page *b) | 
|---|
| 1225 | { | 
|---|
| 1226 | if (memdesc_is_zone_device(a->flags) != memdesc_is_zone_device(b->flags)) | 
|---|
| 1227 | return false; | 
|---|
| 1228 | if (!memdesc_is_zone_device(a->flags)) | 
|---|
| 1229 | return true; | 
|---|
| 1230 | return page_pgmap(a) == page_pgmap(b); | 
|---|
| 1231 | } | 
|---|
| 1232 |  | 
|---|
| 1233 | extern void memmap_init_zone_device(struct zone *, unsigned long, | 
|---|
| 1234 | unsigned long, struct dev_pagemap *); | 
|---|
| 1235 | #else | 
|---|
| 1236 | static inline bool memdesc_is_zone_device(memdesc_flags_t mdf) | 
|---|
| 1237 | { | 
|---|
| 1238 | return false; | 
|---|
| 1239 | } | 
|---|
| 1240 | static inline bool zone_device_pages_have_same_pgmap(const struct page *a, | 
|---|
| 1241 | const struct page *b) | 
|---|
| 1242 | { | 
|---|
| 1243 | return true; | 
|---|
| 1244 | } | 
|---|
| 1245 | static inline struct dev_pagemap *page_pgmap(const struct page *page) | 
|---|
| 1246 | { | 
|---|
| 1247 | return NULL; | 
|---|
| 1248 | } | 
|---|
| 1249 | #endif | 
|---|
| 1250 |  | 
|---|
| 1251 | static inline bool is_zone_device_page(const struct page *page) | 
|---|
| 1252 | { | 
|---|
| 1253 | return memdesc_is_zone_device(mdf: page->flags); | 
|---|
| 1254 | } | 
|---|
| 1255 |  | 
|---|
| 1256 | static inline bool folio_is_zone_device(const struct folio *folio) | 
|---|
| 1257 | { | 
|---|
| 1258 | return memdesc_is_zone_device(mdf: folio->flags); | 
|---|
| 1259 | } | 
|---|
| 1260 |  | 
|---|
| 1261 | static inline bool is_zone_movable_page(const struct page *page) | 
|---|
| 1262 | { | 
|---|
| 1263 | return page_zonenum(page) == ZONE_MOVABLE; | 
|---|
| 1264 | } | 
|---|
| 1265 |  | 
|---|
| 1266 | static inline bool folio_is_zone_movable(const struct folio *folio) | 
|---|
| 1267 | { | 
|---|
| 1268 | return folio_zonenum(folio) == ZONE_MOVABLE; | 
|---|
| 1269 | } | 
|---|
| 1270 | #endif | 
|---|
| 1271 |  | 
|---|
| 1272 | /* | 
|---|
| 1273 | * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty | 
|---|
| 1274 | * intersection with the given zone | 
|---|
| 1275 | */ | 
|---|
| 1276 | static inline bool zone_intersects(const struct zone *zone, | 
|---|
| 1277 | unsigned long start_pfn, unsigned long nr_pages) | 
|---|
| 1278 | { | 
|---|
| 1279 | if (zone_is_empty(zone)) | 
|---|
| 1280 | return false; | 
|---|
| 1281 | if (start_pfn >= zone_end_pfn(zone) || | 
|---|
| 1282 | start_pfn + nr_pages <= zone->zone_start_pfn) | 
|---|
| 1283 | return false; | 
|---|
| 1284 |  | 
|---|
| 1285 | return true; | 
|---|
| 1286 | } | 
|---|
| 1287 |  | 
|---|
| 1288 | /* | 
|---|
| 1289 | * The "priority" of VM scanning is how much of the queues we will scan in one | 
|---|
| 1290 | * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the | 
|---|
| 1291 | * queues ("queue_length >> 12") during an aging round. | 
|---|
| 1292 | */ | 
|---|
| 1293 | #define DEF_PRIORITY 12 | 
|---|
| 1294 |  | 
|---|
| 1295 | /* Maximum number of zones on a zonelist */ | 
|---|
| 1296 | #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES) | 
|---|
| 1297 |  | 
|---|
| 1298 | enum { | 
|---|
| 1299 | ZONELIST_FALLBACK,	/* zonelist with fallback */ | 
|---|
| 1300 | #ifdef CONFIG_NUMA | 
|---|
| 1301 | /* | 
|---|
| 1302 | * The NUMA zonelists are doubled because we need zonelists that | 
|---|
| 1303 | * restrict the allocations to a single node for __GFP_THISNODE. | 
|---|
| 1304 | */ | 
|---|
| 1305 | ZONELIST_NOFALLBACK,	/* zonelist without fallback (__GFP_THISNODE) */ | 
|---|
| 1306 | #endif | 
|---|
| 1307 | MAX_ZONELISTS | 
|---|
| 1308 | }; | 
|---|
| 1309 |  | 
|---|
| 1310 | /* | 
|---|
| 1311 | * This struct contains information about a zone in a zonelist. It is stored | 
|---|
| 1312 | * here to avoid dereferences into large structures and lookups of tables | 
|---|
| 1313 | */ | 
|---|
| 1314 | struct zoneref { | 
|---|
| 1315 | struct zone *zone;	/* Pointer to actual zone */ | 
|---|
| 1316 | int zone_idx;		/* zone_idx(zoneref->zone) */ | 
|---|
| 1317 | }; | 
|---|
| 1318 |  | 
|---|
| 1319 | /* | 
|---|
| 1320 | * One allocation request operates on a zonelist. A zonelist | 
|---|
| 1321 | * is a list of zones, the first one is the 'goal' of the | 
|---|
| 1322 | * allocation, the other zones are fallback zones, in decreasing | 
|---|
| 1323 | * priority. | 
|---|
| 1324 | * | 
|---|
| 1325 | * To speed the reading of the zonelist, the zonerefs contain the zone index | 
|---|
| 1326 | * of the entry being read. Helper functions to access information given | 
|---|
| 1327 | * a struct zoneref are | 
|---|
| 1328 | * | 
|---|
| 1329 | * zonelist_zone()	- Return the struct zone * for an entry in _zonerefs | 
|---|
| 1330 | * zonelist_zone_idx()	- Return the index of the zone for an entry | 
|---|
| 1331 | * zonelist_node_idx()	- Return the index of the node for an entry | 
|---|
| 1332 | */ | 
|---|
| 1333 | struct zonelist { | 
|---|
| 1334 | struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1]; | 
|---|
| 1335 | }; | 
|---|
| 1336 |  | 
|---|
| 1337 | /* | 
|---|
| 1338 | * The array of struct pages for flatmem. | 
|---|
| 1339 | * It must be declared for SPARSEMEM as well because there are configurations | 
|---|
| 1340 | * that rely on that. | 
|---|
| 1341 | */ | 
|---|
| 1342 | extern struct page *mem_map; | 
|---|
| 1343 |  | 
|---|
| 1344 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
|---|
| 1345 | struct deferred_split { | 
|---|
| 1346 | spinlock_t split_queue_lock; | 
|---|
| 1347 | struct list_head split_queue; | 
|---|
| 1348 | unsigned long split_queue_len; | 
|---|
| 1349 | }; | 
|---|
| 1350 | #endif | 
|---|
| 1351 |  | 
|---|
| 1352 | #ifdef CONFIG_MEMORY_FAILURE | 
|---|
| 1353 | /* | 
|---|
| 1354 | * Per NUMA node memory failure handling statistics. | 
|---|
| 1355 | */ | 
|---|
| 1356 | struct memory_failure_stats { | 
|---|
| 1357 | /* | 
|---|
| 1358 | * Number of raw pages poisoned. | 
|---|
| 1359 | * Cases not accounted: memory outside kernel control, offline page, | 
|---|
| 1360 | * arch-specific memory_failure (SGX), hwpoison_filter() filtered | 
|---|
| 1361 | * error events, and unpoison actions from hwpoison_unpoison. | 
|---|
| 1362 | */ | 
|---|
| 1363 | unsigned long total; | 
|---|
| 1364 | /* | 
|---|
| 1365 | * Recovery results of poisoned raw pages handled by memory_failure, | 
|---|
| 1366 | * in sync with mf_result. | 
|---|
| 1367 | * total = ignored + failed + delayed + recovered. | 
|---|
| 1368 | * total * PAGE_SIZE * #nodes = /proc/meminfo/HardwareCorrupted. | 
|---|
| 1369 | */ | 
|---|
| 1370 | unsigned long ignored; | 
|---|
| 1371 | unsigned long failed; | 
|---|
| 1372 | unsigned long delayed; | 
|---|
| 1373 | unsigned long recovered; | 
|---|
| 1374 | }; | 
|---|
| 1375 | #endif | 
|---|
| 1376 |  | 
|---|
| 1377 | /* | 
|---|
| 1378 | * On NUMA machines, each NUMA node would have a pg_data_t to describe | 
|---|
| 1379 | * it's memory layout. On UMA machines there is a single pglist_data which | 
|---|
| 1380 | * describes the whole memory. | 
|---|
| 1381 | * | 
|---|
| 1382 | * Memory statistics and page replacement data structures are maintained on a | 
|---|
| 1383 | * per-zone basis. | 
|---|
| 1384 | */ | 
|---|
| 1385 | typedef struct pglist_data { | 
|---|
| 1386 | /* | 
|---|
| 1387 | * node_zones contains just the zones for THIS node. Not all of the | 
|---|
| 1388 | * zones may be populated, but it is the full list. It is referenced by | 
|---|
| 1389 | * this node's node_zonelists as well as other node's node_zonelists. | 
|---|
| 1390 | */ | 
|---|
| 1391 | struct zone node_zones[MAX_NR_ZONES]; | 
|---|
| 1392 |  | 
|---|
| 1393 | /* | 
|---|
| 1394 | * node_zonelists contains references to all zones in all nodes. | 
|---|
| 1395 | * Generally the first zones will be references to this node's | 
|---|
| 1396 | * node_zones. | 
|---|
| 1397 | */ | 
|---|
| 1398 | struct zonelist node_zonelists[MAX_ZONELISTS]; | 
|---|
| 1399 |  | 
|---|
| 1400 | int nr_zones; /* number of populated zones in this node */ | 
|---|
| 1401 | #ifdef CONFIG_FLATMEM	/* means !SPARSEMEM */ | 
|---|
| 1402 | struct page *node_mem_map; | 
|---|
| 1403 | #ifdef CONFIG_PAGE_EXTENSION | 
|---|
| 1404 | struct page_ext *node_page_ext; | 
|---|
| 1405 | #endif | 
|---|
| 1406 | #endif | 
|---|
| 1407 | #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT) | 
|---|
| 1408 | /* | 
|---|
| 1409 | * Must be held any time you expect node_start_pfn, | 
|---|
| 1410 | * node_present_pages, node_spanned_pages or nr_zones to stay constant. | 
|---|
| 1411 | * Also synchronizes pgdat->first_deferred_pfn during deferred page | 
|---|
| 1412 | * init. | 
|---|
| 1413 | * | 
|---|
| 1414 | * pgdat_resize_lock() and pgdat_resize_unlock() are provided to | 
|---|
| 1415 | * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG | 
|---|
| 1416 | * or CONFIG_DEFERRED_STRUCT_PAGE_INIT. | 
|---|
| 1417 | * | 
|---|
| 1418 | * Nests above zone->lock and zone->span_seqlock | 
|---|
| 1419 | */ | 
|---|
| 1420 | spinlock_t node_size_lock; | 
|---|
| 1421 | #endif | 
|---|
| 1422 | unsigned long node_start_pfn; | 
|---|
| 1423 | unsigned long node_present_pages; /* total number of physical pages */ | 
|---|
| 1424 | unsigned long node_spanned_pages; /* total size of physical page | 
|---|
| 1425 | range, including holes */ | 
|---|
| 1426 | int node_id; | 
|---|
| 1427 | wait_queue_head_t kswapd_wait; | 
|---|
| 1428 | wait_queue_head_t pfmemalloc_wait; | 
|---|
| 1429 |  | 
|---|
| 1430 | /* workqueues for throttling reclaim for different reasons. */ | 
|---|
| 1431 | wait_queue_head_t reclaim_wait[NR_VMSCAN_THROTTLE]; | 
|---|
| 1432 |  | 
|---|
| 1433 | atomic_t nr_writeback_throttled;/* nr of writeback-throttled tasks */ | 
|---|
| 1434 | unsigned long nr_reclaim_start;	/* nr pages written while throttled | 
|---|
| 1435 | * when throttling started. */ | 
|---|
| 1436 | #ifdef CONFIG_MEMORY_HOTPLUG | 
|---|
| 1437 | struct mutex kswapd_lock; | 
|---|
| 1438 | #endif | 
|---|
| 1439 | struct task_struct *kswapd;	/* Protected by kswapd_lock */ | 
|---|
| 1440 | int kswapd_order; | 
|---|
| 1441 | enum zone_type kswapd_highest_zoneidx; | 
|---|
| 1442 |  | 
|---|
| 1443 | atomic_t kswapd_failures;	/* Number of 'reclaimed == 0' runs */ | 
|---|
| 1444 |  | 
|---|
| 1445 | #ifdef CONFIG_COMPACTION | 
|---|
| 1446 | int kcompactd_max_order; | 
|---|
| 1447 | enum zone_type kcompactd_highest_zoneidx; | 
|---|
| 1448 | wait_queue_head_t kcompactd_wait; | 
|---|
| 1449 | struct task_struct *kcompactd; | 
|---|
| 1450 | bool proactive_compact_trigger; | 
|---|
| 1451 | #endif | 
|---|
| 1452 | /* | 
|---|
| 1453 | * This is a per-node reserve of pages that are not available | 
|---|
| 1454 | * to userspace allocations. | 
|---|
| 1455 | */ | 
|---|
| 1456 | unsigned long		totalreserve_pages; | 
|---|
| 1457 |  | 
|---|
| 1458 | #ifdef CONFIG_NUMA | 
|---|
| 1459 | /* | 
|---|
| 1460 | * node reclaim becomes active if more unmapped pages exist. | 
|---|
| 1461 | */ | 
|---|
| 1462 | unsigned long		min_unmapped_pages; | 
|---|
| 1463 | unsigned long		min_slab_pages; | 
|---|
| 1464 | #endif /* CONFIG_NUMA */ | 
|---|
| 1465 |  | 
|---|
| 1466 | /* Write-intensive fields used by page reclaim */ | 
|---|
| 1467 | CACHELINE_PADDING(_pad1_); | 
|---|
| 1468 |  | 
|---|
| 1469 | #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT | 
|---|
| 1470 | /* | 
|---|
| 1471 | * If memory initialisation on large machines is deferred then this | 
|---|
| 1472 | * is the first PFN that needs to be initialised. | 
|---|
| 1473 | */ | 
|---|
| 1474 | unsigned long first_deferred_pfn; | 
|---|
| 1475 | #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ | 
|---|
| 1476 |  | 
|---|
| 1477 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
|---|
| 1478 | struct deferred_split deferred_split_queue; | 
|---|
| 1479 | #endif | 
|---|
| 1480 |  | 
|---|
| 1481 | #ifdef CONFIG_NUMA_BALANCING | 
|---|
| 1482 | /* start time in ms of current promote rate limit period */ | 
|---|
| 1483 | unsigned int nbp_rl_start; | 
|---|
| 1484 | /* number of promote candidate pages at start time of current rate limit period */ | 
|---|
| 1485 | unsigned long nbp_rl_nr_cand; | 
|---|
| 1486 | /* promote threshold in ms */ | 
|---|
| 1487 | unsigned int nbp_threshold; | 
|---|
| 1488 | /* start time in ms of current promote threshold adjustment period */ | 
|---|
| 1489 | unsigned int nbp_th_start; | 
|---|
| 1490 | /* | 
|---|
| 1491 | * number of promote candidate pages at start time of current promote | 
|---|
| 1492 | * threshold adjustment period | 
|---|
| 1493 | */ | 
|---|
| 1494 | unsigned long nbp_th_nr_cand; | 
|---|
| 1495 | #endif | 
|---|
| 1496 | /* Fields commonly accessed by the page reclaim scanner */ | 
|---|
| 1497 |  | 
|---|
| 1498 | /* | 
|---|
| 1499 | * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED. | 
|---|
| 1500 | * | 
|---|
| 1501 | * Use mem_cgroup_lruvec() to look up lruvecs. | 
|---|
| 1502 | */ | 
|---|
| 1503 | struct lruvec		__lruvec; | 
|---|
| 1504 |  | 
|---|
| 1505 | unsigned long		flags; | 
|---|
| 1506 |  | 
|---|
| 1507 | #ifdef CONFIG_LRU_GEN | 
|---|
| 1508 | /* kswap mm walk data */ | 
|---|
| 1509 | struct lru_gen_mm_walk mm_walk; | 
|---|
| 1510 | /* lru_gen_folio list */ | 
|---|
| 1511 | struct lru_gen_memcg memcg_lru; | 
|---|
| 1512 | #endif | 
|---|
| 1513 |  | 
|---|
| 1514 | CACHELINE_PADDING(_pad2_); | 
|---|
| 1515 |  | 
|---|
| 1516 | /* Per-node vmstats */ | 
|---|
| 1517 | struct per_cpu_nodestat __percpu *per_cpu_nodestats; | 
|---|
| 1518 | atomic_long_t		vm_stat[NR_VM_NODE_STAT_ITEMS]; | 
|---|
| 1519 | #ifdef CONFIG_NUMA | 
|---|
| 1520 | struct memory_tier __rcu *memtier; | 
|---|
| 1521 | #endif | 
|---|
| 1522 | #ifdef CONFIG_MEMORY_FAILURE | 
|---|
| 1523 | struct memory_failure_stats mf_stats; | 
|---|
| 1524 | #endif | 
|---|
| 1525 | } pg_data_t; | 
|---|
| 1526 |  | 
|---|
| 1527 | #define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages) | 
|---|
| 1528 | #define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages) | 
|---|
| 1529 |  | 
|---|
| 1530 | #define node_start_pfn(nid)	(NODE_DATA(nid)->node_start_pfn) | 
|---|
| 1531 | #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid)) | 
|---|
| 1532 |  | 
|---|
| 1533 | static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat) | 
|---|
| 1534 | { | 
|---|
| 1535 | return pgdat->node_start_pfn + pgdat->node_spanned_pages; | 
|---|
| 1536 | } | 
|---|
| 1537 |  | 
|---|
| 1538 | #include <linux/memory_hotplug.h> | 
|---|
| 1539 |  | 
|---|
| 1540 | void build_all_zonelists(pg_data_t *pgdat); | 
|---|
| 1541 | void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order, | 
|---|
| 1542 | enum zone_type highest_zoneidx); | 
|---|
| 1543 | bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, | 
|---|
| 1544 | int highest_zoneidx, unsigned int alloc_flags, | 
|---|
| 1545 | long free_pages); | 
|---|
| 1546 | bool zone_watermark_ok(struct zone *z, unsigned int order, | 
|---|
| 1547 | unsigned long mark, int highest_zoneidx, | 
|---|
| 1548 | unsigned int alloc_flags); | 
|---|
| 1549 | /* | 
|---|
| 1550 | * Memory initialization context, use to differentiate memory added by | 
|---|
| 1551 | * the platform statically or via memory hotplug interface. | 
|---|
| 1552 | */ | 
|---|
| 1553 | enum meminit_context { | 
|---|
| 1554 | MEMINIT_EARLY, | 
|---|
| 1555 | MEMINIT_HOTPLUG, | 
|---|
| 1556 | }; | 
|---|
| 1557 |  | 
|---|
| 1558 | extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn, | 
|---|
| 1559 | unsigned long size); | 
|---|
| 1560 |  | 
|---|
| 1561 | extern void lruvec_init(struct lruvec *lruvec); | 
|---|
| 1562 |  | 
|---|
| 1563 | static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec) | 
|---|
| 1564 | { | 
|---|
| 1565 | #ifdef CONFIG_MEMCG | 
|---|
| 1566 | return lruvec->pgdat; | 
|---|
| 1567 | #else | 
|---|
| 1568 | return container_of(lruvec, struct pglist_data, __lruvec); | 
|---|
| 1569 | #endif | 
|---|
| 1570 | } | 
|---|
| 1571 |  | 
|---|
| 1572 | #ifdef CONFIG_HAVE_MEMORYLESS_NODES | 
|---|
| 1573 | int local_memory_node(int node_id); | 
|---|
| 1574 | #else | 
|---|
| 1575 | static inline int local_memory_node(int node_id) { return node_id; }; | 
|---|
| 1576 | #endif | 
|---|
| 1577 |  | 
|---|
| 1578 | /* | 
|---|
| 1579 | * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. | 
|---|
| 1580 | */ | 
|---|
| 1581 | #define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones) | 
|---|
| 1582 |  | 
|---|
| 1583 | #ifdef CONFIG_ZONE_DEVICE | 
|---|
| 1584 | static inline bool zone_is_zone_device(const struct zone *zone) | 
|---|
| 1585 | { | 
|---|
| 1586 | return zone_idx(zone) == ZONE_DEVICE; | 
|---|
| 1587 | } | 
|---|
| 1588 | #else | 
|---|
| 1589 | static inline bool zone_is_zone_device(const struct zone *zone) | 
|---|
| 1590 | { | 
|---|
| 1591 | return false; | 
|---|
| 1592 | } | 
|---|
| 1593 | #endif | 
|---|
| 1594 |  | 
|---|
| 1595 | /* | 
|---|
| 1596 | * Returns true if a zone has pages managed by the buddy allocator. | 
|---|
| 1597 | * All the reclaim decisions have to use this function rather than | 
|---|
| 1598 | * populated_zone(). If the whole zone is reserved then we can easily | 
|---|
| 1599 | * end up with populated_zone() && !managed_zone(). | 
|---|
| 1600 | */ | 
|---|
| 1601 | static inline bool managed_zone(const struct zone *zone) | 
|---|
| 1602 | { | 
|---|
| 1603 | return zone_managed_pages(zone); | 
|---|
| 1604 | } | 
|---|
| 1605 |  | 
|---|
| 1606 | /* Returns true if a zone has memory */ | 
|---|
| 1607 | static inline bool populated_zone(const struct zone *zone) | 
|---|
| 1608 | { | 
|---|
| 1609 | return zone->present_pages; | 
|---|
| 1610 | } | 
|---|
| 1611 |  | 
|---|
| 1612 | #ifdef CONFIG_NUMA | 
|---|
| 1613 | static inline int zone_to_nid(const struct zone *zone) | 
|---|
| 1614 | { | 
|---|
| 1615 | return zone->node; | 
|---|
| 1616 | } | 
|---|
| 1617 |  | 
|---|
| 1618 | static inline void zone_set_nid(struct zone *zone, int nid) | 
|---|
| 1619 | { | 
|---|
| 1620 | zone->node = nid; | 
|---|
| 1621 | } | 
|---|
| 1622 | #else | 
|---|
| 1623 | static inline int zone_to_nid(const struct zone *zone) | 
|---|
| 1624 | { | 
|---|
| 1625 | return 0; | 
|---|
| 1626 | } | 
|---|
| 1627 |  | 
|---|
| 1628 | static inline void zone_set_nid(struct zone *zone, int nid) {} | 
|---|
| 1629 | #endif | 
|---|
| 1630 |  | 
|---|
| 1631 | extern int movable_zone; | 
|---|
| 1632 |  | 
|---|
| 1633 | static inline int is_highmem_idx(enum zone_type idx) | 
|---|
| 1634 | { | 
|---|
| 1635 | #ifdef CONFIG_HIGHMEM | 
|---|
| 1636 | return (idx == ZONE_HIGHMEM || | 
|---|
| 1637 | (idx == ZONE_MOVABLE && movable_zone == ZONE_HIGHMEM)); | 
|---|
| 1638 | #else | 
|---|
| 1639 | return 0; | 
|---|
| 1640 | #endif | 
|---|
| 1641 | } | 
|---|
| 1642 |  | 
|---|
| 1643 | /** | 
|---|
| 1644 | * is_highmem - helper function to quickly check if a struct zone is a | 
|---|
| 1645 | *              highmem zone or not.  This is an attempt to keep references | 
|---|
| 1646 | *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. | 
|---|
| 1647 | * @zone: pointer to struct zone variable | 
|---|
| 1648 | * Return: 1 for a highmem zone, 0 otherwise | 
|---|
| 1649 | */ | 
|---|
| 1650 | static inline int is_highmem(const struct zone *zone) | 
|---|
| 1651 | { | 
|---|
| 1652 | return is_highmem_idx(zone_idx(zone)); | 
|---|
| 1653 | } | 
|---|
| 1654 |  | 
|---|
| 1655 | #ifdef CONFIG_ZONE_DMA | 
|---|
| 1656 | bool has_managed_dma(void); | 
|---|
| 1657 | #else | 
|---|
| 1658 | static inline bool has_managed_dma(void) | 
|---|
| 1659 | { | 
|---|
| 1660 | return false; | 
|---|
| 1661 | } | 
|---|
| 1662 | #endif | 
|---|
| 1663 |  | 
|---|
| 1664 |  | 
|---|
| 1665 | #ifndef CONFIG_NUMA | 
|---|
| 1666 |  | 
|---|
| 1667 | extern struct pglist_data contig_page_data; | 
|---|
| 1668 | static inline struct pglist_data *NODE_DATA(int nid) | 
|---|
| 1669 | { | 
|---|
| 1670 | return &contig_page_data; | 
|---|
| 1671 | } | 
|---|
| 1672 |  | 
|---|
| 1673 | #else /* CONFIG_NUMA */ | 
|---|
| 1674 |  | 
|---|
| 1675 | #include <asm/mmzone.h> | 
|---|
| 1676 |  | 
|---|
| 1677 | #endif /* !CONFIG_NUMA */ | 
|---|
| 1678 |  | 
|---|
| 1679 | extern struct pglist_data *first_online_pgdat(void); | 
|---|
| 1680 | extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat); | 
|---|
| 1681 | extern struct zone *next_zone(struct zone *zone); | 
|---|
| 1682 |  | 
|---|
| 1683 | /** | 
|---|
| 1684 | * for_each_online_pgdat - helper macro to iterate over all online nodes | 
|---|
| 1685 | * @pgdat: pointer to a pg_data_t variable | 
|---|
| 1686 | */ | 
|---|
| 1687 | #define for_each_online_pgdat(pgdat)			\ | 
|---|
| 1688 | for (pgdat = first_online_pgdat();		\ | 
|---|
| 1689 | pgdat;					\ | 
|---|
| 1690 | pgdat = next_online_pgdat(pgdat)) | 
|---|
| 1691 | /** | 
|---|
| 1692 | * for_each_zone - helper macro to iterate over all memory zones | 
|---|
| 1693 | * @zone: pointer to struct zone variable | 
|---|
| 1694 | * | 
|---|
| 1695 | * The user only needs to declare the zone variable, for_each_zone | 
|---|
| 1696 | * fills it in. | 
|---|
| 1697 | */ | 
|---|
| 1698 | #define for_each_zone(zone)			        \ | 
|---|
| 1699 | for (zone = (first_online_pgdat())->node_zones; \ | 
|---|
| 1700 | zone;					\ | 
|---|
| 1701 | zone = next_zone(zone)) | 
|---|
| 1702 |  | 
|---|
| 1703 | #define for_each_populated_zone(zone)		        \ | 
|---|
| 1704 | for (zone = (first_online_pgdat())->node_zones; \ | 
|---|
| 1705 | zone;					\ | 
|---|
| 1706 | zone = next_zone(zone))			\ | 
|---|
| 1707 | if (!populated_zone(zone))		\ | 
|---|
| 1708 | ; /* do nothing */		\ | 
|---|
| 1709 | else | 
|---|
| 1710 |  | 
|---|
| 1711 | static inline struct zone *zonelist_zone(struct zoneref *zoneref) | 
|---|
| 1712 | { | 
|---|
| 1713 | return zoneref->zone; | 
|---|
| 1714 | } | 
|---|
| 1715 |  | 
|---|
| 1716 | static inline int zonelist_zone_idx(const struct zoneref *zoneref) | 
|---|
| 1717 | { | 
|---|
| 1718 | return zoneref->zone_idx; | 
|---|
| 1719 | } | 
|---|
| 1720 |  | 
|---|
| 1721 | static inline int zonelist_node_idx(const struct zoneref *zoneref) | 
|---|
| 1722 | { | 
|---|
| 1723 | return zone_to_nid(zone: zoneref->zone); | 
|---|
| 1724 | } | 
|---|
| 1725 |  | 
|---|
| 1726 | struct zoneref *__next_zones_zonelist(struct zoneref *z, | 
|---|
| 1727 | enum zone_type highest_zoneidx, | 
|---|
| 1728 | nodemask_t *nodes); | 
|---|
| 1729 |  | 
|---|
| 1730 | /** | 
|---|
| 1731 | * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point | 
|---|
| 1732 | * @z: The cursor used as a starting point for the search | 
|---|
| 1733 | * @highest_zoneidx: The zone index of the highest zone to return | 
|---|
| 1734 | * @nodes: An optional nodemask to filter the zonelist with | 
|---|
| 1735 | * | 
|---|
| 1736 | * This function returns the next zone at or below a given zone index that is | 
|---|
| 1737 | * within the allowed nodemask using a cursor as the starting point for the | 
|---|
| 1738 | * search. The zoneref returned is a cursor that represents the current zone | 
|---|
| 1739 | * being examined. It should be advanced by one before calling | 
|---|
| 1740 | * next_zones_zonelist again. | 
|---|
| 1741 | * | 
|---|
| 1742 | * Return: the next zone at or below highest_zoneidx within the allowed | 
|---|
| 1743 | * nodemask using a cursor within a zonelist as a starting point | 
|---|
| 1744 | */ | 
|---|
| 1745 | static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z, | 
|---|
| 1746 | enum zone_type highest_zoneidx, | 
|---|
| 1747 | nodemask_t *nodes) | 
|---|
| 1748 | { | 
|---|
| 1749 | if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx)) | 
|---|
| 1750 | return z; | 
|---|
| 1751 | return __next_zones_zonelist(z, highest_zoneidx, nodes); | 
|---|
| 1752 | } | 
|---|
| 1753 |  | 
|---|
| 1754 | /** | 
|---|
| 1755 | * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist | 
|---|
| 1756 | * @zonelist: The zonelist to search for a suitable zone | 
|---|
| 1757 | * @highest_zoneidx: The zone index of the highest zone to return | 
|---|
| 1758 | * @nodes: An optional nodemask to filter the zonelist with | 
|---|
| 1759 | * | 
|---|
| 1760 | * This function returns the first zone at or below a given zone index that is | 
|---|
| 1761 | * within the allowed nodemask. The zoneref returned is a cursor that can be | 
|---|
| 1762 | * used to iterate the zonelist with next_zones_zonelist by advancing it by | 
|---|
| 1763 | * one before calling. | 
|---|
| 1764 | * | 
|---|
| 1765 | * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is | 
|---|
| 1766 | * never NULL). This may happen either genuinely, or due to concurrent nodemask | 
|---|
| 1767 | * update due to cpuset modification. | 
|---|
| 1768 | * | 
|---|
| 1769 | * Return: Zoneref pointer for the first suitable zone found | 
|---|
| 1770 | */ | 
|---|
| 1771 | static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist, | 
|---|
| 1772 | enum zone_type highest_zoneidx, | 
|---|
| 1773 | nodemask_t *nodes) | 
|---|
| 1774 | { | 
|---|
| 1775 | return next_zones_zonelist(z: zonelist->_zonerefs, | 
|---|
| 1776 | highest_zoneidx, nodes); | 
|---|
| 1777 | } | 
|---|
| 1778 |  | 
|---|
| 1779 | /** | 
|---|
| 1780 | * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask | 
|---|
| 1781 | * @zone: The current zone in the iterator | 
|---|
| 1782 | * @z: The current pointer within zonelist->_zonerefs being iterated | 
|---|
| 1783 | * @zlist: The zonelist being iterated | 
|---|
| 1784 | * @highidx: The zone index of the highest zone to return | 
|---|
| 1785 | * @nodemask: Nodemask allowed by the allocator | 
|---|
| 1786 | * | 
|---|
| 1787 | * This iterator iterates though all zones at or below a given zone index and | 
|---|
| 1788 | * within a given nodemask | 
|---|
| 1789 | */ | 
|---|
| 1790 | #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ | 
|---|
| 1791 | for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z);	\ | 
|---|
| 1792 | zone;							\ | 
|---|
| 1793 | z = next_zones_zonelist(++z, highidx, nodemask),	\ | 
|---|
| 1794 | zone = zonelist_zone(z)) | 
|---|
| 1795 |  | 
|---|
| 1796 | #define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \ | 
|---|
| 1797 | for (zone = zonelist_zone(z);	\ | 
|---|
| 1798 | zone;							\ | 
|---|
| 1799 | z = next_zones_zonelist(++z, highidx, nodemask),	\ | 
|---|
| 1800 | zone = zonelist_zone(z)) | 
|---|
| 1801 |  | 
|---|
| 1802 |  | 
|---|
| 1803 | /** | 
|---|
| 1804 | * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index | 
|---|
| 1805 | * @zone: The current zone in the iterator | 
|---|
| 1806 | * @z: The current pointer within zonelist->zones being iterated | 
|---|
| 1807 | * @zlist: The zonelist being iterated | 
|---|
| 1808 | * @highidx: The zone index of the highest zone to return | 
|---|
| 1809 | * | 
|---|
| 1810 | * This iterator iterates though all zones at or below a given zone index. | 
|---|
| 1811 | */ | 
|---|
| 1812 | #define for_each_zone_zonelist(zone, z, zlist, highidx) \ | 
|---|
| 1813 | for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL) | 
|---|
| 1814 |  | 
|---|
| 1815 | /* Whether the 'nodes' are all movable nodes */ | 
|---|
| 1816 | static inline bool movable_only_nodes(nodemask_t *nodes) | 
|---|
| 1817 | { | 
|---|
| 1818 | struct zonelist *zonelist; | 
|---|
| 1819 | struct zoneref *z; | 
|---|
| 1820 | int nid; | 
|---|
| 1821 |  | 
|---|
| 1822 | if (nodes_empty(*nodes)) | 
|---|
| 1823 | return false; | 
|---|
| 1824 |  | 
|---|
| 1825 | /* | 
|---|
| 1826 | * We can chose arbitrary node from the nodemask to get a | 
|---|
| 1827 | * zonelist as they are interlinked. We just need to find | 
|---|
| 1828 | * at least one zone that can satisfy kernel allocations. | 
|---|
| 1829 | */ | 
|---|
| 1830 | nid = first_node(*nodes); | 
|---|
| 1831 | zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK]; | 
|---|
| 1832 | z = first_zones_zonelist(zonelist, highest_zoneidx: ZONE_NORMAL,	nodes); | 
|---|
| 1833 | return (!zonelist_zone(zoneref: z)) ? true : false; | 
|---|
| 1834 | } | 
|---|
| 1835 |  | 
|---|
| 1836 |  | 
|---|
| 1837 | #ifdef CONFIG_SPARSEMEM | 
|---|
| 1838 | #include <asm/sparsemem.h> | 
|---|
| 1839 | #endif | 
|---|
| 1840 |  | 
|---|
| 1841 | #ifdef CONFIG_FLATMEM | 
|---|
| 1842 | #define pfn_to_nid(pfn)		(0) | 
|---|
| 1843 | #endif | 
|---|
| 1844 |  | 
|---|
| 1845 | #ifdef CONFIG_SPARSEMEM | 
|---|
| 1846 |  | 
|---|
| 1847 | /* | 
|---|
| 1848 | * PA_SECTION_SHIFT		physical address to/from section number | 
|---|
| 1849 | * PFN_SECTION_SHIFT		pfn to/from section number | 
|---|
| 1850 | */ | 
|---|
| 1851 | #define PA_SECTION_SHIFT	(SECTION_SIZE_BITS) | 
|---|
| 1852 | #define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT) | 
|---|
| 1853 |  | 
|---|
| 1854 | #define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT) | 
|---|
| 1855 |  | 
|---|
| 1856 | #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT) | 
|---|
| 1857 | #define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1)) | 
|---|
| 1858 |  | 
|---|
| 1859 | #define SECTION_BLOCKFLAGS_BITS \ | 
|---|
| 1860 | ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS) | 
|---|
| 1861 |  | 
|---|
| 1862 | #if (MAX_PAGE_ORDER + PAGE_SHIFT) > SECTION_SIZE_BITS | 
|---|
| 1863 | #error Allocator MAX_PAGE_ORDER exceeds SECTION_SIZE | 
|---|
| 1864 | #endif | 
|---|
| 1865 |  | 
|---|
| 1866 | static inline unsigned long pfn_to_section_nr(unsigned long pfn) | 
|---|
| 1867 | { | 
|---|
| 1868 | return pfn >> PFN_SECTION_SHIFT; | 
|---|
| 1869 | } | 
|---|
| 1870 | static inline unsigned long section_nr_to_pfn(unsigned long sec) | 
|---|
| 1871 | { | 
|---|
| 1872 | return sec << PFN_SECTION_SHIFT; | 
|---|
| 1873 | } | 
|---|
| 1874 |  | 
|---|
| 1875 | #define SECTION_ALIGN_UP(pfn)	(((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK) | 
|---|
| 1876 | #define SECTION_ALIGN_DOWN(pfn)	((pfn) & PAGE_SECTION_MASK) | 
|---|
| 1877 |  | 
|---|
| 1878 | #define SUBSECTION_SHIFT 21 | 
|---|
| 1879 | #define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT) | 
|---|
| 1880 |  | 
|---|
| 1881 | #define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT) | 
|---|
| 1882 | #define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT) | 
|---|
| 1883 | #define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1)) | 
|---|
| 1884 |  | 
|---|
| 1885 | #if SUBSECTION_SHIFT > SECTION_SIZE_BITS | 
|---|
| 1886 | #error Subsection size exceeds section size | 
|---|
| 1887 | #else | 
|---|
| 1888 | #define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT)) | 
|---|
| 1889 | #endif | 
|---|
| 1890 |  | 
|---|
| 1891 | #define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION) | 
|---|
| 1892 | #define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK) | 
|---|
| 1893 |  | 
|---|
| 1894 | struct mem_section_usage { | 
|---|
| 1895 | struct rcu_head rcu; | 
|---|
| 1896 | #ifdef CONFIG_SPARSEMEM_VMEMMAP | 
|---|
| 1897 | DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION); | 
|---|
| 1898 | #endif | 
|---|
| 1899 | /* See declaration of similar field in struct zone */ | 
|---|
| 1900 | unsigned long pageblock_flags[0]; | 
|---|
| 1901 | }; | 
|---|
| 1902 |  | 
|---|
| 1903 | void subsection_map_init(unsigned long pfn, unsigned long nr_pages); | 
|---|
| 1904 |  | 
|---|
| 1905 | struct page; | 
|---|
| 1906 | struct page_ext; | 
|---|
| 1907 | struct mem_section { | 
|---|
| 1908 | /* | 
|---|
| 1909 | * This is, logically, a pointer to an array of struct | 
|---|
| 1910 | * pages.  However, it is stored with some other magic. | 
|---|
| 1911 | * (see sparse.c::sparse_init_one_section()) | 
|---|
| 1912 | * | 
|---|
| 1913 | * Additionally during early boot we encode node id of | 
|---|
| 1914 | * the location of the section here to guide allocation. | 
|---|
| 1915 | * (see sparse.c::memory_present()) | 
|---|
| 1916 | * | 
|---|
| 1917 | * Making it a UL at least makes someone do a cast | 
|---|
| 1918 | * before using it wrong. | 
|---|
| 1919 | */ | 
|---|
| 1920 | unsigned long section_mem_map; | 
|---|
| 1921 |  | 
|---|
| 1922 | struct mem_section_usage *usage; | 
|---|
| 1923 | #ifdef CONFIG_PAGE_EXTENSION | 
|---|
| 1924 | /* | 
|---|
| 1925 | * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use | 
|---|
| 1926 | * section. (see page_ext.h about this.) | 
|---|
| 1927 | */ | 
|---|
| 1928 | struct page_ext *page_ext; | 
|---|
| 1929 | unsigned long pad; | 
|---|
| 1930 | #endif | 
|---|
| 1931 | /* | 
|---|
| 1932 | * WARNING: mem_section must be a power-of-2 in size for the | 
|---|
| 1933 | * calculation and use of SECTION_ROOT_MASK to make sense. | 
|---|
| 1934 | */ | 
|---|
| 1935 | }; | 
|---|
| 1936 |  | 
|---|
| 1937 | #ifdef CONFIG_SPARSEMEM_EXTREME | 
|---|
| 1938 | #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section)) | 
|---|
| 1939 | #else | 
|---|
| 1940 | #define SECTIONS_PER_ROOT	1 | 
|---|
| 1941 | #endif | 
|---|
| 1942 |  | 
|---|
| 1943 | #define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT) | 
|---|
| 1944 | #define NR_SECTION_ROOTS	DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT) | 
|---|
| 1945 | #define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1) | 
|---|
| 1946 |  | 
|---|
| 1947 | #ifdef CONFIG_SPARSEMEM_EXTREME | 
|---|
| 1948 | extern struct mem_section **mem_section; | 
|---|
| 1949 | #else | 
|---|
| 1950 | extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; | 
|---|
| 1951 | #endif | 
|---|
| 1952 |  | 
|---|
| 1953 | static inline unsigned long *section_to_usemap(struct mem_section *ms) | 
|---|
| 1954 | { | 
|---|
| 1955 | return ms->usage->pageblock_flags; | 
|---|
| 1956 | } | 
|---|
| 1957 |  | 
|---|
| 1958 | static inline struct mem_section *__nr_to_section(unsigned long nr) | 
|---|
| 1959 | { | 
|---|
| 1960 | unsigned long root = SECTION_NR_TO_ROOT(nr); | 
|---|
| 1961 |  | 
|---|
| 1962 | if (unlikely(root >= NR_SECTION_ROOTS)) | 
|---|
| 1963 | return NULL; | 
|---|
| 1964 |  | 
|---|
| 1965 | #ifdef CONFIG_SPARSEMEM_EXTREME | 
|---|
| 1966 | if (!mem_section || !mem_section[root]) | 
|---|
| 1967 | return NULL; | 
|---|
| 1968 | #endif | 
|---|
| 1969 | return &mem_section[root][nr & SECTION_ROOT_MASK]; | 
|---|
| 1970 | } | 
|---|
| 1971 | extern size_t mem_section_usage_size(void); | 
|---|
| 1972 |  | 
|---|
| 1973 | /* | 
|---|
| 1974 | * We use the lower bits of the mem_map pointer to store | 
|---|
| 1975 | * a little bit of information.  The pointer is calculated | 
|---|
| 1976 | * as mem_map - section_nr_to_pfn(pnum).  The result is | 
|---|
| 1977 | * aligned to the minimum alignment of the two values: | 
|---|
| 1978 | *   1. All mem_map arrays are page-aligned. | 
|---|
| 1979 | *   2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT | 
|---|
| 1980 | *      lowest bits.  PFN_SECTION_SHIFT is arch-specific | 
|---|
| 1981 | *      (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the | 
|---|
| 1982 | *      worst combination is powerpc with 256k pages, | 
|---|
| 1983 | *      which results in PFN_SECTION_SHIFT equal 6. | 
|---|
| 1984 | * To sum it up, at least 6 bits are available on all architectures. | 
|---|
| 1985 | * However, we can exceed 6 bits on some other architectures except | 
|---|
| 1986 | * powerpc (e.g. 15 bits are available on x86_64, 13 bits are available | 
|---|
| 1987 | * with the worst case of 64K pages on arm64) if we make sure the | 
|---|
| 1988 | * exceeded bit is not applicable to powerpc. | 
|---|
| 1989 | */ | 
|---|
| 1990 | enum { | 
|---|
| 1991 | SECTION_MARKED_PRESENT_BIT, | 
|---|
| 1992 | SECTION_HAS_MEM_MAP_BIT, | 
|---|
| 1993 | SECTION_IS_ONLINE_BIT, | 
|---|
| 1994 | SECTION_IS_EARLY_BIT, | 
|---|
| 1995 | #ifdef CONFIG_ZONE_DEVICE | 
|---|
| 1996 | SECTION_TAINT_ZONE_DEVICE_BIT, | 
|---|
| 1997 | #endif | 
|---|
| 1998 | #ifdef CONFIG_SPARSEMEM_VMEMMAP_PREINIT | 
|---|
| 1999 | SECTION_IS_VMEMMAP_PREINIT_BIT, | 
|---|
| 2000 | #endif | 
|---|
| 2001 | SECTION_MAP_LAST_BIT, | 
|---|
| 2002 | }; | 
|---|
| 2003 |  | 
|---|
| 2004 | #define SECTION_MARKED_PRESENT		BIT(SECTION_MARKED_PRESENT_BIT) | 
|---|
| 2005 | #define SECTION_HAS_MEM_MAP		BIT(SECTION_HAS_MEM_MAP_BIT) | 
|---|
| 2006 | #define SECTION_IS_ONLINE		BIT(SECTION_IS_ONLINE_BIT) | 
|---|
| 2007 | #define SECTION_IS_EARLY		BIT(SECTION_IS_EARLY_BIT) | 
|---|
| 2008 | #ifdef CONFIG_ZONE_DEVICE | 
|---|
| 2009 | #define SECTION_TAINT_ZONE_DEVICE	BIT(SECTION_TAINT_ZONE_DEVICE_BIT) | 
|---|
| 2010 | #endif | 
|---|
| 2011 | #ifdef CONFIG_SPARSEMEM_VMEMMAP_PREINIT | 
|---|
| 2012 | #define SECTION_IS_VMEMMAP_PREINIT	BIT(SECTION_IS_VMEMMAP_PREINIT_BIT) | 
|---|
| 2013 | #endif | 
|---|
| 2014 | #define SECTION_MAP_MASK		(~(BIT(SECTION_MAP_LAST_BIT) - 1)) | 
|---|
| 2015 | #define SECTION_NID_SHIFT		SECTION_MAP_LAST_BIT | 
|---|
| 2016 |  | 
|---|
| 2017 | static inline struct page *__section_mem_map_addr(struct mem_section *section) | 
|---|
| 2018 | { | 
|---|
| 2019 | unsigned long map = section->section_mem_map; | 
|---|
| 2020 | map &= SECTION_MAP_MASK; | 
|---|
| 2021 | return (struct page *)map; | 
|---|
| 2022 | } | 
|---|
| 2023 |  | 
|---|
| 2024 | static inline int present_section(const struct mem_section *section) | 
|---|
| 2025 | { | 
|---|
| 2026 | return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); | 
|---|
| 2027 | } | 
|---|
| 2028 |  | 
|---|
| 2029 | static inline int present_section_nr(unsigned long nr) | 
|---|
| 2030 | { | 
|---|
| 2031 | return present_section(section: __nr_to_section(nr)); | 
|---|
| 2032 | } | 
|---|
| 2033 |  | 
|---|
| 2034 | static inline int valid_section(const struct mem_section *section) | 
|---|
| 2035 | { | 
|---|
| 2036 | return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); | 
|---|
| 2037 | } | 
|---|
| 2038 |  | 
|---|
| 2039 | static inline int early_section(const struct mem_section *section) | 
|---|
| 2040 | { | 
|---|
| 2041 | return (section && (section->section_mem_map & SECTION_IS_EARLY)); | 
|---|
| 2042 | } | 
|---|
| 2043 |  | 
|---|
| 2044 | static inline int valid_section_nr(unsigned long nr) | 
|---|
| 2045 | { | 
|---|
| 2046 | return valid_section(section: __nr_to_section(nr)); | 
|---|
| 2047 | } | 
|---|
| 2048 |  | 
|---|
| 2049 | static inline int online_section(const struct mem_section *section) | 
|---|
| 2050 | { | 
|---|
| 2051 | return (section && (section->section_mem_map & SECTION_IS_ONLINE)); | 
|---|
| 2052 | } | 
|---|
| 2053 |  | 
|---|
| 2054 | #ifdef CONFIG_ZONE_DEVICE | 
|---|
| 2055 | static inline int online_device_section(const struct mem_section *section) | 
|---|
| 2056 | { | 
|---|
| 2057 | unsigned long flags = SECTION_IS_ONLINE | SECTION_TAINT_ZONE_DEVICE; | 
|---|
| 2058 |  | 
|---|
| 2059 | return section && ((section->section_mem_map & flags) == flags); | 
|---|
| 2060 | } | 
|---|
| 2061 | #else | 
|---|
| 2062 | static inline int online_device_section(const struct mem_section *section) | 
|---|
| 2063 | { | 
|---|
| 2064 | return 0; | 
|---|
| 2065 | } | 
|---|
| 2066 | #endif | 
|---|
| 2067 |  | 
|---|
| 2068 | #ifdef CONFIG_SPARSEMEM_VMEMMAP_PREINIT | 
|---|
| 2069 | static inline int preinited_vmemmap_section(const struct mem_section *section) | 
|---|
| 2070 | { | 
|---|
| 2071 | return (section && | 
|---|
| 2072 | (section->section_mem_map & SECTION_IS_VMEMMAP_PREINIT)); | 
|---|
| 2073 | } | 
|---|
| 2074 |  | 
|---|
| 2075 | void sparse_vmemmap_init_nid_early(int nid); | 
|---|
| 2076 | void sparse_vmemmap_init_nid_late(int nid); | 
|---|
| 2077 |  | 
|---|
| 2078 | #else | 
|---|
| 2079 | static inline int preinited_vmemmap_section(const struct mem_section *section) | 
|---|
| 2080 | { | 
|---|
| 2081 | return 0; | 
|---|
| 2082 | } | 
|---|
| 2083 | static inline void sparse_vmemmap_init_nid_early(int nid) | 
|---|
| 2084 | { | 
|---|
| 2085 | } | 
|---|
| 2086 |  | 
|---|
| 2087 | static inline void sparse_vmemmap_init_nid_late(int nid) | 
|---|
| 2088 | { | 
|---|
| 2089 | } | 
|---|
| 2090 | #endif | 
|---|
| 2091 |  | 
|---|
| 2092 | static inline int online_section_nr(unsigned long nr) | 
|---|
| 2093 | { | 
|---|
| 2094 | return online_section(section: __nr_to_section(nr)); | 
|---|
| 2095 | } | 
|---|
| 2096 |  | 
|---|
| 2097 | #ifdef CONFIG_MEMORY_HOTPLUG | 
|---|
| 2098 | void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn); | 
|---|
| 2099 | void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn); | 
|---|
| 2100 | #endif | 
|---|
| 2101 |  | 
|---|
| 2102 | static inline struct mem_section *__pfn_to_section(unsigned long pfn) | 
|---|
| 2103 | { | 
|---|
| 2104 | return __nr_to_section(nr: pfn_to_section_nr(pfn)); | 
|---|
| 2105 | } | 
|---|
| 2106 |  | 
|---|
| 2107 | extern unsigned long __highest_present_section_nr; | 
|---|
| 2108 |  | 
|---|
| 2109 | static inline int subsection_map_index(unsigned long pfn) | 
|---|
| 2110 | { | 
|---|
| 2111 | return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION; | 
|---|
| 2112 | } | 
|---|
| 2113 |  | 
|---|
| 2114 | #ifdef CONFIG_SPARSEMEM_VMEMMAP | 
|---|
| 2115 | static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn) | 
|---|
| 2116 | { | 
|---|
| 2117 | int idx = subsection_map_index(pfn); | 
|---|
| 2118 | struct mem_section_usage *usage = READ_ONCE(ms->usage); | 
|---|
| 2119 |  | 
|---|
| 2120 | return usage ? test_bit(idx, usage->subsection_map) : 0; | 
|---|
| 2121 | } | 
|---|
| 2122 |  | 
|---|
| 2123 | static inline bool pfn_section_first_valid(struct mem_section *ms, unsigned long *pfn) | 
|---|
| 2124 | { | 
|---|
| 2125 | struct mem_section_usage *usage = READ_ONCE(ms->usage); | 
|---|
| 2126 | int idx = subsection_map_index(pfn: *pfn); | 
|---|
| 2127 | unsigned long bit; | 
|---|
| 2128 |  | 
|---|
| 2129 | if (!usage) | 
|---|
| 2130 | return false; | 
|---|
| 2131 |  | 
|---|
| 2132 | if (test_bit(idx, usage->subsection_map)) | 
|---|
| 2133 | return true; | 
|---|
| 2134 |  | 
|---|
| 2135 | /* Find the next subsection that exists */ | 
|---|
| 2136 | bit = find_next_bit(addr: usage->subsection_map, SUBSECTIONS_PER_SECTION, offset: idx); | 
|---|
| 2137 | if (bit == SUBSECTIONS_PER_SECTION) | 
|---|
| 2138 | return false; | 
|---|
| 2139 |  | 
|---|
| 2140 | *pfn = (*pfn & PAGE_SECTION_MASK) + (bit * PAGES_PER_SUBSECTION); | 
|---|
| 2141 | return true; | 
|---|
| 2142 | } | 
|---|
| 2143 | #else | 
|---|
| 2144 | static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn) | 
|---|
| 2145 | { | 
|---|
| 2146 | return 1; | 
|---|
| 2147 | } | 
|---|
| 2148 |  | 
|---|
| 2149 | static inline bool pfn_section_first_valid(struct mem_section *ms, unsigned long *pfn) | 
|---|
| 2150 | { | 
|---|
| 2151 | return true; | 
|---|
| 2152 | } | 
|---|
| 2153 | #endif | 
|---|
| 2154 |  | 
|---|
| 2155 | void sparse_init_early_section(int nid, struct page *map, unsigned long pnum, | 
|---|
| 2156 | unsigned long flags); | 
|---|
| 2157 |  | 
|---|
| 2158 | #ifndef CONFIG_HAVE_ARCH_PFN_VALID | 
|---|
| 2159 | /** | 
|---|
| 2160 | * pfn_valid - check if there is a valid memory map entry for a PFN | 
|---|
| 2161 | * @pfn: the page frame number to check | 
|---|
| 2162 | * | 
|---|
| 2163 | * Check if there is a valid memory map entry aka struct page for the @pfn. | 
|---|
| 2164 | * Note, that availability of the memory map entry does not imply that | 
|---|
| 2165 | * there is actual usable memory at that @pfn. The struct page may | 
|---|
| 2166 | * represent a hole or an unusable page frame. | 
|---|
| 2167 | * | 
|---|
| 2168 | * Return: 1 for PFNs that have memory map entries and 0 otherwise | 
|---|
| 2169 | */ | 
|---|
| 2170 | static inline int pfn_valid(unsigned long pfn) | 
|---|
| 2171 | { | 
|---|
| 2172 | struct mem_section *ms; | 
|---|
| 2173 | int ret; | 
|---|
| 2174 |  | 
|---|
| 2175 | /* | 
|---|
| 2176 | * Ensure the upper PAGE_SHIFT bits are clear in the | 
|---|
| 2177 | * pfn. Else it might lead to false positives when | 
|---|
| 2178 | * some of the upper bits are set, but the lower bits | 
|---|
| 2179 | * match a valid pfn. | 
|---|
| 2180 | */ | 
|---|
| 2181 | if (PHYS_PFN(PFN_PHYS(pfn)) != pfn) | 
|---|
| 2182 | return 0; | 
|---|
| 2183 |  | 
|---|
| 2184 | if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) | 
|---|
| 2185 | return 0; | 
|---|
| 2186 | ms = __pfn_to_section(pfn); | 
|---|
| 2187 | rcu_read_lock_sched(); | 
|---|
| 2188 | if (!valid_section(section: ms)) { | 
|---|
| 2189 | rcu_read_unlock_sched(); | 
|---|
| 2190 | return 0; | 
|---|
| 2191 | } | 
|---|
| 2192 | /* | 
|---|
| 2193 | * Traditionally early sections always returned pfn_valid() for | 
|---|
| 2194 | * the entire section-sized span. | 
|---|
| 2195 | */ | 
|---|
| 2196 | ret = early_section(section: ms) || pfn_section_valid(ms, pfn); | 
|---|
| 2197 | rcu_read_unlock_sched(); | 
|---|
| 2198 |  | 
|---|
| 2199 | return ret; | 
|---|
| 2200 | } | 
|---|
| 2201 |  | 
|---|
| 2202 | /* Returns end_pfn or higher if no valid PFN remaining in range */ | 
|---|
| 2203 | static inline unsigned long first_valid_pfn(unsigned long pfn, unsigned long end_pfn) | 
|---|
| 2204 | { | 
|---|
| 2205 | unsigned long nr = pfn_to_section_nr(pfn); | 
|---|
| 2206 |  | 
|---|
| 2207 | rcu_read_lock_sched(); | 
|---|
| 2208 |  | 
|---|
| 2209 | while (nr <= __highest_present_section_nr && pfn < end_pfn) { | 
|---|
| 2210 | struct mem_section *ms = __pfn_to_section(pfn); | 
|---|
| 2211 |  | 
|---|
| 2212 | if (valid_section(section: ms) && | 
|---|
| 2213 | (early_section(section: ms) || pfn_section_first_valid(ms, pfn: &pfn))) { | 
|---|
| 2214 | rcu_read_unlock_sched(); | 
|---|
| 2215 | return pfn; | 
|---|
| 2216 | } | 
|---|
| 2217 |  | 
|---|
| 2218 | /* Nothing left in this section? Skip to next section */ | 
|---|
| 2219 | nr++; | 
|---|
| 2220 | pfn = section_nr_to_pfn(sec: nr); | 
|---|
| 2221 | } | 
|---|
| 2222 |  | 
|---|
| 2223 | rcu_read_unlock_sched(); | 
|---|
| 2224 | return end_pfn; | 
|---|
| 2225 | } | 
|---|
| 2226 |  | 
|---|
| 2227 | static inline unsigned long next_valid_pfn(unsigned long pfn, unsigned long end_pfn) | 
|---|
| 2228 | { | 
|---|
| 2229 | pfn++; | 
|---|
| 2230 |  | 
|---|
| 2231 | if (pfn >= end_pfn) | 
|---|
| 2232 | return end_pfn; | 
|---|
| 2233 |  | 
|---|
| 2234 | /* | 
|---|
| 2235 | * Either every PFN within the section (or subsection for VMEMMAP) is | 
|---|
| 2236 | * valid, or none of them are. So there's no point repeating the check | 
|---|
| 2237 | * for every PFN; only call first_valid_pfn() again when crossing a | 
|---|
| 2238 | * (sub)section boundary (i.e. !(pfn & ~PAGE_{SUB,}SECTION_MASK)). | 
|---|
| 2239 | */ | 
|---|
| 2240 | if (pfn & ~(IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP) ? | 
|---|
| 2241 | PAGE_SUBSECTION_MASK : PAGE_SECTION_MASK)) | 
|---|
| 2242 | return pfn; | 
|---|
| 2243 |  | 
|---|
| 2244 | return first_valid_pfn(pfn, end_pfn); | 
|---|
| 2245 | } | 
|---|
| 2246 |  | 
|---|
| 2247 |  | 
|---|
| 2248 | #define for_each_valid_pfn(_pfn, _start_pfn, _end_pfn)			\ | 
|---|
| 2249 | for ((_pfn) = first_valid_pfn((_start_pfn), (_end_pfn));	\ | 
|---|
| 2250 | (_pfn) < (_end_pfn);					\ | 
|---|
| 2251 | (_pfn) = next_valid_pfn((_pfn), (_end_pfn))) | 
|---|
| 2252 |  | 
|---|
| 2253 | #endif | 
|---|
| 2254 |  | 
|---|
| 2255 | static inline int pfn_in_present_section(unsigned long pfn) | 
|---|
| 2256 | { | 
|---|
| 2257 | if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) | 
|---|
| 2258 | return 0; | 
|---|
| 2259 | return present_section(section: __pfn_to_section(pfn)); | 
|---|
| 2260 | } | 
|---|
| 2261 |  | 
|---|
| 2262 | static inline unsigned long next_present_section_nr(unsigned long section_nr) | 
|---|
| 2263 | { | 
|---|
| 2264 | while (++section_nr <= __highest_present_section_nr) { | 
|---|
| 2265 | if (present_section_nr(nr: section_nr)) | 
|---|
| 2266 | return section_nr; | 
|---|
| 2267 | } | 
|---|
| 2268 |  | 
|---|
| 2269 | return -1; | 
|---|
| 2270 | } | 
|---|
| 2271 |  | 
|---|
| 2272 | #define for_each_present_section_nr(start, section_nr)		\ | 
|---|
| 2273 | for (section_nr = next_present_section_nr(start - 1);	\ | 
|---|
| 2274 | section_nr != -1;					\ | 
|---|
| 2275 | section_nr = next_present_section_nr(section_nr)) | 
|---|
| 2276 |  | 
|---|
| 2277 | /* | 
|---|
| 2278 | * These are _only_ used during initialisation, therefore they | 
|---|
| 2279 | * can use __initdata ...  They could have names to indicate | 
|---|
| 2280 | * this restriction. | 
|---|
| 2281 | */ | 
|---|
| 2282 | #ifdef CONFIG_NUMA | 
|---|
| 2283 | #define pfn_to_nid(pfn)							\ | 
|---|
| 2284 | ({									\ | 
|---|
| 2285 | unsigned long __pfn_to_nid_pfn = (pfn);				\ | 
|---|
| 2286 | page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\ | 
|---|
| 2287 | }) | 
|---|
| 2288 | #else | 
|---|
| 2289 | #define pfn_to_nid(pfn)		(0) | 
|---|
| 2290 | #endif | 
|---|
| 2291 |  | 
|---|
| 2292 | void sparse_init(void); | 
|---|
| 2293 | #else | 
|---|
| 2294 | #define sparse_init()	do {} while (0) | 
|---|
| 2295 | #define sparse_index_init(_sec, _nid)  do {} while (0) | 
|---|
| 2296 | #define sparse_vmemmap_init_nid_early(_nid, _use) do {} while (0) | 
|---|
| 2297 | #define sparse_vmemmap_init_nid_late(_nid) do {} while (0) | 
|---|
| 2298 | #define pfn_in_present_section pfn_valid | 
|---|
| 2299 | #define subsection_map_init(_pfn, _nr_pages) do {} while (0) | 
|---|
| 2300 | #endif /* CONFIG_SPARSEMEM */ | 
|---|
| 2301 |  | 
|---|
| 2302 | /* | 
|---|
| 2303 | * Fallback case for when the architecture provides its own pfn_valid() but | 
|---|
| 2304 | * not a corresponding for_each_valid_pfn(). | 
|---|
| 2305 | */ | 
|---|
| 2306 | #ifndef for_each_valid_pfn | 
|---|
| 2307 | #define for_each_valid_pfn(_pfn, _start_pfn, _end_pfn)			\ | 
|---|
| 2308 | for ((_pfn) = (_start_pfn); (_pfn) < (_end_pfn); (_pfn)++)	\ | 
|---|
| 2309 | if (pfn_valid(_pfn)) | 
|---|
| 2310 | #endif | 
|---|
| 2311 |  | 
|---|
| 2312 | #endif /* !__GENERATING_BOUNDS.H */ | 
|---|
| 2313 | #endif /* !__ASSEMBLY__ */ | 
|---|
| 2314 | #endif /* _LINUX_MMZONE_H */ | 
|---|
| 2315 |  | 
|---|