1/* SPDX-License-Identifier: GPL-2.0-only */
2/*
3 * Universal power supply monitor class
4 *
5 * Copyright © 2007 Anton Vorontsov <cbou@mail.ru>
6 * Copyright © 2004 Szabolcs Gyurko
7 * Copyright © 2003 Ian Molton <spyro@f2s.com>
8 *
9 * Modified: 2004, Oct Szabolcs Gyurko
10 */
11
12#ifndef __LINUX_POWER_SUPPLY_H__
13#define __LINUX_POWER_SUPPLY_H__
14
15#include <linux/device.h>
16#include <linux/workqueue.h>
17#include <linux/leds.h>
18#include <linux/rwsem.h>
19#include <linux/list.h>
20#include <linux/spinlock.h>
21#include <linux/notifier.h>
22
23/*
24 * All voltages, currents, charges, energies, time and temperatures in uV,
25 * µA, µAh, µWh, seconds and tenths of degree Celsius unless otherwise
26 * stated. It's driver's job to convert its raw values to units in which
27 * this class operates.
28 */
29
30/*
31 * For systems where the charger determines the maximum battery capacity
32 * the min and max fields should be used to present these values to user
33 * space. Unused/unknown fields will not appear in sysfs.
34 */
35
36enum {
37 POWER_SUPPLY_STATUS_UNKNOWN = 0,
38 POWER_SUPPLY_STATUS_CHARGING,
39 POWER_SUPPLY_STATUS_DISCHARGING,
40 POWER_SUPPLY_STATUS_NOT_CHARGING,
41 POWER_SUPPLY_STATUS_FULL,
42};
43
44/* What algorithm is the charger using? */
45enum power_supply_charge_type {
46 POWER_SUPPLY_CHARGE_TYPE_UNKNOWN = 0,
47 POWER_SUPPLY_CHARGE_TYPE_NONE,
48 POWER_SUPPLY_CHARGE_TYPE_TRICKLE, /* slow speed */
49 POWER_SUPPLY_CHARGE_TYPE_FAST, /* fast speed */
50 POWER_SUPPLY_CHARGE_TYPE_STANDARD, /* normal speed */
51 POWER_SUPPLY_CHARGE_TYPE_ADAPTIVE, /* dynamically adjusted speed */
52 POWER_SUPPLY_CHARGE_TYPE_CUSTOM, /* use CHARGE_CONTROL_* props */
53 POWER_SUPPLY_CHARGE_TYPE_LONGLIFE, /* slow speed, longer life */
54 POWER_SUPPLY_CHARGE_TYPE_BYPASS, /* bypassing the charger */
55};
56
57enum {
58 POWER_SUPPLY_HEALTH_UNKNOWN = 0,
59 POWER_SUPPLY_HEALTH_GOOD,
60 POWER_SUPPLY_HEALTH_OVERHEAT,
61 POWER_SUPPLY_HEALTH_DEAD,
62 POWER_SUPPLY_HEALTH_OVERVOLTAGE,
63 POWER_SUPPLY_HEALTH_UNDERVOLTAGE,
64 POWER_SUPPLY_HEALTH_UNSPEC_FAILURE,
65 POWER_SUPPLY_HEALTH_COLD,
66 POWER_SUPPLY_HEALTH_WATCHDOG_TIMER_EXPIRE,
67 POWER_SUPPLY_HEALTH_SAFETY_TIMER_EXPIRE,
68 POWER_SUPPLY_HEALTH_OVERCURRENT,
69 POWER_SUPPLY_HEALTH_CALIBRATION_REQUIRED,
70 POWER_SUPPLY_HEALTH_WARM,
71 POWER_SUPPLY_HEALTH_COOL,
72 POWER_SUPPLY_HEALTH_HOT,
73 POWER_SUPPLY_HEALTH_NO_BATTERY,
74 POWER_SUPPLY_HEALTH_BLOWN_FUSE,
75 POWER_SUPPLY_HEALTH_CELL_IMBALANCE,
76};
77
78enum {
79 POWER_SUPPLY_TECHNOLOGY_UNKNOWN = 0,
80 POWER_SUPPLY_TECHNOLOGY_NiMH,
81 POWER_SUPPLY_TECHNOLOGY_LION,
82 POWER_SUPPLY_TECHNOLOGY_LIPO,
83 POWER_SUPPLY_TECHNOLOGY_LiFe,
84 POWER_SUPPLY_TECHNOLOGY_NiCd,
85 POWER_SUPPLY_TECHNOLOGY_LiMn,
86};
87
88enum {
89 POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN = 0,
90 POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL,
91 POWER_SUPPLY_CAPACITY_LEVEL_LOW,
92 POWER_SUPPLY_CAPACITY_LEVEL_NORMAL,
93 POWER_SUPPLY_CAPACITY_LEVEL_HIGH,
94 POWER_SUPPLY_CAPACITY_LEVEL_FULL,
95};
96
97enum {
98 POWER_SUPPLY_SCOPE_UNKNOWN = 0,
99 POWER_SUPPLY_SCOPE_SYSTEM,
100 POWER_SUPPLY_SCOPE_DEVICE,
101};
102
103enum power_supply_property {
104 /* Properties of type `int' */
105 POWER_SUPPLY_PROP_STATUS = 0,
106 POWER_SUPPLY_PROP_CHARGE_TYPE,
107 POWER_SUPPLY_PROP_CHARGE_TYPES,
108 POWER_SUPPLY_PROP_HEALTH,
109 POWER_SUPPLY_PROP_PRESENT,
110 POWER_SUPPLY_PROP_ONLINE,
111 POWER_SUPPLY_PROP_AUTHENTIC,
112 POWER_SUPPLY_PROP_TECHNOLOGY,
113 POWER_SUPPLY_PROP_CYCLE_COUNT,
114 POWER_SUPPLY_PROP_VOLTAGE_MAX,
115 POWER_SUPPLY_PROP_VOLTAGE_MIN,
116 POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN,
117 POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN,
118 POWER_SUPPLY_PROP_VOLTAGE_NOW,
119 POWER_SUPPLY_PROP_VOLTAGE_AVG,
120 POWER_SUPPLY_PROP_VOLTAGE_OCV,
121 POWER_SUPPLY_PROP_VOLTAGE_BOOT,
122 POWER_SUPPLY_PROP_CURRENT_MAX,
123 POWER_SUPPLY_PROP_CURRENT_NOW,
124 POWER_SUPPLY_PROP_CURRENT_AVG,
125 POWER_SUPPLY_PROP_CURRENT_BOOT,
126 POWER_SUPPLY_PROP_POWER_NOW,
127 POWER_SUPPLY_PROP_POWER_AVG,
128 POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
129 POWER_SUPPLY_PROP_CHARGE_EMPTY_DESIGN,
130 POWER_SUPPLY_PROP_CHARGE_FULL,
131 POWER_SUPPLY_PROP_CHARGE_EMPTY,
132 POWER_SUPPLY_PROP_CHARGE_NOW,
133 POWER_SUPPLY_PROP_CHARGE_AVG,
134 POWER_SUPPLY_PROP_CHARGE_COUNTER,
135 POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT,
136 POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX,
137 POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE,
138 POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX,
139 POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT,
140 POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT_MAX,
141 POWER_SUPPLY_PROP_CHARGE_CONTROL_START_THRESHOLD, /* in percents! */
142 POWER_SUPPLY_PROP_CHARGE_CONTROL_END_THRESHOLD, /* in percents! */
143 POWER_SUPPLY_PROP_CHARGE_BEHAVIOUR,
144 POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT,
145 POWER_SUPPLY_PROP_INPUT_VOLTAGE_LIMIT,
146 POWER_SUPPLY_PROP_INPUT_POWER_LIMIT,
147 POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN,
148 POWER_SUPPLY_PROP_ENERGY_EMPTY_DESIGN,
149 POWER_SUPPLY_PROP_ENERGY_FULL,
150 POWER_SUPPLY_PROP_ENERGY_EMPTY,
151 POWER_SUPPLY_PROP_ENERGY_NOW,
152 POWER_SUPPLY_PROP_ENERGY_AVG,
153 POWER_SUPPLY_PROP_CAPACITY, /* in percents! */
154 POWER_SUPPLY_PROP_CAPACITY_ALERT_MIN, /* in percents! */
155 POWER_SUPPLY_PROP_CAPACITY_ALERT_MAX, /* in percents! */
156 POWER_SUPPLY_PROP_CAPACITY_ERROR_MARGIN, /* in percents! */
157 POWER_SUPPLY_PROP_CAPACITY_LEVEL,
158 POWER_SUPPLY_PROP_TEMP,
159 POWER_SUPPLY_PROP_TEMP_MAX,
160 POWER_SUPPLY_PROP_TEMP_MIN,
161 POWER_SUPPLY_PROP_TEMP_ALERT_MIN,
162 POWER_SUPPLY_PROP_TEMP_ALERT_MAX,
163 POWER_SUPPLY_PROP_TEMP_AMBIENT,
164 POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN,
165 POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX,
166 POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
167 POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG,
168 POWER_SUPPLY_PROP_TIME_TO_FULL_NOW,
169 POWER_SUPPLY_PROP_TIME_TO_FULL_AVG,
170 POWER_SUPPLY_PROP_TYPE, /* use power_supply.type instead */
171 POWER_SUPPLY_PROP_USB_TYPE,
172 POWER_SUPPLY_PROP_SCOPE,
173 POWER_SUPPLY_PROP_PRECHARGE_CURRENT,
174 POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT,
175 POWER_SUPPLY_PROP_CALIBRATE,
176 POWER_SUPPLY_PROP_MANUFACTURE_YEAR,
177 POWER_SUPPLY_PROP_MANUFACTURE_MONTH,
178 POWER_SUPPLY_PROP_MANUFACTURE_DAY,
179 POWER_SUPPLY_PROP_INTERNAL_RESISTANCE,
180 POWER_SUPPLY_PROP_STATE_OF_HEALTH,
181 /* Properties of type `const char *' */
182 POWER_SUPPLY_PROP_MODEL_NAME,
183 POWER_SUPPLY_PROP_MANUFACTURER,
184 POWER_SUPPLY_PROP_SERIAL_NUMBER,
185};
186
187enum power_supply_type {
188 POWER_SUPPLY_TYPE_UNKNOWN = 0,
189 POWER_SUPPLY_TYPE_BATTERY,
190 POWER_SUPPLY_TYPE_UPS,
191 POWER_SUPPLY_TYPE_MAINS,
192 POWER_SUPPLY_TYPE_USB, /* Standard Downstream Port */
193 POWER_SUPPLY_TYPE_USB_DCP, /* Dedicated Charging Port */
194 POWER_SUPPLY_TYPE_USB_CDP, /* Charging Downstream Port */
195 POWER_SUPPLY_TYPE_USB_ACA, /* Accessory Charger Adapters */
196 POWER_SUPPLY_TYPE_USB_TYPE_C, /* Type C Port */
197 POWER_SUPPLY_TYPE_USB_PD, /* Power Delivery Port */
198 POWER_SUPPLY_TYPE_USB_PD_DRP, /* PD Dual Role Port */
199 POWER_SUPPLY_TYPE_APPLE_BRICK_ID, /* Apple Charging Method */
200 POWER_SUPPLY_TYPE_WIRELESS, /* Wireless */
201};
202
203enum power_supply_usb_type {
204 POWER_SUPPLY_USB_TYPE_UNKNOWN = 0,
205 POWER_SUPPLY_USB_TYPE_SDP, /* Standard Downstream Port */
206 POWER_SUPPLY_USB_TYPE_DCP, /* Dedicated Charging Port */
207 POWER_SUPPLY_USB_TYPE_CDP, /* Charging Downstream Port */
208 POWER_SUPPLY_USB_TYPE_ACA, /* Accessory Charger Adapters */
209 POWER_SUPPLY_USB_TYPE_C, /* Type C Port */
210 POWER_SUPPLY_USB_TYPE_PD, /* Power Delivery Port */
211 POWER_SUPPLY_USB_TYPE_PD_DRP, /* PD Dual Role Port */
212 POWER_SUPPLY_USB_TYPE_PD_PPS, /* PD Programmable Power Supply */
213 POWER_SUPPLY_USB_TYPE_APPLE_BRICK_ID, /* Apple Charging Method */
214};
215
216enum power_supply_charge_behaviour {
217 POWER_SUPPLY_CHARGE_BEHAVIOUR_AUTO = 0,
218 POWER_SUPPLY_CHARGE_BEHAVIOUR_INHIBIT_CHARGE,
219 POWER_SUPPLY_CHARGE_BEHAVIOUR_INHIBIT_CHARGE_AWAKE,
220 POWER_SUPPLY_CHARGE_BEHAVIOUR_FORCE_DISCHARGE,
221};
222
223enum power_supply_notifier_events {
224 PSY_EVENT_PROP_CHANGED,
225};
226
227union power_supply_propval {
228 int intval;
229 const char *strval;
230};
231
232struct device_node;
233struct power_supply;
234
235/* Run-time specific power supply configuration */
236struct power_supply_config {
237 struct fwnode_handle *fwnode;
238
239 /* Driver private data */
240 void *drv_data;
241
242 /* Device specific sysfs attributes */
243 const struct attribute_group **attr_grp;
244
245 char **supplied_to;
246 size_t num_supplicants;
247
248 bool no_wakeup_source;
249};
250
251/* Description of power supply */
252struct power_supply_desc {
253 const char *name;
254 enum power_supply_type type;
255 u8 charge_behaviours;
256 u32 charge_types;
257 u32 usb_types;
258 const enum power_supply_property *properties;
259 size_t num_properties;
260
261 /*
262 * Functions for drivers implementing power supply class.
263 * These shouldn't be called directly by other drivers for accessing
264 * this power supply. Instead use power_supply_*() functions (for
265 * example power_supply_get_property()).
266 */
267 int (*get_property)(struct power_supply *psy,
268 enum power_supply_property psp,
269 union power_supply_propval *val);
270 int (*set_property)(struct power_supply *psy,
271 enum power_supply_property psp,
272 const union power_supply_propval *val);
273 /*
274 * property_is_writeable() will be called during registration
275 * of power supply. If this happens during device probe then it must
276 * not access internal data of device (because probe did not end).
277 */
278 int (*property_is_writeable)(struct power_supply *psy,
279 enum power_supply_property psp);
280 void (*external_power_changed)(struct power_supply *psy);
281
282 /*
283 * Set if thermal zone should not be created for this power supply.
284 * For example for virtual supplies forwarding calls to actual
285 * sensors or other supplies.
286 */
287 bool no_thermal;
288 /* For APM emulation, think legacy userspace. */
289 int use_for_apm;
290};
291
292struct power_supply_ext {
293 const char *const name;
294 u8 charge_behaviours;
295 u32 charge_types;
296 const enum power_supply_property *properties;
297 size_t num_properties;
298
299 int (*get_property)(struct power_supply *psy,
300 const struct power_supply_ext *ext,
301 void *data,
302 enum power_supply_property psp,
303 union power_supply_propval *val);
304 int (*set_property)(struct power_supply *psy,
305 const struct power_supply_ext *ext,
306 void *data,
307 enum power_supply_property psp,
308 const union power_supply_propval *val);
309 int (*property_is_writeable)(struct power_supply *psy,
310 const struct power_supply_ext *ext,
311 void *data,
312 enum power_supply_property psp);
313};
314
315struct power_supply {
316 const struct power_supply_desc *desc;
317
318 char **supplied_to;
319 size_t num_supplicants;
320
321 char **supplied_from;
322 size_t num_supplies;
323
324 /* Driver private data */
325 void *drv_data;
326
327 /* private */
328 struct device dev;
329 struct work_struct changed_work;
330 struct delayed_work deferred_register_work;
331 spinlock_t changed_lock;
332 bool changed;
333 bool update_groups;
334 bool initialized;
335 bool removing;
336 atomic_t use_cnt;
337 struct power_supply_battery_info *battery_info;
338 struct rw_semaphore extensions_sem; /* protects "extensions" */
339 struct list_head extensions;
340#ifdef CONFIG_THERMAL
341 struct thermal_zone_device *tzd;
342 struct thermal_cooling_device *tcd;
343#endif
344
345#ifdef CONFIG_LEDS_TRIGGERS
346 struct led_trigger *trig;
347 struct led_trigger *charging_trig;
348 struct led_trigger *full_trig;
349 struct led_trigger *charging_blink_full_solid_trig;
350 struct led_trigger *charging_orange_full_green_trig;
351#endif
352};
353
354#define dev_to_psy(__dev) container_of_const(__dev, struct power_supply, dev)
355
356/*
357 * This is recommended structure to specify static power supply parameters.
358 * Generic one, parametrizable for different power supplies. Power supply
359 * class itself does not use it, but that's what implementing most platform
360 * drivers, should try reuse for consistency.
361 */
362
363struct power_supply_info {
364 const char *name;
365 int technology;
366 int voltage_max_design;
367 int voltage_min_design;
368 int charge_full_design;
369 int charge_empty_design;
370 int energy_full_design;
371 int energy_empty_design;
372 int use_for_apm;
373};
374
375struct power_supply_battery_ocv_table {
376 int ocv; /* microVolts */
377 int capacity; /* percent */
378};
379
380struct power_supply_resistance_temp_table {
381 int temp; /* celsius */
382 int resistance; /* internal resistance percent */
383};
384
385struct power_supply_vbat_ri_table {
386 int vbat_uv; /* Battery voltage in microvolt */
387 int ri_uohm; /* Internal resistance in microohm */
388};
389
390/**
391 * struct power_supply_maintenance_charge_table - setting for maintenace charging
392 * @charge_current_max_ua: maintenance charging current that is used to keep
393 * the charge of the battery full as current is consumed after full charging.
394 * The corresponding charge_voltage_max_uv is used as a safeguard: when we
395 * reach this voltage the maintenance charging current is turned off. It is
396 * turned back on if we fall below this voltage.
397 * @charge_voltage_max_uv: maintenance charging voltage that is usually a bit
398 * lower than the constant_charge_voltage_max_uv. We can apply this settings
399 * charge_current_max_ua until we get back up to this voltage.
400 * @safety_timer_minutes: maintenance charging safety timer, with an expiry
401 * time in minutes. We will only use maintenance charging in this setting
402 * for a certain amount of time, then we will first move to the next
403 * maintenance charge current and voltage pair in respective array and wait
404 * for the next safety timer timeout, or, if we reached the last maintencance
405 * charging setting, disable charging until we reach
406 * charge_restart_voltage_uv and restart ordinary CC/CV charging from there.
407 * These timers should be chosen to align with the typical discharge curve
408 * for the battery.
409 *
410 * Ordinary CC/CV charging will stop charging when the charge current goes
411 * below charge_term_current_ua, and then restart it (if the device is still
412 * plugged into the charger) at charge_restart_voltage_uv. This happens in most
413 * consumer products because the power usage while connected to a charger is
414 * not zero, and devices are not manufactured to draw power directly from the
415 * charger: instead they will at all times dissipate the battery a little, like
416 * the power used in standby mode. This will over time give a charge graph
417 * such as this:
418 *
419 * Energy
420 * ^ ... ... ... ... ... ... ...
421 * | . . . . . . . . . . . . .
422 * | .. . .. . .. . .. . .. . .. . ..
423 * |. .. .. .. .. .. ..
424 * +-------------------------------------------------------------------> t
425 *
426 * Practically this means that the Li-ions are wandering back and forth in the
427 * battery and this causes degeneration of the battery anode and cathode.
428 * To prolong the life of the battery, maintenance charging is applied after
429 * reaching charge_term_current_ua to hold up the charge in the battery while
430 * consuming power, thus lowering the wear on the battery:
431 *
432 * Energy
433 * ^ .......................................
434 * | . ......................
435 * | ..
436 * |.
437 * +-------------------------------------------------------------------> t
438 *
439 * Maintenance charging uses the voltages from this table: a table of settings
440 * is traversed using a slightly lower current and voltage than what is used for
441 * CC/CV charging. The maintenance charging will for safety reasons not go on
442 * indefinately: we lower the current and voltage with successive maintenance
443 * settings, then disable charging completely after we reach the last one,
444 * and after that we do not restart charging until we reach
445 * charge_restart_voltage_uv (see struct power_supply_battery_info) and restart
446 * ordinary CC/CV charging from there.
447 *
448 * As an example, a Samsung EB425161LA Lithium-Ion battery is CC/CV charged
449 * at 900mA to 4340mV, then maintenance charged at 600mA and 4150mV for up to
450 * 60 hours, then maintenance charged at 600mA and 4100mV for up to 200 hours.
451 * After this the charge cycle is restarted waiting for
452 * charge_restart_voltage_uv.
453 *
454 * For most mobile electronics this type of maintenance charging is enough for
455 * the user to disconnect the device and make use of it before both maintenance
456 * charging cycles are complete, if the current and voltage has been chosen
457 * appropriately. These need to be determined from battery discharge curves
458 * and expected standby current.
459 *
460 * If the voltage anyway drops to charge_restart_voltage_uv during maintenance
461 * charging, ordinary CC/CV charging is restarted. This can happen if the
462 * device is e.g. actively used during charging, so more current is drawn than
463 * the expected stand-by current. Also overvoltage protection will be applied
464 * as usual.
465 */
466struct power_supply_maintenance_charge_table {
467 int charge_current_max_ua;
468 int charge_voltage_max_uv;
469 int charge_safety_timer_minutes;
470};
471
472#define POWER_SUPPLY_OCV_TEMP_MAX 20
473
474/**
475 * struct power_supply_battery_info - information about batteries
476 * @technology: from the POWER_SUPPLY_TECHNOLOGY_* enum
477 * @energy_full_design_uwh: energy content when fully charged in microwatt
478 * hours
479 * @charge_full_design_uah: charge content when fully charged in microampere
480 * hours
481 * @voltage_min_design_uv: minimum voltage across the poles when the battery
482 * is at minimum voltage level in microvolts. If the voltage drops below this
483 * level the battery will need precharging when using CC/CV charging.
484 * @voltage_max_design_uv: voltage across the poles when the battery is fully
485 * charged in microvolts. This is the "nominal voltage" i.e. the voltage
486 * printed on the label of the battery.
487 * @tricklecharge_current_ua: the tricklecharge current used when trickle
488 * charging the battery in microamperes. This is the charging phase when the
489 * battery is completely empty and we need to carefully trickle in some
490 * charge until we reach the precharging voltage.
491 * @precharge_current_ua: current to use in the precharge phase in microamperes,
492 * the precharge rate is limited by limiting the current to this value.
493 * @precharge_voltage_max_uv: the maximum voltage allowed when precharging in
494 * microvolts. When we pass this voltage we will nominally switch over to the
495 * CC (constant current) charging phase defined by constant_charge_current_ua
496 * and constant_charge_voltage_max_uv.
497 * @charge_term_current_ua: when the current in the CV (constant voltage)
498 * charging phase drops below this value in microamperes the charging will
499 * terminate completely and not restart until the voltage over the battery
500 * poles reach charge_restart_voltage_uv unless we use maintenance charging.
501 * @charge_restart_voltage_uv: when the battery has been fully charged by
502 * CC/CV charging and charging has been disabled, and the voltage subsequently
503 * drops below this value in microvolts, the charging will be restarted
504 * (typically using CV charging).
505 * @overvoltage_limit_uv: If the voltage exceeds the nominal voltage
506 * voltage_max_design_uv and we reach this voltage level, all charging must
507 * stop and emergency procedures take place, such as shutting down the system
508 * in some cases.
509 * @constant_charge_current_max_ua: current in microamperes to use in the CC
510 * (constant current) charging phase. The charging rate is limited
511 * by this current. This is the main charging phase and as the current is
512 * constant into the battery the voltage slowly ascends to
513 * constant_charge_voltage_max_uv.
514 * @constant_charge_voltage_max_uv: voltage in microvolts signifying the end of
515 * the CC (constant current) charging phase and the beginning of the CV
516 * (constant voltage) charging phase.
517 * @maintenance_charge: an array of maintenance charging settings to be used
518 * after the main CC/CV charging phase is complete.
519 * @maintenance_charge_size: the number of maintenance charging settings in
520 * maintenance_charge.
521 * @alert_low_temp_charge_current_ua: The charging current to use if the battery
522 * enters low alert temperature, i.e. if the internal temperature is between
523 * temp_alert_min and temp_min. No matter the charging phase, this
524 * and alert_high_temp_charge_voltage_uv will be applied.
525 * @alert_low_temp_charge_voltage_uv: Same as alert_low_temp_charge_current_ua,
526 * but for the charging voltage.
527 * @alert_high_temp_charge_current_ua: The charging current to use if the
528 * battery enters high alert temperature, i.e. if the internal temperature is
529 * between temp_alert_max and temp_max. No matter the charging phase, this
530 * and alert_high_temp_charge_voltage_uv will be applied, usually lowering
531 * the charging current as an evasive manouver.
532 * @alert_high_temp_charge_voltage_uv: Same as
533 * alert_high_temp_charge_current_ua, but for the charging voltage.
534 * @factory_internal_resistance_uohm: the internal resistance of the battery
535 * at fabrication time, expressed in microohms. This resistance will vary
536 * depending on the lifetime and charge of the battery, so this is just a
537 * nominal ballpark figure. This internal resistance is given for the state
538 * when the battery is discharging.
539 * @factory_internal_resistance_charging_uohm: the internal resistance of the
540 * battery at fabrication time while charging, expressed in microohms.
541 * The charging process will affect the internal resistance of the battery
542 * so this value provides a better resistance under these circumstances.
543 * This resistance will vary depending on the lifetime and charge of the
544 * battery, so this is just a nominal ballpark figure.
545 * @ocv_temp: array indicating the open circuit voltage (OCV) capacity
546 * temperature indices. This is an array of temperatures in degrees Celsius
547 * indicating which capacity table to use for a certain temperature, since
548 * the capacity for reasons of chemistry will be different at different
549 * temperatures. Determining capacity is a multivariate problem and the
550 * temperature is the first variable we determine.
551 * @temp_ambient_alert_min: the battery will go outside of operating conditions
552 * when the ambient temperature goes below this temperature in degrees
553 * Celsius.
554 * @temp_ambient_alert_max: the battery will go outside of operating conditions
555 * when the ambient temperature goes above this temperature in degrees
556 * Celsius.
557 * @temp_alert_min: the battery should issue an alert if the internal
558 * temperature goes below this temperature in degrees Celsius.
559 * @temp_alert_max: the battery should issue an alert if the internal
560 * temperature goes above this temperature in degrees Celsius.
561 * @temp_min: the battery will go outside of operating conditions when
562 * the internal temperature goes below this temperature in degrees Celsius.
563 * Normally this means the system should shut down.
564 * @temp_max: the battery will go outside of operating conditions when
565 * the internal temperature goes above this temperature in degrees Celsius.
566 * Normally this means the system should shut down.
567 * @ocv_table: for each entry in ocv_temp there is a corresponding entry in
568 * ocv_table and a size for each entry in ocv_table_size. These arrays
569 * determine the capacity in percent in relation to the voltage in microvolts
570 * at the indexed temperature.
571 * @ocv_table_size: for each entry in ocv_temp this array is giving the size of
572 * each entry in the array of capacity arrays in ocv_table.
573 * @resist_table: this is a table that correlates a battery temperature to the
574 * expected internal resistance at this temperature. The resistance is given
575 * as a percentage of factory_internal_resistance_uohm. Knowing the
576 * resistance of the battery is usually necessary for calculating the open
577 * circuit voltage (OCV) that is then used with the ocv_table to calculate
578 * the capacity of the battery. The resist_table must be ordered descending
579 * by temperature: highest temperature with lowest resistance first, lowest
580 * temperature with highest resistance last.
581 * @resist_table_size: the number of items in the resist_table.
582 * @vbat2ri_discharging: this is a table that correlates Battery voltage (VBAT)
583 * to internal resistance (Ri). The resistance is given in microohm for the
584 * corresponding voltage in microvolts. The internal resistance is used to
585 * determine the open circuit voltage so that we can determine the capacity
586 * of the battery. These voltages to resistance tables apply when the battery
587 * is discharging. The table must be ordered descending by voltage: highest
588 * voltage first.
589 * @vbat2ri_discharging_size: the number of items in the vbat2ri_discharging
590 * table.
591 * @vbat2ri_charging: same function as vbat2ri_discharging but for the state
592 * when the battery is charging. Being under charge changes the battery's
593 * internal resistance characteristics so a separate table is needed.*
594 * The table must be ordered descending by voltage: highest voltage first.
595 * @vbat2ri_charging_size: the number of items in the vbat2ri_charging
596 * table.
597 * @bti_resistance_ohm: The Battery Type Indicator (BIT) nominal resistance
598 * in ohms for this battery, if an identification resistor is mounted
599 * between a third battery terminal and ground. This scheme is used by a lot
600 * of mobile device batteries.
601 * @bti_resistance_tolerance: The tolerance in percent of the BTI resistance,
602 * for example 10 for +/- 10%, if the bti_resistance is set to 7000 and the
603 * tolerance is 10% we will detect a proper battery if the BTI resistance
604 * is between 6300 and 7700 Ohm.
605 *
606 * This is the recommended struct to manage static battery parameters,
607 * populated by power_supply_get_battery_info(). Most platform drivers should
608 * use these for consistency.
609 *
610 * Its field names must correspond to elements in enum power_supply_property.
611 * The default field value is -EINVAL or NULL for pointers.
612 *
613 * CC/CV CHARGING:
614 *
615 * The charging parameters here assume a CC/CV charging scheme. This method
616 * is most common with Lithium Ion batteries (other methods are possible) and
617 * looks as follows:
618 *
619 * ^ Battery voltage
620 * | --- overvoltage_limit_uv
621 * |
622 * | ...................................................
623 * | .. constant_charge_voltage_max_uv
624 * | ..
625 * | .
626 * | .
627 * | .
628 * | .
629 * | .
630 * | .. precharge_voltage_max_uv
631 * | ..
632 * |. (trickle charging)
633 * +------------------------------------------------------------------> time
634 *
635 * ^ Current into the battery
636 * |
637 * | ............. constant_charge_current_max_ua
638 * | . .
639 * | . .
640 * | . .
641 * | . .
642 * | . ..
643 * | . ....
644 * | . .....
645 * | ... precharge_current_ua ....... charge_term_current_ua
646 * | . .
647 * | . .
648 * |.... tricklecharge_current_ua .
649 * | .
650 * +-----------------------------------------------------------------> time
651 *
652 * These diagrams are synchronized on time and the voltage and current
653 * follow each other.
654 *
655 * With CC/CV charging commence over time like this for an empty battery:
656 *
657 * 1. When the battery is completely empty it may need to be charged with
658 * an especially small current so that electrons just "trickle in",
659 * this is the tricklecharge_current_ua.
660 *
661 * 2. Next a small initial pre-charge current (precharge_current_ua)
662 * is applied if the voltage is below precharge_voltage_max_uv until we
663 * reach precharge_voltage_max_uv. CAUTION: in some texts this is referred
664 * to as "trickle charging" but the use in the Linux kernel is different
665 * see below!
666 *
667 * 3. Then the main charging current is applied, which is called the constant
668 * current (CC) phase. A current regulator is set up to allow
669 * constant_charge_current_max_ua of current to flow into the battery.
670 * The chemical reaction in the battery will make the voltage go up as
671 * charge goes into the battery. This current is applied until we reach
672 * the constant_charge_voltage_max_uv voltage.
673 *
674 * 4. At this voltage we switch over to the constant voltage (CV) phase. This
675 * means we allow current to go into the battery, but we keep the voltage
676 * fixed. This current will continue to charge the battery while keeping
677 * the voltage the same. A chemical reaction in the battery goes on
678 * storing energy without affecting the voltage. Over time the current
679 * will slowly drop and when we reach charge_term_current_ua we will
680 * end the constant voltage phase.
681 *
682 * After this the battery is fully charged, and if we do not support maintenance
683 * charging, the charging will not restart until power dissipation makes the
684 * voltage fall so that we reach charge_restart_voltage_uv and at this point
685 * we restart charging at the appropriate phase, usually this will be inside
686 * the CV phase.
687 *
688 * If we support maintenance charging the voltage is however kept high after
689 * the CV phase with a very low current. This is meant to let the same charge
690 * go in for usage while the charger is still connected, mainly for
691 * dissipation for the power consuming entity while connected to the
692 * charger.
693 *
694 * All charging MUST terminate if the overvoltage_limit_uv is ever reached.
695 * Overcharging Lithium Ion cells can be DANGEROUS and lead to fire or
696 * explosions.
697 *
698 * DETERMINING BATTERY CAPACITY:
699 *
700 * Several members of the struct deal with trying to determine the remaining
701 * capacity in the battery, usually as a percentage of charge. In practice
702 * many chargers uses a so-called fuel gauge or coloumb counter that measure
703 * how much charge goes into the battery and how much goes out (+/- leak
704 * consumption). This does not help if we do not know how much capacity the
705 * battery has to begin with, such as when it is first used or was taken out
706 * and charged in a separate charger. Therefore many capacity algorithms use
707 * the open circuit voltage with a look-up table to determine the rough
708 * capacity of the battery. The open circuit voltage can be conceptualized
709 * with an ideal voltage source (V) in series with an internal resistance (Ri)
710 * like this:
711 *
712 * +-------> IBAT >----------------+
713 * | ^ |
714 * [ ] Ri | |
715 * | | VBAT |
716 * o <---------- | |
717 * +| ^ | [ ] Rload
718 * .---. | | |
719 * | V | | OCV | |
720 * '---' | | |
721 * | | | |
722 * GND +-------------------------------+
723 *
724 * If we disconnect the load (here simplified as a fixed resistance Rload)
725 * and measure VBAT with a infinite impedance voltage meter we will get
726 * VBAT = OCV and this assumption is sometimes made even under load, assuming
727 * Rload is insignificant. However this will be of dubious quality because the
728 * load is rarely that small and Ri is strongly nonlinear depending on
729 * temperature and how much capacity is left in the battery due to the
730 * chemistry involved.
731 *
732 * In many practical applications we cannot just disconnect the battery from
733 * the load, so instead we often try to measure the instantaneous IBAT (the
734 * current out from the battery), estimate the Ri and thus calculate the
735 * voltage drop over Ri and compensate like this:
736 *
737 * OCV = VBAT - (IBAT * Ri)
738 *
739 * The tables vbat2ri_discharging and vbat2ri_charging are used to determine
740 * (by interpolation) the Ri from the VBAT under load. These curves are highly
741 * nonlinear and may need many datapoints but can be found in datasheets for
742 * some batteries. This gives the compensated open circuit voltage (OCV) for
743 * the battery even under load. Using this method will also compensate for
744 * temperature changes in the environment: this will also make the internal
745 * resistance change, and it will affect the VBAT under load, so correlating
746 * VBAT to Ri takes both remaining capacity and temperature into consideration.
747 *
748 * Alternatively a manufacturer can specify how the capacity of the battery
749 * is dependent on the battery temperature which is the main factor affecting
750 * Ri. As we know all checmical reactions are faster when it is warm and slower
751 * when it is cold. You can put in 1500mAh and only get 800mAh out before the
752 * voltage drops too low for example. This effect is also highly nonlinear and
753 * the purpose of the table resist_table: this will take a temperature and
754 * tell us how big percentage of Ri the specified temperature correlates to.
755 * Usually we have 100% of the factory_internal_resistance_uohm at 25 degrees
756 * Celsius.
757 *
758 * The power supply class itself doesn't use this struct as of now.
759 */
760
761struct power_supply_battery_info {
762 unsigned int technology;
763 int energy_full_design_uwh;
764 int charge_full_design_uah;
765 int voltage_min_design_uv;
766 int voltage_max_design_uv;
767 int tricklecharge_current_ua;
768 int precharge_current_ua;
769 int precharge_voltage_max_uv;
770 int charge_term_current_ua;
771 int charge_restart_voltage_uv;
772 int overvoltage_limit_uv;
773 int constant_charge_current_max_ua;
774 int constant_charge_voltage_max_uv;
775 const struct power_supply_maintenance_charge_table *maintenance_charge;
776 int maintenance_charge_size;
777 int alert_low_temp_charge_current_ua;
778 int alert_low_temp_charge_voltage_uv;
779 int alert_high_temp_charge_current_ua;
780 int alert_high_temp_charge_voltage_uv;
781 int factory_internal_resistance_uohm;
782 int factory_internal_resistance_charging_uohm;
783 int ocv_temp[POWER_SUPPLY_OCV_TEMP_MAX];
784 int temp_ambient_alert_min;
785 int temp_ambient_alert_max;
786 int temp_alert_min;
787 int temp_alert_max;
788 int temp_min;
789 int temp_max;
790 const struct power_supply_battery_ocv_table *ocv_table[POWER_SUPPLY_OCV_TEMP_MAX];
791 int ocv_table_size[POWER_SUPPLY_OCV_TEMP_MAX];
792 const struct power_supply_resistance_temp_table *resist_table;
793 int resist_table_size;
794 const struct power_supply_vbat_ri_table *vbat2ri_discharging;
795 int vbat2ri_discharging_size;
796 const struct power_supply_vbat_ri_table *vbat2ri_charging;
797 int vbat2ri_charging_size;
798 int bti_resistance_ohm;
799 int bti_resistance_tolerance;
800};
801
802extern int power_supply_reg_notifier(struct notifier_block *nb);
803extern void power_supply_unreg_notifier(struct notifier_block *nb);
804#if IS_ENABLED(CONFIG_POWER_SUPPLY)
805extern struct power_supply *power_supply_get_by_name(const char *name);
806extern void power_supply_put(struct power_supply *psy);
807#else
808static inline void power_supply_put(struct power_supply *psy) {}
809static inline struct power_supply *power_supply_get_by_name(const char *name)
810{ return NULL; }
811#endif
812extern struct power_supply *power_supply_get_by_reference(struct fwnode_handle *fwnode,
813 const char *property);
814extern struct power_supply *devm_power_supply_get_by_reference(
815 struct device *dev, const char *property);
816
817extern const enum power_supply_property power_supply_battery_info_properties[];
818extern const size_t power_supply_battery_info_properties_size;
819extern int power_supply_get_battery_info(struct power_supply *psy,
820 struct power_supply_battery_info **info_out);
821extern void power_supply_put_battery_info(struct power_supply *psy,
822 struct power_supply_battery_info *info);
823extern bool power_supply_battery_info_has_prop(struct power_supply_battery_info *info,
824 enum power_supply_property psp);
825extern int power_supply_battery_info_get_prop(struct power_supply_battery_info *info,
826 enum power_supply_property psp,
827 union power_supply_propval *val);
828extern int power_supply_ocv2cap_simple(const struct power_supply_battery_ocv_table *table,
829 int table_len, int ocv);
830extern const struct power_supply_battery_ocv_table *
831power_supply_find_ocv2cap_table(struct power_supply_battery_info *info,
832 int temp, int *table_len);
833extern int power_supply_batinfo_ocv2cap(struct power_supply_battery_info *info,
834 int ocv, int temp);
835extern int
836power_supply_temp2resist_simple(const struct power_supply_resistance_temp_table *table,
837 int table_len, int temp);
838extern int power_supply_vbat2ri(struct power_supply_battery_info *info,
839 int vbat_uv, bool charging);
840extern const struct power_supply_maintenance_charge_table *
841power_supply_get_maintenance_charging_setting(struct power_supply_battery_info *info, int index);
842extern bool power_supply_battery_bti_in_range(struct power_supply_battery_info *info,
843 int resistance);
844extern void power_supply_changed(struct power_supply *psy);
845extern int power_supply_am_i_supplied(struct power_supply *psy);
846int power_supply_get_property_from_supplier(struct power_supply *psy,
847 enum power_supply_property psp,
848 union power_supply_propval *val);
849
850static inline bool
851power_supply_supports_maintenance_charging(struct power_supply_battery_info *info)
852{
853 const struct power_supply_maintenance_charge_table *mt;
854
855 mt = power_supply_get_maintenance_charging_setting(info, index: 0);
856
857 return (mt != NULL);
858}
859
860static inline bool
861power_supply_supports_vbat2ri(struct power_supply_battery_info *info)
862{
863 return ((info->vbat2ri_discharging != NULL) &&
864 info->vbat2ri_discharging_size > 0);
865}
866
867static inline bool
868power_supply_supports_temp2ri(struct power_supply_battery_info *info)
869{
870 return ((info->resist_table != NULL) &&
871 info->resist_table_size > 0);
872}
873
874#ifdef CONFIG_POWER_SUPPLY
875extern int power_supply_is_system_supplied(void);
876#else
877static inline int power_supply_is_system_supplied(void) { return -ENOSYS; }
878#endif
879
880extern int power_supply_get_property(struct power_supply *psy,
881 enum power_supply_property psp,
882 union power_supply_propval *val);
883int power_supply_get_property_direct(struct power_supply *psy, enum power_supply_property psp,
884 union power_supply_propval *val);
885#if IS_ENABLED(CONFIG_POWER_SUPPLY)
886extern int power_supply_set_property(struct power_supply *psy,
887 enum power_supply_property psp,
888 const union power_supply_propval *val);
889int power_supply_set_property_direct(struct power_supply *psy, enum power_supply_property psp,
890 const union power_supply_propval *val);
891#else
892static inline int power_supply_set_property(struct power_supply *psy,
893 enum power_supply_property psp,
894 const union power_supply_propval *val)
895{ return 0; }
896static inline int power_supply_set_property_direct(struct power_supply *psy,
897 enum power_supply_property psp,
898 const union power_supply_propval *val)
899{ return 0; }
900#endif
901extern void power_supply_external_power_changed(struct power_supply *psy);
902
903extern struct power_supply *__must_check
904power_supply_register(struct device *parent,
905 const struct power_supply_desc *desc,
906 const struct power_supply_config *cfg);
907extern struct power_supply *__must_check
908devm_power_supply_register(struct device *parent,
909 const struct power_supply_desc *desc,
910 const struct power_supply_config *cfg);
911extern void power_supply_unregister(struct power_supply *psy);
912extern int power_supply_powers(struct power_supply *psy, struct device *dev);
913
914extern int __must_check
915power_supply_register_extension(struct power_supply *psy,
916 const struct power_supply_ext *ext,
917 struct device *dev,
918 void *data);
919extern void power_supply_unregister_extension(struct power_supply *psy,
920 const struct power_supply_ext *ext);
921
922#define to_power_supply(device) container_of(device, struct power_supply, dev)
923
924extern void *power_supply_get_drvdata(struct power_supply *psy);
925extern int power_supply_for_each_psy(void *data, int (*fn)(struct power_supply *psy, void *data));
926
927static inline bool power_supply_is_amp_property(enum power_supply_property psp)
928{
929 switch (psp) {
930 case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
931 case POWER_SUPPLY_PROP_CHARGE_EMPTY_DESIGN:
932 case POWER_SUPPLY_PROP_CHARGE_FULL:
933 case POWER_SUPPLY_PROP_CHARGE_EMPTY:
934 case POWER_SUPPLY_PROP_CHARGE_NOW:
935 case POWER_SUPPLY_PROP_CHARGE_AVG:
936 case POWER_SUPPLY_PROP_CHARGE_COUNTER:
937 case POWER_SUPPLY_PROP_PRECHARGE_CURRENT:
938 case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT:
939 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT:
940 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX:
941 case POWER_SUPPLY_PROP_CURRENT_MAX:
942 case POWER_SUPPLY_PROP_CURRENT_NOW:
943 case POWER_SUPPLY_PROP_CURRENT_AVG:
944 case POWER_SUPPLY_PROP_CURRENT_BOOT:
945 return true;
946 default:
947 break;
948 }
949
950 return false;
951}
952
953static inline bool power_supply_is_watt_property(enum power_supply_property psp)
954{
955 switch (psp) {
956 case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
957 case POWER_SUPPLY_PROP_ENERGY_EMPTY_DESIGN:
958 case POWER_SUPPLY_PROP_ENERGY_FULL:
959 case POWER_SUPPLY_PROP_ENERGY_EMPTY:
960 case POWER_SUPPLY_PROP_ENERGY_NOW:
961 case POWER_SUPPLY_PROP_ENERGY_AVG:
962 case POWER_SUPPLY_PROP_VOLTAGE_MAX:
963 case POWER_SUPPLY_PROP_VOLTAGE_MIN:
964 case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN:
965 case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN:
966 case POWER_SUPPLY_PROP_VOLTAGE_NOW:
967 case POWER_SUPPLY_PROP_VOLTAGE_AVG:
968 case POWER_SUPPLY_PROP_VOLTAGE_OCV:
969 case POWER_SUPPLY_PROP_VOLTAGE_BOOT:
970 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE:
971 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX:
972 case POWER_SUPPLY_PROP_POWER_NOW:
973 return true;
974 default:
975 break;
976 }
977
978 return false;
979}
980
981#ifdef CONFIG_SYSFS
982ssize_t power_supply_charge_behaviour_show(struct device *dev,
983 unsigned int available_behaviours,
984 enum power_supply_charge_behaviour behaviour,
985 char *buf);
986
987int power_supply_charge_behaviour_parse(unsigned int available_behaviours, const char *buf);
988ssize_t power_supply_charge_types_show(struct device *dev,
989 unsigned int available_types,
990 enum power_supply_charge_type current_type,
991 char *buf);
992int power_supply_charge_types_parse(unsigned int available_types, const char *buf);
993#else
994static inline
995ssize_t power_supply_charge_behaviour_show(struct device *dev,
996 unsigned int available_behaviours,
997 enum power_supply_charge_behaviour behaviour,
998 char *buf)
999{
1000 return -EOPNOTSUPP;
1001}
1002
1003static inline int power_supply_charge_behaviour_parse(unsigned int available_behaviours,
1004 const char *buf)
1005{
1006 return -EOPNOTSUPP;
1007}
1008
1009static inline
1010ssize_t power_supply_charge_types_show(struct device *dev,
1011 unsigned int available_types,
1012 enum power_supply_charge_type current_type,
1013 char *buf)
1014{
1015 return -EOPNOTSUPP;
1016}
1017
1018static inline int power_supply_charge_types_parse(unsigned int available_types, const char *buf)
1019{
1020 return -EOPNOTSUPP;
1021}
1022#endif
1023
1024#endif /* __LINUX_POWER_SUPPLY_H__ */
1025