1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef __LINUX_USB_H
3#define __LINUX_USB_H
4
5#include <linux/mod_devicetable.h>
6#include <linux/usb/ch9.h>
7
8#define USB_MAJOR 180
9#define USB_DEVICE_MAJOR 189
10
11
12#ifdef __KERNEL__
13
14#include <linux/errno.h> /* for -ENODEV */
15#include <linux/delay.h> /* for mdelay() */
16#include <linux/interrupt.h> /* for in_interrupt() */
17#include <linux/list.h> /* for struct list_head */
18#include <linux/kref.h> /* for struct kref */
19#include <linux/device.h> /* for struct device */
20#include <linux/fs.h> /* for struct file_operations */
21#include <linux/completion.h> /* for struct completion */
22#include <linux/sched.h> /* for current && schedule_timeout */
23#include <linux/mutex.h> /* for struct mutex */
24#include <linux/pm_runtime.h> /* for runtime PM */
25
26struct usb_device;
27struct usb_driver;
28
29/*-------------------------------------------------------------------------*/
30
31/*
32 * Host-side wrappers for standard USB descriptors ... these are parsed
33 * from the data provided by devices. Parsing turns them from a flat
34 * sequence of descriptors into a hierarchy:
35 *
36 * - devices have one (usually) or more configs;
37 * - configs have one (often) or more interfaces;
38 * - interfaces have one (usually) or more settings;
39 * - each interface setting has zero or (usually) more endpoints.
40 * - a SuperSpeed endpoint has a companion descriptor
41 *
42 * And there might be other descriptors mixed in with those.
43 *
44 * Devices may also have class-specific or vendor-specific descriptors.
45 */
46
47struct ep_device;
48
49/**
50 * struct usb_host_endpoint - host-side endpoint descriptor and queue
51 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
52 * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint
53 * @ssp_isoc_ep_comp: SuperSpeedPlus isoc companion descriptor for this endpoint
54 * @eusb2_isoc_ep_comp: eUSB2 isoc companion descriptor for this endpoint
55 * @urb_list: urbs queued to this endpoint; maintained by usbcore
56 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
57 * with one or more transfer descriptors (TDs) per urb
58 * @ep_dev: ep_device for sysfs info
59 * @extra: descriptors following this endpoint in the configuration
60 * @extralen: how many bytes of "extra" are valid
61 * @enabled: URBs may be submitted to this endpoint
62 * @streams: number of USB-3 streams allocated on the endpoint
63 *
64 * USB requests are always queued to a given endpoint, identified by a
65 * descriptor within an active interface in a given USB configuration.
66 */
67struct usb_host_endpoint {
68 struct usb_endpoint_descriptor desc;
69 struct usb_ss_ep_comp_descriptor ss_ep_comp;
70 struct usb_ssp_isoc_ep_comp_descriptor ssp_isoc_ep_comp;
71 struct usb_eusb2_isoc_ep_comp_descriptor eusb2_isoc_ep_comp;
72 struct list_head urb_list;
73 void *hcpriv;
74 struct ep_device *ep_dev; /* For sysfs info */
75
76 unsigned char *extra; /* Extra descriptors */
77 int extralen;
78 int enabled;
79 int streams;
80};
81
82/* host-side wrapper for one interface setting's parsed descriptors */
83struct usb_host_interface {
84 struct usb_interface_descriptor desc;
85
86 int extralen;
87 unsigned char *extra; /* Extra descriptors */
88
89 /* array of desc.bNumEndpoints endpoints associated with this
90 * interface setting. these will be in no particular order.
91 */
92 struct usb_host_endpoint *endpoint;
93
94 char *string; /* iInterface string, if present */
95};
96
97enum usb_interface_condition {
98 USB_INTERFACE_UNBOUND = 0,
99 USB_INTERFACE_BINDING,
100 USB_INTERFACE_BOUND,
101 USB_INTERFACE_UNBINDING,
102};
103
104int __must_check
105usb_find_common_endpoints(struct usb_host_interface *alt,
106 struct usb_endpoint_descriptor **bulk_in,
107 struct usb_endpoint_descriptor **bulk_out,
108 struct usb_endpoint_descriptor **int_in,
109 struct usb_endpoint_descriptor **int_out);
110
111int __must_check
112usb_find_common_endpoints_reverse(struct usb_host_interface *alt,
113 struct usb_endpoint_descriptor **bulk_in,
114 struct usb_endpoint_descriptor **bulk_out,
115 struct usb_endpoint_descriptor **int_in,
116 struct usb_endpoint_descriptor **int_out);
117
118static inline int __must_check
119usb_find_bulk_in_endpoint(struct usb_host_interface *alt,
120 struct usb_endpoint_descriptor **bulk_in)
121{
122 return usb_find_common_endpoints(alt, bulk_in, NULL, NULL, NULL);
123}
124
125static inline int __must_check
126usb_find_bulk_out_endpoint(struct usb_host_interface *alt,
127 struct usb_endpoint_descriptor **bulk_out)
128{
129 return usb_find_common_endpoints(alt, NULL, bulk_out, NULL, NULL);
130}
131
132static inline int __must_check
133usb_find_int_in_endpoint(struct usb_host_interface *alt,
134 struct usb_endpoint_descriptor **int_in)
135{
136 return usb_find_common_endpoints(alt, NULL, NULL, int_in, NULL);
137}
138
139static inline int __must_check
140usb_find_int_out_endpoint(struct usb_host_interface *alt,
141 struct usb_endpoint_descriptor **int_out)
142{
143 return usb_find_common_endpoints(alt, NULL, NULL, NULL, int_out);
144}
145
146static inline int __must_check
147usb_find_last_bulk_in_endpoint(struct usb_host_interface *alt,
148 struct usb_endpoint_descriptor **bulk_in)
149{
150 return usb_find_common_endpoints_reverse(alt, bulk_in, NULL, NULL, NULL);
151}
152
153static inline int __must_check
154usb_find_last_bulk_out_endpoint(struct usb_host_interface *alt,
155 struct usb_endpoint_descriptor **bulk_out)
156{
157 return usb_find_common_endpoints_reverse(alt, NULL, bulk_out, NULL, NULL);
158}
159
160static inline int __must_check
161usb_find_last_int_in_endpoint(struct usb_host_interface *alt,
162 struct usb_endpoint_descriptor **int_in)
163{
164 return usb_find_common_endpoints_reverse(alt, NULL, NULL, int_in, NULL);
165}
166
167static inline int __must_check
168usb_find_last_int_out_endpoint(struct usb_host_interface *alt,
169 struct usb_endpoint_descriptor **int_out)
170{
171 return usb_find_common_endpoints_reverse(alt, NULL, NULL, NULL, int_out);
172}
173
174enum usb_wireless_status {
175 USB_WIRELESS_STATUS_NA = 0,
176 USB_WIRELESS_STATUS_DISCONNECTED,
177 USB_WIRELESS_STATUS_CONNECTED,
178};
179
180/**
181 * struct usb_interface - what usb device drivers talk to
182 * @altsetting: array of interface structures, one for each alternate
183 * setting that may be selected. Each one includes a set of
184 * endpoint configurations. They will be in no particular order.
185 * @cur_altsetting: the current altsetting.
186 * @num_altsetting: number of altsettings defined.
187 * @intf_assoc: interface association descriptor
188 * @minor: the minor number assigned to this interface, if this
189 * interface is bound to a driver that uses the USB major number.
190 * If this interface does not use the USB major, this field should
191 * be unused. The driver should set this value in the probe()
192 * function of the driver, after it has been assigned a minor
193 * number from the USB core by calling usb_register_dev().
194 * @condition: binding state of the interface: not bound, binding
195 * (in probe()), bound to a driver, or unbinding (in disconnect())
196 * @sysfs_files_created: sysfs attributes exist
197 * @ep_devs_created: endpoint child pseudo-devices exist
198 * @unregistering: flag set when the interface is being unregistered
199 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
200 * capability during autosuspend.
201 * @needs_altsetting0: flag set when a set-interface request for altsetting 0
202 * has been deferred.
203 * @needs_binding: flag set when the driver should be re-probed or unbound
204 * following a reset or suspend operation it doesn't support.
205 * @authorized: This allows to (de)authorize individual interfaces instead
206 * a whole device in contrast to the device authorization.
207 * @wireless_status: if the USB device uses a receiver/emitter combo, whether
208 * the emitter is connected.
209 * @wireless_status_work: Used for scheduling wireless status changes
210 * from atomic context.
211 * @dev: driver model's view of this device
212 * @usb_dev: if an interface is bound to the USB major, this will point
213 * to the sysfs representation for that device.
214 * @reset_ws: Used for scheduling resets from atomic context.
215 * @resetting_device: USB core reset the device, so use alt setting 0 as
216 * current; needs bandwidth alloc after reset.
217 *
218 * USB device drivers attach to interfaces on a physical device. Each
219 * interface encapsulates a single high level function, such as feeding
220 * an audio stream to a speaker or reporting a change in a volume control.
221 * Many USB devices only have one interface. The protocol used to talk to
222 * an interface's endpoints can be defined in a usb "class" specification,
223 * or by a product's vendor. The (default) control endpoint is part of
224 * every interface, but is never listed among the interface's descriptors.
225 *
226 * The driver that is bound to the interface can use standard driver model
227 * calls such as dev_get_drvdata() on the dev member of this structure.
228 *
229 * Each interface may have alternate settings. The initial configuration
230 * of a device sets altsetting 0, but the device driver can change
231 * that setting using usb_set_interface(). Alternate settings are often
232 * used to control the use of periodic endpoints, such as by having
233 * different endpoints use different amounts of reserved USB bandwidth.
234 * All standards-conformant USB devices that use isochronous endpoints
235 * will use them in non-default settings.
236 *
237 * The USB specification says that alternate setting numbers must run from
238 * 0 to one less than the total number of alternate settings. But some
239 * devices manage to mess this up, and the structures aren't necessarily
240 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to
241 * look up an alternate setting in the altsetting array based on its number.
242 */
243struct usb_interface {
244 /* array of alternate settings for this interface,
245 * stored in no particular order */
246 struct usb_host_interface *altsetting;
247
248 struct usb_host_interface *cur_altsetting; /* the currently
249 * active alternate setting */
250 unsigned num_altsetting; /* number of alternate settings */
251
252 /* If there is an interface association descriptor then it will list
253 * the associated interfaces */
254 struct usb_interface_assoc_descriptor *intf_assoc;
255
256 int minor; /* minor number this interface is
257 * bound to */
258 enum usb_interface_condition condition; /* state of binding */
259 unsigned sysfs_files_created:1; /* the sysfs attributes exist */
260 unsigned ep_devs_created:1; /* endpoint "devices" exist */
261 unsigned unregistering:1; /* unregistration is in progress */
262 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */
263 unsigned needs_altsetting0:1; /* switch to altsetting 0 is pending */
264 unsigned needs_binding:1; /* needs delayed unbind/rebind */
265 unsigned resetting_device:1; /* true: bandwidth alloc after reset */
266 unsigned authorized:1; /* used for interface authorization */
267 enum usb_wireless_status wireless_status;
268 struct work_struct wireless_status_work;
269
270 struct device dev; /* interface specific device info */
271 struct device *usb_dev;
272 struct work_struct reset_ws; /* for resets in atomic context */
273};
274
275#define to_usb_interface(__dev) container_of_const(__dev, struct usb_interface, dev)
276
277static inline void *usb_get_intfdata(struct usb_interface *intf)
278{
279 return dev_get_drvdata(dev: &intf->dev);
280}
281
282/**
283 * usb_set_intfdata() - associate driver-specific data with an interface
284 * @intf: USB interface
285 * @data: driver data
286 *
287 * Drivers can use this function in their probe() callbacks to associate
288 * driver-specific data with an interface.
289 *
290 * Note that there is generally no need to clear the driver-data pointer even
291 * if some drivers do so for historical or implementation-specific reasons.
292 */
293static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
294{
295 dev_set_drvdata(dev: &intf->dev, data);
296}
297
298struct usb_interface *usb_get_intf(struct usb_interface *intf);
299void usb_put_intf(struct usb_interface *intf);
300
301/* Hard limit */
302#define USB_MAXENDPOINTS 30
303/* this maximum is arbitrary */
304#define USB_MAXINTERFACES 32
305#define USB_MAXIADS (USB_MAXINTERFACES/2)
306
307bool usb_check_bulk_endpoints(
308 const struct usb_interface *intf, const u8 *ep_addrs);
309bool usb_check_int_endpoints(
310 const struct usb_interface *intf, const u8 *ep_addrs);
311
312/*
313 * USB Resume Timer: Every Host controller driver should drive the resume
314 * signalling on the bus for the amount of time defined by this macro.
315 *
316 * That way we will have a 'stable' behavior among all HCDs supported by Linux.
317 *
318 * Note that the USB Specification states we should drive resume for *at least*
319 * 20 ms, but it doesn't give an upper bound. This creates two possible
320 * situations which we want to avoid:
321 *
322 * (a) sometimes an msleep(20) might expire slightly before 20 ms, which causes
323 * us to fail USB Electrical Tests, thus failing Certification
324 *
325 * (b) Some (many) devices actually need more than 20 ms of resume signalling,
326 * and while we can argue that's against the USB Specification, we don't have
327 * control over which devices a certification laboratory will be using for
328 * certification. If CertLab uses a device which was tested against Windows and
329 * that happens to have relaxed resume signalling rules, we might fall into
330 * situations where we fail interoperability and electrical tests.
331 *
332 * In order to avoid both conditions, we're using a 40 ms resume timeout, which
333 * should cope with both LPJ calibration errors and devices not following every
334 * detail of the USB Specification.
335 */
336#define USB_RESUME_TIMEOUT 40 /* ms */
337
338/**
339 * struct usb_interface_cache - long-term representation of a device interface
340 * @num_altsetting: number of altsettings defined.
341 * @ref: reference counter.
342 * @altsetting: variable-length array of interface structures, one for
343 * each alternate setting that may be selected. Each one includes a
344 * set of endpoint configurations. They will be in no particular order.
345 *
346 * These structures persist for the lifetime of a usb_device, unlike
347 * struct usb_interface (which persists only as long as its configuration
348 * is installed). The altsetting arrays can be accessed through these
349 * structures at any time, permitting comparison of configurations and
350 * providing support for the /sys/kernel/debug/usb/devices pseudo-file.
351 */
352struct usb_interface_cache {
353 unsigned num_altsetting; /* number of alternate settings */
354 struct kref ref; /* reference counter */
355
356 /* variable-length array of alternate settings for this interface,
357 * stored in no particular order */
358 struct usb_host_interface altsetting[];
359};
360#define ref_to_usb_interface_cache(r) \
361 container_of(r, struct usb_interface_cache, ref)
362#define altsetting_to_usb_interface_cache(a) \
363 container_of(a, struct usb_interface_cache, altsetting[0])
364
365/**
366 * struct usb_host_config - representation of a device's configuration
367 * @desc: the device's configuration descriptor.
368 * @string: pointer to the cached version of the iConfiguration string, if
369 * present for this configuration.
370 * @intf_assoc: list of any interface association descriptors in this config
371 * @interface: array of pointers to usb_interface structures, one for each
372 * interface in the configuration. The number of interfaces is stored
373 * in desc.bNumInterfaces. These pointers are valid only while the
374 * configuration is active.
375 * @intf_cache: array of pointers to usb_interface_cache structures, one
376 * for each interface in the configuration. These structures exist
377 * for the entire life of the device.
378 * @extra: pointer to buffer containing all extra descriptors associated
379 * with this configuration (those preceding the first interface
380 * descriptor).
381 * @extralen: length of the extra descriptors buffer.
382 *
383 * USB devices may have multiple configurations, but only one can be active
384 * at any time. Each encapsulates a different operational environment;
385 * for example, a dual-speed device would have separate configurations for
386 * full-speed and high-speed operation. The number of configurations
387 * available is stored in the device descriptor as bNumConfigurations.
388 *
389 * A configuration can contain multiple interfaces. Each corresponds to
390 * a different function of the USB device, and all are available whenever
391 * the configuration is active. The USB standard says that interfaces
392 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
393 * of devices get this wrong. In addition, the interface array is not
394 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to
395 * look up an interface entry based on its number.
396 *
397 * Device drivers should not attempt to activate configurations. The choice
398 * of which configuration to install is a policy decision based on such
399 * considerations as available power, functionality provided, and the user's
400 * desires (expressed through userspace tools). However, drivers can call
401 * usb_reset_configuration() to reinitialize the current configuration and
402 * all its interfaces.
403 */
404struct usb_host_config {
405 struct usb_config_descriptor desc;
406
407 char *string; /* iConfiguration string, if present */
408
409 /* List of any Interface Association Descriptors in this
410 * configuration. */
411 struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
412
413 /* the interfaces associated with this configuration,
414 * stored in no particular order */
415 struct usb_interface *interface[USB_MAXINTERFACES];
416
417 /* Interface information available even when this is not the
418 * active configuration */
419 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
420
421 unsigned char *extra; /* Extra descriptors */
422 int extralen;
423};
424
425/* USB2.0 and USB3.0 device BOS descriptor set */
426struct usb_host_bos {
427 struct usb_bos_descriptor *desc;
428
429 struct usb_ext_cap_descriptor *ext_cap;
430 struct usb_ss_cap_descriptor *ss_cap;
431 struct usb_ssp_cap_descriptor *ssp_cap;
432 struct usb_ss_container_id_descriptor *ss_id;
433 struct usb_ptm_cap_descriptor *ptm_cap;
434};
435
436int __usb_get_extra_descriptor(char *buffer, unsigned size,
437 unsigned char type, void **ptr, size_t min);
438#define usb_get_extra_descriptor(ifpoint, type, ptr) \
439 __usb_get_extra_descriptor((ifpoint)->extra, \
440 (ifpoint)->extralen, \
441 type, (void **)ptr, sizeof(**(ptr)))
442
443/* ----------------------------------------------------------------------- */
444
445/*
446 * Allocated per bus (tree of devices) we have:
447 */
448struct usb_bus {
449 struct device *controller; /* host side hardware */
450 struct device *sysdev; /* as seen from firmware or bus */
451 int busnum; /* Bus number (in order of reg) */
452 const char *bus_name; /* stable id (PCI slot_name etc) */
453 u8 uses_pio_for_control; /*
454 * Does the host controller use PIO
455 * for control transfers?
456 */
457 u8 otg_port; /* 0, or number of OTG/HNP port */
458 unsigned is_b_host:1; /* true during some HNP roleswitches */
459 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */
460 unsigned no_stop_on_short:1; /*
461 * Quirk: some controllers don't stop
462 * the ep queue on a short transfer
463 * with the URB_SHORT_NOT_OK flag set.
464 */
465 unsigned no_sg_constraint:1; /* no sg constraint */
466 unsigned sg_tablesize; /* 0 or largest number of sg list entries */
467
468 int devnum_next; /* Next open device number in
469 * round-robin allocation */
470 struct mutex devnum_next_mutex; /* devnum_next mutex */
471
472 DECLARE_BITMAP(devmap, 128); /* USB device number allocation bitmap */
473 struct usb_device *root_hub; /* Root hub */
474 struct usb_bus *hs_companion; /* Companion EHCI bus, if any */
475
476 int bandwidth_allocated; /* on this bus: how much of the time
477 * reserved for periodic (intr/iso)
478 * requests is used, on average?
479 * Units: microseconds/frame.
480 * Limits: Full/low speed reserve 90%,
481 * while high speed reserves 80%.
482 */
483 int bandwidth_int_reqs; /* number of Interrupt requests */
484 int bandwidth_isoc_reqs; /* number of Isoc. requests */
485
486 unsigned resuming_ports; /* bit array: resuming root-hub ports */
487
488#if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
489 struct mon_bus *mon_bus; /* non-null when associated */
490 int monitored; /* non-zero when monitored */
491#endif
492};
493
494struct usb_dev_state;
495
496/* ----------------------------------------------------------------------- */
497
498struct usb_tt;
499
500enum usb_link_tunnel_mode {
501 USB_LINK_UNKNOWN = 0,
502 USB_LINK_NATIVE,
503 USB_LINK_TUNNELED,
504};
505
506enum usb_port_connect_type {
507 USB_PORT_CONNECT_TYPE_UNKNOWN = 0,
508 USB_PORT_CONNECT_TYPE_HOT_PLUG,
509 USB_PORT_CONNECT_TYPE_HARD_WIRED,
510 USB_PORT_NOT_USED,
511};
512
513/*
514 * USB port quirks.
515 */
516
517/* For the given port, prefer the old (faster) enumeration scheme. */
518#define USB_PORT_QUIRK_OLD_SCHEME BIT(0)
519
520/* Decrease TRSTRCY to 10ms during device enumeration. */
521#define USB_PORT_QUIRK_FAST_ENUM BIT(1)
522
523/*
524 * USB 2.0 Link Power Management (LPM) parameters.
525 */
526struct usb2_lpm_parameters {
527 /* Best effort service latency indicate how long the host will drive
528 * resume on an exit from L1.
529 */
530 unsigned int besl;
531
532 /* Timeout value in microseconds for the L1 inactivity (LPM) timer.
533 * When the timer counts to zero, the parent hub will initiate a LPM
534 * transition to L1.
535 */
536 int timeout;
537};
538
539/*
540 * USB 3.0 Link Power Management (LPM) parameters.
541 *
542 * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit.
543 * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit.
544 * All three are stored in nanoseconds.
545 */
546struct usb3_lpm_parameters {
547 /*
548 * Maximum exit latency (MEL) for the host to send a packet to the
549 * device (either a Ping for isoc endpoints, or a data packet for
550 * interrupt endpoints), the hubs to decode the packet, and for all hubs
551 * in the path to transition the links to U0.
552 */
553 unsigned int mel;
554 /*
555 * Maximum exit latency for a device-initiated LPM transition to bring
556 * all links into U0. Abbreviated as "PEL" in section 9.4.12 of the USB
557 * 3.0 spec, with no explanation of what "P" stands for. "Path"?
558 */
559 unsigned int pel;
560
561 /*
562 * The System Exit Latency (SEL) includes PEL, and three other
563 * latencies. After a device initiates a U0 transition, it will take
564 * some time from when the device sends the ERDY to when it will finally
565 * receive the data packet. Basically, SEL should be the worse-case
566 * latency from when a device starts initiating a U0 transition to when
567 * it will get data.
568 */
569 unsigned int sel;
570 /*
571 * The idle timeout value that is currently programmed into the parent
572 * hub for this device. When the timer counts to zero, the parent hub
573 * will initiate an LPM transition to either U1 or U2.
574 */
575 int timeout;
576};
577
578/**
579 * struct usb_device - kernel's representation of a USB device
580 * @devnum: device number; address on a USB bus
581 * @devpath: device ID string for use in messages (e.g., /port/...)
582 * @route: tree topology hex string for use with xHCI
583 * @state: device state: configured, not attached, etc.
584 * @speed: device speed: high/full/low (or error)
585 * @rx_lanes: number of rx lanes in use, USB 3.2 adds dual-lane support
586 * @tx_lanes: number of tx lanes in use, USB 3.2 adds dual-lane support
587 * @ssp_rate: SuperSpeed Plus phy signaling rate and lane count
588 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub
589 * @ttport: device port on that tt hub
590 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints
591 * @parent: our hub, unless we're the root
592 * @bus: bus we're part of
593 * @ep0: endpoint 0 data (default control pipe)
594 * @dev: generic device interface
595 * @descriptor: USB device descriptor
596 * @bos: USB device BOS descriptor set
597 * @config: all of the device's configs
598 * @actconfig: the active configuration
599 * @ep_in: array of IN endpoints
600 * @ep_out: array of OUT endpoints
601 * @rawdescriptors: raw descriptors for each config
602 * @bus_mA: Current available from the bus
603 * @portnum: parent port number (origin 1)
604 * @level: number of USB hub ancestors
605 * @devaddr: device address, XHCI: assigned by HW, others: same as devnum
606 * @can_submit: URBs may be submitted
607 * @persist_enabled: USB_PERSIST enabled for this device
608 * @reset_in_progress: the device is being reset
609 * @have_langid: whether string_langid is valid
610 * @authorized: policy has said we can use it;
611 * (user space) policy determines if we authorize this device to be
612 * used or not. By default, wired USB devices are authorized.
613 * WUSB devices are not, until we authorize them from user space.
614 * FIXME -- complete doc
615 * @authenticated: Crypto authentication passed
616 * @tunnel_mode: Connection native or tunneled over USB4
617 * @usb4_link: device link to the USB4 host interface
618 * @lpm_capable: device supports LPM
619 * @lpm_devinit_allow: Allow USB3 device initiated LPM, exit latency is in range
620 * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM
621 * @usb2_hw_lpm_besl_capable: device can perform USB2 hardware BESL LPM
622 * @usb2_hw_lpm_enabled: USB2 hardware LPM is enabled
623 * @usb2_hw_lpm_allowed: Userspace allows USB 2.0 LPM to be enabled
624 * @usb3_lpm_u1_enabled: USB3 hardware U1 LPM enabled
625 * @usb3_lpm_u2_enabled: USB3 hardware U2 LPM enabled
626 * @string_langid: language ID for strings
627 * @product: iProduct string, if present (static)
628 * @manufacturer: iManufacturer string, if present (static)
629 * @serial: iSerialNumber string, if present (static)
630 * @filelist: usbfs files that are open to this device
631 * @maxchild: number of ports if hub
632 * @quirks: quirks of the whole device
633 * @urbnum: number of URBs submitted for the whole device
634 * @active_duration: total time device is not suspended
635 * @connect_time: time device was first connected
636 * @do_remote_wakeup: remote wakeup should be enabled
637 * @reset_resume: needs reset instead of resume
638 * @port_is_suspended: the upstream port is suspended (L2 or U3)
639 * @offload_at_suspend: offload activities during suspend is enabled.
640 * @offload_usage: number of offload activities happening on this usb device.
641 * @slot_id: Slot ID assigned by xHCI
642 * @l1_params: best effor service latency for USB2 L1 LPM state, and L1 timeout.
643 * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout.
644 * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout.
645 * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm()
646 * to keep track of the number of functions that require USB 3.0 Link Power
647 * Management to be disabled for this usb_device. This count should only
648 * be manipulated by those functions, with the bandwidth_mutex is held.
649 * @hub_delay: cached value consisting of:
650 * parent->hub_delay + wHubDelay + tTPTransmissionDelay (40ns)
651 * Will be used as wValue for SetIsochDelay requests.
652 * @use_generic_driver: ask driver core to reprobe using the generic driver.
653 *
654 * Notes:
655 * Usbcore drivers should not set usbdev->state directly. Instead use
656 * usb_set_device_state().
657 */
658struct usb_device {
659 int devnum;
660 char devpath[16];
661 u32 route;
662 enum usb_device_state state;
663 enum usb_device_speed speed;
664 unsigned int rx_lanes;
665 unsigned int tx_lanes;
666 enum usb_ssp_rate ssp_rate;
667
668 struct usb_tt *tt;
669 int ttport;
670
671 unsigned int toggle[2];
672
673 struct usb_device *parent;
674 struct usb_bus *bus;
675 struct usb_host_endpoint ep0;
676
677 struct device dev;
678
679 struct usb_device_descriptor descriptor;
680 struct usb_host_bos *bos;
681 struct usb_host_config *config;
682
683 struct usb_host_config *actconfig;
684 struct usb_host_endpoint *ep_in[16];
685 struct usb_host_endpoint *ep_out[16];
686
687 char **rawdescriptors;
688
689 unsigned short bus_mA;
690 u8 portnum;
691 u8 level;
692 u8 devaddr;
693
694 unsigned can_submit:1;
695 unsigned persist_enabled:1;
696 unsigned reset_in_progress:1;
697 unsigned have_langid:1;
698 unsigned authorized:1;
699 unsigned authenticated:1;
700 unsigned lpm_capable:1;
701 unsigned lpm_devinit_allow:1;
702 unsigned usb2_hw_lpm_capable:1;
703 unsigned usb2_hw_lpm_besl_capable:1;
704 unsigned usb2_hw_lpm_enabled:1;
705 unsigned usb2_hw_lpm_allowed:1;
706 unsigned usb3_lpm_u1_enabled:1;
707 unsigned usb3_lpm_u2_enabled:1;
708 int string_langid;
709
710 /* static strings from the device */
711 char *product;
712 char *manufacturer;
713 char *serial;
714
715 struct list_head filelist;
716
717 int maxchild;
718
719 u32 quirks;
720 atomic_t urbnum;
721
722 unsigned long active_duration;
723
724 unsigned long connect_time;
725
726 unsigned do_remote_wakeup:1;
727 unsigned reset_resume:1;
728 unsigned port_is_suspended:1;
729 unsigned offload_at_suspend:1;
730 int offload_usage;
731 enum usb_link_tunnel_mode tunnel_mode;
732 struct device_link *usb4_link;
733
734 int slot_id;
735 struct usb2_lpm_parameters l1_params;
736 struct usb3_lpm_parameters u1_params;
737 struct usb3_lpm_parameters u2_params;
738 unsigned lpm_disable_count;
739
740 u16 hub_delay;
741 unsigned use_generic_driver:1;
742};
743
744#define to_usb_device(__dev) container_of_const(__dev, struct usb_device, dev)
745
746static inline struct usb_device *__intf_to_usbdev(struct usb_interface *intf)
747{
748 return to_usb_device(intf->dev.parent);
749}
750static inline const struct usb_device *__intf_to_usbdev_const(const struct usb_interface *intf)
751{
752 return to_usb_device((const struct device *)intf->dev.parent);
753}
754
755#define interface_to_usbdev(intf) \
756 _Generic((intf), \
757 const struct usb_interface *: __intf_to_usbdev_const, \
758 struct usb_interface *: __intf_to_usbdev)(intf)
759
760extern struct usb_device *usb_get_dev(struct usb_device *dev);
761extern void usb_put_dev(struct usb_device *dev);
762extern struct usb_device *usb_hub_find_child(struct usb_device *hdev,
763 int port1);
764
765/**
766 * usb_hub_for_each_child - iterate over all child devices on the hub
767 * @hdev: USB device belonging to the usb hub
768 * @port1: portnum associated with child device
769 * @child: child device pointer
770 */
771#define usb_hub_for_each_child(hdev, port1, child) \
772 for (port1 = 1, child = usb_hub_find_child(hdev, port1); \
773 port1 <= hdev->maxchild; \
774 child = usb_hub_find_child(hdev, ++port1)) \
775 if (!child) continue; else
776
777/* USB device locking */
778#define usb_lock_device(udev) device_lock(&(udev)->dev)
779#define usb_unlock_device(udev) device_unlock(&(udev)->dev)
780#define usb_lock_device_interruptible(udev) device_lock_interruptible(&(udev)->dev)
781#define usb_trylock_device(udev) device_trylock(&(udev)->dev)
782extern int usb_lock_device_for_reset(struct usb_device *udev,
783 const struct usb_interface *iface);
784
785/* USB port reset for device reinitialization */
786extern int usb_reset_device(struct usb_device *dev);
787extern void usb_queue_reset_device(struct usb_interface *dev);
788
789extern struct device *usb_intf_get_dma_device(struct usb_interface *intf);
790
791#ifdef CONFIG_ACPI
792extern int usb_acpi_set_power_state(struct usb_device *hdev, int index,
793 bool enable);
794extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index);
795extern int usb_acpi_port_lpm_incapable(struct usb_device *hdev, int index);
796#else
797static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index,
798 bool enable) { return 0; }
799static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index)
800 { return true; }
801static inline int usb_acpi_port_lpm_incapable(struct usb_device *hdev, int index)
802 { return 0; }
803#endif
804
805/* USB autosuspend and autoresume */
806#ifdef CONFIG_PM
807extern void usb_enable_autosuspend(struct usb_device *udev);
808extern void usb_disable_autosuspend(struct usb_device *udev);
809
810extern int usb_autopm_get_interface(struct usb_interface *intf);
811extern void usb_autopm_put_interface(struct usb_interface *intf);
812extern int usb_autopm_get_interface_async(struct usb_interface *intf);
813extern void usb_autopm_put_interface_async(struct usb_interface *intf);
814extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf);
815extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf);
816
817static inline void usb_mark_last_busy(struct usb_device *udev)
818{
819 pm_runtime_mark_last_busy(dev: &udev->dev);
820}
821
822#else
823
824static inline void usb_enable_autosuspend(struct usb_device *udev)
825{ }
826static inline void usb_disable_autosuspend(struct usb_device *udev)
827{ }
828
829static inline int usb_autopm_get_interface(struct usb_interface *intf)
830{ return 0; }
831static inline int usb_autopm_get_interface_async(struct usb_interface *intf)
832{ return 0; }
833
834static inline void usb_autopm_put_interface(struct usb_interface *intf)
835{ }
836static inline void usb_autopm_put_interface_async(struct usb_interface *intf)
837{ }
838static inline void usb_autopm_get_interface_no_resume(
839 struct usb_interface *intf)
840{ }
841static inline void usb_autopm_put_interface_no_suspend(
842 struct usb_interface *intf)
843{ }
844static inline void usb_mark_last_busy(struct usb_device *udev)
845{ }
846#endif
847
848#if IS_ENABLED(CONFIG_USB_XHCI_SIDEBAND)
849int usb_offload_get(struct usb_device *udev);
850int usb_offload_put(struct usb_device *udev);
851bool usb_offload_check(struct usb_device *udev);
852#else
853
854static inline int usb_offload_get(struct usb_device *udev)
855{ return 0; }
856static inline int usb_offload_put(struct usb_device *udev)
857{ return 0; }
858static inline bool usb_offload_check(struct usb_device *udev)
859{ return false; }
860#endif
861
862extern int usb_disable_lpm(struct usb_device *udev);
863extern void usb_enable_lpm(struct usb_device *udev);
864/* Same as above, but these functions lock/unlock the bandwidth_mutex. */
865extern int usb_unlocked_disable_lpm(struct usb_device *udev);
866extern void usb_unlocked_enable_lpm(struct usb_device *udev);
867
868extern int usb_disable_ltm(struct usb_device *udev);
869extern void usb_enable_ltm(struct usb_device *udev);
870
871static inline bool usb_device_supports_ltm(struct usb_device *udev)
872{
873 if (udev->speed < USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap)
874 return false;
875 return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT;
876}
877
878static inline bool usb_device_no_sg_constraint(struct usb_device *udev)
879{
880 return udev && udev->bus && udev->bus->no_sg_constraint;
881}
882
883
884/*-------------------------------------------------------------------------*/
885
886/* for drivers using iso endpoints */
887extern int usb_get_current_frame_number(struct usb_device *usb_dev);
888
889/* Sets up a group of bulk endpoints to support multiple stream IDs. */
890extern int usb_alloc_streams(struct usb_interface *interface,
891 struct usb_host_endpoint **eps, unsigned int num_eps,
892 unsigned int num_streams, gfp_t mem_flags);
893
894/* Reverts a group of bulk endpoints back to not using stream IDs. */
895extern int usb_free_streams(struct usb_interface *interface,
896 struct usb_host_endpoint **eps, unsigned int num_eps,
897 gfp_t mem_flags);
898
899/* used these for multi-interface device registration */
900extern int usb_driver_claim_interface(struct usb_driver *driver,
901 struct usb_interface *iface, void *data);
902
903/**
904 * usb_interface_claimed - returns true iff an interface is claimed
905 * @iface: the interface being checked
906 *
907 * Return: %true (nonzero) iff the interface is claimed, else %false
908 * (zero).
909 *
910 * Note:
911 * Callers must own the driver model's usb bus readlock. So driver
912 * probe() entries don't need extra locking, but other call contexts
913 * may need to explicitly claim that lock.
914 *
915 */
916static inline int usb_interface_claimed(struct usb_interface *iface)
917{
918 return (iface->dev.driver != NULL);
919}
920
921extern void usb_driver_release_interface(struct usb_driver *driver,
922 struct usb_interface *iface);
923
924int usb_set_wireless_status(struct usb_interface *iface,
925 enum usb_wireless_status status);
926
927const struct usb_device_id *usb_match_id(struct usb_interface *interface,
928 const struct usb_device_id *id);
929extern int usb_match_one_id(struct usb_interface *interface,
930 const struct usb_device_id *id);
931
932extern int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *));
933extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
934 int minor);
935extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
936 unsigned ifnum);
937extern struct usb_host_interface *usb_altnum_to_altsetting(
938 const struct usb_interface *intf, unsigned int altnum);
939extern struct usb_host_interface *usb_find_alt_setting(
940 struct usb_host_config *config,
941 unsigned int iface_num,
942 unsigned int alt_num);
943
944/* port claiming functions */
945int usb_hub_claim_port(struct usb_device *hdev, unsigned port1,
946 struct usb_dev_state *owner);
947int usb_hub_release_port(struct usb_device *hdev, unsigned port1,
948 struct usb_dev_state *owner);
949
950/**
951 * usb_make_path - returns stable device path in the usb tree
952 * @dev: the device whose path is being constructed
953 * @buf: where to put the string
954 * @size: how big is "buf"?
955 *
956 * Return: Length of the string (> 0) or negative if size was too small.
957 *
958 * Note:
959 * This identifier is intended to be "stable", reflecting physical paths in
960 * hardware such as physical bus addresses for host controllers or ports on
961 * USB hubs. That makes it stay the same until systems are physically
962 * reconfigured, by re-cabling a tree of USB devices or by moving USB host
963 * controllers. Adding and removing devices, including virtual root hubs
964 * in host controller driver modules, does not change these path identifiers;
965 * neither does rebooting or re-enumerating. These are more useful identifiers
966 * than changeable ("unstable") ones like bus numbers or device addresses.
967 *
968 * With a partial exception for devices connected to USB 2.0 root hubs, these
969 * identifiers are also predictable. So long as the device tree isn't changed,
970 * plugging any USB device into a given hub port always gives it the same path.
971 * Because of the use of "companion" controllers, devices connected to ports on
972 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
973 * high speed, and a different one if they are full or low speed.
974 */
975static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
976{
977 int actual;
978 actual = snprintf(buf, size, fmt: "usb-%s-%s", dev->bus->bus_name,
979 dev->devpath);
980 return (actual >= (int)size) ? -1 : actual;
981}
982
983/*-------------------------------------------------------------------------*/
984
985#define USB_DEVICE_ID_MATCH_DEVICE \
986 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
987#define USB_DEVICE_ID_MATCH_DEV_RANGE \
988 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
989#define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
990 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
991#define USB_DEVICE_ID_MATCH_DEV_INFO \
992 (USB_DEVICE_ID_MATCH_DEV_CLASS | \
993 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
994 USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
995#define USB_DEVICE_ID_MATCH_INT_INFO \
996 (USB_DEVICE_ID_MATCH_INT_CLASS | \
997 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
998 USB_DEVICE_ID_MATCH_INT_PROTOCOL)
999
1000/**
1001 * USB_DEVICE - macro used to describe a specific usb device
1002 * @vend: the 16 bit USB Vendor ID
1003 * @prod: the 16 bit USB Product ID
1004 *
1005 * This macro is used to create a struct usb_device_id that matches a
1006 * specific device.
1007 */
1008#define USB_DEVICE(vend, prod) \
1009 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
1010 .idVendor = (vend), \
1011 .idProduct = (prod)
1012/**
1013 * USB_DEVICE_VER - describe a specific usb device with a version range
1014 * @vend: the 16 bit USB Vendor ID
1015 * @prod: the 16 bit USB Product ID
1016 * @lo: the bcdDevice_lo value
1017 * @hi: the bcdDevice_hi value
1018 *
1019 * This macro is used to create a struct usb_device_id that matches a
1020 * specific device, with a version range.
1021 */
1022#define USB_DEVICE_VER(vend, prod, lo, hi) \
1023 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
1024 .idVendor = (vend), \
1025 .idProduct = (prod), \
1026 .bcdDevice_lo = (lo), \
1027 .bcdDevice_hi = (hi)
1028
1029/**
1030 * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class
1031 * @vend: the 16 bit USB Vendor ID
1032 * @prod: the 16 bit USB Product ID
1033 * @cl: bInterfaceClass value
1034 *
1035 * This macro is used to create a struct usb_device_id that matches a
1036 * specific interface class of devices.
1037 */
1038#define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \
1039 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
1040 USB_DEVICE_ID_MATCH_INT_CLASS, \
1041 .idVendor = (vend), \
1042 .idProduct = (prod), \
1043 .bInterfaceClass = (cl)
1044
1045/**
1046 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol
1047 * @vend: the 16 bit USB Vendor ID
1048 * @prod: the 16 bit USB Product ID
1049 * @pr: bInterfaceProtocol value
1050 *
1051 * This macro is used to create a struct usb_device_id that matches a
1052 * specific interface protocol of devices.
1053 */
1054#define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
1055 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
1056 USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
1057 .idVendor = (vend), \
1058 .idProduct = (prod), \
1059 .bInterfaceProtocol = (pr)
1060
1061/**
1062 * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number
1063 * @vend: the 16 bit USB Vendor ID
1064 * @prod: the 16 bit USB Product ID
1065 * @num: bInterfaceNumber value
1066 *
1067 * This macro is used to create a struct usb_device_id that matches a
1068 * specific interface number of devices.
1069 */
1070#define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \
1071 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
1072 USB_DEVICE_ID_MATCH_INT_NUMBER, \
1073 .idVendor = (vend), \
1074 .idProduct = (prod), \
1075 .bInterfaceNumber = (num)
1076
1077/**
1078 * USB_DEVICE_INFO - macro used to describe a class of usb devices
1079 * @cl: bDeviceClass value
1080 * @sc: bDeviceSubClass value
1081 * @pr: bDeviceProtocol value
1082 *
1083 * This macro is used to create a struct usb_device_id that matches a
1084 * specific class of devices.
1085 */
1086#define USB_DEVICE_INFO(cl, sc, pr) \
1087 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
1088 .bDeviceClass = (cl), \
1089 .bDeviceSubClass = (sc), \
1090 .bDeviceProtocol = (pr)
1091
1092/**
1093 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
1094 * @cl: bInterfaceClass value
1095 * @sc: bInterfaceSubClass value
1096 * @pr: bInterfaceProtocol value
1097 *
1098 * This macro is used to create a struct usb_device_id that matches a
1099 * specific class of interfaces.
1100 */
1101#define USB_INTERFACE_INFO(cl, sc, pr) \
1102 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
1103 .bInterfaceClass = (cl), \
1104 .bInterfaceSubClass = (sc), \
1105 .bInterfaceProtocol = (pr)
1106
1107/**
1108 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces
1109 * @vend: the 16 bit USB Vendor ID
1110 * @prod: the 16 bit USB Product ID
1111 * @cl: bInterfaceClass value
1112 * @sc: bInterfaceSubClass value
1113 * @pr: bInterfaceProtocol value
1114 *
1115 * This macro is used to create a struct usb_device_id that matches a
1116 * specific device with a specific class of interfaces.
1117 *
1118 * This is especially useful when explicitly matching devices that have
1119 * vendor specific bDeviceClass values, but standards-compliant interfaces.
1120 */
1121#define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
1122 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
1123 | USB_DEVICE_ID_MATCH_DEVICE, \
1124 .idVendor = (vend), \
1125 .idProduct = (prod), \
1126 .bInterfaceClass = (cl), \
1127 .bInterfaceSubClass = (sc), \
1128 .bInterfaceProtocol = (pr)
1129
1130/**
1131 * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces
1132 * @vend: the 16 bit USB Vendor ID
1133 * @cl: bInterfaceClass value
1134 * @sc: bInterfaceSubClass value
1135 * @pr: bInterfaceProtocol value
1136 *
1137 * This macro is used to create a struct usb_device_id that matches a
1138 * specific vendor with a specific class of interfaces.
1139 *
1140 * This is especially useful when explicitly matching devices that have
1141 * vendor specific bDeviceClass values, but standards-compliant interfaces.
1142 */
1143#define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \
1144 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
1145 | USB_DEVICE_ID_MATCH_VENDOR, \
1146 .idVendor = (vend), \
1147 .bInterfaceClass = (cl), \
1148 .bInterfaceSubClass = (sc), \
1149 .bInterfaceProtocol = (pr)
1150
1151/* ----------------------------------------------------------------------- */
1152
1153/* Stuff for dynamic usb ids */
1154extern struct mutex usb_dynids_lock;
1155struct usb_dynids {
1156 struct list_head list;
1157};
1158
1159struct usb_dynid {
1160 struct list_head node;
1161 struct usb_device_id id;
1162};
1163
1164extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
1165 const struct usb_device_id *id_table,
1166 struct device_driver *driver,
1167 const char *buf, size_t count);
1168
1169extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf);
1170
1171/**
1172 * struct usb_driver - identifies USB interface driver to usbcore
1173 * @name: The driver name should be unique among USB drivers,
1174 * and should normally be the same as the module name.
1175 * @probe: Called to see if the driver is willing to manage a particular
1176 * interface on a device. If it is, probe returns zero and uses
1177 * usb_set_intfdata() to associate driver-specific data with the
1178 * interface. It may also use usb_set_interface() to specify the
1179 * appropriate altsetting. If unwilling to manage the interface,
1180 * return -ENODEV, if genuine IO errors occurred, an appropriate
1181 * negative errno value.
1182 * @disconnect: Called when the interface is no longer accessible, usually
1183 * because its device has been (or is being) disconnected or the
1184 * driver module is being unloaded.
1185 * @unlocked_ioctl: Used for drivers that want to talk to userspace through
1186 * the "usbfs" filesystem. This lets devices provide ways to
1187 * expose information to user space regardless of where they
1188 * do (or don't) show up otherwise in the filesystem.
1189 * @suspend: Called when the device is going to be suspended by the
1190 * system either from system sleep or runtime suspend context. The
1191 * return value will be ignored in system sleep context, so do NOT
1192 * try to continue using the device if suspend fails in this case.
1193 * Instead, let the resume or reset-resume routine recover from
1194 * the failure.
1195 * @resume: Called when the device is being resumed by the system.
1196 * @reset_resume: Called when the suspended device has been reset instead
1197 * of being resumed.
1198 * @pre_reset: Called by usb_reset_device() when the device is about to be
1199 * reset. This routine must not return until the driver has no active
1200 * URBs for the device, and no more URBs may be submitted until the
1201 * post_reset method is called.
1202 * @post_reset: Called by usb_reset_device() after the device
1203 * has been reset
1204 * @shutdown: Called at shut-down time to quiesce the device.
1205 * @id_table: USB drivers use ID table to support hotplugging.
1206 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set
1207 * or your driver's probe function will never get called.
1208 * @dev_groups: Attributes attached to the device that will be created once it
1209 * is bound to the driver.
1210 * @dynids: used internally to hold the list of dynamically added device
1211 * ids for this driver.
1212 * @driver: The driver-model core driver structure.
1213 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
1214 * added to this driver by preventing the sysfs file from being created.
1215 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1216 * for interfaces bound to this driver.
1217 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable
1218 * endpoints before calling the driver's disconnect method.
1219 * @disable_hub_initiated_lpm: if set to 1, the USB core will not allow hubs
1220 * to initiate lower power link state transitions when an idle timeout
1221 * occurs. Device-initiated USB 3.0 link PM will still be allowed.
1222 *
1223 * USB interface drivers must provide a name, probe() and disconnect()
1224 * methods, and an id_table. Other driver fields are optional.
1225 *
1226 * The id_table is used in hotplugging. It holds a set of descriptors,
1227 * and specialized data may be associated with each entry. That table
1228 * is used by both user and kernel mode hotplugging support.
1229 *
1230 * The probe() and disconnect() methods are called in a context where
1231 * they can sleep, but they should avoid abusing the privilege. Most
1232 * work to connect to a device should be done when the device is opened,
1233 * and undone at the last close. The disconnect code needs to address
1234 * concurrency issues with respect to open() and close() methods, as
1235 * well as forcing all pending I/O requests to complete (by unlinking
1236 * them as necessary, and blocking until the unlinks complete).
1237 */
1238struct usb_driver {
1239 const char *name;
1240
1241 int (*probe) (struct usb_interface *intf,
1242 const struct usb_device_id *id);
1243
1244 void (*disconnect) (struct usb_interface *intf);
1245
1246 int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code,
1247 void *buf);
1248
1249 int (*suspend) (struct usb_interface *intf, pm_message_t message);
1250 int (*resume) (struct usb_interface *intf);
1251 int (*reset_resume)(struct usb_interface *intf);
1252
1253 int (*pre_reset)(struct usb_interface *intf);
1254 int (*post_reset)(struct usb_interface *intf);
1255
1256 void (*shutdown)(struct usb_interface *intf);
1257
1258 const struct usb_device_id *id_table;
1259 const struct attribute_group **dev_groups;
1260
1261 struct usb_dynids dynids;
1262 struct device_driver driver;
1263 unsigned int no_dynamic_id:1;
1264 unsigned int supports_autosuspend:1;
1265 unsigned int disable_hub_initiated_lpm:1;
1266 unsigned int soft_unbind:1;
1267};
1268#define to_usb_driver(d) container_of_const(d, struct usb_driver, driver)
1269
1270/**
1271 * struct usb_device_driver - identifies USB device driver to usbcore
1272 * @name: The driver name should be unique among USB drivers,
1273 * and should normally be the same as the module name.
1274 * @match: If set, used for better device/driver matching.
1275 * @probe: Called to see if the driver is willing to manage a particular
1276 * device. If it is, probe returns zero and uses dev_set_drvdata()
1277 * to associate driver-specific data with the device. If unwilling
1278 * to manage the device, return a negative errno value.
1279 * @disconnect: Called when the device is no longer accessible, usually
1280 * because it has been (or is being) disconnected or the driver's
1281 * module is being unloaded.
1282 * @suspend: Called when the device is going to be suspended by the system.
1283 * @resume: Called when the device is being resumed by the system.
1284 * @choose_configuration: If non-NULL, called instead of the default
1285 * usb_choose_configuration(). If this returns an error then we'll go
1286 * on to call the normal usb_choose_configuration().
1287 * @dev_groups: Attributes attached to the device that will be created once it
1288 * is bound to the driver.
1289 * @driver: The driver-model core driver structure.
1290 * @id_table: used with @match() to select better matching driver at
1291 * probe() time.
1292 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1293 * for devices bound to this driver.
1294 * @generic_subclass: if set to 1, the generic USB driver's probe, disconnect,
1295 * resume and suspend functions will be called in addition to the driver's
1296 * own, so this part of the setup does not need to be replicated.
1297 *
1298 * USB drivers must provide all the fields listed above except driver,
1299 * match, and id_table.
1300 */
1301struct usb_device_driver {
1302 const char *name;
1303
1304 bool (*match) (struct usb_device *udev);
1305 int (*probe) (struct usb_device *udev);
1306 void (*disconnect) (struct usb_device *udev);
1307
1308 int (*suspend) (struct usb_device *udev, pm_message_t message);
1309 int (*resume) (struct usb_device *udev, pm_message_t message);
1310
1311 int (*choose_configuration) (struct usb_device *udev);
1312
1313 const struct attribute_group **dev_groups;
1314 struct device_driver driver;
1315 const struct usb_device_id *id_table;
1316 unsigned int supports_autosuspend:1;
1317 unsigned int generic_subclass:1;
1318};
1319#define to_usb_device_driver(d) container_of_const(d, struct usb_device_driver, driver)
1320
1321/**
1322 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
1323 * @name: the usb class device name for this driver. Will show up in sysfs.
1324 * @devnode: Callback to provide a naming hint for a possible
1325 * device node to create.
1326 * @fops: pointer to the struct file_operations of this driver.
1327 * @minor_base: the start of the minor range for this driver.
1328 *
1329 * This structure is used for the usb_register_dev() and
1330 * usb_deregister_dev() functions, to consolidate a number of the
1331 * parameters used for them.
1332 */
1333struct usb_class_driver {
1334 char *name;
1335 char *(*devnode)(const struct device *dev, umode_t *mode);
1336 const struct file_operations *fops;
1337 int minor_base;
1338};
1339
1340/*
1341 * use these in module_init()/module_exit()
1342 * and don't forget MODULE_DEVICE_TABLE(usb, ...)
1343 */
1344extern int usb_register_driver(struct usb_driver *, struct module *,
1345 const char *);
1346
1347/* use a define to avoid include chaining to get THIS_MODULE & friends */
1348#define usb_register(driver) \
1349 usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME)
1350
1351extern void usb_deregister(struct usb_driver *);
1352
1353/**
1354 * module_usb_driver() - Helper macro for registering a USB driver
1355 * @__usb_driver: usb_driver struct
1356 *
1357 * Helper macro for USB drivers which do not do anything special in module
1358 * init/exit. This eliminates a lot of boilerplate. Each module may only
1359 * use this macro once, and calling it replaces module_init() and module_exit()
1360 */
1361#define module_usb_driver(__usb_driver) \
1362 module_driver(__usb_driver, usb_register, \
1363 usb_deregister)
1364
1365extern int usb_register_device_driver(struct usb_device_driver *,
1366 struct module *);
1367extern void usb_deregister_device_driver(struct usb_device_driver *);
1368
1369extern int usb_register_dev(struct usb_interface *intf,
1370 struct usb_class_driver *class_driver);
1371extern void usb_deregister_dev(struct usb_interface *intf,
1372 struct usb_class_driver *class_driver);
1373
1374extern int usb_disabled(void);
1375
1376/* ----------------------------------------------------------------------- */
1377
1378/*
1379 * URB support, for asynchronous request completions
1380 */
1381
1382/*
1383 * urb->transfer_flags:
1384 *
1385 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
1386 */
1387#define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */
1388#define URB_ISO_ASAP 0x0002 /* iso-only; use the first unexpired
1389 * slot in the schedule */
1390#define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */
1391#define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */
1392#define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt
1393 * needed */
1394#define URB_FREE_BUFFER 0x0100 /* Free transfer buffer with the URB */
1395
1396/* The following flags are used internally by usbcore and HCDs */
1397#define URB_DIR_IN 0x0200 /* Transfer from device to host */
1398#define URB_DIR_OUT 0
1399#define URB_DIR_MASK URB_DIR_IN
1400
1401#define URB_DMA_MAP_SINGLE 0x00010000 /* Non-scatter-gather mapping */
1402#define URB_DMA_MAP_PAGE 0x00020000 /* HCD-unsupported S-G */
1403#define URB_DMA_MAP_SG 0x00040000 /* HCD-supported S-G */
1404#define URB_MAP_LOCAL 0x00080000 /* HCD-local-memory mapping */
1405#define URB_SETUP_MAP_SINGLE 0x00100000 /* Setup packet DMA mapped */
1406#define URB_SETUP_MAP_LOCAL 0x00200000 /* HCD-local setup packet */
1407#define URB_DMA_SG_COMBINED 0x00400000 /* S-G entries were combined */
1408#define URB_ALIGNED_TEMP_BUFFER 0x00800000 /* Temp buffer was alloc'd */
1409
1410struct usb_iso_packet_descriptor {
1411 unsigned int offset;
1412 unsigned int length; /* expected length */
1413 unsigned int actual_length;
1414 int status;
1415};
1416
1417struct urb;
1418
1419struct usb_anchor {
1420 struct list_head urb_list;
1421 wait_queue_head_t wait;
1422 spinlock_t lock;
1423 atomic_t suspend_wakeups;
1424 unsigned int poisoned:1;
1425};
1426
1427static inline void init_usb_anchor(struct usb_anchor *anchor)
1428{
1429 memset(s: anchor, c: 0, n: sizeof(*anchor));
1430 INIT_LIST_HEAD(list: &anchor->urb_list);
1431 init_waitqueue_head(&anchor->wait);
1432 spin_lock_init(&anchor->lock);
1433}
1434
1435typedef void (*usb_complete_t)(struct urb *);
1436
1437/**
1438 * struct urb - USB Request Block
1439 * @urb_list: For use by current owner of the URB.
1440 * @anchor_list: membership in the list of an anchor
1441 * @anchor: to anchor URBs to a common mooring
1442 * @ep: Points to the endpoint's data structure. Will eventually
1443 * replace @pipe.
1444 * @pipe: Holds endpoint number, direction, type, and more.
1445 * Create these values with the eight macros available;
1446 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1447 * (control), "bulk", "int" (interrupt), or "iso" (isochronous).
1448 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint
1449 * numbers range from zero to fifteen. Note that "in" endpoint two
1450 * is a different endpoint (and pipe) from "out" endpoint two.
1451 * The current configuration controls the existence, type, and
1452 * maximum packet size of any given endpoint.
1453 * @stream_id: the endpoint's stream ID for bulk streams
1454 * @dev: Identifies the USB device to perform the request.
1455 * @status: This is read in non-iso completion functions to get the
1456 * status of the particular request. ISO requests only use it
1457 * to tell whether the URB was unlinked; detailed status for
1458 * each frame is in the fields of the iso_frame-desc.
1459 * @transfer_flags: A variety of flags may be used to affect how URB
1460 * submission, unlinking, or operation are handled. Different
1461 * kinds of URB can use different flags.
1462 * @transfer_buffer: This identifies the buffer to (or from) which the I/O
1463 * request will be performed unless URB_NO_TRANSFER_DMA_MAP is set
1464 * (however, do not leave garbage in transfer_buffer even then).
1465 * This buffer must be suitable for DMA; allocate it with
1466 * kmalloc() or equivalent. For transfers to "in" endpoints, contents
1467 * of this buffer will be modified. This buffer is used for the data
1468 * stage of control transfers.
1469 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1470 * the device driver is saying that it provided this DMA address,
1471 * which the host controller driver should use in preference to the
1472 * transfer_buffer.
1473 * @sg: scatter gather buffer list, the buffer size of each element in
1474 * the list (except the last) must be divisible by the endpoint's
1475 * max packet size if no_sg_constraint isn't set in 'struct usb_bus'
1476 * @sgt: used to hold a scatter gather table returned by usb_alloc_noncoherent(),
1477 * which describes the allocated non-coherent and possibly non-contiguous
1478 * memory and is guaranteed to have 1 single DMA mapped segment. The
1479 * allocated memory needs to be freed by usb_free_noncoherent().
1480 * @num_mapped_sgs: (internal) number of mapped sg entries
1481 * @num_sgs: number of entries in the sg list
1482 * @transfer_buffer_length: How big is transfer_buffer. The transfer may
1483 * be broken up into chunks according to the current maximum packet
1484 * size for the endpoint, which is a function of the configuration
1485 * and is encoded in the pipe. When the length is zero, neither
1486 * transfer_buffer nor transfer_dma is used.
1487 * @actual_length: This is read in non-iso completion functions, and
1488 * it tells how many bytes (out of transfer_buffer_length) were
1489 * transferred. It will normally be the same as requested, unless
1490 * either an error was reported or a short read was performed.
1491 * The URB_SHORT_NOT_OK transfer flag may be used to make such
1492 * short reads be reported as errors.
1493 * @setup_packet: Only used for control transfers, this points to eight bytes
1494 * of setup data. Control transfers always start by sending this data
1495 * to the device. Then transfer_buffer is read or written, if needed.
1496 * @setup_dma: DMA pointer for the setup packet. The caller must not use
1497 * this field; setup_packet must point to a valid buffer.
1498 * @start_frame: Returns the initial frame for isochronous transfers.
1499 * @number_of_packets: Lists the number of ISO transfer buffers.
1500 * @interval: Specifies the polling interval for interrupt or isochronous
1501 * transfers. The units are frames (milliseconds) for full and low
1502 * speed devices, and microframes (1/8 millisecond) for highspeed
1503 * and SuperSpeed devices.
1504 * @error_count: Returns the number of ISO transfers that reported errors.
1505 * @context: For use in completion functions. This normally points to
1506 * request-specific driver context.
1507 * @complete: Completion handler. This URB is passed as the parameter to the
1508 * completion function. The completion function may then do what
1509 * it likes with the URB, including resubmitting or freeing it.
1510 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1511 * collect the transfer status for each buffer.
1512 *
1513 * This structure identifies USB transfer requests. URBs must be allocated by
1514 * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1515 * Initialization may be done using various usb_fill_*_urb() functions. URBs
1516 * are submitted using usb_submit_urb(), and pending requests may be canceled
1517 * using usb_unlink_urb() or usb_kill_urb().
1518 *
1519 * Data Transfer Buffers:
1520 *
1521 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1522 * taken from the general page pool. That is provided by transfer_buffer
1523 * (control requests also use setup_packet), and host controller drivers
1524 * perform a dma mapping (and unmapping) for each buffer transferred. Those
1525 * mapping operations can be expensive on some platforms (perhaps using a dma
1526 * bounce buffer or talking to an IOMMU),
1527 * although they're cheap on commodity x86 and ppc hardware.
1528 *
1529 * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag,
1530 * which tells the host controller driver that no such mapping is needed for
1531 * the transfer_buffer since
1532 * the device driver is DMA-aware. For example, a device driver might
1533 * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map().
1534 * When this transfer flag is provided, host controller drivers will
1535 * attempt to use the dma address found in the transfer_dma
1536 * field rather than determining a dma address themselves.
1537 *
1538 * Note that transfer_buffer must still be set if the controller
1539 * does not support DMA (as indicated by hcd_uses_dma()) and when talking
1540 * to root hub. If you have to transfer between highmem zone and the device
1541 * on such controller, create a bounce buffer or bail out with an error.
1542 * If transfer_buffer cannot be set (is in highmem) and the controller is DMA
1543 * capable, assign NULL to it, so that usbmon knows not to use the value.
1544 * The setup_packet must always be set, so it cannot be located in highmem.
1545 *
1546 * Initialization:
1547 *
1548 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1549 * zero), and complete fields. All URBs must also initialize
1550 * transfer_buffer and transfer_buffer_length. They may provide the
1551 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1552 * to be treated as errors; that flag is invalid for write requests.
1553 *
1554 * Bulk URBs may
1555 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1556 * should always terminate with a short packet, even if it means adding an
1557 * extra zero length packet.
1558 *
1559 * Control URBs must provide a valid pointer in the setup_packet field.
1560 * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA
1561 * beforehand.
1562 *
1563 * Interrupt URBs must provide an interval, saying how often (in milliseconds
1564 * or, for highspeed devices, 125 microsecond units)
1565 * to poll for transfers. After the URB has been submitted, the interval
1566 * field reflects how the transfer was actually scheduled.
1567 * The polling interval may be more frequent than requested.
1568 * For example, some controllers have a maximum interval of 32 milliseconds,
1569 * while others support intervals of up to 1024 milliseconds.
1570 * Isochronous URBs also have transfer intervals. (Note that for isochronous
1571 * endpoints, as well as high speed interrupt endpoints, the encoding of
1572 * the transfer interval in the endpoint descriptor is logarithmic.
1573 * Device drivers must convert that value to linear units themselves.)
1574 *
1575 * If an isochronous endpoint queue isn't already running, the host
1576 * controller will schedule a new URB to start as soon as bandwidth
1577 * utilization allows. If the queue is running then a new URB will be
1578 * scheduled to start in the first transfer slot following the end of the
1579 * preceding URB, if that slot has not already expired. If the slot has
1580 * expired (which can happen when IRQ delivery is delayed for a long time),
1581 * the scheduling behavior depends on the URB_ISO_ASAP flag. If the flag
1582 * is clear then the URB will be scheduled to start in the expired slot,
1583 * implying that some of its packets will not be transferred; if the flag
1584 * is set then the URB will be scheduled in the first unexpired slot,
1585 * breaking the queue's synchronization. Upon URB completion, the
1586 * start_frame field will be set to the (micro)frame number in which the
1587 * transfer was scheduled. Ranges for frame counter values are HC-specific
1588 * and can go from as low as 256 to as high as 65536 frames.
1589 *
1590 * Isochronous URBs have a different data transfer model, in part because
1591 * the quality of service is only "best effort". Callers provide specially
1592 * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1593 * at the end. Each such packet is an individual ISO transfer. Isochronous
1594 * URBs are normally queued, submitted by drivers to arrange that
1595 * transfers are at least double buffered, and then explicitly resubmitted
1596 * in completion handlers, so
1597 * that data (such as audio or video) streams at as constant a rate as the
1598 * host controller scheduler can support.
1599 *
1600 * Completion Callbacks:
1601 *
1602 * The completion callback is made in_interrupt(), and one of the first
1603 * things that a completion handler should do is check the status field.
1604 * The status field is provided for all URBs. It is used to report
1605 * unlinked URBs, and status for all non-ISO transfers. It should not
1606 * be examined before the URB is returned to the completion handler.
1607 *
1608 * The context field is normally used to link URBs back to the relevant
1609 * driver or request state.
1610 *
1611 * When the completion callback is invoked for non-isochronous URBs, the
1612 * actual_length field tells how many bytes were transferred. This field
1613 * is updated even when the URB terminated with an error or was unlinked.
1614 *
1615 * ISO transfer status is reported in the status and actual_length fields
1616 * of the iso_frame_desc array, and the number of errors is reported in
1617 * error_count. Completion callbacks for ISO transfers will normally
1618 * (re)submit URBs to ensure a constant transfer rate.
1619 *
1620 * Note that even fields marked "public" should not be touched by the driver
1621 * when the urb is owned by the hcd, that is, since the call to
1622 * usb_submit_urb() till the entry into the completion routine.
1623 */
1624struct urb {
1625 /* private: usb core and host controller only fields in the urb */
1626 struct kref kref; /* reference count of the URB */
1627 int unlinked; /* unlink error code */
1628 void *hcpriv; /* private data for host controller */
1629 atomic_t use_count; /* concurrent submissions counter */
1630 atomic_t reject; /* submissions will fail */
1631
1632 /* public: documented fields in the urb that can be used by drivers */
1633 struct list_head urb_list; /* list head for use by the urb's
1634 * current owner */
1635 struct list_head anchor_list; /* the URB may be anchored */
1636 struct usb_anchor *anchor;
1637 struct usb_device *dev; /* (in) pointer to associated device */
1638 struct usb_host_endpoint *ep; /* (internal) pointer to endpoint */
1639 unsigned int pipe; /* (in) pipe information */
1640 unsigned int stream_id; /* (in) stream ID */
1641 int status; /* (return) non-ISO status */
1642 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/
1643 void *transfer_buffer; /* (in) associated data buffer */
1644 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */
1645 struct scatterlist *sg; /* (in) scatter gather buffer list */
1646 struct sg_table *sgt; /* (in) scatter gather table for noncoherent buffer */
1647 int num_mapped_sgs; /* (internal) mapped sg entries */
1648 int num_sgs; /* (in) number of entries in the sg list */
1649 u32 transfer_buffer_length; /* (in) data buffer length */
1650 u32 actual_length; /* (return) actual transfer length */
1651 unsigned char *setup_packet; /* (in) setup packet (control only) */
1652 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */
1653 int start_frame; /* (modify) start frame (ISO) */
1654 int number_of_packets; /* (in) number of ISO packets */
1655 int interval; /* (modify) transfer interval
1656 * (INT/ISO) */
1657 int error_count; /* (return) number of ISO errors */
1658 void *context; /* (in) context for completion */
1659 usb_complete_t complete; /* (in) completion routine */
1660 struct usb_iso_packet_descriptor iso_frame_desc[];
1661 /* (in) ISO ONLY */
1662};
1663
1664/* ----------------------------------------------------------------------- */
1665
1666/**
1667 * usb_fill_control_urb - initializes a control urb
1668 * @urb: pointer to the urb to initialize.
1669 * @dev: pointer to the struct usb_device for this urb.
1670 * @pipe: the endpoint pipe
1671 * @setup_packet: pointer to the setup_packet buffer. The buffer must be
1672 * suitable for DMA.
1673 * @transfer_buffer: pointer to the transfer buffer. The buffer must be
1674 * suitable for DMA.
1675 * @buffer_length: length of the transfer buffer
1676 * @complete_fn: pointer to the usb_complete_t function
1677 * @context: what to set the urb context to.
1678 *
1679 * Initializes a control urb with the proper information needed to submit
1680 * it to a device.
1681 *
1682 * The transfer buffer and the setup_packet buffer will most likely be filled
1683 * or read via DMA. The simplest way to get a buffer that can be DMAed to is
1684 * allocating it via kmalloc() or equivalent, even for very small buffers.
1685 * If the buffers are embedded in a bigger structure, there is a risk that
1686 * the buffer itself, the previous fields and/or the next fields are corrupted
1687 * due to cache incoherencies; or slowed down if they are evicted from the
1688 * cache. For more information, check &struct urb.
1689 *
1690 */
1691static inline void usb_fill_control_urb(struct urb *urb,
1692 struct usb_device *dev,
1693 unsigned int pipe,
1694 unsigned char *setup_packet,
1695 void *transfer_buffer,
1696 int buffer_length,
1697 usb_complete_t complete_fn,
1698 void *context)
1699{
1700 urb->dev = dev;
1701 urb->pipe = pipe;
1702 urb->setup_packet = setup_packet;
1703 urb->transfer_buffer = transfer_buffer;
1704 urb->transfer_buffer_length = buffer_length;
1705 urb->complete = complete_fn;
1706 urb->context = context;
1707}
1708
1709/**
1710 * usb_fill_bulk_urb - macro to help initialize a bulk urb
1711 * @urb: pointer to the urb to initialize.
1712 * @dev: pointer to the struct usb_device for this urb.
1713 * @pipe: the endpoint pipe
1714 * @transfer_buffer: pointer to the transfer buffer. The buffer must be
1715 * suitable for DMA.
1716 * @buffer_length: length of the transfer buffer
1717 * @complete_fn: pointer to the usb_complete_t function
1718 * @context: what to set the urb context to.
1719 *
1720 * Initializes a bulk urb with the proper information needed to submit it
1721 * to a device.
1722 *
1723 * Refer to usb_fill_control_urb() for a description of the requirements for
1724 * transfer_buffer.
1725 */
1726static inline void usb_fill_bulk_urb(struct urb *urb,
1727 struct usb_device *dev,
1728 unsigned int pipe,
1729 void *transfer_buffer,
1730 int buffer_length,
1731 usb_complete_t complete_fn,
1732 void *context)
1733{
1734 urb->dev = dev;
1735 urb->pipe = pipe;
1736 urb->transfer_buffer = transfer_buffer;
1737 urb->transfer_buffer_length = buffer_length;
1738 urb->complete = complete_fn;
1739 urb->context = context;
1740}
1741
1742/**
1743 * usb_fill_int_urb - macro to help initialize a interrupt urb
1744 * @urb: pointer to the urb to initialize.
1745 * @dev: pointer to the struct usb_device for this urb.
1746 * @pipe: the endpoint pipe
1747 * @transfer_buffer: pointer to the transfer buffer. The buffer must be
1748 * suitable for DMA.
1749 * @buffer_length: length of the transfer buffer
1750 * @complete_fn: pointer to the usb_complete_t function
1751 * @context: what to set the urb context to.
1752 * @interval: what to set the urb interval to, encoded like
1753 * the endpoint descriptor's bInterval value.
1754 *
1755 * Initializes a interrupt urb with the proper information needed to submit
1756 * it to a device.
1757 *
1758 * Refer to usb_fill_control_urb() for a description of the requirements for
1759 * transfer_buffer.
1760 *
1761 * Note that High Speed and SuperSpeed(+) interrupt endpoints use a logarithmic
1762 * encoding of the endpoint interval, and express polling intervals in
1763 * microframes (eight per millisecond) rather than in frames (one per
1764 * millisecond).
1765 */
1766static inline void usb_fill_int_urb(struct urb *urb,
1767 struct usb_device *dev,
1768 unsigned int pipe,
1769 void *transfer_buffer,
1770 int buffer_length,
1771 usb_complete_t complete_fn,
1772 void *context,
1773 int interval)
1774{
1775 urb->dev = dev;
1776 urb->pipe = pipe;
1777 urb->transfer_buffer = transfer_buffer;
1778 urb->transfer_buffer_length = buffer_length;
1779 urb->complete = complete_fn;
1780 urb->context = context;
1781
1782 if (dev->speed == USB_SPEED_HIGH || dev->speed >= USB_SPEED_SUPER) {
1783 /* make sure interval is within allowed range */
1784 interval = clamp(interval, 1, 16);
1785
1786 urb->interval = 1 << (interval - 1);
1787 } else {
1788 urb->interval = interval;
1789 }
1790
1791 urb->start_frame = -1;
1792}
1793
1794extern void usb_init_urb(struct urb *urb);
1795extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1796extern void usb_free_urb(struct urb *urb);
1797#define usb_put_urb usb_free_urb
1798extern struct urb *usb_get_urb(struct urb *urb);
1799extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1800extern int usb_unlink_urb(struct urb *urb);
1801extern void usb_kill_urb(struct urb *urb);
1802extern void usb_poison_urb(struct urb *urb);
1803extern void usb_unpoison_urb(struct urb *urb);
1804extern void usb_block_urb(struct urb *urb);
1805extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1806extern void usb_poison_anchored_urbs(struct usb_anchor *anchor);
1807extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor);
1808extern void usb_anchor_suspend_wakeups(struct usb_anchor *anchor);
1809extern void usb_anchor_resume_wakeups(struct usb_anchor *anchor);
1810extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1811extern void usb_unanchor_urb(struct urb *urb);
1812extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1813 unsigned int timeout);
1814extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor);
1815extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor);
1816extern int usb_anchor_empty(struct usb_anchor *anchor);
1817
1818#define usb_unblock_urb usb_unpoison_urb
1819
1820/**
1821 * usb_urb_dir_in - check if an URB describes an IN transfer
1822 * @urb: URB to be checked
1823 *
1824 * Return: 1 if @urb describes an IN transfer (device-to-host),
1825 * otherwise 0.
1826 */
1827static inline int usb_urb_dir_in(struct urb *urb)
1828{
1829 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1830}
1831
1832/**
1833 * usb_urb_dir_out - check if an URB describes an OUT transfer
1834 * @urb: URB to be checked
1835 *
1836 * Return: 1 if @urb describes an OUT transfer (host-to-device),
1837 * otherwise 0.
1838 */
1839static inline int usb_urb_dir_out(struct urb *urb)
1840{
1841 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1842}
1843
1844int usb_pipe_type_check(struct usb_device *dev, unsigned int pipe);
1845int usb_urb_ep_type_check(const struct urb *urb);
1846
1847void *usb_alloc_coherent(struct usb_device *dev, size_t size,
1848 gfp_t mem_flags, dma_addr_t *dma);
1849void usb_free_coherent(struct usb_device *dev, size_t size,
1850 void *addr, dma_addr_t dma);
1851
1852enum dma_data_direction;
1853
1854void *usb_alloc_noncoherent(struct usb_device *dev, size_t size,
1855 gfp_t mem_flags, dma_addr_t *dma,
1856 enum dma_data_direction dir,
1857 struct sg_table **table);
1858void usb_free_noncoherent(struct usb_device *dev, size_t size,
1859 void *addr, enum dma_data_direction dir,
1860 struct sg_table *table);
1861
1862/*-------------------------------------------------------------------*
1863 * SYNCHRONOUS CALL SUPPORT *
1864 *-------------------------------------------------------------------*/
1865
1866extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1867 __u8 request, __u8 requesttype, __u16 value, __u16 index,
1868 void *data, __u16 size, int timeout);
1869extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1870 void *data, int len, int *actual_length, int timeout);
1871extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1872 void *data, int len, int *actual_length,
1873 int timeout);
1874
1875/* wrappers around usb_control_msg() for the most common standard requests */
1876int usb_control_msg_send(struct usb_device *dev, __u8 endpoint, __u8 request,
1877 __u8 requesttype, __u16 value, __u16 index,
1878 const void *data, __u16 size, int timeout,
1879 gfp_t memflags);
1880int usb_control_msg_recv(struct usb_device *dev, __u8 endpoint, __u8 request,
1881 __u8 requesttype, __u16 value, __u16 index,
1882 void *data, __u16 size, int timeout,
1883 gfp_t memflags);
1884extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1885 unsigned char descindex, void *buf, int size);
1886extern int usb_get_status(struct usb_device *dev,
1887 int recip, int type, int target, void *data);
1888
1889static inline int usb_get_std_status(struct usb_device *dev,
1890 int recip, int target, void *data)
1891{
1892 return usb_get_status(dev, recip, USB_STATUS_TYPE_STANDARD, target,
1893 data);
1894}
1895
1896static inline int usb_get_ptm_status(struct usb_device *dev, void *data)
1897{
1898 return usb_get_status(dev, USB_RECIP_DEVICE, USB_STATUS_TYPE_PTM,
1899 target: 0, data);
1900}
1901
1902extern int usb_string(struct usb_device *dev, int index,
1903 char *buf, size_t size);
1904extern char *usb_cache_string(struct usb_device *udev, int index);
1905
1906/* wrappers that also update important state inside usbcore */
1907extern int usb_clear_halt(struct usb_device *dev, int pipe);
1908extern int usb_reset_configuration(struct usb_device *dev);
1909extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1910extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr);
1911
1912/* this request isn't really synchronous, but it belongs with the others */
1913extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1914
1915/* choose and set configuration for device */
1916extern int usb_choose_configuration(struct usb_device *udev);
1917extern int usb_set_configuration(struct usb_device *dev, int configuration);
1918
1919/*
1920 * timeouts, in milliseconds, used for sending/receiving control messages
1921 * they typically complete within a few frames (msec) after they're issued
1922 * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1923 * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1924 */
1925#define USB_CTRL_GET_TIMEOUT 5000
1926#define USB_CTRL_SET_TIMEOUT 5000
1927
1928
1929/**
1930 * struct usb_sg_request - support for scatter/gather I/O
1931 * @status: zero indicates success, else negative errno
1932 * @bytes: counts bytes transferred.
1933 *
1934 * These requests are initialized using usb_sg_init(), and then are used
1935 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most
1936 * members of the request object aren't for driver access.
1937 *
1938 * The status and bytecount values are valid only after usb_sg_wait()
1939 * returns. If the status is zero, then the bytecount matches the total
1940 * from the request.
1941 *
1942 * After an error completion, drivers may need to clear a halt condition
1943 * on the endpoint.
1944 */
1945struct usb_sg_request {
1946 int status;
1947 size_t bytes;
1948
1949 /* private:
1950 * members below are private to usbcore,
1951 * and are not provided for driver access!
1952 */
1953 spinlock_t lock;
1954
1955 struct usb_device *dev;
1956 int pipe;
1957
1958 int entries;
1959 struct urb **urbs;
1960
1961 int count;
1962 struct completion complete;
1963};
1964
1965int usb_sg_init(
1966 struct usb_sg_request *io,
1967 struct usb_device *dev,
1968 unsigned pipe,
1969 unsigned period,
1970 struct scatterlist *sg,
1971 int nents,
1972 size_t length,
1973 gfp_t mem_flags
1974);
1975void usb_sg_cancel(struct usb_sg_request *io);
1976void usb_sg_wait(struct usb_sg_request *io);
1977
1978
1979/* ----------------------------------------------------------------------- */
1980
1981/*
1982 * For various legacy reasons, Linux has a small cookie that's paired with
1983 * a struct usb_device to identify an endpoint queue. Queue characteristics
1984 * are defined by the endpoint's descriptor. This cookie is called a "pipe",
1985 * an unsigned int encoded as:
1986 *
1987 * - direction: bit 7 (0 = Host-to-Device [Out],
1988 * 1 = Device-to-Host [In] ...
1989 * like endpoint bEndpointAddress)
1990 * - device address: bits 8-14 ... bit positions known to uhci-hcd
1991 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd
1992 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt,
1993 * 10 = control, 11 = bulk)
1994 *
1995 * Given the device address and endpoint descriptor, pipes are redundant.
1996 */
1997
1998/* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */
1999/* (yet ... they're the values used by usbfs) */
2000#define PIPE_ISOCHRONOUS 0
2001#define PIPE_INTERRUPT 1
2002#define PIPE_CONTROL 2
2003#define PIPE_BULK 3
2004
2005#define usb_pipein(pipe) ((pipe) & USB_DIR_IN)
2006#define usb_pipeout(pipe) (!usb_pipein(pipe))
2007
2008#define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f)
2009#define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf)
2010
2011#define usb_pipetype(pipe) (((pipe) >> 30) & 3)
2012#define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
2013#define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT)
2014#define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL)
2015#define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK)
2016
2017static inline unsigned int __create_pipe(struct usb_device *dev,
2018 unsigned int endpoint)
2019{
2020 return (dev->devnum << 8) | (endpoint << 15);
2021}
2022
2023/* Create various pipes... */
2024#define usb_sndctrlpipe(dev, endpoint) \
2025 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
2026#define usb_rcvctrlpipe(dev, endpoint) \
2027 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
2028#define usb_sndisocpipe(dev, endpoint) \
2029 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
2030#define usb_rcvisocpipe(dev, endpoint) \
2031 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
2032#define usb_sndbulkpipe(dev, endpoint) \
2033 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
2034#define usb_rcvbulkpipe(dev, endpoint) \
2035 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
2036#define usb_sndintpipe(dev, endpoint) \
2037 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
2038#define usb_rcvintpipe(dev, endpoint) \
2039 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
2040
2041static inline struct usb_host_endpoint *
2042usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe)
2043{
2044 struct usb_host_endpoint **eps;
2045 eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out;
2046 return eps[usb_pipeendpoint(pipe)];
2047}
2048
2049static inline u16 usb_maxpacket(struct usb_device *udev, int pipe)
2050{
2051 struct usb_host_endpoint *ep = usb_pipe_endpoint(dev: udev, pipe);
2052
2053 if (!ep)
2054 return 0;
2055
2056 /* NOTE: only 0x07ff bits are for packet size... */
2057 return usb_endpoint_maxp(epd: &ep->desc);
2058}
2059
2060u32 usb_endpoint_max_periodic_payload(struct usb_device *udev,
2061 const struct usb_host_endpoint *ep);
2062
2063bool usb_endpoint_is_hs_isoc_double(struct usb_device *udev,
2064 const struct usb_host_endpoint *ep);
2065
2066/* translate USB error codes to codes user space understands */
2067static inline int usb_translate_errors(int error_code)
2068{
2069 switch (error_code) {
2070 case 0:
2071 case -ENOMEM:
2072 case -ENODEV:
2073 case -EOPNOTSUPP:
2074 return error_code;
2075 default:
2076 return -EIO;
2077 }
2078}
2079
2080/* Events from the usb core */
2081#define USB_DEVICE_ADD 0x0001
2082#define USB_DEVICE_REMOVE 0x0002
2083#define USB_BUS_ADD 0x0003
2084#define USB_BUS_REMOVE 0x0004
2085extern void usb_register_notify(struct notifier_block *nb);
2086extern void usb_unregister_notify(struct notifier_block *nb);
2087
2088/* debugfs stuff */
2089extern struct dentry *usb_debug_root;
2090
2091/* LED triggers */
2092enum usb_led_event {
2093 USB_LED_EVENT_HOST = 0,
2094 USB_LED_EVENT_GADGET = 1,
2095};
2096
2097#ifdef CONFIG_USB_LED_TRIG
2098extern void usb_led_activity(enum usb_led_event ev);
2099#else
2100static inline void usb_led_activity(enum usb_led_event ev) {}
2101#endif
2102
2103#endif /* __KERNEL__ */
2104
2105#endif
2106