1/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
2/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 */
8#ifndef _UAPI__LINUX_BPF_H__
9#define _UAPI__LINUX_BPF_H__
10
11#include <linux/types.h>
12#include <linux/bpf_common.h>
13
14/* Extended instruction set based on top of classic BPF */
15
16/* instruction classes */
17#define BPF_JMP32 0x06 /* jmp mode in word width */
18#define BPF_ALU64 0x07 /* alu mode in double word width */
19
20/* ld/ldx fields */
21#define BPF_DW 0x18 /* double word (64-bit) */
22#define BPF_MEMSX 0x80 /* load with sign extension */
23#define BPF_ATOMIC 0xc0 /* atomic memory ops - op type in immediate */
24#define BPF_XADD 0xc0 /* exclusive add - legacy name */
25
26/* alu/jmp fields */
27#define BPF_MOV 0xb0 /* mov reg to reg */
28#define BPF_ARSH 0xc0 /* sign extending arithmetic shift right */
29
30/* change endianness of a register */
31#define BPF_END 0xd0 /* flags for endianness conversion: */
32#define BPF_TO_LE 0x00 /* convert to little-endian */
33#define BPF_TO_BE 0x08 /* convert to big-endian */
34#define BPF_FROM_LE BPF_TO_LE
35#define BPF_FROM_BE BPF_TO_BE
36
37/* jmp encodings */
38#define BPF_JNE 0x50 /* jump != */
39#define BPF_JLT 0xa0 /* LT is unsigned, '<' */
40#define BPF_JLE 0xb0 /* LE is unsigned, '<=' */
41#define BPF_JSGT 0x60 /* SGT is signed '>', GT in x86 */
42#define BPF_JSGE 0x70 /* SGE is signed '>=', GE in x86 */
43#define BPF_JSLT 0xc0 /* SLT is signed, '<' */
44#define BPF_JSLE 0xd0 /* SLE is signed, '<=' */
45#define BPF_JCOND 0xe0 /* conditional pseudo jumps: may_goto, goto_or_nop */
46#define BPF_CALL 0x80 /* function call */
47#define BPF_EXIT 0x90 /* function return */
48
49/* atomic op type fields (stored in immediate) */
50#define BPF_FETCH 0x01 /* not an opcode on its own, used to build others */
51#define BPF_XCHG (0xe0 | BPF_FETCH) /* atomic exchange */
52#define BPF_CMPXCHG (0xf0 | BPF_FETCH) /* atomic compare-and-write */
53
54#define BPF_LOAD_ACQ 0x100 /* load-acquire */
55#define BPF_STORE_REL 0x110 /* store-release */
56
57enum bpf_cond_pseudo_jmp {
58 BPF_MAY_GOTO = 0,
59};
60
61/* Register numbers */
62enum {
63 BPF_REG_0 = 0,
64 BPF_REG_1,
65 BPF_REG_2,
66 BPF_REG_3,
67 BPF_REG_4,
68 BPF_REG_5,
69 BPF_REG_6,
70 BPF_REG_7,
71 BPF_REG_8,
72 BPF_REG_9,
73 BPF_REG_10,
74 __MAX_BPF_REG,
75};
76
77/* BPF has 10 general purpose 64-bit registers and stack frame. */
78#define MAX_BPF_REG __MAX_BPF_REG
79
80struct bpf_insn {
81 __u8 code; /* opcode */
82 __u8 dst_reg:4; /* dest register */
83 __u8 src_reg:4; /* source register */
84 __s16 off; /* signed offset */
85 __s32 imm; /* signed immediate constant */
86};
87
88/* Deprecated: use struct bpf_lpm_trie_key_u8 (when the "data" member is needed for
89 * byte access) or struct bpf_lpm_trie_key_hdr (when using an alternative type for
90 * the trailing flexible array member) instead.
91 */
92struct bpf_lpm_trie_key {
93 __u32 prefixlen; /* up to 32 for AF_INET, 128 for AF_INET6 */
94 __u8 data[0]; /* Arbitrary size */
95};
96
97/* Header for bpf_lpm_trie_key structs */
98struct bpf_lpm_trie_key_hdr {
99 __u32 prefixlen;
100};
101
102/* Key of an a BPF_MAP_TYPE_LPM_TRIE entry, with trailing byte array. */
103struct bpf_lpm_trie_key_u8 {
104 union {
105 struct bpf_lpm_trie_key_hdr hdr;
106 __u32 prefixlen;
107 };
108 __u8 data[]; /* Arbitrary size */
109};
110
111struct bpf_cgroup_storage_key {
112 __u64 cgroup_inode_id; /* cgroup inode id */
113 __u32 attach_type; /* program attach type (enum bpf_attach_type) */
114};
115
116enum bpf_cgroup_iter_order {
117 BPF_CGROUP_ITER_ORDER_UNSPEC = 0,
118 BPF_CGROUP_ITER_SELF_ONLY, /* process only a single object. */
119 BPF_CGROUP_ITER_DESCENDANTS_PRE, /* walk descendants in pre-order. */
120 BPF_CGROUP_ITER_DESCENDANTS_POST, /* walk descendants in post-order. */
121 BPF_CGROUP_ITER_ANCESTORS_UP, /* walk ancestors upward. */
122};
123
124union bpf_iter_link_info {
125 struct {
126 __u32 map_fd;
127 } map;
128 struct {
129 enum bpf_cgroup_iter_order order;
130
131 /* At most one of cgroup_fd and cgroup_id can be non-zero. If
132 * both are zero, the walk starts from the default cgroup v2
133 * root. For walking v1 hierarchy, one should always explicitly
134 * specify cgroup_fd.
135 */
136 __u32 cgroup_fd;
137 __u64 cgroup_id;
138 } cgroup;
139 /* Parameters of task iterators. */
140 struct {
141 __u32 tid;
142 __u32 pid;
143 __u32 pid_fd;
144 } task;
145};
146
147/* BPF syscall commands, see bpf(2) man-page for more details. */
148/**
149 * DOC: eBPF Syscall Preamble
150 *
151 * The operation to be performed by the **bpf**\ () system call is determined
152 * by the *cmd* argument. Each operation takes an accompanying argument,
153 * provided via *attr*, which is a pointer to a union of type *bpf_attr* (see
154 * below). The size argument is the size of the union pointed to by *attr*.
155 */
156/**
157 * DOC: eBPF Syscall Commands
158 *
159 * BPF_MAP_CREATE
160 * Description
161 * Create a map and return a file descriptor that refers to the
162 * map. The close-on-exec file descriptor flag (see **fcntl**\ (2))
163 * is automatically enabled for the new file descriptor.
164 *
165 * Applying **close**\ (2) to the file descriptor returned by
166 * **BPF_MAP_CREATE** will delete the map (but see NOTES).
167 *
168 * Return
169 * A new file descriptor (a nonnegative integer), or -1 if an
170 * error occurred (in which case, *errno* is set appropriately).
171 *
172 * BPF_MAP_LOOKUP_ELEM
173 * Description
174 * Look up an element with a given *key* in the map referred to
175 * by the file descriptor *map_fd*.
176 *
177 * The *flags* argument may be specified as one of the
178 * following:
179 *
180 * **BPF_F_LOCK**
181 * Look up the value of a spin-locked map without
182 * returning the lock. This must be specified if the
183 * elements contain a spinlock.
184 *
185 * Return
186 * Returns zero on success. On error, -1 is returned and *errno*
187 * is set appropriately.
188 *
189 * BPF_MAP_UPDATE_ELEM
190 * Description
191 * Create or update an element (key/value pair) in a specified map.
192 *
193 * The *flags* argument should be specified as one of the
194 * following:
195 *
196 * **BPF_ANY**
197 * Create a new element or update an existing element.
198 * **BPF_NOEXIST**
199 * Create a new element only if it did not exist.
200 * **BPF_EXIST**
201 * Update an existing element.
202 * **BPF_F_LOCK**
203 * Update a spin_lock-ed map element.
204 *
205 * Return
206 * Returns zero on success. On error, -1 is returned and *errno*
207 * is set appropriately.
208 *
209 * May set *errno* to **EINVAL**, **EPERM**, **ENOMEM**,
210 * **E2BIG**, **EEXIST**, or **ENOENT**.
211 *
212 * **E2BIG**
213 * The number of elements in the map reached the
214 * *max_entries* limit specified at map creation time.
215 * **EEXIST**
216 * If *flags* specifies **BPF_NOEXIST** and the element
217 * with *key* already exists in the map.
218 * **ENOENT**
219 * If *flags* specifies **BPF_EXIST** and the element with
220 * *key* does not exist in the map.
221 *
222 * BPF_MAP_DELETE_ELEM
223 * Description
224 * Look up and delete an element by key in a specified map.
225 *
226 * Return
227 * Returns zero on success. On error, -1 is returned and *errno*
228 * is set appropriately.
229 *
230 * BPF_MAP_GET_NEXT_KEY
231 * Description
232 * Look up an element by key in a specified map and return the key
233 * of the next element. Can be used to iterate over all elements
234 * in the map.
235 *
236 * Return
237 * Returns zero on success. On error, -1 is returned and *errno*
238 * is set appropriately.
239 *
240 * The following cases can be used to iterate over all elements of
241 * the map:
242 *
243 * * If *key* is not found, the operation returns zero and sets
244 * the *next_key* pointer to the key of the first element.
245 * * If *key* is found, the operation returns zero and sets the
246 * *next_key* pointer to the key of the next element.
247 * * If *key* is the last element, returns -1 and *errno* is set
248 * to **ENOENT**.
249 *
250 * May set *errno* to **ENOMEM**, **EFAULT**, **EPERM**, or
251 * **EINVAL** on error.
252 *
253 * BPF_PROG_LOAD
254 * Description
255 * Verify and load an eBPF program, returning a new file
256 * descriptor associated with the program.
257 *
258 * Applying **close**\ (2) to the file descriptor returned by
259 * **BPF_PROG_LOAD** will unload the eBPF program (but see NOTES).
260 *
261 * The close-on-exec file descriptor flag (see **fcntl**\ (2)) is
262 * automatically enabled for the new file descriptor.
263 *
264 * Return
265 * A new file descriptor (a nonnegative integer), or -1 if an
266 * error occurred (in which case, *errno* is set appropriately).
267 *
268 * BPF_OBJ_PIN
269 * Description
270 * Pin an eBPF program or map referred by the specified *bpf_fd*
271 * to the provided *pathname* on the filesystem.
272 *
273 * The *pathname* argument must not contain a dot (".").
274 *
275 * On success, *pathname* retains a reference to the eBPF object,
276 * preventing deallocation of the object when the original
277 * *bpf_fd* is closed. This allow the eBPF object to live beyond
278 * **close**\ (\ *bpf_fd*\ ), and hence the lifetime of the parent
279 * process.
280 *
281 * Applying **unlink**\ (2) or similar calls to the *pathname*
282 * unpins the object from the filesystem, removing the reference.
283 * If no other file descriptors or filesystem nodes refer to the
284 * same object, it will be deallocated (see NOTES).
285 *
286 * The filesystem type for the parent directory of *pathname* must
287 * be **BPF_FS_MAGIC**.
288 *
289 * Return
290 * Returns zero on success. On error, -1 is returned and *errno*
291 * is set appropriately.
292 *
293 * BPF_OBJ_GET
294 * Description
295 * Open a file descriptor for the eBPF object pinned to the
296 * specified *pathname*.
297 *
298 * Return
299 * A new file descriptor (a nonnegative integer), or -1 if an
300 * error occurred (in which case, *errno* is set appropriately).
301 *
302 * BPF_PROG_ATTACH
303 * Description
304 * Attach an eBPF program to a *target_fd* at the specified
305 * *attach_type* hook.
306 *
307 * The *attach_type* specifies the eBPF attachment point to
308 * attach the program to, and must be one of *bpf_attach_type*
309 * (see below).
310 *
311 * The *attach_bpf_fd* must be a valid file descriptor for a
312 * loaded eBPF program of a cgroup, flow dissector, LIRC, sockmap
313 * or sock_ops type corresponding to the specified *attach_type*.
314 *
315 * The *target_fd* must be a valid file descriptor for a kernel
316 * object which depends on the attach type of *attach_bpf_fd*:
317 *
318 * **BPF_PROG_TYPE_CGROUP_DEVICE**,
319 * **BPF_PROG_TYPE_CGROUP_SKB**,
320 * **BPF_PROG_TYPE_CGROUP_SOCK**,
321 * **BPF_PROG_TYPE_CGROUP_SOCK_ADDR**,
322 * **BPF_PROG_TYPE_CGROUP_SOCKOPT**,
323 * **BPF_PROG_TYPE_CGROUP_SYSCTL**,
324 * **BPF_PROG_TYPE_SOCK_OPS**
325 *
326 * Control Group v2 hierarchy with the eBPF controller
327 * enabled. Requires the kernel to be compiled with
328 * **CONFIG_CGROUP_BPF**.
329 *
330 * **BPF_PROG_TYPE_FLOW_DISSECTOR**
331 *
332 * Network namespace (eg /proc/self/ns/net).
333 *
334 * **BPF_PROG_TYPE_LIRC_MODE2**
335 *
336 * LIRC device path (eg /dev/lircN). Requires the kernel
337 * to be compiled with **CONFIG_BPF_LIRC_MODE2**.
338 *
339 * **BPF_PROG_TYPE_SK_SKB**,
340 * **BPF_PROG_TYPE_SK_MSG**
341 *
342 * eBPF map of socket type (eg **BPF_MAP_TYPE_SOCKHASH**).
343 *
344 * Return
345 * Returns zero on success. On error, -1 is returned and *errno*
346 * is set appropriately.
347 *
348 * BPF_PROG_DETACH
349 * Description
350 * Detach the eBPF program associated with the *target_fd* at the
351 * hook specified by *attach_type*. The program must have been
352 * previously attached using **BPF_PROG_ATTACH**.
353 *
354 * Return
355 * Returns zero on success. On error, -1 is returned and *errno*
356 * is set appropriately.
357 *
358 * BPF_PROG_TEST_RUN
359 * Description
360 * Run the eBPF program associated with the *prog_fd* a *repeat*
361 * number of times against a provided program context *ctx_in* and
362 * data *data_in*, and return the modified program context
363 * *ctx_out*, *data_out* (for example, packet data), result of the
364 * execution *retval*, and *duration* of the test run.
365 *
366 * The sizes of the buffers provided as input and output
367 * parameters *ctx_in*, *ctx_out*, *data_in*, and *data_out* must
368 * be provided in the corresponding variables *ctx_size_in*,
369 * *ctx_size_out*, *data_size_in*, and/or *data_size_out*. If any
370 * of these parameters are not provided (ie set to NULL), the
371 * corresponding size field must be zero.
372 *
373 * Some program types have particular requirements:
374 *
375 * **BPF_PROG_TYPE_SK_LOOKUP**
376 * *data_in* and *data_out* must be NULL.
377 *
378 * **BPF_PROG_TYPE_RAW_TRACEPOINT**,
379 * **BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE**
380 *
381 * *ctx_out*, *data_in* and *data_out* must be NULL.
382 * *repeat* must be zero.
383 *
384 * BPF_PROG_RUN is an alias for BPF_PROG_TEST_RUN.
385 *
386 * Return
387 * Returns zero on success. On error, -1 is returned and *errno*
388 * is set appropriately.
389 *
390 * **ENOSPC**
391 * Either *data_size_out* or *ctx_size_out* is too small.
392 * **ENOTSUPP**
393 * This command is not supported by the program type of
394 * the program referred to by *prog_fd*.
395 *
396 * BPF_PROG_GET_NEXT_ID
397 * Description
398 * Fetch the next eBPF program currently loaded into the kernel.
399 *
400 * Looks for the eBPF program with an id greater than *start_id*
401 * and updates *next_id* on success. If no other eBPF programs
402 * remain with ids higher than *start_id*, returns -1 and sets
403 * *errno* to **ENOENT**.
404 *
405 * Return
406 * Returns zero on success. On error, or when no id remains, -1
407 * is returned and *errno* is set appropriately.
408 *
409 * BPF_MAP_GET_NEXT_ID
410 * Description
411 * Fetch the next eBPF map currently loaded into the kernel.
412 *
413 * Looks for the eBPF map with an id greater than *start_id*
414 * and updates *next_id* on success. If no other eBPF maps
415 * remain with ids higher than *start_id*, returns -1 and sets
416 * *errno* to **ENOENT**.
417 *
418 * Return
419 * Returns zero on success. On error, or when no id remains, -1
420 * is returned and *errno* is set appropriately.
421 *
422 * BPF_PROG_GET_FD_BY_ID
423 * Description
424 * Open a file descriptor for the eBPF program corresponding to
425 * *prog_id*.
426 *
427 * Return
428 * A new file descriptor (a nonnegative integer), or -1 if an
429 * error occurred (in which case, *errno* is set appropriately).
430 *
431 * BPF_MAP_GET_FD_BY_ID
432 * Description
433 * Open a file descriptor for the eBPF map corresponding to
434 * *map_id*.
435 *
436 * Return
437 * A new file descriptor (a nonnegative integer), or -1 if an
438 * error occurred (in which case, *errno* is set appropriately).
439 *
440 * BPF_OBJ_GET_INFO_BY_FD
441 * Description
442 * Obtain information about the eBPF object corresponding to
443 * *bpf_fd*.
444 *
445 * Populates up to *info_len* bytes of *info*, which will be in
446 * one of the following formats depending on the eBPF object type
447 * of *bpf_fd*:
448 *
449 * * **struct bpf_prog_info**
450 * * **struct bpf_map_info**
451 * * **struct bpf_btf_info**
452 * * **struct bpf_link_info**
453 * * **struct bpf_token_info**
454 *
455 * Return
456 * Returns zero on success. On error, -1 is returned and *errno*
457 * is set appropriately.
458 *
459 * BPF_PROG_QUERY
460 * Description
461 * Obtain information about eBPF programs associated with the
462 * specified *attach_type* hook.
463 *
464 * The *target_fd* must be a valid file descriptor for a kernel
465 * object which depends on the attach type of *attach_bpf_fd*:
466 *
467 * **BPF_PROG_TYPE_CGROUP_DEVICE**,
468 * **BPF_PROG_TYPE_CGROUP_SKB**,
469 * **BPF_PROG_TYPE_CGROUP_SOCK**,
470 * **BPF_PROG_TYPE_CGROUP_SOCK_ADDR**,
471 * **BPF_PROG_TYPE_CGROUP_SOCKOPT**,
472 * **BPF_PROG_TYPE_CGROUP_SYSCTL**,
473 * **BPF_PROG_TYPE_SOCK_OPS**
474 *
475 * Control Group v2 hierarchy with the eBPF controller
476 * enabled. Requires the kernel to be compiled with
477 * **CONFIG_CGROUP_BPF**.
478 *
479 * **BPF_PROG_TYPE_FLOW_DISSECTOR**
480 *
481 * Network namespace (eg /proc/self/ns/net).
482 *
483 * **BPF_PROG_TYPE_LIRC_MODE2**
484 *
485 * LIRC device path (eg /dev/lircN). Requires the kernel
486 * to be compiled with **CONFIG_BPF_LIRC_MODE2**.
487 *
488 * **BPF_PROG_QUERY** always fetches the number of programs
489 * attached and the *attach_flags* which were used to attach those
490 * programs. Additionally, if *prog_ids* is nonzero and the number
491 * of attached programs is less than *prog_cnt*, populates
492 * *prog_ids* with the eBPF program ids of the programs attached
493 * at *target_fd*.
494 *
495 * The following flags may alter the result:
496 *
497 * **BPF_F_QUERY_EFFECTIVE**
498 * Only return information regarding programs which are
499 * currently effective at the specified *target_fd*.
500 *
501 * Return
502 * Returns zero on success. On error, -1 is returned and *errno*
503 * is set appropriately.
504 *
505 * BPF_RAW_TRACEPOINT_OPEN
506 * Description
507 * Attach an eBPF program to a tracepoint *name* to access kernel
508 * internal arguments of the tracepoint in their raw form.
509 *
510 * The *prog_fd* must be a valid file descriptor associated with
511 * a loaded eBPF program of type **BPF_PROG_TYPE_RAW_TRACEPOINT**.
512 *
513 * No ABI guarantees are made about the content of tracepoint
514 * arguments exposed to the corresponding eBPF program.
515 *
516 * Applying **close**\ (2) to the file descriptor returned by
517 * **BPF_RAW_TRACEPOINT_OPEN** will delete the map (but see NOTES).
518 *
519 * Return
520 * A new file descriptor (a nonnegative integer), or -1 if an
521 * error occurred (in which case, *errno* is set appropriately).
522 *
523 * BPF_BTF_LOAD
524 * Description
525 * Verify and load BPF Type Format (BTF) metadata into the kernel,
526 * returning a new file descriptor associated with the metadata.
527 * BTF is described in more detail at
528 * https://www.kernel.org/doc/html/latest/bpf/btf.html.
529 *
530 * The *btf* parameter must point to valid memory providing
531 * *btf_size* bytes of BTF binary metadata.
532 *
533 * The returned file descriptor can be passed to other **bpf**\ ()
534 * subcommands such as **BPF_PROG_LOAD** or **BPF_MAP_CREATE** to
535 * associate the BTF with those objects.
536 *
537 * Similar to **BPF_PROG_LOAD**, **BPF_BTF_LOAD** has optional
538 * parameters to specify a *btf_log_buf*, *btf_log_size* and
539 * *btf_log_level* which allow the kernel to return freeform log
540 * output regarding the BTF verification process.
541 *
542 * Return
543 * A new file descriptor (a nonnegative integer), or -1 if an
544 * error occurred (in which case, *errno* is set appropriately).
545 *
546 * BPF_BTF_GET_FD_BY_ID
547 * Description
548 * Open a file descriptor for the BPF Type Format (BTF)
549 * corresponding to *btf_id*.
550 *
551 * Return
552 * A new file descriptor (a nonnegative integer), or -1 if an
553 * error occurred (in which case, *errno* is set appropriately).
554 *
555 * BPF_TASK_FD_QUERY
556 * Description
557 * Obtain information about eBPF programs associated with the
558 * target process identified by *pid* and *fd*.
559 *
560 * If the *pid* and *fd* are associated with a tracepoint, kprobe
561 * or uprobe perf event, then the *prog_id* and *fd_type* will
562 * be populated with the eBPF program id and file descriptor type
563 * of type **bpf_task_fd_type**. If associated with a kprobe or
564 * uprobe, the *probe_offset* and *probe_addr* will also be
565 * populated. Optionally, if *buf* is provided, then up to
566 * *buf_len* bytes of *buf* will be populated with the name of
567 * the tracepoint, kprobe or uprobe.
568 *
569 * The resulting *prog_id* may be introspected in deeper detail
570 * using **BPF_PROG_GET_FD_BY_ID** and **BPF_OBJ_GET_INFO_BY_FD**.
571 *
572 * Return
573 * Returns zero on success. On error, -1 is returned and *errno*
574 * is set appropriately.
575 *
576 * BPF_MAP_LOOKUP_AND_DELETE_ELEM
577 * Description
578 * Look up an element with the given *key* in the map referred to
579 * by the file descriptor *fd*, and if found, delete the element.
580 *
581 * For **BPF_MAP_TYPE_QUEUE** and **BPF_MAP_TYPE_STACK** map
582 * types, the *flags* argument needs to be set to 0, but for other
583 * map types, it may be specified as:
584 *
585 * **BPF_F_LOCK**
586 * Look up and delete the value of a spin-locked map
587 * without returning the lock. This must be specified if
588 * the elements contain a spinlock.
589 *
590 * The **BPF_MAP_TYPE_QUEUE** and **BPF_MAP_TYPE_STACK** map types
591 * implement this command as a "pop" operation, deleting the top
592 * element rather than one corresponding to *key*.
593 * The *key* and *key_len* parameters should be zeroed when
594 * issuing this operation for these map types.
595 *
596 * This command is only valid for the following map types:
597 * * **BPF_MAP_TYPE_QUEUE**
598 * * **BPF_MAP_TYPE_STACK**
599 * * **BPF_MAP_TYPE_HASH**
600 * * **BPF_MAP_TYPE_PERCPU_HASH**
601 * * **BPF_MAP_TYPE_LRU_HASH**
602 * * **BPF_MAP_TYPE_LRU_PERCPU_HASH**
603 *
604 * Return
605 * Returns zero on success. On error, -1 is returned and *errno*
606 * is set appropriately.
607 *
608 * BPF_MAP_FREEZE
609 * Description
610 * Freeze the permissions of the specified map.
611 *
612 * Write permissions may be frozen by passing zero *flags*.
613 * Upon success, no future syscall invocations may alter the
614 * map state of *map_fd*. Write operations from eBPF programs
615 * are still possible for a frozen map.
616 *
617 * Not supported for maps of type **BPF_MAP_TYPE_STRUCT_OPS**.
618 *
619 * Return
620 * Returns zero on success. On error, -1 is returned and *errno*
621 * is set appropriately.
622 *
623 * BPF_BTF_GET_NEXT_ID
624 * Description
625 * Fetch the next BPF Type Format (BTF) object currently loaded
626 * into the kernel.
627 *
628 * Looks for the BTF object with an id greater than *start_id*
629 * and updates *next_id* on success. If no other BTF objects
630 * remain with ids higher than *start_id*, returns -1 and sets
631 * *errno* to **ENOENT**.
632 *
633 * Return
634 * Returns zero on success. On error, or when no id remains, -1
635 * is returned and *errno* is set appropriately.
636 *
637 * BPF_MAP_LOOKUP_BATCH
638 * Description
639 * Iterate and fetch multiple elements in a map.
640 *
641 * Two opaque values are used to manage batch operations,
642 * *in_batch* and *out_batch*. Initially, *in_batch* must be set
643 * to NULL to begin the batched operation. After each subsequent
644 * **BPF_MAP_LOOKUP_BATCH**, the caller should pass the resultant
645 * *out_batch* as the *in_batch* for the next operation to
646 * continue iteration from the current point. Both *in_batch* and
647 * *out_batch* must point to memory large enough to hold a key,
648 * except for maps of type **BPF_MAP_TYPE_{HASH, PERCPU_HASH,
649 * LRU_HASH, LRU_PERCPU_HASH}**, for which batch parameters
650 * must be at least 4 bytes wide regardless of key size.
651 *
652 * The *keys* and *values* are output parameters which must point
653 * to memory large enough to hold *count* items based on the key
654 * and value size of the map *map_fd*. The *keys* buffer must be
655 * of *key_size* * *count*. The *values* buffer must be of
656 * *value_size* * *count*.
657 *
658 * The *elem_flags* argument may be specified as one of the
659 * following:
660 *
661 * **BPF_F_LOCK**
662 * Look up the value of a spin-locked map without
663 * returning the lock. This must be specified if the
664 * elements contain a spinlock.
665 *
666 * On success, *count* elements from the map are copied into the
667 * user buffer, with the keys copied into *keys* and the values
668 * copied into the corresponding indices in *values*.
669 *
670 * If an error is returned and *errno* is not **EFAULT**, *count*
671 * is set to the number of successfully processed elements.
672 *
673 * Return
674 * Returns zero on success. On error, -1 is returned and *errno*
675 * is set appropriately.
676 *
677 * May set *errno* to **ENOSPC** to indicate that *keys* or
678 * *values* is too small to dump an entire bucket during
679 * iteration of a hash-based map type.
680 *
681 * BPF_MAP_LOOKUP_AND_DELETE_BATCH
682 * Description
683 * Iterate and delete all elements in a map.
684 *
685 * This operation has the same behavior as
686 * **BPF_MAP_LOOKUP_BATCH** with two exceptions:
687 *
688 * * Every element that is successfully returned is also deleted
689 * from the map. This is at least *count* elements. Note that
690 * *count* is both an input and an output parameter.
691 * * Upon returning with *errno* set to **EFAULT**, up to
692 * *count* elements may be deleted without returning the keys
693 * and values of the deleted elements.
694 *
695 * Return
696 * Returns zero on success. On error, -1 is returned and *errno*
697 * is set appropriately.
698 *
699 * BPF_MAP_UPDATE_BATCH
700 * Description
701 * Update multiple elements in a map by *key*.
702 *
703 * The *keys* and *values* are input parameters which must point
704 * to memory large enough to hold *count* items based on the key
705 * and value size of the map *map_fd*. The *keys* buffer must be
706 * of *key_size* * *count*. The *values* buffer must be of
707 * *value_size* * *count*.
708 *
709 * Each element specified in *keys* is sequentially updated to the
710 * value in the corresponding index in *values*. The *in_batch*
711 * and *out_batch* parameters are ignored and should be zeroed.
712 *
713 * The *elem_flags* argument should be specified as one of the
714 * following:
715 *
716 * **BPF_ANY**
717 * Create new elements or update a existing elements.
718 * **BPF_NOEXIST**
719 * Create new elements only if they do not exist.
720 * **BPF_EXIST**
721 * Update existing elements.
722 * **BPF_F_LOCK**
723 * Update spin_lock-ed map elements. This must be
724 * specified if the map value contains a spinlock.
725 *
726 * On success, *count* elements from the map are updated.
727 *
728 * If an error is returned and *errno* is not **EFAULT**, *count*
729 * is set to the number of successfully processed elements.
730 *
731 * Return
732 * Returns zero on success. On error, -1 is returned and *errno*
733 * is set appropriately.
734 *
735 * May set *errno* to **EINVAL**, **EPERM**, **ENOMEM**, or
736 * **E2BIG**. **E2BIG** indicates that the number of elements in
737 * the map reached the *max_entries* limit specified at map
738 * creation time.
739 *
740 * May set *errno* to one of the following error codes under
741 * specific circumstances:
742 *
743 * **EEXIST**
744 * If *flags* specifies **BPF_NOEXIST** and the element
745 * with *key* already exists in the map.
746 * **ENOENT**
747 * If *flags* specifies **BPF_EXIST** and the element with
748 * *key* does not exist in the map.
749 *
750 * BPF_MAP_DELETE_BATCH
751 * Description
752 * Delete multiple elements in a map by *key*.
753 *
754 * The *keys* parameter is an input parameter which must point
755 * to memory large enough to hold *count* items based on the key
756 * size of the map *map_fd*, that is, *key_size* * *count*.
757 *
758 * Each element specified in *keys* is sequentially deleted. The
759 * *in_batch*, *out_batch*, and *values* parameters are ignored
760 * and should be zeroed.
761 *
762 * The *elem_flags* argument may be specified as one of the
763 * following:
764 *
765 * **BPF_F_LOCK**
766 * Look up the value of a spin-locked map without
767 * returning the lock. This must be specified if the
768 * elements contain a spinlock.
769 *
770 * On success, *count* elements from the map are updated.
771 *
772 * If an error is returned and *errno* is not **EFAULT**, *count*
773 * is set to the number of successfully processed elements. If
774 * *errno* is **EFAULT**, up to *count* elements may be been
775 * deleted.
776 *
777 * Return
778 * Returns zero on success. On error, -1 is returned and *errno*
779 * is set appropriately.
780 *
781 * BPF_LINK_CREATE
782 * Description
783 * Attach an eBPF program to a *target_fd* at the specified
784 * *attach_type* hook and return a file descriptor handle for
785 * managing the link.
786 *
787 * Return
788 * A new file descriptor (a nonnegative integer), or -1 if an
789 * error occurred (in which case, *errno* is set appropriately).
790 *
791 * BPF_LINK_UPDATE
792 * Description
793 * Update the eBPF program in the specified *link_fd* to
794 * *new_prog_fd*.
795 *
796 * Return
797 * Returns zero on success. On error, -1 is returned and *errno*
798 * is set appropriately.
799 *
800 * BPF_LINK_GET_FD_BY_ID
801 * Description
802 * Open a file descriptor for the eBPF Link corresponding to
803 * *link_id*.
804 *
805 * Return
806 * A new file descriptor (a nonnegative integer), or -1 if an
807 * error occurred (in which case, *errno* is set appropriately).
808 *
809 * BPF_LINK_GET_NEXT_ID
810 * Description
811 * Fetch the next eBPF link currently loaded into the kernel.
812 *
813 * Looks for the eBPF link with an id greater than *start_id*
814 * and updates *next_id* on success. If no other eBPF links
815 * remain with ids higher than *start_id*, returns -1 and sets
816 * *errno* to **ENOENT**.
817 *
818 * Return
819 * Returns zero on success. On error, or when no id remains, -1
820 * is returned and *errno* is set appropriately.
821 *
822 * BPF_ENABLE_STATS
823 * Description
824 * Enable eBPF runtime statistics gathering.
825 *
826 * Runtime statistics gathering for the eBPF runtime is disabled
827 * by default to minimize the corresponding performance overhead.
828 * This command enables statistics globally.
829 *
830 * Multiple programs may independently enable statistics.
831 * After gathering the desired statistics, eBPF runtime statistics
832 * may be disabled again by calling **close**\ (2) for the file
833 * descriptor returned by this function. Statistics will only be
834 * disabled system-wide when all outstanding file descriptors
835 * returned by prior calls for this subcommand are closed.
836 *
837 * Return
838 * A new file descriptor (a nonnegative integer), or -1 if an
839 * error occurred (in which case, *errno* is set appropriately).
840 *
841 * BPF_ITER_CREATE
842 * Description
843 * Create an iterator on top of the specified *link_fd* (as
844 * previously created using **BPF_LINK_CREATE**) and return a
845 * file descriptor that can be used to trigger the iteration.
846 *
847 * If the resulting file descriptor is pinned to the filesystem
848 * using **BPF_OBJ_PIN**, then subsequent **read**\ (2) syscalls
849 * for that path will trigger the iterator to read kernel state
850 * using the eBPF program attached to *link_fd*.
851 *
852 * Return
853 * A new file descriptor (a nonnegative integer), or -1 if an
854 * error occurred (in which case, *errno* is set appropriately).
855 *
856 * BPF_LINK_DETACH
857 * Description
858 * Forcefully detach the specified *link_fd* from its
859 * corresponding attachment point.
860 *
861 * Return
862 * Returns zero on success. On error, -1 is returned and *errno*
863 * is set appropriately.
864 *
865 * BPF_PROG_BIND_MAP
866 * Description
867 * Bind a map to the lifetime of an eBPF program.
868 *
869 * The map identified by *map_fd* is bound to the program
870 * identified by *prog_fd* and only released when *prog_fd* is
871 * released. This may be used in cases where metadata should be
872 * associated with a program which otherwise does not contain any
873 * references to the map (for example, embedded in the eBPF
874 * program instructions).
875 *
876 * Return
877 * Returns zero on success. On error, -1 is returned and *errno*
878 * is set appropriately.
879 *
880 * BPF_TOKEN_CREATE
881 * Description
882 * Create BPF token with embedded information about what
883 * BPF-related functionality it allows:
884 * - a set of allowed bpf() syscall commands;
885 * - a set of allowed BPF map types to be created with
886 * BPF_MAP_CREATE command, if BPF_MAP_CREATE itself is allowed;
887 * - a set of allowed BPF program types and BPF program attach
888 * types to be loaded with BPF_PROG_LOAD command, if
889 * BPF_PROG_LOAD itself is allowed.
890 *
891 * BPF token is created (derived) from an instance of BPF FS,
892 * assuming it has necessary delegation mount options specified.
893 * This BPF token can be passed as an extra parameter to various
894 * bpf() syscall commands to grant BPF subsystem functionality to
895 * unprivileged processes.
896 *
897 * When created, BPF token is "associated" with the owning
898 * user namespace of BPF FS instance (super block) that it was
899 * derived from, and subsequent BPF operations performed with
900 * BPF token would be performing capabilities checks (i.e.,
901 * CAP_BPF, CAP_PERFMON, CAP_NET_ADMIN, CAP_SYS_ADMIN) within
902 * that user namespace. Without BPF token, such capabilities
903 * have to be granted in init user namespace, making bpf()
904 * syscall incompatible with user namespace, for the most part.
905 *
906 * Return
907 * A new file descriptor (a nonnegative integer), or -1 if an
908 * error occurred (in which case, *errno* is set appropriately).
909 *
910 * BPF_PROG_STREAM_READ_BY_FD
911 * Description
912 * Read data of a program's BPF stream. The program is identified
913 * by *prog_fd*, and the stream is identified by the *stream_id*.
914 * The data is copied to a buffer pointed to by *stream_buf*, and
915 * filled less than or equal to *stream_buf_len* bytes.
916 *
917 * Return
918 * Number of bytes read from the stream on success, or -1 if an
919 * error occurred (in which case, *errno* is set appropriately).
920 *
921 * NOTES
922 * eBPF objects (maps and programs) can be shared between processes.
923 *
924 * * After **fork**\ (2), the child inherits file descriptors
925 * referring to the same eBPF objects.
926 * * File descriptors referring to eBPF objects can be transferred over
927 * **unix**\ (7) domain sockets.
928 * * File descriptors referring to eBPF objects can be duplicated in the
929 * usual way, using **dup**\ (2) and similar calls.
930 * * File descriptors referring to eBPF objects can be pinned to the
931 * filesystem using the **BPF_OBJ_PIN** command of **bpf**\ (2).
932 *
933 * An eBPF object is deallocated only after all file descriptors referring
934 * to the object have been closed and no references remain pinned to the
935 * filesystem or attached (for example, bound to a program or device).
936 */
937enum bpf_cmd {
938 BPF_MAP_CREATE,
939 BPF_MAP_LOOKUP_ELEM,
940 BPF_MAP_UPDATE_ELEM,
941 BPF_MAP_DELETE_ELEM,
942 BPF_MAP_GET_NEXT_KEY,
943 BPF_PROG_LOAD,
944 BPF_OBJ_PIN,
945 BPF_OBJ_GET,
946 BPF_PROG_ATTACH,
947 BPF_PROG_DETACH,
948 BPF_PROG_TEST_RUN,
949 BPF_PROG_RUN = BPF_PROG_TEST_RUN,
950 BPF_PROG_GET_NEXT_ID,
951 BPF_MAP_GET_NEXT_ID,
952 BPF_PROG_GET_FD_BY_ID,
953 BPF_MAP_GET_FD_BY_ID,
954 BPF_OBJ_GET_INFO_BY_FD,
955 BPF_PROG_QUERY,
956 BPF_RAW_TRACEPOINT_OPEN,
957 BPF_BTF_LOAD,
958 BPF_BTF_GET_FD_BY_ID,
959 BPF_TASK_FD_QUERY,
960 BPF_MAP_LOOKUP_AND_DELETE_ELEM,
961 BPF_MAP_FREEZE,
962 BPF_BTF_GET_NEXT_ID,
963 BPF_MAP_LOOKUP_BATCH,
964 BPF_MAP_LOOKUP_AND_DELETE_BATCH,
965 BPF_MAP_UPDATE_BATCH,
966 BPF_MAP_DELETE_BATCH,
967 BPF_LINK_CREATE,
968 BPF_LINK_UPDATE,
969 BPF_LINK_GET_FD_BY_ID,
970 BPF_LINK_GET_NEXT_ID,
971 BPF_ENABLE_STATS,
972 BPF_ITER_CREATE,
973 BPF_LINK_DETACH,
974 BPF_PROG_BIND_MAP,
975 BPF_TOKEN_CREATE,
976 BPF_PROG_STREAM_READ_BY_FD,
977 __MAX_BPF_CMD,
978};
979
980enum bpf_map_type {
981 BPF_MAP_TYPE_UNSPEC,
982 BPF_MAP_TYPE_HASH,
983 BPF_MAP_TYPE_ARRAY,
984 BPF_MAP_TYPE_PROG_ARRAY,
985 BPF_MAP_TYPE_PERF_EVENT_ARRAY,
986 BPF_MAP_TYPE_PERCPU_HASH,
987 BPF_MAP_TYPE_PERCPU_ARRAY,
988 BPF_MAP_TYPE_STACK_TRACE,
989 BPF_MAP_TYPE_CGROUP_ARRAY,
990 BPF_MAP_TYPE_LRU_HASH,
991 BPF_MAP_TYPE_LRU_PERCPU_HASH,
992 BPF_MAP_TYPE_LPM_TRIE,
993 BPF_MAP_TYPE_ARRAY_OF_MAPS,
994 BPF_MAP_TYPE_HASH_OF_MAPS,
995 BPF_MAP_TYPE_DEVMAP,
996 BPF_MAP_TYPE_SOCKMAP,
997 BPF_MAP_TYPE_CPUMAP,
998 BPF_MAP_TYPE_XSKMAP,
999 BPF_MAP_TYPE_SOCKHASH,
1000 BPF_MAP_TYPE_CGROUP_STORAGE_DEPRECATED,
1001 /* BPF_MAP_TYPE_CGROUP_STORAGE is available to bpf programs attaching
1002 * to a cgroup. The newer BPF_MAP_TYPE_CGRP_STORAGE is available to
1003 * both cgroup-attached and other progs and supports all functionality
1004 * provided by BPF_MAP_TYPE_CGROUP_STORAGE. So mark
1005 * BPF_MAP_TYPE_CGROUP_STORAGE deprecated.
1006 */
1007 BPF_MAP_TYPE_CGROUP_STORAGE = BPF_MAP_TYPE_CGROUP_STORAGE_DEPRECATED,
1008 BPF_MAP_TYPE_REUSEPORT_SOCKARRAY,
1009 BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE_DEPRECATED,
1010 /* BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE is available to bpf programs
1011 * attaching to a cgroup. The new mechanism (BPF_MAP_TYPE_CGRP_STORAGE +
1012 * local percpu kptr) supports all BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE
1013 * functionality and more. So mark * BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE
1014 * deprecated.
1015 */
1016 BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE = BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE_DEPRECATED,
1017 BPF_MAP_TYPE_QUEUE,
1018 BPF_MAP_TYPE_STACK,
1019 BPF_MAP_TYPE_SK_STORAGE,
1020 BPF_MAP_TYPE_DEVMAP_HASH,
1021 BPF_MAP_TYPE_STRUCT_OPS,
1022 BPF_MAP_TYPE_RINGBUF,
1023 BPF_MAP_TYPE_INODE_STORAGE,
1024 BPF_MAP_TYPE_TASK_STORAGE,
1025 BPF_MAP_TYPE_BLOOM_FILTER,
1026 BPF_MAP_TYPE_USER_RINGBUF,
1027 BPF_MAP_TYPE_CGRP_STORAGE,
1028 BPF_MAP_TYPE_ARENA,
1029 __MAX_BPF_MAP_TYPE
1030};
1031
1032/* Note that tracing related programs such as
1033 * BPF_PROG_TYPE_{KPROBE,TRACEPOINT,PERF_EVENT,RAW_TRACEPOINT}
1034 * are not subject to a stable API since kernel internal data
1035 * structures can change from release to release and may
1036 * therefore break existing tracing BPF programs. Tracing BPF
1037 * programs correspond to /a/ specific kernel which is to be
1038 * analyzed, and not /a/ specific kernel /and/ all future ones.
1039 */
1040enum bpf_prog_type {
1041 BPF_PROG_TYPE_UNSPEC,
1042 BPF_PROG_TYPE_SOCKET_FILTER,
1043 BPF_PROG_TYPE_KPROBE,
1044 BPF_PROG_TYPE_SCHED_CLS,
1045 BPF_PROG_TYPE_SCHED_ACT,
1046 BPF_PROG_TYPE_TRACEPOINT,
1047 BPF_PROG_TYPE_XDP,
1048 BPF_PROG_TYPE_PERF_EVENT,
1049 BPF_PROG_TYPE_CGROUP_SKB,
1050 BPF_PROG_TYPE_CGROUP_SOCK,
1051 BPF_PROG_TYPE_LWT_IN,
1052 BPF_PROG_TYPE_LWT_OUT,
1053 BPF_PROG_TYPE_LWT_XMIT,
1054 BPF_PROG_TYPE_SOCK_OPS,
1055 BPF_PROG_TYPE_SK_SKB,
1056 BPF_PROG_TYPE_CGROUP_DEVICE,
1057 BPF_PROG_TYPE_SK_MSG,
1058 BPF_PROG_TYPE_RAW_TRACEPOINT,
1059 BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
1060 BPF_PROG_TYPE_LWT_SEG6LOCAL,
1061 BPF_PROG_TYPE_LIRC_MODE2,
1062 BPF_PROG_TYPE_SK_REUSEPORT,
1063 BPF_PROG_TYPE_FLOW_DISSECTOR,
1064 BPF_PROG_TYPE_CGROUP_SYSCTL,
1065 BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE,
1066 BPF_PROG_TYPE_CGROUP_SOCKOPT,
1067 BPF_PROG_TYPE_TRACING,
1068 BPF_PROG_TYPE_STRUCT_OPS,
1069 BPF_PROG_TYPE_EXT,
1070 BPF_PROG_TYPE_LSM,
1071 BPF_PROG_TYPE_SK_LOOKUP,
1072 BPF_PROG_TYPE_SYSCALL, /* a program that can execute syscalls */
1073 BPF_PROG_TYPE_NETFILTER,
1074 __MAX_BPF_PROG_TYPE
1075};
1076
1077enum bpf_attach_type {
1078 BPF_CGROUP_INET_INGRESS,
1079 BPF_CGROUP_INET_EGRESS,
1080 BPF_CGROUP_INET_SOCK_CREATE,
1081 BPF_CGROUP_SOCK_OPS,
1082 BPF_SK_SKB_STREAM_PARSER,
1083 BPF_SK_SKB_STREAM_VERDICT,
1084 BPF_CGROUP_DEVICE,
1085 BPF_SK_MSG_VERDICT,
1086 BPF_CGROUP_INET4_BIND,
1087 BPF_CGROUP_INET6_BIND,
1088 BPF_CGROUP_INET4_CONNECT,
1089 BPF_CGROUP_INET6_CONNECT,
1090 BPF_CGROUP_INET4_POST_BIND,
1091 BPF_CGROUP_INET6_POST_BIND,
1092 BPF_CGROUP_UDP4_SENDMSG,
1093 BPF_CGROUP_UDP6_SENDMSG,
1094 BPF_LIRC_MODE2,
1095 BPF_FLOW_DISSECTOR,
1096 BPF_CGROUP_SYSCTL,
1097 BPF_CGROUP_UDP4_RECVMSG,
1098 BPF_CGROUP_UDP6_RECVMSG,
1099 BPF_CGROUP_GETSOCKOPT,
1100 BPF_CGROUP_SETSOCKOPT,
1101 BPF_TRACE_RAW_TP,
1102 BPF_TRACE_FENTRY,
1103 BPF_TRACE_FEXIT,
1104 BPF_MODIFY_RETURN,
1105 BPF_LSM_MAC,
1106 BPF_TRACE_ITER,
1107 BPF_CGROUP_INET4_GETPEERNAME,
1108 BPF_CGROUP_INET6_GETPEERNAME,
1109 BPF_CGROUP_INET4_GETSOCKNAME,
1110 BPF_CGROUP_INET6_GETSOCKNAME,
1111 BPF_XDP_DEVMAP,
1112 BPF_CGROUP_INET_SOCK_RELEASE,
1113 BPF_XDP_CPUMAP,
1114 BPF_SK_LOOKUP,
1115 BPF_XDP,
1116 BPF_SK_SKB_VERDICT,
1117 BPF_SK_REUSEPORT_SELECT,
1118 BPF_SK_REUSEPORT_SELECT_OR_MIGRATE,
1119 BPF_PERF_EVENT,
1120 BPF_TRACE_KPROBE_MULTI,
1121 BPF_LSM_CGROUP,
1122 BPF_STRUCT_OPS,
1123 BPF_NETFILTER,
1124 BPF_TCX_INGRESS,
1125 BPF_TCX_EGRESS,
1126 BPF_TRACE_UPROBE_MULTI,
1127 BPF_CGROUP_UNIX_CONNECT,
1128 BPF_CGROUP_UNIX_SENDMSG,
1129 BPF_CGROUP_UNIX_RECVMSG,
1130 BPF_CGROUP_UNIX_GETPEERNAME,
1131 BPF_CGROUP_UNIX_GETSOCKNAME,
1132 BPF_NETKIT_PRIMARY,
1133 BPF_NETKIT_PEER,
1134 BPF_TRACE_KPROBE_SESSION,
1135 BPF_TRACE_UPROBE_SESSION,
1136 __MAX_BPF_ATTACH_TYPE
1137};
1138
1139#define MAX_BPF_ATTACH_TYPE __MAX_BPF_ATTACH_TYPE
1140
1141/* Add BPF_LINK_TYPE(type, name) in bpf_types.h to keep bpf_link_type_strs[]
1142 * in sync with the definitions below.
1143 */
1144enum bpf_link_type {
1145 BPF_LINK_TYPE_UNSPEC = 0,
1146 BPF_LINK_TYPE_RAW_TRACEPOINT = 1,
1147 BPF_LINK_TYPE_TRACING = 2,
1148 BPF_LINK_TYPE_CGROUP = 3,
1149 BPF_LINK_TYPE_ITER = 4,
1150 BPF_LINK_TYPE_NETNS = 5,
1151 BPF_LINK_TYPE_XDP = 6,
1152 BPF_LINK_TYPE_PERF_EVENT = 7,
1153 BPF_LINK_TYPE_KPROBE_MULTI = 8,
1154 BPF_LINK_TYPE_STRUCT_OPS = 9,
1155 BPF_LINK_TYPE_NETFILTER = 10,
1156 BPF_LINK_TYPE_TCX = 11,
1157 BPF_LINK_TYPE_UPROBE_MULTI = 12,
1158 BPF_LINK_TYPE_NETKIT = 13,
1159 BPF_LINK_TYPE_SOCKMAP = 14,
1160 __MAX_BPF_LINK_TYPE,
1161};
1162
1163#define MAX_BPF_LINK_TYPE __MAX_BPF_LINK_TYPE
1164
1165enum bpf_perf_event_type {
1166 BPF_PERF_EVENT_UNSPEC = 0,
1167 BPF_PERF_EVENT_UPROBE = 1,
1168 BPF_PERF_EVENT_URETPROBE = 2,
1169 BPF_PERF_EVENT_KPROBE = 3,
1170 BPF_PERF_EVENT_KRETPROBE = 4,
1171 BPF_PERF_EVENT_TRACEPOINT = 5,
1172 BPF_PERF_EVENT_EVENT = 6,
1173};
1174
1175/* cgroup-bpf attach flags used in BPF_PROG_ATTACH command
1176 *
1177 * NONE(default): No further bpf programs allowed in the subtree.
1178 *
1179 * BPF_F_ALLOW_OVERRIDE: If a sub-cgroup installs some bpf program,
1180 * the program in this cgroup yields to sub-cgroup program.
1181 *
1182 * BPF_F_ALLOW_MULTI: If a sub-cgroup installs some bpf program,
1183 * that cgroup program gets run in addition to the program in this cgroup.
1184 *
1185 * Only one program is allowed to be attached to a cgroup with
1186 * NONE or BPF_F_ALLOW_OVERRIDE flag.
1187 * Attaching another program on top of NONE or BPF_F_ALLOW_OVERRIDE will
1188 * release old program and attach the new one. Attach flags has to match.
1189 *
1190 * Multiple programs are allowed to be attached to a cgroup with
1191 * BPF_F_ALLOW_MULTI flag. They are executed in FIFO order
1192 * (those that were attached first, run first)
1193 * The programs of sub-cgroup are executed first, then programs of
1194 * this cgroup and then programs of parent cgroup.
1195 * When children program makes decision (like picking TCP CA or sock bind)
1196 * parent program has a chance to override it.
1197 *
1198 * With BPF_F_ALLOW_MULTI a new program is added to the end of the list of
1199 * programs for a cgroup. Though it's possible to replace an old program at
1200 * any position by also specifying BPF_F_REPLACE flag and position itself in
1201 * replace_bpf_fd attribute. Old program at this position will be released.
1202 *
1203 * A cgroup with MULTI or OVERRIDE flag allows any attach flags in sub-cgroups.
1204 * A cgroup with NONE doesn't allow any programs in sub-cgroups.
1205 * Ex1:
1206 * cgrp1 (MULTI progs A, B) ->
1207 * cgrp2 (OVERRIDE prog C) ->
1208 * cgrp3 (MULTI prog D) ->
1209 * cgrp4 (OVERRIDE prog E) ->
1210 * cgrp5 (NONE prog F)
1211 * the event in cgrp5 triggers execution of F,D,A,B in that order.
1212 * if prog F is detached, the execution is E,D,A,B
1213 * if prog F and D are detached, the execution is E,A,B
1214 * if prog F, E and D are detached, the execution is C,A,B
1215 *
1216 * All eligible programs are executed regardless of return code from
1217 * earlier programs.
1218 */
1219#define BPF_F_ALLOW_OVERRIDE (1U << 0)
1220#define BPF_F_ALLOW_MULTI (1U << 1)
1221/* Generic attachment flags. */
1222#define BPF_F_REPLACE (1U << 2)
1223#define BPF_F_BEFORE (1U << 3)
1224#define BPF_F_AFTER (1U << 4)
1225#define BPF_F_ID (1U << 5)
1226#define BPF_F_PREORDER (1U << 6)
1227#define BPF_F_LINK BPF_F_LINK /* 1 << 13 */
1228
1229/* If BPF_F_STRICT_ALIGNMENT is used in BPF_PROG_LOAD command, the
1230 * verifier will perform strict alignment checking as if the kernel
1231 * has been built with CONFIG_EFFICIENT_UNALIGNED_ACCESS not set,
1232 * and NET_IP_ALIGN defined to 2.
1233 */
1234#define BPF_F_STRICT_ALIGNMENT (1U << 0)
1235
1236/* If BPF_F_ANY_ALIGNMENT is used in BPF_PROG_LOAD command, the
1237 * verifier will allow any alignment whatsoever. On platforms
1238 * with strict alignment requirements for loads ands stores (such
1239 * as sparc and mips) the verifier validates that all loads and
1240 * stores provably follow this requirement. This flag turns that
1241 * checking and enforcement off.
1242 *
1243 * It is mostly used for testing when we want to validate the
1244 * context and memory access aspects of the verifier, but because
1245 * of an unaligned access the alignment check would trigger before
1246 * the one we are interested in.
1247 */
1248#define BPF_F_ANY_ALIGNMENT (1U << 1)
1249
1250/* BPF_F_TEST_RND_HI32 is used in BPF_PROG_LOAD command for testing purpose.
1251 * Verifier does sub-register def/use analysis and identifies instructions whose
1252 * def only matters for low 32-bit, high 32-bit is never referenced later
1253 * through implicit zero extension. Therefore verifier notifies JIT back-ends
1254 * that it is safe to ignore clearing high 32-bit for these instructions. This
1255 * saves some back-ends a lot of code-gen. However such optimization is not
1256 * necessary on some arches, for example x86_64, arm64 etc, whose JIT back-ends
1257 * hence hasn't used verifier's analysis result. But, we really want to have a
1258 * way to be able to verify the correctness of the described optimization on
1259 * x86_64 on which testsuites are frequently exercised.
1260 *
1261 * So, this flag is introduced. Once it is set, verifier will randomize high
1262 * 32-bit for those instructions who has been identified as safe to ignore them.
1263 * Then, if verifier is not doing correct analysis, such randomization will
1264 * regress tests to expose bugs.
1265 */
1266#define BPF_F_TEST_RND_HI32 (1U << 2)
1267
1268/* The verifier internal test flag. Behavior is undefined */
1269#define BPF_F_TEST_STATE_FREQ (1U << 3)
1270
1271/* If BPF_F_SLEEPABLE is used in BPF_PROG_LOAD command, the verifier will
1272 * restrict map and helper usage for such programs. Sleepable BPF programs can
1273 * only be attached to hooks where kernel execution context allows sleeping.
1274 * Such programs are allowed to use helpers that may sleep like
1275 * bpf_copy_from_user().
1276 */
1277#define BPF_F_SLEEPABLE (1U << 4)
1278
1279/* If BPF_F_XDP_HAS_FRAGS is used in BPF_PROG_LOAD command, the loaded program
1280 * fully support xdp frags.
1281 */
1282#define BPF_F_XDP_HAS_FRAGS (1U << 5)
1283
1284/* If BPF_F_XDP_DEV_BOUND_ONLY is used in BPF_PROG_LOAD command, the loaded
1285 * program becomes device-bound but can access XDP metadata.
1286 */
1287#define BPF_F_XDP_DEV_BOUND_ONLY (1U << 6)
1288
1289/* The verifier internal test flag. Behavior is undefined */
1290#define BPF_F_TEST_REG_INVARIANTS (1U << 7)
1291
1292/* link_create.kprobe_multi.flags used in LINK_CREATE command for
1293 * BPF_TRACE_KPROBE_MULTI attach type to create return probe.
1294 */
1295enum {
1296 BPF_F_KPROBE_MULTI_RETURN = (1U << 0)
1297};
1298
1299/* link_create.uprobe_multi.flags used in LINK_CREATE command for
1300 * BPF_TRACE_UPROBE_MULTI attach type to create return probe.
1301 */
1302enum {
1303 BPF_F_UPROBE_MULTI_RETURN = (1U << 0)
1304};
1305
1306/* link_create.netfilter.flags used in LINK_CREATE command for
1307 * BPF_PROG_TYPE_NETFILTER to enable IP packet defragmentation.
1308 */
1309#define BPF_F_NETFILTER_IP_DEFRAG (1U << 0)
1310
1311/* When BPF ldimm64's insn[0].src_reg != 0 then this can have
1312 * the following extensions:
1313 *
1314 * insn[0].src_reg: BPF_PSEUDO_MAP_[FD|IDX]
1315 * insn[0].imm: map fd or fd_idx
1316 * insn[1].imm: 0
1317 * insn[0].off: 0
1318 * insn[1].off: 0
1319 * ldimm64 rewrite: address of map
1320 * verifier type: CONST_PTR_TO_MAP
1321 */
1322#define BPF_PSEUDO_MAP_FD 1
1323#define BPF_PSEUDO_MAP_IDX 5
1324
1325/* insn[0].src_reg: BPF_PSEUDO_MAP_[IDX_]VALUE
1326 * insn[0].imm: map fd or fd_idx
1327 * insn[1].imm: offset into value
1328 * insn[0].off: 0
1329 * insn[1].off: 0
1330 * ldimm64 rewrite: address of map[0]+offset
1331 * verifier type: PTR_TO_MAP_VALUE
1332 */
1333#define BPF_PSEUDO_MAP_VALUE 2
1334#define BPF_PSEUDO_MAP_IDX_VALUE 6
1335
1336/* insn[0].src_reg: BPF_PSEUDO_BTF_ID
1337 * insn[0].imm: kernel btd id of VAR
1338 * insn[1].imm: 0
1339 * insn[0].off: 0
1340 * insn[1].off: 0
1341 * ldimm64 rewrite: address of the kernel variable
1342 * verifier type: PTR_TO_BTF_ID or PTR_TO_MEM, depending on whether the var
1343 * is struct/union.
1344 */
1345#define BPF_PSEUDO_BTF_ID 3
1346/* insn[0].src_reg: BPF_PSEUDO_FUNC
1347 * insn[0].imm: insn offset to the func
1348 * insn[1].imm: 0
1349 * insn[0].off: 0
1350 * insn[1].off: 0
1351 * ldimm64 rewrite: address of the function
1352 * verifier type: PTR_TO_FUNC.
1353 */
1354#define BPF_PSEUDO_FUNC 4
1355
1356/* when bpf_call->src_reg == BPF_PSEUDO_CALL, bpf_call->imm == pc-relative
1357 * offset to another bpf function
1358 */
1359#define BPF_PSEUDO_CALL 1
1360/* when bpf_call->src_reg == BPF_PSEUDO_KFUNC_CALL,
1361 * bpf_call->imm == btf_id of a BTF_KIND_FUNC in the running kernel
1362 */
1363#define BPF_PSEUDO_KFUNC_CALL 2
1364
1365enum bpf_addr_space_cast {
1366 BPF_ADDR_SPACE_CAST = 1,
1367};
1368
1369/* flags for BPF_MAP_UPDATE_ELEM command */
1370enum {
1371 BPF_ANY = 0, /* create new element or update existing */
1372 BPF_NOEXIST = 1, /* create new element if it didn't exist */
1373 BPF_EXIST = 2, /* update existing element */
1374 BPF_F_LOCK = 4, /* spin_lock-ed map_lookup/map_update */
1375};
1376
1377/* flags for BPF_MAP_CREATE command */
1378enum {
1379 BPF_F_NO_PREALLOC = (1U << 0),
1380/* Instead of having one common LRU list in the
1381 * BPF_MAP_TYPE_LRU_[PERCPU_]HASH map, use a percpu LRU list
1382 * which can scale and perform better.
1383 * Note, the LRU nodes (including free nodes) cannot be moved
1384 * across different LRU lists.
1385 */
1386 BPF_F_NO_COMMON_LRU = (1U << 1),
1387/* Specify numa node during map creation */
1388 BPF_F_NUMA_NODE = (1U << 2),
1389
1390/* Flags for accessing BPF object from syscall side. */
1391 BPF_F_RDONLY = (1U << 3),
1392 BPF_F_WRONLY = (1U << 4),
1393
1394/* Flag for stack_map, store build_id+offset instead of pointer */
1395 BPF_F_STACK_BUILD_ID = (1U << 5),
1396
1397/* Zero-initialize hash function seed. This should only be used for testing. */
1398 BPF_F_ZERO_SEED = (1U << 6),
1399
1400/* Flags for accessing BPF object from program side. */
1401 BPF_F_RDONLY_PROG = (1U << 7),
1402 BPF_F_WRONLY_PROG = (1U << 8),
1403
1404/* Clone map from listener for newly accepted socket */
1405 BPF_F_CLONE = (1U << 9),
1406
1407/* Enable memory-mapping BPF map */
1408 BPF_F_MMAPABLE = (1U << 10),
1409
1410/* Share perf_event among processes */
1411 BPF_F_PRESERVE_ELEMS = (1U << 11),
1412
1413/* Create a map that is suitable to be an inner map with dynamic max entries */
1414 BPF_F_INNER_MAP = (1U << 12),
1415
1416/* Create a map that will be registered/unregesitered by the backed bpf_link */
1417 BPF_F_LINK = (1U << 13),
1418
1419/* Get path from provided FD in BPF_OBJ_PIN/BPF_OBJ_GET commands */
1420 BPF_F_PATH_FD = (1U << 14),
1421
1422/* Flag for value_type_btf_obj_fd, the fd is available */
1423 BPF_F_VTYPE_BTF_OBJ_FD = (1U << 15),
1424
1425/* BPF token FD is passed in a corresponding command's token_fd field */
1426 BPF_F_TOKEN_FD = (1U << 16),
1427
1428/* When user space page faults in bpf_arena send SIGSEGV instead of inserting new page */
1429 BPF_F_SEGV_ON_FAULT = (1U << 17),
1430
1431/* Do not translate kernel bpf_arena pointers to user pointers */
1432 BPF_F_NO_USER_CONV = (1U << 18),
1433};
1434
1435/* Flags for BPF_PROG_QUERY. */
1436
1437/* Query effective (directly attached + inherited from ancestor cgroups)
1438 * programs that will be executed for events within a cgroup.
1439 * attach_flags with this flag are always returned 0.
1440 */
1441#define BPF_F_QUERY_EFFECTIVE (1U << 0)
1442
1443/* Flags for BPF_PROG_TEST_RUN */
1444
1445/* If set, run the test on the cpu specified by bpf_attr.test.cpu */
1446#define BPF_F_TEST_RUN_ON_CPU (1U << 0)
1447/* If set, XDP frames will be transmitted after processing */
1448#define BPF_F_TEST_XDP_LIVE_FRAMES (1U << 1)
1449/* If set, apply CHECKSUM_COMPLETE to skb and validate the checksum */
1450#define BPF_F_TEST_SKB_CHECKSUM_COMPLETE (1U << 2)
1451
1452/* type for BPF_ENABLE_STATS */
1453enum bpf_stats_type {
1454 /* enabled run_time_ns and run_cnt */
1455 BPF_STATS_RUN_TIME = 0,
1456};
1457
1458enum bpf_stack_build_id_status {
1459 /* user space need an empty entry to identify end of a trace */
1460 BPF_STACK_BUILD_ID_EMPTY = 0,
1461 /* with valid build_id and offset */
1462 BPF_STACK_BUILD_ID_VALID = 1,
1463 /* couldn't get build_id, fallback to ip */
1464 BPF_STACK_BUILD_ID_IP = 2,
1465};
1466
1467#define BPF_BUILD_ID_SIZE 20
1468struct bpf_stack_build_id {
1469 __s32 status;
1470 unsigned char build_id[BPF_BUILD_ID_SIZE];
1471 union {
1472 __u64 offset;
1473 __u64 ip;
1474 };
1475};
1476
1477#define BPF_OBJ_NAME_LEN 16U
1478
1479enum {
1480 BPF_STREAM_STDOUT = 1,
1481 BPF_STREAM_STDERR = 2,
1482};
1483
1484union bpf_attr {
1485 struct { /* anonymous struct used by BPF_MAP_CREATE command */
1486 __u32 map_type; /* one of enum bpf_map_type */
1487 __u32 key_size; /* size of key in bytes */
1488 __u32 value_size; /* size of value in bytes */
1489 __u32 max_entries; /* max number of entries in a map */
1490 __u32 map_flags; /* BPF_MAP_CREATE related
1491 * flags defined above.
1492 */
1493 __u32 inner_map_fd; /* fd pointing to the inner map */
1494 __u32 numa_node; /* numa node (effective only if
1495 * BPF_F_NUMA_NODE is set).
1496 */
1497 char map_name[BPF_OBJ_NAME_LEN];
1498 __u32 map_ifindex; /* ifindex of netdev to create on */
1499 __u32 btf_fd; /* fd pointing to a BTF type data */
1500 __u32 btf_key_type_id; /* BTF type_id of the key */
1501 __u32 btf_value_type_id; /* BTF type_id of the value */
1502 __u32 btf_vmlinux_value_type_id;/* BTF type_id of a kernel-
1503 * struct stored as the
1504 * map value
1505 */
1506 /* Any per-map-type extra fields
1507 *
1508 * BPF_MAP_TYPE_BLOOM_FILTER - the lowest 4 bits indicate the
1509 * number of hash functions (if 0, the bloom filter will default
1510 * to using 5 hash functions).
1511 *
1512 * BPF_MAP_TYPE_ARENA - contains the address where user space
1513 * is going to mmap() the arena. It has to be page aligned.
1514 */
1515 __u64 map_extra;
1516
1517 __s32 value_type_btf_obj_fd; /* fd pointing to a BTF
1518 * type data for
1519 * btf_vmlinux_value_type_id.
1520 */
1521 /* BPF token FD to use with BPF_MAP_CREATE operation.
1522 * If provided, map_flags should have BPF_F_TOKEN_FD flag set.
1523 */
1524 __s32 map_token_fd;
1525
1526 /* Hash of the program that has exclusive access to the map.
1527 */
1528 __aligned_u64 excl_prog_hash;
1529 /* Size of the passed excl_prog_hash. */
1530 __u32 excl_prog_hash_size;
1531 };
1532
1533 struct { /* anonymous struct used by BPF_MAP_*_ELEM and BPF_MAP_FREEZE commands */
1534 __u32 map_fd;
1535 __aligned_u64 key;
1536 union {
1537 __aligned_u64 value;
1538 __aligned_u64 next_key;
1539 };
1540 __u64 flags;
1541 };
1542
1543 struct { /* struct used by BPF_MAP_*_BATCH commands */
1544 __aligned_u64 in_batch; /* start batch,
1545 * NULL to start from beginning
1546 */
1547 __aligned_u64 out_batch; /* output: next start batch */
1548 __aligned_u64 keys;
1549 __aligned_u64 values;
1550 __u32 count; /* input/output:
1551 * input: # of key/value
1552 * elements
1553 * output: # of filled elements
1554 */
1555 __u32 map_fd;
1556 __u64 elem_flags;
1557 __u64 flags;
1558 } batch;
1559
1560 struct { /* anonymous struct used by BPF_PROG_LOAD command */
1561 __u32 prog_type; /* one of enum bpf_prog_type */
1562 __u32 insn_cnt;
1563 __aligned_u64 insns;
1564 __aligned_u64 license;
1565 __u32 log_level; /* verbosity level of verifier */
1566 __u32 log_size; /* size of user buffer */
1567 __aligned_u64 log_buf; /* user supplied buffer */
1568 __u32 kern_version; /* not used */
1569 __u32 prog_flags;
1570 char prog_name[BPF_OBJ_NAME_LEN];
1571 __u32 prog_ifindex; /* ifindex of netdev to prep for */
1572 /* For some prog types expected attach type must be known at
1573 * load time to verify attach type specific parts of prog
1574 * (context accesses, allowed helpers, etc).
1575 */
1576 __u32 expected_attach_type;
1577 __u32 prog_btf_fd; /* fd pointing to BTF type data */
1578 __u32 func_info_rec_size; /* userspace bpf_func_info size */
1579 __aligned_u64 func_info; /* func info */
1580 __u32 func_info_cnt; /* number of bpf_func_info records */
1581 __u32 line_info_rec_size; /* userspace bpf_line_info size */
1582 __aligned_u64 line_info; /* line info */
1583 __u32 line_info_cnt; /* number of bpf_line_info records */
1584 __u32 attach_btf_id; /* in-kernel BTF type id to attach to */
1585 union {
1586 /* valid prog_fd to attach to bpf prog */
1587 __u32 attach_prog_fd;
1588 /* or valid module BTF object fd or 0 to attach to vmlinux */
1589 __u32 attach_btf_obj_fd;
1590 };
1591 __u32 core_relo_cnt; /* number of bpf_core_relo */
1592 __aligned_u64 fd_array; /* array of FDs */
1593 __aligned_u64 core_relos;
1594 __u32 core_relo_rec_size; /* sizeof(struct bpf_core_relo) */
1595 /* output: actual total log contents size (including termintaing zero).
1596 * It could be both larger than original log_size (if log was
1597 * truncated), or smaller (if log buffer wasn't filled completely).
1598 */
1599 __u32 log_true_size;
1600 /* BPF token FD to use with BPF_PROG_LOAD operation.
1601 * If provided, prog_flags should have BPF_F_TOKEN_FD flag set.
1602 */
1603 __s32 prog_token_fd;
1604 /* The fd_array_cnt can be used to pass the length of the
1605 * fd_array array. In this case all the [map] file descriptors
1606 * passed in this array will be bound to the program, even if
1607 * the maps are not referenced directly. The functionality is
1608 * similar to the BPF_PROG_BIND_MAP syscall, but maps can be
1609 * used by the verifier during the program load. If provided,
1610 * then the fd_array[0,...,fd_array_cnt-1] is expected to be
1611 * continuous.
1612 */
1613 __u32 fd_array_cnt;
1614 /* Pointer to a buffer containing the signature of the BPF
1615 * program.
1616 */
1617 __aligned_u64 signature;
1618 /* Size of the signature buffer in bytes. */
1619 __u32 signature_size;
1620 /* ID of the kernel keyring to be used for signature
1621 * verification.
1622 */
1623 __s32 keyring_id;
1624 };
1625
1626 struct { /* anonymous struct used by BPF_OBJ_* commands */
1627 __aligned_u64 pathname;
1628 __u32 bpf_fd;
1629 __u32 file_flags;
1630 /* Same as dirfd in openat() syscall; see openat(2)
1631 * manpage for details of path FD and pathname semantics;
1632 * path_fd should accompanied by BPF_F_PATH_FD flag set in
1633 * file_flags field, otherwise it should be set to zero;
1634 * if BPF_F_PATH_FD flag is not set, AT_FDCWD is assumed.
1635 */
1636 __s32 path_fd;
1637 };
1638
1639 struct { /* anonymous struct used by BPF_PROG_ATTACH/DETACH commands */
1640 union {
1641 __u32 target_fd; /* target object to attach to or ... */
1642 __u32 target_ifindex; /* target ifindex */
1643 };
1644 __u32 attach_bpf_fd;
1645 __u32 attach_type;
1646 __u32 attach_flags;
1647 __u32 replace_bpf_fd;
1648 union {
1649 __u32 relative_fd;
1650 __u32 relative_id;
1651 };
1652 __u64 expected_revision;
1653 };
1654
1655 struct { /* anonymous struct used by BPF_PROG_TEST_RUN command */
1656 __u32 prog_fd;
1657 __u32 retval;
1658 __u32 data_size_in; /* input: len of data_in */
1659 __u32 data_size_out; /* input/output: len of data_out
1660 * returns ENOSPC if data_out
1661 * is too small.
1662 */
1663 __aligned_u64 data_in;
1664 __aligned_u64 data_out;
1665 __u32 repeat;
1666 __u32 duration;
1667 __u32 ctx_size_in; /* input: len of ctx_in */
1668 __u32 ctx_size_out; /* input/output: len of ctx_out
1669 * returns ENOSPC if ctx_out
1670 * is too small.
1671 */
1672 __aligned_u64 ctx_in;
1673 __aligned_u64 ctx_out;
1674 __u32 flags;
1675 __u32 cpu;
1676 __u32 batch_size;
1677 } test;
1678
1679 struct { /* anonymous struct used by BPF_*_GET_*_ID */
1680 union {
1681 __u32 start_id;
1682 __u32 prog_id;
1683 __u32 map_id;
1684 __u32 btf_id;
1685 __u32 link_id;
1686 };
1687 __u32 next_id;
1688 __u32 open_flags;
1689 __s32 fd_by_id_token_fd;
1690 };
1691
1692 struct { /* anonymous struct used by BPF_OBJ_GET_INFO_BY_FD */
1693 __u32 bpf_fd;
1694 __u32 info_len;
1695 __aligned_u64 info;
1696 } info;
1697
1698 struct { /* anonymous struct used by BPF_PROG_QUERY command */
1699 union {
1700 __u32 target_fd; /* target object to query or ... */
1701 __u32 target_ifindex; /* target ifindex */
1702 };
1703 __u32 attach_type;
1704 __u32 query_flags;
1705 __u32 attach_flags;
1706 __aligned_u64 prog_ids;
1707 union {
1708 __u32 prog_cnt;
1709 __u32 count;
1710 };
1711 __u32 :32;
1712 /* output: per-program attach_flags.
1713 * not allowed to be set during effective query.
1714 */
1715 __aligned_u64 prog_attach_flags;
1716 __aligned_u64 link_ids;
1717 __aligned_u64 link_attach_flags;
1718 __u64 revision;
1719 } query;
1720
1721 struct { /* anonymous struct used by BPF_RAW_TRACEPOINT_OPEN command */
1722 __u64 name;
1723 __u32 prog_fd;
1724 __u32 :32;
1725 __aligned_u64 cookie;
1726 } raw_tracepoint;
1727
1728 struct { /* anonymous struct for BPF_BTF_LOAD */
1729 __aligned_u64 btf;
1730 __aligned_u64 btf_log_buf;
1731 __u32 btf_size;
1732 __u32 btf_log_size;
1733 __u32 btf_log_level;
1734 /* output: actual total log contents size (including termintaing zero).
1735 * It could be both larger than original log_size (if log was
1736 * truncated), or smaller (if log buffer wasn't filled completely).
1737 */
1738 __u32 btf_log_true_size;
1739 __u32 btf_flags;
1740 /* BPF token FD to use with BPF_BTF_LOAD operation.
1741 * If provided, btf_flags should have BPF_F_TOKEN_FD flag set.
1742 */
1743 __s32 btf_token_fd;
1744 };
1745
1746 struct {
1747 __u32 pid; /* input: pid */
1748 __u32 fd; /* input: fd */
1749 __u32 flags; /* input: flags */
1750 __u32 buf_len; /* input/output: buf len */
1751 __aligned_u64 buf; /* input/output:
1752 * tp_name for tracepoint
1753 * symbol for kprobe
1754 * filename for uprobe
1755 */
1756 __u32 prog_id; /* output: prod_id */
1757 __u32 fd_type; /* output: BPF_FD_TYPE_* */
1758 __u64 probe_offset; /* output: probe_offset */
1759 __u64 probe_addr; /* output: probe_addr */
1760 } task_fd_query;
1761
1762 struct { /* struct used by BPF_LINK_CREATE command */
1763 union {
1764 __u32 prog_fd; /* eBPF program to attach */
1765 __u32 map_fd; /* struct_ops to attach */
1766 };
1767 union {
1768 __u32 target_fd; /* target object to attach to or ... */
1769 __u32 target_ifindex; /* target ifindex */
1770 };
1771 __u32 attach_type; /* attach type */
1772 __u32 flags; /* extra flags */
1773 union {
1774 __u32 target_btf_id; /* btf_id of target to attach to */
1775 struct {
1776 __aligned_u64 iter_info; /* extra bpf_iter_link_info */
1777 __u32 iter_info_len; /* iter_info length */
1778 };
1779 struct {
1780 /* black box user-provided value passed through
1781 * to BPF program at the execution time and
1782 * accessible through bpf_get_attach_cookie() BPF helper
1783 */
1784 __u64 bpf_cookie;
1785 } perf_event;
1786 struct {
1787 __u32 flags;
1788 __u32 cnt;
1789 __aligned_u64 syms;
1790 __aligned_u64 addrs;
1791 __aligned_u64 cookies;
1792 } kprobe_multi;
1793 struct {
1794 /* this is overlaid with the target_btf_id above. */
1795 __u32 target_btf_id;
1796 /* black box user-provided value passed through
1797 * to BPF program at the execution time and
1798 * accessible through bpf_get_attach_cookie() BPF helper
1799 */
1800 __u64 cookie;
1801 } tracing;
1802 struct {
1803 __u32 pf;
1804 __u32 hooknum;
1805 __s32 priority;
1806 __u32 flags;
1807 } netfilter;
1808 struct {
1809 union {
1810 __u32 relative_fd;
1811 __u32 relative_id;
1812 };
1813 __u64 expected_revision;
1814 } tcx;
1815 struct {
1816 __aligned_u64 path;
1817 __aligned_u64 offsets;
1818 __aligned_u64 ref_ctr_offsets;
1819 __aligned_u64 cookies;
1820 __u32 cnt;
1821 __u32 flags;
1822 __u32 pid;
1823 } uprobe_multi;
1824 struct {
1825 union {
1826 __u32 relative_fd;
1827 __u32 relative_id;
1828 };
1829 __u64 expected_revision;
1830 } netkit;
1831 struct {
1832 union {
1833 __u32 relative_fd;
1834 __u32 relative_id;
1835 };
1836 __u64 expected_revision;
1837 } cgroup;
1838 };
1839 } link_create;
1840
1841 struct { /* struct used by BPF_LINK_UPDATE command */
1842 __u32 link_fd; /* link fd */
1843 union {
1844 /* new program fd to update link with */
1845 __u32 new_prog_fd;
1846 /* new struct_ops map fd to update link with */
1847 __u32 new_map_fd;
1848 };
1849 __u32 flags; /* extra flags */
1850 union {
1851 /* expected link's program fd; is specified only if
1852 * BPF_F_REPLACE flag is set in flags.
1853 */
1854 __u32 old_prog_fd;
1855 /* expected link's map fd; is specified only
1856 * if BPF_F_REPLACE flag is set.
1857 */
1858 __u32 old_map_fd;
1859 };
1860 } link_update;
1861
1862 struct {
1863 __u32 link_fd;
1864 } link_detach;
1865
1866 struct { /* struct used by BPF_ENABLE_STATS command */
1867 __u32 type;
1868 } enable_stats;
1869
1870 struct { /* struct used by BPF_ITER_CREATE command */
1871 __u32 link_fd;
1872 __u32 flags;
1873 } iter_create;
1874
1875 struct { /* struct used by BPF_PROG_BIND_MAP command */
1876 __u32 prog_fd;
1877 __u32 map_fd;
1878 __u32 flags; /* extra flags */
1879 } prog_bind_map;
1880
1881 struct { /* struct used by BPF_TOKEN_CREATE command */
1882 __u32 flags;
1883 __u32 bpffs_fd;
1884 } token_create;
1885
1886 struct {
1887 __aligned_u64 stream_buf;
1888 __u32 stream_buf_len;
1889 __u32 stream_id;
1890 __u32 prog_fd;
1891 } prog_stream_read;
1892
1893} __attribute__((aligned(8)));
1894
1895/* The description below is an attempt at providing documentation to eBPF
1896 * developers about the multiple available eBPF helper functions. It can be
1897 * parsed and used to produce a manual page. The workflow is the following,
1898 * and requires the rst2man utility:
1899 *
1900 * $ ./scripts/bpf_doc.py \
1901 * --filename include/uapi/linux/bpf.h > /tmp/bpf-helpers.rst
1902 * $ rst2man /tmp/bpf-helpers.rst > /tmp/bpf-helpers.7
1903 * $ man /tmp/bpf-helpers.7
1904 *
1905 * Note that in order to produce this external documentation, some RST
1906 * formatting is used in the descriptions to get "bold" and "italics" in
1907 * manual pages. Also note that the few trailing white spaces are
1908 * intentional, removing them would break paragraphs for rst2man.
1909 *
1910 * Start of BPF helper function descriptions:
1911 *
1912 * void *bpf_map_lookup_elem(struct bpf_map *map, const void *key)
1913 * Description
1914 * Perform a lookup in *map* for an entry associated to *key*.
1915 * Return
1916 * Map value associated to *key*, or **NULL** if no entry was
1917 * found.
1918 *
1919 * long bpf_map_update_elem(struct bpf_map *map, const void *key, const void *value, u64 flags)
1920 * Description
1921 * Add or update the value of the entry associated to *key* in
1922 * *map* with *value*. *flags* is one of:
1923 *
1924 * **BPF_NOEXIST**
1925 * The entry for *key* must not exist in the map.
1926 * **BPF_EXIST**
1927 * The entry for *key* must already exist in the map.
1928 * **BPF_ANY**
1929 * No condition on the existence of the entry for *key*.
1930 *
1931 * Flag value **BPF_NOEXIST** cannot be used for maps of types
1932 * **BPF_MAP_TYPE_ARRAY** or **BPF_MAP_TYPE_PERCPU_ARRAY** (all
1933 * elements always exist), the helper would return an error.
1934 * Return
1935 * 0 on success, or a negative error in case of failure.
1936 *
1937 * long bpf_map_delete_elem(struct bpf_map *map, const void *key)
1938 * Description
1939 * Delete entry with *key* from *map*.
1940 * Return
1941 * 0 on success, or a negative error in case of failure.
1942 *
1943 * long bpf_probe_read(void *dst, u32 size, const void *unsafe_ptr)
1944 * Description
1945 * For tracing programs, safely attempt to read *size* bytes from
1946 * kernel space address *unsafe_ptr* and store the data in *dst*.
1947 *
1948 * Generally, use **bpf_probe_read_user**\ () or
1949 * **bpf_probe_read_kernel**\ () instead.
1950 * Return
1951 * 0 on success, or a negative error in case of failure.
1952 *
1953 * u64 bpf_ktime_get_ns(void)
1954 * Description
1955 * Return the time elapsed since system boot, in nanoseconds.
1956 * Does not include time the system was suspended.
1957 * See: **clock_gettime**\ (**CLOCK_MONOTONIC**)
1958 * Return
1959 * Current *ktime*.
1960 *
1961 * long bpf_trace_printk(const char *fmt, u32 fmt_size, ...)
1962 * Description
1963 * This helper is a "printk()-like" facility for debugging. It
1964 * prints a message defined by format *fmt* (of size *fmt_size*)
1965 * to file *\/sys/kernel/tracing/trace* from TraceFS, if
1966 * available. It can take up to three additional **u64**
1967 * arguments (as an eBPF helpers, the total number of arguments is
1968 * limited to five).
1969 *
1970 * Each time the helper is called, it appends a line to the trace.
1971 * Lines are discarded while *\/sys/kernel/tracing/trace* is
1972 * open, use *\/sys/kernel/tracing/trace_pipe* to avoid this.
1973 * The format of the trace is customizable, and the exact output
1974 * one will get depends on the options set in
1975 * *\/sys/kernel/tracing/trace_options* (see also the
1976 * *README* file under the same directory). However, it usually
1977 * defaults to something like:
1978 *
1979 * ::
1980 *
1981 * telnet-470 [001] .N.. 419421.045894: 0x00000001: <formatted msg>
1982 *
1983 * In the above:
1984 *
1985 * * ``telnet`` is the name of the current task.
1986 * * ``470`` is the PID of the current task.
1987 * * ``001`` is the CPU number on which the task is
1988 * running.
1989 * * In ``.N..``, each character refers to a set of
1990 * options (whether irqs are enabled, scheduling
1991 * options, whether hard/softirqs are running, level of
1992 * preempt_disabled respectively). **N** means that
1993 * **TIF_NEED_RESCHED** and **PREEMPT_NEED_RESCHED**
1994 * are set.
1995 * * ``419421.045894`` is a timestamp.
1996 * * ``0x00000001`` is a fake value used by BPF for the
1997 * instruction pointer register.
1998 * * ``<formatted msg>`` is the message formatted with
1999 * *fmt*.
2000 *
2001 * The conversion specifiers supported by *fmt* are similar, but
2002 * more limited than for printk(). They are **%d**, **%i**,
2003 * **%u**, **%x**, **%ld**, **%li**, **%lu**, **%lx**, **%lld**,
2004 * **%lli**, **%llu**, **%llx**, **%p**, **%s**. No modifier (size
2005 * of field, padding with zeroes, etc.) is available, and the
2006 * helper will return **-EINVAL** (but print nothing) if it
2007 * encounters an unknown specifier.
2008 *
2009 * Also, note that **bpf_trace_printk**\ () is slow, and should
2010 * only be used for debugging purposes. For this reason, a notice
2011 * block (spanning several lines) is printed to kernel logs and
2012 * states that the helper should not be used "for production use"
2013 * the first time this helper is used (or more precisely, when
2014 * **trace_printk**\ () buffers are allocated). For passing values
2015 * to user space, perf events should be preferred.
2016 * Return
2017 * The number of bytes written to the buffer, or a negative error
2018 * in case of failure.
2019 *
2020 * u32 bpf_get_prandom_u32(void)
2021 * Description
2022 * Get a pseudo-random number.
2023 *
2024 * From a security point of view, this helper uses its own
2025 * pseudo-random internal state, and cannot be used to infer the
2026 * seed of other random functions in the kernel. However, it is
2027 * essential to note that the generator used by the helper is not
2028 * cryptographically secure.
2029 * Return
2030 * A random 32-bit unsigned value.
2031 *
2032 * u32 bpf_get_smp_processor_id(void)
2033 * Description
2034 * Get the SMP (symmetric multiprocessing) processor id. Note that
2035 * all programs run with migration disabled, which means that the
2036 * SMP processor id is stable during all the execution of the
2037 * program.
2038 * Return
2039 * The SMP id of the processor running the program.
2040 * Attributes
2041 * __bpf_fastcall
2042 *
2043 * long bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from, u32 len, u64 flags)
2044 * Description
2045 * Store *len* bytes from address *from* into the packet
2046 * associated to *skb*, at *offset*. The *flags* are a combination
2047 * of the following values:
2048 *
2049 * **BPF_F_RECOMPUTE_CSUM**
2050 * Automatically update *skb*\ **->csum** after storing the
2051 * bytes.
2052 * **BPF_F_INVALIDATE_HASH**
2053 * Set *skb*\ **->hash**, *skb*\ **->swhash** and *skb*\
2054 * **->l4hash** to 0.
2055 *
2056 * A call to this helper is susceptible to change the underlying
2057 * packet buffer. Therefore, at load time, all checks on pointers
2058 * previously done by the verifier are invalidated and must be
2059 * performed again, if the helper is used in combination with
2060 * direct packet access.
2061 * Return
2062 * 0 on success, or a negative error in case of failure.
2063 *
2064 * long bpf_l3_csum_replace(struct sk_buff *skb, u32 offset, u64 from, u64 to, u64 size)
2065 * Description
2066 * Recompute the layer 3 (e.g. IP) checksum for the packet
2067 * associated to *skb*. Computation is incremental, so the helper
2068 * must know the former value of the header field that was
2069 * modified (*from*), the new value of this field (*to*), and the
2070 * number of bytes (2 or 4) for this field, stored in *size*.
2071 * Alternatively, it is possible to store the difference between
2072 * the previous and the new values of the header field in *to*, by
2073 * setting *from* and *size* to 0. For both methods, *offset*
2074 * indicates the location of the IP checksum within the packet.
2075 *
2076 * This helper works in combination with **bpf_csum_diff**\ (),
2077 * which does not update the checksum in-place, but offers more
2078 * flexibility and can handle sizes larger than 2 or 4 for the
2079 * checksum to update.
2080 *
2081 * A call to this helper is susceptible to change the underlying
2082 * packet buffer. Therefore, at load time, all checks on pointers
2083 * previously done by the verifier are invalidated and must be
2084 * performed again, if the helper is used in combination with
2085 * direct packet access.
2086 * Return
2087 * 0 on success, or a negative error in case of failure.
2088 *
2089 * long bpf_l4_csum_replace(struct sk_buff *skb, u32 offset, u64 from, u64 to, u64 flags)
2090 * Description
2091 * Recompute the layer 4 (e.g. TCP, UDP or ICMP) checksum for the
2092 * packet associated to *skb*. Computation is incremental, so the
2093 * helper must know the former value of the header field that was
2094 * modified (*from*), the new value of this field (*to*), and the
2095 * number of bytes (2 or 4) for this field, stored on the lowest
2096 * four bits of *flags*. Alternatively, it is possible to store
2097 * the difference between the previous and the new values of the
2098 * header field in *to*, by setting *from* and the four lowest
2099 * bits of *flags* to 0. For both methods, *offset* indicates the
2100 * location of the IP checksum within the packet. In addition to
2101 * the size of the field, *flags* can be added (bitwise OR) actual
2102 * flags. With **BPF_F_MARK_MANGLED_0**, a null checksum is left
2103 * untouched (unless **BPF_F_MARK_ENFORCE** is added as well), and
2104 * for updates resulting in a null checksum the value is set to
2105 * **CSUM_MANGLED_0** instead. Flag **BPF_F_PSEUDO_HDR** indicates
2106 * that the modified header field is part of the pseudo-header.
2107 * Flag **BPF_F_IPV6** should be set for IPv6 packets.
2108 *
2109 * This helper works in combination with **bpf_csum_diff**\ (),
2110 * which does not update the checksum in-place, but offers more
2111 * flexibility and can handle sizes larger than 2 or 4 for the
2112 * checksum to update.
2113 *
2114 * A call to this helper is susceptible to change the underlying
2115 * packet buffer. Therefore, at load time, all checks on pointers
2116 * previously done by the verifier are invalidated and must be
2117 * performed again, if the helper is used in combination with
2118 * direct packet access.
2119 * Return
2120 * 0 on success, or a negative error in case of failure.
2121 *
2122 * long bpf_tail_call(void *ctx, struct bpf_map *prog_array_map, u32 index)
2123 * Description
2124 * This special helper is used to trigger a "tail call", or in
2125 * other words, to jump into another eBPF program. The same stack
2126 * frame is used (but values on stack and in registers for the
2127 * caller are not accessible to the callee). This mechanism allows
2128 * for program chaining, either for raising the maximum number of
2129 * available eBPF instructions, or to execute given programs in
2130 * conditional blocks. For security reasons, there is an upper
2131 * limit to the number of successive tail calls that can be
2132 * performed.
2133 *
2134 * Upon call of this helper, the program attempts to jump into a
2135 * program referenced at index *index* in *prog_array_map*, a
2136 * special map of type **BPF_MAP_TYPE_PROG_ARRAY**, and passes
2137 * *ctx*, a pointer to the context.
2138 *
2139 * If the call succeeds, the kernel immediately runs the first
2140 * instruction of the new program. This is not a function call,
2141 * and it never returns to the previous program. If the call
2142 * fails, then the helper has no effect, and the caller continues
2143 * to run its subsequent instructions. A call can fail if the
2144 * destination program for the jump does not exist (i.e. *index*
2145 * is superior to the number of entries in *prog_array_map*), or
2146 * if the maximum number of tail calls has been reached for this
2147 * chain of programs. This limit is defined in the kernel by the
2148 * macro **MAX_TAIL_CALL_CNT** (not accessible to user space),
2149 * which is currently set to 33.
2150 * Return
2151 * 0 on success, or a negative error in case of failure.
2152 *
2153 * long bpf_clone_redirect(struct sk_buff *skb, u32 ifindex, u64 flags)
2154 * Description
2155 * Clone and redirect the packet associated to *skb* to another
2156 * net device of index *ifindex*. Both ingress and egress
2157 * interfaces can be used for redirection. The **BPF_F_INGRESS**
2158 * value in *flags* is used to make the distinction (ingress path
2159 * is selected if the flag is present, egress path otherwise).
2160 * This is the only flag supported for now.
2161 *
2162 * In comparison with **bpf_redirect**\ () helper,
2163 * **bpf_clone_redirect**\ () has the associated cost of
2164 * duplicating the packet buffer, but this can be executed out of
2165 * the eBPF program. Conversely, **bpf_redirect**\ () is more
2166 * efficient, but it is handled through an action code where the
2167 * redirection happens only after the eBPF program has returned.
2168 *
2169 * A call to this helper is susceptible to change the underlying
2170 * packet buffer. Therefore, at load time, all checks on pointers
2171 * previously done by the verifier are invalidated and must be
2172 * performed again, if the helper is used in combination with
2173 * direct packet access.
2174 * Return
2175 * 0 on success, or a negative error in case of failure. Positive
2176 * error indicates a potential drop or congestion in the target
2177 * device. The particular positive error codes are not defined.
2178 *
2179 * u64 bpf_get_current_pid_tgid(void)
2180 * Description
2181 * Get the current pid and tgid.
2182 * Return
2183 * A 64-bit integer containing the current tgid and pid, and
2184 * created as such:
2185 * *current_task*\ **->tgid << 32 \|**
2186 * *current_task*\ **->pid**.
2187 *
2188 * u64 bpf_get_current_uid_gid(void)
2189 * Description
2190 * Get the current uid and gid.
2191 * Return
2192 * A 64-bit integer containing the current GID and UID, and
2193 * created as such: *current_gid* **<< 32 \|** *current_uid*.
2194 *
2195 * long bpf_get_current_comm(void *buf, u32 size_of_buf)
2196 * Description
2197 * Copy the **comm** attribute of the current task into *buf* of
2198 * *size_of_buf*. The **comm** attribute contains the name of
2199 * the executable (excluding the path) for the current task. The
2200 * *size_of_buf* must be strictly positive. On success, the
2201 * helper makes sure that the *buf* is NUL-terminated. On failure,
2202 * it is filled with zeroes.
2203 * Return
2204 * 0 on success, or a negative error in case of failure.
2205 *
2206 * u32 bpf_get_cgroup_classid(struct sk_buff *skb)
2207 * Description
2208 * Retrieve the classid for the current task, i.e. for the net_cls
2209 * cgroup to which *skb* belongs.
2210 *
2211 * This helper can be used on TC egress path, but not on ingress.
2212 *
2213 * The net_cls cgroup provides an interface to tag network packets
2214 * based on a user-provided identifier for all traffic coming from
2215 * the tasks belonging to the related cgroup. See also the related
2216 * kernel documentation, available from the Linux sources in file
2217 * *Documentation/admin-guide/cgroup-v1/net_cls.rst*.
2218 *
2219 * The Linux kernel has two versions for cgroups: there are
2220 * cgroups v1 and cgroups v2. Both are available to users, who can
2221 * use a mixture of them, but note that the net_cls cgroup is for
2222 * cgroup v1 only. This makes it incompatible with BPF programs
2223 * run on cgroups, which is a cgroup-v2-only feature (a socket can
2224 * only hold data for one version of cgroups at a time).
2225 *
2226 * This helper is only available is the kernel was compiled with
2227 * the **CONFIG_CGROUP_NET_CLASSID** configuration option set to
2228 * "**y**" or to "**m**".
2229 * Return
2230 * The classid, or 0 for the default unconfigured classid.
2231 *
2232 * long bpf_skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
2233 * Description
2234 * Push a *vlan_tci* (VLAN tag control information) of protocol
2235 * *vlan_proto* to the packet associated to *skb*, then update
2236 * the checksum. Note that if *vlan_proto* is different from
2237 * **ETH_P_8021Q** and **ETH_P_8021AD**, it is considered to
2238 * be **ETH_P_8021Q**.
2239 *
2240 * A call to this helper is susceptible to change the underlying
2241 * packet buffer. Therefore, at load time, all checks on pointers
2242 * previously done by the verifier are invalidated and must be
2243 * performed again, if the helper is used in combination with
2244 * direct packet access.
2245 * Return
2246 * 0 on success, or a negative error in case of failure.
2247 *
2248 * long bpf_skb_vlan_pop(struct sk_buff *skb)
2249 * Description
2250 * Pop a VLAN header from the packet associated to *skb*.
2251 *
2252 * A call to this helper is susceptible to change the underlying
2253 * packet buffer. Therefore, at load time, all checks on pointers
2254 * previously done by the verifier are invalidated and must be
2255 * performed again, if the helper is used in combination with
2256 * direct packet access.
2257 * Return
2258 * 0 on success, or a negative error in case of failure.
2259 *
2260 * long bpf_skb_get_tunnel_key(struct sk_buff *skb, struct bpf_tunnel_key *key, u32 size, u64 flags)
2261 * Description
2262 * Get tunnel metadata. This helper takes a pointer *key* to an
2263 * empty **struct bpf_tunnel_key** of **size**, that will be
2264 * filled with tunnel metadata for the packet associated to *skb*.
2265 * The *flags* can be set to **BPF_F_TUNINFO_IPV6**, which
2266 * indicates that the tunnel is based on IPv6 protocol instead of
2267 * IPv4.
2268 *
2269 * The **struct bpf_tunnel_key** is an object that generalizes the
2270 * principal parameters used by various tunneling protocols into a
2271 * single struct. This way, it can be used to easily make a
2272 * decision based on the contents of the encapsulation header,
2273 * "summarized" in this struct. In particular, it holds the IP
2274 * address of the remote end (IPv4 or IPv6, depending on the case)
2275 * in *key*\ **->remote_ipv4** or *key*\ **->remote_ipv6**. Also,
2276 * this struct exposes the *key*\ **->tunnel_id**, which is
2277 * generally mapped to a VNI (Virtual Network Identifier), making
2278 * it programmable together with the **bpf_skb_set_tunnel_key**\
2279 * () helper.
2280 *
2281 * Let's imagine that the following code is part of a program
2282 * attached to the TC ingress interface, on one end of a GRE
2283 * tunnel, and is supposed to filter out all messages coming from
2284 * remote ends with IPv4 address other than 10.0.0.1:
2285 *
2286 * ::
2287 *
2288 * int ret;
2289 * struct bpf_tunnel_key key = {};
2290 *
2291 * ret = bpf_skb_get_tunnel_key(skb, &key, sizeof(key), 0);
2292 * if (ret < 0)
2293 * return TC_ACT_SHOT; // drop packet
2294 *
2295 * if (key.remote_ipv4 != 0x0a000001)
2296 * return TC_ACT_SHOT; // drop packet
2297 *
2298 * return TC_ACT_OK; // accept packet
2299 *
2300 * This interface can also be used with all encapsulation devices
2301 * that can operate in "collect metadata" mode: instead of having
2302 * one network device per specific configuration, the "collect
2303 * metadata" mode only requires a single device where the
2304 * configuration can be extracted from this helper.
2305 *
2306 * This can be used together with various tunnels such as VXLan,
2307 * Geneve, GRE or IP in IP (IPIP).
2308 * Return
2309 * 0 on success, or a negative error in case of failure.
2310 *
2311 * long bpf_skb_set_tunnel_key(struct sk_buff *skb, struct bpf_tunnel_key *key, u32 size, u64 flags)
2312 * Description
2313 * Populate tunnel metadata for packet associated to *skb.* The
2314 * tunnel metadata is set to the contents of *key*, of *size*. The
2315 * *flags* can be set to a combination of the following values:
2316 *
2317 * **BPF_F_TUNINFO_IPV6**
2318 * Indicate that the tunnel is based on IPv6 protocol
2319 * instead of IPv4.
2320 * **BPF_F_ZERO_CSUM_TX**
2321 * For IPv4 packets, add a flag to tunnel metadata
2322 * indicating that checksum computation should be skipped
2323 * and checksum set to zeroes.
2324 * **BPF_F_DONT_FRAGMENT**
2325 * Add a flag to tunnel metadata indicating that the
2326 * packet should not be fragmented.
2327 * **BPF_F_SEQ_NUMBER**
2328 * Add a flag to tunnel metadata indicating that a
2329 * sequence number should be added to tunnel header before
2330 * sending the packet. This flag was added for GRE
2331 * encapsulation, but might be used with other protocols
2332 * as well in the future.
2333 * **BPF_F_NO_TUNNEL_KEY**
2334 * Add a flag to tunnel metadata indicating that no tunnel
2335 * key should be set in the resulting tunnel header.
2336 *
2337 * Here is a typical usage on the transmit path:
2338 *
2339 * ::
2340 *
2341 * struct bpf_tunnel_key key;
2342 * populate key ...
2343 * bpf_skb_set_tunnel_key(skb, &key, sizeof(key), 0);
2344 * bpf_clone_redirect(skb, vxlan_dev_ifindex, 0);
2345 *
2346 * See also the description of the **bpf_skb_get_tunnel_key**\ ()
2347 * helper for additional information.
2348 * Return
2349 * 0 on success, or a negative error in case of failure.
2350 *
2351 * u64 bpf_perf_event_read(struct bpf_map *map, u64 flags)
2352 * Description
2353 * Read the value of a perf event counter. This helper relies on a
2354 * *map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. The nature of
2355 * the perf event counter is selected when *map* is updated with
2356 * perf event file descriptors. The *map* is an array whose size
2357 * is the number of available CPUs, and each cell contains a value
2358 * relative to one CPU. The value to retrieve is indicated by
2359 * *flags*, that contains the index of the CPU to look up, masked
2360 * with **BPF_F_INDEX_MASK**. Alternatively, *flags* can be set to
2361 * **BPF_F_CURRENT_CPU** to indicate that the value for the
2362 * current CPU should be retrieved.
2363 *
2364 * Note that before Linux 4.13, only hardware perf event can be
2365 * retrieved.
2366 *
2367 * Also, be aware that the newer helper
2368 * **bpf_perf_event_read_value**\ () is recommended over
2369 * **bpf_perf_event_read**\ () in general. The latter has some ABI
2370 * quirks where error and counter value are used as a return code
2371 * (which is wrong to do since ranges may overlap). This issue is
2372 * fixed with **bpf_perf_event_read_value**\ (), which at the same
2373 * time provides more features over the **bpf_perf_event_read**\
2374 * () interface. Please refer to the description of
2375 * **bpf_perf_event_read_value**\ () for details.
2376 * Return
2377 * The value of the perf event counter read from the map, or a
2378 * negative error code in case of failure.
2379 *
2380 * long bpf_redirect(u32 ifindex, u64 flags)
2381 * Description
2382 * Redirect the packet to another net device of index *ifindex*.
2383 * This helper is somewhat similar to **bpf_clone_redirect**\
2384 * (), except that the packet is not cloned, which provides
2385 * increased performance.
2386 *
2387 * Except for XDP, both ingress and egress interfaces can be used
2388 * for redirection. The **BPF_F_INGRESS** value in *flags* is used
2389 * to make the distinction (ingress path is selected if the flag
2390 * is present, egress path otherwise). Currently, XDP only
2391 * supports redirection to the egress interface, and accepts no
2392 * flag at all.
2393 *
2394 * The same effect can also be attained with the more generic
2395 * **bpf_redirect_map**\ (), which uses a BPF map to store the
2396 * redirect target instead of providing it directly to the helper.
2397 * Return
2398 * For XDP, the helper returns **XDP_REDIRECT** on success or
2399 * **XDP_ABORTED** on error. For other program types, the values
2400 * are **TC_ACT_REDIRECT** on success or **TC_ACT_SHOT** on
2401 * error.
2402 *
2403 * u32 bpf_get_route_realm(struct sk_buff *skb)
2404 * Description
2405 * Retrieve the realm or the route, that is to say the
2406 * **tclassid** field of the destination for the *skb*. The
2407 * identifier retrieved is a user-provided tag, similar to the
2408 * one used with the net_cls cgroup (see description for
2409 * **bpf_get_cgroup_classid**\ () helper), but here this tag is
2410 * held by a route (a destination entry), not by a task.
2411 *
2412 * Retrieving this identifier works with the clsact TC egress hook
2413 * (see also **tc-bpf(8)**), or alternatively on conventional
2414 * classful egress qdiscs, but not on TC ingress path. In case of
2415 * clsact TC egress hook, this has the advantage that, internally,
2416 * the destination entry has not been dropped yet in the transmit
2417 * path. Therefore, the destination entry does not need to be
2418 * artificially held via **netif_keep_dst**\ () for a classful
2419 * qdisc until the *skb* is freed.
2420 *
2421 * This helper is available only if the kernel was compiled with
2422 * **CONFIG_IP_ROUTE_CLASSID** configuration option.
2423 * Return
2424 * The realm of the route for the packet associated to *skb*, or 0
2425 * if none was found.
2426 *
2427 * long bpf_perf_event_output(void *ctx, struct bpf_map *map, u64 flags, void *data, u64 size)
2428 * Description
2429 * Write raw *data* blob into a special BPF perf event held by
2430 * *map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. This perf
2431 * event must have the following attributes: **PERF_SAMPLE_RAW**
2432 * as **sample_type**, **PERF_TYPE_SOFTWARE** as **type**, and
2433 * **PERF_COUNT_SW_BPF_OUTPUT** as **config**.
2434 *
2435 * The *flags* are used to indicate the index in *map* for which
2436 * the value must be put, masked with **BPF_F_INDEX_MASK**.
2437 * Alternatively, *flags* can be set to **BPF_F_CURRENT_CPU**
2438 * to indicate that the index of the current CPU core should be
2439 * used.
2440 *
2441 * The value to write, of *size*, is passed through eBPF stack and
2442 * pointed by *data*.
2443 *
2444 * The context of the program *ctx* needs also be passed to the
2445 * helper.
2446 *
2447 * On user space, a program willing to read the values needs to
2448 * call **perf_event_open**\ () on the perf event (either for
2449 * one or for all CPUs) and to store the file descriptor into the
2450 * *map*. This must be done before the eBPF program can send data
2451 * into it. An example is available in file
2452 * *samples/bpf/trace_output_user.c* in the Linux kernel source
2453 * tree (the eBPF program counterpart is in
2454 * *samples/bpf/trace_output.bpf.c*).
2455 *
2456 * **bpf_perf_event_output**\ () achieves better performance
2457 * than **bpf_trace_printk**\ () for sharing data with user
2458 * space, and is much better suitable for streaming data from eBPF
2459 * programs.
2460 *
2461 * Note that this helper is not restricted to tracing use cases
2462 * and can be used with programs attached to TC or XDP as well,
2463 * where it allows for passing data to user space listeners. Data
2464 * can be:
2465 *
2466 * * Only custom structs,
2467 * * Only the packet payload, or
2468 * * A combination of both.
2469 * Return
2470 * 0 on success, or a negative error in case of failure.
2471 *
2472 * long bpf_skb_load_bytes(const void *skb, u32 offset, void *to, u32 len)
2473 * Description
2474 * This helper was provided as an easy way to load data from a
2475 * packet. It can be used to load *len* bytes from *offset* from
2476 * the packet associated to *skb*, into the buffer pointed by
2477 * *to*.
2478 *
2479 * Since Linux 4.7, usage of this helper has mostly been replaced
2480 * by "direct packet access", enabling packet data to be
2481 * manipulated with *skb*\ **->data** and *skb*\ **->data_end**
2482 * pointing respectively to the first byte of packet data and to
2483 * the byte after the last byte of packet data. However, it
2484 * remains useful if one wishes to read large quantities of data
2485 * at once from a packet into the eBPF stack.
2486 * Return
2487 * 0 on success, or a negative error in case of failure.
2488 *
2489 * long bpf_get_stackid(void *ctx, struct bpf_map *map, u64 flags)
2490 * Description
2491 * Walk a user or a kernel stack and return its id. To achieve
2492 * this, the helper needs *ctx*, which is a pointer to the context
2493 * on which the tracing program is executed, and a pointer to a
2494 * *map* of type **BPF_MAP_TYPE_STACK_TRACE**.
2495 *
2496 * The last argument, *flags*, holds the number of stack frames to
2497 * skip (from 0 to 255), masked with
2498 * **BPF_F_SKIP_FIELD_MASK**. The next bits can be used to set
2499 * a combination of the following flags:
2500 *
2501 * **BPF_F_USER_STACK**
2502 * Collect a user space stack instead of a kernel stack.
2503 * **BPF_F_FAST_STACK_CMP**
2504 * Compare stacks by hash only.
2505 * **BPF_F_REUSE_STACKID**
2506 * If two different stacks hash into the same *stackid*,
2507 * discard the old one.
2508 *
2509 * The stack id retrieved is a 32 bit long integer handle which
2510 * can be further combined with other data (including other stack
2511 * ids) and used as a key into maps. This can be useful for
2512 * generating a variety of graphs (such as flame graphs or off-cpu
2513 * graphs).
2514 *
2515 * For walking a stack, this helper is an improvement over
2516 * **bpf_probe_read**\ (), which can be used with unrolled loops
2517 * but is not efficient and consumes a lot of eBPF instructions.
2518 * Instead, **bpf_get_stackid**\ () can collect up to
2519 * **PERF_MAX_STACK_DEPTH** both kernel and user frames. Note that
2520 * this limit can be controlled with the **sysctl** program, and
2521 * that it should be manually increased in order to profile long
2522 * user stacks (such as stacks for Java programs). To do so, use:
2523 *
2524 * ::
2525 *
2526 * # sysctl kernel.perf_event_max_stack=<new value>
2527 * Return
2528 * The positive or null stack id on success, or a negative error
2529 * in case of failure.
2530 *
2531 * s64 bpf_csum_diff(__be32 *from, u32 from_size, __be32 *to, u32 to_size, __wsum seed)
2532 * Description
2533 * Compute a checksum difference, from the raw buffer pointed by
2534 * *from*, of length *from_size* (that must be a multiple of 4),
2535 * towards the raw buffer pointed by *to*, of size *to_size*
2536 * (same remark). An optional *seed* can be added to the value
2537 * (this can be cascaded, the seed may come from a previous call
2538 * to the helper).
2539 *
2540 * This is flexible enough to be used in several ways:
2541 *
2542 * * With *from_size* == 0, *to_size* > 0 and *seed* set to
2543 * checksum, it can be used when pushing new data.
2544 * * With *from_size* > 0, *to_size* == 0 and *seed* set to
2545 * checksum, it can be used when removing data from a packet.
2546 * * With *from_size* > 0, *to_size* > 0 and *seed* set to 0, it
2547 * can be used to compute a diff. Note that *from_size* and
2548 * *to_size* do not need to be equal.
2549 *
2550 * This helper can be used in combination with
2551 * **bpf_l3_csum_replace**\ () and **bpf_l4_csum_replace**\ (), to
2552 * which one can feed in the difference computed with
2553 * **bpf_csum_diff**\ ().
2554 * Return
2555 * The checksum result, or a negative error code in case of
2556 * failure.
2557 *
2558 * long bpf_skb_get_tunnel_opt(struct sk_buff *skb, void *opt, u32 size)
2559 * Description
2560 * Retrieve tunnel options metadata for the packet associated to
2561 * *skb*, and store the raw tunnel option data to the buffer *opt*
2562 * of *size*.
2563 *
2564 * This helper can be used with encapsulation devices that can
2565 * operate in "collect metadata" mode (please refer to the related
2566 * note in the description of **bpf_skb_get_tunnel_key**\ () for
2567 * more details). A particular example where this can be used is
2568 * in combination with the Geneve encapsulation protocol, where it
2569 * allows for pushing (with **bpf_skb_get_tunnel_opt**\ () helper)
2570 * and retrieving arbitrary TLVs (Type-Length-Value headers) from
2571 * the eBPF program. This allows for full customization of these
2572 * headers.
2573 * Return
2574 * The size of the option data retrieved.
2575 *
2576 * long bpf_skb_set_tunnel_opt(struct sk_buff *skb, void *opt, u32 size)
2577 * Description
2578 * Set tunnel options metadata for the packet associated to *skb*
2579 * to the option data contained in the raw buffer *opt* of *size*.
2580 *
2581 * See also the description of the **bpf_skb_get_tunnel_opt**\ ()
2582 * helper for additional information.
2583 * Return
2584 * 0 on success, or a negative error in case of failure.
2585 *
2586 * long bpf_skb_change_proto(struct sk_buff *skb, __be16 proto, u64 flags)
2587 * Description
2588 * Change the protocol of the *skb* to *proto*. Currently
2589 * supported are transition from IPv4 to IPv6, and from IPv6 to
2590 * IPv4. The helper takes care of the groundwork for the
2591 * transition, including resizing the socket buffer. The eBPF
2592 * program is expected to fill the new headers, if any, via
2593 * **skb_store_bytes**\ () and to recompute the checksums with
2594 * **bpf_l3_csum_replace**\ () and **bpf_l4_csum_replace**\
2595 * (). The main case for this helper is to perform NAT64
2596 * operations out of an eBPF program.
2597 *
2598 * Internally, the GSO type is marked as dodgy so that headers are
2599 * checked and segments are recalculated by the GSO/GRO engine.
2600 * The size for GSO target is adapted as well.
2601 *
2602 * All values for *flags* are reserved for future usage, and must
2603 * be left at zero.
2604 *
2605 * A call to this helper is susceptible to change the underlying
2606 * packet buffer. Therefore, at load time, all checks on pointers
2607 * previously done by the verifier are invalidated and must be
2608 * performed again, if the helper is used in combination with
2609 * direct packet access.
2610 * Return
2611 * 0 on success, or a negative error in case of failure.
2612 *
2613 * long bpf_skb_change_type(struct sk_buff *skb, u32 type)
2614 * Description
2615 * Change the packet type for the packet associated to *skb*. This
2616 * comes down to setting *skb*\ **->pkt_type** to *type*, except
2617 * the eBPF program does not have a write access to *skb*\
2618 * **->pkt_type** beside this helper. Using a helper here allows
2619 * for graceful handling of errors.
2620 *
2621 * The major use case is to change incoming *skb*s to
2622 * **PACKET_HOST** in a programmatic way instead of having to
2623 * recirculate via **redirect**\ (..., **BPF_F_INGRESS**), for
2624 * example.
2625 *
2626 * Note that *type* only allows certain values. At this time, they
2627 * are:
2628 *
2629 * **PACKET_HOST**
2630 * Packet is for us.
2631 * **PACKET_BROADCAST**
2632 * Send packet to all.
2633 * **PACKET_MULTICAST**
2634 * Send packet to group.
2635 * **PACKET_OTHERHOST**
2636 * Send packet to someone else.
2637 * Return
2638 * 0 on success, or a negative error in case of failure.
2639 *
2640 * long bpf_skb_under_cgroup(struct sk_buff *skb, struct bpf_map *map, u32 index)
2641 * Description
2642 * Check whether *skb* is a descendant of the cgroup2 held by
2643 * *map* of type **BPF_MAP_TYPE_CGROUP_ARRAY**, at *index*.
2644 * Return
2645 * The return value depends on the result of the test, and can be:
2646 *
2647 * * 0, if the *skb* failed the cgroup2 descendant test.
2648 * * 1, if the *skb* succeeded the cgroup2 descendant test.
2649 * * A negative error code, if an error occurred.
2650 *
2651 * u32 bpf_get_hash_recalc(struct sk_buff *skb)
2652 * Description
2653 * Retrieve the hash of the packet, *skb*\ **->hash**. If it is
2654 * not set, in particular if the hash was cleared due to mangling,
2655 * recompute this hash. Later accesses to the hash can be done
2656 * directly with *skb*\ **->hash**.
2657 *
2658 * Calling **bpf_set_hash_invalid**\ (), changing a packet
2659 * prototype with **bpf_skb_change_proto**\ (), or calling
2660 * **bpf_skb_store_bytes**\ () with the
2661 * **BPF_F_INVALIDATE_HASH** are actions susceptible to clear
2662 * the hash and to trigger a new computation for the next call to
2663 * **bpf_get_hash_recalc**\ ().
2664 * Return
2665 * The 32-bit hash.
2666 *
2667 * u64 bpf_get_current_task(void)
2668 * Description
2669 * Get the current task.
2670 * Return
2671 * A pointer to the current task struct.
2672 *
2673 * long bpf_probe_write_user(void *dst, const void *src, u32 len)
2674 * Description
2675 * Attempt in a safe way to write *len* bytes from the buffer
2676 * *src* to *dst* in memory. It only works for threads that are in
2677 * user context, and *dst* must be a valid user space address.
2678 *
2679 * This helper should not be used to implement any kind of
2680 * security mechanism because of TOC-TOU attacks, but rather to
2681 * debug, divert, and manipulate execution of semi-cooperative
2682 * processes.
2683 *
2684 * Keep in mind that this feature is meant for experiments, and it
2685 * has a risk of crashing the system and running programs.
2686 * Therefore, when an eBPF program using this helper is attached,
2687 * a warning including PID and process name is printed to kernel
2688 * logs.
2689 * Return
2690 * 0 on success, or a negative error in case of failure.
2691 *
2692 * long bpf_current_task_under_cgroup(struct bpf_map *map, u32 index)
2693 * Description
2694 * Check whether the probe is being run is the context of a given
2695 * subset of the cgroup2 hierarchy. The cgroup2 to test is held by
2696 * *map* of type **BPF_MAP_TYPE_CGROUP_ARRAY**, at *index*.
2697 * Return
2698 * The return value depends on the result of the test, and can be:
2699 *
2700 * * 1, if current task belongs to the cgroup2.
2701 * * 0, if current task does not belong to the cgroup2.
2702 * * A negative error code, if an error occurred.
2703 *
2704 * long bpf_skb_change_tail(struct sk_buff *skb, u32 len, u64 flags)
2705 * Description
2706 * Resize (trim or grow) the packet associated to *skb* to the
2707 * new *len*. The *flags* are reserved for future usage, and must
2708 * be left at zero.
2709 *
2710 * The basic idea is that the helper performs the needed work to
2711 * change the size of the packet, then the eBPF program rewrites
2712 * the rest via helpers like **bpf_skb_store_bytes**\ (),
2713 * **bpf_l3_csum_replace**\ (), **bpf_l3_csum_replace**\ ()
2714 * and others. This helper is a slow path utility intended for
2715 * replies with control messages. And because it is targeted for
2716 * slow path, the helper itself can afford to be slow: it
2717 * implicitly linearizes, unclones and drops offloads from the
2718 * *skb*.
2719 *
2720 * A call to this helper is susceptible to change the underlying
2721 * packet buffer. Therefore, at load time, all checks on pointers
2722 * previously done by the verifier are invalidated and must be
2723 * performed again, if the helper is used in combination with
2724 * direct packet access.
2725 * Return
2726 * 0 on success, or a negative error in case of failure.
2727 *
2728 * long bpf_skb_pull_data(struct sk_buff *skb, u32 len)
2729 * Description
2730 * Pull in non-linear data in case the *skb* is non-linear and not
2731 * all of *len* are part of the linear section. Make *len* bytes
2732 * from *skb* readable and writable. If a zero value is passed for
2733 * *len*, then all bytes in the linear part of *skb* will be made
2734 * readable and writable.
2735 *
2736 * This helper is only needed for reading and writing with direct
2737 * packet access.
2738 *
2739 * For direct packet access, testing that offsets to access
2740 * are within packet boundaries (test on *skb*\ **->data_end**) is
2741 * susceptible to fail if offsets are invalid, or if the requested
2742 * data is in non-linear parts of the *skb*. On failure the
2743 * program can just bail out, or in the case of a non-linear
2744 * buffer, use a helper to make the data available. The
2745 * **bpf_skb_load_bytes**\ () helper is a first solution to access
2746 * the data. Another one consists in using **bpf_skb_pull_data**
2747 * to pull in once the non-linear parts, then retesting and
2748 * eventually access the data.
2749 *
2750 * At the same time, this also makes sure the *skb* is uncloned,
2751 * which is a necessary condition for direct write. As this needs
2752 * to be an invariant for the write part only, the verifier
2753 * detects writes and adds a prologue that is calling
2754 * **bpf_skb_pull_data()** to effectively unclone the *skb* from
2755 * the very beginning in case it is indeed cloned.
2756 *
2757 * A call to this helper is susceptible to change the underlying
2758 * packet buffer. Therefore, at load time, all checks on pointers
2759 * previously done by the verifier are invalidated and must be
2760 * performed again, if the helper is used in combination with
2761 * direct packet access.
2762 * Return
2763 * 0 on success, or a negative error in case of failure.
2764 *
2765 * s64 bpf_csum_update(struct sk_buff *skb, __wsum csum)
2766 * Description
2767 * Add the checksum *csum* into *skb*\ **->csum** in case the
2768 * driver has supplied a checksum for the entire packet into that
2769 * field. Return an error otherwise. This helper is intended to be
2770 * used in combination with **bpf_csum_diff**\ (), in particular
2771 * when the checksum needs to be updated after data has been
2772 * written into the packet through direct packet access.
2773 * Return
2774 * The checksum on success, or a negative error code in case of
2775 * failure.
2776 *
2777 * void bpf_set_hash_invalid(struct sk_buff *skb)
2778 * Description
2779 * Invalidate the current *skb*\ **->hash**. It can be used after
2780 * mangling on headers through direct packet access, in order to
2781 * indicate that the hash is outdated and to trigger a
2782 * recalculation the next time the kernel tries to access this
2783 * hash or when the **bpf_get_hash_recalc**\ () helper is called.
2784 * Return
2785 * void.
2786 *
2787 * long bpf_get_numa_node_id(void)
2788 * Description
2789 * Return the id of the current NUMA node. The primary use case
2790 * for this helper is the selection of sockets for the local NUMA
2791 * node, when the program is attached to sockets using the
2792 * **SO_ATTACH_REUSEPORT_EBPF** option (see also **socket(7)**),
2793 * but the helper is also available to other eBPF program types,
2794 * similarly to **bpf_get_smp_processor_id**\ ().
2795 * Return
2796 * The id of current NUMA node.
2797 *
2798 * long bpf_skb_change_head(struct sk_buff *skb, u32 len, u64 flags)
2799 * Description
2800 * Grows headroom of packet associated to *skb* and adjusts the
2801 * offset of the MAC header accordingly, adding *len* bytes of
2802 * space. It automatically extends and reallocates memory as
2803 * required.
2804 *
2805 * This helper can be used on a layer 3 *skb* to push a MAC header
2806 * for redirection into a layer 2 device.
2807 *
2808 * All values for *flags* are reserved for future usage, and must
2809 * be left at zero.
2810 *
2811 * A call to this helper is susceptible to change the underlying
2812 * packet buffer. Therefore, at load time, all checks on pointers
2813 * previously done by the verifier are invalidated and must be
2814 * performed again, if the helper is used in combination with
2815 * direct packet access.
2816 * Return
2817 * 0 on success, or a negative error in case of failure.
2818 *
2819 * long bpf_xdp_adjust_head(struct xdp_buff *xdp_md, int delta)
2820 * Description
2821 * Adjust (move) *xdp_md*\ **->data** by *delta* bytes. Note that
2822 * it is possible to use a negative value for *delta*. This helper
2823 * can be used to prepare the packet for pushing or popping
2824 * headers.
2825 *
2826 * A call to this helper is susceptible to change the underlying
2827 * packet buffer. Therefore, at load time, all checks on pointers
2828 * previously done by the verifier are invalidated and must be
2829 * performed again, if the helper is used in combination with
2830 * direct packet access.
2831 * Return
2832 * 0 on success, or a negative error in case of failure.
2833 *
2834 * long bpf_probe_read_str(void *dst, u32 size, const void *unsafe_ptr)
2835 * Description
2836 * Copy a NUL terminated string from an unsafe kernel address
2837 * *unsafe_ptr* to *dst*. See **bpf_probe_read_kernel_str**\ () for
2838 * more details.
2839 *
2840 * Generally, use **bpf_probe_read_user_str**\ () or
2841 * **bpf_probe_read_kernel_str**\ () instead.
2842 * Return
2843 * On success, the strictly positive length of the string,
2844 * including the trailing NUL character. On error, a negative
2845 * value.
2846 *
2847 * u64 bpf_get_socket_cookie(struct sk_buff *skb)
2848 * Description
2849 * If the **struct sk_buff** pointed by *skb* has a known socket,
2850 * retrieve the cookie (generated by the kernel) of this socket.
2851 * If no cookie has been set yet, generate a new cookie. Once
2852 * generated, the socket cookie remains stable for the life of the
2853 * socket. This helper can be useful for monitoring per socket
2854 * networking traffic statistics as it provides a global socket
2855 * identifier that can be assumed unique.
2856 * Return
2857 * A 8-byte long unique number on success, or 0 if the socket
2858 * field is missing inside *skb*.
2859 *
2860 * u64 bpf_get_socket_cookie(struct bpf_sock_addr *ctx)
2861 * Description
2862 * Equivalent to bpf_get_socket_cookie() helper that accepts
2863 * *skb*, but gets socket from **struct bpf_sock_addr** context.
2864 * Return
2865 * A 8-byte long unique number.
2866 *
2867 * u64 bpf_get_socket_cookie(struct bpf_sock_ops *ctx)
2868 * Description
2869 * Equivalent to **bpf_get_socket_cookie**\ () helper that accepts
2870 * *skb*, but gets socket from **struct bpf_sock_ops** context.
2871 * Return
2872 * A 8-byte long unique number.
2873 *
2874 * u64 bpf_get_socket_cookie(struct sock *sk)
2875 * Description
2876 * Equivalent to **bpf_get_socket_cookie**\ () helper that accepts
2877 * *sk*, but gets socket from a BTF **struct sock**. This helper
2878 * also works for sleepable programs.
2879 * Return
2880 * A 8-byte long unique number or 0 if *sk* is NULL.
2881 *
2882 * u32 bpf_get_socket_uid(struct sk_buff *skb)
2883 * Description
2884 * Get the owner UID of the socked associated to *skb*.
2885 * Return
2886 * The owner UID of the socket associated to *skb*. If the socket
2887 * is **NULL**, or if it is not a full socket (i.e. if it is a
2888 * time-wait or a request socket instead), **overflowuid** value
2889 * is returned (note that **overflowuid** might also be the actual
2890 * UID value for the socket).
2891 *
2892 * long bpf_set_hash(struct sk_buff *skb, u32 hash)
2893 * Description
2894 * Set the full hash for *skb* (set the field *skb*\ **->hash**)
2895 * to value *hash*.
2896 * Return
2897 * 0
2898 *
2899 * long bpf_setsockopt(void *bpf_socket, int level, int optname, void *optval, int optlen)
2900 * Description
2901 * Emulate a call to **setsockopt()** on the socket associated to
2902 * *bpf_socket*, which must be a full socket. The *level* at
2903 * which the option resides and the name *optname* of the option
2904 * must be specified, see **setsockopt(2)** for more information.
2905 * The option value of length *optlen* is pointed by *optval*.
2906 *
2907 * *bpf_socket* should be one of the following:
2908 *
2909 * * **struct bpf_sock_ops** for **BPF_PROG_TYPE_SOCK_OPS**.
2910 * * **struct bpf_sock_addr** for **BPF_CGROUP_INET4_CONNECT**,
2911 * **BPF_CGROUP_INET6_CONNECT** and **BPF_CGROUP_UNIX_CONNECT**.
2912 *
2913 * This helper actually implements a subset of **setsockopt()**.
2914 * It supports the following *level*\ s:
2915 *
2916 * * **SOL_SOCKET**, which supports the following *optname*\ s:
2917 * **SO_RCVBUF**, **SO_SNDBUF**, **SO_MAX_PACING_RATE**,
2918 * **SO_PRIORITY**, **SO_RCVLOWAT**, **SO_MARK**,
2919 * **SO_BINDTODEVICE**, **SO_KEEPALIVE**, **SO_REUSEADDR**,
2920 * **SO_REUSEPORT**, **SO_BINDTOIFINDEX**, **SO_TXREHASH**.
2921 * * **IPPROTO_TCP**, which supports the following *optname*\ s:
2922 * **TCP_CONGESTION**, **TCP_BPF_IW**,
2923 * **TCP_BPF_SNDCWND_CLAMP**, **TCP_SAVE_SYN**,
2924 * **TCP_KEEPIDLE**, **TCP_KEEPINTVL**, **TCP_KEEPCNT**,
2925 * **TCP_SYNCNT**, **TCP_USER_TIMEOUT**, **TCP_NOTSENT_LOWAT**,
2926 * **TCP_NODELAY**, **TCP_MAXSEG**, **TCP_WINDOW_CLAMP**,
2927 * **TCP_THIN_LINEAR_TIMEOUTS**, **TCP_BPF_DELACK_MAX**,
2928 * **TCP_BPF_RTO_MIN**, **TCP_BPF_SOCK_OPS_CB_FLAGS**.
2929 * * **IPPROTO_IP**, which supports *optname* **IP_TOS**.
2930 * * **IPPROTO_IPV6**, which supports the following *optname*\ s:
2931 * **IPV6_TCLASS**, **IPV6_AUTOFLOWLABEL**.
2932 * Return
2933 * 0 on success, or a negative error in case of failure.
2934 *
2935 * long bpf_skb_adjust_room(struct sk_buff *skb, s32 len_diff, u32 mode, u64 flags)
2936 * Description
2937 * Grow or shrink the room for data in the packet associated to
2938 * *skb* by *len_diff*, and according to the selected *mode*.
2939 *
2940 * By default, the helper will reset any offloaded checksum
2941 * indicator of the skb to CHECKSUM_NONE. This can be avoided
2942 * by the following flag:
2943 *
2944 * * **BPF_F_ADJ_ROOM_NO_CSUM_RESET**: Do not reset offloaded
2945 * checksum data of the skb to CHECKSUM_NONE.
2946 *
2947 * There are two supported modes at this time:
2948 *
2949 * * **BPF_ADJ_ROOM_MAC**: Adjust room at the mac layer
2950 * (room space is added or removed between the layer 2 and
2951 * layer 3 headers).
2952 *
2953 * * **BPF_ADJ_ROOM_NET**: Adjust room at the network layer
2954 * (room space is added or removed between the layer 3 and
2955 * layer 4 headers).
2956 *
2957 * The following flags are supported at this time:
2958 *
2959 * * **BPF_F_ADJ_ROOM_FIXED_GSO**: Do not adjust gso_size.
2960 * Adjusting mss in this way is not allowed for datagrams.
2961 *
2962 * * **BPF_F_ADJ_ROOM_ENCAP_L3_IPV4**,
2963 * **BPF_F_ADJ_ROOM_ENCAP_L3_IPV6**:
2964 * Any new space is reserved to hold a tunnel header.
2965 * Configure skb offsets and other fields accordingly.
2966 *
2967 * * **BPF_F_ADJ_ROOM_ENCAP_L4_GRE**,
2968 * **BPF_F_ADJ_ROOM_ENCAP_L4_UDP**:
2969 * Use with ENCAP_L3 flags to further specify the tunnel type.
2970 *
2971 * * **BPF_F_ADJ_ROOM_ENCAP_L2**\ (*len*):
2972 * Use with ENCAP_L3/L4 flags to further specify the tunnel
2973 * type; *len* is the length of the inner MAC header.
2974 *
2975 * * **BPF_F_ADJ_ROOM_ENCAP_L2_ETH**:
2976 * Use with BPF_F_ADJ_ROOM_ENCAP_L2 flag to further specify the
2977 * L2 type as Ethernet.
2978 *
2979 * * **BPF_F_ADJ_ROOM_DECAP_L3_IPV4**,
2980 * **BPF_F_ADJ_ROOM_DECAP_L3_IPV6**:
2981 * Indicate the new IP header version after decapsulating the outer
2982 * IP header. Used when the inner and outer IP versions are different.
2983 *
2984 * A call to this helper is susceptible to change the underlying
2985 * packet buffer. Therefore, at load time, all checks on pointers
2986 * previously done by the verifier are invalidated and must be
2987 * performed again, if the helper is used in combination with
2988 * direct packet access.
2989 * Return
2990 * 0 on success, or a negative error in case of failure.
2991 *
2992 * long bpf_redirect_map(struct bpf_map *map, u64 key, u64 flags)
2993 * Description
2994 * Redirect the packet to the endpoint referenced by *map* at
2995 * index *key*. Depending on its type, this *map* can contain
2996 * references to net devices (for forwarding packets through other
2997 * ports), or to CPUs (for redirecting XDP frames to another CPU;
2998 * but this is only implemented for native XDP (with driver
2999 * support) as of this writing).
3000 *
3001 * The lower two bits of *flags* are used as the return code if
3002 * the map lookup fails. This is so that the return value can be
3003 * one of the XDP program return codes up to **XDP_TX**, as chosen
3004 * by the caller. The higher bits of *flags* can be set to
3005 * BPF_F_BROADCAST or BPF_F_EXCLUDE_INGRESS as defined below.
3006 *
3007 * With BPF_F_BROADCAST the packet will be broadcasted to all the
3008 * interfaces in the map, with BPF_F_EXCLUDE_INGRESS the ingress
3009 * interface will be excluded when do broadcasting.
3010 *
3011 * See also **bpf_redirect**\ (), which only supports redirecting
3012 * to an ifindex, but doesn't require a map to do so.
3013 * Return
3014 * **XDP_REDIRECT** on success, or the value of the two lower bits
3015 * of the *flags* argument on error.
3016 *
3017 * long bpf_sk_redirect_map(struct sk_buff *skb, struct bpf_map *map, u32 key, u64 flags)
3018 * Description
3019 * Redirect the packet to the socket referenced by *map* (of type
3020 * **BPF_MAP_TYPE_SOCKMAP**) at index *key*. Both ingress and
3021 * egress interfaces can be used for redirection. The
3022 * **BPF_F_INGRESS** value in *flags* is used to make the
3023 * distinction (ingress path is selected if the flag is present,
3024 * egress path otherwise). This is the only flag supported for now.
3025 * Return
3026 * **SK_PASS** on success, or **SK_DROP** on error.
3027 *
3028 * long bpf_sock_map_update(struct bpf_sock_ops *skops, struct bpf_map *map, void *key, u64 flags)
3029 * Description
3030 * Add an entry to, or update a *map* referencing sockets. The
3031 * *skops* is used as a new value for the entry associated to
3032 * *key*. *flags* is one of:
3033 *
3034 * **BPF_NOEXIST**
3035 * The entry for *key* must not exist in the map.
3036 * **BPF_EXIST**
3037 * The entry for *key* must already exist in the map.
3038 * **BPF_ANY**
3039 * No condition on the existence of the entry for *key*.
3040 *
3041 * If the *map* has eBPF programs (parser and verdict), those will
3042 * be inherited by the socket being added. If the socket is
3043 * already attached to eBPF programs, this results in an error.
3044 * Return
3045 * 0 on success, or a negative error in case of failure.
3046 *
3047 * long bpf_xdp_adjust_meta(struct xdp_buff *xdp_md, int delta)
3048 * Description
3049 * Adjust the address pointed by *xdp_md*\ **->data_meta** by
3050 * *delta* (which can be positive or negative). Note that this
3051 * operation modifies the address stored in *xdp_md*\ **->data**,
3052 * so the latter must be loaded only after the helper has been
3053 * called.
3054 *
3055 * The use of *xdp_md*\ **->data_meta** is optional and programs
3056 * are not required to use it. The rationale is that when the
3057 * packet is processed with XDP (e.g. as DoS filter), it is
3058 * possible to push further meta data along with it before passing
3059 * to the stack, and to give the guarantee that an ingress eBPF
3060 * program attached as a TC classifier on the same device can pick
3061 * this up for further post-processing. Since TC works with socket
3062 * buffers, it remains possible to set from XDP the **mark** or
3063 * **priority** pointers, or other pointers for the socket buffer.
3064 * Having this scratch space generic and programmable allows for
3065 * more flexibility as the user is free to store whatever meta
3066 * data they need.
3067 *
3068 * A call to this helper is susceptible to change the underlying
3069 * packet buffer. Therefore, at load time, all checks on pointers
3070 * previously done by the verifier are invalidated and must be
3071 * performed again, if the helper is used in combination with
3072 * direct packet access.
3073 * Return
3074 * 0 on success, or a negative error in case of failure.
3075 *
3076 * long bpf_perf_event_read_value(struct bpf_map *map, u64 flags, struct bpf_perf_event_value *buf, u32 buf_size)
3077 * Description
3078 * Read the value of a perf event counter, and store it into *buf*
3079 * of size *buf_size*. This helper relies on a *map* of type
3080 * **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. The nature of the perf event
3081 * counter is selected when *map* is updated with perf event file
3082 * descriptors. The *map* is an array whose size is the number of
3083 * available CPUs, and each cell contains a value relative to one
3084 * CPU. The value to retrieve is indicated by *flags*, that
3085 * contains the index of the CPU to look up, masked with
3086 * **BPF_F_INDEX_MASK**. Alternatively, *flags* can be set to
3087 * **BPF_F_CURRENT_CPU** to indicate that the value for the
3088 * current CPU should be retrieved.
3089 *
3090 * This helper behaves in a way close to
3091 * **bpf_perf_event_read**\ () helper, save that instead of
3092 * just returning the value observed, it fills the *buf*
3093 * structure. This allows for additional data to be retrieved: in
3094 * particular, the enabled and running times (in *buf*\
3095 * **->enabled** and *buf*\ **->running**, respectively) are
3096 * copied. In general, **bpf_perf_event_read_value**\ () is
3097 * recommended over **bpf_perf_event_read**\ (), which has some
3098 * ABI issues and provides fewer functionalities.
3099 *
3100 * These values are interesting, because hardware PMU (Performance
3101 * Monitoring Unit) counters are limited resources. When there are
3102 * more PMU based perf events opened than available counters,
3103 * kernel will multiplex these events so each event gets certain
3104 * percentage (but not all) of the PMU time. In case that
3105 * multiplexing happens, the number of samples or counter value
3106 * will not reflect the case compared to when no multiplexing
3107 * occurs. This makes comparison between different runs difficult.
3108 * Typically, the counter value should be normalized before
3109 * comparing to other experiments. The usual normalization is done
3110 * as follows.
3111 *
3112 * ::
3113 *
3114 * normalized_counter = counter * t_enabled / t_running
3115 *
3116 * Where t_enabled is the time enabled for event and t_running is
3117 * the time running for event since last normalization. The
3118 * enabled and running times are accumulated since the perf event
3119 * open. To achieve scaling factor between two invocations of an
3120 * eBPF program, users can use CPU id as the key (which is
3121 * typical for perf array usage model) to remember the previous
3122 * value and do the calculation inside the eBPF program.
3123 * Return
3124 * 0 on success, or a negative error in case of failure.
3125 *
3126 * long bpf_perf_prog_read_value(struct bpf_perf_event_data *ctx, struct bpf_perf_event_value *buf, u32 buf_size)
3127 * Description
3128 * For an eBPF program attached to a perf event, retrieve the
3129 * value of the event counter associated to *ctx* and store it in
3130 * the structure pointed by *buf* and of size *buf_size*. Enabled
3131 * and running times are also stored in the structure (see
3132 * description of helper **bpf_perf_event_read_value**\ () for
3133 * more details).
3134 * Return
3135 * 0 on success, or a negative error in case of failure.
3136 *
3137 * long bpf_getsockopt(void *bpf_socket, int level, int optname, void *optval, int optlen)
3138 * Description
3139 * Emulate a call to **getsockopt()** on the socket associated to
3140 * *bpf_socket*, which must be a full socket. The *level* at
3141 * which the option resides and the name *optname* of the option
3142 * must be specified, see **getsockopt(2)** for more information.
3143 * The retrieved value is stored in the structure pointed by
3144 * *opval* and of length *optlen*.
3145 *
3146 * *bpf_socket* should be one of the following:
3147 *
3148 * * **struct bpf_sock_ops** for **BPF_PROG_TYPE_SOCK_OPS**.
3149 * * **struct bpf_sock_addr** for **BPF_CGROUP_INET4_CONNECT**,
3150 * **BPF_CGROUP_INET6_CONNECT** and **BPF_CGROUP_UNIX_CONNECT**.
3151 *
3152 * This helper actually implements a subset of **getsockopt()**.
3153 * It supports the same set of *optname*\ s that is supported by
3154 * the **bpf_setsockopt**\ () helper. The exceptions are
3155 * **TCP_BPF_*** is **bpf_setsockopt**\ () only and
3156 * **TCP_SAVED_SYN** is **bpf_getsockopt**\ () only.
3157 * Return
3158 * 0 on success, or a negative error in case of failure.
3159 *
3160 * long bpf_override_return(struct pt_regs *regs, u64 rc)
3161 * Description
3162 * Used for error injection, this helper uses kprobes to override
3163 * the return value of the probed function, and to set it to *rc*.
3164 * The first argument is the context *regs* on which the kprobe
3165 * works.
3166 *
3167 * This helper works by setting the PC (program counter)
3168 * to an override function which is run in place of the original
3169 * probed function. This means the probed function is not run at
3170 * all. The replacement function just returns with the required
3171 * value.
3172 *
3173 * This helper has security implications, and thus is subject to
3174 * restrictions. It is only available if the kernel was compiled
3175 * with the **CONFIG_BPF_KPROBE_OVERRIDE** configuration
3176 * option, and in this case it only works on functions tagged with
3177 * **ALLOW_ERROR_INJECTION** in the kernel code.
3178 * Return
3179 * 0
3180 *
3181 * long bpf_sock_ops_cb_flags_set(struct bpf_sock_ops *bpf_sock, int argval)
3182 * Description
3183 * Attempt to set the value of the **bpf_sock_ops_cb_flags** field
3184 * for the full TCP socket associated to *bpf_sock_ops* to
3185 * *argval*.
3186 *
3187 * The primary use of this field is to determine if there should
3188 * be calls to eBPF programs of type
3189 * **BPF_PROG_TYPE_SOCK_OPS** at various points in the TCP
3190 * code. A program of the same type can change its value, per
3191 * connection and as necessary, when the connection is
3192 * established. This field is directly accessible for reading, but
3193 * this helper must be used for updates in order to return an
3194 * error if an eBPF program tries to set a callback that is not
3195 * supported in the current kernel.
3196 *
3197 * *argval* is a flag array which can combine these flags:
3198 *
3199 * * **BPF_SOCK_OPS_RTO_CB_FLAG** (retransmission time out)
3200 * * **BPF_SOCK_OPS_RETRANS_CB_FLAG** (retransmission)
3201 * * **BPF_SOCK_OPS_STATE_CB_FLAG** (TCP state change)
3202 * * **BPF_SOCK_OPS_RTT_CB_FLAG** (every RTT)
3203 *
3204 * Therefore, this function can be used to clear a callback flag by
3205 * setting the appropriate bit to zero. e.g. to disable the RTO
3206 * callback:
3207 *
3208 * **bpf_sock_ops_cb_flags_set(bpf_sock,**
3209 * **bpf_sock->bpf_sock_ops_cb_flags & ~BPF_SOCK_OPS_RTO_CB_FLAG)**
3210 *
3211 * Here are some examples of where one could call such eBPF
3212 * program:
3213 *
3214 * * When RTO fires.
3215 * * When a packet is retransmitted.
3216 * * When the connection terminates.
3217 * * When a packet is sent.
3218 * * When a packet is received.
3219 * Return
3220 * Code **-EINVAL** if the socket is not a full TCP socket;
3221 * otherwise, a positive number containing the bits that could not
3222 * be set is returned (which comes down to 0 if all bits were set
3223 * as required).
3224 *
3225 * long bpf_msg_redirect_map(struct sk_msg_buff *msg, struct bpf_map *map, u32 key, u64 flags)
3226 * Description
3227 * This helper is used in programs implementing policies at the
3228 * socket level. If the message *msg* is allowed to pass (i.e. if
3229 * the verdict eBPF program returns **SK_PASS**), redirect it to
3230 * the socket referenced by *map* (of type
3231 * **BPF_MAP_TYPE_SOCKMAP**) at index *key*. Both ingress and
3232 * egress interfaces can be used for redirection. The
3233 * **BPF_F_INGRESS** value in *flags* is used to make the
3234 * distinction (ingress path is selected if the flag is present,
3235 * egress path otherwise). This is the only flag supported for now.
3236 * Return
3237 * **SK_PASS** on success, or **SK_DROP** on error.
3238 *
3239 * long bpf_msg_apply_bytes(struct sk_msg_buff *msg, u32 bytes)
3240 * Description
3241 * For socket policies, apply the verdict of the eBPF program to
3242 * the next *bytes* (number of bytes) of message *msg*.
3243 *
3244 * For example, this helper can be used in the following cases:
3245 *
3246 * * A single **sendmsg**\ () or **sendfile**\ () system call
3247 * contains multiple logical messages that the eBPF program is
3248 * supposed to read and for which it should apply a verdict.
3249 * * An eBPF program only cares to read the first *bytes* of a
3250 * *msg*. If the message has a large payload, then setting up
3251 * and calling the eBPF program repeatedly for all bytes, even
3252 * though the verdict is already known, would create unnecessary
3253 * overhead.
3254 *
3255 * When called from within an eBPF program, the helper sets a
3256 * counter internal to the BPF infrastructure, that is used to
3257 * apply the last verdict to the next *bytes*. If *bytes* is
3258 * smaller than the current data being processed from a
3259 * **sendmsg**\ () or **sendfile**\ () system call, the first
3260 * *bytes* will be sent and the eBPF program will be re-run with
3261 * the pointer for start of data pointing to byte number *bytes*
3262 * **+ 1**. If *bytes* is larger than the current data being
3263 * processed, then the eBPF verdict will be applied to multiple
3264 * **sendmsg**\ () or **sendfile**\ () calls until *bytes* are
3265 * consumed.
3266 *
3267 * Note that if a socket closes with the internal counter holding
3268 * a non-zero value, this is not a problem because data is not
3269 * being buffered for *bytes* and is sent as it is received.
3270 * Return
3271 * 0
3272 *
3273 * long bpf_msg_cork_bytes(struct sk_msg_buff *msg, u32 bytes)
3274 * Description
3275 * For socket policies, prevent the execution of the verdict eBPF
3276 * program for message *msg* until *bytes* (byte number) have been
3277 * accumulated.
3278 *
3279 * This can be used when one needs a specific number of bytes
3280 * before a verdict can be assigned, even if the data spans
3281 * multiple **sendmsg**\ () or **sendfile**\ () calls. The extreme
3282 * case would be a user calling **sendmsg**\ () repeatedly with
3283 * 1-byte long message segments. Obviously, this is bad for
3284 * performance, but it is still valid. If the eBPF program needs
3285 * *bytes* bytes to validate a header, this helper can be used to
3286 * prevent the eBPF program to be called again until *bytes* have
3287 * been accumulated.
3288 * Return
3289 * 0
3290 *
3291 * long bpf_msg_pull_data(struct sk_msg_buff *msg, u32 start, u32 end, u64 flags)
3292 * Description
3293 * For socket policies, pull in non-linear data from user space
3294 * for *msg* and set pointers *msg*\ **->data** and *msg*\
3295 * **->data_end** to *start* and *end* bytes offsets into *msg*,
3296 * respectively.
3297 *
3298 * If a program of type **BPF_PROG_TYPE_SK_MSG** is run on a
3299 * *msg* it can only parse data that the (**data**, **data_end**)
3300 * pointers have already consumed. For **sendmsg**\ () hooks this
3301 * is likely the first scatterlist element. But for calls relying
3302 * on the **sendpage** handler (e.g. **sendfile**\ ()) this will
3303 * be the range (**0**, **0**) because the data is shared with
3304 * user space and by default the objective is to avoid allowing
3305 * user space to modify data while (or after) eBPF verdict is
3306 * being decided. This helper can be used to pull in data and to
3307 * set the start and end pointer to given values. Data will be
3308 * copied if necessary (i.e. if data was not linear and if start
3309 * and end pointers do not point to the same chunk).
3310 *
3311 * A call to this helper is susceptible to change the underlying
3312 * packet buffer. Therefore, at load time, all checks on pointers
3313 * previously done by the verifier are invalidated and must be
3314 * performed again, if the helper is used in combination with
3315 * direct packet access.
3316 *
3317 * All values for *flags* are reserved for future usage, and must
3318 * be left at zero.
3319 * Return
3320 * 0 on success, or a negative error in case of failure.
3321 *
3322 * long bpf_bind(struct bpf_sock_addr *ctx, struct sockaddr *addr, int addr_len)
3323 * Description
3324 * Bind the socket associated to *ctx* to the address pointed by
3325 * *addr*, of length *addr_len*. This allows for making outgoing
3326 * connection from the desired IP address, which can be useful for
3327 * example when all processes inside a cgroup should use one
3328 * single IP address on a host that has multiple IP configured.
3329 *
3330 * This helper works for IPv4 and IPv6, TCP and UDP sockets. The
3331 * domain (*addr*\ **->sa_family**) must be **AF_INET** (or
3332 * **AF_INET6**). It's advised to pass zero port (**sin_port**
3333 * or **sin6_port**) which triggers IP_BIND_ADDRESS_NO_PORT-like
3334 * behavior and lets the kernel efficiently pick up an unused
3335 * port as long as 4-tuple is unique. Passing non-zero port might
3336 * lead to degraded performance.
3337 * Return
3338 * 0 on success, or a negative error in case of failure.
3339 *
3340 * long bpf_xdp_adjust_tail(struct xdp_buff *xdp_md, int delta)
3341 * Description
3342 * Adjust (move) *xdp_md*\ **->data_end** by *delta* bytes. It is
3343 * possible to both shrink and grow the packet tail.
3344 * Shrink done via *delta* being a negative integer.
3345 *
3346 * A call to this helper is susceptible to change the underlying
3347 * packet buffer. Therefore, at load time, all checks on pointers
3348 * previously done by the verifier are invalidated and must be
3349 * performed again, if the helper is used in combination with
3350 * direct packet access.
3351 * Return
3352 * 0 on success, or a negative error in case of failure.
3353 *
3354 * long bpf_skb_get_xfrm_state(struct sk_buff *skb, u32 index, struct bpf_xfrm_state *xfrm_state, u32 size, u64 flags)
3355 * Description
3356 * Retrieve the XFRM state (IP transform framework, see also
3357 * **ip-xfrm(8)**) at *index* in XFRM "security path" for *skb*.
3358 *
3359 * The retrieved value is stored in the **struct bpf_xfrm_state**
3360 * pointed by *xfrm_state* and of length *size*.
3361 *
3362 * All values for *flags* are reserved for future usage, and must
3363 * be left at zero.
3364 *
3365 * This helper is available only if the kernel was compiled with
3366 * **CONFIG_XFRM** configuration option.
3367 * Return
3368 * 0 on success, or a negative error in case of failure.
3369 *
3370 * long bpf_get_stack(void *ctx, void *buf, u32 size, u64 flags)
3371 * Description
3372 * Return a user or a kernel stack in bpf program provided buffer.
3373 * To achieve this, the helper needs *ctx*, which is a pointer
3374 * to the context on which the tracing program is executed.
3375 * To store the stacktrace, the bpf program provides *buf* with
3376 * a nonnegative *size*.
3377 *
3378 * The last argument, *flags*, holds the number of stack frames to
3379 * skip (from 0 to 255), masked with
3380 * **BPF_F_SKIP_FIELD_MASK**. The next bits can be used to set
3381 * the following flags:
3382 *
3383 * **BPF_F_USER_STACK**
3384 * Collect a user space stack instead of a kernel stack.
3385 * **BPF_F_USER_BUILD_ID**
3386 * Collect (build_id, file_offset) instead of ips for user
3387 * stack, only valid if **BPF_F_USER_STACK** is also
3388 * specified.
3389 *
3390 * *file_offset* is an offset relative to the beginning
3391 * of the executable or shared object file backing the vma
3392 * which the *ip* falls in. It is *not* an offset relative
3393 * to that object's base address. Accordingly, it must be
3394 * adjusted by adding (sh_addr - sh_offset), where
3395 * sh_{addr,offset} correspond to the executable section
3396 * containing *file_offset* in the object, for comparisons
3397 * to symbols' st_value to be valid.
3398 *
3399 * **bpf_get_stack**\ () can collect up to
3400 * **PERF_MAX_STACK_DEPTH** both kernel and user frames, subject
3401 * to sufficient large buffer size. Note that
3402 * this limit can be controlled with the **sysctl** program, and
3403 * that it should be manually increased in order to profile long
3404 * user stacks (such as stacks for Java programs). To do so, use:
3405 *
3406 * ::
3407 *
3408 * # sysctl kernel.perf_event_max_stack=<new value>
3409 * Return
3410 * The non-negative copied *buf* length equal to or less than
3411 * *size* on success, or a negative error in case of failure.
3412 *
3413 * long bpf_skb_load_bytes_relative(const void *skb, u32 offset, void *to, u32 len, u32 start_header)
3414 * Description
3415 * This helper is similar to **bpf_skb_load_bytes**\ () in that
3416 * it provides an easy way to load *len* bytes from *offset*
3417 * from the packet associated to *skb*, into the buffer pointed
3418 * by *to*. The difference to **bpf_skb_load_bytes**\ () is that
3419 * a fifth argument *start_header* exists in order to select a
3420 * base offset to start from. *start_header* can be one of:
3421 *
3422 * **BPF_HDR_START_MAC**
3423 * Base offset to load data from is *skb*'s mac header.
3424 * **BPF_HDR_START_NET**
3425 * Base offset to load data from is *skb*'s network header.
3426 *
3427 * In general, "direct packet access" is the preferred method to
3428 * access packet data, however, this helper is in particular useful
3429 * in socket filters where *skb*\ **->data** does not always point
3430 * to the start of the mac header and where "direct packet access"
3431 * is not available.
3432 * Return
3433 * 0 on success, or a negative error in case of failure.
3434 *
3435 * long bpf_fib_lookup(void *ctx, struct bpf_fib_lookup *params, int plen, u32 flags)
3436 * Description
3437 * Do FIB lookup in kernel tables using parameters in *params*.
3438 * If lookup is successful and result shows packet is to be
3439 * forwarded, the neighbor tables are searched for the nexthop.
3440 * If successful (ie., FIB lookup shows forwarding and nexthop
3441 * is resolved), the nexthop address is returned in ipv4_dst
3442 * or ipv6_dst based on family, smac is set to mac address of
3443 * egress device, dmac is set to nexthop mac address, rt_metric
3444 * is set to metric from route (IPv4/IPv6 only), and ifindex
3445 * is set to the device index of the nexthop from the FIB lookup.
3446 *
3447 * *plen* argument is the size of the passed in struct.
3448 * *flags* argument can be a combination of one or more of the
3449 * following values:
3450 *
3451 * **BPF_FIB_LOOKUP_DIRECT**
3452 * Do a direct table lookup vs full lookup using FIB
3453 * rules.
3454 * **BPF_FIB_LOOKUP_TBID**
3455 * Used with BPF_FIB_LOOKUP_DIRECT.
3456 * Use the routing table ID present in *params*->tbid
3457 * for the fib lookup.
3458 * **BPF_FIB_LOOKUP_OUTPUT**
3459 * Perform lookup from an egress perspective (default is
3460 * ingress).
3461 * **BPF_FIB_LOOKUP_SKIP_NEIGH**
3462 * Skip the neighbour table lookup. *params*->dmac
3463 * and *params*->smac will not be set as output. A common
3464 * use case is to call **bpf_redirect_neigh**\ () after
3465 * doing **bpf_fib_lookup**\ ().
3466 * **BPF_FIB_LOOKUP_SRC**
3467 * Derive and set source IP addr in *params*->ipv{4,6}_src
3468 * for the nexthop. If the src addr cannot be derived,
3469 * **BPF_FIB_LKUP_RET_NO_SRC_ADDR** is returned. In this
3470 * case, *params*->dmac and *params*->smac are not set either.
3471 * **BPF_FIB_LOOKUP_MARK**
3472 * Use the mark present in *params*->mark for the fib lookup.
3473 * This option should not be used with BPF_FIB_LOOKUP_DIRECT,
3474 * as it only has meaning for full lookups.
3475 *
3476 * *ctx* is either **struct xdp_md** for XDP programs or
3477 * **struct sk_buff** tc cls_act programs.
3478 * Return
3479 * * < 0 if any input argument is invalid
3480 * * 0 on success (packet is forwarded, nexthop neighbor exists)
3481 * * > 0 one of **BPF_FIB_LKUP_RET_** codes explaining why the
3482 * packet is not forwarded or needs assist from full stack
3483 *
3484 * If lookup fails with BPF_FIB_LKUP_RET_FRAG_NEEDED, then the MTU
3485 * was exceeded and output params->mtu_result contains the MTU.
3486 *
3487 * long bpf_sock_hash_update(struct bpf_sock_ops *skops, struct bpf_map *map, void *key, u64 flags)
3488 * Description
3489 * Add an entry to, or update a sockhash *map* referencing sockets.
3490 * The *skops* is used as a new value for the entry associated to
3491 * *key*. *flags* is one of:
3492 *
3493 * **BPF_NOEXIST**
3494 * The entry for *key* must not exist in the map.
3495 * **BPF_EXIST**
3496 * The entry for *key* must already exist in the map.
3497 * **BPF_ANY**
3498 * No condition on the existence of the entry for *key*.
3499 *
3500 * If the *map* has eBPF programs (parser and verdict), those will
3501 * be inherited by the socket being added. If the socket is
3502 * already attached to eBPF programs, this results in an error.
3503 * Return
3504 * 0 on success, or a negative error in case of failure.
3505 *
3506 * long bpf_msg_redirect_hash(struct sk_msg_buff *msg, struct bpf_map *map, void *key, u64 flags)
3507 * Description
3508 * This helper is used in programs implementing policies at the
3509 * socket level. If the message *msg* is allowed to pass (i.e. if
3510 * the verdict eBPF program returns **SK_PASS**), redirect it to
3511 * the socket referenced by *map* (of type
3512 * **BPF_MAP_TYPE_SOCKHASH**) using hash *key*. Both ingress and
3513 * egress interfaces can be used for redirection. The
3514 * **BPF_F_INGRESS** value in *flags* is used to make the
3515 * distinction (ingress path is selected if the flag is present,
3516 * egress path otherwise). This is the only flag supported for now.
3517 * Return
3518 * **SK_PASS** on success, or **SK_DROP** on error.
3519 *
3520 * long bpf_sk_redirect_hash(struct sk_buff *skb, struct bpf_map *map, void *key, u64 flags)
3521 * Description
3522 * This helper is used in programs implementing policies at the
3523 * skb socket level. If the sk_buff *skb* is allowed to pass (i.e.
3524 * if the verdict eBPF program returns **SK_PASS**), redirect it
3525 * to the socket referenced by *map* (of type
3526 * **BPF_MAP_TYPE_SOCKHASH**) using hash *key*. Both ingress and
3527 * egress interfaces can be used for redirection. The
3528 * **BPF_F_INGRESS** value in *flags* is used to make the
3529 * distinction (ingress path is selected if the flag is present,
3530 * egress otherwise). This is the only flag supported for now.
3531 * Return
3532 * **SK_PASS** on success, or **SK_DROP** on error.
3533 *
3534 * long bpf_lwt_push_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
3535 * Description
3536 * Encapsulate the packet associated to *skb* within a Layer 3
3537 * protocol header. This header is provided in the buffer at
3538 * address *hdr*, with *len* its size in bytes. *type* indicates
3539 * the protocol of the header and can be one of:
3540 *
3541 * **BPF_LWT_ENCAP_SEG6**
3542 * IPv6 encapsulation with Segment Routing Header
3543 * (**struct ipv6_sr_hdr**). *hdr* only contains the SRH,
3544 * the IPv6 header is computed by the kernel.
3545 * **BPF_LWT_ENCAP_SEG6_INLINE**
3546 * Only works if *skb* contains an IPv6 packet. Insert a
3547 * Segment Routing Header (**struct ipv6_sr_hdr**) inside
3548 * the IPv6 header.
3549 * **BPF_LWT_ENCAP_IP**
3550 * IP encapsulation (GRE/GUE/IPIP/etc). The outer header
3551 * must be IPv4 or IPv6, followed by zero or more
3552 * additional headers, up to **LWT_BPF_MAX_HEADROOM**
3553 * total bytes in all prepended headers. Please note that
3554 * if **skb_is_gso**\ (*skb*) is true, no more than two
3555 * headers can be prepended, and the inner header, if
3556 * present, should be either GRE or UDP/GUE.
3557 *
3558 * **BPF_LWT_ENCAP_SEG6**\ \* types can be called by BPF programs
3559 * of type **BPF_PROG_TYPE_LWT_IN**; **BPF_LWT_ENCAP_IP** type can
3560 * be called by bpf programs of types **BPF_PROG_TYPE_LWT_IN** and
3561 * **BPF_PROG_TYPE_LWT_XMIT**.
3562 *
3563 * A call to this helper is susceptible to change the underlying
3564 * packet buffer. Therefore, at load time, all checks on pointers
3565 * previously done by the verifier are invalidated and must be
3566 * performed again, if the helper is used in combination with
3567 * direct packet access.
3568 * Return
3569 * 0 on success, or a negative error in case of failure.
3570 *
3571 * long bpf_lwt_seg6_store_bytes(struct sk_buff *skb, u32 offset, const void *from, u32 len)
3572 * Description
3573 * Store *len* bytes from address *from* into the packet
3574 * associated to *skb*, at *offset*. Only the flags, tag and TLVs
3575 * inside the outermost IPv6 Segment Routing Header can be
3576 * modified through this helper.
3577 *
3578 * A call to this helper is susceptible to change the underlying
3579 * packet buffer. Therefore, at load time, all checks on pointers
3580 * previously done by the verifier are invalidated and must be
3581 * performed again, if the helper is used in combination with
3582 * direct packet access.
3583 * Return
3584 * 0 on success, or a negative error in case of failure.
3585 *
3586 * long bpf_lwt_seg6_adjust_srh(struct sk_buff *skb, u32 offset, s32 delta)
3587 * Description
3588 * Adjust the size allocated to TLVs in the outermost IPv6
3589 * Segment Routing Header contained in the packet associated to
3590 * *skb*, at position *offset* by *delta* bytes. Only offsets
3591 * after the segments are accepted. *delta* can be as well
3592 * positive (growing) as negative (shrinking).
3593 *
3594 * A call to this helper is susceptible to change the underlying
3595 * packet buffer. Therefore, at load time, all checks on pointers
3596 * previously done by the verifier are invalidated and must be
3597 * performed again, if the helper is used in combination with
3598 * direct packet access.
3599 * Return
3600 * 0 on success, or a negative error in case of failure.
3601 *
3602 * long bpf_lwt_seg6_action(struct sk_buff *skb, u32 action, void *param, u32 param_len)
3603 * Description
3604 * Apply an IPv6 Segment Routing action of type *action* to the
3605 * packet associated to *skb*. Each action takes a parameter
3606 * contained at address *param*, and of length *param_len* bytes.
3607 * *action* can be one of:
3608 *
3609 * **SEG6_LOCAL_ACTION_END_X**
3610 * End.X action: Endpoint with Layer-3 cross-connect.
3611 * Type of *param*: **struct in6_addr**.
3612 * **SEG6_LOCAL_ACTION_END_T**
3613 * End.T action: Endpoint with specific IPv6 table lookup.
3614 * Type of *param*: **int**.
3615 * **SEG6_LOCAL_ACTION_END_B6**
3616 * End.B6 action: Endpoint bound to an SRv6 policy.
3617 * Type of *param*: **struct ipv6_sr_hdr**.
3618 * **SEG6_LOCAL_ACTION_END_B6_ENCAP**
3619 * End.B6.Encap action: Endpoint bound to an SRv6
3620 * encapsulation policy.
3621 * Type of *param*: **struct ipv6_sr_hdr**.
3622 *
3623 * A call to this helper is susceptible to change the underlying
3624 * packet buffer. Therefore, at load time, all checks on pointers
3625 * previously done by the verifier are invalidated and must be
3626 * performed again, if the helper is used in combination with
3627 * direct packet access.
3628 * Return
3629 * 0 on success, or a negative error in case of failure.
3630 *
3631 * long bpf_rc_repeat(void *ctx)
3632 * Description
3633 * This helper is used in programs implementing IR decoding, to
3634 * report a successfully decoded repeat key message. This delays
3635 * the generation of a key up event for previously generated
3636 * key down event.
3637 *
3638 * Some IR protocols like NEC have a special IR message for
3639 * repeating last button, for when a button is held down.
3640 *
3641 * The *ctx* should point to the lirc sample as passed into
3642 * the program.
3643 *
3644 * This helper is only available is the kernel was compiled with
3645 * the **CONFIG_BPF_LIRC_MODE2** configuration option set to
3646 * "**y**".
3647 * Return
3648 * 0
3649 *
3650 * long bpf_rc_keydown(void *ctx, u32 protocol, u64 scancode, u32 toggle)
3651 * Description
3652 * This helper is used in programs implementing IR decoding, to
3653 * report a successfully decoded key press with *scancode*,
3654 * *toggle* value in the given *protocol*. The scancode will be
3655 * translated to a keycode using the rc keymap, and reported as
3656 * an input key down event. After a period a key up event is
3657 * generated. This period can be extended by calling either
3658 * **bpf_rc_keydown**\ () again with the same values, or calling
3659 * **bpf_rc_repeat**\ ().
3660 *
3661 * Some protocols include a toggle bit, in case the button was
3662 * released and pressed again between consecutive scancodes.
3663 *
3664 * The *ctx* should point to the lirc sample as passed into
3665 * the program.
3666 *
3667 * The *protocol* is the decoded protocol number (see
3668 * **enum rc_proto** for some predefined values).
3669 *
3670 * This helper is only available is the kernel was compiled with
3671 * the **CONFIG_BPF_LIRC_MODE2** configuration option set to
3672 * "**y**".
3673 * Return
3674 * 0
3675 *
3676 * u64 bpf_skb_cgroup_id(struct sk_buff *skb)
3677 * Description
3678 * Return the cgroup v2 id of the socket associated with the *skb*.
3679 * This is roughly similar to the **bpf_get_cgroup_classid**\ ()
3680 * helper for cgroup v1 by providing a tag resp. identifier that
3681 * can be matched on or used for map lookups e.g. to implement
3682 * policy. The cgroup v2 id of a given path in the hierarchy is
3683 * exposed in user space through the f_handle API in order to get
3684 * to the same 64-bit id.
3685 *
3686 * This helper can be used on TC egress path, but not on ingress,
3687 * and is available only if the kernel was compiled with the
3688 * **CONFIG_SOCK_CGROUP_DATA** configuration option.
3689 * Return
3690 * The id is returned or 0 in case the id could not be retrieved.
3691 *
3692 * u64 bpf_get_current_cgroup_id(void)
3693 * Description
3694 * Get the current cgroup id based on the cgroup within which
3695 * the current task is running.
3696 * Return
3697 * A 64-bit integer containing the current cgroup id based
3698 * on the cgroup within which the current task is running.
3699 *
3700 * void *bpf_get_local_storage(void *map, u64 flags)
3701 * Description
3702 * Get the pointer to the local storage area.
3703 * The type and the size of the local storage is defined
3704 * by the *map* argument.
3705 * The *flags* meaning is specific for each map type,
3706 * and has to be 0 for cgroup local storage.
3707 *
3708 * Depending on the BPF program type, a local storage area
3709 * can be shared between multiple instances of the BPF program,
3710 * running simultaneously.
3711 *
3712 * A user should care about the synchronization by himself.
3713 * For example, by using the **BPF_ATOMIC** instructions to alter
3714 * the shared data.
3715 * Return
3716 * A pointer to the local storage area.
3717 *
3718 * long bpf_sk_select_reuseport(struct sk_reuseport_md *reuse, struct bpf_map *map, void *key, u64 flags)
3719 * Description
3720 * Select a **SO_REUSEPORT** socket from a
3721 * **BPF_MAP_TYPE_REUSEPORT_SOCKARRAY** *map*.
3722 * It checks the selected socket is matching the incoming
3723 * request in the socket buffer.
3724 * Return
3725 * 0 on success, or a negative error in case of failure.
3726 *
3727 * u64 bpf_skb_ancestor_cgroup_id(struct sk_buff *skb, int ancestor_level)
3728 * Description
3729 * Return id of cgroup v2 that is ancestor of cgroup associated
3730 * with the *skb* at the *ancestor_level*. The root cgroup is at
3731 * *ancestor_level* zero and each step down the hierarchy
3732 * increments the level. If *ancestor_level* == level of cgroup
3733 * associated with *skb*, then return value will be same as that
3734 * of **bpf_skb_cgroup_id**\ ().
3735 *
3736 * The helper is useful to implement policies based on cgroups
3737 * that are upper in hierarchy than immediate cgroup associated
3738 * with *skb*.
3739 *
3740 * The format of returned id and helper limitations are same as in
3741 * **bpf_skb_cgroup_id**\ ().
3742 * Return
3743 * The id is returned or 0 in case the id could not be retrieved.
3744 *
3745 * struct bpf_sock *bpf_sk_lookup_tcp(void *ctx, struct bpf_sock_tuple *tuple, u32 tuple_size, u64 netns, u64 flags)
3746 * Description
3747 * Look for TCP socket matching *tuple*, optionally in a child
3748 * network namespace *netns*. The return value must be checked,
3749 * and if non-**NULL**, released via **bpf_sk_release**\ ().
3750 *
3751 * The *ctx* should point to the context of the program, such as
3752 * the skb or socket (depending on the hook in use). This is used
3753 * to determine the base network namespace for the lookup.
3754 *
3755 * *tuple_size* must be one of:
3756 *
3757 * **sizeof**\ (*tuple*\ **->ipv4**)
3758 * Look for an IPv4 socket.
3759 * **sizeof**\ (*tuple*\ **->ipv6**)
3760 * Look for an IPv6 socket.
3761 *
3762 * If the *netns* is a negative signed 32-bit integer, then the
3763 * socket lookup table in the netns associated with the *ctx*
3764 * will be used. For the TC hooks, this is the netns of the device
3765 * in the skb. For socket hooks, this is the netns of the socket.
3766 * If *netns* is any other signed 32-bit value greater than or
3767 * equal to zero then it specifies the ID of the netns relative to
3768 * the netns associated with the *ctx*. *netns* values beyond the
3769 * range of 32-bit integers are reserved for future use.
3770 *
3771 * All values for *flags* are reserved for future usage, and must
3772 * be left at zero.
3773 *
3774 * This helper is available only if the kernel was compiled with
3775 * **CONFIG_NET** configuration option.
3776 * Return
3777 * Pointer to **struct bpf_sock**, or **NULL** in case of failure.
3778 * For sockets with reuseport option, the **struct bpf_sock**
3779 * result is from *reuse*\ **->socks**\ [] using the hash of the
3780 * tuple.
3781 *
3782 * struct bpf_sock *bpf_sk_lookup_udp(void *ctx, struct bpf_sock_tuple *tuple, u32 tuple_size, u64 netns, u64 flags)
3783 * Description
3784 * Look for UDP socket matching *tuple*, optionally in a child
3785 * network namespace *netns*. The return value must be checked,
3786 * and if non-**NULL**, released via **bpf_sk_release**\ ().
3787 *
3788 * The *ctx* should point to the context of the program, such as
3789 * the skb or socket (depending on the hook in use). This is used
3790 * to determine the base network namespace for the lookup.
3791 *
3792 * *tuple_size* must be one of:
3793 *
3794 * **sizeof**\ (*tuple*\ **->ipv4**)
3795 * Look for an IPv4 socket.
3796 * **sizeof**\ (*tuple*\ **->ipv6**)
3797 * Look for an IPv6 socket.
3798 *
3799 * If the *netns* is a negative signed 32-bit integer, then the
3800 * socket lookup table in the netns associated with the *ctx*
3801 * will be used. For the TC hooks, this is the netns of the device
3802 * in the skb. For socket hooks, this is the netns of the socket.
3803 * If *netns* is any other signed 32-bit value greater than or
3804 * equal to zero then it specifies the ID of the netns relative to
3805 * the netns associated with the *ctx*. *netns* values beyond the
3806 * range of 32-bit integers are reserved for future use.
3807 *
3808 * All values for *flags* are reserved for future usage, and must
3809 * be left at zero.
3810 *
3811 * This helper is available only if the kernel was compiled with
3812 * **CONFIG_NET** configuration option.
3813 * Return
3814 * Pointer to **struct bpf_sock**, or **NULL** in case of failure.
3815 * For sockets with reuseport option, the **struct bpf_sock**
3816 * result is from *reuse*\ **->socks**\ [] using the hash of the
3817 * tuple.
3818 *
3819 * long bpf_sk_release(void *sock)
3820 * Description
3821 * Release the reference held by *sock*. *sock* must be a
3822 * non-**NULL** pointer that was returned from
3823 * **bpf_sk_lookup_xxx**\ ().
3824 * Return
3825 * 0 on success, or a negative error in case of failure.
3826 *
3827 * long bpf_map_push_elem(struct bpf_map *map, const void *value, u64 flags)
3828 * Description
3829 * Push an element *value* in *map*. *flags* is one of:
3830 *
3831 * **BPF_EXIST**
3832 * If the queue/stack is full, the oldest element is
3833 * removed to make room for this.
3834 * Return
3835 * 0 on success, or a negative error in case of failure.
3836 *
3837 * long bpf_map_pop_elem(struct bpf_map *map, void *value)
3838 * Description
3839 * Pop an element from *map*.
3840 * Return
3841 * 0 on success, or a negative error in case of failure.
3842 *
3843 * long bpf_map_peek_elem(struct bpf_map *map, void *value)
3844 * Description
3845 * Get an element from *map* without removing it.
3846 * Return
3847 * 0 on success, or a negative error in case of failure.
3848 *
3849 * long bpf_msg_push_data(struct sk_msg_buff *msg, u32 start, u32 len, u64 flags)
3850 * Description
3851 * For socket policies, insert *len* bytes into *msg* at offset
3852 * *start*.
3853 *
3854 * If a program of type **BPF_PROG_TYPE_SK_MSG** is run on a
3855 * *msg* it may want to insert metadata or options into the *msg*.
3856 * This can later be read and used by any of the lower layer BPF
3857 * hooks.
3858 *
3859 * This helper may fail if under memory pressure (a malloc
3860 * fails) in these cases BPF programs will get an appropriate
3861 * error and BPF programs will need to handle them.
3862 * Return
3863 * 0 on success, or a negative error in case of failure.
3864 *
3865 * long bpf_msg_pop_data(struct sk_msg_buff *msg, u32 start, u32 len, u64 flags)
3866 * Description
3867 * Will remove *len* bytes from a *msg* starting at byte *start*.
3868 * This may result in **ENOMEM** errors under certain situations if
3869 * an allocation and copy are required due to a full ring buffer.
3870 * However, the helper will try to avoid doing the allocation
3871 * if possible. Other errors can occur if input parameters are
3872 * invalid either due to *start* byte not being valid part of *msg*
3873 * payload and/or *pop* value being to large.
3874 * Return
3875 * 0 on success, or a negative error in case of failure.
3876 *
3877 * long bpf_rc_pointer_rel(void *ctx, s32 rel_x, s32 rel_y)
3878 * Description
3879 * This helper is used in programs implementing IR decoding, to
3880 * report a successfully decoded pointer movement.
3881 *
3882 * The *ctx* should point to the lirc sample as passed into
3883 * the program.
3884 *
3885 * This helper is only available is the kernel was compiled with
3886 * the **CONFIG_BPF_LIRC_MODE2** configuration option set to
3887 * "**y**".
3888 * Return
3889 * 0
3890 *
3891 * long bpf_spin_lock(struct bpf_spin_lock *lock)
3892 * Description
3893 * Acquire a spinlock represented by the pointer *lock*, which is
3894 * stored as part of a value of a map. Taking the lock allows to
3895 * safely update the rest of the fields in that value. The
3896 * spinlock can (and must) later be released with a call to
3897 * **bpf_spin_unlock**\ (\ *lock*\ ).
3898 *
3899 * Spinlocks in BPF programs come with a number of restrictions
3900 * and constraints:
3901 *
3902 * * **bpf_spin_lock** objects are only allowed inside maps of
3903 * types **BPF_MAP_TYPE_HASH** and **BPF_MAP_TYPE_ARRAY** (this
3904 * list could be extended in the future).
3905 * * BTF description of the map is mandatory.
3906 * * The BPF program can take ONE lock at a time, since taking two
3907 * or more could cause dead locks.
3908 * * Only one **struct bpf_spin_lock** is allowed per map element.
3909 * * When the lock is taken, calls (either BPF to BPF or helpers)
3910 * are not allowed.
3911 * * The **BPF_LD_ABS** and **BPF_LD_IND** instructions are not
3912 * allowed inside a spinlock-ed region.
3913 * * The BPF program MUST call **bpf_spin_unlock**\ () to release
3914 * the lock, on all execution paths, before it returns.
3915 * * The BPF program can access **struct bpf_spin_lock** only via
3916 * the **bpf_spin_lock**\ () and **bpf_spin_unlock**\ ()
3917 * helpers. Loading or storing data into the **struct
3918 * bpf_spin_lock** *lock*\ **;** field of a map is not allowed.
3919 * * To use the **bpf_spin_lock**\ () helper, the BTF description
3920 * of the map value must be a struct and have **struct
3921 * bpf_spin_lock** *anyname*\ **;** field at the top level.
3922 * Nested lock inside another struct is not allowed.
3923 * * The **struct bpf_spin_lock** *lock* field in a map value must
3924 * be aligned on a multiple of 4 bytes in that value.
3925 * * Syscall with command **BPF_MAP_LOOKUP_ELEM** does not copy
3926 * the **bpf_spin_lock** field to user space.
3927 * * Syscall with command **BPF_MAP_UPDATE_ELEM**, or update from
3928 * a BPF program, do not update the **bpf_spin_lock** field.
3929 * * **bpf_spin_lock** cannot be on the stack or inside a
3930 * networking packet (it can only be inside of a map values).
3931 * * **bpf_spin_lock** is available to root only.
3932 * * Tracing programs and socket filter programs cannot use
3933 * **bpf_spin_lock**\ () due to insufficient preemption checks
3934 * (but this may change in the future).
3935 * * **bpf_spin_lock** is not allowed in inner maps of map-in-map.
3936 * Return
3937 * 0
3938 *
3939 * long bpf_spin_unlock(struct bpf_spin_lock *lock)
3940 * Description
3941 * Release the *lock* previously locked by a call to
3942 * **bpf_spin_lock**\ (\ *lock*\ ).
3943 * Return
3944 * 0
3945 *
3946 * struct bpf_sock *bpf_sk_fullsock(struct bpf_sock *sk)
3947 * Description
3948 * This helper gets a **struct bpf_sock** pointer such
3949 * that all the fields in this **bpf_sock** can be accessed.
3950 * Return
3951 * A **struct bpf_sock** pointer on success, or **NULL** in
3952 * case of failure.
3953 *
3954 * struct bpf_tcp_sock *bpf_tcp_sock(struct bpf_sock *sk)
3955 * Description
3956 * This helper gets a **struct bpf_tcp_sock** pointer from a
3957 * **struct bpf_sock** pointer.
3958 * Return
3959 * A **struct bpf_tcp_sock** pointer on success, or **NULL** in
3960 * case of failure.
3961 *
3962 * long bpf_skb_ecn_set_ce(struct sk_buff *skb)
3963 * Description
3964 * Set ECN (Explicit Congestion Notification) field of IP header
3965 * to **CE** (Congestion Encountered) if current value is **ECT**
3966 * (ECN Capable Transport). Otherwise, do nothing. Works with IPv6
3967 * and IPv4.
3968 * Return
3969 * 1 if the **CE** flag is set (either by the current helper call
3970 * or because it was already present), 0 if it is not set.
3971 *
3972 * struct bpf_sock *bpf_get_listener_sock(struct bpf_sock *sk)
3973 * Description
3974 * Return a **struct bpf_sock** pointer in **TCP_LISTEN** state.
3975 * **bpf_sk_release**\ () is unnecessary and not allowed.
3976 * Return
3977 * A **struct bpf_sock** pointer on success, or **NULL** in
3978 * case of failure.
3979 *
3980 * struct bpf_sock *bpf_skc_lookup_tcp(void *ctx, struct bpf_sock_tuple *tuple, u32 tuple_size, u64 netns, u64 flags)
3981 * Description
3982 * Look for TCP socket matching *tuple*, optionally in a child
3983 * network namespace *netns*. The return value must be checked,
3984 * and if non-**NULL**, released via **bpf_sk_release**\ ().
3985 *
3986 * This function is identical to **bpf_sk_lookup_tcp**\ (), except
3987 * that it also returns timewait or request sockets. Use
3988 * **bpf_sk_fullsock**\ () or **bpf_tcp_sock**\ () to access the
3989 * full structure.
3990 *
3991 * This helper is available only if the kernel was compiled with
3992 * **CONFIG_NET** configuration option.
3993 * Return
3994 * Pointer to **struct bpf_sock**, or **NULL** in case of failure.
3995 * For sockets with reuseport option, the **struct bpf_sock**
3996 * result is from *reuse*\ **->socks**\ [] using the hash of the
3997 * tuple.
3998 *
3999 * long bpf_tcp_check_syncookie(void *sk, void *iph, u32 iph_len, struct tcphdr *th, u32 th_len)
4000 * Description
4001 * Check whether *iph* and *th* contain a valid SYN cookie ACK for
4002 * the listening socket in *sk*.
4003 *
4004 * *iph* points to the start of the IPv4 or IPv6 header, while
4005 * *iph_len* contains **sizeof**\ (**struct iphdr**) or
4006 * **sizeof**\ (**struct ipv6hdr**).
4007 *
4008 * *th* points to the start of the TCP header, while *th_len*
4009 * contains the length of the TCP header (at least
4010 * **sizeof**\ (**struct tcphdr**)).
4011 * Return
4012 * 0 if *iph* and *th* are a valid SYN cookie ACK, or a negative
4013 * error otherwise.
4014 *
4015 * long bpf_sysctl_get_name(struct bpf_sysctl *ctx, char *buf, size_t buf_len, u64 flags)
4016 * Description
4017 * Get name of sysctl in /proc/sys/ and copy it into provided by
4018 * program buffer *buf* of size *buf_len*.
4019 *
4020 * The buffer is always NUL terminated, unless it's zero-sized.
4021 *
4022 * If *flags* is zero, full name (e.g. "net/ipv4/tcp_mem") is
4023 * copied. Use **BPF_F_SYSCTL_BASE_NAME** flag to copy base name
4024 * only (e.g. "tcp_mem").
4025 * Return
4026 * Number of character copied (not including the trailing NUL).
4027 *
4028 * **-E2BIG** if the buffer wasn't big enough (*buf* will contain
4029 * truncated name in this case).
4030 *
4031 * long bpf_sysctl_get_current_value(struct bpf_sysctl *ctx, char *buf, size_t buf_len)
4032 * Description
4033 * Get current value of sysctl as it is presented in /proc/sys
4034 * (incl. newline, etc), and copy it as a string into provided
4035 * by program buffer *buf* of size *buf_len*.
4036 *
4037 * The whole value is copied, no matter what file position user
4038 * space issued e.g. sys_read at.
4039 *
4040 * The buffer is always NUL terminated, unless it's zero-sized.
4041 * Return
4042 * Number of character copied (not including the trailing NUL).
4043 *
4044 * **-E2BIG** if the buffer wasn't big enough (*buf* will contain
4045 * truncated name in this case).
4046 *
4047 * **-EINVAL** if current value was unavailable, e.g. because
4048 * sysctl is uninitialized and read returns -EIO for it.
4049 *
4050 * long bpf_sysctl_get_new_value(struct bpf_sysctl *ctx, char *buf, size_t buf_len)
4051 * Description
4052 * Get new value being written by user space to sysctl (before
4053 * the actual write happens) and copy it as a string into
4054 * provided by program buffer *buf* of size *buf_len*.
4055 *
4056 * User space may write new value at file position > 0.
4057 *
4058 * The buffer is always NUL terminated, unless it's zero-sized.
4059 * Return
4060 * Number of character copied (not including the trailing NUL).
4061 *
4062 * **-E2BIG** if the buffer wasn't big enough (*buf* will contain
4063 * truncated name in this case).
4064 *
4065 * **-EINVAL** if sysctl is being read.
4066 *
4067 * long bpf_sysctl_set_new_value(struct bpf_sysctl *ctx, const char *buf, size_t buf_len)
4068 * Description
4069 * Override new value being written by user space to sysctl with
4070 * value provided by program in buffer *buf* of size *buf_len*.
4071 *
4072 * *buf* should contain a string in same form as provided by user
4073 * space on sysctl write.
4074 *
4075 * User space may write new value at file position > 0. To override
4076 * the whole sysctl value file position should be set to zero.
4077 * Return
4078 * 0 on success.
4079 *
4080 * **-E2BIG** if the *buf_len* is too big.
4081 *
4082 * **-EINVAL** if sysctl is being read.
4083 *
4084 * long bpf_strtol(const char *buf, size_t buf_len, u64 flags, long *res)
4085 * Description
4086 * Convert the initial part of the string from buffer *buf* of
4087 * size *buf_len* to a long integer according to the given base
4088 * and save the result in *res*.
4089 *
4090 * The string may begin with an arbitrary amount of white space
4091 * (as determined by **isspace**\ (3)) followed by a single
4092 * optional '**-**' sign.
4093 *
4094 * Five least significant bits of *flags* encode base, other bits
4095 * are currently unused.
4096 *
4097 * Base must be either 8, 10, 16 or 0 to detect it automatically
4098 * similar to user space **strtol**\ (3).
4099 * Return
4100 * Number of characters consumed on success. Must be positive but
4101 * no more than *buf_len*.
4102 *
4103 * **-EINVAL** if no valid digits were found or unsupported base
4104 * was provided.
4105 *
4106 * **-ERANGE** if resulting value was out of range.
4107 *
4108 * long bpf_strtoul(const char *buf, size_t buf_len, u64 flags, unsigned long *res)
4109 * Description
4110 * Convert the initial part of the string from buffer *buf* of
4111 * size *buf_len* to an unsigned long integer according to the
4112 * given base and save the result in *res*.
4113 *
4114 * The string may begin with an arbitrary amount of white space
4115 * (as determined by **isspace**\ (3)).
4116 *
4117 * Five least significant bits of *flags* encode base, other bits
4118 * are currently unused.
4119 *
4120 * Base must be either 8, 10, 16 or 0 to detect it automatically
4121 * similar to user space **strtoul**\ (3).
4122 * Return
4123 * Number of characters consumed on success. Must be positive but
4124 * no more than *buf_len*.
4125 *
4126 * **-EINVAL** if no valid digits were found or unsupported base
4127 * was provided.
4128 *
4129 * **-ERANGE** if resulting value was out of range.
4130 *
4131 * void *bpf_sk_storage_get(struct bpf_map *map, void *sk, void *value, u64 flags)
4132 * Description
4133 * Get a bpf-local-storage from a *sk*.
4134 *
4135 * Logically, it could be thought of getting the value from
4136 * a *map* with *sk* as the **key**. From this
4137 * perspective, the usage is not much different from
4138 * **bpf_map_lookup_elem**\ (*map*, **&**\ *sk*) except this
4139 * helper enforces the key must be a full socket and the map must
4140 * be a **BPF_MAP_TYPE_SK_STORAGE** also.
4141 *
4142 * Underneath, the value is stored locally at *sk* instead of
4143 * the *map*. The *map* is used as the bpf-local-storage
4144 * "type". The bpf-local-storage "type" (i.e. the *map*) is
4145 * searched against all bpf-local-storages residing at *sk*.
4146 *
4147 * *sk* is a kernel **struct sock** pointer for LSM program.
4148 * *sk* is a **struct bpf_sock** pointer for other program types.
4149 *
4150 * An optional *flags* (**BPF_SK_STORAGE_GET_F_CREATE**) can be
4151 * used such that a new bpf-local-storage will be
4152 * created if one does not exist. *value* can be used
4153 * together with **BPF_SK_STORAGE_GET_F_CREATE** to specify
4154 * the initial value of a bpf-local-storage. If *value* is
4155 * **NULL**, the new bpf-local-storage will be zero initialized.
4156 * Return
4157 * A bpf-local-storage pointer is returned on success.
4158 *
4159 * **NULL** if not found or there was an error in adding
4160 * a new bpf-local-storage.
4161 *
4162 * long bpf_sk_storage_delete(struct bpf_map *map, void *sk)
4163 * Description
4164 * Delete a bpf-local-storage from a *sk*.
4165 * Return
4166 * 0 on success.
4167 *
4168 * **-ENOENT** if the bpf-local-storage cannot be found.
4169 * **-EINVAL** if sk is not a fullsock (e.g. a request_sock).
4170 *
4171 * long bpf_send_signal(u32 sig)
4172 * Description
4173 * Send signal *sig* to the process of the current task.
4174 * The signal may be delivered to any of this process's threads.
4175 * Return
4176 * 0 on success or successfully queued.
4177 *
4178 * **-EBUSY** if work queue under nmi is full.
4179 *
4180 * **-EINVAL** if *sig* is invalid.
4181 *
4182 * **-EPERM** if no permission to send the *sig*.
4183 *
4184 * **-EAGAIN** if bpf program can try again.
4185 *
4186 * s64 bpf_tcp_gen_syncookie(void *sk, void *iph, u32 iph_len, struct tcphdr *th, u32 th_len)
4187 * Description
4188 * Try to issue a SYN cookie for the packet with corresponding
4189 * IP/TCP headers, *iph* and *th*, on the listening socket in *sk*.
4190 *
4191 * *iph* points to the start of the IPv4 or IPv6 header, while
4192 * *iph_len* contains **sizeof**\ (**struct iphdr**) or
4193 * **sizeof**\ (**struct ipv6hdr**).
4194 *
4195 * *th* points to the start of the TCP header, while *th_len*
4196 * contains the length of the TCP header with options (at least
4197 * **sizeof**\ (**struct tcphdr**)).
4198 * Return
4199 * On success, lower 32 bits hold the generated SYN cookie in
4200 * followed by 16 bits which hold the MSS value for that cookie,
4201 * and the top 16 bits are unused.
4202 *
4203 * On failure, the returned value is one of the following:
4204 *
4205 * **-EINVAL** SYN cookie cannot be issued due to error
4206 *
4207 * **-ENOENT** SYN cookie should not be issued (no SYN flood)
4208 *
4209 * **-EOPNOTSUPP** kernel configuration does not enable SYN cookies
4210 *
4211 * **-EPROTONOSUPPORT** IP packet version is not 4 or 6
4212 *
4213 * long bpf_skb_output(void *ctx, struct bpf_map *map, u64 flags, void *data, u64 size)
4214 * Description
4215 * Write raw *data* blob into a special BPF perf event held by
4216 * *map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. This perf
4217 * event must have the following attributes: **PERF_SAMPLE_RAW**
4218 * as **sample_type**, **PERF_TYPE_SOFTWARE** as **type**, and
4219 * **PERF_COUNT_SW_BPF_OUTPUT** as **config**.
4220 *
4221 * The *flags* are used to indicate the index in *map* for which
4222 * the value must be put, masked with **BPF_F_INDEX_MASK**.
4223 * Alternatively, *flags* can be set to **BPF_F_CURRENT_CPU**
4224 * to indicate that the index of the current CPU core should be
4225 * used.
4226 *
4227 * The value to write, of *size*, is passed through eBPF stack and
4228 * pointed by *data*.
4229 *
4230 * *ctx* is a pointer to in-kernel struct sk_buff.
4231 *
4232 * This helper is similar to **bpf_perf_event_output**\ () but
4233 * restricted to raw_tracepoint bpf programs.
4234 * Return
4235 * 0 on success, or a negative error in case of failure.
4236 *
4237 * long bpf_probe_read_user(void *dst, u32 size, const void *unsafe_ptr)
4238 * Description
4239 * Safely attempt to read *size* bytes from user space address
4240 * *unsafe_ptr* and store the data in *dst*.
4241 * Return
4242 * 0 on success, or a negative error in case of failure.
4243 *
4244 * long bpf_probe_read_kernel(void *dst, u32 size, const void *unsafe_ptr)
4245 * Description
4246 * Safely attempt to read *size* bytes from kernel space address
4247 * *unsafe_ptr* and store the data in *dst*.
4248 * Return
4249 * 0 on success, or a negative error in case of failure.
4250 *
4251 * long bpf_probe_read_user_str(void *dst, u32 size, const void *unsafe_ptr)
4252 * Description
4253 * Copy a NUL terminated string from an unsafe user address
4254 * *unsafe_ptr* to *dst*. The *size* should include the
4255 * terminating NUL byte. In case the string length is smaller than
4256 * *size*, the target is not padded with further NUL bytes. If the
4257 * string length is larger than *size*, just *size*-1 bytes are
4258 * copied and the last byte is set to NUL.
4259 *
4260 * On success, returns the number of bytes that were written,
4261 * including the terminal NUL. This makes this helper useful in
4262 * tracing programs for reading strings, and more importantly to
4263 * get its length at runtime. See the following snippet:
4264 *
4265 * ::
4266 *
4267 * SEC("kprobe/sys_open")
4268 * void bpf_sys_open(struct pt_regs *ctx)
4269 * {
4270 * char buf[PATHLEN]; // PATHLEN is defined to 256
4271 * int res = bpf_probe_read_user_str(buf, sizeof(buf),
4272 * ctx->di);
4273 *
4274 * // Consume buf, for example push it to
4275 * // userspace via bpf_perf_event_output(); we
4276 * // can use res (the string length) as event
4277 * // size, after checking its boundaries.
4278 * }
4279 *
4280 * In comparison, using **bpf_probe_read_user**\ () helper here
4281 * instead to read the string would require to estimate the length
4282 * at compile time, and would often result in copying more memory
4283 * than necessary.
4284 *
4285 * Another useful use case is when parsing individual process
4286 * arguments or individual environment variables navigating
4287 * *current*\ **->mm->arg_start** and *current*\
4288 * **->mm->env_start**: using this helper and the return value,
4289 * one can quickly iterate at the right offset of the memory area.
4290 * Return
4291 * On success, the strictly positive length of the output string,
4292 * including the trailing NUL character. On error, a negative
4293 * value.
4294 *
4295 * long bpf_probe_read_kernel_str(void *dst, u32 size, const void *unsafe_ptr)
4296 * Description
4297 * Copy a NUL terminated string from an unsafe kernel address *unsafe_ptr*
4298 * to *dst*. Same semantics as with **bpf_probe_read_user_str**\ () apply.
4299 * Return
4300 * On success, the strictly positive length of the string, including
4301 * the trailing NUL character. On error, a negative value.
4302 *
4303 * long bpf_tcp_send_ack(void *tp, u32 rcv_nxt)
4304 * Description
4305 * Send out a tcp-ack. *tp* is the in-kernel struct **tcp_sock**.
4306 * *rcv_nxt* is the ack_seq to be sent out.
4307 * Return
4308 * 0 on success, or a negative error in case of failure.
4309 *
4310 * long bpf_send_signal_thread(u32 sig)
4311 * Description
4312 * Send signal *sig* to the thread corresponding to the current task.
4313 * Return
4314 * 0 on success or successfully queued.
4315 *
4316 * **-EBUSY** if work queue under nmi is full.
4317 *
4318 * **-EINVAL** if *sig* is invalid.
4319 *
4320 * **-EPERM** if no permission to send the *sig*.
4321 *
4322 * **-EAGAIN** if bpf program can try again.
4323 *
4324 * u64 bpf_jiffies64(void)
4325 * Description
4326 * Obtain the 64bit jiffies
4327 * Return
4328 * The 64 bit jiffies
4329 *
4330 * long bpf_read_branch_records(struct bpf_perf_event_data *ctx, void *buf, u32 size, u64 flags)
4331 * Description
4332 * For an eBPF program attached to a perf event, retrieve the
4333 * branch records (**struct perf_branch_entry**) associated to *ctx*
4334 * and store it in the buffer pointed by *buf* up to size
4335 * *size* bytes.
4336 * Return
4337 * On success, number of bytes written to *buf*. On error, a
4338 * negative value.
4339 *
4340 * The *flags* can be set to **BPF_F_GET_BRANCH_RECORDS_SIZE** to
4341 * instead return the number of bytes required to store all the
4342 * branch entries. If this flag is set, *buf* may be NULL.
4343 *
4344 * **-EINVAL** if arguments invalid or **size** not a multiple
4345 * of **sizeof**\ (**struct perf_branch_entry**\ ).
4346 *
4347 * **-ENOENT** if architecture does not support branch records.
4348 *
4349 * long bpf_get_ns_current_pid_tgid(u64 dev, u64 ino, struct bpf_pidns_info *nsdata, u32 size)
4350 * Description
4351 * Returns 0 on success, values for *pid* and *tgid* as seen from the current
4352 * *namespace* will be returned in *nsdata*.
4353 * Return
4354 * 0 on success, or one of the following in case of failure:
4355 *
4356 * **-EINVAL** if dev and inum supplied don't match dev_t and inode number
4357 * with nsfs of current task, or if dev conversion to dev_t lost high bits.
4358 *
4359 * **-ENOENT** if pidns does not exists for the current task.
4360 *
4361 * long bpf_xdp_output(void *ctx, struct bpf_map *map, u64 flags, void *data, u64 size)
4362 * Description
4363 * Write raw *data* blob into a special BPF perf event held by
4364 * *map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. This perf
4365 * event must have the following attributes: **PERF_SAMPLE_RAW**
4366 * as **sample_type**, **PERF_TYPE_SOFTWARE** as **type**, and
4367 * **PERF_COUNT_SW_BPF_OUTPUT** as **config**.
4368 *
4369 * The *flags* are used to indicate the index in *map* for which
4370 * the value must be put, masked with **BPF_F_INDEX_MASK**.
4371 * Alternatively, *flags* can be set to **BPF_F_CURRENT_CPU**
4372 * to indicate that the index of the current CPU core should be
4373 * used.
4374 *
4375 * The value to write, of *size*, is passed through eBPF stack and
4376 * pointed by *data*.
4377 *
4378 * *ctx* is a pointer to in-kernel struct xdp_buff.
4379 *
4380 * This helper is similar to **bpf_perf_eventoutput**\ () but
4381 * restricted to raw_tracepoint bpf programs.
4382 * Return
4383 * 0 on success, or a negative error in case of failure.
4384 *
4385 * u64 bpf_get_netns_cookie(void *ctx)
4386 * Description
4387 * Retrieve the cookie (generated by the kernel) of the network
4388 * namespace the input *ctx* is associated with. The network
4389 * namespace cookie remains stable for its lifetime and provides
4390 * a global identifier that can be assumed unique. If *ctx* is
4391 * NULL, then the helper returns the cookie for the initial
4392 * network namespace. The cookie itself is very similar to that
4393 * of **bpf_get_socket_cookie**\ () helper, but for network
4394 * namespaces instead of sockets.
4395 * Return
4396 * A 8-byte long opaque number.
4397 *
4398 * u64 bpf_get_current_ancestor_cgroup_id(int ancestor_level)
4399 * Description
4400 * Return id of cgroup v2 that is ancestor of the cgroup associated
4401 * with the current task at the *ancestor_level*. The root cgroup
4402 * is at *ancestor_level* zero and each step down the hierarchy
4403 * increments the level. If *ancestor_level* == level of cgroup
4404 * associated with the current task, then return value will be the
4405 * same as that of **bpf_get_current_cgroup_id**\ ().
4406 *
4407 * The helper is useful to implement policies based on cgroups
4408 * that are upper in hierarchy than immediate cgroup associated
4409 * with the current task.
4410 *
4411 * The format of returned id and helper limitations are same as in
4412 * **bpf_get_current_cgroup_id**\ ().
4413 * Return
4414 * The id is returned or 0 in case the id could not be retrieved.
4415 *
4416 * long bpf_sk_assign(struct sk_buff *skb, void *sk, u64 flags)
4417 * Description
4418 * Helper is overloaded depending on BPF program type. This
4419 * description applies to **BPF_PROG_TYPE_SCHED_CLS** and
4420 * **BPF_PROG_TYPE_SCHED_ACT** programs.
4421 *
4422 * Assign the *sk* to the *skb*. When combined with appropriate
4423 * routing configuration to receive the packet towards the socket,
4424 * will cause *skb* to be delivered to the specified socket.
4425 * Subsequent redirection of *skb* via **bpf_redirect**\ (),
4426 * **bpf_clone_redirect**\ () or other methods outside of BPF may
4427 * interfere with successful delivery to the socket.
4428 *
4429 * This operation is only valid from TC ingress path.
4430 *
4431 * The *flags* argument must be zero.
4432 * Return
4433 * 0 on success, or a negative error in case of failure:
4434 *
4435 * **-EINVAL** if specified *flags* are not supported.
4436 *
4437 * **-ENOENT** if the socket is unavailable for assignment.
4438 *
4439 * **-ENETUNREACH** if the socket is unreachable (wrong netns).
4440 *
4441 * **-EOPNOTSUPP** if the operation is not supported, for example
4442 * a call from outside of TC ingress.
4443 *
4444 * long bpf_sk_assign(struct bpf_sk_lookup *ctx, struct bpf_sock *sk, u64 flags)
4445 * Description
4446 * Helper is overloaded depending on BPF program type. This
4447 * description applies to **BPF_PROG_TYPE_SK_LOOKUP** programs.
4448 *
4449 * Select the *sk* as a result of a socket lookup.
4450 *
4451 * For the operation to succeed passed socket must be compatible
4452 * with the packet description provided by the *ctx* object.
4453 *
4454 * L4 protocol (**IPPROTO_TCP** or **IPPROTO_UDP**) must
4455 * be an exact match. While IP family (**AF_INET** or
4456 * **AF_INET6**) must be compatible, that is IPv6 sockets
4457 * that are not v6-only can be selected for IPv4 packets.
4458 *
4459 * Only TCP listeners and UDP unconnected sockets can be
4460 * selected. *sk* can also be NULL to reset any previous
4461 * selection.
4462 *
4463 * *flags* argument can combination of following values:
4464 *
4465 * * **BPF_SK_LOOKUP_F_REPLACE** to override the previous
4466 * socket selection, potentially done by a BPF program
4467 * that ran before us.
4468 *
4469 * * **BPF_SK_LOOKUP_F_NO_REUSEPORT** to skip
4470 * load-balancing within reuseport group for the socket
4471 * being selected.
4472 *
4473 * On success *ctx->sk* will point to the selected socket.
4474 *
4475 * Return
4476 * 0 on success, or a negative errno in case of failure.
4477 *
4478 * * **-EAFNOSUPPORT** if socket family (*sk->family*) is
4479 * not compatible with packet family (*ctx->family*).
4480 *
4481 * * **-EEXIST** if socket has been already selected,
4482 * potentially by another program, and
4483 * **BPF_SK_LOOKUP_F_REPLACE** flag was not specified.
4484 *
4485 * * **-EINVAL** if unsupported flags were specified.
4486 *
4487 * * **-EPROTOTYPE** if socket L4 protocol
4488 * (*sk->protocol*) doesn't match packet protocol
4489 * (*ctx->protocol*).
4490 *
4491 * * **-ESOCKTNOSUPPORT** if socket is not in allowed
4492 * state (TCP listening or UDP unconnected).
4493 *
4494 * u64 bpf_ktime_get_boot_ns(void)
4495 * Description
4496 * Return the time elapsed since system boot, in nanoseconds.
4497 * Does include the time the system was suspended.
4498 * See: **clock_gettime**\ (**CLOCK_BOOTTIME**)
4499 * Return
4500 * Current *ktime*.
4501 *
4502 * long bpf_seq_printf(struct seq_file *m, const char *fmt, u32 fmt_size, const void *data, u32 data_len)
4503 * Description
4504 * **bpf_seq_printf**\ () uses seq_file **seq_printf**\ () to print
4505 * out the format string.
4506 * The *m* represents the seq_file. The *fmt* and *fmt_size* are for
4507 * the format string itself. The *data* and *data_len* are format string
4508 * arguments. The *data* are a **u64** array and corresponding format string
4509 * values are stored in the array. For strings and pointers where pointees
4510 * are accessed, only the pointer values are stored in the *data* array.
4511 * The *data_len* is the size of *data* in bytes - must be a multiple of 8.
4512 *
4513 * Formats **%s**, **%p{i,I}{4,6}** requires to read kernel memory.
4514 * Reading kernel memory may fail due to either invalid address or
4515 * valid address but requiring a major memory fault. If reading kernel memory
4516 * fails, the string for **%s** will be an empty string, and the ip
4517 * address for **%p{i,I}{4,6}** will be 0. Not returning error to
4518 * bpf program is consistent with what **bpf_trace_printk**\ () does for now.
4519 * Return
4520 * 0 on success, or a negative error in case of failure:
4521 *
4522 * **-EBUSY** if per-CPU memory copy buffer is busy, can try again
4523 * by returning 1 from bpf program.
4524 *
4525 * **-EINVAL** if arguments are invalid, or if *fmt* is invalid/unsupported.
4526 *
4527 * **-E2BIG** if *fmt* contains too many format specifiers.
4528 *
4529 * **-EOVERFLOW** if an overflow happened: The same object will be tried again.
4530 *
4531 * long bpf_seq_write(struct seq_file *m, const void *data, u32 len)
4532 * Description
4533 * **bpf_seq_write**\ () uses seq_file **seq_write**\ () to write the data.
4534 * The *m* represents the seq_file. The *data* and *len* represent the
4535 * data to write in bytes.
4536 * Return
4537 * 0 on success, or a negative error in case of failure:
4538 *
4539 * **-EOVERFLOW** if an overflow happened: The same object will be tried again.
4540 *
4541 * u64 bpf_sk_cgroup_id(void *sk)
4542 * Description
4543 * Return the cgroup v2 id of the socket *sk*.
4544 *
4545 * *sk* must be a non-**NULL** pointer to a socket, e.g. one
4546 * returned from **bpf_sk_lookup_xxx**\ (),
4547 * **bpf_sk_fullsock**\ (), etc. The format of returned id is
4548 * same as in **bpf_skb_cgroup_id**\ ().
4549 *
4550 * This helper is available only if the kernel was compiled with
4551 * the **CONFIG_SOCK_CGROUP_DATA** configuration option.
4552 * Return
4553 * The id is returned or 0 in case the id could not be retrieved.
4554 *
4555 * u64 bpf_sk_ancestor_cgroup_id(void *sk, int ancestor_level)
4556 * Description
4557 * Return id of cgroup v2 that is ancestor of cgroup associated
4558 * with the *sk* at the *ancestor_level*. The root cgroup is at
4559 * *ancestor_level* zero and each step down the hierarchy
4560 * increments the level. If *ancestor_level* == level of cgroup
4561 * associated with *sk*, then return value will be same as that
4562 * of **bpf_sk_cgroup_id**\ ().
4563 *
4564 * The helper is useful to implement policies based on cgroups
4565 * that are upper in hierarchy than immediate cgroup associated
4566 * with *sk*.
4567 *
4568 * The format of returned id and helper limitations are same as in
4569 * **bpf_sk_cgroup_id**\ ().
4570 * Return
4571 * The id is returned or 0 in case the id could not be retrieved.
4572 *
4573 * long bpf_ringbuf_output(void *ringbuf, void *data, u64 size, u64 flags)
4574 * Description
4575 * Copy *size* bytes from *data* into a ring buffer *ringbuf*.
4576 * If **BPF_RB_NO_WAKEUP** is specified in *flags*, no notification
4577 * of new data availability is sent.
4578 * If **BPF_RB_FORCE_WAKEUP** is specified in *flags*, notification
4579 * of new data availability is sent unconditionally.
4580 * If **0** is specified in *flags*, an adaptive notification
4581 * of new data availability is sent.
4582 *
4583 * An adaptive notification is a notification sent whenever the user-space
4584 * process has caught up and consumed all available payloads. In case the user-space
4585 * process is still processing a previous payload, then no notification is needed
4586 * as it will process the newly added payload automatically.
4587 * Return
4588 * 0 on success, or a negative error in case of failure.
4589 *
4590 * void *bpf_ringbuf_reserve(void *ringbuf, u64 size, u64 flags)
4591 * Description
4592 * Reserve *size* bytes of payload in a ring buffer *ringbuf*.
4593 * *flags* must be 0.
4594 * Return
4595 * Valid pointer with *size* bytes of memory available; NULL,
4596 * otherwise.
4597 *
4598 * void bpf_ringbuf_submit(void *data, u64 flags)
4599 * Description
4600 * Submit reserved ring buffer sample, pointed to by *data*.
4601 * If **BPF_RB_NO_WAKEUP** is specified in *flags*, no notification
4602 * of new data availability is sent.
4603 * If **BPF_RB_FORCE_WAKEUP** is specified in *flags*, notification
4604 * of new data availability is sent unconditionally.
4605 * If **0** is specified in *flags*, an adaptive notification
4606 * of new data availability is sent.
4607 *
4608 * See 'bpf_ringbuf_output()' for the definition of adaptive notification.
4609 * Return
4610 * Nothing. Always succeeds.
4611 *
4612 * void bpf_ringbuf_discard(void *data, u64 flags)
4613 * Description
4614 * Discard reserved ring buffer sample, pointed to by *data*.
4615 * If **BPF_RB_NO_WAKEUP** is specified in *flags*, no notification
4616 * of new data availability is sent.
4617 * If **BPF_RB_FORCE_WAKEUP** is specified in *flags*, notification
4618 * of new data availability is sent unconditionally.
4619 * If **0** is specified in *flags*, an adaptive notification
4620 * of new data availability is sent.
4621 *
4622 * See 'bpf_ringbuf_output()' for the definition of adaptive notification.
4623 * Return
4624 * Nothing. Always succeeds.
4625 *
4626 * u64 bpf_ringbuf_query(void *ringbuf, u64 flags)
4627 * Description
4628 * Query various characteristics of provided ring buffer. What
4629 * exactly is queries is determined by *flags*:
4630 *
4631 * * **BPF_RB_AVAIL_DATA**: Amount of data not yet consumed.
4632 * * **BPF_RB_RING_SIZE**: The size of ring buffer.
4633 * * **BPF_RB_CONS_POS**: Consumer position (can wrap around).
4634 * * **BPF_RB_PROD_POS**: Producer(s) position (can wrap around).
4635 *
4636 * Data returned is just a momentary snapshot of actual values
4637 * and could be inaccurate, so this facility should be used to
4638 * power heuristics and for reporting, not to make 100% correct
4639 * calculation.
4640 * Return
4641 * Requested value, or 0, if *flags* are not recognized.
4642 *
4643 * long bpf_csum_level(struct sk_buff *skb, u64 level)
4644 * Description
4645 * Change the skbs checksum level by one layer up or down, or
4646 * reset it entirely to none in order to have the stack perform
4647 * checksum validation. The level is applicable to the following
4648 * protocols: TCP, UDP, GRE, SCTP, FCOE. For example, a decap of
4649 * | ETH | IP | UDP | GUE | IP | TCP | into | ETH | IP | TCP |
4650 * through **bpf_skb_adjust_room**\ () helper with passing in
4651 * **BPF_F_ADJ_ROOM_NO_CSUM_RESET** flag would require one call
4652 * to **bpf_csum_level**\ () with **BPF_CSUM_LEVEL_DEC** since
4653 * the UDP header is removed. Similarly, an encap of the latter
4654 * into the former could be accompanied by a helper call to
4655 * **bpf_csum_level**\ () with **BPF_CSUM_LEVEL_INC** if the
4656 * skb is still intended to be processed in higher layers of the
4657 * stack instead of just egressing at tc.
4658 *
4659 * There are three supported level settings at this time:
4660 *
4661 * * **BPF_CSUM_LEVEL_INC**: Increases skb->csum_level for skbs
4662 * with CHECKSUM_UNNECESSARY.
4663 * * **BPF_CSUM_LEVEL_DEC**: Decreases skb->csum_level for skbs
4664 * with CHECKSUM_UNNECESSARY.
4665 * * **BPF_CSUM_LEVEL_RESET**: Resets skb->csum_level to 0 and
4666 * sets CHECKSUM_NONE to force checksum validation by the stack.
4667 * * **BPF_CSUM_LEVEL_QUERY**: No-op, returns the current
4668 * skb->csum_level.
4669 * Return
4670 * 0 on success, or a negative error in case of failure. In the
4671 * case of **BPF_CSUM_LEVEL_QUERY**, the current skb->csum_level
4672 * is returned or the error code -EACCES in case the skb is not
4673 * subject to CHECKSUM_UNNECESSARY.
4674 *
4675 * struct tcp6_sock *bpf_skc_to_tcp6_sock(void *sk)
4676 * Description
4677 * Dynamically cast a *sk* pointer to a *tcp6_sock* pointer.
4678 * Return
4679 * *sk* if casting is valid, or **NULL** otherwise.
4680 *
4681 * struct tcp_sock *bpf_skc_to_tcp_sock(void *sk)
4682 * Description
4683 * Dynamically cast a *sk* pointer to a *tcp_sock* pointer.
4684 * Return
4685 * *sk* if casting is valid, or **NULL** otherwise.
4686 *
4687 * struct tcp_timewait_sock *bpf_skc_to_tcp_timewait_sock(void *sk)
4688 * Description
4689 * Dynamically cast a *sk* pointer to a *tcp_timewait_sock* pointer.
4690 * Return
4691 * *sk* if casting is valid, or **NULL** otherwise.
4692 *
4693 * struct tcp_request_sock *bpf_skc_to_tcp_request_sock(void *sk)
4694 * Description
4695 * Dynamically cast a *sk* pointer to a *tcp_request_sock* pointer.
4696 * Return
4697 * *sk* if casting is valid, or **NULL** otherwise.
4698 *
4699 * struct udp6_sock *bpf_skc_to_udp6_sock(void *sk)
4700 * Description
4701 * Dynamically cast a *sk* pointer to a *udp6_sock* pointer.
4702 * Return
4703 * *sk* if casting is valid, or **NULL** otherwise.
4704 *
4705 * long bpf_get_task_stack(struct task_struct *task, void *buf, u32 size, u64 flags)
4706 * Description
4707 * Return a user or a kernel stack in bpf program provided buffer.
4708 * Note: the user stack will only be populated if the *task* is
4709 * the current task; all other tasks will return -EOPNOTSUPP.
4710 * To achieve this, the helper needs *task*, which is a valid
4711 * pointer to **struct task_struct**. To store the stacktrace, the
4712 * bpf program provides *buf* with a nonnegative *size*.
4713 *
4714 * The last argument, *flags*, holds the number of stack frames to
4715 * skip (from 0 to 255), masked with
4716 * **BPF_F_SKIP_FIELD_MASK**. The next bits can be used to set
4717 * the following flags:
4718 *
4719 * **BPF_F_USER_STACK**
4720 * Collect a user space stack instead of a kernel stack.
4721 * The *task* must be the current task.
4722 * **BPF_F_USER_BUILD_ID**
4723 * Collect buildid+offset instead of ips for user stack,
4724 * only valid if **BPF_F_USER_STACK** is also specified.
4725 *
4726 * **bpf_get_task_stack**\ () can collect up to
4727 * **PERF_MAX_STACK_DEPTH** both kernel and user frames, subject
4728 * to sufficient large buffer size. Note that
4729 * this limit can be controlled with the **sysctl** program, and
4730 * that it should be manually increased in order to profile long
4731 * user stacks (such as stacks for Java programs). To do so, use:
4732 *
4733 * ::
4734 *
4735 * # sysctl kernel.perf_event_max_stack=<new value>
4736 * Return
4737 * The non-negative copied *buf* length equal to or less than
4738 * *size* on success, or a negative error in case of failure.
4739 *
4740 * long bpf_load_hdr_opt(struct bpf_sock_ops *skops, void *searchby_res, u32 len, u64 flags)
4741 * Description
4742 * Load header option. Support reading a particular TCP header
4743 * option for bpf program (**BPF_PROG_TYPE_SOCK_OPS**).
4744 *
4745 * If *flags* is 0, it will search the option from the
4746 * *skops*\ **->skb_data**. The comment in **struct bpf_sock_ops**
4747 * has details on what skb_data contains under different
4748 * *skops*\ **->op**.
4749 *
4750 * The first byte of the *searchby_res* specifies the
4751 * kind that it wants to search.
4752 *
4753 * If the searching kind is an experimental kind
4754 * (i.e. 253 or 254 according to RFC6994). It also
4755 * needs to specify the "magic" which is either
4756 * 2 bytes or 4 bytes. It then also needs to
4757 * specify the size of the magic by using
4758 * the 2nd byte which is "kind-length" of a TCP
4759 * header option and the "kind-length" also
4760 * includes the first 2 bytes "kind" and "kind-length"
4761 * itself as a normal TCP header option also does.
4762 *
4763 * For example, to search experimental kind 254 with
4764 * 2 byte magic 0xeB9F, the searchby_res should be
4765 * [ 254, 4, 0xeB, 0x9F, 0, 0, .... 0 ].
4766 *
4767 * To search for the standard window scale option (3),
4768 * the *searchby_res* should be [ 3, 0, 0, .... 0 ].
4769 * Note, kind-length must be 0 for regular option.
4770 *
4771 * Searching for No-Op (0) and End-of-Option-List (1) are
4772 * not supported.
4773 *
4774 * *len* must be at least 2 bytes which is the minimal size
4775 * of a header option.
4776 *
4777 * Supported flags:
4778 *
4779 * * **BPF_LOAD_HDR_OPT_TCP_SYN** to search from the
4780 * saved_syn packet or the just-received syn packet.
4781 *
4782 * Return
4783 * > 0 when found, the header option is copied to *searchby_res*.
4784 * The return value is the total length copied. On failure, a
4785 * negative error code is returned:
4786 *
4787 * **-EINVAL** if a parameter is invalid.
4788 *
4789 * **-ENOMSG** if the option is not found.
4790 *
4791 * **-ENOENT** if no syn packet is available when
4792 * **BPF_LOAD_HDR_OPT_TCP_SYN** is used.
4793 *
4794 * **-ENOSPC** if there is not enough space. Only *len* number of
4795 * bytes are copied.
4796 *
4797 * **-EFAULT** on failure to parse the header options in the
4798 * packet.
4799 *
4800 * **-EPERM** if the helper cannot be used under the current
4801 * *skops*\ **->op**.
4802 *
4803 * long bpf_store_hdr_opt(struct bpf_sock_ops *skops, const void *from, u32 len, u64 flags)
4804 * Description
4805 * Store header option. The data will be copied
4806 * from buffer *from* with length *len* to the TCP header.
4807 *
4808 * The buffer *from* should have the whole option that
4809 * includes the kind, kind-length, and the actual
4810 * option data. The *len* must be at least kind-length
4811 * long. The kind-length does not have to be 4 byte
4812 * aligned. The kernel will take care of the padding
4813 * and setting the 4 bytes aligned value to th->doff.
4814 *
4815 * This helper will check for duplicated option
4816 * by searching the same option in the outgoing skb.
4817 *
4818 * This helper can only be called during
4819 * **BPF_SOCK_OPS_WRITE_HDR_OPT_CB**.
4820 *
4821 * Return
4822 * 0 on success, or negative error in case of failure:
4823 *
4824 * **-EINVAL** If param is invalid.
4825 *
4826 * **-ENOSPC** if there is not enough space in the header.
4827 * Nothing has been written
4828 *
4829 * **-EEXIST** if the option already exists.
4830 *
4831 * **-EFAULT** on failure to parse the existing header options.
4832 *
4833 * **-EPERM** if the helper cannot be used under the current
4834 * *skops*\ **->op**.
4835 *
4836 * long bpf_reserve_hdr_opt(struct bpf_sock_ops *skops, u32 len, u64 flags)
4837 * Description
4838 * Reserve *len* bytes for the bpf header option. The
4839 * space will be used by **bpf_store_hdr_opt**\ () later in
4840 * **BPF_SOCK_OPS_WRITE_HDR_OPT_CB**.
4841 *
4842 * If **bpf_reserve_hdr_opt**\ () is called multiple times,
4843 * the total number of bytes will be reserved.
4844 *
4845 * This helper can only be called during
4846 * **BPF_SOCK_OPS_HDR_OPT_LEN_CB**.
4847 *
4848 * Return
4849 * 0 on success, or negative error in case of failure:
4850 *
4851 * **-EINVAL** if a parameter is invalid.
4852 *
4853 * **-ENOSPC** if there is not enough space in the header.
4854 *
4855 * **-EPERM** if the helper cannot be used under the current
4856 * *skops*\ **->op**.
4857 *
4858 * void *bpf_inode_storage_get(struct bpf_map *map, void *inode, void *value, u64 flags)
4859 * Description
4860 * Get a bpf_local_storage from an *inode*.
4861 *
4862 * Logically, it could be thought of as getting the value from
4863 * a *map* with *inode* as the **key**. From this
4864 * perspective, the usage is not much different from
4865 * **bpf_map_lookup_elem**\ (*map*, **&**\ *inode*) except this
4866 * helper enforces the key must be an inode and the map must also
4867 * be a **BPF_MAP_TYPE_INODE_STORAGE**.
4868 *
4869 * Underneath, the value is stored locally at *inode* instead of
4870 * the *map*. The *map* is used as the bpf-local-storage
4871 * "type". The bpf-local-storage "type" (i.e. the *map*) is
4872 * searched against all bpf_local_storage residing at *inode*.
4873 *
4874 * An optional *flags* (**BPF_LOCAL_STORAGE_GET_F_CREATE**) can be
4875 * used such that a new bpf_local_storage will be
4876 * created if one does not exist. *value* can be used
4877 * together with **BPF_LOCAL_STORAGE_GET_F_CREATE** to specify
4878 * the initial value of a bpf_local_storage. If *value* is
4879 * **NULL**, the new bpf_local_storage will be zero initialized.
4880 * Return
4881 * A bpf_local_storage pointer is returned on success.
4882 *
4883 * **NULL** if not found or there was an error in adding
4884 * a new bpf_local_storage.
4885 *
4886 * int bpf_inode_storage_delete(struct bpf_map *map, void *inode)
4887 * Description
4888 * Delete a bpf_local_storage from an *inode*.
4889 * Return
4890 * 0 on success.
4891 *
4892 * **-ENOENT** if the bpf_local_storage cannot be found.
4893 *
4894 * long bpf_d_path(const struct path *path, char *buf, u32 sz)
4895 * Description
4896 * Return full path for given **struct path** object, which
4897 * needs to be the kernel BTF *path* object. The path is
4898 * returned in the provided buffer *buf* of size *sz* and
4899 * is zero terminated.
4900 *
4901 * Return
4902 * On success, the strictly positive length of the string,
4903 * including the trailing NUL character. On error, a negative
4904 * value.
4905 *
4906 * long bpf_copy_from_user(void *dst, u32 size, const void *user_ptr)
4907 * Description
4908 * Read *size* bytes from user space address *user_ptr* and store
4909 * the data in *dst*. This is a wrapper of **copy_from_user**\ ().
4910 * Return
4911 * 0 on success, or a negative error in case of failure.
4912 *
4913 * long bpf_snprintf_btf(char *str, u32 str_size, struct btf_ptr *ptr, u32 btf_ptr_size, u64 flags)
4914 * Description
4915 * Use BTF to store a string representation of *ptr*->ptr in *str*,
4916 * using *ptr*->type_id. This value should specify the type
4917 * that *ptr*->ptr points to. LLVM __builtin_btf_type_id(type, 1)
4918 * can be used to look up vmlinux BTF type ids. Traversing the
4919 * data structure using BTF, the type information and values are
4920 * stored in the first *str_size* - 1 bytes of *str*. Safe copy of
4921 * the pointer data is carried out to avoid kernel crashes during
4922 * operation. Smaller types can use string space on the stack;
4923 * larger programs can use map data to store the string
4924 * representation.
4925 *
4926 * The string can be subsequently shared with userspace via
4927 * bpf_perf_event_output() or ring buffer interfaces.
4928 * bpf_trace_printk() is to be avoided as it places too small
4929 * a limit on string size to be useful.
4930 *
4931 * *flags* is a combination of
4932 *
4933 * **BTF_F_COMPACT**
4934 * no formatting around type information
4935 * **BTF_F_NONAME**
4936 * no struct/union member names/types
4937 * **BTF_F_PTR_RAW**
4938 * show raw (unobfuscated) pointer values;
4939 * equivalent to printk specifier %px.
4940 * **BTF_F_ZERO**
4941 * show zero-valued struct/union members; they
4942 * are not displayed by default
4943 *
4944 * Return
4945 * The number of bytes that were written (or would have been
4946 * written if output had to be truncated due to string size),
4947 * or a negative error in cases of failure.
4948 *
4949 * long bpf_seq_printf_btf(struct seq_file *m, struct btf_ptr *ptr, u32 ptr_size, u64 flags)
4950 * Description
4951 * Use BTF to write to seq_write a string representation of
4952 * *ptr*->ptr, using *ptr*->type_id as per bpf_snprintf_btf().
4953 * *flags* are identical to those used for bpf_snprintf_btf.
4954 * Return
4955 * 0 on success or a negative error in case of failure.
4956 *
4957 * u64 bpf_skb_cgroup_classid(struct sk_buff *skb)
4958 * Description
4959 * See **bpf_get_cgroup_classid**\ () for the main description.
4960 * This helper differs from **bpf_get_cgroup_classid**\ () in that
4961 * the cgroup v1 net_cls class is retrieved only from the *skb*'s
4962 * associated socket instead of the current process.
4963 * Return
4964 * The id is returned or 0 in case the id could not be retrieved.
4965 *
4966 * long bpf_redirect_neigh(u32 ifindex, struct bpf_redir_neigh *params, int plen, u64 flags)
4967 * Description
4968 * Redirect the packet to another net device of index *ifindex*
4969 * and fill in L2 addresses from neighboring subsystem. This helper
4970 * is somewhat similar to **bpf_redirect**\ (), except that it
4971 * populates L2 addresses as well, meaning, internally, the helper
4972 * relies on the neighbor lookup for the L2 address of the nexthop.
4973 *
4974 * The helper will perform a FIB lookup based on the skb's
4975 * networking header to get the address of the next hop, unless
4976 * this is supplied by the caller in the *params* argument. The
4977 * *plen* argument indicates the len of *params* and should be set
4978 * to 0 if *params* is NULL.
4979 *
4980 * The *flags* argument is reserved and must be 0. The helper is
4981 * currently only supported for tc BPF program types, and enabled
4982 * for IPv4 and IPv6 protocols.
4983 * Return
4984 * The helper returns **TC_ACT_REDIRECT** on success or
4985 * **TC_ACT_SHOT** on error.
4986 *
4987 * void *bpf_per_cpu_ptr(const void *percpu_ptr, u32 cpu)
4988 * Description
4989 * Take a pointer to a percpu ksym, *percpu_ptr*, and return a
4990 * pointer to the percpu kernel variable on *cpu*. A ksym is an
4991 * extern variable decorated with '__ksym'. For ksym, there is a
4992 * global var (either static or global) defined of the same name
4993 * in the kernel. The ksym is percpu if the global var is percpu.
4994 * The returned pointer points to the global percpu var on *cpu*.
4995 *
4996 * bpf_per_cpu_ptr() has the same semantic as per_cpu_ptr() in the
4997 * kernel, except that bpf_per_cpu_ptr() may return NULL. This
4998 * happens if *cpu* is larger than nr_cpu_ids. The caller of
4999 * bpf_per_cpu_ptr() must check the returned value.
5000 * Return
5001 * A pointer pointing to the kernel percpu variable on *cpu*, or
5002 * NULL, if *cpu* is invalid.
5003 *
5004 * void *bpf_this_cpu_ptr(const void *percpu_ptr)
5005 * Description
5006 * Take a pointer to a percpu ksym, *percpu_ptr*, and return a
5007 * pointer to the percpu kernel variable on this cpu. See the
5008 * description of 'ksym' in **bpf_per_cpu_ptr**\ ().
5009 *
5010 * bpf_this_cpu_ptr() has the same semantic as this_cpu_ptr() in
5011 * the kernel. Different from **bpf_per_cpu_ptr**\ (), it would
5012 * never return NULL.
5013 * Return
5014 * A pointer pointing to the kernel percpu variable on this cpu.
5015 *
5016 * long bpf_redirect_peer(u32 ifindex, u64 flags)
5017 * Description
5018 * Redirect the packet to another net device of index *ifindex*.
5019 * This helper is somewhat similar to **bpf_redirect**\ (), except
5020 * that the redirection happens to the *ifindex*' peer device and
5021 * the netns switch takes place from ingress to ingress without
5022 * going through the CPU's backlog queue.
5023 *
5024 * *skb*\ **->mark** and *skb*\ **->tstamp** are not cleared during
5025 * the netns switch.
5026 *
5027 * The *flags* argument is reserved and must be 0. The helper is
5028 * currently only supported for tc BPF program types at the
5029 * ingress hook and for veth and netkit target device types. The
5030 * peer device must reside in a different network namespace.
5031 * Return
5032 * The helper returns **TC_ACT_REDIRECT** on success or
5033 * **TC_ACT_SHOT** on error.
5034 *
5035 * void *bpf_task_storage_get(struct bpf_map *map, struct task_struct *task, void *value, u64 flags)
5036 * Description
5037 * Get a bpf_local_storage from the *task*.
5038 *
5039 * Logically, it could be thought of as getting the value from
5040 * a *map* with *task* as the **key**. From this
5041 * perspective, the usage is not much different from
5042 * **bpf_map_lookup_elem**\ (*map*, **&**\ *task*) except this
5043 * helper enforces the key must be a task_struct and the map must also
5044 * be a **BPF_MAP_TYPE_TASK_STORAGE**.
5045 *
5046 * Underneath, the value is stored locally at *task* instead of
5047 * the *map*. The *map* is used as the bpf-local-storage
5048 * "type". The bpf-local-storage "type" (i.e. the *map*) is
5049 * searched against all bpf_local_storage residing at *task*.
5050 *
5051 * An optional *flags* (**BPF_LOCAL_STORAGE_GET_F_CREATE**) can be
5052 * used such that a new bpf_local_storage will be
5053 * created if one does not exist. *value* can be used
5054 * together with **BPF_LOCAL_STORAGE_GET_F_CREATE** to specify
5055 * the initial value of a bpf_local_storage. If *value* is
5056 * **NULL**, the new bpf_local_storage will be zero initialized.
5057 * Return
5058 * A bpf_local_storage pointer is returned on success.
5059 *
5060 * **NULL** if not found or there was an error in adding
5061 * a new bpf_local_storage.
5062 *
5063 * long bpf_task_storage_delete(struct bpf_map *map, struct task_struct *task)
5064 * Description
5065 * Delete a bpf_local_storage from a *task*.
5066 * Return
5067 * 0 on success.
5068 *
5069 * **-ENOENT** if the bpf_local_storage cannot be found.
5070 *
5071 * struct task_struct *bpf_get_current_task_btf(void)
5072 * Description
5073 * Return a BTF pointer to the "current" task.
5074 * This pointer can also be used in helpers that accept an
5075 * *ARG_PTR_TO_BTF_ID* of type *task_struct*.
5076 * Return
5077 * Pointer to the current task.
5078 *
5079 * long bpf_bprm_opts_set(struct linux_binprm *bprm, u64 flags)
5080 * Description
5081 * Set or clear certain options on *bprm*:
5082 *
5083 * **BPF_F_BPRM_SECUREEXEC** Set the secureexec bit
5084 * which sets the **AT_SECURE** auxv for glibc. The bit
5085 * is cleared if the flag is not specified.
5086 * Return
5087 * **-EINVAL** if invalid *flags* are passed, zero otherwise.
5088 *
5089 * u64 bpf_ktime_get_coarse_ns(void)
5090 * Description
5091 * Return a coarse-grained version of the time elapsed since
5092 * system boot, in nanoseconds. Does not include time the system
5093 * was suspended.
5094 *
5095 * See: **clock_gettime**\ (**CLOCK_MONOTONIC_COARSE**)
5096 * Return
5097 * Current *ktime*.
5098 *
5099 * long bpf_ima_inode_hash(struct inode *inode, void *dst, u32 size)
5100 * Description
5101 * Returns the stored IMA hash of the *inode* (if it's available).
5102 * If the hash is larger than *size*, then only *size*
5103 * bytes will be copied to *dst*
5104 * Return
5105 * The **hash_algo** is returned on success,
5106 * **-EOPNOTSUPP** if IMA is disabled or **-EINVAL** if
5107 * invalid arguments are passed.
5108 *
5109 * struct socket *bpf_sock_from_file(struct file *file)
5110 * Description
5111 * If the given file represents a socket, returns the associated
5112 * socket.
5113 * Return
5114 * A pointer to a struct socket on success or NULL if the file is
5115 * not a socket.
5116 *
5117 * long bpf_check_mtu(void *ctx, u32 ifindex, u32 *mtu_len, s32 len_diff, u64 flags)
5118 * Description
5119 * Check packet size against exceeding MTU of net device (based
5120 * on *ifindex*). This helper will likely be used in combination
5121 * with helpers that adjust/change the packet size.
5122 *
5123 * The argument *len_diff* can be used for querying with a planned
5124 * size change. This allows to check MTU prior to changing packet
5125 * ctx. Providing a *len_diff* adjustment that is larger than the
5126 * actual packet size (resulting in negative packet size) will in
5127 * principle not exceed the MTU, which is why it is not considered
5128 * a failure. Other BPF helpers are needed for performing the
5129 * planned size change; therefore the responsibility for catching
5130 * a negative packet size belongs in those helpers.
5131 *
5132 * Specifying *ifindex* zero means the MTU check is performed
5133 * against the current net device. This is practical if this isn't
5134 * used prior to redirect.
5135 *
5136 * On input *mtu_len* must be a valid pointer, else verifier will
5137 * reject BPF program. If the value *mtu_len* is initialized to
5138 * zero then the ctx packet size is use. When value *mtu_len* is
5139 * provided as input this specify the L3 length that the MTU check
5140 * is done against. Remember XDP and TC length operate at L2, but
5141 * this value is L3 as this correlate to MTU and IP-header tot_len
5142 * values which are L3 (similar behavior as bpf_fib_lookup).
5143 *
5144 * The Linux kernel route table can configure MTUs on a more
5145 * specific per route level, which is not provided by this helper.
5146 * For route level MTU checks use the **bpf_fib_lookup**\ ()
5147 * helper.
5148 *
5149 * *ctx* is either **struct xdp_md** for XDP programs or
5150 * **struct sk_buff** for tc cls_act programs.
5151 *
5152 * The *flags* argument can be a combination of one or more of the
5153 * following values:
5154 *
5155 * **BPF_MTU_CHK_SEGS**
5156 * This flag will only works for *ctx* **struct sk_buff**.
5157 * If packet context contains extra packet segment buffers
5158 * (often knows as GSO skb), then MTU check is harder to
5159 * check at this point, because in transmit path it is
5160 * possible for the skb packet to get re-segmented
5161 * (depending on net device features). This could still be
5162 * a MTU violation, so this flag enables performing MTU
5163 * check against segments, with a different violation
5164 * return code to tell it apart. Check cannot use len_diff.
5165 *
5166 * On return *mtu_len* pointer contains the MTU value of the net
5167 * device. Remember the net device configured MTU is the L3 size,
5168 * which is returned here and XDP and TC length operate at L2.
5169 * Helper take this into account for you, but remember when using
5170 * MTU value in your BPF-code.
5171 *
5172 * Return
5173 * * 0 on success, and populate MTU value in *mtu_len* pointer.
5174 *
5175 * * < 0 if any input argument is invalid (*mtu_len* not updated)
5176 *
5177 * MTU violations return positive values, but also populate MTU
5178 * value in *mtu_len* pointer, as this can be needed for
5179 * implementing PMTU handing:
5180 *
5181 * * **BPF_MTU_CHK_RET_FRAG_NEEDED**
5182 * * **BPF_MTU_CHK_RET_SEGS_TOOBIG**
5183 *
5184 * long bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn, void *callback_ctx, u64 flags)
5185 * Description
5186 * For each element in **map**, call **callback_fn** function with
5187 * **map**, **callback_ctx** and other map-specific parameters.
5188 * The **callback_fn** should be a static function and
5189 * the **callback_ctx** should be a pointer to the stack.
5190 * The **flags** is used to control certain aspects of the helper.
5191 * Currently, the **flags** must be 0.
5192 *
5193 * The following are a list of supported map types and their
5194 * respective expected callback signatures:
5195 *
5196 * BPF_MAP_TYPE_HASH, BPF_MAP_TYPE_PERCPU_HASH,
5197 * BPF_MAP_TYPE_LRU_HASH, BPF_MAP_TYPE_LRU_PERCPU_HASH,
5198 * BPF_MAP_TYPE_ARRAY, BPF_MAP_TYPE_PERCPU_ARRAY
5199 *
5200 * long (\*callback_fn)(struct bpf_map \*map, const void \*key, void \*value, void \*ctx);
5201 *
5202 * For per_cpu maps, the map_value is the value on the cpu where the
5203 * bpf_prog is running.
5204 *
5205 * If **callback_fn** return 0, the helper will continue to the next
5206 * element. If return value is 1, the helper will skip the rest of
5207 * elements and return. Other return values are not used now.
5208 *
5209 * Return
5210 * The number of traversed map elements for success, **-EINVAL** for
5211 * invalid **flags**.
5212 *
5213 * long bpf_snprintf(char *str, u32 str_size, const char *fmt, u64 *data, u32 data_len)
5214 * Description
5215 * Outputs a string into the **str** buffer of size **str_size**
5216 * based on a format string stored in a read-only map pointed by
5217 * **fmt**.
5218 *
5219 * Each format specifier in **fmt** corresponds to one u64 element
5220 * in the **data** array. For strings and pointers where pointees
5221 * are accessed, only the pointer values are stored in the *data*
5222 * array. The *data_len* is the size of *data* in bytes - must be
5223 * a multiple of 8.
5224 *
5225 * Formats **%s** and **%p{i,I}{4,6}** require to read kernel
5226 * memory. Reading kernel memory may fail due to either invalid
5227 * address or valid address but requiring a major memory fault. If
5228 * reading kernel memory fails, the string for **%s** will be an
5229 * empty string, and the ip address for **%p{i,I}{4,6}** will be 0.
5230 * Not returning error to bpf program is consistent with what
5231 * **bpf_trace_printk**\ () does for now.
5232 *
5233 * Return
5234 * The strictly positive length of the formatted string, including
5235 * the trailing zero character. If the return value is greater than
5236 * **str_size**, **str** contains a truncated string, guaranteed to
5237 * be zero-terminated except when **str_size** is 0.
5238 *
5239 * Or **-EBUSY** if the per-CPU memory copy buffer is busy.
5240 *
5241 * long bpf_sys_bpf(u32 cmd, void *attr, u32 attr_size)
5242 * Description
5243 * Execute bpf syscall with given arguments.
5244 * Return
5245 * A syscall result.
5246 *
5247 * long bpf_btf_find_by_name_kind(char *name, int name_sz, u32 kind, int flags)
5248 * Description
5249 * Find BTF type with given name and kind in vmlinux BTF or in module's BTFs.
5250 * Return
5251 * Returns btf_id and btf_obj_fd in lower and upper 32 bits.
5252 *
5253 * long bpf_sys_close(u32 fd)
5254 * Description
5255 * Execute close syscall for given FD.
5256 * Return
5257 * A syscall result.
5258 *
5259 * long bpf_timer_init(struct bpf_timer *timer, struct bpf_map *map, u64 flags)
5260 * Description
5261 * Initialize the timer.
5262 * First 4 bits of *flags* specify clockid.
5263 * Only CLOCK_MONOTONIC, CLOCK_REALTIME, CLOCK_BOOTTIME are allowed.
5264 * All other bits of *flags* are reserved.
5265 * The verifier will reject the program if *timer* is not from
5266 * the same *map*.
5267 * Return
5268 * 0 on success.
5269 * **-EBUSY** if *timer* is already initialized.
5270 * **-EINVAL** if invalid *flags* are passed.
5271 * **-EPERM** if *timer* is in a map that doesn't have any user references.
5272 * The user space should either hold a file descriptor to a map with timers
5273 * or pin such map in bpffs. When map is unpinned or file descriptor is
5274 * closed all timers in the map will be cancelled and freed.
5275 *
5276 * long bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn)
5277 * Description
5278 * Configure the timer to call *callback_fn* static function.
5279 * Return
5280 * 0 on success.
5281 * **-EINVAL** if *timer* was not initialized with bpf_timer_init() earlier.
5282 * **-EPERM** if *timer* is in a map that doesn't have any user references.
5283 * The user space should either hold a file descriptor to a map with timers
5284 * or pin such map in bpffs. When map is unpinned or file descriptor is
5285 * closed all timers in the map will be cancelled and freed.
5286 *
5287 * long bpf_timer_start(struct bpf_timer *timer, u64 nsecs, u64 flags)
5288 * Description
5289 * Set timer expiration N nanoseconds from the current time. The
5290 * configured callback will be invoked in soft irq context on some cpu
5291 * and will not repeat unless another bpf_timer_start() is made.
5292 * In such case the next invocation can migrate to a different cpu.
5293 * Since struct bpf_timer is a field inside map element the map
5294 * owns the timer. The bpf_timer_set_callback() will increment refcnt
5295 * of BPF program to make sure that callback_fn code stays valid.
5296 * When user space reference to a map reaches zero all timers
5297 * in a map are cancelled and corresponding program's refcnts are
5298 * decremented. This is done to make sure that Ctrl-C of a user
5299 * process doesn't leave any timers running. If map is pinned in
5300 * bpffs the callback_fn can re-arm itself indefinitely.
5301 * bpf_map_update/delete_elem() helpers and user space sys_bpf commands
5302 * cancel and free the timer in the given map element.
5303 * The map can contain timers that invoke callback_fn-s from different
5304 * programs. The same callback_fn can serve different timers from
5305 * different maps if key/value layout matches across maps.
5306 * Every bpf_timer_set_callback() can have different callback_fn.
5307 *
5308 * *flags* can be one of:
5309 *
5310 * **BPF_F_TIMER_ABS**
5311 * Start the timer in absolute expire value instead of the
5312 * default relative one.
5313 * **BPF_F_TIMER_CPU_PIN**
5314 * Timer will be pinned to the CPU of the caller.
5315 *
5316 * Return
5317 * 0 on success.
5318 * **-EINVAL** if *timer* was not initialized with bpf_timer_init() earlier
5319 * or invalid *flags* are passed.
5320 *
5321 * long bpf_timer_cancel(struct bpf_timer *timer)
5322 * Description
5323 * Cancel the timer and wait for callback_fn to finish if it was running.
5324 * Return
5325 * 0 if the timer was not active.
5326 * 1 if the timer was active.
5327 * **-EINVAL** if *timer* was not initialized with bpf_timer_init() earlier.
5328 * **-EDEADLK** if callback_fn tried to call bpf_timer_cancel() on its
5329 * own timer which would have led to a deadlock otherwise.
5330 *
5331 * u64 bpf_get_func_ip(void *ctx)
5332 * Description
5333 * Get address of the traced function (for tracing and kprobe programs).
5334 *
5335 * When called for kprobe program attached as uprobe it returns
5336 * probe address for both entry and return uprobe.
5337 *
5338 * Return
5339 * Address of the traced function for kprobe.
5340 * 0 for kprobes placed within the function (not at the entry).
5341 * Address of the probe for uprobe and return uprobe.
5342 *
5343 * u64 bpf_get_attach_cookie(void *ctx)
5344 * Description
5345 * Get bpf_cookie value provided (optionally) during the program
5346 * attachment. It might be different for each individual
5347 * attachment, even if BPF program itself is the same.
5348 * Expects BPF program context *ctx* as a first argument.
5349 *
5350 * Supported for the following program types:
5351 * - kprobe/uprobe;
5352 * - tracepoint;
5353 * - perf_event.
5354 * Return
5355 * Value specified by user at BPF link creation/attachment time
5356 * or 0, if it was not specified.
5357 *
5358 * long bpf_task_pt_regs(struct task_struct *task)
5359 * Description
5360 * Get the struct pt_regs associated with **task**.
5361 * Return
5362 * A pointer to struct pt_regs.
5363 *
5364 * long bpf_get_branch_snapshot(void *entries, u32 size, u64 flags)
5365 * Description
5366 * Get branch trace from hardware engines like Intel LBR. The
5367 * hardware engine is stopped shortly after the helper is
5368 * called. Therefore, the user need to filter branch entries
5369 * based on the actual use case. To capture branch trace
5370 * before the trigger point of the BPF program, the helper
5371 * should be called at the beginning of the BPF program.
5372 *
5373 * The data is stored as struct perf_branch_entry into output
5374 * buffer *entries*. *size* is the size of *entries* in bytes.
5375 * *flags* is reserved for now and must be zero.
5376 *
5377 * Return
5378 * On success, number of bytes written to *buf*. On error, a
5379 * negative value.
5380 *
5381 * **-EINVAL** if *flags* is not zero.
5382 *
5383 * **-ENOENT** if architecture does not support branch records.
5384 *
5385 * long bpf_trace_vprintk(const char *fmt, u32 fmt_size, const void *data, u32 data_len)
5386 * Description
5387 * Behaves like **bpf_trace_printk**\ () helper, but takes an array of u64
5388 * to format and can handle more format args as a result.
5389 *
5390 * Arguments are to be used as in **bpf_seq_printf**\ () helper.
5391 * Return
5392 * The number of bytes written to the buffer, or a negative error
5393 * in case of failure.
5394 *
5395 * struct unix_sock *bpf_skc_to_unix_sock(void *sk)
5396 * Description
5397 * Dynamically cast a *sk* pointer to a *unix_sock* pointer.
5398 * Return
5399 * *sk* if casting is valid, or **NULL** otherwise.
5400 *
5401 * long bpf_kallsyms_lookup_name(const char *name, int name_sz, int flags, u64 *res)
5402 * Description
5403 * Get the address of a kernel symbol, returned in *res*. *res* is
5404 * set to 0 if the symbol is not found.
5405 * Return
5406 * On success, zero. On error, a negative value.
5407 *
5408 * **-EINVAL** if *flags* is not zero.
5409 *
5410 * **-EINVAL** if string *name* is not the same size as *name_sz*.
5411 *
5412 * **-ENOENT** if symbol is not found.
5413 *
5414 * **-EPERM** if caller does not have permission to obtain kernel address.
5415 *
5416 * long bpf_find_vma(struct task_struct *task, u64 addr, void *callback_fn, void *callback_ctx, u64 flags)
5417 * Description
5418 * Find vma of *task* that contains *addr*, call *callback_fn*
5419 * function with *task*, *vma*, and *callback_ctx*.
5420 * The *callback_fn* should be a static function and
5421 * the *callback_ctx* should be a pointer to the stack.
5422 * The *flags* is used to control certain aspects of the helper.
5423 * Currently, the *flags* must be 0.
5424 *
5425 * The expected callback signature is
5426 *
5427 * long (\*callback_fn)(struct task_struct \*task, struct vm_area_struct \*vma, void \*callback_ctx);
5428 *
5429 * Return
5430 * 0 on success.
5431 * **-ENOENT** if *task->mm* is NULL, or no vma contains *addr*.
5432 * **-EBUSY** if failed to try lock mmap_lock.
5433 * **-EINVAL** for invalid **flags**.
5434 *
5435 * long bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx, u64 flags)
5436 * Description
5437 * For **nr_loops**, call **callback_fn** function
5438 * with **callback_ctx** as the context parameter.
5439 * The **callback_fn** should be a static function and
5440 * the **callback_ctx** should be a pointer to the stack.
5441 * The **flags** is used to control certain aspects of the helper.
5442 * Currently, the **flags** must be 0. Currently, nr_loops is
5443 * limited to 1 << 23 (~8 million) loops.
5444 *
5445 * long (\*callback_fn)(u64 index, void \*ctx);
5446 *
5447 * where **index** is the current index in the loop. The index
5448 * is zero-indexed.
5449 *
5450 * If **callback_fn** returns 0, the helper will continue to the next
5451 * loop. If return value is 1, the helper will skip the rest of
5452 * the loops and return. Other return values are not used now,
5453 * and will be rejected by the verifier.
5454 *
5455 * Return
5456 * The number of loops performed, **-EINVAL** for invalid **flags**,
5457 * **-E2BIG** if **nr_loops** exceeds the maximum number of loops.
5458 *
5459 * long bpf_strncmp(const char *s1, u32 s1_sz, const char *s2)
5460 * Description
5461 * Do strncmp() between **s1** and **s2**. **s1** doesn't need
5462 * to be null-terminated and **s1_sz** is the maximum storage
5463 * size of **s1**. **s2** must be a read-only string.
5464 * Return
5465 * An integer less than, equal to, or greater than zero
5466 * if the first **s1_sz** bytes of **s1** is found to be
5467 * less than, to match, or be greater than **s2**.
5468 *
5469 * long bpf_get_func_arg(void *ctx, u32 n, u64 *value)
5470 * Description
5471 * Get **n**-th argument register (zero based) of the traced function (for tracing programs)
5472 * returned in **value**.
5473 *
5474 * Return
5475 * 0 on success.
5476 * **-EINVAL** if n >= argument register count of traced function.
5477 *
5478 * long bpf_get_func_ret(void *ctx, u64 *value)
5479 * Description
5480 * Get return value of the traced function (for tracing programs)
5481 * in **value**.
5482 *
5483 * Return
5484 * 0 on success.
5485 * **-EOPNOTSUPP** for tracing programs other than BPF_TRACE_FEXIT or BPF_MODIFY_RETURN.
5486 *
5487 * long bpf_get_func_arg_cnt(void *ctx)
5488 * Description
5489 * Get number of registers of the traced function (for tracing programs) where
5490 * function arguments are stored in these registers.
5491 *
5492 * Return
5493 * The number of argument registers of the traced function.
5494 *
5495 * int bpf_get_retval(void)
5496 * Description
5497 * Get the BPF program's return value that will be returned to the upper layers.
5498 *
5499 * This helper is currently supported by cgroup programs and only by the hooks
5500 * where BPF program's return value is returned to the userspace via errno.
5501 * Return
5502 * The BPF program's return value.
5503 *
5504 * int bpf_set_retval(int retval)
5505 * Description
5506 * Set the BPF program's return value that will be returned to the upper layers.
5507 *
5508 * This helper is currently supported by cgroup programs and only by the hooks
5509 * where BPF program's return value is returned to the userspace via errno.
5510 *
5511 * Note that there is the following corner case where the program exports an error
5512 * via bpf_set_retval but signals success via 'return 1':
5513 *
5514 * bpf_set_retval(-EPERM);
5515 * return 1;
5516 *
5517 * In this case, the BPF program's return value will use helper's -EPERM. This
5518 * still holds true for cgroup/bind{4,6} which supports extra 'return 3' success case.
5519 *
5520 * Return
5521 * 0 on success, or a negative error in case of failure.
5522 *
5523 * u64 bpf_xdp_get_buff_len(struct xdp_buff *xdp_md)
5524 * Description
5525 * Get the total size of a given xdp buff (linear and paged area)
5526 * Return
5527 * The total size of a given xdp buffer.
5528 *
5529 * long bpf_xdp_load_bytes(struct xdp_buff *xdp_md, u32 offset, void *buf, u32 len)
5530 * Description
5531 * This helper is provided as an easy way to load data from a
5532 * xdp buffer. It can be used to load *len* bytes from *offset* from
5533 * the frame associated to *xdp_md*, into the buffer pointed by
5534 * *buf*.
5535 * Return
5536 * 0 on success, or a negative error in case of failure.
5537 *
5538 * long bpf_xdp_store_bytes(struct xdp_buff *xdp_md, u32 offset, void *buf, u32 len)
5539 * Description
5540 * Store *len* bytes from buffer *buf* into the frame
5541 * associated to *xdp_md*, at *offset*.
5542 * Return
5543 * 0 on success, or a negative error in case of failure.
5544 *
5545 * long bpf_copy_from_user_task(void *dst, u32 size, const void *user_ptr, struct task_struct *tsk, u64 flags)
5546 * Description
5547 * Read *size* bytes from user space address *user_ptr* in *tsk*'s
5548 * address space, and stores the data in *dst*. *flags* is not
5549 * used yet and is provided for future extensibility. This helper
5550 * can only be used by sleepable programs.
5551 * Return
5552 * 0 on success, or a negative error in case of failure. On error
5553 * *dst* buffer is zeroed out.
5554 *
5555 * long bpf_skb_set_tstamp(struct sk_buff *skb, u64 tstamp, u32 tstamp_type)
5556 * Description
5557 * Change the __sk_buff->tstamp_type to *tstamp_type*
5558 * and set *tstamp* to the __sk_buff->tstamp together.
5559 *
5560 * If there is no need to change the __sk_buff->tstamp_type,
5561 * the tstamp value can be directly written to __sk_buff->tstamp
5562 * instead.
5563 *
5564 * BPF_SKB_TSTAMP_DELIVERY_MONO is the only tstamp that
5565 * will be kept during bpf_redirect_*(). A non zero
5566 * *tstamp* must be used with the BPF_SKB_TSTAMP_DELIVERY_MONO
5567 * *tstamp_type*.
5568 *
5569 * A BPF_SKB_TSTAMP_UNSPEC *tstamp_type* can only be used
5570 * with a zero *tstamp*.
5571 *
5572 * Only IPv4 and IPv6 skb->protocol are supported.
5573 *
5574 * This function is most useful when it needs to set a
5575 * mono delivery time to __sk_buff->tstamp and then
5576 * bpf_redirect_*() to the egress of an iface. For example,
5577 * changing the (rcv) timestamp in __sk_buff->tstamp at
5578 * ingress to a mono delivery time and then bpf_redirect_*()
5579 * to sch_fq@phy-dev.
5580 * Return
5581 * 0 on success.
5582 * **-EINVAL** for invalid input
5583 * **-EOPNOTSUPP** for unsupported protocol
5584 *
5585 * long bpf_ima_file_hash(struct file *file, void *dst, u32 size)
5586 * Description
5587 * Returns a calculated IMA hash of the *file*.
5588 * If the hash is larger than *size*, then only *size*
5589 * bytes will be copied to *dst*
5590 * Return
5591 * The **hash_algo** is returned on success,
5592 * **-EOPNOTSUPP** if the hash calculation failed or **-EINVAL** if
5593 * invalid arguments are passed.
5594 *
5595 * void *bpf_kptr_xchg(void *dst, void *ptr)
5596 * Description
5597 * Exchange kptr at pointer *dst* with *ptr*, and return the old value.
5598 * *dst* can be map value or local kptr. *ptr* can be NULL, otherwise
5599 * it must be a referenced pointer which will be released when this helper
5600 * is called.
5601 * Return
5602 * The old value of kptr (which can be NULL). The returned pointer
5603 * if not NULL, is a reference which must be released using its
5604 * corresponding release function, or moved into a BPF map before
5605 * program exit.
5606 *
5607 * void *bpf_map_lookup_percpu_elem(struct bpf_map *map, const void *key, u32 cpu)
5608 * Description
5609 * Perform a lookup in *percpu map* for an entry associated to
5610 * *key* on *cpu*.
5611 * Return
5612 * Map value associated to *key* on *cpu*, or **NULL** if no entry
5613 * was found or *cpu* is invalid.
5614 *
5615 * struct mptcp_sock *bpf_skc_to_mptcp_sock(void *sk)
5616 * Description
5617 * Dynamically cast a *sk* pointer to a *mptcp_sock* pointer.
5618 * Return
5619 * *sk* if casting is valid, or **NULL** otherwise.
5620 *
5621 * long bpf_dynptr_from_mem(void *data, u32 size, u64 flags, struct bpf_dynptr *ptr)
5622 * Description
5623 * Get a dynptr to local memory *data*.
5624 *
5625 * *data* must be a ptr to a map value.
5626 * The maximum *size* supported is DYNPTR_MAX_SIZE.
5627 * *flags* is currently unused.
5628 * Return
5629 * 0 on success, -E2BIG if the size exceeds DYNPTR_MAX_SIZE,
5630 * -EINVAL if flags is not 0.
5631 *
5632 * long bpf_ringbuf_reserve_dynptr(void *ringbuf, u32 size, u64 flags, struct bpf_dynptr *ptr)
5633 * Description
5634 * Reserve *size* bytes of payload in a ring buffer *ringbuf*
5635 * through the dynptr interface. *flags* must be 0.
5636 *
5637 * Please note that a corresponding bpf_ringbuf_submit_dynptr or
5638 * bpf_ringbuf_discard_dynptr must be called on *ptr*, even if the
5639 * reservation fails. This is enforced by the verifier.
5640 * Return
5641 * 0 on success, or a negative error in case of failure.
5642 *
5643 * void bpf_ringbuf_submit_dynptr(struct bpf_dynptr *ptr, u64 flags)
5644 * Description
5645 * Submit reserved ring buffer sample, pointed to by *data*,
5646 * through the dynptr interface. This is a no-op if the dynptr is
5647 * invalid/null.
5648 *
5649 * For more information on *flags*, please see
5650 * 'bpf_ringbuf_submit'.
5651 * Return
5652 * Nothing. Always succeeds.
5653 *
5654 * void bpf_ringbuf_discard_dynptr(struct bpf_dynptr *ptr, u64 flags)
5655 * Description
5656 * Discard reserved ring buffer sample through the dynptr
5657 * interface. This is a no-op if the dynptr is invalid/null.
5658 *
5659 * For more information on *flags*, please see
5660 * 'bpf_ringbuf_discard'.
5661 * Return
5662 * Nothing. Always succeeds.
5663 *
5664 * long bpf_dynptr_read(void *dst, u32 len, const struct bpf_dynptr *src, u32 offset, u64 flags)
5665 * Description
5666 * Read *len* bytes from *src* into *dst*, starting from *offset*
5667 * into *src*.
5668 * *flags* is currently unused.
5669 * Return
5670 * 0 on success, -E2BIG if *offset* + *len* exceeds the length
5671 * of *src*'s data, -EINVAL if *src* is an invalid dynptr or if
5672 * *flags* is not 0.
5673 *
5674 * long bpf_dynptr_write(const struct bpf_dynptr *dst, u32 offset, void *src, u32 len, u64 flags)
5675 * Description
5676 * Write *len* bytes from *src* into *dst*, starting from *offset*
5677 * into *dst*.
5678 *
5679 * *flags* must be 0 except for skb-type dynptrs.
5680 *
5681 * For skb-type dynptrs:
5682 * * All data slices of the dynptr are automatically
5683 * invalidated after **bpf_dynptr_write**\ (). This is
5684 * because writing may pull the skb and change the
5685 * underlying packet buffer.
5686 *
5687 * * For *flags*, please see the flags accepted by
5688 * **bpf_skb_store_bytes**\ ().
5689 * Return
5690 * 0 on success, -E2BIG if *offset* + *len* exceeds the length
5691 * of *dst*'s data, -EINVAL if *dst* is an invalid dynptr or if *dst*
5692 * is a read-only dynptr or if *flags* is not correct. For skb-type dynptrs,
5693 * other errors correspond to errors returned by **bpf_skb_store_bytes**\ ().
5694 *
5695 * void *bpf_dynptr_data(const struct bpf_dynptr *ptr, u32 offset, u32 len)
5696 * Description
5697 * Get a pointer to the underlying dynptr data.
5698 *
5699 * *len* must be a statically known value. The returned data slice
5700 * is invalidated whenever the dynptr is invalidated.
5701 *
5702 * skb and xdp type dynptrs may not use bpf_dynptr_data. They should
5703 * instead use bpf_dynptr_slice and bpf_dynptr_slice_rdwr.
5704 * Return
5705 * Pointer to the underlying dynptr data, NULL if the dynptr is
5706 * read-only, if the dynptr is invalid, or if the offset and length
5707 * is out of bounds.
5708 *
5709 * s64 bpf_tcp_raw_gen_syncookie_ipv4(struct iphdr *iph, struct tcphdr *th, u32 th_len)
5710 * Description
5711 * Try to issue a SYN cookie for the packet with corresponding
5712 * IPv4/TCP headers, *iph* and *th*, without depending on a
5713 * listening socket.
5714 *
5715 * *iph* points to the IPv4 header.
5716 *
5717 * *th* points to the start of the TCP header, while *th_len*
5718 * contains the length of the TCP header (at least
5719 * **sizeof**\ (**struct tcphdr**)).
5720 * Return
5721 * On success, lower 32 bits hold the generated SYN cookie in
5722 * followed by 16 bits which hold the MSS value for that cookie,
5723 * and the top 16 bits are unused.
5724 *
5725 * On failure, the returned value is one of the following:
5726 *
5727 * **-EINVAL** if *th_len* is invalid.
5728 *
5729 * s64 bpf_tcp_raw_gen_syncookie_ipv6(struct ipv6hdr *iph, struct tcphdr *th, u32 th_len)
5730 * Description
5731 * Try to issue a SYN cookie for the packet with corresponding
5732 * IPv6/TCP headers, *iph* and *th*, without depending on a
5733 * listening socket.
5734 *
5735 * *iph* points to the IPv6 header.
5736 *
5737 * *th* points to the start of the TCP header, while *th_len*
5738 * contains the length of the TCP header (at least
5739 * **sizeof**\ (**struct tcphdr**)).
5740 * Return
5741 * On success, lower 32 bits hold the generated SYN cookie in
5742 * followed by 16 bits which hold the MSS value for that cookie,
5743 * and the top 16 bits are unused.
5744 *
5745 * On failure, the returned value is one of the following:
5746 *
5747 * **-EINVAL** if *th_len* is invalid.
5748 *
5749 * **-EPROTONOSUPPORT** if CONFIG_IPV6 is not builtin.
5750 *
5751 * long bpf_tcp_raw_check_syncookie_ipv4(struct iphdr *iph, struct tcphdr *th)
5752 * Description
5753 * Check whether *iph* and *th* contain a valid SYN cookie ACK
5754 * without depending on a listening socket.
5755 *
5756 * *iph* points to the IPv4 header.
5757 *
5758 * *th* points to the TCP header.
5759 * Return
5760 * 0 if *iph* and *th* are a valid SYN cookie ACK.
5761 *
5762 * On failure, the returned value is one of the following:
5763 *
5764 * **-EACCES** if the SYN cookie is not valid.
5765 *
5766 * long bpf_tcp_raw_check_syncookie_ipv6(struct ipv6hdr *iph, struct tcphdr *th)
5767 * Description
5768 * Check whether *iph* and *th* contain a valid SYN cookie ACK
5769 * without depending on a listening socket.
5770 *
5771 * *iph* points to the IPv6 header.
5772 *
5773 * *th* points to the TCP header.
5774 * Return
5775 * 0 if *iph* and *th* are a valid SYN cookie ACK.
5776 *
5777 * On failure, the returned value is one of the following:
5778 *
5779 * **-EACCES** if the SYN cookie is not valid.
5780 *
5781 * **-EPROTONOSUPPORT** if CONFIG_IPV6 is not builtin.
5782 *
5783 * u64 bpf_ktime_get_tai_ns(void)
5784 * Description
5785 * A nonsettable system-wide clock derived from wall-clock time but
5786 * ignoring leap seconds. This clock does not experience
5787 * discontinuities and backwards jumps caused by NTP inserting leap
5788 * seconds as CLOCK_REALTIME does.
5789 *
5790 * See: **clock_gettime**\ (**CLOCK_TAI**)
5791 * Return
5792 * Current *ktime*.
5793 *
5794 * long bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void *ctx, u64 flags)
5795 * Description
5796 * Drain samples from the specified user ring buffer, and invoke
5797 * the provided callback for each such sample:
5798 *
5799 * long (\*callback_fn)(const struct bpf_dynptr \*dynptr, void \*ctx);
5800 *
5801 * If **callback_fn** returns 0, the helper will continue to try
5802 * and drain the next sample, up to a maximum of
5803 * BPF_MAX_USER_RINGBUF_SAMPLES samples. If the return value is 1,
5804 * the helper will skip the rest of the samples and return. Other
5805 * return values are not used now, and will be rejected by the
5806 * verifier.
5807 * Return
5808 * The number of drained samples if no error was encountered while
5809 * draining samples, or 0 if no samples were present in the ring
5810 * buffer. If a user-space producer was epoll-waiting on this map,
5811 * and at least one sample was drained, they will receive an event
5812 * notification notifying them of available space in the ring
5813 * buffer. If the BPF_RB_NO_WAKEUP flag is passed to this
5814 * function, no wakeup notification will be sent. If the
5815 * BPF_RB_FORCE_WAKEUP flag is passed, a wakeup notification will
5816 * be sent even if no sample was drained.
5817 *
5818 * On failure, the returned value is one of the following:
5819 *
5820 * **-EBUSY** if the ring buffer is contended, and another calling
5821 * context was concurrently draining the ring buffer.
5822 *
5823 * **-EINVAL** if user-space is not properly tracking the ring
5824 * buffer due to the producer position not being aligned to 8
5825 * bytes, a sample not being aligned to 8 bytes, or the producer
5826 * position not matching the advertised length of a sample.
5827 *
5828 * **-E2BIG** if user-space has tried to publish a sample which is
5829 * larger than the size of the ring buffer, or which cannot fit
5830 * within a struct bpf_dynptr.
5831 *
5832 * void *bpf_cgrp_storage_get(struct bpf_map *map, struct cgroup *cgroup, void *value, u64 flags)
5833 * Description
5834 * Get a bpf_local_storage from the *cgroup*.
5835 *
5836 * Logically, it could be thought of as getting the value from
5837 * a *map* with *cgroup* as the **key**. From this
5838 * perspective, the usage is not much different from
5839 * **bpf_map_lookup_elem**\ (*map*, **&**\ *cgroup*) except this
5840 * helper enforces the key must be a cgroup struct and the map must also
5841 * be a **BPF_MAP_TYPE_CGRP_STORAGE**.
5842 *
5843 * In reality, the local-storage value is embedded directly inside of the
5844 * *cgroup* object itself, rather than being located in the
5845 * **BPF_MAP_TYPE_CGRP_STORAGE** map. When the local-storage value is
5846 * queried for some *map* on a *cgroup* object, the kernel will perform an
5847 * O(n) iteration over all of the live local-storage values for that
5848 * *cgroup* object until the local-storage value for the *map* is found.
5849 *
5850 * An optional *flags* (**BPF_LOCAL_STORAGE_GET_F_CREATE**) can be
5851 * used such that a new bpf_local_storage will be
5852 * created if one does not exist. *value* can be used
5853 * together with **BPF_LOCAL_STORAGE_GET_F_CREATE** to specify
5854 * the initial value of a bpf_local_storage. If *value* is
5855 * **NULL**, the new bpf_local_storage will be zero initialized.
5856 * Return
5857 * A bpf_local_storage pointer is returned on success.
5858 *
5859 * **NULL** if not found or there was an error in adding
5860 * a new bpf_local_storage.
5861 *
5862 * long bpf_cgrp_storage_delete(struct bpf_map *map, struct cgroup *cgroup)
5863 * Description
5864 * Delete a bpf_local_storage from a *cgroup*.
5865 * Return
5866 * 0 on success.
5867 *
5868 * **-ENOENT** if the bpf_local_storage cannot be found.
5869 */
5870#define ___BPF_FUNC_MAPPER(FN, ctx...) \
5871 FN(unspec, 0, ##ctx) \
5872 FN(map_lookup_elem, 1, ##ctx) \
5873 FN(map_update_elem, 2, ##ctx) \
5874 FN(map_delete_elem, 3, ##ctx) \
5875 FN(probe_read, 4, ##ctx) \
5876 FN(ktime_get_ns, 5, ##ctx) \
5877 FN(trace_printk, 6, ##ctx) \
5878 FN(get_prandom_u32, 7, ##ctx) \
5879 FN(get_smp_processor_id, 8, ##ctx) \
5880 FN(skb_store_bytes, 9, ##ctx) \
5881 FN(l3_csum_replace, 10, ##ctx) \
5882 FN(l4_csum_replace, 11, ##ctx) \
5883 FN(tail_call, 12, ##ctx) \
5884 FN(clone_redirect, 13, ##ctx) \
5885 FN(get_current_pid_tgid, 14, ##ctx) \
5886 FN(get_current_uid_gid, 15, ##ctx) \
5887 FN(get_current_comm, 16, ##ctx) \
5888 FN(get_cgroup_classid, 17, ##ctx) \
5889 FN(skb_vlan_push, 18, ##ctx) \
5890 FN(skb_vlan_pop, 19, ##ctx) \
5891 FN(skb_get_tunnel_key, 20, ##ctx) \
5892 FN(skb_set_tunnel_key, 21, ##ctx) \
5893 FN(perf_event_read, 22, ##ctx) \
5894 FN(redirect, 23, ##ctx) \
5895 FN(get_route_realm, 24, ##ctx) \
5896 FN(perf_event_output, 25, ##ctx) \
5897 FN(skb_load_bytes, 26, ##ctx) \
5898 FN(get_stackid, 27, ##ctx) \
5899 FN(csum_diff, 28, ##ctx) \
5900 FN(skb_get_tunnel_opt, 29, ##ctx) \
5901 FN(skb_set_tunnel_opt, 30, ##ctx) \
5902 FN(skb_change_proto, 31, ##ctx) \
5903 FN(skb_change_type, 32, ##ctx) \
5904 FN(skb_under_cgroup, 33, ##ctx) \
5905 FN(get_hash_recalc, 34, ##ctx) \
5906 FN(get_current_task, 35, ##ctx) \
5907 FN(probe_write_user, 36, ##ctx) \
5908 FN(current_task_under_cgroup, 37, ##ctx) \
5909 FN(skb_change_tail, 38, ##ctx) \
5910 FN(skb_pull_data, 39, ##ctx) \
5911 FN(csum_update, 40, ##ctx) \
5912 FN(set_hash_invalid, 41, ##ctx) \
5913 FN(get_numa_node_id, 42, ##ctx) \
5914 FN(skb_change_head, 43, ##ctx) \
5915 FN(xdp_adjust_head, 44, ##ctx) \
5916 FN(probe_read_str, 45, ##ctx) \
5917 FN(get_socket_cookie, 46, ##ctx) \
5918 FN(get_socket_uid, 47, ##ctx) \
5919 FN(set_hash, 48, ##ctx) \
5920 FN(setsockopt, 49, ##ctx) \
5921 FN(skb_adjust_room, 50, ##ctx) \
5922 FN(redirect_map, 51, ##ctx) \
5923 FN(sk_redirect_map, 52, ##ctx) \
5924 FN(sock_map_update, 53, ##ctx) \
5925 FN(xdp_adjust_meta, 54, ##ctx) \
5926 FN(perf_event_read_value, 55, ##ctx) \
5927 FN(perf_prog_read_value, 56, ##ctx) \
5928 FN(getsockopt, 57, ##ctx) \
5929 FN(override_return, 58, ##ctx) \
5930 FN(sock_ops_cb_flags_set, 59, ##ctx) \
5931 FN(msg_redirect_map, 60, ##ctx) \
5932 FN(msg_apply_bytes, 61, ##ctx) \
5933 FN(msg_cork_bytes, 62, ##ctx) \
5934 FN(msg_pull_data, 63, ##ctx) \
5935 FN(bind, 64, ##ctx) \
5936 FN(xdp_adjust_tail, 65, ##ctx) \
5937 FN(skb_get_xfrm_state, 66, ##ctx) \
5938 FN(get_stack, 67, ##ctx) \
5939 FN(skb_load_bytes_relative, 68, ##ctx) \
5940 FN(fib_lookup, 69, ##ctx) \
5941 FN(sock_hash_update, 70, ##ctx) \
5942 FN(msg_redirect_hash, 71, ##ctx) \
5943 FN(sk_redirect_hash, 72, ##ctx) \
5944 FN(lwt_push_encap, 73, ##ctx) \
5945 FN(lwt_seg6_store_bytes, 74, ##ctx) \
5946 FN(lwt_seg6_adjust_srh, 75, ##ctx) \
5947 FN(lwt_seg6_action, 76, ##ctx) \
5948 FN(rc_repeat, 77, ##ctx) \
5949 FN(rc_keydown, 78, ##ctx) \
5950 FN(skb_cgroup_id, 79, ##ctx) \
5951 FN(get_current_cgroup_id, 80, ##ctx) \
5952 FN(get_local_storage, 81, ##ctx) \
5953 FN(sk_select_reuseport, 82, ##ctx) \
5954 FN(skb_ancestor_cgroup_id, 83, ##ctx) \
5955 FN(sk_lookup_tcp, 84, ##ctx) \
5956 FN(sk_lookup_udp, 85, ##ctx) \
5957 FN(sk_release, 86, ##ctx) \
5958 FN(map_push_elem, 87, ##ctx) \
5959 FN(map_pop_elem, 88, ##ctx) \
5960 FN(map_peek_elem, 89, ##ctx) \
5961 FN(msg_push_data, 90, ##ctx) \
5962 FN(msg_pop_data, 91, ##ctx) \
5963 FN(rc_pointer_rel, 92, ##ctx) \
5964 FN(spin_lock, 93, ##ctx) \
5965 FN(spin_unlock, 94, ##ctx) \
5966 FN(sk_fullsock, 95, ##ctx) \
5967 FN(tcp_sock, 96, ##ctx) \
5968 FN(skb_ecn_set_ce, 97, ##ctx) \
5969 FN(get_listener_sock, 98, ##ctx) \
5970 FN(skc_lookup_tcp, 99, ##ctx) \
5971 FN(tcp_check_syncookie, 100, ##ctx) \
5972 FN(sysctl_get_name, 101, ##ctx) \
5973 FN(sysctl_get_current_value, 102, ##ctx) \
5974 FN(sysctl_get_new_value, 103, ##ctx) \
5975 FN(sysctl_set_new_value, 104, ##ctx) \
5976 FN(strtol, 105, ##ctx) \
5977 FN(strtoul, 106, ##ctx) \
5978 FN(sk_storage_get, 107, ##ctx) \
5979 FN(sk_storage_delete, 108, ##ctx) \
5980 FN(send_signal, 109, ##ctx) \
5981 FN(tcp_gen_syncookie, 110, ##ctx) \
5982 FN(skb_output, 111, ##ctx) \
5983 FN(probe_read_user, 112, ##ctx) \
5984 FN(probe_read_kernel, 113, ##ctx) \
5985 FN(probe_read_user_str, 114, ##ctx) \
5986 FN(probe_read_kernel_str, 115, ##ctx) \
5987 FN(tcp_send_ack, 116, ##ctx) \
5988 FN(send_signal_thread, 117, ##ctx) \
5989 FN(jiffies64, 118, ##ctx) \
5990 FN(read_branch_records, 119, ##ctx) \
5991 FN(get_ns_current_pid_tgid, 120, ##ctx) \
5992 FN(xdp_output, 121, ##ctx) \
5993 FN(get_netns_cookie, 122, ##ctx) \
5994 FN(get_current_ancestor_cgroup_id, 123, ##ctx) \
5995 FN(sk_assign, 124, ##ctx) \
5996 FN(ktime_get_boot_ns, 125, ##ctx) \
5997 FN(seq_printf, 126, ##ctx) \
5998 FN(seq_write, 127, ##ctx) \
5999 FN(sk_cgroup_id, 128, ##ctx) \
6000 FN(sk_ancestor_cgroup_id, 129, ##ctx) \
6001 FN(ringbuf_output, 130, ##ctx) \
6002 FN(ringbuf_reserve, 131, ##ctx) \
6003 FN(ringbuf_submit, 132, ##ctx) \
6004 FN(ringbuf_discard, 133, ##ctx) \
6005 FN(ringbuf_query, 134, ##ctx) \
6006 FN(csum_level, 135, ##ctx) \
6007 FN(skc_to_tcp6_sock, 136, ##ctx) \
6008 FN(skc_to_tcp_sock, 137, ##ctx) \
6009 FN(skc_to_tcp_timewait_sock, 138, ##ctx) \
6010 FN(skc_to_tcp_request_sock, 139, ##ctx) \
6011 FN(skc_to_udp6_sock, 140, ##ctx) \
6012 FN(get_task_stack, 141, ##ctx) \
6013 FN(load_hdr_opt, 142, ##ctx) \
6014 FN(store_hdr_opt, 143, ##ctx) \
6015 FN(reserve_hdr_opt, 144, ##ctx) \
6016 FN(inode_storage_get, 145, ##ctx) \
6017 FN(inode_storage_delete, 146, ##ctx) \
6018 FN(d_path, 147, ##ctx) \
6019 FN(copy_from_user, 148, ##ctx) \
6020 FN(snprintf_btf, 149, ##ctx) \
6021 FN(seq_printf_btf, 150, ##ctx) \
6022 FN(skb_cgroup_classid, 151, ##ctx) \
6023 FN(redirect_neigh, 152, ##ctx) \
6024 FN(per_cpu_ptr, 153, ##ctx) \
6025 FN(this_cpu_ptr, 154, ##ctx) \
6026 FN(redirect_peer, 155, ##ctx) \
6027 FN(task_storage_get, 156, ##ctx) \
6028 FN(task_storage_delete, 157, ##ctx) \
6029 FN(get_current_task_btf, 158, ##ctx) \
6030 FN(bprm_opts_set, 159, ##ctx) \
6031 FN(ktime_get_coarse_ns, 160, ##ctx) \
6032 FN(ima_inode_hash, 161, ##ctx) \
6033 FN(sock_from_file, 162, ##ctx) \
6034 FN(check_mtu, 163, ##ctx) \
6035 FN(for_each_map_elem, 164, ##ctx) \
6036 FN(snprintf, 165, ##ctx) \
6037 FN(sys_bpf, 166, ##ctx) \
6038 FN(btf_find_by_name_kind, 167, ##ctx) \
6039 FN(sys_close, 168, ##ctx) \
6040 FN(timer_init, 169, ##ctx) \
6041 FN(timer_set_callback, 170, ##ctx) \
6042 FN(timer_start, 171, ##ctx) \
6043 FN(timer_cancel, 172, ##ctx) \
6044 FN(get_func_ip, 173, ##ctx) \
6045 FN(get_attach_cookie, 174, ##ctx) \
6046 FN(task_pt_regs, 175, ##ctx) \
6047 FN(get_branch_snapshot, 176, ##ctx) \
6048 FN(trace_vprintk, 177, ##ctx) \
6049 FN(skc_to_unix_sock, 178, ##ctx) \
6050 FN(kallsyms_lookup_name, 179, ##ctx) \
6051 FN(find_vma, 180, ##ctx) \
6052 FN(loop, 181, ##ctx) \
6053 FN(strncmp, 182, ##ctx) \
6054 FN(get_func_arg, 183, ##ctx) \
6055 FN(get_func_ret, 184, ##ctx) \
6056 FN(get_func_arg_cnt, 185, ##ctx) \
6057 FN(get_retval, 186, ##ctx) \
6058 FN(set_retval, 187, ##ctx) \
6059 FN(xdp_get_buff_len, 188, ##ctx) \
6060 FN(xdp_load_bytes, 189, ##ctx) \
6061 FN(xdp_store_bytes, 190, ##ctx) \
6062 FN(copy_from_user_task, 191, ##ctx) \
6063 FN(skb_set_tstamp, 192, ##ctx) \
6064 FN(ima_file_hash, 193, ##ctx) \
6065 FN(kptr_xchg, 194, ##ctx) \
6066 FN(map_lookup_percpu_elem, 195, ##ctx) \
6067 FN(skc_to_mptcp_sock, 196, ##ctx) \
6068 FN(dynptr_from_mem, 197, ##ctx) \
6069 FN(ringbuf_reserve_dynptr, 198, ##ctx) \
6070 FN(ringbuf_submit_dynptr, 199, ##ctx) \
6071 FN(ringbuf_discard_dynptr, 200, ##ctx) \
6072 FN(dynptr_read, 201, ##ctx) \
6073 FN(dynptr_write, 202, ##ctx) \
6074 FN(dynptr_data, 203, ##ctx) \
6075 FN(tcp_raw_gen_syncookie_ipv4, 204, ##ctx) \
6076 FN(tcp_raw_gen_syncookie_ipv6, 205, ##ctx) \
6077 FN(tcp_raw_check_syncookie_ipv4, 206, ##ctx) \
6078 FN(tcp_raw_check_syncookie_ipv6, 207, ##ctx) \
6079 FN(ktime_get_tai_ns, 208, ##ctx) \
6080 FN(user_ringbuf_drain, 209, ##ctx) \
6081 FN(cgrp_storage_get, 210, ##ctx) \
6082 FN(cgrp_storage_delete, 211, ##ctx) \
6083 /* This helper list is effectively frozen. If you are trying to \
6084 * add a new helper, you should add a kfunc instead which has \
6085 * less stability guarantees. See Documentation/bpf/kfuncs.rst \
6086 */
6087
6088/* backwards-compatibility macros for users of __BPF_FUNC_MAPPER that don't
6089 * know or care about integer value that is now passed as second argument
6090 */
6091#define __BPF_FUNC_MAPPER_APPLY(name, value, FN) FN(name),
6092#define __BPF_FUNC_MAPPER(FN) ___BPF_FUNC_MAPPER(__BPF_FUNC_MAPPER_APPLY, FN)
6093
6094/* integer value in 'imm' field of BPF_CALL instruction selects which helper
6095 * function eBPF program intends to call
6096 */
6097#define __BPF_ENUM_FN(x, y) BPF_FUNC_ ## x = y,
6098enum bpf_func_id {
6099 ___BPF_FUNC_MAPPER(__BPF_ENUM_FN)
6100 __BPF_FUNC_MAX_ID,
6101};
6102#undef __BPF_ENUM_FN
6103
6104/* All flags used by eBPF helper functions, placed here. */
6105
6106/* BPF_FUNC_skb_store_bytes flags. */
6107enum {
6108 BPF_F_RECOMPUTE_CSUM = (1ULL << 0),
6109 BPF_F_INVALIDATE_HASH = (1ULL << 1),
6110};
6111
6112/* BPF_FUNC_l3_csum_replace and BPF_FUNC_l4_csum_replace flags.
6113 * First 4 bits are for passing the header field size.
6114 */
6115enum {
6116 BPF_F_HDR_FIELD_MASK = 0xfULL,
6117};
6118
6119/* BPF_FUNC_l4_csum_replace flags. */
6120enum {
6121 BPF_F_PSEUDO_HDR = (1ULL << 4),
6122 BPF_F_MARK_MANGLED_0 = (1ULL << 5),
6123 BPF_F_MARK_ENFORCE = (1ULL << 6),
6124 BPF_F_IPV6 = (1ULL << 7),
6125};
6126
6127/* BPF_FUNC_skb_set_tunnel_key and BPF_FUNC_skb_get_tunnel_key flags. */
6128enum {
6129 BPF_F_TUNINFO_IPV6 = (1ULL << 0),
6130};
6131
6132/* flags for both BPF_FUNC_get_stackid and BPF_FUNC_get_stack. */
6133enum {
6134 BPF_F_SKIP_FIELD_MASK = 0xffULL,
6135 BPF_F_USER_STACK = (1ULL << 8),
6136/* flags used by BPF_FUNC_get_stackid only. */
6137 BPF_F_FAST_STACK_CMP = (1ULL << 9),
6138 BPF_F_REUSE_STACKID = (1ULL << 10),
6139/* flags used by BPF_FUNC_get_stack only. */
6140 BPF_F_USER_BUILD_ID = (1ULL << 11),
6141};
6142
6143/* BPF_FUNC_skb_set_tunnel_key flags. */
6144enum {
6145 BPF_F_ZERO_CSUM_TX = (1ULL << 1),
6146 BPF_F_DONT_FRAGMENT = (1ULL << 2),
6147 BPF_F_SEQ_NUMBER = (1ULL << 3),
6148 BPF_F_NO_TUNNEL_KEY = (1ULL << 4),
6149};
6150
6151/* BPF_FUNC_skb_get_tunnel_key flags. */
6152enum {
6153 BPF_F_TUNINFO_FLAGS = (1ULL << 4),
6154};
6155
6156/* BPF_FUNC_perf_event_output, BPF_FUNC_perf_event_read and
6157 * BPF_FUNC_perf_event_read_value flags.
6158 */
6159enum {
6160 BPF_F_INDEX_MASK = 0xffffffffULL,
6161 BPF_F_CURRENT_CPU = BPF_F_INDEX_MASK,
6162/* BPF_FUNC_perf_event_output for sk_buff input context. */
6163 BPF_F_CTXLEN_MASK = (0xfffffULL << 32),
6164};
6165
6166/* Current network namespace */
6167enum {
6168 BPF_F_CURRENT_NETNS = (-1L),
6169};
6170
6171/* BPF_FUNC_csum_level level values. */
6172enum {
6173 BPF_CSUM_LEVEL_QUERY,
6174 BPF_CSUM_LEVEL_INC,
6175 BPF_CSUM_LEVEL_DEC,
6176 BPF_CSUM_LEVEL_RESET,
6177};
6178
6179/* BPF_FUNC_skb_adjust_room flags. */
6180enum {
6181 BPF_F_ADJ_ROOM_FIXED_GSO = (1ULL << 0),
6182 BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 = (1ULL << 1),
6183 BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 = (1ULL << 2),
6184 BPF_F_ADJ_ROOM_ENCAP_L4_GRE = (1ULL << 3),
6185 BPF_F_ADJ_ROOM_ENCAP_L4_UDP = (1ULL << 4),
6186 BPF_F_ADJ_ROOM_NO_CSUM_RESET = (1ULL << 5),
6187 BPF_F_ADJ_ROOM_ENCAP_L2_ETH = (1ULL << 6),
6188 BPF_F_ADJ_ROOM_DECAP_L3_IPV4 = (1ULL << 7),
6189 BPF_F_ADJ_ROOM_DECAP_L3_IPV6 = (1ULL << 8),
6190};
6191
6192enum {
6193 BPF_ADJ_ROOM_ENCAP_L2_MASK = 0xff,
6194 BPF_ADJ_ROOM_ENCAP_L2_SHIFT = 56,
6195};
6196
6197#define BPF_F_ADJ_ROOM_ENCAP_L2(len) (((__u64)len & \
6198 BPF_ADJ_ROOM_ENCAP_L2_MASK) \
6199 << BPF_ADJ_ROOM_ENCAP_L2_SHIFT)
6200
6201/* BPF_FUNC_sysctl_get_name flags. */
6202enum {
6203 BPF_F_SYSCTL_BASE_NAME = (1ULL << 0),
6204};
6205
6206/* BPF_FUNC_<kernel_obj>_storage_get flags */
6207enum {
6208 BPF_LOCAL_STORAGE_GET_F_CREATE = (1ULL << 0),
6209 /* BPF_SK_STORAGE_GET_F_CREATE is only kept for backward compatibility
6210 * and BPF_LOCAL_STORAGE_GET_F_CREATE must be used instead.
6211 */
6212 BPF_SK_STORAGE_GET_F_CREATE = BPF_LOCAL_STORAGE_GET_F_CREATE,
6213};
6214
6215/* BPF_FUNC_read_branch_records flags. */
6216enum {
6217 BPF_F_GET_BRANCH_RECORDS_SIZE = (1ULL << 0),
6218};
6219
6220/* BPF_FUNC_bpf_ringbuf_commit, BPF_FUNC_bpf_ringbuf_discard, and
6221 * BPF_FUNC_bpf_ringbuf_output flags.
6222 */
6223enum {
6224 BPF_RB_NO_WAKEUP = (1ULL << 0),
6225 BPF_RB_FORCE_WAKEUP = (1ULL << 1),
6226};
6227
6228/* BPF_FUNC_bpf_ringbuf_query flags */
6229enum {
6230 BPF_RB_AVAIL_DATA = 0,
6231 BPF_RB_RING_SIZE = 1,
6232 BPF_RB_CONS_POS = 2,
6233 BPF_RB_PROD_POS = 3,
6234};
6235
6236/* BPF ring buffer constants */
6237enum {
6238 BPF_RINGBUF_BUSY_BIT = (1U << 31),
6239 BPF_RINGBUF_DISCARD_BIT = (1U << 30),
6240 BPF_RINGBUF_HDR_SZ = 8,
6241};
6242
6243/* BPF_FUNC_sk_assign flags in bpf_sk_lookup context. */
6244enum {
6245 BPF_SK_LOOKUP_F_REPLACE = (1ULL << 0),
6246 BPF_SK_LOOKUP_F_NO_REUSEPORT = (1ULL << 1),
6247};
6248
6249/* Mode for BPF_FUNC_skb_adjust_room helper. */
6250enum bpf_adj_room_mode {
6251 BPF_ADJ_ROOM_NET,
6252 BPF_ADJ_ROOM_MAC,
6253};
6254
6255/* Mode for BPF_FUNC_skb_load_bytes_relative helper. */
6256enum bpf_hdr_start_off {
6257 BPF_HDR_START_MAC,
6258 BPF_HDR_START_NET,
6259};
6260
6261/* Encapsulation type for BPF_FUNC_lwt_push_encap helper. */
6262enum bpf_lwt_encap_mode {
6263 BPF_LWT_ENCAP_SEG6,
6264 BPF_LWT_ENCAP_SEG6_INLINE,
6265 BPF_LWT_ENCAP_IP,
6266};
6267
6268/* Flags for bpf_bprm_opts_set helper */
6269enum {
6270 BPF_F_BPRM_SECUREEXEC = (1ULL << 0),
6271};
6272
6273/* Flags for bpf_redirect and bpf_redirect_map helpers */
6274enum {
6275 BPF_F_INGRESS = (1ULL << 0), /* used for skb path */
6276 BPF_F_BROADCAST = (1ULL << 3), /* used for XDP path */
6277 BPF_F_EXCLUDE_INGRESS = (1ULL << 4), /* used for XDP path */
6278#define BPF_F_REDIRECT_FLAGS (BPF_F_INGRESS | BPF_F_BROADCAST | BPF_F_EXCLUDE_INGRESS)
6279};
6280
6281#define __bpf_md_ptr(type, name) \
6282union { \
6283 type name; \
6284 __u64 :64; \
6285} __attribute__((aligned(8)))
6286
6287/* The enum used in skb->tstamp_type. It specifies the clock type
6288 * of the time stored in the skb->tstamp.
6289 */
6290enum {
6291 BPF_SKB_TSTAMP_UNSPEC = 0, /* DEPRECATED */
6292 BPF_SKB_TSTAMP_DELIVERY_MONO = 1, /* DEPRECATED */
6293 BPF_SKB_CLOCK_REALTIME = 0,
6294 BPF_SKB_CLOCK_MONOTONIC = 1,
6295 BPF_SKB_CLOCK_TAI = 2,
6296 /* For any future BPF_SKB_CLOCK_* that the bpf prog cannot handle,
6297 * the bpf prog can try to deduce it by ingress/egress/skb->sk->sk_clockid.
6298 */
6299};
6300
6301/* user accessible mirror of in-kernel sk_buff.
6302 * new fields can only be added to the end of this structure
6303 */
6304struct __sk_buff {
6305 __u32 len;
6306 __u32 pkt_type;
6307 __u32 mark;
6308 __u32 queue_mapping;
6309 __u32 protocol;
6310 __u32 vlan_present;
6311 __u32 vlan_tci;
6312 __u32 vlan_proto;
6313 __u32 priority;
6314 __u32 ingress_ifindex;
6315 __u32 ifindex;
6316 __u32 tc_index;
6317 __u32 cb[5];
6318 __u32 hash;
6319 __u32 tc_classid;
6320 __u32 data;
6321 __u32 data_end;
6322 __u32 napi_id;
6323
6324 /* Accessed by BPF_PROG_TYPE_sk_skb types from here to ... */
6325 __u32 family;
6326 __u32 remote_ip4; /* Stored in network byte order */
6327 __u32 local_ip4; /* Stored in network byte order */
6328 __u32 remote_ip6[4]; /* Stored in network byte order */
6329 __u32 local_ip6[4]; /* Stored in network byte order */
6330 __u32 remote_port; /* Stored in network byte order */
6331 __u32 local_port; /* stored in host byte order */
6332 /* ... here. */
6333
6334 __u32 data_meta;
6335 __bpf_md_ptr(struct bpf_flow_keys *, flow_keys);
6336 __u64 tstamp;
6337 __u32 wire_len;
6338 __u32 gso_segs;
6339 __bpf_md_ptr(struct bpf_sock *, sk);
6340 __u32 gso_size;
6341 __u8 tstamp_type;
6342 __u32 :24; /* Padding, future use. */
6343 __u64 hwtstamp;
6344};
6345
6346struct bpf_tunnel_key {
6347 __u32 tunnel_id;
6348 union {
6349 __u32 remote_ipv4;
6350 __u32 remote_ipv6[4];
6351 };
6352 __u8 tunnel_tos;
6353 __u8 tunnel_ttl;
6354 union {
6355 __u16 tunnel_ext; /* compat */
6356 __be16 tunnel_flags;
6357 };
6358 __u32 tunnel_label;
6359 union {
6360 __u32 local_ipv4;
6361 __u32 local_ipv6[4];
6362 };
6363};
6364
6365/* user accessible mirror of in-kernel xfrm_state.
6366 * new fields can only be added to the end of this structure
6367 */
6368struct bpf_xfrm_state {
6369 __u32 reqid;
6370 __u32 spi; /* Stored in network byte order */
6371 __u16 family;
6372 __u16 ext; /* Padding, future use. */
6373 union {
6374 __u32 remote_ipv4; /* Stored in network byte order */
6375 __u32 remote_ipv6[4]; /* Stored in network byte order */
6376 };
6377};
6378
6379/* Generic BPF return codes which all BPF program types may support.
6380 * The values are binary compatible with their TC_ACT_* counter-part to
6381 * provide backwards compatibility with existing SCHED_CLS and SCHED_ACT
6382 * programs.
6383 *
6384 * XDP is handled seprately, see XDP_*.
6385 */
6386enum bpf_ret_code {
6387 BPF_OK = 0,
6388 /* 1 reserved */
6389 BPF_DROP = 2,
6390 /* 3-6 reserved */
6391 BPF_REDIRECT = 7,
6392 /* >127 are reserved for prog type specific return codes.
6393 *
6394 * BPF_LWT_REROUTE: used by BPF_PROG_TYPE_LWT_IN and
6395 * BPF_PROG_TYPE_LWT_XMIT to indicate that skb had been
6396 * changed and should be routed based on its new L3 header.
6397 * (This is an L3 redirect, as opposed to L2 redirect
6398 * represented by BPF_REDIRECT above).
6399 */
6400 BPF_LWT_REROUTE = 128,
6401 /* BPF_FLOW_DISSECTOR_CONTINUE: used by BPF_PROG_TYPE_FLOW_DISSECTOR
6402 * to indicate that no custom dissection was performed, and
6403 * fallback to standard dissector is requested.
6404 */
6405 BPF_FLOW_DISSECTOR_CONTINUE = 129,
6406};
6407
6408struct bpf_sock {
6409 __u32 bound_dev_if;
6410 __u32 family;
6411 __u32 type;
6412 __u32 protocol;
6413 __u32 mark;
6414 __u32 priority;
6415 /* IP address also allows 1 and 2 bytes access */
6416 __u32 src_ip4;
6417 __u32 src_ip6[4];
6418 __u32 src_port; /* host byte order */
6419 __be16 dst_port; /* network byte order */
6420 __u16 :16; /* zero padding */
6421 __u32 dst_ip4;
6422 __u32 dst_ip6[4];
6423 __u32 state;
6424 __s32 rx_queue_mapping;
6425};
6426
6427struct bpf_tcp_sock {
6428 __u32 snd_cwnd; /* Sending congestion window */
6429 __u32 srtt_us; /* smoothed round trip time << 3 in usecs */
6430 __u32 rtt_min;
6431 __u32 snd_ssthresh; /* Slow start size threshold */
6432 __u32 rcv_nxt; /* What we want to receive next */
6433 __u32 snd_nxt; /* Next sequence we send */
6434 __u32 snd_una; /* First byte we want an ack for */
6435 __u32 mss_cache; /* Cached effective mss, not including SACKS */
6436 __u32 ecn_flags; /* ECN status bits. */
6437 __u32 rate_delivered; /* saved rate sample: packets delivered */
6438 __u32 rate_interval_us; /* saved rate sample: time elapsed */
6439 __u32 packets_out; /* Packets which are "in flight" */
6440 __u32 retrans_out; /* Retransmitted packets out */
6441 __u32 total_retrans; /* Total retransmits for entire connection */
6442 __u32 segs_in; /* RFC4898 tcpEStatsPerfSegsIn
6443 * total number of segments in.
6444 */
6445 __u32 data_segs_in; /* RFC4898 tcpEStatsPerfDataSegsIn
6446 * total number of data segments in.
6447 */
6448 __u32 segs_out; /* RFC4898 tcpEStatsPerfSegsOut
6449 * The total number of segments sent.
6450 */
6451 __u32 data_segs_out; /* RFC4898 tcpEStatsPerfDataSegsOut
6452 * total number of data segments sent.
6453 */
6454 __u32 lost_out; /* Lost packets */
6455 __u32 sacked_out; /* SACK'd packets */
6456 __u64 bytes_received; /* RFC4898 tcpEStatsAppHCThruOctetsReceived
6457 * sum(delta(rcv_nxt)), or how many bytes
6458 * were acked.
6459 */
6460 __u64 bytes_acked; /* RFC4898 tcpEStatsAppHCThruOctetsAcked
6461 * sum(delta(snd_una)), or how many bytes
6462 * were acked.
6463 */
6464 __u32 dsack_dups; /* RFC4898 tcpEStatsStackDSACKDups
6465 * total number of DSACK blocks received
6466 */
6467 __u32 delivered; /* Total data packets delivered incl. rexmits */
6468 __u32 delivered_ce; /* Like the above but only ECE marked packets */
6469 __u32 icsk_retransmits; /* Number of unrecovered [RTO] timeouts */
6470};
6471
6472struct bpf_sock_tuple {
6473 union {
6474 struct {
6475 __be32 saddr;
6476 __be32 daddr;
6477 __be16 sport;
6478 __be16 dport;
6479 } ipv4;
6480 struct {
6481 __be32 saddr[4];
6482 __be32 daddr[4];
6483 __be16 sport;
6484 __be16 dport;
6485 } ipv6;
6486 };
6487};
6488
6489/* (Simplified) user return codes for tcx prog type.
6490 * A valid tcx program must return one of these defined values. All other
6491 * return codes are reserved for future use. Must remain compatible with
6492 * their TC_ACT_* counter-parts. For compatibility in behavior, unknown
6493 * return codes are mapped to TCX_NEXT.
6494 */
6495enum tcx_action_base {
6496 TCX_NEXT = -1,
6497 TCX_PASS = 0,
6498 TCX_DROP = 2,
6499 TCX_REDIRECT = 7,
6500};
6501
6502struct bpf_xdp_sock {
6503 __u32 queue_id;
6504};
6505
6506#define XDP_PACKET_HEADROOM 256
6507
6508/* User return codes for XDP prog type.
6509 * A valid XDP program must return one of these defined values. All other
6510 * return codes are reserved for future use. Unknown return codes will
6511 * result in packet drops and a warning via bpf_warn_invalid_xdp_action().
6512 */
6513enum xdp_action {
6514 XDP_ABORTED = 0,
6515 XDP_DROP,
6516 XDP_PASS,
6517 XDP_TX,
6518 XDP_REDIRECT,
6519};
6520
6521/* user accessible metadata for XDP packet hook
6522 * new fields must be added to the end of this structure
6523 */
6524struct xdp_md {
6525 __u32 data;
6526 __u32 data_end;
6527 __u32 data_meta;
6528 /* Below access go through struct xdp_rxq_info */
6529 __u32 ingress_ifindex; /* rxq->dev->ifindex */
6530 __u32 rx_queue_index; /* rxq->queue_index */
6531
6532 __u32 egress_ifindex; /* txq->dev->ifindex */
6533};
6534
6535/* DEVMAP map-value layout
6536 *
6537 * The struct data-layout of map-value is a configuration interface.
6538 * New members can only be added to the end of this structure.
6539 */
6540struct bpf_devmap_val {
6541 __u32 ifindex; /* device index */
6542 union {
6543 int fd; /* prog fd on map write */
6544 __u32 id; /* prog id on map read */
6545 } bpf_prog;
6546};
6547
6548/* CPUMAP map-value layout
6549 *
6550 * The struct data-layout of map-value is a configuration interface.
6551 * New members can only be added to the end of this structure.
6552 */
6553struct bpf_cpumap_val {
6554 __u32 qsize; /* queue size to remote target CPU */
6555 union {
6556 int fd; /* prog fd on map write */
6557 __u32 id; /* prog id on map read */
6558 } bpf_prog;
6559};
6560
6561enum sk_action {
6562 SK_DROP = 0,
6563 SK_PASS,
6564};
6565
6566/* user accessible metadata for SK_MSG packet hook, new fields must
6567 * be added to the end of this structure
6568 */
6569struct sk_msg_md {
6570 __bpf_md_ptr(void *, data);
6571 __bpf_md_ptr(void *, data_end);
6572
6573 __u32 family;
6574 __u32 remote_ip4; /* Stored in network byte order */
6575 __u32 local_ip4; /* Stored in network byte order */
6576 __u32 remote_ip6[4]; /* Stored in network byte order */
6577 __u32 local_ip6[4]; /* Stored in network byte order */
6578 __u32 remote_port; /* Stored in network byte order */
6579 __u32 local_port; /* stored in host byte order */
6580 __u32 size; /* Total size of sk_msg */
6581
6582 __bpf_md_ptr(struct bpf_sock *, sk); /* current socket */
6583};
6584
6585struct sk_reuseport_md {
6586 /*
6587 * Start of directly accessible data. It begins from
6588 * the tcp/udp header.
6589 */
6590 __bpf_md_ptr(void *, data);
6591 /* End of directly accessible data */
6592 __bpf_md_ptr(void *, data_end);
6593 /*
6594 * Total length of packet (starting from the tcp/udp header).
6595 * Note that the directly accessible bytes (data_end - data)
6596 * could be less than this "len". Those bytes could be
6597 * indirectly read by a helper "bpf_skb_load_bytes()".
6598 */
6599 __u32 len;
6600 /*
6601 * Eth protocol in the mac header (network byte order). e.g.
6602 * ETH_P_IP(0x0800) and ETH_P_IPV6(0x86DD)
6603 */
6604 __u32 eth_protocol;
6605 __u32 ip_protocol; /* IP protocol. e.g. IPPROTO_TCP, IPPROTO_UDP */
6606 __u32 bind_inany; /* Is sock bound to an INANY address? */
6607 __u32 hash; /* A hash of the packet 4 tuples */
6608 /* When reuse->migrating_sk is NULL, it is selecting a sk for the
6609 * new incoming connection request (e.g. selecting a listen sk for
6610 * the received SYN in the TCP case). reuse->sk is one of the sk
6611 * in the reuseport group. The bpf prog can use reuse->sk to learn
6612 * the local listening ip/port without looking into the skb.
6613 *
6614 * When reuse->migrating_sk is not NULL, reuse->sk is closed and
6615 * reuse->migrating_sk is the socket that needs to be migrated
6616 * to another listening socket. migrating_sk could be a fullsock
6617 * sk that is fully established or a reqsk that is in-the-middle
6618 * of 3-way handshake.
6619 */
6620 __bpf_md_ptr(struct bpf_sock *, sk);
6621 __bpf_md_ptr(struct bpf_sock *, migrating_sk);
6622};
6623
6624#define BPF_TAG_SIZE 8
6625
6626struct bpf_prog_info {
6627 __u32 type;
6628 __u32 id;
6629 __u8 tag[BPF_TAG_SIZE];
6630 __u32 jited_prog_len;
6631 __u32 xlated_prog_len;
6632 __aligned_u64 jited_prog_insns;
6633 __aligned_u64 xlated_prog_insns;
6634 __u64 load_time; /* ns since boottime */
6635 __u32 created_by_uid;
6636 __u32 nr_map_ids;
6637 __aligned_u64 map_ids;
6638 char name[BPF_OBJ_NAME_LEN];
6639 __u32 ifindex;
6640 __u32 gpl_compatible:1;
6641 __u32 :31; /* alignment pad */
6642 __u64 netns_dev;
6643 __u64 netns_ino;
6644 __u32 nr_jited_ksyms;
6645 __u32 nr_jited_func_lens;
6646 __aligned_u64 jited_ksyms;
6647 __aligned_u64 jited_func_lens;
6648 __u32 btf_id;
6649 __u32 func_info_rec_size;
6650 __aligned_u64 func_info;
6651 __u32 nr_func_info;
6652 __u32 nr_line_info;
6653 __aligned_u64 line_info;
6654 __aligned_u64 jited_line_info;
6655 __u32 nr_jited_line_info;
6656 __u32 line_info_rec_size;
6657 __u32 jited_line_info_rec_size;
6658 __u32 nr_prog_tags;
6659 __aligned_u64 prog_tags;
6660 __u64 run_time_ns;
6661 __u64 run_cnt;
6662 __u64 recursion_misses;
6663 __u32 verified_insns;
6664 __u32 attach_btf_obj_id;
6665 __u32 attach_btf_id;
6666} __attribute__((aligned(8)));
6667
6668struct bpf_map_info {
6669 __u32 type;
6670 __u32 id;
6671 __u32 key_size;
6672 __u32 value_size;
6673 __u32 max_entries;
6674 __u32 map_flags;
6675 char name[BPF_OBJ_NAME_LEN];
6676 __u32 ifindex;
6677 __u32 btf_vmlinux_value_type_id;
6678 __u64 netns_dev;
6679 __u64 netns_ino;
6680 __u32 btf_id;
6681 __u32 btf_key_type_id;
6682 __u32 btf_value_type_id;
6683 __u32 btf_vmlinux_id;
6684 __u64 map_extra;
6685 __aligned_u64 hash;
6686 __u32 hash_size;
6687} __attribute__((aligned(8)));
6688
6689struct bpf_btf_info {
6690 __aligned_u64 btf;
6691 __u32 btf_size;
6692 __u32 id;
6693 __aligned_u64 name;
6694 __u32 name_len;
6695 __u32 kernel_btf;
6696} __attribute__((aligned(8)));
6697
6698struct bpf_link_info {
6699 __u32 type;
6700 __u32 id;
6701 __u32 prog_id;
6702 union {
6703 struct {
6704 __aligned_u64 tp_name; /* in/out: tp_name buffer ptr */
6705 __u32 tp_name_len; /* in/out: tp_name buffer len */
6706 __u32 :32;
6707 __u64 cookie;
6708 } raw_tracepoint;
6709 struct {
6710 __u32 attach_type;
6711 __u32 target_obj_id; /* prog_id for PROG_EXT, otherwise btf object id */
6712 __u32 target_btf_id; /* BTF type id inside the object */
6713 __u32 :32;
6714 __u64 cookie;
6715 } tracing;
6716 struct {
6717 __u64 cgroup_id;
6718 __u32 attach_type;
6719 } cgroup;
6720 struct {
6721 __aligned_u64 target_name; /* in/out: target_name buffer ptr */
6722 __u32 target_name_len; /* in/out: target_name buffer len */
6723
6724 /* If the iter specific field is 32 bits, it can be put
6725 * in the first or second union. Otherwise it should be
6726 * put in the second union.
6727 */
6728 union {
6729 struct {
6730 __u32 map_id;
6731 } map;
6732 };
6733 union {
6734 struct {
6735 __u64 cgroup_id;
6736 __u32 order;
6737 } cgroup;
6738 struct {
6739 __u32 tid;
6740 __u32 pid;
6741 } task;
6742 };
6743 } iter;
6744 struct {
6745 __u32 netns_ino;
6746 __u32 attach_type;
6747 } netns;
6748 struct {
6749 __u32 ifindex;
6750 } xdp;
6751 struct {
6752 __u32 map_id;
6753 } struct_ops;
6754 struct {
6755 __u32 pf;
6756 __u32 hooknum;
6757 __s32 priority;
6758 __u32 flags;
6759 } netfilter;
6760 struct {
6761 __aligned_u64 addrs;
6762 __u32 count; /* in/out: kprobe_multi function count */
6763 __u32 flags;
6764 __u64 missed;
6765 __aligned_u64 cookies;
6766 } kprobe_multi;
6767 struct {
6768 __aligned_u64 path;
6769 __aligned_u64 offsets;
6770 __aligned_u64 ref_ctr_offsets;
6771 __aligned_u64 cookies;
6772 __u32 path_size; /* in/out: real path size on success, including zero byte */
6773 __u32 count; /* in/out: uprobe_multi offsets/ref_ctr_offsets/cookies count */
6774 __u32 flags;
6775 __u32 pid;
6776 } uprobe_multi;
6777 struct {
6778 __u32 type; /* enum bpf_perf_event_type */
6779 __u32 :32;
6780 union {
6781 struct {
6782 __aligned_u64 file_name; /* in/out */
6783 __u32 name_len;
6784 __u32 offset; /* offset from file_name */
6785 __u64 cookie;
6786 __u64 ref_ctr_offset;
6787 } uprobe; /* BPF_PERF_EVENT_UPROBE, BPF_PERF_EVENT_URETPROBE */
6788 struct {
6789 __aligned_u64 func_name; /* in/out */
6790 __u32 name_len;
6791 __u32 offset; /* offset from func_name */
6792 __u64 addr;
6793 __u64 missed;
6794 __u64 cookie;
6795 } kprobe; /* BPF_PERF_EVENT_KPROBE, BPF_PERF_EVENT_KRETPROBE */
6796 struct {
6797 __aligned_u64 tp_name; /* in/out */
6798 __u32 name_len;
6799 __u32 :32;
6800 __u64 cookie;
6801 } tracepoint; /* BPF_PERF_EVENT_TRACEPOINT */
6802 struct {
6803 __u64 config;
6804 __u32 type;
6805 __u32 :32;
6806 __u64 cookie;
6807 } event; /* BPF_PERF_EVENT_EVENT */
6808 };
6809 } perf_event;
6810 struct {
6811 __u32 ifindex;
6812 __u32 attach_type;
6813 } tcx;
6814 struct {
6815 __u32 ifindex;
6816 __u32 attach_type;
6817 } netkit;
6818 struct {
6819 __u32 map_id;
6820 __u32 attach_type;
6821 } sockmap;
6822 };
6823} __attribute__((aligned(8)));
6824
6825struct bpf_token_info {
6826 __u64 allowed_cmds;
6827 __u64 allowed_maps;
6828 __u64 allowed_progs;
6829 __u64 allowed_attachs;
6830} __attribute__((aligned(8)));
6831
6832/* User bpf_sock_addr struct to access socket fields and sockaddr struct passed
6833 * by user and intended to be used by socket (e.g. to bind to, depends on
6834 * attach type).
6835 */
6836struct bpf_sock_addr {
6837 __u32 user_family; /* Allows 4-byte read, but no write. */
6838 __u32 user_ip4; /* Allows 1,2,4-byte read and 4-byte write.
6839 * Stored in network byte order.
6840 */
6841 __u32 user_ip6[4]; /* Allows 1,2,4,8-byte read and 4,8-byte write.
6842 * Stored in network byte order.
6843 */
6844 __u32 user_port; /* Allows 1,2,4-byte read and 4-byte write.
6845 * Stored in network byte order
6846 */
6847 __u32 family; /* Allows 4-byte read, but no write */
6848 __u32 type; /* Allows 4-byte read, but no write */
6849 __u32 protocol; /* Allows 4-byte read, but no write */
6850 __u32 msg_src_ip4; /* Allows 1,2,4-byte read and 4-byte write.
6851 * Stored in network byte order.
6852 */
6853 __u32 msg_src_ip6[4]; /* Allows 1,2,4,8-byte read and 4,8-byte write.
6854 * Stored in network byte order.
6855 */
6856 __bpf_md_ptr(struct bpf_sock *, sk);
6857};
6858
6859/* User bpf_sock_ops struct to access socket values and specify request ops
6860 * and their replies.
6861 * Some of this fields are in network (bigendian) byte order and may need
6862 * to be converted before use (bpf_ntohl() defined in samples/bpf/bpf_endian.h).
6863 * New fields can only be added at the end of this structure
6864 */
6865struct bpf_sock_ops {
6866 __u32 op;
6867 union {
6868 __u32 args[4]; /* Optionally passed to bpf program */
6869 __u32 reply; /* Returned by bpf program */
6870 __u32 replylong[4]; /* Optionally returned by bpf prog */
6871 };
6872 __u32 family;
6873 __u32 remote_ip4; /* Stored in network byte order */
6874 __u32 local_ip4; /* Stored in network byte order */
6875 __u32 remote_ip6[4]; /* Stored in network byte order */
6876 __u32 local_ip6[4]; /* Stored in network byte order */
6877 __u32 remote_port; /* Stored in network byte order */
6878 __u32 local_port; /* stored in host byte order */
6879 __u32 is_fullsock; /* Some TCP fields are only valid if
6880 * there is a full socket. If not, the
6881 * fields read as zero.
6882 */
6883 __u32 snd_cwnd;
6884 __u32 srtt_us; /* Averaged RTT << 3 in usecs */
6885 __u32 bpf_sock_ops_cb_flags; /* flags defined in uapi/linux/tcp.h */
6886 __u32 state;
6887 __u32 rtt_min;
6888 __u32 snd_ssthresh;
6889 __u32 rcv_nxt;
6890 __u32 snd_nxt;
6891 __u32 snd_una;
6892 __u32 mss_cache;
6893 __u32 ecn_flags;
6894 __u32 rate_delivered;
6895 __u32 rate_interval_us;
6896 __u32 packets_out;
6897 __u32 retrans_out;
6898 __u32 total_retrans;
6899 __u32 segs_in;
6900 __u32 data_segs_in;
6901 __u32 segs_out;
6902 __u32 data_segs_out;
6903 __u32 lost_out;
6904 __u32 sacked_out;
6905 __u32 sk_txhash;
6906 __u64 bytes_received;
6907 __u64 bytes_acked;
6908 __bpf_md_ptr(struct bpf_sock *, sk);
6909 /* [skb_data, skb_data_end) covers the whole TCP header.
6910 *
6911 * BPF_SOCK_OPS_PARSE_HDR_OPT_CB: The packet received
6912 * BPF_SOCK_OPS_HDR_OPT_LEN_CB: Not useful because the
6913 * header has not been written.
6914 * BPF_SOCK_OPS_WRITE_HDR_OPT_CB: The header and options have
6915 * been written so far.
6916 * BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB: The SYNACK that concludes
6917 * the 3WHS.
6918 * BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB: The ACK that concludes
6919 * the 3WHS.
6920 *
6921 * bpf_load_hdr_opt() can also be used to read a particular option.
6922 */
6923 __bpf_md_ptr(void *, skb_data);
6924 __bpf_md_ptr(void *, skb_data_end);
6925 __u32 skb_len; /* The total length of a packet.
6926 * It includes the header, options,
6927 * and payload.
6928 */
6929 __u32 skb_tcp_flags; /* tcp_flags of the header. It provides
6930 * an easy way to check for tcp_flags
6931 * without parsing skb_data.
6932 *
6933 * In particular, the skb_tcp_flags
6934 * will still be available in
6935 * BPF_SOCK_OPS_HDR_OPT_LEN even though
6936 * the outgoing header has not
6937 * been written yet.
6938 */
6939 __u64 skb_hwtstamp;
6940};
6941
6942/* Definitions for bpf_sock_ops_cb_flags */
6943enum {
6944 BPF_SOCK_OPS_RTO_CB_FLAG = (1<<0),
6945 BPF_SOCK_OPS_RETRANS_CB_FLAG = (1<<1),
6946 BPF_SOCK_OPS_STATE_CB_FLAG = (1<<2),
6947 BPF_SOCK_OPS_RTT_CB_FLAG = (1<<3),
6948 /* Call bpf for all received TCP headers. The bpf prog will be
6949 * called under sock_ops->op == BPF_SOCK_OPS_PARSE_HDR_OPT_CB
6950 *
6951 * Please refer to the comment in BPF_SOCK_OPS_PARSE_HDR_OPT_CB
6952 * for the header option related helpers that will be useful
6953 * to the bpf programs.
6954 *
6955 * It could be used at the client/active side (i.e. connect() side)
6956 * when the server told it that the server was in syncookie
6957 * mode and required the active side to resend the bpf-written
6958 * options. The active side can keep writing the bpf-options until
6959 * it received a valid packet from the server side to confirm
6960 * the earlier packet (and options) has been received. The later
6961 * example patch is using it like this at the active side when the
6962 * server is in syncookie mode.
6963 *
6964 * The bpf prog will usually turn this off in the common cases.
6965 */
6966 BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG = (1<<4),
6967 /* Call bpf when kernel has received a header option that
6968 * the kernel cannot handle. The bpf prog will be called under
6969 * sock_ops->op == BPF_SOCK_OPS_PARSE_HDR_OPT_CB.
6970 *
6971 * Please refer to the comment in BPF_SOCK_OPS_PARSE_HDR_OPT_CB
6972 * for the header option related helpers that will be useful
6973 * to the bpf programs.
6974 */
6975 BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG = (1<<5),
6976 /* Call bpf when the kernel is writing header options for the
6977 * outgoing packet. The bpf prog will first be called
6978 * to reserve space in a skb under
6979 * sock_ops->op == BPF_SOCK_OPS_HDR_OPT_LEN_CB. Then
6980 * the bpf prog will be called to write the header option(s)
6981 * under sock_ops->op == BPF_SOCK_OPS_WRITE_HDR_OPT_CB.
6982 *
6983 * Please refer to the comment in BPF_SOCK_OPS_HDR_OPT_LEN_CB
6984 * and BPF_SOCK_OPS_WRITE_HDR_OPT_CB for the header option
6985 * related helpers that will be useful to the bpf programs.
6986 *
6987 * The kernel gets its chance to reserve space and write
6988 * options first before the BPF program does.
6989 */
6990 BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG = (1<<6),
6991/* Mask of all currently supported cb flags */
6992 BPF_SOCK_OPS_ALL_CB_FLAGS = 0x7F,
6993};
6994
6995enum {
6996 SK_BPF_CB_TX_TIMESTAMPING = 1<<0,
6997 SK_BPF_CB_MASK = (SK_BPF_CB_TX_TIMESTAMPING - 1) |
6998 SK_BPF_CB_TX_TIMESTAMPING
6999};
7000
7001/* List of known BPF sock_ops operators.
7002 * New entries can only be added at the end
7003 */
7004enum {
7005 BPF_SOCK_OPS_VOID,
7006 BPF_SOCK_OPS_TIMEOUT_INIT, /* Should return SYN-RTO value to use or
7007 * -1 if default value should be used
7008 */
7009 BPF_SOCK_OPS_RWND_INIT, /* Should return initial advertized
7010 * window (in packets) or -1 if default
7011 * value should be used
7012 */
7013 BPF_SOCK_OPS_TCP_CONNECT_CB, /* Calls BPF program right before an
7014 * active connection is initialized
7015 */
7016 BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, /* Calls BPF program when an
7017 * active connection is
7018 * established
7019 */
7020 BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB, /* Calls BPF program when a
7021 * passive connection is
7022 * established
7023 */
7024 BPF_SOCK_OPS_NEEDS_ECN, /* If connection's congestion control
7025 * needs ECN
7026 */
7027 BPF_SOCK_OPS_BASE_RTT, /* Get base RTT. The correct value is
7028 * based on the path and may be
7029 * dependent on the congestion control
7030 * algorithm. In general it indicates
7031 * a congestion threshold. RTTs above
7032 * this indicate congestion
7033 */
7034 BPF_SOCK_OPS_RTO_CB, /* Called when an RTO has triggered.
7035 * Arg1: value of icsk_retransmits
7036 * Arg2: value of icsk_rto
7037 * Arg3: whether RTO has expired
7038 */
7039 BPF_SOCK_OPS_RETRANS_CB, /* Called when skb is retransmitted.
7040 * Arg1: sequence number of 1st byte
7041 * Arg2: # segments
7042 * Arg3: return value of
7043 * tcp_transmit_skb (0 => success)
7044 */
7045 BPF_SOCK_OPS_STATE_CB, /* Called when TCP changes state.
7046 * Arg1: old_state
7047 * Arg2: new_state
7048 */
7049 BPF_SOCK_OPS_TCP_LISTEN_CB, /* Called on listen(2), right after
7050 * socket transition to LISTEN state.
7051 */
7052 BPF_SOCK_OPS_RTT_CB, /* Called on every RTT.
7053 * Arg1: measured RTT input (mrtt)
7054 * Arg2: updated srtt
7055 */
7056 BPF_SOCK_OPS_PARSE_HDR_OPT_CB, /* Parse the header option.
7057 * It will be called to handle
7058 * the packets received at
7059 * an already established
7060 * connection.
7061 *
7062 * sock_ops->skb_data:
7063 * Referring to the received skb.
7064 * It covers the TCP header only.
7065 *
7066 * bpf_load_hdr_opt() can also
7067 * be used to search for a
7068 * particular option.
7069 */
7070 BPF_SOCK_OPS_HDR_OPT_LEN_CB, /* Reserve space for writing the
7071 * header option later in
7072 * BPF_SOCK_OPS_WRITE_HDR_OPT_CB.
7073 * Arg1: bool want_cookie. (in
7074 * writing SYNACK only)
7075 *
7076 * sock_ops->skb_data:
7077 * Not available because no header has
7078 * been written yet.
7079 *
7080 * sock_ops->skb_tcp_flags:
7081 * The tcp_flags of the
7082 * outgoing skb. (e.g. SYN, ACK, FIN).
7083 *
7084 * bpf_reserve_hdr_opt() should
7085 * be used to reserve space.
7086 */
7087 BPF_SOCK_OPS_WRITE_HDR_OPT_CB, /* Write the header options
7088 * Arg1: bool want_cookie. (in
7089 * writing SYNACK only)
7090 *
7091 * sock_ops->skb_data:
7092 * Referring to the outgoing skb.
7093 * It covers the TCP header
7094 * that has already been written
7095 * by the kernel and the
7096 * earlier bpf-progs.
7097 *
7098 * sock_ops->skb_tcp_flags:
7099 * The tcp_flags of the outgoing
7100 * skb. (e.g. SYN, ACK, FIN).
7101 *
7102 * bpf_store_hdr_opt() should
7103 * be used to write the
7104 * option.
7105 *
7106 * bpf_load_hdr_opt() can also
7107 * be used to search for a
7108 * particular option that
7109 * has already been written
7110 * by the kernel or the
7111 * earlier bpf-progs.
7112 */
7113 BPF_SOCK_OPS_TSTAMP_SCHED_CB, /* Called when skb is passing
7114 * through dev layer when
7115 * SK_BPF_CB_TX_TIMESTAMPING
7116 * feature is on.
7117 */
7118 BPF_SOCK_OPS_TSTAMP_SND_SW_CB, /* Called when skb is about to send
7119 * to the nic when SK_BPF_CB_TX_TIMESTAMPING
7120 * feature is on.
7121 */
7122 BPF_SOCK_OPS_TSTAMP_SND_HW_CB, /* Called in hardware phase when
7123 * SK_BPF_CB_TX_TIMESTAMPING feature
7124 * is on.
7125 */
7126 BPF_SOCK_OPS_TSTAMP_ACK_CB, /* Called when all the skbs in the
7127 * same sendmsg call are acked
7128 * when SK_BPF_CB_TX_TIMESTAMPING
7129 * feature is on.
7130 */
7131 BPF_SOCK_OPS_TSTAMP_SENDMSG_CB, /* Called when every sendmsg syscall
7132 * is triggered. It's used to correlate
7133 * sendmsg timestamp with corresponding
7134 * tskey.
7135 */
7136};
7137
7138/* List of TCP states. There is a build check in net/ipv4/tcp.c to detect
7139 * changes between the TCP and BPF versions. Ideally this should never happen.
7140 * If it does, we need to add code to convert them before calling
7141 * the BPF sock_ops function.
7142 */
7143enum {
7144 BPF_TCP_ESTABLISHED = 1,
7145 BPF_TCP_SYN_SENT,
7146 BPF_TCP_SYN_RECV,
7147 BPF_TCP_FIN_WAIT1,
7148 BPF_TCP_FIN_WAIT2,
7149 BPF_TCP_TIME_WAIT,
7150 BPF_TCP_CLOSE,
7151 BPF_TCP_CLOSE_WAIT,
7152 BPF_TCP_LAST_ACK,
7153 BPF_TCP_LISTEN,
7154 BPF_TCP_CLOSING, /* Now a valid state */
7155 BPF_TCP_NEW_SYN_RECV,
7156 BPF_TCP_BOUND_INACTIVE,
7157
7158 BPF_TCP_MAX_STATES /* Leave at the end! */
7159};
7160
7161enum {
7162 TCP_BPF_IW = 1001, /* Set TCP initial congestion window */
7163 TCP_BPF_SNDCWND_CLAMP = 1002, /* Set sndcwnd_clamp */
7164 TCP_BPF_DELACK_MAX = 1003, /* Max delay ack in usecs */
7165 TCP_BPF_RTO_MIN = 1004, /* Min delay ack in usecs */
7166 /* Copy the SYN pkt to optval
7167 *
7168 * BPF_PROG_TYPE_SOCK_OPS only. It is similar to the
7169 * bpf_getsockopt(TCP_SAVED_SYN) but it does not limit
7170 * to only getting from the saved_syn. It can either get the
7171 * syn packet from:
7172 *
7173 * 1. the just-received SYN packet (only available when writing the
7174 * SYNACK). It will be useful when it is not necessary to
7175 * save the SYN packet for latter use. It is also the only way
7176 * to get the SYN during syncookie mode because the syn
7177 * packet cannot be saved during syncookie.
7178 *
7179 * OR
7180 *
7181 * 2. the earlier saved syn which was done by
7182 * bpf_setsockopt(TCP_SAVE_SYN).
7183 *
7184 * The bpf_getsockopt(TCP_BPF_SYN*) option will hide where the
7185 * SYN packet is obtained.
7186 *
7187 * If the bpf-prog does not need the IP[46] header, the
7188 * bpf-prog can avoid parsing the IP header by using
7189 * TCP_BPF_SYN. Otherwise, the bpf-prog can get both
7190 * IP[46] and TCP header by using TCP_BPF_SYN_IP.
7191 *
7192 * >0: Total number of bytes copied
7193 * -ENOSPC: Not enough space in optval. Only optlen number of
7194 * bytes is copied.
7195 * -ENOENT: The SYN skb is not available now and the earlier SYN pkt
7196 * is not saved by setsockopt(TCP_SAVE_SYN).
7197 */
7198 TCP_BPF_SYN = 1005, /* Copy the TCP header */
7199 TCP_BPF_SYN_IP = 1006, /* Copy the IP[46] and TCP header */
7200 TCP_BPF_SYN_MAC = 1007, /* Copy the MAC, IP[46], and TCP header */
7201 TCP_BPF_SOCK_OPS_CB_FLAGS = 1008, /* Get or Set TCP sock ops flags */
7202 SK_BPF_CB_FLAGS = 1009, /* Get or set sock ops flags in socket */
7203};
7204
7205enum {
7206 BPF_LOAD_HDR_OPT_TCP_SYN = (1ULL << 0),
7207};
7208
7209/* args[0] value during BPF_SOCK_OPS_HDR_OPT_LEN_CB and
7210 * BPF_SOCK_OPS_WRITE_HDR_OPT_CB.
7211 */
7212enum {
7213 BPF_WRITE_HDR_TCP_CURRENT_MSS = 1, /* Kernel is finding the
7214 * total option spaces
7215 * required for an established
7216 * sk in order to calculate the
7217 * MSS. No skb is actually
7218 * sent.
7219 */
7220 BPF_WRITE_HDR_TCP_SYNACK_COOKIE = 2, /* Kernel is in syncookie mode
7221 * when sending a SYN.
7222 */
7223};
7224
7225struct bpf_perf_event_value {
7226 __u64 counter;
7227 __u64 enabled;
7228 __u64 running;
7229};
7230
7231enum {
7232 BPF_DEVCG_ACC_MKNOD = (1ULL << 0),
7233 BPF_DEVCG_ACC_READ = (1ULL << 1),
7234 BPF_DEVCG_ACC_WRITE = (1ULL << 2),
7235};
7236
7237enum {
7238 BPF_DEVCG_DEV_BLOCK = (1ULL << 0),
7239 BPF_DEVCG_DEV_CHAR = (1ULL << 1),
7240};
7241
7242struct bpf_cgroup_dev_ctx {
7243 /* access_type encoded as (BPF_DEVCG_ACC_* << 16) | BPF_DEVCG_DEV_* */
7244 __u32 access_type;
7245 __u32 major;
7246 __u32 minor;
7247};
7248
7249struct bpf_raw_tracepoint_args {
7250 __u64 args[0];
7251};
7252
7253/* DIRECT: Skip the FIB rules and go to FIB table associated with device
7254 * OUTPUT: Do lookup from egress perspective; default is ingress
7255 */
7256enum {
7257 BPF_FIB_LOOKUP_DIRECT = (1U << 0),
7258 BPF_FIB_LOOKUP_OUTPUT = (1U << 1),
7259 BPF_FIB_LOOKUP_SKIP_NEIGH = (1U << 2),
7260 BPF_FIB_LOOKUP_TBID = (1U << 3),
7261 BPF_FIB_LOOKUP_SRC = (1U << 4),
7262 BPF_FIB_LOOKUP_MARK = (1U << 5),
7263};
7264
7265enum {
7266 BPF_FIB_LKUP_RET_SUCCESS, /* lookup successful */
7267 BPF_FIB_LKUP_RET_BLACKHOLE, /* dest is blackholed; can be dropped */
7268 BPF_FIB_LKUP_RET_UNREACHABLE, /* dest is unreachable; can be dropped */
7269 BPF_FIB_LKUP_RET_PROHIBIT, /* dest not allowed; can be dropped */
7270 BPF_FIB_LKUP_RET_NOT_FWDED, /* packet is not forwarded */
7271 BPF_FIB_LKUP_RET_FWD_DISABLED, /* fwding is not enabled on ingress */
7272 BPF_FIB_LKUP_RET_UNSUPP_LWT, /* fwd requires encapsulation */
7273 BPF_FIB_LKUP_RET_NO_NEIGH, /* no neighbor entry for nh */
7274 BPF_FIB_LKUP_RET_FRAG_NEEDED, /* fragmentation required to fwd */
7275 BPF_FIB_LKUP_RET_NO_SRC_ADDR, /* failed to derive IP src addr */
7276};
7277
7278struct bpf_fib_lookup {
7279 /* input: network family for lookup (AF_INET, AF_INET6)
7280 * output: network family of egress nexthop
7281 */
7282 __u8 family;
7283
7284 /* set if lookup is to consider L4 data - e.g., FIB rules */
7285 __u8 l4_protocol;
7286 __be16 sport;
7287 __be16 dport;
7288
7289 union { /* used for MTU check */
7290 /* input to lookup */
7291 __u16 tot_len; /* L3 length from network hdr (iph->tot_len) */
7292
7293 /* output: MTU value */
7294 __u16 mtu_result;
7295 } __attribute__((packed, aligned(2)));
7296 /* input: L3 device index for lookup
7297 * output: device index from FIB lookup
7298 */
7299 __u32 ifindex;
7300
7301 union {
7302 /* inputs to lookup */
7303 __u8 tos; /* AF_INET */
7304 __be32 flowinfo; /* AF_INET6, flow_label + priority */
7305
7306 /* output: metric of fib result (IPv4/IPv6 only) */
7307 __u32 rt_metric;
7308 };
7309
7310 /* input: source address to consider for lookup
7311 * output: source address result from lookup
7312 */
7313 union {
7314 __be32 ipv4_src;
7315 __u32 ipv6_src[4]; /* in6_addr; network order */
7316 };
7317
7318 /* input to bpf_fib_lookup, ipv{4,6}_dst is destination address in
7319 * network header. output: bpf_fib_lookup sets to gateway address
7320 * if FIB lookup returns gateway route
7321 */
7322 union {
7323 __be32 ipv4_dst;
7324 __u32 ipv6_dst[4]; /* in6_addr; network order */
7325 };
7326
7327 union {
7328 struct {
7329 /* output */
7330 __be16 h_vlan_proto;
7331 __be16 h_vlan_TCI;
7332 };
7333 /* input: when accompanied with the
7334 * 'BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_TBID` flags, a
7335 * specific routing table to use for the fib lookup.
7336 */
7337 __u32 tbid;
7338 };
7339
7340 union {
7341 /* input */
7342 struct {
7343 __u32 mark; /* policy routing */
7344 /* 2 4-byte holes for input */
7345 };
7346
7347 /* output: source and dest mac */
7348 struct {
7349 __u8 smac[6]; /* ETH_ALEN */
7350 __u8 dmac[6]; /* ETH_ALEN */
7351 };
7352 };
7353};
7354
7355struct bpf_redir_neigh {
7356 /* network family for lookup (AF_INET, AF_INET6) */
7357 __u32 nh_family;
7358 /* network address of nexthop; skips fib lookup to find gateway */
7359 union {
7360 __be32 ipv4_nh;
7361 __u32 ipv6_nh[4]; /* in6_addr; network order */
7362 };
7363};
7364
7365/* bpf_check_mtu flags*/
7366enum bpf_check_mtu_flags {
7367 BPF_MTU_CHK_SEGS = (1U << 0),
7368};
7369
7370enum bpf_check_mtu_ret {
7371 BPF_MTU_CHK_RET_SUCCESS, /* check and lookup successful */
7372 BPF_MTU_CHK_RET_FRAG_NEEDED, /* fragmentation required to fwd */
7373 BPF_MTU_CHK_RET_SEGS_TOOBIG, /* GSO re-segmentation needed to fwd */
7374};
7375
7376enum bpf_task_fd_type {
7377 BPF_FD_TYPE_RAW_TRACEPOINT, /* tp name */
7378 BPF_FD_TYPE_TRACEPOINT, /* tp name */
7379 BPF_FD_TYPE_KPROBE, /* (symbol + offset) or addr */
7380 BPF_FD_TYPE_KRETPROBE, /* (symbol + offset) or addr */
7381 BPF_FD_TYPE_UPROBE, /* filename + offset */
7382 BPF_FD_TYPE_URETPROBE, /* filename + offset */
7383};
7384
7385enum {
7386 BPF_FLOW_DISSECTOR_F_PARSE_1ST_FRAG = (1U << 0),
7387 BPF_FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL = (1U << 1),
7388 BPF_FLOW_DISSECTOR_F_STOP_AT_ENCAP = (1U << 2),
7389};
7390
7391struct bpf_flow_keys {
7392 __u16 nhoff;
7393 __u16 thoff;
7394 __u16 addr_proto; /* ETH_P_* of valid addrs */
7395 __u8 is_frag;
7396 __u8 is_first_frag;
7397 __u8 is_encap;
7398 __u8 ip_proto;
7399 __be16 n_proto;
7400 __be16 sport;
7401 __be16 dport;
7402 union {
7403 struct {
7404 __be32 ipv4_src;
7405 __be32 ipv4_dst;
7406 };
7407 struct {
7408 __u32 ipv6_src[4]; /* in6_addr; network order */
7409 __u32 ipv6_dst[4]; /* in6_addr; network order */
7410 };
7411 };
7412 __u32 flags;
7413 __be32 flow_label;
7414};
7415
7416struct bpf_func_info {
7417 __u32 insn_off;
7418 __u32 type_id;
7419};
7420
7421#define BPF_LINE_INFO_LINE_NUM(line_col) ((line_col) >> 10)
7422#define BPF_LINE_INFO_LINE_COL(line_col) ((line_col) & 0x3ff)
7423
7424struct bpf_line_info {
7425 __u32 insn_off;
7426 __u32 file_name_off;
7427 __u32 line_off;
7428 __u32 line_col;
7429};
7430
7431struct bpf_spin_lock {
7432 __u32 val;
7433};
7434
7435struct bpf_timer {
7436 __u64 __opaque[2];
7437} __attribute__((aligned(8)));
7438
7439struct bpf_task_work {
7440 __u64 __opaque;
7441} __attribute__((aligned(8)));
7442
7443struct bpf_wq {
7444 __u64 __opaque[2];
7445} __attribute__((aligned(8)));
7446
7447struct bpf_dynptr {
7448 __u64 __opaque[2];
7449} __attribute__((aligned(8)));
7450
7451struct bpf_list_head {
7452 __u64 __opaque[2];
7453} __attribute__((aligned(8)));
7454
7455struct bpf_list_node {
7456 __u64 __opaque[3];
7457} __attribute__((aligned(8)));
7458
7459struct bpf_rb_root {
7460 __u64 __opaque[2];
7461} __attribute__((aligned(8)));
7462
7463struct bpf_rb_node {
7464 __u64 __opaque[4];
7465} __attribute__((aligned(8)));
7466
7467struct bpf_refcount {
7468 __u32 __opaque[1];
7469} __attribute__((aligned(4)));
7470
7471struct bpf_sysctl {
7472 __u32 write; /* Sysctl is being read (= 0) or written (= 1).
7473 * Allows 1,2,4-byte read, but no write.
7474 */
7475 __u32 file_pos; /* Sysctl file position to read from, write to.
7476 * Allows 1,2,4-byte read an 4-byte write.
7477 */
7478};
7479
7480struct bpf_sockopt {
7481 __bpf_md_ptr(struct bpf_sock *, sk);
7482 __bpf_md_ptr(void *, optval);
7483 __bpf_md_ptr(void *, optval_end);
7484
7485 __s32 level;
7486 __s32 optname;
7487 __s32 optlen;
7488 __s32 retval;
7489};
7490
7491struct bpf_pidns_info {
7492 __u32 pid;
7493 __u32 tgid;
7494};
7495
7496/* User accessible data for SK_LOOKUP programs. Add new fields at the end. */
7497struct bpf_sk_lookup {
7498 union {
7499 __bpf_md_ptr(struct bpf_sock *, sk); /* Selected socket */
7500 __u64 cookie; /* Non-zero if socket was selected in PROG_TEST_RUN */
7501 };
7502
7503 __u32 family; /* Protocol family (AF_INET, AF_INET6) */
7504 __u32 protocol; /* IP protocol (IPPROTO_TCP, IPPROTO_UDP) */
7505 __u32 remote_ip4; /* Network byte order */
7506 __u32 remote_ip6[4]; /* Network byte order */
7507 __be16 remote_port; /* Network byte order */
7508 __u16 :16; /* Zero padding */
7509 __u32 local_ip4; /* Network byte order */
7510 __u32 local_ip6[4]; /* Network byte order */
7511 __u32 local_port; /* Host byte order */
7512 __u32 ingress_ifindex; /* The arriving interface. Determined by inet_iif. */
7513};
7514
7515/*
7516 * struct btf_ptr is used for typed pointer representation; the
7517 * type id is used to render the pointer data as the appropriate type
7518 * via the bpf_snprintf_btf() helper described above. A flags field -
7519 * potentially to specify additional details about the BTF pointer
7520 * (rather than its mode of display) - is included for future use.
7521 * Display flags - BTF_F_* - are passed to bpf_snprintf_btf separately.
7522 */
7523struct btf_ptr {
7524 void *ptr;
7525 __u32 type_id;
7526 __u32 flags; /* BTF ptr flags; unused at present. */
7527};
7528
7529/*
7530 * Flags to control bpf_snprintf_btf() behaviour.
7531 * - BTF_F_COMPACT: no formatting around type information
7532 * - BTF_F_NONAME: no struct/union member names/types
7533 * - BTF_F_PTR_RAW: show raw (unobfuscated) pointer values;
7534 * equivalent to %px.
7535 * - BTF_F_ZERO: show zero-valued struct/union members; they
7536 * are not displayed by default
7537 */
7538enum {
7539 BTF_F_COMPACT = (1ULL << 0),
7540 BTF_F_NONAME = (1ULL << 1),
7541 BTF_F_PTR_RAW = (1ULL << 2),
7542 BTF_F_ZERO = (1ULL << 3),
7543};
7544
7545/* bpf_core_relo_kind encodes which aspect of captured field/type/enum value
7546 * has to be adjusted by relocations. It is emitted by llvm and passed to
7547 * libbpf and later to the kernel.
7548 */
7549enum bpf_core_relo_kind {
7550 BPF_CORE_FIELD_BYTE_OFFSET = 0, /* field byte offset */
7551 BPF_CORE_FIELD_BYTE_SIZE = 1, /* field size in bytes */
7552 BPF_CORE_FIELD_EXISTS = 2, /* field existence in target kernel */
7553 BPF_CORE_FIELD_SIGNED = 3, /* field signedness (0 - unsigned, 1 - signed) */
7554 BPF_CORE_FIELD_LSHIFT_U64 = 4, /* bitfield-specific left bitshift */
7555 BPF_CORE_FIELD_RSHIFT_U64 = 5, /* bitfield-specific right bitshift */
7556 BPF_CORE_TYPE_ID_LOCAL = 6, /* type ID in local BPF object */
7557 BPF_CORE_TYPE_ID_TARGET = 7, /* type ID in target kernel */
7558 BPF_CORE_TYPE_EXISTS = 8, /* type existence in target kernel */
7559 BPF_CORE_TYPE_SIZE = 9, /* type size in bytes */
7560 BPF_CORE_ENUMVAL_EXISTS = 10, /* enum value existence in target kernel */
7561 BPF_CORE_ENUMVAL_VALUE = 11, /* enum value integer value */
7562 BPF_CORE_TYPE_MATCHES = 12, /* type match in target kernel */
7563};
7564
7565/*
7566 * "struct bpf_core_relo" is used to pass relocation data form LLVM to libbpf
7567 * and from libbpf to the kernel.
7568 *
7569 * CO-RE relocation captures the following data:
7570 * - insn_off - instruction offset (in bytes) within a BPF program that needs
7571 * its insn->imm field to be relocated with actual field info;
7572 * - type_id - BTF type ID of the "root" (containing) entity of a relocatable
7573 * type or field;
7574 * - access_str_off - offset into corresponding .BTF string section. String
7575 * interpretation depends on specific relocation kind:
7576 * - for field-based relocations, string encodes an accessed field using
7577 * a sequence of field and array indices, separated by colon (:). It's
7578 * conceptually very close to LLVM's getelementptr ([0]) instruction's
7579 * arguments for identifying offset to a field.
7580 * - for type-based relocations, strings is expected to be just "0";
7581 * - for enum value-based relocations, string contains an index of enum
7582 * value within its enum type;
7583 * - kind - one of enum bpf_core_relo_kind;
7584 *
7585 * Example:
7586 * struct sample {
7587 * int a;
7588 * struct {
7589 * int b[10];
7590 * };
7591 * };
7592 *
7593 * struct sample *s = ...;
7594 * int *x = &s->a; // encoded as "0:0" (a is field #0)
7595 * int *y = &s->b[5]; // encoded as "0:1:0:5" (anon struct is field #1,
7596 * // b is field #0 inside anon struct, accessing elem #5)
7597 * int *z = &s[10]->b; // encoded as "10:1" (ptr is used as an array)
7598 *
7599 * type_id for all relocs in this example will capture BTF type id of
7600 * `struct sample`.
7601 *
7602 * Such relocation is emitted when using __builtin_preserve_access_index()
7603 * Clang built-in, passing expression that captures field address, e.g.:
7604 *
7605 * bpf_probe_read(&dst, sizeof(dst),
7606 * __builtin_preserve_access_index(&src->a.b.c));
7607 *
7608 * In this case Clang will emit field relocation recording necessary data to
7609 * be able to find offset of embedded `a.b.c` field within `src` struct.
7610 *
7611 * [0] https://llvm.org/docs/LangRef.html#getelementptr-instruction
7612 */
7613struct bpf_core_relo {
7614 __u32 insn_off;
7615 __u32 type_id;
7616 __u32 access_str_off;
7617 enum bpf_core_relo_kind kind;
7618};
7619
7620/*
7621 * Flags to control bpf_timer_start() behaviour.
7622 * - BPF_F_TIMER_ABS: Timeout passed is absolute time, by default it is
7623 * relative to current time.
7624 * - BPF_F_TIMER_CPU_PIN: Timer will be pinned to the CPU of the caller.
7625 */
7626enum {
7627 BPF_F_TIMER_ABS = (1ULL << 0),
7628 BPF_F_TIMER_CPU_PIN = (1ULL << 1),
7629};
7630
7631/* BPF numbers iterator state */
7632struct bpf_iter_num {
7633 /* opaque iterator state; having __u64 here allows to preserve correct
7634 * alignment requirements in vmlinux.h, generated from BTF
7635 */
7636 __u64 __opaque[1];
7637} __attribute__((aligned(8)));
7638
7639/*
7640 * Flags to control BPF kfunc behaviour.
7641 * - BPF_F_PAD_ZEROS: Pad destination buffer with zeros. (See the respective
7642 * helper documentation for details.)
7643 */
7644enum bpf_kfunc_flags {
7645 BPF_F_PAD_ZEROS = (1ULL << 0),
7646};
7647
7648#endif /* _UAPI__LINUX_BPF_H__ */
7649