| 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | #include "audit.h" |
| 3 | #include <linux/fsnotify_backend.h> |
| 4 | #include <linux/namei.h> |
| 5 | #include <linux/mount.h> |
| 6 | #include <linux/kthread.h> |
| 7 | #include <linux/refcount.h> |
| 8 | #include <linux/slab.h> |
| 9 | |
| 10 | struct audit_tree; |
| 11 | struct audit_chunk; |
| 12 | |
| 13 | struct audit_tree { |
| 14 | refcount_t count; |
| 15 | int goner; |
| 16 | struct audit_chunk *root; |
| 17 | struct list_head chunks; |
| 18 | struct list_head rules; |
| 19 | struct list_head list; |
| 20 | struct list_head same_root; |
| 21 | struct rcu_head head; |
| 22 | char pathname[]; |
| 23 | }; |
| 24 | |
| 25 | struct audit_chunk { |
| 26 | struct list_head hash; |
| 27 | unsigned long key; |
| 28 | struct fsnotify_mark *mark; |
| 29 | struct list_head trees; /* with root here */ |
| 30 | int count; |
| 31 | atomic_long_t refs; |
| 32 | struct rcu_head head; |
| 33 | struct audit_node { |
| 34 | struct list_head list; |
| 35 | struct audit_tree *owner; |
| 36 | unsigned index; /* index; upper bit indicates 'will prune' */ |
| 37 | } owners[] __counted_by(count); |
| 38 | }; |
| 39 | |
| 40 | struct audit_tree_mark { |
| 41 | struct fsnotify_mark mark; |
| 42 | struct audit_chunk *chunk; |
| 43 | }; |
| 44 | |
| 45 | static LIST_HEAD(tree_list); |
| 46 | static LIST_HEAD(prune_list); |
| 47 | static struct task_struct *prune_thread; |
| 48 | |
| 49 | /* |
| 50 | * One struct chunk is attached to each inode of interest through |
| 51 | * audit_tree_mark (fsnotify mark). We replace struct chunk on tagging / |
| 52 | * untagging, the mark is stable as long as there is chunk attached. The |
| 53 | * association between mark and chunk is protected by hash_lock and |
| 54 | * audit_tree_group->mark_mutex. Thus as long as we hold |
| 55 | * audit_tree_group->mark_mutex and check that the mark is alive by |
| 56 | * FSNOTIFY_MARK_FLAG_ATTACHED flag check, we are sure the mark points to |
| 57 | * the current chunk. |
| 58 | * |
| 59 | * Rules have pointer to struct audit_tree. |
| 60 | * Rules have struct list_head rlist forming a list of rules over |
| 61 | * the same tree. |
| 62 | * References to struct chunk are collected at audit_inode{,_child}() |
| 63 | * time and used in AUDIT_TREE rule matching. |
| 64 | * These references are dropped at the same time we are calling |
| 65 | * audit_free_names(), etc. |
| 66 | * |
| 67 | * Cyclic lists galore: |
| 68 | * tree.chunks anchors chunk.owners[].list hash_lock |
| 69 | * tree.rules anchors rule.rlist audit_filter_mutex |
| 70 | * chunk.trees anchors tree.same_root hash_lock |
| 71 | * chunk.hash is a hash with middle bits of watch.inode as |
| 72 | * a hash function. RCU, hash_lock |
| 73 | * |
| 74 | * tree is refcounted; one reference for "some rules on rules_list refer to |
| 75 | * it", one for each chunk with pointer to it. |
| 76 | * |
| 77 | * chunk is refcounted by embedded .refs. Mark associated with the chunk holds |
| 78 | * one chunk reference. This reference is dropped either when a mark is going |
| 79 | * to be freed (corresponding inode goes away) or when chunk attached to the |
| 80 | * mark gets replaced. This reference must be dropped using |
| 81 | * audit_mark_put_chunk() to make sure the reference is dropped only after RCU |
| 82 | * grace period as it protects RCU readers of the hash table. |
| 83 | * |
| 84 | * node.index allows to get from node.list to containing chunk. |
| 85 | * MSB of that sucker is stolen to mark taggings that we might have to |
| 86 | * revert - several operations have very unpleasant cleanup logics and |
| 87 | * that makes a difference. Some. |
| 88 | */ |
| 89 | |
| 90 | static struct fsnotify_group *audit_tree_group __ro_after_init; |
| 91 | static struct kmem_cache *audit_tree_mark_cachep __ro_after_init; |
| 92 | |
| 93 | static struct audit_tree *alloc_tree(const char *s) |
| 94 | { |
| 95 | struct audit_tree *tree; |
| 96 | size_t sz; |
| 97 | |
| 98 | sz = strlen(s) + 1; |
| 99 | tree = kmalloc(struct_size(tree, pathname, sz), GFP_KERNEL); |
| 100 | if (tree) { |
| 101 | refcount_set(r: &tree->count, n: 1); |
| 102 | tree->goner = 0; |
| 103 | INIT_LIST_HEAD(list: &tree->chunks); |
| 104 | INIT_LIST_HEAD(list: &tree->rules); |
| 105 | INIT_LIST_HEAD(list: &tree->list); |
| 106 | INIT_LIST_HEAD(list: &tree->same_root); |
| 107 | tree->root = NULL; |
| 108 | strscpy(tree->pathname, s, sz); |
| 109 | } |
| 110 | return tree; |
| 111 | } |
| 112 | |
| 113 | static inline void get_tree(struct audit_tree *tree) |
| 114 | { |
| 115 | refcount_inc(r: &tree->count); |
| 116 | } |
| 117 | |
| 118 | static inline void put_tree(struct audit_tree *tree) |
| 119 | { |
| 120 | if (refcount_dec_and_test(r: &tree->count)) |
| 121 | kfree_rcu(tree, head); |
| 122 | } |
| 123 | |
| 124 | /* to avoid bringing the entire thing in audit.h */ |
| 125 | const char *audit_tree_path(struct audit_tree *tree) |
| 126 | { |
| 127 | return tree->pathname; |
| 128 | } |
| 129 | |
| 130 | static void free_chunk(struct audit_chunk *chunk) |
| 131 | { |
| 132 | int i; |
| 133 | |
| 134 | for (i = 0; i < chunk->count; i++) { |
| 135 | if (chunk->owners[i].owner) |
| 136 | put_tree(tree: chunk->owners[i].owner); |
| 137 | } |
| 138 | kfree(objp: chunk); |
| 139 | } |
| 140 | |
| 141 | void audit_put_chunk(struct audit_chunk *chunk) |
| 142 | { |
| 143 | if (atomic_long_dec_and_test(v: &chunk->refs)) |
| 144 | free_chunk(chunk); |
| 145 | } |
| 146 | |
| 147 | static void __put_chunk(struct rcu_head *rcu) |
| 148 | { |
| 149 | struct audit_chunk *chunk = container_of(rcu, struct audit_chunk, head); |
| 150 | audit_put_chunk(chunk); |
| 151 | } |
| 152 | |
| 153 | /* |
| 154 | * Drop reference to the chunk that was held by the mark. This is the reference |
| 155 | * that gets dropped after we've removed the chunk from the hash table and we |
| 156 | * use it to make sure chunk cannot be freed before RCU grace period expires. |
| 157 | */ |
| 158 | static void audit_mark_put_chunk(struct audit_chunk *chunk) |
| 159 | { |
| 160 | call_rcu(head: &chunk->head, func: __put_chunk); |
| 161 | } |
| 162 | |
| 163 | static inline struct audit_tree_mark *audit_mark(struct fsnotify_mark *mark) |
| 164 | { |
| 165 | return container_of(mark, struct audit_tree_mark, mark); |
| 166 | } |
| 167 | |
| 168 | static struct audit_chunk *mark_chunk(struct fsnotify_mark *mark) |
| 169 | { |
| 170 | return audit_mark(mark)->chunk; |
| 171 | } |
| 172 | |
| 173 | static void audit_tree_destroy_watch(struct fsnotify_mark *mark) |
| 174 | { |
| 175 | kmem_cache_free(s: audit_tree_mark_cachep, objp: audit_mark(mark)); |
| 176 | } |
| 177 | |
| 178 | static struct fsnotify_mark *alloc_mark(void) |
| 179 | { |
| 180 | struct audit_tree_mark *amark; |
| 181 | |
| 182 | amark = kmem_cache_zalloc(audit_tree_mark_cachep, GFP_KERNEL); |
| 183 | if (!amark) |
| 184 | return NULL; |
| 185 | fsnotify_init_mark(mark: &amark->mark, group: audit_tree_group); |
| 186 | amark->mark.mask = FS_IN_IGNORED; |
| 187 | return &amark->mark; |
| 188 | } |
| 189 | |
| 190 | static struct audit_chunk *alloc_chunk(int count) |
| 191 | { |
| 192 | struct audit_chunk *chunk; |
| 193 | int i; |
| 194 | |
| 195 | chunk = kzalloc(struct_size(chunk, owners, count), GFP_KERNEL); |
| 196 | if (!chunk) |
| 197 | return NULL; |
| 198 | |
| 199 | INIT_LIST_HEAD(list: &chunk->hash); |
| 200 | INIT_LIST_HEAD(list: &chunk->trees); |
| 201 | chunk->count = count; |
| 202 | atomic_long_set(v: &chunk->refs, i: 1); |
| 203 | for (i = 0; i < count; i++) { |
| 204 | INIT_LIST_HEAD(list: &chunk->owners[i].list); |
| 205 | chunk->owners[i].index = i; |
| 206 | } |
| 207 | return chunk; |
| 208 | } |
| 209 | |
| 210 | enum {HASH_SIZE = 128}; |
| 211 | static struct list_head chunk_hash_heads[HASH_SIZE]; |
| 212 | static __cacheline_aligned_in_smp DEFINE_SPINLOCK(hash_lock); |
| 213 | |
| 214 | /* Function to return search key in our hash from inode. */ |
| 215 | static unsigned long inode_to_key(const struct inode *inode) |
| 216 | { |
| 217 | /* Use address pointed to by connector->obj as the key */ |
| 218 | return (unsigned long)&inode->i_fsnotify_marks; |
| 219 | } |
| 220 | |
| 221 | static inline struct list_head *chunk_hash(unsigned long key) |
| 222 | { |
| 223 | unsigned long n = key / L1_CACHE_BYTES; |
| 224 | return chunk_hash_heads + n % HASH_SIZE; |
| 225 | } |
| 226 | |
| 227 | /* hash_lock & mark->group->mark_mutex is held by caller */ |
| 228 | static void insert_hash(struct audit_chunk *chunk) |
| 229 | { |
| 230 | struct list_head *list; |
| 231 | |
| 232 | /* |
| 233 | * Make sure chunk is fully initialized before making it visible in the |
| 234 | * hash. Pairs with a data dependency barrier in READ_ONCE() in |
| 235 | * audit_tree_lookup(). |
| 236 | */ |
| 237 | smp_wmb(); |
| 238 | WARN_ON_ONCE(!chunk->key); |
| 239 | list = chunk_hash(key: chunk->key); |
| 240 | list_add_rcu(new: &chunk->hash, head: list); |
| 241 | } |
| 242 | |
| 243 | /* called under rcu_read_lock */ |
| 244 | struct audit_chunk *audit_tree_lookup(const struct inode *inode) |
| 245 | { |
| 246 | unsigned long key = inode_to_key(inode); |
| 247 | struct list_head *list = chunk_hash(key); |
| 248 | struct audit_chunk *p; |
| 249 | |
| 250 | list_for_each_entry_rcu(p, list, hash) { |
| 251 | /* |
| 252 | * We use a data dependency barrier in READ_ONCE() to make sure |
| 253 | * the chunk we see is fully initialized. |
| 254 | */ |
| 255 | if (READ_ONCE(p->key) == key) { |
| 256 | atomic_long_inc(v: &p->refs); |
| 257 | return p; |
| 258 | } |
| 259 | } |
| 260 | return NULL; |
| 261 | } |
| 262 | |
| 263 | bool audit_tree_match(struct audit_chunk *chunk, struct audit_tree *tree) |
| 264 | { |
| 265 | int n; |
| 266 | for (n = 0; n < chunk->count; n++) |
| 267 | if (chunk->owners[n].owner == tree) |
| 268 | return true; |
| 269 | return false; |
| 270 | } |
| 271 | |
| 272 | /* tagging and untagging inodes with trees */ |
| 273 | |
| 274 | static struct audit_chunk *find_chunk(struct audit_node *p) |
| 275 | { |
| 276 | int index = p->index & ~(1U<<31); |
| 277 | p -= index; |
| 278 | return container_of(p, struct audit_chunk, owners[0]); |
| 279 | } |
| 280 | |
| 281 | static void replace_mark_chunk(struct fsnotify_mark *mark, |
| 282 | struct audit_chunk *chunk) |
| 283 | { |
| 284 | struct audit_chunk *old; |
| 285 | |
| 286 | assert_spin_locked(&hash_lock); |
| 287 | old = mark_chunk(mark); |
| 288 | audit_mark(mark)->chunk = chunk; |
| 289 | if (chunk) |
| 290 | chunk->mark = mark; |
| 291 | if (old) |
| 292 | old->mark = NULL; |
| 293 | } |
| 294 | |
| 295 | static void replace_chunk(struct audit_chunk *new, struct audit_chunk *old) |
| 296 | { |
| 297 | struct audit_tree *owner; |
| 298 | int i, j; |
| 299 | |
| 300 | new->key = old->key; |
| 301 | list_splice_init(list: &old->trees, head: &new->trees); |
| 302 | list_for_each_entry(owner, &new->trees, same_root) |
| 303 | owner->root = new; |
| 304 | for (i = j = 0; j < old->count; i++, j++) { |
| 305 | if (!old->owners[j].owner) { |
| 306 | i--; |
| 307 | continue; |
| 308 | } |
| 309 | owner = old->owners[j].owner; |
| 310 | new->owners[i].owner = owner; |
| 311 | new->owners[i].index = old->owners[j].index - j + i; |
| 312 | if (!owner) /* result of earlier fallback */ |
| 313 | continue; |
| 314 | get_tree(tree: owner); |
| 315 | list_replace_init(old: &old->owners[j].list, new: &new->owners[i].list); |
| 316 | } |
| 317 | replace_mark_chunk(mark: old->mark, chunk: new); |
| 318 | /* |
| 319 | * Make sure chunk is fully initialized before making it visible in the |
| 320 | * hash. Pairs with a data dependency barrier in READ_ONCE() in |
| 321 | * audit_tree_lookup(). |
| 322 | */ |
| 323 | smp_wmb(); |
| 324 | list_replace_rcu(old: &old->hash, new: &new->hash); |
| 325 | } |
| 326 | |
| 327 | static void remove_chunk_node(struct audit_chunk *chunk, struct audit_node *p) |
| 328 | { |
| 329 | struct audit_tree *owner = p->owner; |
| 330 | |
| 331 | if (owner->root == chunk) { |
| 332 | list_del_init(entry: &owner->same_root); |
| 333 | owner->root = NULL; |
| 334 | } |
| 335 | list_del_init(entry: &p->list); |
| 336 | p->owner = NULL; |
| 337 | put_tree(tree: owner); |
| 338 | } |
| 339 | |
| 340 | static int chunk_count_trees(struct audit_chunk *chunk) |
| 341 | { |
| 342 | int i; |
| 343 | int ret = 0; |
| 344 | |
| 345 | for (i = 0; i < chunk->count; i++) |
| 346 | if (chunk->owners[i].owner) |
| 347 | ret++; |
| 348 | return ret; |
| 349 | } |
| 350 | |
| 351 | static void untag_chunk(struct audit_chunk *chunk, struct fsnotify_mark *mark) |
| 352 | { |
| 353 | struct audit_chunk *new; |
| 354 | int size; |
| 355 | |
| 356 | fsnotify_group_lock(group: audit_tree_group); |
| 357 | /* |
| 358 | * mark_mutex stabilizes chunk attached to the mark so we can check |
| 359 | * whether it didn't change while we've dropped hash_lock. |
| 360 | */ |
| 361 | if (!(mark->flags & FSNOTIFY_MARK_FLAG_ATTACHED) || |
| 362 | mark_chunk(mark) != chunk) |
| 363 | goto out_mutex; |
| 364 | |
| 365 | size = chunk_count_trees(chunk); |
| 366 | if (!size) { |
| 367 | spin_lock(lock: &hash_lock); |
| 368 | list_del_init(entry: &chunk->trees); |
| 369 | list_del_rcu(entry: &chunk->hash); |
| 370 | replace_mark_chunk(mark, NULL); |
| 371 | spin_unlock(lock: &hash_lock); |
| 372 | fsnotify_detach_mark(mark); |
| 373 | fsnotify_group_unlock(group: audit_tree_group); |
| 374 | audit_mark_put_chunk(chunk); |
| 375 | fsnotify_free_mark(mark); |
| 376 | return; |
| 377 | } |
| 378 | |
| 379 | new = alloc_chunk(count: size); |
| 380 | if (!new) |
| 381 | goto out_mutex; |
| 382 | |
| 383 | spin_lock(lock: &hash_lock); |
| 384 | /* |
| 385 | * This has to go last when updating chunk as once replace_chunk() is |
| 386 | * called, new RCU readers can see the new chunk. |
| 387 | */ |
| 388 | replace_chunk(new, old: chunk); |
| 389 | spin_unlock(lock: &hash_lock); |
| 390 | fsnotify_group_unlock(group: audit_tree_group); |
| 391 | audit_mark_put_chunk(chunk); |
| 392 | return; |
| 393 | |
| 394 | out_mutex: |
| 395 | fsnotify_group_unlock(group: audit_tree_group); |
| 396 | } |
| 397 | |
| 398 | /* Call with group->mark_mutex held, releases it */ |
| 399 | static int create_chunk(struct inode *inode, struct audit_tree *tree) |
| 400 | { |
| 401 | struct fsnotify_mark *mark; |
| 402 | struct audit_chunk *chunk = alloc_chunk(count: 1); |
| 403 | |
| 404 | if (!chunk) { |
| 405 | fsnotify_group_unlock(group: audit_tree_group); |
| 406 | return -ENOMEM; |
| 407 | } |
| 408 | |
| 409 | mark = alloc_mark(); |
| 410 | if (!mark) { |
| 411 | fsnotify_group_unlock(group: audit_tree_group); |
| 412 | kfree(objp: chunk); |
| 413 | return -ENOMEM; |
| 414 | } |
| 415 | |
| 416 | if (fsnotify_add_inode_mark_locked(mark, inode, add_flags: 0)) { |
| 417 | fsnotify_group_unlock(group: audit_tree_group); |
| 418 | fsnotify_put_mark(mark); |
| 419 | kfree(objp: chunk); |
| 420 | return -ENOSPC; |
| 421 | } |
| 422 | |
| 423 | spin_lock(lock: &hash_lock); |
| 424 | if (tree->goner) { |
| 425 | spin_unlock(lock: &hash_lock); |
| 426 | fsnotify_detach_mark(mark); |
| 427 | fsnotify_group_unlock(group: audit_tree_group); |
| 428 | fsnotify_free_mark(mark); |
| 429 | fsnotify_put_mark(mark); |
| 430 | kfree(objp: chunk); |
| 431 | return 0; |
| 432 | } |
| 433 | replace_mark_chunk(mark, chunk); |
| 434 | chunk->owners[0].index = (1U << 31); |
| 435 | chunk->owners[0].owner = tree; |
| 436 | get_tree(tree); |
| 437 | list_add(new: &chunk->owners[0].list, head: &tree->chunks); |
| 438 | if (!tree->root) { |
| 439 | tree->root = chunk; |
| 440 | list_add(new: &tree->same_root, head: &chunk->trees); |
| 441 | } |
| 442 | chunk->key = inode_to_key(inode); |
| 443 | /* |
| 444 | * Inserting into the hash table has to go last as once we do that RCU |
| 445 | * readers can see the chunk. |
| 446 | */ |
| 447 | insert_hash(chunk); |
| 448 | spin_unlock(lock: &hash_lock); |
| 449 | fsnotify_group_unlock(group: audit_tree_group); |
| 450 | /* |
| 451 | * Drop our initial reference. When mark we point to is getting freed, |
| 452 | * we get notification through ->freeing_mark callback and cleanup |
| 453 | * chunk pointing to this mark. |
| 454 | */ |
| 455 | fsnotify_put_mark(mark); |
| 456 | return 0; |
| 457 | } |
| 458 | |
| 459 | /* the first tagged inode becomes root of tree */ |
| 460 | static int tag_chunk(struct inode *inode, struct audit_tree *tree) |
| 461 | { |
| 462 | struct fsnotify_mark *mark; |
| 463 | struct audit_chunk *chunk, *old; |
| 464 | struct audit_node *p; |
| 465 | int n; |
| 466 | |
| 467 | fsnotify_group_lock(group: audit_tree_group); |
| 468 | mark = fsnotify_find_inode_mark(inode, group: audit_tree_group); |
| 469 | if (!mark) |
| 470 | return create_chunk(inode, tree); |
| 471 | |
| 472 | /* |
| 473 | * Found mark is guaranteed to be attached and mark_mutex protects mark |
| 474 | * from getting detached and thus it makes sure there is chunk attached |
| 475 | * to the mark. |
| 476 | */ |
| 477 | /* are we already there? */ |
| 478 | spin_lock(lock: &hash_lock); |
| 479 | old = mark_chunk(mark); |
| 480 | for (n = 0; n < old->count; n++) { |
| 481 | if (old->owners[n].owner == tree) { |
| 482 | spin_unlock(lock: &hash_lock); |
| 483 | fsnotify_group_unlock(group: audit_tree_group); |
| 484 | fsnotify_put_mark(mark); |
| 485 | return 0; |
| 486 | } |
| 487 | } |
| 488 | spin_unlock(lock: &hash_lock); |
| 489 | |
| 490 | chunk = alloc_chunk(count: old->count + 1); |
| 491 | if (!chunk) { |
| 492 | fsnotify_group_unlock(group: audit_tree_group); |
| 493 | fsnotify_put_mark(mark); |
| 494 | return -ENOMEM; |
| 495 | } |
| 496 | |
| 497 | spin_lock(lock: &hash_lock); |
| 498 | if (tree->goner) { |
| 499 | spin_unlock(lock: &hash_lock); |
| 500 | fsnotify_group_unlock(group: audit_tree_group); |
| 501 | fsnotify_put_mark(mark); |
| 502 | kfree(objp: chunk); |
| 503 | return 0; |
| 504 | } |
| 505 | p = &chunk->owners[chunk->count - 1]; |
| 506 | p->index = (chunk->count - 1) | (1U<<31); |
| 507 | p->owner = tree; |
| 508 | get_tree(tree); |
| 509 | list_add(new: &p->list, head: &tree->chunks); |
| 510 | if (!tree->root) { |
| 511 | tree->root = chunk; |
| 512 | list_add(new: &tree->same_root, head: &chunk->trees); |
| 513 | } |
| 514 | /* |
| 515 | * This has to go last when updating chunk as once replace_chunk() is |
| 516 | * called, new RCU readers can see the new chunk. |
| 517 | */ |
| 518 | replace_chunk(new: chunk, old); |
| 519 | spin_unlock(lock: &hash_lock); |
| 520 | fsnotify_group_unlock(group: audit_tree_group); |
| 521 | fsnotify_put_mark(mark); /* pair to fsnotify_find_mark */ |
| 522 | audit_mark_put_chunk(chunk: old); |
| 523 | |
| 524 | return 0; |
| 525 | } |
| 526 | |
| 527 | static void audit_tree_log_remove_rule(struct audit_context *context, |
| 528 | struct audit_krule *rule) |
| 529 | { |
| 530 | struct audit_buffer *ab; |
| 531 | |
| 532 | if (!audit_enabled) |
| 533 | return; |
| 534 | ab = audit_log_start(ctx: context, GFP_KERNEL, AUDIT_CONFIG_CHANGE); |
| 535 | if (unlikely(!ab)) |
| 536 | return; |
| 537 | audit_log_format(ab, fmt: "op=remove_rule dir=" ); |
| 538 | audit_log_untrustedstring(ab, string: rule->tree->pathname); |
| 539 | audit_log_key(ab, key: rule->filterkey); |
| 540 | audit_log_format(ab, fmt: " list=%d res=1" , rule->listnr); |
| 541 | audit_log_end(ab); |
| 542 | } |
| 543 | |
| 544 | static void kill_rules(struct audit_context *context, struct audit_tree *tree) |
| 545 | { |
| 546 | struct audit_krule *rule, *next; |
| 547 | struct audit_entry *entry; |
| 548 | |
| 549 | list_for_each_entry_safe(rule, next, &tree->rules, rlist) { |
| 550 | entry = container_of(rule, struct audit_entry, rule); |
| 551 | |
| 552 | list_del_init(entry: &rule->rlist); |
| 553 | if (rule->tree) { |
| 554 | /* not a half-baked one */ |
| 555 | audit_tree_log_remove_rule(context, rule); |
| 556 | if (entry->rule.exe) |
| 557 | audit_remove_mark(audit_mark: entry->rule.exe); |
| 558 | rule->tree = NULL; |
| 559 | list_del_rcu(entry: &entry->list); |
| 560 | list_del(entry: &entry->rule.list); |
| 561 | call_rcu(head: &entry->rcu, func: audit_free_rule_rcu); |
| 562 | } |
| 563 | } |
| 564 | } |
| 565 | |
| 566 | /* |
| 567 | * Remove tree from chunks. If 'tagged' is set, remove tree only from tagged |
| 568 | * chunks. The function expects tagged chunks are all at the beginning of the |
| 569 | * chunks list. |
| 570 | */ |
| 571 | static void prune_tree_chunks(struct audit_tree *victim, bool tagged) |
| 572 | { |
| 573 | spin_lock(lock: &hash_lock); |
| 574 | while (!list_empty(head: &victim->chunks)) { |
| 575 | struct audit_node *p; |
| 576 | struct audit_chunk *chunk; |
| 577 | struct fsnotify_mark *mark; |
| 578 | |
| 579 | p = list_first_entry(&victim->chunks, struct audit_node, list); |
| 580 | /* have we run out of marked? */ |
| 581 | if (tagged && !(p->index & (1U<<31))) |
| 582 | break; |
| 583 | chunk = find_chunk(p); |
| 584 | mark = chunk->mark; |
| 585 | remove_chunk_node(chunk, p); |
| 586 | /* Racing with audit_tree_freeing_mark()? */ |
| 587 | if (!mark) |
| 588 | continue; |
| 589 | fsnotify_get_mark(mark); |
| 590 | spin_unlock(lock: &hash_lock); |
| 591 | |
| 592 | untag_chunk(chunk, mark); |
| 593 | fsnotify_put_mark(mark); |
| 594 | |
| 595 | spin_lock(lock: &hash_lock); |
| 596 | } |
| 597 | spin_unlock(lock: &hash_lock); |
| 598 | } |
| 599 | |
| 600 | /* |
| 601 | * finish killing struct audit_tree |
| 602 | */ |
| 603 | static void prune_one(struct audit_tree *victim) |
| 604 | { |
| 605 | prune_tree_chunks(victim, tagged: false); |
| 606 | put_tree(tree: victim); |
| 607 | } |
| 608 | |
| 609 | /* trim the uncommitted chunks from tree */ |
| 610 | |
| 611 | static void trim_marked(struct audit_tree *tree) |
| 612 | { |
| 613 | struct list_head *p, *q; |
| 614 | spin_lock(lock: &hash_lock); |
| 615 | if (tree->goner) { |
| 616 | spin_unlock(lock: &hash_lock); |
| 617 | return; |
| 618 | } |
| 619 | /* reorder */ |
| 620 | for (p = tree->chunks.next; p != &tree->chunks; p = q) { |
| 621 | struct audit_node *node = list_entry(p, struct audit_node, list); |
| 622 | q = p->next; |
| 623 | if (node->index & (1U<<31)) { |
| 624 | list_del_init(entry: p); |
| 625 | list_add(new: p, head: &tree->chunks); |
| 626 | } |
| 627 | } |
| 628 | spin_unlock(lock: &hash_lock); |
| 629 | |
| 630 | prune_tree_chunks(victim: tree, tagged: true); |
| 631 | |
| 632 | spin_lock(lock: &hash_lock); |
| 633 | if (!tree->root && !tree->goner) { |
| 634 | tree->goner = 1; |
| 635 | spin_unlock(lock: &hash_lock); |
| 636 | mutex_lock(lock: &audit_filter_mutex); |
| 637 | kill_rules(context: audit_context(), tree); |
| 638 | list_del_init(entry: &tree->list); |
| 639 | mutex_unlock(lock: &audit_filter_mutex); |
| 640 | prune_one(victim: tree); |
| 641 | } else { |
| 642 | spin_unlock(lock: &hash_lock); |
| 643 | } |
| 644 | } |
| 645 | |
| 646 | static void audit_schedule_prune(void); |
| 647 | |
| 648 | /* called with audit_filter_mutex */ |
| 649 | int audit_remove_tree_rule(struct audit_krule *rule) |
| 650 | { |
| 651 | struct audit_tree *tree; |
| 652 | tree = rule->tree; |
| 653 | if (tree) { |
| 654 | spin_lock(lock: &hash_lock); |
| 655 | list_del_init(entry: &rule->rlist); |
| 656 | if (list_empty(head: &tree->rules) && !tree->goner) { |
| 657 | tree->root = NULL; |
| 658 | list_del_init(entry: &tree->same_root); |
| 659 | tree->goner = 1; |
| 660 | list_move(list: &tree->list, head: &prune_list); |
| 661 | rule->tree = NULL; |
| 662 | spin_unlock(lock: &hash_lock); |
| 663 | audit_schedule_prune(); |
| 664 | return 1; |
| 665 | } |
| 666 | rule->tree = NULL; |
| 667 | spin_unlock(lock: &hash_lock); |
| 668 | return 1; |
| 669 | } |
| 670 | return 0; |
| 671 | } |
| 672 | |
| 673 | void audit_trim_trees(void) |
| 674 | { |
| 675 | struct list_head cursor; |
| 676 | |
| 677 | mutex_lock(lock: &audit_filter_mutex); |
| 678 | list_add(new: &cursor, head: &tree_list); |
| 679 | while (cursor.next != &tree_list) { |
| 680 | struct audit_tree *tree; |
| 681 | struct path path; |
| 682 | struct audit_node *node; |
| 683 | const struct path *paths; |
| 684 | struct path array[16]; |
| 685 | int err; |
| 686 | |
| 687 | tree = container_of(cursor.next, struct audit_tree, list); |
| 688 | get_tree(tree); |
| 689 | list_move(list: &cursor, head: &tree->list); |
| 690 | mutex_unlock(lock: &audit_filter_mutex); |
| 691 | |
| 692 | err = kern_path(tree->pathname, 0, &path); |
| 693 | if (err) |
| 694 | goto skip_it; |
| 695 | |
| 696 | paths = collect_paths(&path, array, 16); |
| 697 | path_put(&path); |
| 698 | if (IS_ERR(ptr: paths)) |
| 699 | goto skip_it; |
| 700 | |
| 701 | spin_lock(lock: &hash_lock); |
| 702 | list_for_each_entry(node, &tree->chunks, list) { |
| 703 | struct audit_chunk *chunk = find_chunk(p: node); |
| 704 | /* this could be NULL if the watch is dying else where... */ |
| 705 | node->index |= 1U<<31; |
| 706 | for (const struct path *p = paths; p->dentry; p++) { |
| 707 | struct inode *inode = p->dentry->d_inode; |
| 708 | if (inode_to_key(inode) == chunk->key) { |
| 709 | node->index &= ~(1U<<31); |
| 710 | break; |
| 711 | } |
| 712 | } |
| 713 | } |
| 714 | spin_unlock(lock: &hash_lock); |
| 715 | trim_marked(tree); |
| 716 | drop_collected_paths(paths, array); |
| 717 | skip_it: |
| 718 | put_tree(tree); |
| 719 | mutex_lock(lock: &audit_filter_mutex); |
| 720 | } |
| 721 | list_del(entry: &cursor); |
| 722 | mutex_unlock(lock: &audit_filter_mutex); |
| 723 | } |
| 724 | |
| 725 | int audit_make_tree(struct audit_krule *rule, char *pathname, u32 op) |
| 726 | { |
| 727 | |
| 728 | if (pathname[0] != '/' || |
| 729 | (rule->listnr != AUDIT_FILTER_EXIT && |
| 730 | rule->listnr != AUDIT_FILTER_URING_EXIT) || |
| 731 | op != Audit_equal || |
| 732 | rule->inode_f || rule->watch || rule->tree) |
| 733 | return -EINVAL; |
| 734 | rule->tree = alloc_tree(s: pathname); |
| 735 | if (!rule->tree) |
| 736 | return -ENOMEM; |
| 737 | return 0; |
| 738 | } |
| 739 | |
| 740 | void audit_put_tree(struct audit_tree *tree) |
| 741 | { |
| 742 | put_tree(tree); |
| 743 | } |
| 744 | |
| 745 | static int tag_mounts(const struct path *paths, struct audit_tree *tree) |
| 746 | { |
| 747 | for (const struct path *p = paths; p->dentry; p++) { |
| 748 | int err = tag_chunk(inode: p->dentry->d_inode, tree); |
| 749 | if (err) |
| 750 | return err; |
| 751 | } |
| 752 | return 0; |
| 753 | } |
| 754 | |
| 755 | /* |
| 756 | * That gets run when evict_chunk() ends up needing to kill audit_tree. |
| 757 | * Runs from a separate thread. |
| 758 | */ |
| 759 | static int prune_tree_thread(void *unused) |
| 760 | { |
| 761 | for (;;) { |
| 762 | if (list_empty(head: &prune_list)) { |
| 763 | set_current_state(TASK_INTERRUPTIBLE); |
| 764 | schedule(); |
| 765 | } |
| 766 | |
| 767 | audit_ctl_lock(); |
| 768 | mutex_lock(lock: &audit_filter_mutex); |
| 769 | |
| 770 | while (!list_empty(head: &prune_list)) { |
| 771 | struct audit_tree *victim; |
| 772 | |
| 773 | victim = list_entry(prune_list.next, |
| 774 | struct audit_tree, list); |
| 775 | list_del_init(entry: &victim->list); |
| 776 | |
| 777 | mutex_unlock(lock: &audit_filter_mutex); |
| 778 | |
| 779 | prune_one(victim); |
| 780 | |
| 781 | mutex_lock(lock: &audit_filter_mutex); |
| 782 | } |
| 783 | |
| 784 | mutex_unlock(lock: &audit_filter_mutex); |
| 785 | audit_ctl_unlock(); |
| 786 | } |
| 787 | return 0; |
| 788 | } |
| 789 | |
| 790 | static int audit_launch_prune(void) |
| 791 | { |
| 792 | if (prune_thread) |
| 793 | return 0; |
| 794 | prune_thread = kthread_run(prune_tree_thread, NULL, |
| 795 | "audit_prune_tree" ); |
| 796 | if (IS_ERR(ptr: prune_thread)) { |
| 797 | pr_err("cannot start thread audit_prune_tree" ); |
| 798 | prune_thread = NULL; |
| 799 | return -ENOMEM; |
| 800 | } |
| 801 | return 0; |
| 802 | } |
| 803 | |
| 804 | /* called with audit_filter_mutex */ |
| 805 | int audit_add_tree_rule(struct audit_krule *rule) |
| 806 | { |
| 807 | struct audit_tree *seed = rule->tree, *tree; |
| 808 | struct path path; |
| 809 | struct path array[16]; |
| 810 | const struct path *paths; |
| 811 | int err; |
| 812 | |
| 813 | rule->tree = NULL; |
| 814 | list_for_each_entry(tree, &tree_list, list) { |
| 815 | if (!strcmp(seed->pathname, tree->pathname)) { |
| 816 | put_tree(tree: seed); |
| 817 | rule->tree = tree; |
| 818 | list_add(new: &rule->rlist, head: &tree->rules); |
| 819 | return 0; |
| 820 | } |
| 821 | } |
| 822 | tree = seed; |
| 823 | list_add(new: &tree->list, head: &tree_list); |
| 824 | list_add(new: &rule->rlist, head: &tree->rules); |
| 825 | /* do not set rule->tree yet */ |
| 826 | mutex_unlock(lock: &audit_filter_mutex); |
| 827 | |
| 828 | if (unlikely(!prune_thread)) { |
| 829 | err = audit_launch_prune(); |
| 830 | if (err) |
| 831 | goto Err; |
| 832 | } |
| 833 | |
| 834 | err = kern_path(tree->pathname, 0, &path); |
| 835 | if (err) |
| 836 | goto Err; |
| 837 | paths = collect_paths(&path, array, 16); |
| 838 | path_put(&path); |
| 839 | if (IS_ERR(ptr: paths)) { |
| 840 | err = PTR_ERR(ptr: paths); |
| 841 | goto Err; |
| 842 | } |
| 843 | |
| 844 | get_tree(tree); |
| 845 | err = tag_mounts(paths, tree); |
| 846 | drop_collected_paths(paths, array); |
| 847 | |
| 848 | if (!err) { |
| 849 | struct audit_node *node; |
| 850 | spin_lock(lock: &hash_lock); |
| 851 | list_for_each_entry(node, &tree->chunks, list) |
| 852 | node->index &= ~(1U<<31); |
| 853 | spin_unlock(lock: &hash_lock); |
| 854 | } else { |
| 855 | trim_marked(tree); |
| 856 | goto Err; |
| 857 | } |
| 858 | |
| 859 | mutex_lock(lock: &audit_filter_mutex); |
| 860 | if (list_empty(head: &rule->rlist)) { |
| 861 | put_tree(tree); |
| 862 | return -ENOENT; |
| 863 | } |
| 864 | rule->tree = tree; |
| 865 | put_tree(tree); |
| 866 | |
| 867 | return 0; |
| 868 | Err: |
| 869 | mutex_lock(lock: &audit_filter_mutex); |
| 870 | list_del_init(entry: &tree->list); |
| 871 | list_del_init(entry: &tree->rules); |
| 872 | put_tree(tree); |
| 873 | return err; |
| 874 | } |
| 875 | |
| 876 | int audit_tag_tree(char *old, char *new) |
| 877 | { |
| 878 | struct list_head cursor, barrier; |
| 879 | int failed = 0; |
| 880 | struct path path1, path2; |
| 881 | struct path array[16]; |
| 882 | const struct path *paths; |
| 883 | int err; |
| 884 | |
| 885 | err = kern_path(new, 0, &path2); |
| 886 | if (err) |
| 887 | return err; |
| 888 | paths = collect_paths(&path2, array, 16); |
| 889 | path_put(&path2); |
| 890 | if (IS_ERR(ptr: paths)) |
| 891 | return PTR_ERR(ptr: paths); |
| 892 | |
| 893 | err = kern_path(old, 0, &path1); |
| 894 | if (err) { |
| 895 | drop_collected_paths(paths, array); |
| 896 | return err; |
| 897 | } |
| 898 | |
| 899 | mutex_lock(lock: &audit_filter_mutex); |
| 900 | list_add(new: &barrier, head: &tree_list); |
| 901 | list_add(new: &cursor, head: &barrier); |
| 902 | |
| 903 | while (cursor.next != &tree_list) { |
| 904 | struct audit_tree *tree; |
| 905 | int good_one = 0; |
| 906 | |
| 907 | tree = container_of(cursor.next, struct audit_tree, list); |
| 908 | get_tree(tree); |
| 909 | list_move(list: &cursor, head: &tree->list); |
| 910 | mutex_unlock(lock: &audit_filter_mutex); |
| 911 | |
| 912 | err = kern_path(tree->pathname, 0, &path2); |
| 913 | if (!err) { |
| 914 | good_one = path_is_under(&path1, &path2); |
| 915 | path_put(&path2); |
| 916 | } |
| 917 | |
| 918 | if (!good_one) { |
| 919 | put_tree(tree); |
| 920 | mutex_lock(lock: &audit_filter_mutex); |
| 921 | continue; |
| 922 | } |
| 923 | |
| 924 | failed = tag_mounts(paths, tree); |
| 925 | if (failed) { |
| 926 | put_tree(tree); |
| 927 | mutex_lock(lock: &audit_filter_mutex); |
| 928 | break; |
| 929 | } |
| 930 | |
| 931 | mutex_lock(lock: &audit_filter_mutex); |
| 932 | spin_lock(lock: &hash_lock); |
| 933 | if (!tree->goner) { |
| 934 | list_move(list: &tree->list, head: &tree_list); |
| 935 | } |
| 936 | spin_unlock(lock: &hash_lock); |
| 937 | put_tree(tree); |
| 938 | } |
| 939 | |
| 940 | while (barrier.prev != &tree_list) { |
| 941 | struct audit_tree *tree; |
| 942 | |
| 943 | tree = container_of(barrier.prev, struct audit_tree, list); |
| 944 | get_tree(tree); |
| 945 | list_move(list: &tree->list, head: &barrier); |
| 946 | mutex_unlock(lock: &audit_filter_mutex); |
| 947 | |
| 948 | if (!failed) { |
| 949 | struct audit_node *node; |
| 950 | spin_lock(lock: &hash_lock); |
| 951 | list_for_each_entry(node, &tree->chunks, list) |
| 952 | node->index &= ~(1U<<31); |
| 953 | spin_unlock(lock: &hash_lock); |
| 954 | } else { |
| 955 | trim_marked(tree); |
| 956 | } |
| 957 | |
| 958 | put_tree(tree); |
| 959 | mutex_lock(lock: &audit_filter_mutex); |
| 960 | } |
| 961 | list_del(entry: &barrier); |
| 962 | list_del(entry: &cursor); |
| 963 | mutex_unlock(lock: &audit_filter_mutex); |
| 964 | path_put(&path1); |
| 965 | drop_collected_paths(paths, array); |
| 966 | return failed; |
| 967 | } |
| 968 | |
| 969 | |
| 970 | static void audit_schedule_prune(void) |
| 971 | { |
| 972 | wake_up_process(tsk: prune_thread); |
| 973 | } |
| 974 | |
| 975 | /* |
| 976 | * ... and that one is done if evict_chunk() decides to delay until the end |
| 977 | * of syscall. Runs synchronously. |
| 978 | */ |
| 979 | void audit_kill_trees(struct audit_context *context) |
| 980 | { |
| 981 | struct list_head *list = &context->killed_trees; |
| 982 | |
| 983 | audit_ctl_lock(); |
| 984 | mutex_lock(lock: &audit_filter_mutex); |
| 985 | |
| 986 | while (!list_empty(head: list)) { |
| 987 | struct audit_tree *victim; |
| 988 | |
| 989 | victim = list_entry(list->next, struct audit_tree, list); |
| 990 | kill_rules(context, tree: victim); |
| 991 | list_del_init(entry: &victim->list); |
| 992 | |
| 993 | mutex_unlock(lock: &audit_filter_mutex); |
| 994 | |
| 995 | prune_one(victim); |
| 996 | |
| 997 | mutex_lock(lock: &audit_filter_mutex); |
| 998 | } |
| 999 | |
| 1000 | mutex_unlock(lock: &audit_filter_mutex); |
| 1001 | audit_ctl_unlock(); |
| 1002 | } |
| 1003 | |
| 1004 | /* |
| 1005 | * Here comes the stuff asynchronous to auditctl operations |
| 1006 | */ |
| 1007 | |
| 1008 | static void evict_chunk(struct audit_chunk *chunk) |
| 1009 | { |
| 1010 | struct audit_tree *owner; |
| 1011 | struct list_head *postponed = audit_killed_trees(); |
| 1012 | int need_prune = 0; |
| 1013 | int n; |
| 1014 | |
| 1015 | mutex_lock(lock: &audit_filter_mutex); |
| 1016 | spin_lock(lock: &hash_lock); |
| 1017 | while (!list_empty(head: &chunk->trees)) { |
| 1018 | owner = list_entry(chunk->trees.next, |
| 1019 | struct audit_tree, same_root); |
| 1020 | owner->goner = 1; |
| 1021 | owner->root = NULL; |
| 1022 | list_del_init(entry: &owner->same_root); |
| 1023 | spin_unlock(lock: &hash_lock); |
| 1024 | if (!postponed) { |
| 1025 | kill_rules(context: audit_context(), tree: owner); |
| 1026 | list_move(list: &owner->list, head: &prune_list); |
| 1027 | need_prune = 1; |
| 1028 | } else { |
| 1029 | list_move(list: &owner->list, head: postponed); |
| 1030 | } |
| 1031 | spin_lock(lock: &hash_lock); |
| 1032 | } |
| 1033 | list_del_rcu(entry: &chunk->hash); |
| 1034 | for (n = 0; n < chunk->count; n++) |
| 1035 | list_del_init(entry: &chunk->owners[n].list); |
| 1036 | spin_unlock(lock: &hash_lock); |
| 1037 | mutex_unlock(lock: &audit_filter_mutex); |
| 1038 | if (need_prune) |
| 1039 | audit_schedule_prune(); |
| 1040 | } |
| 1041 | |
| 1042 | static int audit_tree_handle_event(struct fsnotify_mark *mark, u32 mask, |
| 1043 | struct inode *inode, struct inode *dir, |
| 1044 | const struct qstr *file_name, u32 cookie) |
| 1045 | { |
| 1046 | return 0; |
| 1047 | } |
| 1048 | |
| 1049 | static void audit_tree_freeing_mark(struct fsnotify_mark *mark, |
| 1050 | struct fsnotify_group *group) |
| 1051 | { |
| 1052 | struct audit_chunk *chunk; |
| 1053 | |
| 1054 | fsnotify_group_lock(group: mark->group); |
| 1055 | spin_lock(lock: &hash_lock); |
| 1056 | chunk = mark_chunk(mark); |
| 1057 | replace_mark_chunk(mark, NULL); |
| 1058 | spin_unlock(lock: &hash_lock); |
| 1059 | fsnotify_group_unlock(group: mark->group); |
| 1060 | if (chunk) { |
| 1061 | evict_chunk(chunk); |
| 1062 | audit_mark_put_chunk(chunk); |
| 1063 | } |
| 1064 | |
| 1065 | /* |
| 1066 | * We are guaranteed to have at least one reference to the mark from |
| 1067 | * either the inode or the caller of fsnotify_destroy_mark(). |
| 1068 | */ |
| 1069 | BUG_ON(refcount_read(&mark->refcnt) < 1); |
| 1070 | } |
| 1071 | |
| 1072 | static const struct fsnotify_ops audit_tree_ops = { |
| 1073 | .handle_inode_event = audit_tree_handle_event, |
| 1074 | .freeing_mark = audit_tree_freeing_mark, |
| 1075 | .free_mark = audit_tree_destroy_watch, |
| 1076 | }; |
| 1077 | |
| 1078 | static int __init audit_tree_init(void) |
| 1079 | { |
| 1080 | int i; |
| 1081 | |
| 1082 | audit_tree_mark_cachep = KMEM_CACHE(audit_tree_mark, SLAB_PANIC); |
| 1083 | |
| 1084 | audit_tree_group = fsnotify_alloc_group(ops: &audit_tree_ops, flags: 0); |
| 1085 | if (IS_ERR(ptr: audit_tree_group)) |
| 1086 | audit_panic(message: "cannot initialize fsnotify group for rectree watches" ); |
| 1087 | |
| 1088 | for (i = 0; i < HASH_SIZE; i++) |
| 1089 | INIT_LIST_HEAD(list: &chunk_hash_heads[i]); |
| 1090 | |
| 1091 | return 0; |
| 1092 | } |
| 1093 | __initcall(audit_tree_init); |
| 1094 | |