| 1 | // SPDX-License-Identifier: GPL-2.0-or-later |
| 2 | /* auditsc.c -- System-call auditing support |
| 3 | * Handles all system-call specific auditing features. |
| 4 | * |
| 5 | * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina. |
| 6 | * Copyright 2005 Hewlett-Packard Development Company, L.P. |
| 7 | * Copyright (C) 2005, 2006 IBM Corporation |
| 8 | * All Rights Reserved. |
| 9 | * |
| 10 | * Written by Rickard E. (Rik) Faith <faith@redhat.com> |
| 11 | * |
| 12 | * Many of the ideas implemented here are from Stephen C. Tweedie, |
| 13 | * especially the idea of avoiding a copy by using getname. |
| 14 | * |
| 15 | * The method for actual interception of syscall entry and exit (not in |
| 16 | * this file -- see entry.S) is based on a GPL'd patch written by |
| 17 | * okir@suse.de and Copyright 2003 SuSE Linux AG. |
| 18 | * |
| 19 | * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>, |
| 20 | * 2006. |
| 21 | * |
| 22 | * The support of additional filter rules compares (>, <, >=, <=) was |
| 23 | * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005. |
| 24 | * |
| 25 | * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional |
| 26 | * filesystem information. |
| 27 | * |
| 28 | * Subject and object context labeling support added by <danjones@us.ibm.com> |
| 29 | * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance. |
| 30 | */ |
| 31 | |
| 32 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| 33 | |
| 34 | #include <linux/init.h> |
| 35 | #include <asm/types.h> |
| 36 | #include <linux/atomic.h> |
| 37 | #include <linux/fs.h> |
| 38 | #include <linux/namei.h> |
| 39 | #include <linux/mm.h> |
| 40 | #include <linux/export.h> |
| 41 | #include <linux/slab.h> |
| 42 | #include <linux/mount.h> |
| 43 | #include <linux/socket.h> |
| 44 | #include <linux/mqueue.h> |
| 45 | #include <linux/audit.h> |
| 46 | #include <linux/personality.h> |
| 47 | #include <linux/time.h> |
| 48 | #include <linux/netlink.h> |
| 49 | #include <linux/compiler.h> |
| 50 | #include <asm/unistd.h> |
| 51 | #include <linux/security.h> |
| 52 | #include <linux/list.h> |
| 53 | #include <linux/binfmts.h> |
| 54 | #include <linux/highmem.h> |
| 55 | #include <linux/syscalls.h> |
| 56 | #include <asm/syscall.h> |
| 57 | #include <linux/capability.h> |
| 58 | #include <linux/fs_struct.h> |
| 59 | #include <linux/compat.h> |
| 60 | #include <linux/ctype.h> |
| 61 | #include <linux/string.h> |
| 62 | #include <linux/uaccess.h> |
| 63 | #include <linux/fsnotify_backend.h> |
| 64 | #include <uapi/linux/limits.h> |
| 65 | #include <uapi/linux/netfilter/nf_tables.h> |
| 66 | #include <uapi/linux/openat2.h> // struct open_how |
| 67 | #include <uapi/linux/fanotify.h> |
| 68 | |
| 69 | #include "audit.h" |
| 70 | |
| 71 | /* flags stating the success for a syscall */ |
| 72 | #define AUDITSC_INVALID 0 |
| 73 | #define AUDITSC_SUCCESS 1 |
| 74 | #define AUDITSC_FAILURE 2 |
| 75 | |
| 76 | /* no execve audit message should be longer than this (userspace limits), |
| 77 | * see the note near the top of audit_log_execve_info() about this value */ |
| 78 | #define MAX_EXECVE_AUDIT_LEN 7500 |
| 79 | |
| 80 | /* max length to print of cmdline/proctitle value during audit */ |
| 81 | #define MAX_PROCTITLE_AUDIT_LEN 128 |
| 82 | |
| 83 | /* number of audit rules */ |
| 84 | int audit_n_rules; |
| 85 | |
| 86 | /* determines whether we collect data for signals sent */ |
| 87 | int audit_signals; |
| 88 | |
| 89 | struct audit_aux_data { |
| 90 | struct audit_aux_data *next; |
| 91 | int type; |
| 92 | }; |
| 93 | |
| 94 | /* Number of target pids per aux struct. */ |
| 95 | #define AUDIT_AUX_PIDS 16 |
| 96 | |
| 97 | struct audit_aux_data_pids { |
| 98 | struct audit_aux_data d; |
| 99 | pid_t target_pid[AUDIT_AUX_PIDS]; |
| 100 | kuid_t target_auid[AUDIT_AUX_PIDS]; |
| 101 | kuid_t target_uid[AUDIT_AUX_PIDS]; |
| 102 | unsigned int target_sessionid[AUDIT_AUX_PIDS]; |
| 103 | struct lsm_prop target_ref[AUDIT_AUX_PIDS]; |
| 104 | char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN]; |
| 105 | int pid_count; |
| 106 | }; |
| 107 | |
| 108 | struct audit_aux_data_bprm_fcaps { |
| 109 | struct audit_aux_data d; |
| 110 | struct audit_cap_data fcap; |
| 111 | unsigned int fcap_ver; |
| 112 | struct audit_cap_data old_pcap; |
| 113 | struct audit_cap_data new_pcap; |
| 114 | }; |
| 115 | |
| 116 | struct audit_tree_refs { |
| 117 | struct audit_tree_refs *next; |
| 118 | struct audit_chunk *c[31]; |
| 119 | }; |
| 120 | |
| 121 | struct audit_nfcfgop_tab { |
| 122 | enum audit_nfcfgop op; |
| 123 | const char *s; |
| 124 | }; |
| 125 | |
| 126 | static const struct audit_nfcfgop_tab audit_nfcfgs[] = { |
| 127 | { AUDIT_XT_OP_REGISTER, "xt_register" }, |
| 128 | { AUDIT_XT_OP_REPLACE, "xt_replace" }, |
| 129 | { AUDIT_XT_OP_UNREGISTER, "xt_unregister" }, |
| 130 | { AUDIT_NFT_OP_TABLE_REGISTER, "nft_register_table" }, |
| 131 | { AUDIT_NFT_OP_TABLE_UNREGISTER, "nft_unregister_table" }, |
| 132 | { AUDIT_NFT_OP_CHAIN_REGISTER, "nft_register_chain" }, |
| 133 | { AUDIT_NFT_OP_CHAIN_UNREGISTER, "nft_unregister_chain" }, |
| 134 | { AUDIT_NFT_OP_RULE_REGISTER, "nft_register_rule" }, |
| 135 | { AUDIT_NFT_OP_RULE_UNREGISTER, "nft_unregister_rule" }, |
| 136 | { AUDIT_NFT_OP_SET_REGISTER, "nft_register_set" }, |
| 137 | { AUDIT_NFT_OP_SET_UNREGISTER, "nft_unregister_set" }, |
| 138 | { AUDIT_NFT_OP_SETELEM_REGISTER, "nft_register_setelem" }, |
| 139 | { AUDIT_NFT_OP_SETELEM_UNREGISTER, "nft_unregister_setelem" }, |
| 140 | { AUDIT_NFT_OP_GEN_REGISTER, "nft_register_gen" }, |
| 141 | { AUDIT_NFT_OP_OBJ_REGISTER, "nft_register_obj" }, |
| 142 | { AUDIT_NFT_OP_OBJ_UNREGISTER, "nft_unregister_obj" }, |
| 143 | { AUDIT_NFT_OP_OBJ_RESET, "nft_reset_obj" }, |
| 144 | { AUDIT_NFT_OP_FLOWTABLE_REGISTER, "nft_register_flowtable" }, |
| 145 | { AUDIT_NFT_OP_FLOWTABLE_UNREGISTER, "nft_unregister_flowtable" }, |
| 146 | { AUDIT_NFT_OP_SETELEM_RESET, "nft_reset_setelem" }, |
| 147 | { AUDIT_NFT_OP_RULE_RESET, "nft_reset_rule" }, |
| 148 | { AUDIT_NFT_OP_INVALID, "nft_invalid" }, |
| 149 | }; |
| 150 | |
| 151 | static int audit_match_perm(struct audit_context *ctx, int mask) |
| 152 | { |
| 153 | unsigned n; |
| 154 | |
| 155 | if (unlikely(!ctx)) |
| 156 | return 0; |
| 157 | n = ctx->major; |
| 158 | |
| 159 | switch (audit_classify_syscall(abi: ctx->arch, syscall: n)) { |
| 160 | case AUDITSC_NATIVE: |
| 161 | if ((mask & AUDIT_PERM_WRITE) && |
| 162 | audit_match_class(AUDIT_CLASS_WRITE, syscall: n)) |
| 163 | return 1; |
| 164 | if ((mask & AUDIT_PERM_READ) && |
| 165 | audit_match_class(AUDIT_CLASS_READ, syscall: n)) |
| 166 | return 1; |
| 167 | if ((mask & AUDIT_PERM_ATTR) && |
| 168 | audit_match_class(AUDIT_CLASS_CHATTR, syscall: n)) |
| 169 | return 1; |
| 170 | return 0; |
| 171 | case AUDITSC_COMPAT: /* 32bit on biarch */ |
| 172 | if ((mask & AUDIT_PERM_WRITE) && |
| 173 | audit_match_class(AUDIT_CLASS_WRITE_32, syscall: n)) |
| 174 | return 1; |
| 175 | if ((mask & AUDIT_PERM_READ) && |
| 176 | audit_match_class(AUDIT_CLASS_READ_32, syscall: n)) |
| 177 | return 1; |
| 178 | if ((mask & AUDIT_PERM_ATTR) && |
| 179 | audit_match_class(AUDIT_CLASS_CHATTR_32, syscall: n)) |
| 180 | return 1; |
| 181 | return 0; |
| 182 | case AUDITSC_OPEN: |
| 183 | return mask & ACC_MODE(ctx->argv[1]); |
| 184 | case AUDITSC_OPENAT: |
| 185 | return mask & ACC_MODE(ctx->argv[2]); |
| 186 | case AUDITSC_SOCKETCALL: |
| 187 | return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND); |
| 188 | case AUDITSC_EXECVE: |
| 189 | return mask & AUDIT_PERM_EXEC; |
| 190 | case AUDITSC_OPENAT2: |
| 191 | return mask & ACC_MODE((u32)ctx->openat2.flags); |
| 192 | default: |
| 193 | return 0; |
| 194 | } |
| 195 | } |
| 196 | |
| 197 | static int audit_match_filetype(struct audit_context *ctx, int val) |
| 198 | { |
| 199 | struct audit_names *n; |
| 200 | umode_t mode = (umode_t)val; |
| 201 | |
| 202 | if (unlikely(!ctx)) |
| 203 | return 0; |
| 204 | |
| 205 | list_for_each_entry(n, &ctx->names_list, list) { |
| 206 | if ((n->ino != AUDIT_INO_UNSET) && |
| 207 | ((n->mode & S_IFMT) == mode)) |
| 208 | return 1; |
| 209 | } |
| 210 | |
| 211 | return 0; |
| 212 | } |
| 213 | |
| 214 | /* |
| 215 | * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *; |
| 216 | * ->first_trees points to its beginning, ->trees - to the current end of data. |
| 217 | * ->tree_count is the number of free entries in array pointed to by ->trees. |
| 218 | * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL, |
| 219 | * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously, |
| 220 | * it's going to remain 1-element for almost any setup) until we free context itself. |
| 221 | * References in it _are_ dropped - at the same time we free/drop aux stuff. |
| 222 | */ |
| 223 | |
| 224 | static void audit_set_auditable(struct audit_context *ctx) |
| 225 | { |
| 226 | if (!ctx->prio) { |
| 227 | ctx->prio = 1; |
| 228 | ctx->current_state = AUDIT_STATE_RECORD; |
| 229 | } |
| 230 | } |
| 231 | |
| 232 | static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk) |
| 233 | { |
| 234 | struct audit_tree_refs *p = ctx->trees; |
| 235 | int left = ctx->tree_count; |
| 236 | |
| 237 | if (likely(left)) { |
| 238 | p->c[--left] = chunk; |
| 239 | ctx->tree_count = left; |
| 240 | return 1; |
| 241 | } |
| 242 | if (!p) |
| 243 | return 0; |
| 244 | p = p->next; |
| 245 | if (p) { |
| 246 | p->c[30] = chunk; |
| 247 | ctx->trees = p; |
| 248 | ctx->tree_count = 30; |
| 249 | return 1; |
| 250 | } |
| 251 | return 0; |
| 252 | } |
| 253 | |
| 254 | static int grow_tree_refs(struct audit_context *ctx) |
| 255 | { |
| 256 | struct audit_tree_refs *p = ctx->trees; |
| 257 | |
| 258 | ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL); |
| 259 | if (!ctx->trees) { |
| 260 | ctx->trees = p; |
| 261 | return 0; |
| 262 | } |
| 263 | if (p) |
| 264 | p->next = ctx->trees; |
| 265 | else |
| 266 | ctx->first_trees = ctx->trees; |
| 267 | ctx->tree_count = 31; |
| 268 | return 1; |
| 269 | } |
| 270 | |
| 271 | static void unroll_tree_refs(struct audit_context *ctx, |
| 272 | struct audit_tree_refs *p, int count) |
| 273 | { |
| 274 | struct audit_tree_refs *q; |
| 275 | int n; |
| 276 | |
| 277 | if (!p) { |
| 278 | /* we started with empty chain */ |
| 279 | p = ctx->first_trees; |
| 280 | count = 31; |
| 281 | /* if the very first allocation has failed, nothing to do */ |
| 282 | if (!p) |
| 283 | return; |
| 284 | } |
| 285 | n = count; |
| 286 | for (q = p; q != ctx->trees; q = q->next, n = 31) { |
| 287 | while (n--) { |
| 288 | audit_put_chunk(chunk: q->c[n]); |
| 289 | q->c[n] = NULL; |
| 290 | } |
| 291 | } |
| 292 | while (n-- > ctx->tree_count) { |
| 293 | audit_put_chunk(chunk: q->c[n]); |
| 294 | q->c[n] = NULL; |
| 295 | } |
| 296 | ctx->trees = p; |
| 297 | ctx->tree_count = count; |
| 298 | } |
| 299 | |
| 300 | static void free_tree_refs(struct audit_context *ctx) |
| 301 | { |
| 302 | struct audit_tree_refs *p, *q; |
| 303 | |
| 304 | for (p = ctx->first_trees; p; p = q) { |
| 305 | q = p->next; |
| 306 | kfree(objp: p); |
| 307 | } |
| 308 | } |
| 309 | |
| 310 | static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree) |
| 311 | { |
| 312 | struct audit_tree_refs *p; |
| 313 | int n; |
| 314 | |
| 315 | if (!tree) |
| 316 | return 0; |
| 317 | /* full ones */ |
| 318 | for (p = ctx->first_trees; p != ctx->trees; p = p->next) { |
| 319 | for (n = 0; n < 31; n++) |
| 320 | if (audit_tree_match(chunk: p->c[n], tree)) |
| 321 | return 1; |
| 322 | } |
| 323 | /* partial */ |
| 324 | if (p) { |
| 325 | for (n = ctx->tree_count; n < 31; n++) |
| 326 | if (audit_tree_match(chunk: p->c[n], tree)) |
| 327 | return 1; |
| 328 | } |
| 329 | return 0; |
| 330 | } |
| 331 | |
| 332 | static int audit_compare_uid(kuid_t uid, |
| 333 | struct audit_names *name, |
| 334 | struct audit_field *f, |
| 335 | struct audit_context *ctx) |
| 336 | { |
| 337 | struct audit_names *n; |
| 338 | int rc; |
| 339 | |
| 340 | if (name) { |
| 341 | rc = audit_uid_comparator(left: uid, op: f->op, right: name->uid); |
| 342 | if (rc) |
| 343 | return rc; |
| 344 | } |
| 345 | |
| 346 | if (ctx) { |
| 347 | list_for_each_entry(n, &ctx->names_list, list) { |
| 348 | rc = audit_uid_comparator(left: uid, op: f->op, right: n->uid); |
| 349 | if (rc) |
| 350 | return rc; |
| 351 | } |
| 352 | } |
| 353 | return 0; |
| 354 | } |
| 355 | |
| 356 | static int audit_compare_gid(kgid_t gid, |
| 357 | struct audit_names *name, |
| 358 | struct audit_field *f, |
| 359 | struct audit_context *ctx) |
| 360 | { |
| 361 | struct audit_names *n; |
| 362 | int rc; |
| 363 | |
| 364 | if (name) { |
| 365 | rc = audit_gid_comparator(left: gid, op: f->op, right: name->gid); |
| 366 | if (rc) |
| 367 | return rc; |
| 368 | } |
| 369 | |
| 370 | if (ctx) { |
| 371 | list_for_each_entry(n, &ctx->names_list, list) { |
| 372 | rc = audit_gid_comparator(left: gid, op: f->op, right: n->gid); |
| 373 | if (rc) |
| 374 | return rc; |
| 375 | } |
| 376 | } |
| 377 | return 0; |
| 378 | } |
| 379 | |
| 380 | static int audit_field_compare(struct task_struct *tsk, |
| 381 | const struct cred *cred, |
| 382 | struct audit_field *f, |
| 383 | struct audit_context *ctx, |
| 384 | struct audit_names *name) |
| 385 | { |
| 386 | switch (f->val) { |
| 387 | /* process to file object comparisons */ |
| 388 | case AUDIT_COMPARE_UID_TO_OBJ_UID: |
| 389 | return audit_compare_uid(uid: cred->uid, name, f, ctx); |
| 390 | case AUDIT_COMPARE_GID_TO_OBJ_GID: |
| 391 | return audit_compare_gid(gid: cred->gid, name, f, ctx); |
| 392 | case AUDIT_COMPARE_EUID_TO_OBJ_UID: |
| 393 | return audit_compare_uid(uid: cred->euid, name, f, ctx); |
| 394 | case AUDIT_COMPARE_EGID_TO_OBJ_GID: |
| 395 | return audit_compare_gid(gid: cred->egid, name, f, ctx); |
| 396 | case AUDIT_COMPARE_AUID_TO_OBJ_UID: |
| 397 | return audit_compare_uid(uid: audit_get_loginuid(tsk), name, f, ctx); |
| 398 | case AUDIT_COMPARE_SUID_TO_OBJ_UID: |
| 399 | return audit_compare_uid(uid: cred->suid, name, f, ctx); |
| 400 | case AUDIT_COMPARE_SGID_TO_OBJ_GID: |
| 401 | return audit_compare_gid(gid: cred->sgid, name, f, ctx); |
| 402 | case AUDIT_COMPARE_FSUID_TO_OBJ_UID: |
| 403 | return audit_compare_uid(uid: cred->fsuid, name, f, ctx); |
| 404 | case AUDIT_COMPARE_FSGID_TO_OBJ_GID: |
| 405 | return audit_compare_gid(gid: cred->fsgid, name, f, ctx); |
| 406 | /* uid comparisons */ |
| 407 | case AUDIT_COMPARE_UID_TO_AUID: |
| 408 | return audit_uid_comparator(left: cred->uid, op: f->op, |
| 409 | right: audit_get_loginuid(tsk)); |
| 410 | case AUDIT_COMPARE_UID_TO_EUID: |
| 411 | return audit_uid_comparator(left: cred->uid, op: f->op, right: cred->euid); |
| 412 | case AUDIT_COMPARE_UID_TO_SUID: |
| 413 | return audit_uid_comparator(left: cred->uid, op: f->op, right: cred->suid); |
| 414 | case AUDIT_COMPARE_UID_TO_FSUID: |
| 415 | return audit_uid_comparator(left: cred->uid, op: f->op, right: cred->fsuid); |
| 416 | /* auid comparisons */ |
| 417 | case AUDIT_COMPARE_AUID_TO_EUID: |
| 418 | return audit_uid_comparator(left: audit_get_loginuid(tsk), op: f->op, |
| 419 | right: cred->euid); |
| 420 | case AUDIT_COMPARE_AUID_TO_SUID: |
| 421 | return audit_uid_comparator(left: audit_get_loginuid(tsk), op: f->op, |
| 422 | right: cred->suid); |
| 423 | case AUDIT_COMPARE_AUID_TO_FSUID: |
| 424 | return audit_uid_comparator(left: audit_get_loginuid(tsk), op: f->op, |
| 425 | right: cred->fsuid); |
| 426 | /* euid comparisons */ |
| 427 | case AUDIT_COMPARE_EUID_TO_SUID: |
| 428 | return audit_uid_comparator(left: cred->euid, op: f->op, right: cred->suid); |
| 429 | case AUDIT_COMPARE_EUID_TO_FSUID: |
| 430 | return audit_uid_comparator(left: cred->euid, op: f->op, right: cred->fsuid); |
| 431 | /* suid comparisons */ |
| 432 | case AUDIT_COMPARE_SUID_TO_FSUID: |
| 433 | return audit_uid_comparator(left: cred->suid, op: f->op, right: cred->fsuid); |
| 434 | /* gid comparisons */ |
| 435 | case AUDIT_COMPARE_GID_TO_EGID: |
| 436 | return audit_gid_comparator(left: cred->gid, op: f->op, right: cred->egid); |
| 437 | case AUDIT_COMPARE_GID_TO_SGID: |
| 438 | return audit_gid_comparator(left: cred->gid, op: f->op, right: cred->sgid); |
| 439 | case AUDIT_COMPARE_GID_TO_FSGID: |
| 440 | return audit_gid_comparator(left: cred->gid, op: f->op, right: cred->fsgid); |
| 441 | /* egid comparisons */ |
| 442 | case AUDIT_COMPARE_EGID_TO_SGID: |
| 443 | return audit_gid_comparator(left: cred->egid, op: f->op, right: cred->sgid); |
| 444 | case AUDIT_COMPARE_EGID_TO_FSGID: |
| 445 | return audit_gid_comparator(left: cred->egid, op: f->op, right: cred->fsgid); |
| 446 | /* sgid comparison */ |
| 447 | case AUDIT_COMPARE_SGID_TO_FSGID: |
| 448 | return audit_gid_comparator(left: cred->sgid, op: f->op, right: cred->fsgid); |
| 449 | default: |
| 450 | WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n" ); |
| 451 | return 0; |
| 452 | } |
| 453 | return 0; |
| 454 | } |
| 455 | |
| 456 | /* Determine if any context name data matches a rule's watch data */ |
| 457 | /* Compare a task_struct with an audit_rule. Return 1 on match, 0 |
| 458 | * otherwise. |
| 459 | * |
| 460 | * If task_creation is true, this is an explicit indication that we are |
| 461 | * filtering a task rule at task creation time. This and tsk == current are |
| 462 | * the only situations where tsk->cred may be accessed without an rcu read lock. |
| 463 | */ |
| 464 | static int audit_filter_rules(struct task_struct *tsk, |
| 465 | struct audit_krule *rule, |
| 466 | struct audit_context *ctx, |
| 467 | struct audit_names *name, |
| 468 | enum audit_state *state, |
| 469 | bool task_creation) |
| 470 | { |
| 471 | const struct cred *cred; |
| 472 | int i, need_sid = 1; |
| 473 | struct lsm_prop prop = { }; |
| 474 | unsigned int sessionid; |
| 475 | |
| 476 | if (ctx && rule->prio <= ctx->prio) |
| 477 | return 0; |
| 478 | |
| 479 | cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation); |
| 480 | |
| 481 | for (i = 0; i < rule->field_count; i++) { |
| 482 | struct audit_field *f = &rule->fields[i]; |
| 483 | struct audit_names *n; |
| 484 | int result = 0; |
| 485 | pid_t pid; |
| 486 | |
| 487 | switch (f->type) { |
| 488 | case AUDIT_PID: |
| 489 | pid = task_tgid_nr(tsk); |
| 490 | result = audit_comparator(left: pid, op: f->op, right: f->val); |
| 491 | break; |
| 492 | case AUDIT_PPID: |
| 493 | if (ctx) { |
| 494 | if (!ctx->ppid) |
| 495 | ctx->ppid = task_ppid_nr(tsk); |
| 496 | result = audit_comparator(left: ctx->ppid, op: f->op, right: f->val); |
| 497 | } |
| 498 | break; |
| 499 | case AUDIT_EXE: |
| 500 | result = audit_exe_compare(tsk, mark: rule->exe); |
| 501 | if (f->op == Audit_not_equal) |
| 502 | result = !result; |
| 503 | break; |
| 504 | case AUDIT_UID: |
| 505 | result = audit_uid_comparator(left: cred->uid, op: f->op, right: f->uid); |
| 506 | break; |
| 507 | case AUDIT_EUID: |
| 508 | result = audit_uid_comparator(left: cred->euid, op: f->op, right: f->uid); |
| 509 | break; |
| 510 | case AUDIT_SUID: |
| 511 | result = audit_uid_comparator(left: cred->suid, op: f->op, right: f->uid); |
| 512 | break; |
| 513 | case AUDIT_FSUID: |
| 514 | result = audit_uid_comparator(left: cred->fsuid, op: f->op, right: f->uid); |
| 515 | break; |
| 516 | case AUDIT_GID: |
| 517 | result = audit_gid_comparator(left: cred->gid, op: f->op, right: f->gid); |
| 518 | if (f->op == Audit_equal) { |
| 519 | if (!result) |
| 520 | result = groups_search(cred->group_info, f->gid); |
| 521 | } else if (f->op == Audit_not_equal) { |
| 522 | if (result) |
| 523 | result = !groups_search(cred->group_info, f->gid); |
| 524 | } |
| 525 | break; |
| 526 | case AUDIT_EGID: |
| 527 | result = audit_gid_comparator(left: cred->egid, op: f->op, right: f->gid); |
| 528 | if (f->op == Audit_equal) { |
| 529 | if (!result) |
| 530 | result = groups_search(cred->group_info, f->gid); |
| 531 | } else if (f->op == Audit_not_equal) { |
| 532 | if (result) |
| 533 | result = !groups_search(cred->group_info, f->gid); |
| 534 | } |
| 535 | break; |
| 536 | case AUDIT_SGID: |
| 537 | result = audit_gid_comparator(left: cred->sgid, op: f->op, right: f->gid); |
| 538 | break; |
| 539 | case AUDIT_FSGID: |
| 540 | result = audit_gid_comparator(left: cred->fsgid, op: f->op, right: f->gid); |
| 541 | break; |
| 542 | case AUDIT_SESSIONID: |
| 543 | sessionid = audit_get_sessionid(tsk); |
| 544 | result = audit_comparator(left: sessionid, op: f->op, right: f->val); |
| 545 | break; |
| 546 | case AUDIT_PERS: |
| 547 | result = audit_comparator(left: tsk->personality, op: f->op, right: f->val); |
| 548 | break; |
| 549 | case AUDIT_ARCH: |
| 550 | if (ctx) |
| 551 | result = audit_comparator(left: ctx->arch, op: f->op, right: f->val); |
| 552 | break; |
| 553 | |
| 554 | case AUDIT_EXIT: |
| 555 | if (ctx && ctx->return_valid != AUDITSC_INVALID) |
| 556 | result = audit_comparator(left: ctx->return_code, op: f->op, right: f->val); |
| 557 | break; |
| 558 | case AUDIT_SUCCESS: |
| 559 | if (ctx && ctx->return_valid != AUDITSC_INVALID) { |
| 560 | if (f->val) |
| 561 | result = audit_comparator(left: ctx->return_valid, op: f->op, AUDITSC_SUCCESS); |
| 562 | else |
| 563 | result = audit_comparator(left: ctx->return_valid, op: f->op, AUDITSC_FAILURE); |
| 564 | } |
| 565 | break; |
| 566 | case AUDIT_DEVMAJOR: |
| 567 | if (name) { |
| 568 | if (audit_comparator(MAJOR(name->dev), op: f->op, right: f->val) || |
| 569 | audit_comparator(MAJOR(name->rdev), op: f->op, right: f->val)) |
| 570 | ++result; |
| 571 | } else if (ctx) { |
| 572 | list_for_each_entry(n, &ctx->names_list, list) { |
| 573 | if (audit_comparator(MAJOR(n->dev), op: f->op, right: f->val) || |
| 574 | audit_comparator(MAJOR(n->rdev), op: f->op, right: f->val)) { |
| 575 | ++result; |
| 576 | break; |
| 577 | } |
| 578 | } |
| 579 | } |
| 580 | break; |
| 581 | case AUDIT_DEVMINOR: |
| 582 | if (name) { |
| 583 | if (audit_comparator(MINOR(name->dev), op: f->op, right: f->val) || |
| 584 | audit_comparator(MINOR(name->rdev), op: f->op, right: f->val)) |
| 585 | ++result; |
| 586 | } else if (ctx) { |
| 587 | list_for_each_entry(n, &ctx->names_list, list) { |
| 588 | if (audit_comparator(MINOR(n->dev), op: f->op, right: f->val) || |
| 589 | audit_comparator(MINOR(n->rdev), op: f->op, right: f->val)) { |
| 590 | ++result; |
| 591 | break; |
| 592 | } |
| 593 | } |
| 594 | } |
| 595 | break; |
| 596 | case AUDIT_INODE: |
| 597 | if (name) |
| 598 | result = audit_comparator(left: name->ino, op: f->op, right: f->val); |
| 599 | else if (ctx) { |
| 600 | list_for_each_entry(n, &ctx->names_list, list) { |
| 601 | if (audit_comparator(left: n->ino, op: f->op, right: f->val)) { |
| 602 | ++result; |
| 603 | break; |
| 604 | } |
| 605 | } |
| 606 | } |
| 607 | break; |
| 608 | case AUDIT_OBJ_UID: |
| 609 | if (name) { |
| 610 | result = audit_uid_comparator(left: name->uid, op: f->op, right: f->uid); |
| 611 | } else if (ctx) { |
| 612 | list_for_each_entry(n, &ctx->names_list, list) { |
| 613 | if (audit_uid_comparator(left: n->uid, op: f->op, right: f->uid)) { |
| 614 | ++result; |
| 615 | break; |
| 616 | } |
| 617 | } |
| 618 | } |
| 619 | break; |
| 620 | case AUDIT_OBJ_GID: |
| 621 | if (name) { |
| 622 | result = audit_gid_comparator(left: name->gid, op: f->op, right: f->gid); |
| 623 | } else if (ctx) { |
| 624 | list_for_each_entry(n, &ctx->names_list, list) { |
| 625 | if (audit_gid_comparator(left: n->gid, op: f->op, right: f->gid)) { |
| 626 | ++result; |
| 627 | break; |
| 628 | } |
| 629 | } |
| 630 | } |
| 631 | break; |
| 632 | case AUDIT_WATCH: |
| 633 | if (name) { |
| 634 | result = audit_watch_compare(watch: rule->watch, |
| 635 | ino: name->ino, |
| 636 | dev: name->dev); |
| 637 | if (f->op == Audit_not_equal) |
| 638 | result = !result; |
| 639 | } |
| 640 | break; |
| 641 | case AUDIT_DIR: |
| 642 | if (ctx) { |
| 643 | result = match_tree_refs(ctx, tree: rule->tree); |
| 644 | if (f->op == Audit_not_equal) |
| 645 | result = !result; |
| 646 | } |
| 647 | break; |
| 648 | case AUDIT_LOGINUID: |
| 649 | result = audit_uid_comparator(left: audit_get_loginuid(tsk), |
| 650 | op: f->op, right: f->uid); |
| 651 | break; |
| 652 | case AUDIT_LOGINUID_SET: |
| 653 | result = audit_comparator(left: audit_loginuid_set(tsk), op: f->op, right: f->val); |
| 654 | break; |
| 655 | case AUDIT_SADDR_FAM: |
| 656 | if (ctx && ctx->sockaddr) |
| 657 | result = audit_comparator(left: ctx->sockaddr->ss_family, |
| 658 | op: f->op, right: f->val); |
| 659 | break; |
| 660 | case AUDIT_SUBJ_USER: |
| 661 | case AUDIT_SUBJ_ROLE: |
| 662 | case AUDIT_SUBJ_TYPE: |
| 663 | case AUDIT_SUBJ_SEN: |
| 664 | case AUDIT_SUBJ_CLR: |
| 665 | /* NOTE: this may return negative values indicating |
| 666 | a temporary error. We simply treat this as a |
| 667 | match for now to avoid losing information that |
| 668 | may be wanted. An error message will also be |
| 669 | logged upon error */ |
| 670 | if (f->lsm_rule) { |
| 671 | if (need_sid) { |
| 672 | /* @tsk should always be equal to |
| 673 | * @current with the exception of |
| 674 | * fork()/copy_process() in which case |
| 675 | * the new @tsk creds are still a dup |
| 676 | * of @current's creds so we can still |
| 677 | * use |
| 678 | * security_current_getlsmprop_subj() |
| 679 | * here even though it always refs |
| 680 | * @current's creds |
| 681 | */ |
| 682 | security_current_getlsmprop_subj(prop: &prop); |
| 683 | need_sid = 0; |
| 684 | } |
| 685 | result = security_audit_rule_match(prop: &prop, |
| 686 | field: f->type, |
| 687 | op: f->op, |
| 688 | lsmrule: f->lsm_rule); |
| 689 | } |
| 690 | break; |
| 691 | case AUDIT_OBJ_USER: |
| 692 | case AUDIT_OBJ_ROLE: |
| 693 | case AUDIT_OBJ_TYPE: |
| 694 | case AUDIT_OBJ_LEV_LOW: |
| 695 | case AUDIT_OBJ_LEV_HIGH: |
| 696 | /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR |
| 697 | also applies here */ |
| 698 | if (f->lsm_rule) { |
| 699 | /* Find files that match */ |
| 700 | if (name) { |
| 701 | result = security_audit_rule_match( |
| 702 | prop: &name->oprop, |
| 703 | field: f->type, |
| 704 | op: f->op, |
| 705 | lsmrule: f->lsm_rule); |
| 706 | } else if (ctx) { |
| 707 | list_for_each_entry(n, &ctx->names_list, list) { |
| 708 | if (security_audit_rule_match( |
| 709 | prop: &n->oprop, |
| 710 | field: f->type, |
| 711 | op: f->op, |
| 712 | lsmrule: f->lsm_rule)) { |
| 713 | ++result; |
| 714 | break; |
| 715 | } |
| 716 | } |
| 717 | } |
| 718 | /* Find ipc objects that match */ |
| 719 | if (!ctx || ctx->type != AUDIT_IPC) |
| 720 | break; |
| 721 | if (security_audit_rule_match(prop: &ctx->ipc.oprop, |
| 722 | field: f->type, op: f->op, |
| 723 | lsmrule: f->lsm_rule)) |
| 724 | ++result; |
| 725 | } |
| 726 | break; |
| 727 | case AUDIT_ARG0: |
| 728 | case AUDIT_ARG1: |
| 729 | case AUDIT_ARG2: |
| 730 | case AUDIT_ARG3: |
| 731 | if (ctx) |
| 732 | result = audit_comparator(left: ctx->argv[f->type-AUDIT_ARG0], op: f->op, right: f->val); |
| 733 | break; |
| 734 | case AUDIT_FILTERKEY: |
| 735 | /* ignore this field for filtering */ |
| 736 | result = 1; |
| 737 | break; |
| 738 | case AUDIT_PERM: |
| 739 | result = audit_match_perm(ctx, mask: f->val); |
| 740 | if (f->op == Audit_not_equal) |
| 741 | result = !result; |
| 742 | break; |
| 743 | case AUDIT_FILETYPE: |
| 744 | result = audit_match_filetype(ctx, val: f->val); |
| 745 | if (f->op == Audit_not_equal) |
| 746 | result = !result; |
| 747 | break; |
| 748 | case AUDIT_FIELD_COMPARE: |
| 749 | result = audit_field_compare(tsk, cred, f, ctx, name); |
| 750 | break; |
| 751 | } |
| 752 | if (!result) |
| 753 | return 0; |
| 754 | } |
| 755 | |
| 756 | if (ctx) { |
| 757 | if (rule->filterkey) { |
| 758 | kfree(objp: ctx->filterkey); |
| 759 | ctx->filterkey = kstrdup(s: rule->filterkey, GFP_ATOMIC); |
| 760 | } |
| 761 | ctx->prio = rule->prio; |
| 762 | } |
| 763 | switch (rule->action) { |
| 764 | case AUDIT_NEVER: |
| 765 | *state = AUDIT_STATE_DISABLED; |
| 766 | break; |
| 767 | case AUDIT_ALWAYS: |
| 768 | *state = AUDIT_STATE_RECORD; |
| 769 | break; |
| 770 | } |
| 771 | return 1; |
| 772 | } |
| 773 | |
| 774 | /* At process creation time, we can determine if system-call auditing is |
| 775 | * completely disabled for this task. Since we only have the task |
| 776 | * structure at this point, we can only check uid and gid. |
| 777 | */ |
| 778 | static enum audit_state audit_filter_task(struct task_struct *tsk, char **key) |
| 779 | { |
| 780 | struct audit_entry *e; |
| 781 | enum audit_state state; |
| 782 | |
| 783 | rcu_read_lock(); |
| 784 | list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) { |
| 785 | if (audit_filter_rules(tsk, rule: &e->rule, NULL, NULL, |
| 786 | state: &state, task_creation: true)) { |
| 787 | if (state == AUDIT_STATE_RECORD) |
| 788 | *key = kstrdup(s: e->rule.filterkey, GFP_ATOMIC); |
| 789 | rcu_read_unlock(); |
| 790 | return state; |
| 791 | } |
| 792 | } |
| 793 | rcu_read_unlock(); |
| 794 | return AUDIT_STATE_BUILD; |
| 795 | } |
| 796 | |
| 797 | static int audit_in_mask(const struct audit_krule *rule, unsigned long val) |
| 798 | { |
| 799 | int word, bit; |
| 800 | |
| 801 | if (val > 0xffffffff) |
| 802 | return false; |
| 803 | |
| 804 | word = AUDIT_WORD(val); |
| 805 | if (word >= AUDIT_BITMASK_SIZE) |
| 806 | return false; |
| 807 | |
| 808 | bit = AUDIT_BIT(val); |
| 809 | |
| 810 | return rule->mask[word] & bit; |
| 811 | } |
| 812 | |
| 813 | /** |
| 814 | * __audit_filter_op - common filter helper for operations (syscall/uring/etc) |
| 815 | * @tsk: associated task |
| 816 | * @ctx: audit context |
| 817 | * @list: audit filter list |
| 818 | * @name: audit_name (can be NULL) |
| 819 | * @op: current syscall/uring_op |
| 820 | * |
| 821 | * Run the udit filters specified in @list against @tsk using @ctx, |
| 822 | * @name, and @op, as necessary; the caller is responsible for ensuring |
| 823 | * that the call is made while the RCU read lock is held. The @name |
| 824 | * parameter can be NULL, but all others must be specified. |
| 825 | * Returns 1/true if the filter finds a match, 0/false if none are found. |
| 826 | */ |
| 827 | static int __audit_filter_op(struct task_struct *tsk, |
| 828 | struct audit_context *ctx, |
| 829 | struct list_head *list, |
| 830 | struct audit_names *name, |
| 831 | unsigned long op) |
| 832 | { |
| 833 | struct audit_entry *e; |
| 834 | enum audit_state state; |
| 835 | |
| 836 | list_for_each_entry_rcu(e, list, list) { |
| 837 | if (audit_in_mask(rule: &e->rule, val: op) && |
| 838 | audit_filter_rules(tsk, rule: &e->rule, ctx, name, |
| 839 | state: &state, task_creation: false)) { |
| 840 | ctx->current_state = state; |
| 841 | return 1; |
| 842 | } |
| 843 | } |
| 844 | return 0; |
| 845 | } |
| 846 | |
| 847 | /** |
| 848 | * audit_filter_uring - apply filters to an io_uring operation |
| 849 | * @tsk: associated task |
| 850 | * @ctx: audit context |
| 851 | */ |
| 852 | static void audit_filter_uring(struct task_struct *tsk, |
| 853 | struct audit_context *ctx) |
| 854 | { |
| 855 | if (auditd_test_task(task: tsk)) |
| 856 | return; |
| 857 | |
| 858 | rcu_read_lock(); |
| 859 | __audit_filter_op(tsk, ctx, list: &audit_filter_list[AUDIT_FILTER_URING_EXIT], |
| 860 | NULL, op: ctx->uring_op); |
| 861 | rcu_read_unlock(); |
| 862 | } |
| 863 | |
| 864 | /* At syscall exit time, this filter is called if the audit_state is |
| 865 | * not low enough that auditing cannot take place, but is also not |
| 866 | * high enough that we already know we have to write an audit record |
| 867 | * (i.e., the state is AUDIT_STATE_BUILD). |
| 868 | */ |
| 869 | static void audit_filter_syscall(struct task_struct *tsk, |
| 870 | struct audit_context *ctx) |
| 871 | { |
| 872 | if (auditd_test_task(task: tsk)) |
| 873 | return; |
| 874 | |
| 875 | rcu_read_lock(); |
| 876 | __audit_filter_op(tsk, ctx, list: &audit_filter_list[AUDIT_FILTER_EXIT], |
| 877 | NULL, op: ctx->major); |
| 878 | rcu_read_unlock(); |
| 879 | } |
| 880 | |
| 881 | /* |
| 882 | * Given an audit_name check the inode hash table to see if they match. |
| 883 | * Called holding the rcu read lock to protect the use of audit_inode_hash |
| 884 | */ |
| 885 | static int audit_filter_inode_name(struct task_struct *tsk, |
| 886 | struct audit_names *n, |
| 887 | struct audit_context *ctx) |
| 888 | { |
| 889 | int h = audit_hash_ino(ino: (u32)n->ino); |
| 890 | struct list_head *list = &audit_inode_hash[h]; |
| 891 | |
| 892 | return __audit_filter_op(tsk, ctx, list, name: n, op: ctx->major); |
| 893 | } |
| 894 | |
| 895 | /* At syscall exit time, this filter is called if any audit_names have been |
| 896 | * collected during syscall processing. We only check rules in sublists at hash |
| 897 | * buckets applicable to the inode numbers in audit_names. |
| 898 | * Regarding audit_state, same rules apply as for audit_filter_syscall(). |
| 899 | */ |
| 900 | void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx) |
| 901 | { |
| 902 | struct audit_names *n; |
| 903 | |
| 904 | if (auditd_test_task(task: tsk)) |
| 905 | return; |
| 906 | |
| 907 | rcu_read_lock(); |
| 908 | |
| 909 | list_for_each_entry(n, &ctx->names_list, list) { |
| 910 | if (audit_filter_inode_name(tsk, n, ctx)) |
| 911 | break; |
| 912 | } |
| 913 | rcu_read_unlock(); |
| 914 | } |
| 915 | |
| 916 | static inline void audit_proctitle_free(struct audit_context *context) |
| 917 | { |
| 918 | kfree(objp: context->proctitle.value); |
| 919 | context->proctitle.value = NULL; |
| 920 | context->proctitle.len = 0; |
| 921 | } |
| 922 | |
| 923 | static inline void audit_free_module(struct audit_context *context) |
| 924 | { |
| 925 | if (context->type == AUDIT_KERN_MODULE) { |
| 926 | kfree(objp: context->module.name); |
| 927 | context->module.name = NULL; |
| 928 | } |
| 929 | } |
| 930 | static inline void audit_free_names(struct audit_context *context) |
| 931 | { |
| 932 | struct audit_names *n, *next; |
| 933 | |
| 934 | list_for_each_entry_safe(n, next, &context->names_list, list) { |
| 935 | list_del(entry: &n->list); |
| 936 | if (n->name) |
| 937 | putname(name: n->name); |
| 938 | if (n->should_free) |
| 939 | kfree(objp: n); |
| 940 | } |
| 941 | context->name_count = 0; |
| 942 | path_put(&context->pwd); |
| 943 | context->pwd.dentry = NULL; |
| 944 | context->pwd.mnt = NULL; |
| 945 | } |
| 946 | |
| 947 | static inline void audit_free_aux(struct audit_context *context) |
| 948 | { |
| 949 | struct audit_aux_data *aux; |
| 950 | |
| 951 | while ((aux = context->aux)) { |
| 952 | context->aux = aux->next; |
| 953 | kfree(objp: aux); |
| 954 | } |
| 955 | context->aux = NULL; |
| 956 | while ((aux = context->aux_pids)) { |
| 957 | context->aux_pids = aux->next; |
| 958 | kfree(objp: aux); |
| 959 | } |
| 960 | context->aux_pids = NULL; |
| 961 | } |
| 962 | |
| 963 | /** |
| 964 | * audit_reset_context - reset a audit_context structure |
| 965 | * @ctx: the audit_context to reset |
| 966 | * |
| 967 | * All fields in the audit_context will be reset to an initial state, all |
| 968 | * references held by fields will be dropped, and private memory will be |
| 969 | * released. When this function returns the audit_context will be suitable |
| 970 | * for reuse, so long as the passed context is not NULL or a dummy context. |
| 971 | */ |
| 972 | static void audit_reset_context(struct audit_context *ctx) |
| 973 | { |
| 974 | if (!ctx) |
| 975 | return; |
| 976 | |
| 977 | /* if ctx is non-null, reset the "ctx->context" regardless */ |
| 978 | ctx->context = AUDIT_CTX_UNUSED; |
| 979 | if (ctx->dummy) |
| 980 | return; |
| 981 | |
| 982 | /* |
| 983 | * NOTE: It shouldn't matter in what order we release the fields, so |
| 984 | * release them in the order in which they appear in the struct; |
| 985 | * this gives us some hope of quickly making sure we are |
| 986 | * resetting the audit_context properly. |
| 987 | * |
| 988 | * Other things worth mentioning: |
| 989 | * - we don't reset "dummy" |
| 990 | * - we don't reset "state", we do reset "current_state" |
| 991 | * - we preserve "filterkey" if "state" is AUDIT_STATE_RECORD |
| 992 | * - much of this is likely overkill, but play it safe for now |
| 993 | * - we really need to work on improving the audit_context struct |
| 994 | */ |
| 995 | |
| 996 | ctx->current_state = ctx->state; |
| 997 | ctx->stamp.serial = 0; |
| 998 | ctx->stamp.ctime = (struct timespec64){ .tv_sec = 0, .tv_nsec = 0 }; |
| 999 | ctx->major = 0; |
| 1000 | ctx->uring_op = 0; |
| 1001 | memset(s: ctx->argv, c: 0, n: sizeof(ctx->argv)); |
| 1002 | ctx->return_code = 0; |
| 1003 | ctx->prio = (ctx->state == AUDIT_STATE_RECORD ? ~0ULL : 0); |
| 1004 | ctx->return_valid = AUDITSC_INVALID; |
| 1005 | audit_free_names(context: ctx); |
| 1006 | if (ctx->state != AUDIT_STATE_RECORD) { |
| 1007 | kfree(objp: ctx->filterkey); |
| 1008 | ctx->filterkey = NULL; |
| 1009 | } |
| 1010 | audit_free_aux(context: ctx); |
| 1011 | kfree(objp: ctx->sockaddr); |
| 1012 | ctx->sockaddr = NULL; |
| 1013 | ctx->sockaddr_len = 0; |
| 1014 | ctx->ppid = 0; |
| 1015 | ctx->uid = ctx->euid = ctx->suid = ctx->fsuid = KUIDT_INIT(0); |
| 1016 | ctx->gid = ctx->egid = ctx->sgid = ctx->fsgid = KGIDT_INIT(0); |
| 1017 | ctx->personality = 0; |
| 1018 | ctx->arch = 0; |
| 1019 | ctx->target_pid = 0; |
| 1020 | ctx->target_auid = ctx->target_uid = KUIDT_INIT(0); |
| 1021 | ctx->target_sessionid = 0; |
| 1022 | lsmprop_init(&ctx->target_ref); |
| 1023 | ctx->target_comm[0] = '\0'; |
| 1024 | unroll_tree_refs(ctx, NULL, 0); |
| 1025 | WARN_ON(!list_empty(&ctx->killed_trees)); |
| 1026 | audit_free_module(ctx); |
| 1027 | ctx->fds[0] = -1; |
| 1028 | ctx->type = 0; /* reset last for audit_free_*() */ |
| 1029 | } |
| 1030 | |
| 1031 | static inline struct audit_context *audit_alloc_context(enum audit_state state) |
| 1032 | { |
| 1033 | struct audit_context *context; |
| 1034 | |
| 1035 | context = kzalloc(sizeof(*context), GFP_KERNEL); |
| 1036 | if (!context) |
| 1037 | return NULL; |
| 1038 | context->context = AUDIT_CTX_UNUSED; |
| 1039 | context->state = state; |
| 1040 | context->prio = state == AUDIT_STATE_RECORD ? ~0ULL : 0; |
| 1041 | INIT_LIST_HEAD(list: &context->killed_trees); |
| 1042 | INIT_LIST_HEAD(list: &context->names_list); |
| 1043 | context->fds[0] = -1; |
| 1044 | context->return_valid = AUDITSC_INVALID; |
| 1045 | return context; |
| 1046 | } |
| 1047 | |
| 1048 | /** |
| 1049 | * audit_alloc - allocate an audit context block for a task |
| 1050 | * @tsk: task |
| 1051 | * |
| 1052 | * Filter on the task information and allocate a per-task audit context |
| 1053 | * if necessary. Doing so turns on system call auditing for the |
| 1054 | * specified task. This is called from copy_process, so no lock is |
| 1055 | * needed. |
| 1056 | */ |
| 1057 | int audit_alloc(struct task_struct *tsk) |
| 1058 | { |
| 1059 | struct audit_context *context; |
| 1060 | enum audit_state state; |
| 1061 | char *key = NULL; |
| 1062 | |
| 1063 | if (likely(!audit_ever_enabled)) |
| 1064 | return 0; |
| 1065 | |
| 1066 | state = audit_filter_task(tsk, key: &key); |
| 1067 | if (state == AUDIT_STATE_DISABLED) { |
| 1068 | clear_task_syscall_work(tsk, SYSCALL_AUDIT); |
| 1069 | return 0; |
| 1070 | } |
| 1071 | |
| 1072 | context = audit_alloc_context(state); |
| 1073 | if (!context) { |
| 1074 | kfree(objp: key); |
| 1075 | audit_log_lost(message: "out of memory in audit_alloc" ); |
| 1076 | return -ENOMEM; |
| 1077 | } |
| 1078 | context->filterkey = key; |
| 1079 | |
| 1080 | audit_set_context(task: tsk, ctx: context); |
| 1081 | set_task_syscall_work(tsk, SYSCALL_AUDIT); |
| 1082 | return 0; |
| 1083 | } |
| 1084 | |
| 1085 | static inline void audit_free_context(struct audit_context *context) |
| 1086 | { |
| 1087 | /* resetting is extra work, but it is likely just noise */ |
| 1088 | audit_reset_context(ctx: context); |
| 1089 | audit_proctitle_free(context); |
| 1090 | free_tree_refs(ctx: context); |
| 1091 | kfree(objp: context->filterkey); |
| 1092 | kfree(objp: context); |
| 1093 | } |
| 1094 | |
| 1095 | static int audit_log_pid_context(struct audit_context *context, pid_t pid, |
| 1096 | kuid_t auid, kuid_t uid, |
| 1097 | unsigned int sessionid, struct lsm_prop *prop, |
| 1098 | char *comm) |
| 1099 | { |
| 1100 | struct audit_buffer *ab; |
| 1101 | int rc = 0; |
| 1102 | |
| 1103 | ab = audit_log_start(ctx: context, GFP_KERNEL, AUDIT_OBJ_PID); |
| 1104 | if (!ab) |
| 1105 | return rc; |
| 1106 | |
| 1107 | audit_log_format(ab, fmt: "opid=%d oauid=%d ouid=%d oses=%d" , pid, |
| 1108 | from_kuid(to: &init_user_ns, kuid: auid), |
| 1109 | from_kuid(to: &init_user_ns, kuid: uid), sessionid); |
| 1110 | if (lsmprop_is_set(prop) && audit_log_obj_ctx(ab, prop)) |
| 1111 | rc = 1; |
| 1112 | |
| 1113 | audit_log_format(ab, fmt: " ocomm=" ); |
| 1114 | audit_log_untrustedstring(ab, string: comm); |
| 1115 | audit_log_end(ab); |
| 1116 | |
| 1117 | return rc; |
| 1118 | } |
| 1119 | |
| 1120 | static void audit_log_execve_info(struct audit_context *context, |
| 1121 | struct audit_buffer **ab) |
| 1122 | { |
| 1123 | long len_max; |
| 1124 | long len_rem; |
| 1125 | long len_full; |
| 1126 | long len_buf; |
| 1127 | long len_abuf = 0; |
| 1128 | long len_tmp; |
| 1129 | bool require_data; |
| 1130 | bool encode; |
| 1131 | unsigned int iter; |
| 1132 | unsigned int arg; |
| 1133 | char *buf_head; |
| 1134 | char *buf; |
| 1135 | const char __user *p = (const char __user *)current->mm->arg_start; |
| 1136 | |
| 1137 | /* NOTE: this buffer needs to be large enough to hold all the non-arg |
| 1138 | * data we put in the audit record for this argument (see the |
| 1139 | * code below) ... at this point in time 96 is plenty */ |
| 1140 | char abuf[96]; |
| 1141 | |
| 1142 | /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the |
| 1143 | * current value of 7500 is not as important as the fact that it |
| 1144 | * is less than 8k, a setting of 7500 gives us plenty of wiggle |
| 1145 | * room if we go over a little bit in the logging below */ |
| 1146 | WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500); |
| 1147 | len_max = MAX_EXECVE_AUDIT_LEN; |
| 1148 | |
| 1149 | /* scratch buffer to hold the userspace args */ |
| 1150 | buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL); |
| 1151 | if (!buf_head) { |
| 1152 | audit_panic(message: "out of memory for argv string" ); |
| 1153 | return; |
| 1154 | } |
| 1155 | buf = buf_head; |
| 1156 | |
| 1157 | audit_log_format(ab: *ab, fmt: "argc=%d" , context->execve.argc); |
| 1158 | |
| 1159 | len_rem = len_max; |
| 1160 | len_buf = 0; |
| 1161 | len_full = 0; |
| 1162 | require_data = true; |
| 1163 | encode = false; |
| 1164 | iter = 0; |
| 1165 | arg = 0; |
| 1166 | do { |
| 1167 | /* NOTE: we don't ever want to trust this value for anything |
| 1168 | * serious, but the audit record format insists we |
| 1169 | * provide an argument length for really long arguments, |
| 1170 | * e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but |
| 1171 | * to use strncpy_from_user() to obtain this value for |
| 1172 | * recording in the log, although we don't use it |
| 1173 | * anywhere here to avoid a double-fetch problem */ |
| 1174 | if (len_full == 0) |
| 1175 | len_full = strnlen_user(str: p, MAX_ARG_STRLEN) - 1; |
| 1176 | |
| 1177 | /* read more data from userspace */ |
| 1178 | if (require_data) { |
| 1179 | /* can we make more room in the buffer? */ |
| 1180 | if (buf != buf_head) { |
| 1181 | memmove(dest: buf_head, src: buf, count: len_buf); |
| 1182 | buf = buf_head; |
| 1183 | } |
| 1184 | |
| 1185 | /* fetch as much as we can of the argument */ |
| 1186 | len_tmp = strncpy_from_user(dst: &buf_head[len_buf], src: p, |
| 1187 | count: len_max - len_buf); |
| 1188 | if (len_tmp == -EFAULT) { |
| 1189 | /* unable to copy from userspace */ |
| 1190 | send_sig(SIGKILL, current, 0); |
| 1191 | goto out; |
| 1192 | } else if (len_tmp == (len_max - len_buf)) { |
| 1193 | /* buffer is not large enough */ |
| 1194 | require_data = true; |
| 1195 | /* NOTE: if we are going to span multiple |
| 1196 | * buffers force the encoding so we stand |
| 1197 | * a chance at a sane len_full value and |
| 1198 | * consistent record encoding */ |
| 1199 | encode = true; |
| 1200 | len_full = len_full * 2; |
| 1201 | p += len_tmp; |
| 1202 | } else { |
| 1203 | require_data = false; |
| 1204 | if (!encode) |
| 1205 | encode = audit_string_contains_control( |
| 1206 | string: buf, len: len_tmp); |
| 1207 | /* try to use a trusted value for len_full */ |
| 1208 | if (len_full < len_max) |
| 1209 | len_full = (encode ? |
| 1210 | len_tmp * 2 : len_tmp); |
| 1211 | p += len_tmp + 1; |
| 1212 | } |
| 1213 | len_buf += len_tmp; |
| 1214 | buf_head[len_buf] = '\0'; |
| 1215 | |
| 1216 | /* length of the buffer in the audit record? */ |
| 1217 | len_abuf = (encode ? len_buf * 2 : len_buf + 2); |
| 1218 | } |
| 1219 | |
| 1220 | /* write as much as we can to the audit log */ |
| 1221 | if (len_buf >= 0) { |
| 1222 | /* NOTE: some magic numbers here - basically if we |
| 1223 | * can't fit a reasonable amount of data into the |
| 1224 | * existing audit buffer, flush it and start with |
| 1225 | * a new buffer */ |
| 1226 | if ((sizeof(abuf) + 8) > len_rem) { |
| 1227 | len_rem = len_max; |
| 1228 | audit_log_end(ab: *ab); |
| 1229 | *ab = audit_log_start(ctx: context, |
| 1230 | GFP_KERNEL, AUDIT_EXECVE); |
| 1231 | if (!*ab) |
| 1232 | goto out; |
| 1233 | } |
| 1234 | |
| 1235 | /* create the non-arg portion of the arg record */ |
| 1236 | len_tmp = 0; |
| 1237 | if (require_data || (iter > 0) || |
| 1238 | ((len_abuf + sizeof(abuf)) > len_rem)) { |
| 1239 | if (iter == 0) { |
| 1240 | len_tmp += snprintf(buf: &abuf[len_tmp], |
| 1241 | size: sizeof(abuf) - len_tmp, |
| 1242 | fmt: " a%d_len=%lu" , |
| 1243 | arg, len_full); |
| 1244 | } |
| 1245 | len_tmp += snprintf(buf: &abuf[len_tmp], |
| 1246 | size: sizeof(abuf) - len_tmp, |
| 1247 | fmt: " a%d[%d]=" , arg, iter++); |
| 1248 | } else |
| 1249 | len_tmp += snprintf(buf: &abuf[len_tmp], |
| 1250 | size: sizeof(abuf) - len_tmp, |
| 1251 | fmt: " a%d=" , arg); |
| 1252 | WARN_ON(len_tmp >= sizeof(abuf)); |
| 1253 | abuf[sizeof(abuf) - 1] = '\0'; |
| 1254 | |
| 1255 | /* log the arg in the audit record */ |
| 1256 | audit_log_format(ab: *ab, fmt: "%s" , abuf); |
| 1257 | len_rem -= len_tmp; |
| 1258 | len_tmp = len_buf; |
| 1259 | if (encode) { |
| 1260 | if (len_abuf > len_rem) |
| 1261 | len_tmp = len_rem / 2; /* encoding */ |
| 1262 | audit_log_n_hex(ab: *ab, buf, len: len_tmp); |
| 1263 | len_rem -= len_tmp * 2; |
| 1264 | len_abuf -= len_tmp * 2; |
| 1265 | } else { |
| 1266 | if (len_abuf > len_rem) |
| 1267 | len_tmp = len_rem - 2; /* quotes */ |
| 1268 | audit_log_n_string(ab: *ab, buf, n: len_tmp); |
| 1269 | len_rem -= len_tmp + 2; |
| 1270 | /* don't subtract the "2" because we still need |
| 1271 | * to add quotes to the remaining string */ |
| 1272 | len_abuf -= len_tmp; |
| 1273 | } |
| 1274 | len_buf -= len_tmp; |
| 1275 | buf += len_tmp; |
| 1276 | } |
| 1277 | |
| 1278 | /* ready to move to the next argument? */ |
| 1279 | if ((len_buf == 0) && !require_data) { |
| 1280 | arg++; |
| 1281 | iter = 0; |
| 1282 | len_full = 0; |
| 1283 | require_data = true; |
| 1284 | encode = false; |
| 1285 | } |
| 1286 | } while (arg < context->execve.argc); |
| 1287 | |
| 1288 | /* NOTE: the caller handles the final audit_log_end() call */ |
| 1289 | |
| 1290 | out: |
| 1291 | kfree(objp: buf_head); |
| 1292 | } |
| 1293 | |
| 1294 | static void audit_log_cap(struct audit_buffer *ab, char *prefix, |
| 1295 | kernel_cap_t *cap) |
| 1296 | { |
| 1297 | if (cap_isclear(a: *cap)) { |
| 1298 | audit_log_format(ab, fmt: " %s=0" , prefix); |
| 1299 | return; |
| 1300 | } |
| 1301 | audit_log_format(ab, fmt: " %s=%016llx" , prefix, cap->val); |
| 1302 | } |
| 1303 | |
| 1304 | static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name) |
| 1305 | { |
| 1306 | if (name->fcap_ver == -1) { |
| 1307 | audit_log_format(ab, fmt: " cap_fe=? cap_fver=? cap_fp=? cap_fi=?" ); |
| 1308 | return; |
| 1309 | } |
| 1310 | audit_log_cap(ab, prefix: "cap_fp" , cap: &name->fcap.permitted); |
| 1311 | audit_log_cap(ab, prefix: "cap_fi" , cap: &name->fcap.inheritable); |
| 1312 | audit_log_format(ab, fmt: " cap_fe=%d cap_fver=%x cap_frootid=%d" , |
| 1313 | name->fcap.fE, name->fcap_ver, |
| 1314 | from_kuid(to: &init_user_ns, kuid: name->fcap.rootid)); |
| 1315 | } |
| 1316 | |
| 1317 | static void audit_log_time(struct audit_context *context, struct audit_buffer **ab) |
| 1318 | { |
| 1319 | const struct audit_ntp_data *ntp = &context->time.ntp_data; |
| 1320 | const struct timespec64 *tk = &context->time.tk_injoffset; |
| 1321 | static const char * const ntp_name[] = { |
| 1322 | "offset" , |
| 1323 | "freq" , |
| 1324 | "status" , |
| 1325 | "tai" , |
| 1326 | "tick" , |
| 1327 | "adjust" , |
| 1328 | }; |
| 1329 | int type; |
| 1330 | |
| 1331 | if (context->type == AUDIT_TIME_ADJNTPVAL) { |
| 1332 | for (type = 0; type < AUDIT_NTP_NVALS; type++) { |
| 1333 | if (ntp->vals[type].newval != ntp->vals[type].oldval) { |
| 1334 | if (!*ab) { |
| 1335 | *ab = audit_log_start(ctx: context, |
| 1336 | GFP_KERNEL, |
| 1337 | AUDIT_TIME_ADJNTPVAL); |
| 1338 | if (!*ab) |
| 1339 | return; |
| 1340 | } |
| 1341 | audit_log_format(ab: *ab, fmt: "op=%s old=%lli new=%lli" , |
| 1342 | ntp_name[type], |
| 1343 | ntp->vals[type].oldval, |
| 1344 | ntp->vals[type].newval); |
| 1345 | audit_log_end(ab: *ab); |
| 1346 | *ab = NULL; |
| 1347 | } |
| 1348 | } |
| 1349 | } |
| 1350 | if (tk->tv_sec != 0 || tk->tv_nsec != 0) { |
| 1351 | if (!*ab) { |
| 1352 | *ab = audit_log_start(ctx: context, GFP_KERNEL, |
| 1353 | AUDIT_TIME_INJOFFSET); |
| 1354 | if (!*ab) |
| 1355 | return; |
| 1356 | } |
| 1357 | audit_log_format(ab: *ab, fmt: "sec=%lli nsec=%li" , |
| 1358 | (long long)tk->tv_sec, tk->tv_nsec); |
| 1359 | audit_log_end(ab: *ab); |
| 1360 | *ab = NULL; |
| 1361 | } |
| 1362 | } |
| 1363 | |
| 1364 | static void show_special(struct audit_context *context, int *call_panic) |
| 1365 | { |
| 1366 | struct audit_buffer *ab; |
| 1367 | int i; |
| 1368 | |
| 1369 | ab = audit_log_start(ctx: context, GFP_KERNEL, type: context->type); |
| 1370 | if (!ab) |
| 1371 | return; |
| 1372 | |
| 1373 | switch (context->type) { |
| 1374 | case AUDIT_SOCKETCALL: { |
| 1375 | int nargs = context->socketcall.nargs; |
| 1376 | |
| 1377 | audit_log_format(ab, fmt: "nargs=%d" , nargs); |
| 1378 | for (i = 0; i < nargs; i++) |
| 1379 | audit_log_format(ab, fmt: " a%d=%lx" , i, |
| 1380 | context->socketcall.args[i]); |
| 1381 | break; } |
| 1382 | case AUDIT_IPC: |
| 1383 | audit_log_format(ab, fmt: "ouid=%u ogid=%u mode=%#ho" , |
| 1384 | from_kuid(to: &init_user_ns, kuid: context->ipc.uid), |
| 1385 | from_kgid(to: &init_user_ns, kgid: context->ipc.gid), |
| 1386 | context->ipc.mode); |
| 1387 | if (lsmprop_is_set(prop: &context->ipc.oprop)) { |
| 1388 | if (audit_log_obj_ctx(ab, prop: &context->ipc.oprop)) |
| 1389 | *call_panic = 1; |
| 1390 | } |
| 1391 | if (context->ipc.has_perm) { |
| 1392 | audit_log_end(ab); |
| 1393 | ab = audit_log_start(ctx: context, GFP_KERNEL, |
| 1394 | AUDIT_IPC_SET_PERM); |
| 1395 | if (unlikely(!ab)) |
| 1396 | return; |
| 1397 | audit_log_format(ab, |
| 1398 | fmt: "qbytes=%lx ouid=%u ogid=%u mode=%#ho" , |
| 1399 | context->ipc.qbytes, |
| 1400 | context->ipc.perm_uid, |
| 1401 | context->ipc.perm_gid, |
| 1402 | context->ipc.perm_mode); |
| 1403 | } |
| 1404 | break; |
| 1405 | case AUDIT_MQ_OPEN: |
| 1406 | audit_log_format(ab, |
| 1407 | fmt: "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld " |
| 1408 | "mq_msgsize=%ld mq_curmsgs=%ld" , |
| 1409 | context->mq_open.oflag, context->mq_open.mode, |
| 1410 | context->mq_open.attr.mq_flags, |
| 1411 | context->mq_open.attr.mq_maxmsg, |
| 1412 | context->mq_open.attr.mq_msgsize, |
| 1413 | context->mq_open.attr.mq_curmsgs); |
| 1414 | break; |
| 1415 | case AUDIT_MQ_SENDRECV: |
| 1416 | audit_log_format(ab, |
| 1417 | fmt: "mqdes=%d msg_len=%zd msg_prio=%u " |
| 1418 | "abs_timeout_sec=%lld abs_timeout_nsec=%ld" , |
| 1419 | context->mq_sendrecv.mqdes, |
| 1420 | context->mq_sendrecv.msg_len, |
| 1421 | context->mq_sendrecv.msg_prio, |
| 1422 | (long long) context->mq_sendrecv.abs_timeout.tv_sec, |
| 1423 | context->mq_sendrecv.abs_timeout.tv_nsec); |
| 1424 | break; |
| 1425 | case AUDIT_MQ_NOTIFY: |
| 1426 | audit_log_format(ab, fmt: "mqdes=%d sigev_signo=%d" , |
| 1427 | context->mq_notify.mqdes, |
| 1428 | context->mq_notify.sigev_signo); |
| 1429 | break; |
| 1430 | case AUDIT_MQ_GETSETATTR: { |
| 1431 | struct mq_attr *attr = &context->mq_getsetattr.mqstat; |
| 1432 | |
| 1433 | audit_log_format(ab, |
| 1434 | fmt: "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld " |
| 1435 | "mq_curmsgs=%ld " , |
| 1436 | context->mq_getsetattr.mqdes, |
| 1437 | attr->mq_flags, attr->mq_maxmsg, |
| 1438 | attr->mq_msgsize, attr->mq_curmsgs); |
| 1439 | break; } |
| 1440 | case AUDIT_CAPSET: |
| 1441 | audit_log_format(ab, fmt: "pid=%d" , context->capset.pid); |
| 1442 | audit_log_cap(ab, prefix: "cap_pi" , cap: &context->capset.cap.inheritable); |
| 1443 | audit_log_cap(ab, prefix: "cap_pp" , cap: &context->capset.cap.permitted); |
| 1444 | audit_log_cap(ab, prefix: "cap_pe" , cap: &context->capset.cap.effective); |
| 1445 | audit_log_cap(ab, prefix: "cap_pa" , cap: &context->capset.cap.ambient); |
| 1446 | break; |
| 1447 | case AUDIT_MMAP: |
| 1448 | audit_log_format(ab, fmt: "fd=%d flags=0x%x" , context->mmap.fd, |
| 1449 | context->mmap.flags); |
| 1450 | break; |
| 1451 | case AUDIT_OPENAT2: |
| 1452 | audit_log_format(ab, fmt: "oflag=0%llo mode=0%llo resolve=0x%llx" , |
| 1453 | context->openat2.flags, |
| 1454 | context->openat2.mode, |
| 1455 | context->openat2.resolve); |
| 1456 | break; |
| 1457 | case AUDIT_EXECVE: |
| 1458 | audit_log_execve_info(context, ab: &ab); |
| 1459 | break; |
| 1460 | case AUDIT_KERN_MODULE: |
| 1461 | audit_log_format(ab, fmt: "name=" ); |
| 1462 | if (context->module.name) { |
| 1463 | audit_log_untrustedstring(ab, string: context->module.name); |
| 1464 | } else |
| 1465 | audit_log_format(ab, fmt: "(null)" ); |
| 1466 | |
| 1467 | break; |
| 1468 | case AUDIT_TIME_ADJNTPVAL: |
| 1469 | case AUDIT_TIME_INJOFFSET: |
| 1470 | /* this call deviates from the rest, eating the buffer */ |
| 1471 | audit_log_time(context, ab: &ab); |
| 1472 | break; |
| 1473 | } |
| 1474 | audit_log_end(ab); |
| 1475 | } |
| 1476 | |
| 1477 | static inline int audit_proctitle_rtrim(char *proctitle, int len) |
| 1478 | { |
| 1479 | char *end = proctitle + len - 1; |
| 1480 | |
| 1481 | while (end > proctitle && !isprint(*end)) |
| 1482 | end--; |
| 1483 | |
| 1484 | /* catch the case where proctitle is only 1 non-print character */ |
| 1485 | len = end - proctitle + 1; |
| 1486 | len -= isprint(proctitle[len-1]) == 0; |
| 1487 | return len; |
| 1488 | } |
| 1489 | |
| 1490 | /* |
| 1491 | * audit_log_name - produce AUDIT_PATH record from struct audit_names |
| 1492 | * @context: audit_context for the task |
| 1493 | * @n: audit_names structure with reportable details |
| 1494 | * @path: optional path to report instead of audit_names->name |
| 1495 | * @record_num: record number to report when handling a list of names |
| 1496 | * @call_panic: optional pointer to int that will be updated if secid fails |
| 1497 | */ |
| 1498 | static void audit_log_name(struct audit_context *context, struct audit_names *n, |
| 1499 | const struct path *path, int record_num, int *call_panic) |
| 1500 | { |
| 1501 | struct audit_buffer *ab; |
| 1502 | |
| 1503 | ab = audit_log_start(ctx: context, GFP_KERNEL, AUDIT_PATH); |
| 1504 | if (!ab) |
| 1505 | return; |
| 1506 | |
| 1507 | audit_log_format(ab, fmt: "item=%d" , record_num); |
| 1508 | |
| 1509 | if (path) |
| 1510 | audit_log_d_path(ab, prefix: " name=" , path); |
| 1511 | else if (n->name) { |
| 1512 | switch (n->name_len) { |
| 1513 | case AUDIT_NAME_FULL: |
| 1514 | /* log the full path */ |
| 1515 | audit_log_format(ab, fmt: " name=" ); |
| 1516 | audit_log_untrustedstring(ab, string: n->name->name); |
| 1517 | break; |
| 1518 | case 0: |
| 1519 | /* name was specified as a relative path and the |
| 1520 | * directory component is the cwd |
| 1521 | */ |
| 1522 | if (context->pwd.dentry && context->pwd.mnt) |
| 1523 | audit_log_d_path(ab, prefix: " name=" , path: &context->pwd); |
| 1524 | else |
| 1525 | audit_log_format(ab, fmt: " name=(null)" ); |
| 1526 | break; |
| 1527 | default: |
| 1528 | /* log the name's directory component */ |
| 1529 | audit_log_format(ab, fmt: " name=" ); |
| 1530 | audit_log_n_untrustedstring(ab, string: n->name->name, |
| 1531 | n: n->name_len); |
| 1532 | } |
| 1533 | } else |
| 1534 | audit_log_format(ab, fmt: " name=(null)" ); |
| 1535 | |
| 1536 | if (n->ino != AUDIT_INO_UNSET) |
| 1537 | audit_log_format(ab, fmt: " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x" , |
| 1538 | n->ino, |
| 1539 | MAJOR(n->dev), |
| 1540 | MINOR(n->dev), |
| 1541 | n->mode, |
| 1542 | from_kuid(to: &init_user_ns, kuid: n->uid), |
| 1543 | from_kgid(to: &init_user_ns, kgid: n->gid), |
| 1544 | MAJOR(n->rdev), |
| 1545 | MINOR(n->rdev)); |
| 1546 | if (lsmprop_is_set(prop: &n->oprop) && |
| 1547 | audit_log_obj_ctx(ab, prop: &n->oprop)) |
| 1548 | *call_panic = 2; |
| 1549 | |
| 1550 | /* log the audit_names record type */ |
| 1551 | switch (n->type) { |
| 1552 | case AUDIT_TYPE_NORMAL: |
| 1553 | audit_log_format(ab, fmt: " nametype=NORMAL" ); |
| 1554 | break; |
| 1555 | case AUDIT_TYPE_PARENT: |
| 1556 | audit_log_format(ab, fmt: " nametype=PARENT" ); |
| 1557 | break; |
| 1558 | case AUDIT_TYPE_CHILD_DELETE: |
| 1559 | audit_log_format(ab, fmt: " nametype=DELETE" ); |
| 1560 | break; |
| 1561 | case AUDIT_TYPE_CHILD_CREATE: |
| 1562 | audit_log_format(ab, fmt: " nametype=CREATE" ); |
| 1563 | break; |
| 1564 | default: |
| 1565 | audit_log_format(ab, fmt: " nametype=UNKNOWN" ); |
| 1566 | break; |
| 1567 | } |
| 1568 | |
| 1569 | audit_log_fcaps(ab, name: n); |
| 1570 | audit_log_end(ab); |
| 1571 | } |
| 1572 | |
| 1573 | static void audit_log_proctitle(void) |
| 1574 | { |
| 1575 | int res; |
| 1576 | char *buf; |
| 1577 | char *msg = "(null)" ; |
| 1578 | int len = strlen(msg); |
| 1579 | struct audit_context *context = audit_context(); |
| 1580 | struct audit_buffer *ab; |
| 1581 | |
| 1582 | ab = audit_log_start(ctx: context, GFP_KERNEL, AUDIT_PROCTITLE); |
| 1583 | if (!ab) |
| 1584 | return; /* audit_panic or being filtered */ |
| 1585 | |
| 1586 | audit_log_format(ab, fmt: "proctitle=" ); |
| 1587 | |
| 1588 | /* Not cached */ |
| 1589 | if (!context->proctitle.value) { |
| 1590 | buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL); |
| 1591 | if (!buf) |
| 1592 | goto out; |
| 1593 | /* Historically called this from procfs naming */ |
| 1594 | res = get_cmdline(current, buffer: buf, MAX_PROCTITLE_AUDIT_LEN); |
| 1595 | if (res == 0) { |
| 1596 | kfree(objp: buf); |
| 1597 | goto out; |
| 1598 | } |
| 1599 | res = audit_proctitle_rtrim(proctitle: buf, len: res); |
| 1600 | if (res == 0) { |
| 1601 | kfree(objp: buf); |
| 1602 | goto out; |
| 1603 | } |
| 1604 | context->proctitle.value = buf; |
| 1605 | context->proctitle.len = res; |
| 1606 | } |
| 1607 | msg = context->proctitle.value; |
| 1608 | len = context->proctitle.len; |
| 1609 | out: |
| 1610 | audit_log_n_untrustedstring(ab, string: msg, n: len); |
| 1611 | audit_log_end(ab); |
| 1612 | } |
| 1613 | |
| 1614 | /** |
| 1615 | * audit_log_uring - generate a AUDIT_URINGOP record |
| 1616 | * @ctx: the audit context |
| 1617 | */ |
| 1618 | static void audit_log_uring(struct audit_context *ctx) |
| 1619 | { |
| 1620 | struct audit_buffer *ab; |
| 1621 | const struct cred *cred; |
| 1622 | |
| 1623 | ab = audit_log_start(ctx, GFP_ATOMIC, AUDIT_URINGOP); |
| 1624 | if (!ab) |
| 1625 | return; |
| 1626 | cred = current_cred(); |
| 1627 | audit_log_format(ab, fmt: "uring_op=%d" , ctx->uring_op); |
| 1628 | if (ctx->return_valid != AUDITSC_INVALID) |
| 1629 | audit_log_format(ab, fmt: " success=%s exit=%ld" , |
| 1630 | str_yes_no(v: ctx->return_valid == |
| 1631 | AUDITSC_SUCCESS), |
| 1632 | ctx->return_code); |
| 1633 | audit_log_format(ab, |
| 1634 | fmt: " items=%d" |
| 1635 | " ppid=%d pid=%d uid=%u gid=%u euid=%u suid=%u" |
| 1636 | " fsuid=%u egid=%u sgid=%u fsgid=%u" , |
| 1637 | ctx->name_count, |
| 1638 | task_ppid_nr(current), task_tgid_nr(current), |
| 1639 | from_kuid(to: &init_user_ns, kuid: cred->uid), |
| 1640 | from_kgid(to: &init_user_ns, kgid: cred->gid), |
| 1641 | from_kuid(to: &init_user_ns, kuid: cred->euid), |
| 1642 | from_kuid(to: &init_user_ns, kuid: cred->suid), |
| 1643 | from_kuid(to: &init_user_ns, kuid: cred->fsuid), |
| 1644 | from_kgid(to: &init_user_ns, kgid: cred->egid), |
| 1645 | from_kgid(to: &init_user_ns, kgid: cred->sgid), |
| 1646 | from_kgid(to: &init_user_ns, kgid: cred->fsgid)); |
| 1647 | audit_log_task_context(ab); |
| 1648 | audit_log_key(ab, key: ctx->filterkey); |
| 1649 | audit_log_end(ab); |
| 1650 | } |
| 1651 | |
| 1652 | static void audit_log_exit(void) |
| 1653 | { |
| 1654 | int i, call_panic = 0; |
| 1655 | struct audit_context *context = audit_context(); |
| 1656 | struct audit_buffer *ab; |
| 1657 | struct audit_aux_data *aux; |
| 1658 | struct audit_names *n; |
| 1659 | |
| 1660 | context->personality = current->personality; |
| 1661 | |
| 1662 | switch (context->context) { |
| 1663 | case AUDIT_CTX_SYSCALL: |
| 1664 | ab = audit_log_start(ctx: context, GFP_KERNEL, AUDIT_SYSCALL); |
| 1665 | if (!ab) |
| 1666 | return; |
| 1667 | audit_log_format(ab, fmt: "arch=%x syscall=%d" , |
| 1668 | context->arch, context->major); |
| 1669 | if (context->personality != PER_LINUX) |
| 1670 | audit_log_format(ab, fmt: " per=%lx" , context->personality); |
| 1671 | if (context->return_valid != AUDITSC_INVALID) |
| 1672 | audit_log_format(ab, fmt: " success=%s exit=%ld" , |
| 1673 | str_yes_no(v: context->return_valid == |
| 1674 | AUDITSC_SUCCESS), |
| 1675 | context->return_code); |
| 1676 | audit_log_format(ab, |
| 1677 | fmt: " a0=%lx a1=%lx a2=%lx a3=%lx items=%d" , |
| 1678 | context->argv[0], |
| 1679 | context->argv[1], |
| 1680 | context->argv[2], |
| 1681 | context->argv[3], |
| 1682 | context->name_count); |
| 1683 | audit_log_task_info(ab); |
| 1684 | audit_log_key(ab, key: context->filterkey); |
| 1685 | audit_log_end(ab); |
| 1686 | break; |
| 1687 | case AUDIT_CTX_URING: |
| 1688 | audit_log_uring(ctx: context); |
| 1689 | break; |
| 1690 | default: |
| 1691 | BUG(); |
| 1692 | break; |
| 1693 | } |
| 1694 | |
| 1695 | for (aux = context->aux; aux; aux = aux->next) { |
| 1696 | |
| 1697 | ab = audit_log_start(ctx: context, GFP_KERNEL, type: aux->type); |
| 1698 | if (!ab) |
| 1699 | continue; /* audit_panic has been called */ |
| 1700 | |
| 1701 | switch (aux->type) { |
| 1702 | |
| 1703 | case AUDIT_BPRM_FCAPS: { |
| 1704 | struct audit_aux_data_bprm_fcaps *axs = (void *)aux; |
| 1705 | |
| 1706 | audit_log_format(ab, fmt: "fver=%x" , axs->fcap_ver); |
| 1707 | audit_log_cap(ab, prefix: "fp" , cap: &axs->fcap.permitted); |
| 1708 | audit_log_cap(ab, prefix: "fi" , cap: &axs->fcap.inheritable); |
| 1709 | audit_log_format(ab, fmt: " fe=%d" , axs->fcap.fE); |
| 1710 | audit_log_cap(ab, prefix: "old_pp" , cap: &axs->old_pcap.permitted); |
| 1711 | audit_log_cap(ab, prefix: "old_pi" , cap: &axs->old_pcap.inheritable); |
| 1712 | audit_log_cap(ab, prefix: "old_pe" , cap: &axs->old_pcap.effective); |
| 1713 | audit_log_cap(ab, prefix: "old_pa" , cap: &axs->old_pcap.ambient); |
| 1714 | audit_log_cap(ab, prefix: "pp" , cap: &axs->new_pcap.permitted); |
| 1715 | audit_log_cap(ab, prefix: "pi" , cap: &axs->new_pcap.inheritable); |
| 1716 | audit_log_cap(ab, prefix: "pe" , cap: &axs->new_pcap.effective); |
| 1717 | audit_log_cap(ab, prefix: "pa" , cap: &axs->new_pcap.ambient); |
| 1718 | audit_log_format(ab, fmt: " frootid=%d" , |
| 1719 | from_kuid(to: &init_user_ns, |
| 1720 | kuid: axs->fcap.rootid)); |
| 1721 | break; } |
| 1722 | |
| 1723 | } |
| 1724 | audit_log_end(ab); |
| 1725 | } |
| 1726 | |
| 1727 | if (context->type) |
| 1728 | show_special(context, call_panic: &call_panic); |
| 1729 | |
| 1730 | if (context->fds[0] >= 0) { |
| 1731 | ab = audit_log_start(ctx: context, GFP_KERNEL, AUDIT_FD_PAIR); |
| 1732 | if (ab) { |
| 1733 | audit_log_format(ab, fmt: "fd0=%d fd1=%d" , |
| 1734 | context->fds[0], context->fds[1]); |
| 1735 | audit_log_end(ab); |
| 1736 | } |
| 1737 | } |
| 1738 | |
| 1739 | if (context->sockaddr_len) { |
| 1740 | ab = audit_log_start(ctx: context, GFP_KERNEL, AUDIT_SOCKADDR); |
| 1741 | if (ab) { |
| 1742 | audit_log_format(ab, fmt: "saddr=" ); |
| 1743 | audit_log_n_hex(ab, buf: (void *)context->sockaddr, |
| 1744 | len: context->sockaddr_len); |
| 1745 | audit_log_end(ab); |
| 1746 | } |
| 1747 | } |
| 1748 | |
| 1749 | for (aux = context->aux_pids; aux; aux = aux->next) { |
| 1750 | struct audit_aux_data_pids *axs = (void *)aux; |
| 1751 | |
| 1752 | for (i = 0; i < axs->pid_count; i++) |
| 1753 | if (audit_log_pid_context(context, pid: axs->target_pid[i], |
| 1754 | auid: axs->target_auid[i], |
| 1755 | uid: axs->target_uid[i], |
| 1756 | sessionid: axs->target_sessionid[i], |
| 1757 | prop: &axs->target_ref[i], |
| 1758 | comm: axs->target_comm[i])) |
| 1759 | call_panic = 1; |
| 1760 | } |
| 1761 | |
| 1762 | if (context->target_pid && |
| 1763 | audit_log_pid_context(context, pid: context->target_pid, |
| 1764 | auid: context->target_auid, uid: context->target_uid, |
| 1765 | sessionid: context->target_sessionid, |
| 1766 | prop: &context->target_ref, |
| 1767 | comm: context->target_comm)) |
| 1768 | call_panic = 1; |
| 1769 | |
| 1770 | if (context->pwd.dentry && context->pwd.mnt) { |
| 1771 | ab = audit_log_start(ctx: context, GFP_KERNEL, AUDIT_CWD); |
| 1772 | if (ab) { |
| 1773 | audit_log_d_path(ab, prefix: "cwd=" , path: &context->pwd); |
| 1774 | audit_log_end(ab); |
| 1775 | } |
| 1776 | } |
| 1777 | |
| 1778 | i = 0; |
| 1779 | list_for_each_entry(n, &context->names_list, list) { |
| 1780 | if (n->hidden) |
| 1781 | continue; |
| 1782 | audit_log_name(context, n, NULL, record_num: i++, call_panic: &call_panic); |
| 1783 | } |
| 1784 | |
| 1785 | if (context->context == AUDIT_CTX_SYSCALL) |
| 1786 | audit_log_proctitle(); |
| 1787 | |
| 1788 | /* Send end of event record to help user space know we are finished */ |
| 1789 | ab = audit_log_start(ctx: context, GFP_KERNEL, AUDIT_EOE); |
| 1790 | if (ab) |
| 1791 | audit_log_end(ab); |
| 1792 | if (call_panic) |
| 1793 | audit_panic(message: "error in audit_log_exit()" ); |
| 1794 | } |
| 1795 | |
| 1796 | /** |
| 1797 | * __audit_free - free a per-task audit context |
| 1798 | * @tsk: task whose audit context block to free |
| 1799 | * |
| 1800 | * Called from copy_process, do_exit, and the io_uring code |
| 1801 | */ |
| 1802 | void __audit_free(struct task_struct *tsk) |
| 1803 | { |
| 1804 | struct audit_context *context = tsk->audit_context; |
| 1805 | |
| 1806 | if (!context) |
| 1807 | return; |
| 1808 | |
| 1809 | /* this may generate CONFIG_CHANGE records */ |
| 1810 | if (!list_empty(head: &context->killed_trees)) |
| 1811 | audit_kill_trees(context); |
| 1812 | |
| 1813 | /* We are called either by do_exit() or the fork() error handling code; |
| 1814 | * in the former case tsk == current and in the latter tsk is a |
| 1815 | * random task_struct that doesn't have any meaningful data we |
| 1816 | * need to log via audit_log_exit(). |
| 1817 | */ |
| 1818 | if (tsk == current && !context->dummy) { |
| 1819 | context->return_valid = AUDITSC_INVALID; |
| 1820 | context->return_code = 0; |
| 1821 | if (context->context == AUDIT_CTX_SYSCALL) { |
| 1822 | audit_filter_syscall(tsk, ctx: context); |
| 1823 | audit_filter_inodes(tsk, ctx: context); |
| 1824 | if (context->current_state == AUDIT_STATE_RECORD) |
| 1825 | audit_log_exit(); |
| 1826 | } else if (context->context == AUDIT_CTX_URING) { |
| 1827 | /* TODO: verify this case is real and valid */ |
| 1828 | audit_filter_uring(tsk, ctx: context); |
| 1829 | audit_filter_inodes(tsk, ctx: context); |
| 1830 | if (context->current_state == AUDIT_STATE_RECORD) |
| 1831 | audit_log_uring(ctx: context); |
| 1832 | } |
| 1833 | } |
| 1834 | |
| 1835 | audit_set_context(task: tsk, NULL); |
| 1836 | audit_free_context(context); |
| 1837 | } |
| 1838 | |
| 1839 | /** |
| 1840 | * audit_return_fixup - fixup the return codes in the audit_context |
| 1841 | * @ctx: the audit_context |
| 1842 | * @success: true/false value to indicate if the operation succeeded or not |
| 1843 | * @code: operation return code |
| 1844 | * |
| 1845 | * We need to fixup the return code in the audit logs if the actual return |
| 1846 | * codes are later going to be fixed by the arch specific signal handlers. |
| 1847 | */ |
| 1848 | static void audit_return_fixup(struct audit_context *ctx, |
| 1849 | int success, long code) |
| 1850 | { |
| 1851 | /* |
| 1852 | * This is actually a test for: |
| 1853 | * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) || |
| 1854 | * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK) |
| 1855 | * |
| 1856 | * but is faster than a bunch of || |
| 1857 | */ |
| 1858 | if (unlikely(code <= -ERESTARTSYS) && |
| 1859 | (code >= -ERESTART_RESTARTBLOCK) && |
| 1860 | (code != -ENOIOCTLCMD)) |
| 1861 | ctx->return_code = -EINTR; |
| 1862 | else |
| 1863 | ctx->return_code = code; |
| 1864 | ctx->return_valid = (success ? AUDITSC_SUCCESS : AUDITSC_FAILURE); |
| 1865 | } |
| 1866 | |
| 1867 | /** |
| 1868 | * __audit_uring_entry - prepare the kernel task's audit context for io_uring |
| 1869 | * @op: the io_uring opcode |
| 1870 | * |
| 1871 | * This is similar to audit_syscall_entry() but is intended for use by io_uring |
| 1872 | * operations. This function should only ever be called from |
| 1873 | * audit_uring_entry() as we rely on the audit context checking present in that |
| 1874 | * function. |
| 1875 | */ |
| 1876 | void __audit_uring_entry(u8 op) |
| 1877 | { |
| 1878 | struct audit_context *ctx = audit_context(); |
| 1879 | |
| 1880 | if (ctx->state == AUDIT_STATE_DISABLED) |
| 1881 | return; |
| 1882 | |
| 1883 | /* |
| 1884 | * NOTE: It's possible that we can be called from the process' context |
| 1885 | * before it returns to userspace, and before audit_syscall_exit() |
| 1886 | * is called. In this case there is not much to do, just record |
| 1887 | * the io_uring details and return. |
| 1888 | */ |
| 1889 | ctx->uring_op = op; |
| 1890 | if (ctx->context == AUDIT_CTX_SYSCALL) |
| 1891 | return; |
| 1892 | |
| 1893 | ctx->dummy = !audit_n_rules; |
| 1894 | if (!ctx->dummy && ctx->state == AUDIT_STATE_BUILD) |
| 1895 | ctx->prio = 0; |
| 1896 | |
| 1897 | ctx->context = AUDIT_CTX_URING; |
| 1898 | ctx->current_state = ctx->state; |
| 1899 | ktime_get_coarse_real_ts64(ts: &ctx->stamp.ctime); |
| 1900 | } |
| 1901 | |
| 1902 | /** |
| 1903 | * __audit_uring_exit - wrap up the kernel task's audit context after io_uring |
| 1904 | * @success: true/false value to indicate if the operation succeeded or not |
| 1905 | * @code: operation return code |
| 1906 | * |
| 1907 | * This is similar to audit_syscall_exit() but is intended for use by io_uring |
| 1908 | * operations. This function should only ever be called from |
| 1909 | * audit_uring_exit() as we rely on the audit context checking present in that |
| 1910 | * function. |
| 1911 | */ |
| 1912 | void __audit_uring_exit(int success, long code) |
| 1913 | { |
| 1914 | struct audit_context *ctx = audit_context(); |
| 1915 | |
| 1916 | if (ctx->dummy) { |
| 1917 | if (ctx->context != AUDIT_CTX_URING) |
| 1918 | return; |
| 1919 | goto out; |
| 1920 | } |
| 1921 | |
| 1922 | audit_return_fixup(ctx, success, code); |
| 1923 | if (ctx->context == AUDIT_CTX_SYSCALL) { |
| 1924 | /* |
| 1925 | * NOTE: See the note in __audit_uring_entry() about the case |
| 1926 | * where we may be called from process context before we |
| 1927 | * return to userspace via audit_syscall_exit(). In this |
| 1928 | * case we simply emit a URINGOP record and bail, the |
| 1929 | * normal syscall exit handling will take care of |
| 1930 | * everything else. |
| 1931 | * It is also worth mentioning that when we are called, |
| 1932 | * the current process creds may differ from the creds |
| 1933 | * used during the normal syscall processing; keep that |
| 1934 | * in mind if/when we move the record generation code. |
| 1935 | */ |
| 1936 | |
| 1937 | /* |
| 1938 | * We need to filter on the syscall info here to decide if we |
| 1939 | * should emit a URINGOP record. I know it seems odd but this |
| 1940 | * solves the problem where users have a filter to block *all* |
| 1941 | * syscall records in the "exit" filter; we want to preserve |
| 1942 | * the behavior here. |
| 1943 | */ |
| 1944 | audit_filter_syscall(current, ctx); |
| 1945 | if (ctx->current_state != AUDIT_STATE_RECORD) |
| 1946 | audit_filter_uring(current, ctx); |
| 1947 | audit_filter_inodes(current, ctx); |
| 1948 | if (ctx->current_state != AUDIT_STATE_RECORD) |
| 1949 | return; |
| 1950 | |
| 1951 | audit_log_uring(ctx); |
| 1952 | return; |
| 1953 | } |
| 1954 | |
| 1955 | /* this may generate CONFIG_CHANGE records */ |
| 1956 | if (!list_empty(head: &ctx->killed_trees)) |
| 1957 | audit_kill_trees(context: ctx); |
| 1958 | |
| 1959 | /* run through both filters to ensure we set the filterkey properly */ |
| 1960 | audit_filter_uring(current, ctx); |
| 1961 | audit_filter_inodes(current, ctx); |
| 1962 | if (ctx->current_state != AUDIT_STATE_RECORD) |
| 1963 | goto out; |
| 1964 | audit_log_exit(); |
| 1965 | |
| 1966 | out: |
| 1967 | audit_reset_context(ctx); |
| 1968 | } |
| 1969 | |
| 1970 | /** |
| 1971 | * __audit_syscall_entry - fill in an audit record at syscall entry |
| 1972 | * @major: major syscall type (function) |
| 1973 | * @a1: additional syscall register 1 |
| 1974 | * @a2: additional syscall register 2 |
| 1975 | * @a3: additional syscall register 3 |
| 1976 | * @a4: additional syscall register 4 |
| 1977 | * |
| 1978 | * Fill in audit context at syscall entry. This only happens if the |
| 1979 | * audit context was created when the task was created and the state or |
| 1980 | * filters demand the audit context be built. If the state from the |
| 1981 | * per-task filter or from the per-syscall filter is AUDIT_STATE_RECORD, |
| 1982 | * then the record will be written at syscall exit time (otherwise, it |
| 1983 | * will only be written if another part of the kernel requests that it |
| 1984 | * be written). |
| 1985 | */ |
| 1986 | void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2, |
| 1987 | unsigned long a3, unsigned long a4) |
| 1988 | { |
| 1989 | struct audit_context *context = audit_context(); |
| 1990 | enum audit_state state; |
| 1991 | |
| 1992 | if (!audit_enabled || !context) |
| 1993 | return; |
| 1994 | |
| 1995 | WARN_ON(context->context != AUDIT_CTX_UNUSED); |
| 1996 | WARN_ON(context->name_count); |
| 1997 | if (context->context != AUDIT_CTX_UNUSED || context->name_count) { |
| 1998 | audit_panic(message: "unrecoverable error in audit_syscall_entry()" ); |
| 1999 | return; |
| 2000 | } |
| 2001 | |
| 2002 | state = context->state; |
| 2003 | if (state == AUDIT_STATE_DISABLED) |
| 2004 | return; |
| 2005 | |
| 2006 | context->dummy = !audit_n_rules; |
| 2007 | if (!context->dummy && state == AUDIT_STATE_BUILD) { |
| 2008 | context->prio = 0; |
| 2009 | if (auditd_test_task(current)) |
| 2010 | return; |
| 2011 | } |
| 2012 | |
| 2013 | context->arch = syscall_get_arch(current); |
| 2014 | context->major = major; |
| 2015 | context->argv[0] = a1; |
| 2016 | context->argv[1] = a2; |
| 2017 | context->argv[2] = a3; |
| 2018 | context->argv[3] = a4; |
| 2019 | context->context = AUDIT_CTX_SYSCALL; |
| 2020 | context->current_state = state; |
| 2021 | ktime_get_coarse_real_ts64(ts: &context->stamp.ctime); |
| 2022 | } |
| 2023 | |
| 2024 | /** |
| 2025 | * __audit_syscall_exit - deallocate audit context after a system call |
| 2026 | * @success: success value of the syscall |
| 2027 | * @return_code: return value of the syscall |
| 2028 | * |
| 2029 | * Tear down after system call. If the audit context has been marked as |
| 2030 | * auditable (either because of the AUDIT_STATE_RECORD state from |
| 2031 | * filtering, or because some other part of the kernel wrote an audit |
| 2032 | * message), then write out the syscall information. In call cases, |
| 2033 | * free the names stored from getname(). |
| 2034 | */ |
| 2035 | void __audit_syscall_exit(int success, long return_code) |
| 2036 | { |
| 2037 | struct audit_context *context = audit_context(); |
| 2038 | |
| 2039 | if (!context || context->dummy || |
| 2040 | context->context != AUDIT_CTX_SYSCALL) |
| 2041 | goto out; |
| 2042 | |
| 2043 | /* this may generate CONFIG_CHANGE records */ |
| 2044 | if (!list_empty(head: &context->killed_trees)) |
| 2045 | audit_kill_trees(context); |
| 2046 | |
| 2047 | audit_return_fixup(ctx: context, success, code: return_code); |
| 2048 | /* run through both filters to ensure we set the filterkey properly */ |
| 2049 | audit_filter_syscall(current, ctx: context); |
| 2050 | audit_filter_inodes(current, ctx: context); |
| 2051 | if (context->current_state != AUDIT_STATE_RECORD) |
| 2052 | goto out; |
| 2053 | |
| 2054 | audit_log_exit(); |
| 2055 | |
| 2056 | out: |
| 2057 | audit_reset_context(ctx: context); |
| 2058 | } |
| 2059 | |
| 2060 | static inline void handle_one(const struct inode *inode) |
| 2061 | { |
| 2062 | struct audit_context *context; |
| 2063 | struct audit_tree_refs *p; |
| 2064 | struct audit_chunk *chunk; |
| 2065 | int count; |
| 2066 | |
| 2067 | if (likely(!inode->i_fsnotify_marks)) |
| 2068 | return; |
| 2069 | context = audit_context(); |
| 2070 | p = context->trees; |
| 2071 | count = context->tree_count; |
| 2072 | rcu_read_lock(); |
| 2073 | chunk = audit_tree_lookup(inode); |
| 2074 | rcu_read_unlock(); |
| 2075 | if (!chunk) |
| 2076 | return; |
| 2077 | if (likely(put_tree_ref(context, chunk))) |
| 2078 | return; |
| 2079 | if (unlikely(!grow_tree_refs(context))) { |
| 2080 | pr_warn("out of memory, audit has lost a tree reference\n" ); |
| 2081 | audit_set_auditable(ctx: context); |
| 2082 | audit_put_chunk(chunk); |
| 2083 | unroll_tree_refs(ctx: context, p, count); |
| 2084 | return; |
| 2085 | } |
| 2086 | put_tree_ref(ctx: context, chunk); |
| 2087 | } |
| 2088 | |
| 2089 | static void handle_path(const struct dentry *dentry) |
| 2090 | { |
| 2091 | struct audit_context *context; |
| 2092 | struct audit_tree_refs *p; |
| 2093 | const struct dentry *d, *parent; |
| 2094 | struct audit_chunk *drop; |
| 2095 | unsigned long seq; |
| 2096 | int count; |
| 2097 | |
| 2098 | context = audit_context(); |
| 2099 | p = context->trees; |
| 2100 | count = context->tree_count; |
| 2101 | retry: |
| 2102 | drop = NULL; |
| 2103 | d = dentry; |
| 2104 | rcu_read_lock(); |
| 2105 | seq = read_seqbegin(sl: &rename_lock); |
| 2106 | for (;;) { |
| 2107 | struct inode *inode = d_backing_inode(upper: d); |
| 2108 | |
| 2109 | if (inode && unlikely(inode->i_fsnotify_marks)) { |
| 2110 | struct audit_chunk *chunk; |
| 2111 | |
| 2112 | chunk = audit_tree_lookup(inode); |
| 2113 | if (chunk) { |
| 2114 | if (unlikely(!put_tree_ref(context, chunk))) { |
| 2115 | drop = chunk; |
| 2116 | break; |
| 2117 | } |
| 2118 | } |
| 2119 | } |
| 2120 | parent = d->d_parent; |
| 2121 | if (parent == d) |
| 2122 | break; |
| 2123 | d = parent; |
| 2124 | } |
| 2125 | if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */ |
| 2126 | rcu_read_unlock(); |
| 2127 | if (!drop) { |
| 2128 | /* just a race with rename */ |
| 2129 | unroll_tree_refs(ctx: context, p, count); |
| 2130 | goto retry; |
| 2131 | } |
| 2132 | audit_put_chunk(chunk: drop); |
| 2133 | if (grow_tree_refs(ctx: context)) { |
| 2134 | /* OK, got more space */ |
| 2135 | unroll_tree_refs(ctx: context, p, count); |
| 2136 | goto retry; |
| 2137 | } |
| 2138 | /* too bad */ |
| 2139 | pr_warn("out of memory, audit has lost a tree reference\n" ); |
| 2140 | unroll_tree_refs(ctx: context, p, count); |
| 2141 | audit_set_auditable(ctx: context); |
| 2142 | return; |
| 2143 | } |
| 2144 | rcu_read_unlock(); |
| 2145 | } |
| 2146 | |
| 2147 | static struct audit_names *audit_alloc_name(struct audit_context *context, |
| 2148 | unsigned char type) |
| 2149 | { |
| 2150 | struct audit_names *aname; |
| 2151 | |
| 2152 | if (context->name_count < AUDIT_NAMES) { |
| 2153 | aname = &context->preallocated_names[context->name_count]; |
| 2154 | memset(s: aname, c: 0, n: sizeof(*aname)); |
| 2155 | } else { |
| 2156 | aname = kzalloc(sizeof(*aname), GFP_NOFS); |
| 2157 | if (!aname) |
| 2158 | return NULL; |
| 2159 | aname->should_free = true; |
| 2160 | } |
| 2161 | |
| 2162 | aname->ino = AUDIT_INO_UNSET; |
| 2163 | aname->type = type; |
| 2164 | list_add_tail(new: &aname->list, head: &context->names_list); |
| 2165 | |
| 2166 | context->name_count++; |
| 2167 | if (!context->pwd.dentry) |
| 2168 | get_fs_pwd(current->fs, pwd: &context->pwd); |
| 2169 | return aname; |
| 2170 | } |
| 2171 | |
| 2172 | /** |
| 2173 | * __audit_reusename - fill out filename with info from existing entry |
| 2174 | * @uptr: userland ptr to pathname |
| 2175 | * |
| 2176 | * Search the audit_names list for the current audit context. If there is an |
| 2177 | * existing entry with a matching "uptr" then return the filename |
| 2178 | * associated with that audit_name. If not, return NULL. |
| 2179 | */ |
| 2180 | struct filename * |
| 2181 | __audit_reusename(const __user char *uptr) |
| 2182 | { |
| 2183 | struct audit_context *context = audit_context(); |
| 2184 | struct audit_names *n; |
| 2185 | |
| 2186 | list_for_each_entry(n, &context->names_list, list) { |
| 2187 | if (!n->name) |
| 2188 | continue; |
| 2189 | if (n->name->uptr == uptr) |
| 2190 | return refname(name: n->name); |
| 2191 | } |
| 2192 | return NULL; |
| 2193 | } |
| 2194 | |
| 2195 | /** |
| 2196 | * __audit_getname - add a name to the list |
| 2197 | * @name: name to add |
| 2198 | * |
| 2199 | * Add a name to the list of audit names for this context. |
| 2200 | * Called from fs/namei.c:getname(). |
| 2201 | */ |
| 2202 | void __audit_getname(struct filename *name) |
| 2203 | { |
| 2204 | struct audit_context *context = audit_context(); |
| 2205 | struct audit_names *n; |
| 2206 | |
| 2207 | if (context->context == AUDIT_CTX_UNUSED) |
| 2208 | return; |
| 2209 | |
| 2210 | n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN); |
| 2211 | if (!n) |
| 2212 | return; |
| 2213 | |
| 2214 | n->name = name; |
| 2215 | n->name_len = AUDIT_NAME_FULL; |
| 2216 | name->aname = n; |
| 2217 | refname(name); |
| 2218 | } |
| 2219 | |
| 2220 | static inline int audit_copy_fcaps(struct audit_names *name, |
| 2221 | const struct dentry *dentry) |
| 2222 | { |
| 2223 | struct cpu_vfs_cap_data caps; |
| 2224 | int rc; |
| 2225 | |
| 2226 | if (!dentry) |
| 2227 | return 0; |
| 2228 | |
| 2229 | rc = get_vfs_caps_from_disk(idmap: &nop_mnt_idmap, dentry, cpu_caps: &caps); |
| 2230 | if (rc) |
| 2231 | return rc; |
| 2232 | |
| 2233 | name->fcap.permitted = caps.permitted; |
| 2234 | name->fcap.inheritable = caps.inheritable; |
| 2235 | name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); |
| 2236 | name->fcap.rootid = caps.rootid; |
| 2237 | name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> |
| 2238 | VFS_CAP_REVISION_SHIFT; |
| 2239 | |
| 2240 | return 0; |
| 2241 | } |
| 2242 | |
| 2243 | /* Copy inode data into an audit_names. */ |
| 2244 | static void audit_copy_inode(struct audit_names *name, |
| 2245 | const struct dentry *dentry, |
| 2246 | struct inode *inode, unsigned int flags) |
| 2247 | { |
| 2248 | name->ino = inode->i_ino; |
| 2249 | name->dev = inode->i_sb->s_dev; |
| 2250 | name->mode = inode->i_mode; |
| 2251 | name->uid = inode->i_uid; |
| 2252 | name->gid = inode->i_gid; |
| 2253 | name->rdev = inode->i_rdev; |
| 2254 | security_inode_getlsmprop(inode, prop: &name->oprop); |
| 2255 | if (flags & AUDIT_INODE_NOEVAL) { |
| 2256 | name->fcap_ver = -1; |
| 2257 | return; |
| 2258 | } |
| 2259 | audit_copy_fcaps(name, dentry); |
| 2260 | } |
| 2261 | |
| 2262 | /** |
| 2263 | * __audit_inode - store the inode and device from a lookup |
| 2264 | * @name: name being audited |
| 2265 | * @dentry: dentry being audited |
| 2266 | * @flags: attributes for this particular entry |
| 2267 | */ |
| 2268 | void __audit_inode(struct filename *name, const struct dentry *dentry, |
| 2269 | unsigned int flags) |
| 2270 | { |
| 2271 | struct audit_context *context = audit_context(); |
| 2272 | struct inode *inode = d_backing_inode(upper: dentry); |
| 2273 | struct audit_names *n; |
| 2274 | bool parent = flags & AUDIT_INODE_PARENT; |
| 2275 | struct audit_entry *e; |
| 2276 | struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS]; |
| 2277 | int i; |
| 2278 | |
| 2279 | if (context->context == AUDIT_CTX_UNUSED) |
| 2280 | return; |
| 2281 | |
| 2282 | rcu_read_lock(); |
| 2283 | list_for_each_entry_rcu(e, list, list) { |
| 2284 | for (i = 0; i < e->rule.field_count; i++) { |
| 2285 | struct audit_field *f = &e->rule.fields[i]; |
| 2286 | |
| 2287 | if (f->type == AUDIT_FSTYPE |
| 2288 | && audit_comparator(left: inode->i_sb->s_magic, |
| 2289 | op: f->op, right: f->val) |
| 2290 | && e->rule.action == AUDIT_NEVER) { |
| 2291 | rcu_read_unlock(); |
| 2292 | return; |
| 2293 | } |
| 2294 | } |
| 2295 | } |
| 2296 | rcu_read_unlock(); |
| 2297 | |
| 2298 | if (!name) |
| 2299 | goto out_alloc; |
| 2300 | |
| 2301 | /* |
| 2302 | * If we have a pointer to an audit_names entry already, then we can |
| 2303 | * just use it directly if the type is correct. |
| 2304 | */ |
| 2305 | n = name->aname; |
| 2306 | if (n) { |
| 2307 | if (parent) { |
| 2308 | if (n->type == AUDIT_TYPE_PARENT || |
| 2309 | n->type == AUDIT_TYPE_UNKNOWN) |
| 2310 | goto out; |
| 2311 | } else { |
| 2312 | if (n->type != AUDIT_TYPE_PARENT) |
| 2313 | goto out; |
| 2314 | } |
| 2315 | } |
| 2316 | |
| 2317 | list_for_each_entry_reverse(n, &context->names_list, list) { |
| 2318 | if (n->ino) { |
| 2319 | /* valid inode number, use that for the comparison */ |
| 2320 | if (n->ino != inode->i_ino || |
| 2321 | n->dev != inode->i_sb->s_dev) |
| 2322 | continue; |
| 2323 | } else if (n->name) { |
| 2324 | /* inode number has not been set, check the name */ |
| 2325 | if (strcmp(n->name->name, name->name)) |
| 2326 | continue; |
| 2327 | } else |
| 2328 | /* no inode and no name (?!) ... this is odd ... */ |
| 2329 | continue; |
| 2330 | |
| 2331 | /* match the correct record type */ |
| 2332 | if (parent) { |
| 2333 | if (n->type == AUDIT_TYPE_PARENT || |
| 2334 | n->type == AUDIT_TYPE_UNKNOWN) |
| 2335 | goto out; |
| 2336 | } else { |
| 2337 | if (n->type != AUDIT_TYPE_PARENT) |
| 2338 | goto out; |
| 2339 | } |
| 2340 | } |
| 2341 | |
| 2342 | out_alloc: |
| 2343 | /* unable to find an entry with both a matching name and type */ |
| 2344 | n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN); |
| 2345 | if (!n) |
| 2346 | return; |
| 2347 | if (name) { |
| 2348 | n->name = name; |
| 2349 | refname(name); |
| 2350 | } |
| 2351 | |
| 2352 | out: |
| 2353 | if (parent) { |
| 2354 | n->name_len = n->name ? parent_len(path: n->name->name) : AUDIT_NAME_FULL; |
| 2355 | n->type = AUDIT_TYPE_PARENT; |
| 2356 | if (flags & AUDIT_INODE_HIDDEN) |
| 2357 | n->hidden = true; |
| 2358 | } else { |
| 2359 | n->name_len = AUDIT_NAME_FULL; |
| 2360 | n->type = AUDIT_TYPE_NORMAL; |
| 2361 | } |
| 2362 | handle_path(dentry); |
| 2363 | audit_copy_inode(name: n, dentry, inode, flags: flags & AUDIT_INODE_NOEVAL); |
| 2364 | } |
| 2365 | |
| 2366 | void __audit_file(const struct file *file) |
| 2367 | { |
| 2368 | __audit_inode(NULL, dentry: file->f_path.dentry, flags: 0); |
| 2369 | } |
| 2370 | |
| 2371 | /** |
| 2372 | * __audit_inode_child - collect inode info for created/removed objects |
| 2373 | * @parent: inode of dentry parent |
| 2374 | * @dentry: dentry being audited |
| 2375 | * @type: AUDIT_TYPE_* value that we're looking for |
| 2376 | * |
| 2377 | * For syscalls that create or remove filesystem objects, audit_inode |
| 2378 | * can only collect information for the filesystem object's parent. |
| 2379 | * This call updates the audit context with the child's information. |
| 2380 | * Syscalls that create a new filesystem object must be hooked after |
| 2381 | * the object is created. Syscalls that remove a filesystem object |
| 2382 | * must be hooked prior, in order to capture the target inode during |
| 2383 | * unsuccessful attempts. |
| 2384 | */ |
| 2385 | void __audit_inode_child(struct inode *parent, |
| 2386 | const struct dentry *dentry, |
| 2387 | const unsigned char type) |
| 2388 | { |
| 2389 | struct audit_context *context = audit_context(); |
| 2390 | struct inode *inode = d_backing_inode(upper: dentry); |
| 2391 | const struct qstr *dname = &dentry->d_name; |
| 2392 | struct audit_names *n, *found_parent = NULL, *found_child = NULL; |
| 2393 | struct audit_entry *e; |
| 2394 | struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS]; |
| 2395 | int i; |
| 2396 | |
| 2397 | if (context->context == AUDIT_CTX_UNUSED) |
| 2398 | return; |
| 2399 | |
| 2400 | rcu_read_lock(); |
| 2401 | list_for_each_entry_rcu(e, list, list) { |
| 2402 | for (i = 0; i < e->rule.field_count; i++) { |
| 2403 | struct audit_field *f = &e->rule.fields[i]; |
| 2404 | |
| 2405 | if (f->type == AUDIT_FSTYPE |
| 2406 | && audit_comparator(left: parent->i_sb->s_magic, |
| 2407 | op: f->op, right: f->val) |
| 2408 | && e->rule.action == AUDIT_NEVER) { |
| 2409 | rcu_read_unlock(); |
| 2410 | return; |
| 2411 | } |
| 2412 | } |
| 2413 | } |
| 2414 | rcu_read_unlock(); |
| 2415 | |
| 2416 | if (inode) |
| 2417 | handle_one(inode); |
| 2418 | |
| 2419 | /* look for a parent entry first */ |
| 2420 | list_for_each_entry(n, &context->names_list, list) { |
| 2421 | if (!n->name || |
| 2422 | (n->type != AUDIT_TYPE_PARENT && |
| 2423 | n->type != AUDIT_TYPE_UNKNOWN)) |
| 2424 | continue; |
| 2425 | |
| 2426 | if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev && |
| 2427 | !audit_compare_dname_path(dname, |
| 2428 | path: n->name->name, plen: n->name_len)) { |
| 2429 | if (n->type == AUDIT_TYPE_UNKNOWN) |
| 2430 | n->type = AUDIT_TYPE_PARENT; |
| 2431 | found_parent = n; |
| 2432 | break; |
| 2433 | } |
| 2434 | } |
| 2435 | |
| 2436 | cond_resched(); |
| 2437 | |
| 2438 | /* is there a matching child entry? */ |
| 2439 | list_for_each_entry(n, &context->names_list, list) { |
| 2440 | /* can only match entries that have a name */ |
| 2441 | if (!n->name || |
| 2442 | (n->type != type && n->type != AUDIT_TYPE_UNKNOWN)) |
| 2443 | continue; |
| 2444 | |
| 2445 | if (!strcmp(dname->name, n->name->name) || |
| 2446 | !audit_compare_dname_path(dname, path: n->name->name, |
| 2447 | plen: found_parent ? |
| 2448 | found_parent->name_len : |
| 2449 | AUDIT_NAME_FULL)) { |
| 2450 | if (n->type == AUDIT_TYPE_UNKNOWN) |
| 2451 | n->type = type; |
| 2452 | found_child = n; |
| 2453 | break; |
| 2454 | } |
| 2455 | } |
| 2456 | |
| 2457 | if (!found_parent) { |
| 2458 | /* create a new, "anonymous" parent record */ |
| 2459 | n = audit_alloc_name(context, AUDIT_TYPE_PARENT); |
| 2460 | if (!n) |
| 2461 | return; |
| 2462 | audit_copy_inode(name: n, NULL, inode: parent, flags: 0); |
| 2463 | } |
| 2464 | |
| 2465 | if (!found_child) { |
| 2466 | found_child = audit_alloc_name(context, type); |
| 2467 | if (!found_child) |
| 2468 | return; |
| 2469 | |
| 2470 | /* Re-use the name belonging to the slot for a matching parent |
| 2471 | * directory. All names for this context are relinquished in |
| 2472 | * audit_free_names() */ |
| 2473 | if (found_parent) { |
| 2474 | found_child->name = found_parent->name; |
| 2475 | found_child->name_len = AUDIT_NAME_FULL; |
| 2476 | refname(name: found_child->name); |
| 2477 | } |
| 2478 | } |
| 2479 | |
| 2480 | if (inode) |
| 2481 | audit_copy_inode(name: found_child, dentry, inode, flags: 0); |
| 2482 | else |
| 2483 | found_child->ino = AUDIT_INO_UNSET; |
| 2484 | } |
| 2485 | EXPORT_SYMBOL_GPL(__audit_inode_child); |
| 2486 | |
| 2487 | /** |
| 2488 | * auditsc_get_stamp - get local copies of audit_context values |
| 2489 | * @ctx: audit_context for the task |
| 2490 | * @stamp: timestamp to record |
| 2491 | * |
| 2492 | * Also sets the context as auditable. |
| 2493 | */ |
| 2494 | int auditsc_get_stamp(struct audit_context *ctx, struct audit_stamp *stamp) |
| 2495 | { |
| 2496 | if (ctx->context == AUDIT_CTX_UNUSED) |
| 2497 | return 0; |
| 2498 | if (!ctx->stamp.serial) |
| 2499 | ctx->stamp.serial = audit_serial(); |
| 2500 | *stamp = ctx->stamp; |
| 2501 | if (!ctx->prio) { |
| 2502 | ctx->prio = 1; |
| 2503 | ctx->current_state = AUDIT_STATE_RECORD; |
| 2504 | } |
| 2505 | return 1; |
| 2506 | } |
| 2507 | |
| 2508 | /** |
| 2509 | * __audit_mq_open - record audit data for a POSIX MQ open |
| 2510 | * @oflag: open flag |
| 2511 | * @mode: mode bits |
| 2512 | * @attr: queue attributes |
| 2513 | * |
| 2514 | */ |
| 2515 | void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr) |
| 2516 | { |
| 2517 | struct audit_context *context = audit_context(); |
| 2518 | |
| 2519 | if (attr) |
| 2520 | memcpy(to: &context->mq_open.attr, from: attr, len: sizeof(struct mq_attr)); |
| 2521 | else |
| 2522 | memset(s: &context->mq_open.attr, c: 0, n: sizeof(struct mq_attr)); |
| 2523 | |
| 2524 | context->mq_open.oflag = oflag; |
| 2525 | context->mq_open.mode = mode; |
| 2526 | |
| 2527 | context->type = AUDIT_MQ_OPEN; |
| 2528 | } |
| 2529 | |
| 2530 | /** |
| 2531 | * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive |
| 2532 | * @mqdes: MQ descriptor |
| 2533 | * @msg_len: Message length |
| 2534 | * @msg_prio: Message priority |
| 2535 | * @abs_timeout: Message timeout in absolute time |
| 2536 | * |
| 2537 | */ |
| 2538 | void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio, |
| 2539 | const struct timespec64 *abs_timeout) |
| 2540 | { |
| 2541 | struct audit_context *context = audit_context(); |
| 2542 | struct timespec64 *p = &context->mq_sendrecv.abs_timeout; |
| 2543 | |
| 2544 | if (abs_timeout) |
| 2545 | memcpy(to: p, from: abs_timeout, len: sizeof(*p)); |
| 2546 | else |
| 2547 | memset(s: p, c: 0, n: sizeof(*p)); |
| 2548 | |
| 2549 | context->mq_sendrecv.mqdes = mqdes; |
| 2550 | context->mq_sendrecv.msg_len = msg_len; |
| 2551 | context->mq_sendrecv.msg_prio = msg_prio; |
| 2552 | |
| 2553 | context->type = AUDIT_MQ_SENDRECV; |
| 2554 | } |
| 2555 | |
| 2556 | /** |
| 2557 | * __audit_mq_notify - record audit data for a POSIX MQ notify |
| 2558 | * @mqdes: MQ descriptor |
| 2559 | * @notification: Notification event |
| 2560 | * |
| 2561 | */ |
| 2562 | |
| 2563 | void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification) |
| 2564 | { |
| 2565 | struct audit_context *context = audit_context(); |
| 2566 | |
| 2567 | if (notification) |
| 2568 | context->mq_notify.sigev_signo = notification->sigev_signo; |
| 2569 | else |
| 2570 | context->mq_notify.sigev_signo = 0; |
| 2571 | |
| 2572 | context->mq_notify.mqdes = mqdes; |
| 2573 | context->type = AUDIT_MQ_NOTIFY; |
| 2574 | } |
| 2575 | |
| 2576 | /** |
| 2577 | * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute |
| 2578 | * @mqdes: MQ descriptor |
| 2579 | * @mqstat: MQ flags |
| 2580 | * |
| 2581 | */ |
| 2582 | void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat) |
| 2583 | { |
| 2584 | struct audit_context *context = audit_context(); |
| 2585 | |
| 2586 | context->mq_getsetattr.mqdes = mqdes; |
| 2587 | context->mq_getsetattr.mqstat = *mqstat; |
| 2588 | context->type = AUDIT_MQ_GETSETATTR; |
| 2589 | } |
| 2590 | |
| 2591 | /** |
| 2592 | * __audit_ipc_obj - record audit data for ipc object |
| 2593 | * @ipcp: ipc permissions |
| 2594 | * |
| 2595 | */ |
| 2596 | void __audit_ipc_obj(struct kern_ipc_perm *ipcp) |
| 2597 | { |
| 2598 | struct audit_context *context = audit_context(); |
| 2599 | |
| 2600 | context->ipc.uid = ipcp->uid; |
| 2601 | context->ipc.gid = ipcp->gid; |
| 2602 | context->ipc.mode = ipcp->mode; |
| 2603 | context->ipc.has_perm = 0; |
| 2604 | security_ipc_getlsmprop(ipcp, prop: &context->ipc.oprop); |
| 2605 | context->type = AUDIT_IPC; |
| 2606 | } |
| 2607 | |
| 2608 | /** |
| 2609 | * __audit_ipc_set_perm - record audit data for new ipc permissions |
| 2610 | * @qbytes: msgq bytes |
| 2611 | * @uid: msgq user id |
| 2612 | * @gid: msgq group id |
| 2613 | * @mode: msgq mode (permissions) |
| 2614 | * |
| 2615 | * Called only after audit_ipc_obj(). |
| 2616 | */ |
| 2617 | void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode) |
| 2618 | { |
| 2619 | struct audit_context *context = audit_context(); |
| 2620 | |
| 2621 | context->ipc.qbytes = qbytes; |
| 2622 | context->ipc.perm_uid = uid; |
| 2623 | context->ipc.perm_gid = gid; |
| 2624 | context->ipc.perm_mode = mode; |
| 2625 | context->ipc.has_perm = 1; |
| 2626 | } |
| 2627 | |
| 2628 | void __audit_bprm(struct linux_binprm *bprm) |
| 2629 | { |
| 2630 | struct audit_context *context = audit_context(); |
| 2631 | |
| 2632 | context->type = AUDIT_EXECVE; |
| 2633 | context->execve.argc = bprm->argc; |
| 2634 | } |
| 2635 | |
| 2636 | |
| 2637 | /** |
| 2638 | * __audit_socketcall - record audit data for sys_socketcall |
| 2639 | * @nargs: number of args, which should not be more than AUDITSC_ARGS. |
| 2640 | * @args: args array |
| 2641 | * |
| 2642 | */ |
| 2643 | int __audit_socketcall(int nargs, unsigned long *args) |
| 2644 | { |
| 2645 | struct audit_context *context = audit_context(); |
| 2646 | |
| 2647 | if (nargs <= 0 || nargs > AUDITSC_ARGS || !args) |
| 2648 | return -EINVAL; |
| 2649 | context->type = AUDIT_SOCKETCALL; |
| 2650 | context->socketcall.nargs = nargs; |
| 2651 | memcpy(to: context->socketcall.args, from: args, len: nargs * sizeof(unsigned long)); |
| 2652 | return 0; |
| 2653 | } |
| 2654 | |
| 2655 | /** |
| 2656 | * __audit_fd_pair - record audit data for pipe and socketpair |
| 2657 | * @fd1: the first file descriptor |
| 2658 | * @fd2: the second file descriptor |
| 2659 | * |
| 2660 | */ |
| 2661 | void __audit_fd_pair(int fd1, int fd2) |
| 2662 | { |
| 2663 | struct audit_context *context = audit_context(); |
| 2664 | |
| 2665 | context->fds[0] = fd1; |
| 2666 | context->fds[1] = fd2; |
| 2667 | } |
| 2668 | |
| 2669 | /** |
| 2670 | * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto |
| 2671 | * @len: data length in user space |
| 2672 | * @a: data address in kernel space |
| 2673 | * |
| 2674 | * Returns 0 for success or NULL context or < 0 on error. |
| 2675 | */ |
| 2676 | int __audit_sockaddr(int len, void *a) |
| 2677 | { |
| 2678 | struct audit_context *context = audit_context(); |
| 2679 | |
| 2680 | if (!context->sockaddr) { |
| 2681 | void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL); |
| 2682 | |
| 2683 | if (!p) |
| 2684 | return -ENOMEM; |
| 2685 | context->sockaddr = p; |
| 2686 | } |
| 2687 | |
| 2688 | context->sockaddr_len = len; |
| 2689 | memcpy(to: context->sockaddr, from: a, len); |
| 2690 | return 0; |
| 2691 | } |
| 2692 | |
| 2693 | void __audit_ptrace(struct task_struct *t) |
| 2694 | { |
| 2695 | struct audit_context *context = audit_context(); |
| 2696 | |
| 2697 | context->target_pid = task_tgid_nr(tsk: t); |
| 2698 | context->target_auid = audit_get_loginuid(tsk: t); |
| 2699 | context->target_uid = task_uid(t); |
| 2700 | context->target_sessionid = audit_get_sessionid(tsk: t); |
| 2701 | strscpy(context->target_comm, t->comm); |
| 2702 | security_task_getlsmprop_obj(p: t, prop: &context->target_ref); |
| 2703 | } |
| 2704 | |
| 2705 | /** |
| 2706 | * audit_signal_info_syscall - record signal info for syscalls |
| 2707 | * @t: task being signaled |
| 2708 | * |
| 2709 | * If the audit subsystem is being terminated, record the task (pid) |
| 2710 | * and uid that is doing that. |
| 2711 | */ |
| 2712 | int audit_signal_info_syscall(struct task_struct *t) |
| 2713 | { |
| 2714 | struct audit_aux_data_pids *axp; |
| 2715 | struct audit_context *ctx = audit_context(); |
| 2716 | kuid_t t_uid = task_uid(t); |
| 2717 | |
| 2718 | if (!audit_signals || audit_dummy_context()) |
| 2719 | return 0; |
| 2720 | |
| 2721 | /* optimize the common case by putting first signal recipient directly |
| 2722 | * in audit_context */ |
| 2723 | if (!ctx->target_pid) { |
| 2724 | ctx->target_pid = task_tgid_nr(tsk: t); |
| 2725 | ctx->target_auid = audit_get_loginuid(tsk: t); |
| 2726 | ctx->target_uid = t_uid; |
| 2727 | ctx->target_sessionid = audit_get_sessionid(tsk: t); |
| 2728 | strscpy(ctx->target_comm, t->comm); |
| 2729 | security_task_getlsmprop_obj(p: t, prop: &ctx->target_ref); |
| 2730 | return 0; |
| 2731 | } |
| 2732 | |
| 2733 | axp = (void *)ctx->aux_pids; |
| 2734 | if (!axp || axp->pid_count == AUDIT_AUX_PIDS) { |
| 2735 | axp = kzalloc(sizeof(*axp), GFP_ATOMIC); |
| 2736 | if (!axp) |
| 2737 | return -ENOMEM; |
| 2738 | |
| 2739 | axp->d.type = AUDIT_OBJ_PID; |
| 2740 | axp->d.next = ctx->aux_pids; |
| 2741 | ctx->aux_pids = (void *)axp; |
| 2742 | } |
| 2743 | BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS); |
| 2744 | |
| 2745 | axp->target_pid[axp->pid_count] = task_tgid_nr(tsk: t); |
| 2746 | axp->target_auid[axp->pid_count] = audit_get_loginuid(tsk: t); |
| 2747 | axp->target_uid[axp->pid_count] = t_uid; |
| 2748 | axp->target_sessionid[axp->pid_count] = audit_get_sessionid(tsk: t); |
| 2749 | security_task_getlsmprop_obj(p: t, prop: &axp->target_ref[axp->pid_count]); |
| 2750 | strscpy(axp->target_comm[axp->pid_count], t->comm); |
| 2751 | axp->pid_count++; |
| 2752 | |
| 2753 | return 0; |
| 2754 | } |
| 2755 | |
| 2756 | /** |
| 2757 | * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps |
| 2758 | * @bprm: pointer to the bprm being processed |
| 2759 | * @new: the proposed new credentials |
| 2760 | * @old: the old credentials |
| 2761 | * |
| 2762 | * Simply check if the proc already has the caps given by the file and if not |
| 2763 | * store the priv escalation info for later auditing at the end of the syscall |
| 2764 | * |
| 2765 | * -Eric |
| 2766 | */ |
| 2767 | int __audit_log_bprm_fcaps(struct linux_binprm *bprm, |
| 2768 | const struct cred *new, const struct cred *old) |
| 2769 | { |
| 2770 | struct audit_aux_data_bprm_fcaps *ax; |
| 2771 | struct audit_context *context = audit_context(); |
| 2772 | struct cpu_vfs_cap_data vcaps; |
| 2773 | |
| 2774 | ax = kmalloc(sizeof(*ax), GFP_KERNEL); |
| 2775 | if (!ax) |
| 2776 | return -ENOMEM; |
| 2777 | |
| 2778 | ax->d.type = AUDIT_BPRM_FCAPS; |
| 2779 | ax->d.next = context->aux; |
| 2780 | context->aux = (void *)ax; |
| 2781 | |
| 2782 | get_vfs_caps_from_disk(idmap: &nop_mnt_idmap, |
| 2783 | dentry: bprm->file->f_path.dentry, cpu_caps: &vcaps); |
| 2784 | |
| 2785 | ax->fcap.permitted = vcaps.permitted; |
| 2786 | ax->fcap.inheritable = vcaps.inheritable; |
| 2787 | ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); |
| 2788 | ax->fcap.rootid = vcaps.rootid; |
| 2789 | ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT; |
| 2790 | |
| 2791 | ax->old_pcap.permitted = old->cap_permitted; |
| 2792 | ax->old_pcap.inheritable = old->cap_inheritable; |
| 2793 | ax->old_pcap.effective = old->cap_effective; |
| 2794 | ax->old_pcap.ambient = old->cap_ambient; |
| 2795 | |
| 2796 | ax->new_pcap.permitted = new->cap_permitted; |
| 2797 | ax->new_pcap.inheritable = new->cap_inheritable; |
| 2798 | ax->new_pcap.effective = new->cap_effective; |
| 2799 | ax->new_pcap.ambient = new->cap_ambient; |
| 2800 | return 0; |
| 2801 | } |
| 2802 | |
| 2803 | /** |
| 2804 | * __audit_log_capset - store information about the arguments to the capset syscall |
| 2805 | * @new: the new credentials |
| 2806 | * @old: the old (current) credentials |
| 2807 | * |
| 2808 | * Record the arguments userspace sent to sys_capset for later printing by the |
| 2809 | * audit system if applicable |
| 2810 | */ |
| 2811 | void __audit_log_capset(const struct cred *new, const struct cred *old) |
| 2812 | { |
| 2813 | struct audit_context *context = audit_context(); |
| 2814 | |
| 2815 | context->capset.pid = task_tgid_nr(current); |
| 2816 | context->capset.cap.effective = new->cap_effective; |
| 2817 | context->capset.cap.inheritable = new->cap_effective; |
| 2818 | context->capset.cap.permitted = new->cap_permitted; |
| 2819 | context->capset.cap.ambient = new->cap_ambient; |
| 2820 | context->type = AUDIT_CAPSET; |
| 2821 | } |
| 2822 | |
| 2823 | void __audit_mmap_fd(int fd, int flags) |
| 2824 | { |
| 2825 | struct audit_context *context = audit_context(); |
| 2826 | |
| 2827 | context->mmap.fd = fd; |
| 2828 | context->mmap.flags = flags; |
| 2829 | context->type = AUDIT_MMAP; |
| 2830 | } |
| 2831 | |
| 2832 | void __audit_openat2_how(struct open_how *how) |
| 2833 | { |
| 2834 | struct audit_context *context = audit_context(); |
| 2835 | |
| 2836 | context->openat2.flags = how->flags; |
| 2837 | context->openat2.mode = how->mode; |
| 2838 | context->openat2.resolve = how->resolve; |
| 2839 | context->type = AUDIT_OPENAT2; |
| 2840 | } |
| 2841 | |
| 2842 | void __audit_log_kern_module(const char *name) |
| 2843 | { |
| 2844 | struct audit_context *context = audit_context(); |
| 2845 | |
| 2846 | context->module.name = kstrdup(s: name, GFP_KERNEL); |
| 2847 | if (!context->module.name) |
| 2848 | audit_log_lost(message: "out of memory in __audit_log_kern_module" ); |
| 2849 | context->type = AUDIT_KERN_MODULE; |
| 2850 | } |
| 2851 | |
| 2852 | void __audit_fanotify(u32 response, struct fanotify_response_info_audit_rule *friar) |
| 2853 | { |
| 2854 | /* {subj,obj}_trust values are {0,1,2}: no,yes,unknown */ |
| 2855 | switch (friar->hdr.type) { |
| 2856 | case FAN_RESPONSE_INFO_NONE: |
| 2857 | audit_log(ctx: audit_context(), GFP_KERNEL, AUDIT_FANOTIFY, |
| 2858 | fmt: "resp=%u fan_type=%u fan_info=0 subj_trust=2 obj_trust=2" , |
| 2859 | response, FAN_RESPONSE_INFO_NONE); |
| 2860 | break; |
| 2861 | case FAN_RESPONSE_INFO_AUDIT_RULE: |
| 2862 | audit_log(ctx: audit_context(), GFP_KERNEL, AUDIT_FANOTIFY, |
| 2863 | fmt: "resp=%u fan_type=%u fan_info=%X subj_trust=%u obj_trust=%u" , |
| 2864 | response, friar->hdr.type, friar->rule_number, |
| 2865 | friar->subj_trust, friar->obj_trust); |
| 2866 | } |
| 2867 | } |
| 2868 | |
| 2869 | void __audit_tk_injoffset(struct timespec64 offset) |
| 2870 | { |
| 2871 | struct audit_context *context = audit_context(); |
| 2872 | |
| 2873 | /* only set type if not already set by NTP */ |
| 2874 | if (!context->type) |
| 2875 | context->type = AUDIT_TIME_INJOFFSET; |
| 2876 | memcpy(to: &context->time.tk_injoffset, from: &offset, len: sizeof(offset)); |
| 2877 | } |
| 2878 | |
| 2879 | void __audit_ntp_log(const struct audit_ntp_data *ad) |
| 2880 | { |
| 2881 | struct audit_context *context = audit_context(); |
| 2882 | int type; |
| 2883 | |
| 2884 | for (type = 0; type < AUDIT_NTP_NVALS; type++) |
| 2885 | if (ad->vals[type].newval != ad->vals[type].oldval) { |
| 2886 | /* unconditionally set type, overwriting TK */ |
| 2887 | context->type = AUDIT_TIME_ADJNTPVAL; |
| 2888 | memcpy(to: &context->time.ntp_data, from: ad, len: sizeof(*ad)); |
| 2889 | break; |
| 2890 | } |
| 2891 | } |
| 2892 | |
| 2893 | void __audit_log_nfcfg(const char *name, u8 af, unsigned int nentries, |
| 2894 | enum audit_nfcfgop op, gfp_t gfp) |
| 2895 | { |
| 2896 | struct audit_buffer *ab; |
| 2897 | char comm[sizeof(current->comm)]; |
| 2898 | |
| 2899 | ab = audit_log_start(ctx: audit_context(), gfp_mask: gfp, AUDIT_NETFILTER_CFG); |
| 2900 | if (!ab) |
| 2901 | return; |
| 2902 | audit_log_format(ab, fmt: "table=%s family=%u entries=%u op=%s" , |
| 2903 | name, af, nentries, audit_nfcfgs[op].s); |
| 2904 | |
| 2905 | audit_log_format(ab, fmt: " pid=%u" , task_tgid_nr(current)); |
| 2906 | audit_log_task_context(ab); /* subj= */ |
| 2907 | audit_log_format(ab, fmt: " comm=" ); |
| 2908 | audit_log_untrustedstring(ab, get_task_comm(comm, current)); |
| 2909 | audit_log_end(ab); |
| 2910 | } |
| 2911 | EXPORT_SYMBOL_GPL(__audit_log_nfcfg); |
| 2912 | |
| 2913 | static void audit_log_task(struct audit_buffer *ab) |
| 2914 | { |
| 2915 | kuid_t auid, uid; |
| 2916 | kgid_t gid; |
| 2917 | unsigned int sessionid; |
| 2918 | char comm[sizeof(current->comm)]; |
| 2919 | |
| 2920 | auid = audit_get_loginuid(current); |
| 2921 | sessionid = audit_get_sessionid(current); |
| 2922 | current_uid_gid(&uid, &gid); |
| 2923 | |
| 2924 | audit_log_format(ab, fmt: "auid=%u uid=%u gid=%u ses=%u" , |
| 2925 | from_kuid(to: &init_user_ns, kuid: auid), |
| 2926 | from_kuid(to: &init_user_ns, kuid: uid), |
| 2927 | from_kgid(to: &init_user_ns, kgid: gid), |
| 2928 | sessionid); |
| 2929 | audit_log_task_context(ab); |
| 2930 | audit_log_format(ab, fmt: " pid=%d comm=" , task_tgid_nr(current)); |
| 2931 | audit_log_untrustedstring(ab, get_task_comm(comm, current)); |
| 2932 | audit_log_d_path_exe(ab, current->mm); |
| 2933 | } |
| 2934 | |
| 2935 | /** |
| 2936 | * audit_core_dumps - record information about processes that end abnormally |
| 2937 | * @signr: signal value |
| 2938 | * |
| 2939 | * If a process ends with a core dump, something fishy is going on and we |
| 2940 | * should record the event for investigation. |
| 2941 | */ |
| 2942 | void audit_core_dumps(long signr) |
| 2943 | { |
| 2944 | struct audit_buffer *ab; |
| 2945 | |
| 2946 | if (!audit_enabled) |
| 2947 | return; |
| 2948 | |
| 2949 | if (signr == SIGQUIT) /* don't care for those */ |
| 2950 | return; |
| 2951 | |
| 2952 | ab = audit_log_start(ctx: audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND); |
| 2953 | if (unlikely(!ab)) |
| 2954 | return; |
| 2955 | audit_log_task(ab); |
| 2956 | audit_log_format(ab, fmt: " sig=%ld res=1" , signr); |
| 2957 | audit_log_end(ab); |
| 2958 | } |
| 2959 | |
| 2960 | /** |
| 2961 | * audit_seccomp - record information about a seccomp action |
| 2962 | * @syscall: syscall number |
| 2963 | * @signr: signal value |
| 2964 | * @code: the seccomp action |
| 2965 | * |
| 2966 | * Record the information associated with a seccomp action. Event filtering for |
| 2967 | * seccomp actions that are not to be logged is done in seccomp_log(). |
| 2968 | * Therefore, this function forces auditing independent of the audit_enabled |
| 2969 | * and dummy context state because seccomp actions should be logged even when |
| 2970 | * audit is not in use. |
| 2971 | */ |
| 2972 | void audit_seccomp(unsigned long syscall, long signr, int code) |
| 2973 | { |
| 2974 | struct audit_buffer *ab; |
| 2975 | |
| 2976 | ab = audit_log_start(ctx: audit_context(), GFP_KERNEL, AUDIT_SECCOMP); |
| 2977 | if (unlikely(!ab)) |
| 2978 | return; |
| 2979 | audit_log_task(ab); |
| 2980 | audit_log_format(ab, fmt: " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x" , |
| 2981 | signr, syscall_get_arch(current), syscall, |
| 2982 | in_compat_syscall(), KSTK_EIP(current), code); |
| 2983 | audit_log_end(ab); |
| 2984 | } |
| 2985 | |
| 2986 | void audit_seccomp_actions_logged(const char *names, const char *old_names, |
| 2987 | int res) |
| 2988 | { |
| 2989 | struct audit_buffer *ab; |
| 2990 | |
| 2991 | if (!audit_enabled) |
| 2992 | return; |
| 2993 | |
| 2994 | ab = audit_log_start(ctx: audit_context(), GFP_KERNEL, |
| 2995 | AUDIT_CONFIG_CHANGE); |
| 2996 | if (unlikely(!ab)) |
| 2997 | return; |
| 2998 | |
| 2999 | audit_log_format(ab, |
| 3000 | fmt: "op=seccomp-logging actions=%s old-actions=%s res=%d" , |
| 3001 | names, old_names, res); |
| 3002 | audit_log_end(ab); |
| 3003 | } |
| 3004 | |
| 3005 | struct list_head *audit_killed_trees(void) |
| 3006 | { |
| 3007 | struct audit_context *ctx = audit_context(); |
| 3008 | if (likely(!ctx || ctx->context == AUDIT_CTX_UNUSED)) |
| 3009 | return NULL; |
| 3010 | return &ctx->killed_trees; |
| 3011 | } |
| 3012 | |