| 1 | // SPDX-License-Identifier: GPL-2.0-only |
| 2 | /* |
| 3 | * Context tracking: Probe on high level context boundaries such as kernel, |
| 4 | * userspace, guest or idle. |
| 5 | * |
| 6 | * This is used by RCU to remove its dependency on the timer tick while a CPU |
| 7 | * runs in idle, userspace or guest mode. |
| 8 | * |
| 9 | * User/guest tracking started by Frederic Weisbecker: |
| 10 | * |
| 11 | * Copyright (C) 2012 Red Hat, Inc., Frederic Weisbecker |
| 12 | * |
| 13 | * Many thanks to Gilad Ben-Yossef, Paul McKenney, Ingo Molnar, Andrew Morton, |
| 14 | * Steven Rostedt, Peter Zijlstra for suggestions and improvements. |
| 15 | * |
| 16 | * RCU extended quiescent state bits imported from kernel/rcu/tree.c |
| 17 | * where the relevant authorship may be found. |
| 18 | */ |
| 19 | |
| 20 | #include <linux/context_tracking.h> |
| 21 | #include <linux/rcupdate.h> |
| 22 | #include <linux/sched.h> |
| 23 | #include <linux/hardirq.h> |
| 24 | #include <linux/export.h> |
| 25 | #include <linux/kprobes.h> |
| 26 | #include <trace/events/rcu.h> |
| 27 | |
| 28 | |
| 29 | DEFINE_PER_CPU(struct context_tracking, context_tracking) = { |
| 30 | #ifdef CONFIG_CONTEXT_TRACKING_IDLE |
| 31 | .nesting = 1, |
| 32 | .nmi_nesting = CT_NESTING_IRQ_NONIDLE, |
| 33 | #endif |
| 34 | .state = ATOMIC_INIT(CT_RCU_WATCHING), |
| 35 | }; |
| 36 | EXPORT_SYMBOL_GPL(context_tracking); |
| 37 | |
| 38 | #ifdef CONFIG_CONTEXT_TRACKING_IDLE |
| 39 | #define TPS(x) tracepoint_string(x) |
| 40 | |
| 41 | /* Record the current task on exiting RCU-tasks (dyntick-idle entry). */ |
| 42 | static __always_inline void rcu_task_exit(void) |
| 43 | { |
| 44 | #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) |
| 45 | WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id()); |
| 46 | #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */ |
| 47 | } |
| 48 | |
| 49 | /* Record no current task on entering RCU-tasks (dyntick-idle exit). */ |
| 50 | static __always_inline void rcu_task_enter(void) |
| 51 | { |
| 52 | #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) |
| 53 | WRITE_ONCE(current->rcu_tasks_idle_cpu, -1); |
| 54 | #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */ |
| 55 | } |
| 56 | |
| 57 | /* Turn on heavyweight RCU tasks trace readers on kernel exit. */ |
| 58 | static __always_inline void rcu_task_trace_heavyweight_enter(void) |
| 59 | { |
| 60 | #ifdef CONFIG_TASKS_TRACE_RCU |
| 61 | if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) |
| 62 | current->trc_reader_special.b.need_mb = true; |
| 63 | #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ |
| 64 | } |
| 65 | |
| 66 | /* Turn off heavyweight RCU tasks trace readers on kernel entry. */ |
| 67 | static __always_inline void rcu_task_trace_heavyweight_exit(void) |
| 68 | { |
| 69 | #ifdef CONFIG_TASKS_TRACE_RCU |
| 70 | if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) |
| 71 | current->trc_reader_special.b.need_mb = false; |
| 72 | #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ |
| 73 | } |
| 74 | |
| 75 | /* |
| 76 | * Record entry into an extended quiescent state. This is only to be |
| 77 | * called when not already in an extended quiescent state, that is, |
| 78 | * RCU is watching prior to the call to this function and is no longer |
| 79 | * watching upon return. |
| 80 | */ |
| 81 | static noinstr void ct_kernel_exit_state(int offset) |
| 82 | { |
| 83 | /* |
| 84 | * CPUs seeing atomic_add_return() must see prior RCU read-side |
| 85 | * critical sections, and we also must force ordering with the |
| 86 | * next idle sojourn. |
| 87 | */ |
| 88 | rcu_task_trace_heavyweight_enter(); // Before CT state update! |
| 89 | // RCU is still watching. Better not be in extended quiescent state! |
| 90 | WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !rcu_is_watching_curr_cpu()); |
| 91 | (void)ct_state_inc(incby: offset); |
| 92 | // RCU is no longer watching. |
| 93 | } |
| 94 | |
| 95 | /* |
| 96 | * Record exit from an extended quiescent state. This is only to be |
| 97 | * called from an extended quiescent state, that is, RCU is not watching |
| 98 | * prior to the call to this function and is watching upon return. |
| 99 | */ |
| 100 | static noinstr void ct_kernel_enter_state(int offset) |
| 101 | { |
| 102 | int seq; |
| 103 | |
| 104 | /* |
| 105 | * CPUs seeing atomic_add_return() must see prior idle sojourns, |
| 106 | * and we also must force ordering with the next RCU read-side |
| 107 | * critical section. |
| 108 | */ |
| 109 | seq = ct_state_inc(incby: offset); |
| 110 | // RCU is now watching. Better not be in an extended quiescent state! |
| 111 | rcu_task_trace_heavyweight_exit(); // After CT state update! |
| 112 | WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !(seq & CT_RCU_WATCHING)); |
| 113 | } |
| 114 | |
| 115 | /* |
| 116 | * Enter an RCU extended quiescent state, which can be either the |
| 117 | * idle loop or adaptive-tickless usermode execution. |
| 118 | * |
| 119 | * We crowbar the ->nmi_nesting field to zero to allow for |
| 120 | * the possibility of usermode upcalls having messed up our count |
| 121 | * of interrupt nesting level during the prior busy period. |
| 122 | */ |
| 123 | static void noinstr ct_kernel_exit(bool user, int offset) |
| 124 | { |
| 125 | struct context_tracking *ct = this_cpu_ptr(&context_tracking); |
| 126 | |
| 127 | WARN_ON_ONCE(ct_nmi_nesting() != CT_NESTING_IRQ_NONIDLE); |
| 128 | WRITE_ONCE(ct->nmi_nesting, 0); |
| 129 | WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && |
| 130 | ct_nesting() == 0); |
| 131 | if (ct_nesting() != 1) { |
| 132 | // RCU will still be watching, so just do accounting and leave. |
| 133 | ct->nesting--; |
| 134 | return; |
| 135 | } |
| 136 | |
| 137 | instrumentation_begin(); |
| 138 | lockdep_assert_irqs_disabled(); |
| 139 | trace_rcu_watching(TPS("End" ), oldnesting: ct_nesting(), newnesting: 0, counter: ct_rcu_watching()); |
| 140 | WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current)); |
| 141 | rcu_preempt_deferred_qs(current); |
| 142 | |
| 143 | // instrumentation for the noinstr ct_kernel_exit_state() |
| 144 | instrument_atomic_write(v: &ct->state, size: sizeof(ct->state)); |
| 145 | |
| 146 | instrumentation_end(); |
| 147 | WRITE_ONCE(ct->nesting, 0); /* Avoid irq-access tearing. */ |
| 148 | // RCU is watching here ... |
| 149 | ct_kernel_exit_state(offset); |
| 150 | // ... but is no longer watching here. |
| 151 | rcu_task_exit(); |
| 152 | } |
| 153 | |
| 154 | /* |
| 155 | * Exit an RCU extended quiescent state, which can be either the |
| 156 | * idle loop or adaptive-tickless usermode execution. |
| 157 | * |
| 158 | * We crowbar the ->nmi_nesting field to CT_NESTING_IRQ_NONIDLE to |
| 159 | * allow for the possibility of usermode upcalls messing up our count of |
| 160 | * interrupt nesting level during the busy period that is just now starting. |
| 161 | */ |
| 162 | static void noinstr ct_kernel_enter(bool user, int offset) |
| 163 | { |
| 164 | struct context_tracking *ct = this_cpu_ptr(&context_tracking); |
| 165 | long oldval; |
| 166 | |
| 167 | WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !raw_irqs_disabled()); |
| 168 | oldval = ct_nesting(); |
| 169 | WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0); |
| 170 | if (oldval) { |
| 171 | // RCU was already watching, so just do accounting and leave. |
| 172 | ct->nesting++; |
| 173 | return; |
| 174 | } |
| 175 | rcu_task_enter(); |
| 176 | // RCU is not watching here ... |
| 177 | ct_kernel_enter_state(offset); |
| 178 | // ... but is watching here. |
| 179 | instrumentation_begin(); |
| 180 | |
| 181 | // instrumentation for the noinstr ct_kernel_enter_state() |
| 182 | instrument_atomic_write(v: &ct->state, size: sizeof(ct->state)); |
| 183 | |
| 184 | trace_rcu_watching(TPS("Start" ), oldnesting: ct_nesting(), newnesting: 1, counter: ct_rcu_watching()); |
| 185 | WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current)); |
| 186 | WRITE_ONCE(ct->nesting, 1); |
| 187 | WARN_ON_ONCE(ct_nmi_nesting()); |
| 188 | WRITE_ONCE(ct->nmi_nesting, CT_NESTING_IRQ_NONIDLE); |
| 189 | instrumentation_end(); |
| 190 | } |
| 191 | |
| 192 | /** |
| 193 | * ct_nmi_exit - inform RCU of exit from NMI context |
| 194 | * |
| 195 | * If we are returning from the outermost NMI handler that interrupted an |
| 196 | * RCU-idle period, update ct->state and ct->nmi_nesting |
| 197 | * to let the RCU grace-period handling know that the CPU is back to |
| 198 | * being RCU-idle. |
| 199 | * |
| 200 | * If you add or remove a call to ct_nmi_exit(), be sure to test |
| 201 | * with CONFIG_RCU_EQS_DEBUG=y. |
| 202 | */ |
| 203 | void noinstr ct_nmi_exit(void) |
| 204 | { |
| 205 | struct context_tracking *ct = this_cpu_ptr(&context_tracking); |
| 206 | |
| 207 | instrumentation_begin(); |
| 208 | /* |
| 209 | * Check for ->nmi_nesting underflow and bad CT state. |
| 210 | * (We are exiting an NMI handler, so RCU better be paying attention |
| 211 | * to us!) |
| 212 | */ |
| 213 | WARN_ON_ONCE(ct_nmi_nesting() <= 0); |
| 214 | WARN_ON_ONCE(!rcu_is_watching_curr_cpu()); |
| 215 | |
| 216 | /* |
| 217 | * If the nesting level is not 1, the CPU wasn't RCU-idle, so |
| 218 | * leave it in non-RCU-idle state. |
| 219 | */ |
| 220 | if (ct_nmi_nesting() != 1) { |
| 221 | trace_rcu_watching(TPS("--=" ), oldnesting: ct_nmi_nesting(), newnesting: ct_nmi_nesting() - 2, |
| 222 | counter: ct_rcu_watching()); |
| 223 | WRITE_ONCE(ct->nmi_nesting, /* No store tearing. */ |
| 224 | ct_nmi_nesting() - 2); |
| 225 | instrumentation_end(); |
| 226 | return; |
| 227 | } |
| 228 | |
| 229 | /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */ |
| 230 | trace_rcu_watching(TPS("Endirq" ), oldnesting: ct_nmi_nesting(), newnesting: 0, counter: ct_rcu_watching()); |
| 231 | WRITE_ONCE(ct->nmi_nesting, 0); /* Avoid store tearing. */ |
| 232 | |
| 233 | // instrumentation for the noinstr ct_kernel_exit_state() |
| 234 | instrument_atomic_write(v: &ct->state, size: sizeof(ct->state)); |
| 235 | instrumentation_end(); |
| 236 | |
| 237 | // RCU is watching here ... |
| 238 | ct_kernel_exit_state(CT_RCU_WATCHING); |
| 239 | // ... but is no longer watching here. |
| 240 | |
| 241 | if (!in_nmi()) |
| 242 | rcu_task_exit(); |
| 243 | } |
| 244 | |
| 245 | /** |
| 246 | * ct_nmi_enter - inform RCU of entry to NMI context |
| 247 | * |
| 248 | * If the CPU was idle from RCU's viewpoint, update ct->state and |
| 249 | * ct->nmi_nesting to let the RCU grace-period handling know |
| 250 | * that the CPU is active. This implementation permits nested NMIs, as |
| 251 | * long as the nesting level does not overflow an int. (You will probably |
| 252 | * run out of stack space first.) |
| 253 | * |
| 254 | * If you add or remove a call to ct_nmi_enter(), be sure to test |
| 255 | * with CONFIG_RCU_EQS_DEBUG=y. |
| 256 | */ |
| 257 | void noinstr ct_nmi_enter(void) |
| 258 | { |
| 259 | long incby = 2; |
| 260 | struct context_tracking *ct = this_cpu_ptr(&context_tracking); |
| 261 | |
| 262 | /* Complain about underflow. */ |
| 263 | WARN_ON_ONCE(ct_nmi_nesting() < 0); |
| 264 | |
| 265 | /* |
| 266 | * If idle from RCU viewpoint, atomically increment CT state |
| 267 | * to mark non-idle and increment ->nmi_nesting by one. |
| 268 | * Otherwise, increment ->nmi_nesting by two. This means |
| 269 | * if ->nmi_nesting is equal to one, we are guaranteed |
| 270 | * to be in the outermost NMI handler that interrupted an RCU-idle |
| 271 | * period (observation due to Andy Lutomirski). |
| 272 | */ |
| 273 | if (!rcu_is_watching_curr_cpu()) { |
| 274 | |
| 275 | if (!in_nmi()) |
| 276 | rcu_task_enter(); |
| 277 | |
| 278 | // RCU is not watching here ... |
| 279 | ct_kernel_enter_state(CT_RCU_WATCHING); |
| 280 | // ... but is watching here. |
| 281 | |
| 282 | instrumentation_begin(); |
| 283 | // instrumentation for the noinstr rcu_is_watching_curr_cpu() |
| 284 | instrument_atomic_read(v: &ct->state, size: sizeof(ct->state)); |
| 285 | // instrumentation for the noinstr ct_kernel_enter_state() |
| 286 | instrument_atomic_write(v: &ct->state, size: sizeof(ct->state)); |
| 287 | |
| 288 | incby = 1; |
| 289 | } else if (!in_nmi()) { |
| 290 | instrumentation_begin(); |
| 291 | rcu_irq_enter_check_tick(); |
| 292 | } else { |
| 293 | instrumentation_begin(); |
| 294 | } |
| 295 | |
| 296 | trace_rcu_watching(polarity: incby == 1 ? TPS("Startirq" ) : TPS("++=" ), |
| 297 | oldnesting: ct_nmi_nesting(), |
| 298 | newnesting: ct_nmi_nesting() + incby, counter: ct_rcu_watching()); |
| 299 | instrumentation_end(); |
| 300 | WRITE_ONCE(ct->nmi_nesting, /* Prevent store tearing. */ |
| 301 | ct_nmi_nesting() + incby); |
| 302 | barrier(); |
| 303 | } |
| 304 | |
| 305 | /** |
| 306 | * ct_idle_enter - inform RCU that current CPU is entering idle |
| 307 | * |
| 308 | * Enter idle mode, in other words, -leave- the mode in which RCU |
| 309 | * read-side critical sections can occur. (Though RCU read-side |
| 310 | * critical sections can occur in irq handlers in idle, a possibility |
| 311 | * handled by irq_enter() and irq_exit().) |
| 312 | * |
| 313 | * If you add or remove a call to ct_idle_enter(), be sure to test with |
| 314 | * CONFIG_RCU_EQS_DEBUG=y. |
| 315 | */ |
| 316 | void noinstr ct_idle_enter(void) |
| 317 | { |
| 318 | WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !raw_irqs_disabled()); |
| 319 | ct_kernel_exit(user: false, CT_RCU_WATCHING + CT_STATE_IDLE); |
| 320 | } |
| 321 | EXPORT_SYMBOL_GPL(ct_idle_enter); |
| 322 | |
| 323 | /** |
| 324 | * ct_idle_exit - inform RCU that current CPU is leaving idle |
| 325 | * |
| 326 | * Exit idle mode, in other words, -enter- the mode in which RCU |
| 327 | * read-side critical sections can occur. |
| 328 | * |
| 329 | * If you add or remove a call to ct_idle_exit(), be sure to test with |
| 330 | * CONFIG_RCU_EQS_DEBUG=y. |
| 331 | */ |
| 332 | void noinstr ct_idle_exit(void) |
| 333 | { |
| 334 | unsigned long flags; |
| 335 | |
| 336 | raw_local_irq_save(flags); |
| 337 | ct_kernel_enter(user: false, CT_RCU_WATCHING - CT_STATE_IDLE); |
| 338 | raw_local_irq_restore(flags); |
| 339 | } |
| 340 | EXPORT_SYMBOL_GPL(ct_idle_exit); |
| 341 | |
| 342 | /** |
| 343 | * ct_irq_enter - inform RCU that current CPU is entering irq away from idle |
| 344 | * |
| 345 | * Enter an interrupt handler, which might possibly result in exiting |
| 346 | * idle mode, in other words, entering the mode in which read-side critical |
| 347 | * sections can occur. The caller must have disabled interrupts. |
| 348 | * |
| 349 | * Note that the Linux kernel is fully capable of entering an interrupt |
| 350 | * handler that it never exits, for example when doing upcalls to user mode! |
| 351 | * This code assumes that the idle loop never does upcalls to user mode. |
| 352 | * If your architecture's idle loop does do upcalls to user mode (or does |
| 353 | * anything else that results in unbalanced calls to the irq_enter() and |
| 354 | * irq_exit() functions), RCU will give you what you deserve, good and hard. |
| 355 | * But very infrequently and irreproducibly. |
| 356 | * |
| 357 | * Use things like work queues to work around this limitation. |
| 358 | * |
| 359 | * You have been warned. |
| 360 | * |
| 361 | * If you add or remove a call to ct_irq_enter(), be sure to test with |
| 362 | * CONFIG_RCU_EQS_DEBUG=y. |
| 363 | */ |
| 364 | noinstr void ct_irq_enter(void) |
| 365 | { |
| 366 | lockdep_assert_irqs_disabled(); |
| 367 | ct_nmi_enter(); |
| 368 | } |
| 369 | |
| 370 | /** |
| 371 | * ct_irq_exit - inform RCU that current CPU is exiting irq towards idle |
| 372 | * |
| 373 | * Exit from an interrupt handler, which might possibly result in entering |
| 374 | * idle mode, in other words, leaving the mode in which read-side critical |
| 375 | * sections can occur. The caller must have disabled interrupts. |
| 376 | * |
| 377 | * This code assumes that the idle loop never does anything that might |
| 378 | * result in unbalanced calls to irq_enter() and irq_exit(). If your |
| 379 | * architecture's idle loop violates this assumption, RCU will give you what |
| 380 | * you deserve, good and hard. But very infrequently and irreproducibly. |
| 381 | * |
| 382 | * Use things like work queues to work around this limitation. |
| 383 | * |
| 384 | * You have been warned. |
| 385 | * |
| 386 | * If you add or remove a call to ct_irq_exit(), be sure to test with |
| 387 | * CONFIG_RCU_EQS_DEBUG=y. |
| 388 | */ |
| 389 | noinstr void ct_irq_exit(void) |
| 390 | { |
| 391 | lockdep_assert_irqs_disabled(); |
| 392 | ct_nmi_exit(); |
| 393 | } |
| 394 | |
| 395 | /* |
| 396 | * Wrapper for ct_irq_enter() where interrupts are enabled. |
| 397 | * |
| 398 | * If you add or remove a call to ct_irq_enter_irqson(), be sure to test |
| 399 | * with CONFIG_RCU_EQS_DEBUG=y. |
| 400 | */ |
| 401 | void ct_irq_enter_irqson(void) |
| 402 | { |
| 403 | unsigned long flags; |
| 404 | |
| 405 | local_irq_save(flags); |
| 406 | ct_irq_enter(); |
| 407 | local_irq_restore(flags); |
| 408 | } |
| 409 | |
| 410 | /* |
| 411 | * Wrapper for ct_irq_exit() where interrupts are enabled. |
| 412 | * |
| 413 | * If you add or remove a call to ct_irq_exit_irqson(), be sure to test |
| 414 | * with CONFIG_RCU_EQS_DEBUG=y. |
| 415 | */ |
| 416 | void ct_irq_exit_irqson(void) |
| 417 | { |
| 418 | unsigned long flags; |
| 419 | |
| 420 | local_irq_save(flags); |
| 421 | ct_irq_exit(); |
| 422 | local_irq_restore(flags); |
| 423 | } |
| 424 | #else |
| 425 | static __always_inline void ct_kernel_exit(bool user, int offset) { } |
| 426 | static __always_inline void ct_kernel_enter(bool user, int offset) { } |
| 427 | #endif /* #ifdef CONFIG_CONTEXT_TRACKING_IDLE */ |
| 428 | |
| 429 | #ifdef CONFIG_CONTEXT_TRACKING_USER |
| 430 | |
| 431 | #define CREATE_TRACE_POINTS |
| 432 | #include <trace/events/context_tracking.h> |
| 433 | |
| 434 | DEFINE_STATIC_KEY_FALSE_RO(context_tracking_key); |
| 435 | EXPORT_SYMBOL_GPL(context_tracking_key); |
| 436 | |
| 437 | static noinstr bool context_tracking_recursion_enter(void) |
| 438 | { |
| 439 | int recursion; |
| 440 | |
| 441 | recursion = __this_cpu_inc_return(context_tracking.recursion); |
| 442 | if (recursion == 1) |
| 443 | return true; |
| 444 | |
| 445 | WARN_ONCE((recursion < 1), "Invalid context tracking recursion value %d\n" , recursion); |
| 446 | __this_cpu_dec(context_tracking.recursion); |
| 447 | |
| 448 | return false; |
| 449 | } |
| 450 | |
| 451 | static __always_inline void context_tracking_recursion_exit(void) |
| 452 | { |
| 453 | __this_cpu_dec(context_tracking.recursion); |
| 454 | } |
| 455 | |
| 456 | /** |
| 457 | * __ct_user_enter - Inform the context tracking that the CPU is going |
| 458 | * to enter user or guest space mode. |
| 459 | * |
| 460 | * @state: userspace context-tracking state to enter. |
| 461 | * |
| 462 | * This function must be called right before we switch from the kernel |
| 463 | * to user or guest space, when it's guaranteed the remaining kernel |
| 464 | * instructions to execute won't use any RCU read side critical section |
| 465 | * because this function sets RCU in extended quiescent state. |
| 466 | */ |
| 467 | void noinstr __ct_user_enter(enum ctx_state state) |
| 468 | { |
| 469 | struct context_tracking *ct = this_cpu_ptr(&context_tracking); |
| 470 | lockdep_assert_irqs_disabled(); |
| 471 | |
| 472 | /* Kernel threads aren't supposed to go to userspace */ |
| 473 | WARN_ON_ONCE(!current->mm); |
| 474 | |
| 475 | if (!context_tracking_recursion_enter()) |
| 476 | return; |
| 477 | |
| 478 | if (__ct_state() != state) { |
| 479 | if (ct->active) { |
| 480 | /* |
| 481 | * At this stage, only low level arch entry code remains and |
| 482 | * then we'll run in userspace. We can assume there won't be |
| 483 | * any RCU read-side critical section until the next call to |
| 484 | * user_exit() or ct_irq_enter(). Let's remove RCU's dependency |
| 485 | * on the tick. |
| 486 | */ |
| 487 | if (state == CT_STATE_USER) { |
| 488 | instrumentation_begin(); |
| 489 | trace_user_enter(0); |
| 490 | vtime_user_enter(current); |
| 491 | instrumentation_end(); |
| 492 | } |
| 493 | /* |
| 494 | * Other than generic entry implementation, we may be past the last |
| 495 | * rescheduling opportunity in the entry code. Trigger a self IPI |
| 496 | * that will fire and reschedule once we resume in user/guest mode. |
| 497 | */ |
| 498 | rcu_irq_work_resched(); |
| 499 | |
| 500 | /* |
| 501 | * Enter RCU idle mode right before resuming userspace. No use of RCU |
| 502 | * is permitted between this call and rcu_eqs_exit(). This way the |
| 503 | * CPU doesn't need to maintain the tick for RCU maintenance purposes |
| 504 | * when the CPU runs in userspace. |
| 505 | */ |
| 506 | ct_kernel_exit(true, CT_RCU_WATCHING + state); |
| 507 | |
| 508 | /* |
| 509 | * Special case if we only track user <-> kernel transitions for tickless |
| 510 | * cputime accounting but we don't support RCU extended quiescent state. |
| 511 | * In this we case we don't care about any concurrency/ordering. |
| 512 | */ |
| 513 | if (!IS_ENABLED(CONFIG_CONTEXT_TRACKING_IDLE)) |
| 514 | raw_atomic_set(&ct->state, state); |
| 515 | } else { |
| 516 | /* |
| 517 | * Even if context tracking is disabled on this CPU, because it's outside |
| 518 | * the full dynticks mask for example, we still have to keep track of the |
| 519 | * context transitions and states to prevent inconsistency on those of |
| 520 | * other CPUs. |
| 521 | * If a task triggers an exception in userspace, sleep on the exception |
| 522 | * handler and then migrate to another CPU, that new CPU must know where |
| 523 | * the exception returns by the time we call exception_exit(). |
| 524 | * This information can only be provided by the previous CPU when it called |
| 525 | * exception_enter(). |
| 526 | * OTOH we can spare the calls to vtime and RCU when context_tracking.active |
| 527 | * is false because we know that CPU is not tickless. |
| 528 | */ |
| 529 | if (!IS_ENABLED(CONFIG_CONTEXT_TRACKING_IDLE)) { |
| 530 | /* Tracking for vtime only, no concurrent RCU EQS accounting */ |
| 531 | raw_atomic_set(&ct->state, state); |
| 532 | } else { |
| 533 | /* |
| 534 | * Tracking for vtime and RCU EQS. Make sure we don't race |
| 535 | * with NMIs. OTOH we don't care about ordering here since |
| 536 | * RCU only requires CT_RCU_WATCHING increments to be fully |
| 537 | * ordered. |
| 538 | */ |
| 539 | raw_atomic_add(state, &ct->state); |
| 540 | } |
| 541 | } |
| 542 | } |
| 543 | context_tracking_recursion_exit(); |
| 544 | } |
| 545 | EXPORT_SYMBOL_GPL(__ct_user_enter); |
| 546 | |
| 547 | /* |
| 548 | * OBSOLETE: |
| 549 | * This function should be noinstr but the below local_irq_restore() is |
| 550 | * unsafe because it involves illegal RCU uses through tracing and lockdep. |
| 551 | * This is unlikely to be fixed as this function is obsolete. The preferred |
| 552 | * way is to call __context_tracking_enter() through user_enter_irqoff() |
| 553 | * or context_tracking_guest_enter(). It should be the arch entry code |
| 554 | * responsibility to call into context tracking with IRQs disabled. |
| 555 | */ |
| 556 | void ct_user_enter(enum ctx_state state) |
| 557 | { |
| 558 | unsigned long flags; |
| 559 | |
| 560 | /* |
| 561 | * Some contexts may involve an exception occuring in an irq, |
| 562 | * leading to that nesting: |
| 563 | * ct_irq_enter() rcu_eqs_exit(true) rcu_eqs_enter(true) ct_irq_exit() |
| 564 | * This would mess up the dyntick_nesting count though. And rcu_irq_*() |
| 565 | * helpers are enough to protect RCU uses inside the exception. So |
| 566 | * just return immediately if we detect we are in an IRQ. |
| 567 | */ |
| 568 | if (in_interrupt()) |
| 569 | return; |
| 570 | |
| 571 | local_irq_save(flags); |
| 572 | __ct_user_enter(state); |
| 573 | local_irq_restore(flags); |
| 574 | } |
| 575 | NOKPROBE_SYMBOL(ct_user_enter); |
| 576 | EXPORT_SYMBOL_GPL(ct_user_enter); |
| 577 | |
| 578 | /** |
| 579 | * user_enter_callable() - Unfortunate ASM callable version of user_enter() for |
| 580 | * archs that didn't manage to check the context tracking |
| 581 | * static key from low level code. |
| 582 | * |
| 583 | * This OBSOLETE function should be noinstr but it unsafely calls |
| 584 | * local_irq_restore(), involving illegal RCU uses through tracing and lockdep. |
| 585 | * This is unlikely to be fixed as this function is obsolete. The preferred |
| 586 | * way is to call user_enter_irqoff(). It should be the arch entry code |
| 587 | * responsibility to call into context tracking with IRQs disabled. |
| 588 | */ |
| 589 | void user_enter_callable(void) |
| 590 | { |
| 591 | user_enter(); |
| 592 | } |
| 593 | NOKPROBE_SYMBOL(user_enter_callable); |
| 594 | |
| 595 | /** |
| 596 | * __ct_user_exit - Inform the context tracking that the CPU is |
| 597 | * exiting user or guest mode and entering the kernel. |
| 598 | * |
| 599 | * @state: userspace context-tracking state being exited from. |
| 600 | * |
| 601 | * This function must be called after we entered the kernel from user or |
| 602 | * guest space before any use of RCU read side critical section. This |
| 603 | * potentially include any high level kernel code like syscalls, exceptions, |
| 604 | * signal handling, etc... |
| 605 | * |
| 606 | * This call supports re-entrancy. This way it can be called from any exception |
| 607 | * handler without needing to know if we came from userspace or not. |
| 608 | */ |
| 609 | void noinstr __ct_user_exit(enum ctx_state state) |
| 610 | { |
| 611 | struct context_tracking *ct = this_cpu_ptr(&context_tracking); |
| 612 | |
| 613 | if (!context_tracking_recursion_enter()) |
| 614 | return; |
| 615 | |
| 616 | if (__ct_state() == state) { |
| 617 | if (ct->active) { |
| 618 | /* |
| 619 | * Exit RCU idle mode while entering the kernel because it can |
| 620 | * run a RCU read side critical section anytime. |
| 621 | */ |
| 622 | ct_kernel_enter(true, CT_RCU_WATCHING - state); |
| 623 | if (state == CT_STATE_USER) { |
| 624 | instrumentation_begin(); |
| 625 | vtime_user_exit(current); |
| 626 | trace_user_exit(0); |
| 627 | instrumentation_end(); |
| 628 | } |
| 629 | |
| 630 | /* |
| 631 | * Special case if we only track user <-> kernel transitions for tickless |
| 632 | * cputime accounting but we don't support RCU extended quiescent state. |
| 633 | * In this we case we don't care about any concurrency/ordering. |
| 634 | */ |
| 635 | if (!IS_ENABLED(CONFIG_CONTEXT_TRACKING_IDLE)) |
| 636 | raw_atomic_set(&ct->state, CT_STATE_KERNEL); |
| 637 | |
| 638 | } else { |
| 639 | if (!IS_ENABLED(CONFIG_CONTEXT_TRACKING_IDLE)) { |
| 640 | /* Tracking for vtime only, no concurrent RCU EQS accounting */ |
| 641 | raw_atomic_set(&ct->state, CT_STATE_KERNEL); |
| 642 | } else { |
| 643 | /* |
| 644 | * Tracking for vtime and RCU EQS. Make sure we don't race |
| 645 | * with NMIs. OTOH we don't care about ordering here since |
| 646 | * RCU only requires CT_RCU_WATCHING increments to be fully |
| 647 | * ordered. |
| 648 | */ |
| 649 | raw_atomic_sub(state, &ct->state); |
| 650 | } |
| 651 | } |
| 652 | } |
| 653 | context_tracking_recursion_exit(); |
| 654 | } |
| 655 | EXPORT_SYMBOL_GPL(__ct_user_exit); |
| 656 | |
| 657 | /* |
| 658 | * OBSOLETE: |
| 659 | * This function should be noinstr but the below local_irq_save() is |
| 660 | * unsafe because it involves illegal RCU uses through tracing and lockdep. |
| 661 | * This is unlikely to be fixed as this function is obsolete. The preferred |
| 662 | * way is to call __context_tracking_exit() through user_exit_irqoff() |
| 663 | * or context_tracking_guest_exit(). It should be the arch entry code |
| 664 | * responsibility to call into context tracking with IRQs disabled. |
| 665 | */ |
| 666 | void ct_user_exit(enum ctx_state state) |
| 667 | { |
| 668 | unsigned long flags; |
| 669 | |
| 670 | if (in_interrupt()) |
| 671 | return; |
| 672 | |
| 673 | local_irq_save(flags); |
| 674 | __ct_user_exit(state); |
| 675 | local_irq_restore(flags); |
| 676 | } |
| 677 | NOKPROBE_SYMBOL(ct_user_exit); |
| 678 | EXPORT_SYMBOL_GPL(ct_user_exit); |
| 679 | |
| 680 | /** |
| 681 | * user_exit_callable() - Unfortunate ASM callable version of user_exit() for |
| 682 | * archs that didn't manage to check the context tracking |
| 683 | * static key from low level code. |
| 684 | * |
| 685 | * This OBSOLETE function should be noinstr but it unsafely calls local_irq_save(), |
| 686 | * involving illegal RCU uses through tracing and lockdep. This is unlikely |
| 687 | * to be fixed as this function is obsolete. The preferred way is to call |
| 688 | * user_exit_irqoff(). It should be the arch entry code responsibility to |
| 689 | * call into context tracking with IRQs disabled. |
| 690 | */ |
| 691 | void user_exit_callable(void) |
| 692 | { |
| 693 | user_exit(); |
| 694 | } |
| 695 | NOKPROBE_SYMBOL(user_exit_callable); |
| 696 | |
| 697 | void __init ct_cpu_track_user(int cpu) |
| 698 | { |
| 699 | static __initdata bool initialized = false; |
| 700 | |
| 701 | if (!per_cpu(context_tracking.active, cpu)) { |
| 702 | per_cpu(context_tracking.active, cpu) = true; |
| 703 | static_branch_inc(&context_tracking_key); |
| 704 | } |
| 705 | |
| 706 | if (initialized) |
| 707 | return; |
| 708 | |
| 709 | #ifdef CONFIG_HAVE_TIF_NOHZ |
| 710 | /* |
| 711 | * Set TIF_NOHZ to init/0 and let it propagate to all tasks through fork |
| 712 | * This assumes that init is the only task at this early boot stage. |
| 713 | */ |
| 714 | set_tsk_thread_flag(&init_task, TIF_NOHZ); |
| 715 | #endif |
| 716 | WARN_ON_ONCE(!tasklist_empty()); |
| 717 | |
| 718 | initialized = true; |
| 719 | } |
| 720 | |
| 721 | #ifdef CONFIG_CONTEXT_TRACKING_USER_FORCE |
| 722 | void __init context_tracking_init(void) |
| 723 | { |
| 724 | int cpu; |
| 725 | |
| 726 | for_each_possible_cpu(cpu) |
| 727 | ct_cpu_track_user(cpu); |
| 728 | } |
| 729 | #endif |
| 730 | |
| 731 | #endif /* #ifdef CONFIG_CONTEXT_TRACKING_USER */ |
| 732 | |