| 1 | /* CPU control. |
| 2 | * (C) 2001, 2002, 2003, 2004 Rusty Russell |
| 3 | * |
| 4 | * This code is licenced under the GPL. |
| 5 | */ |
| 6 | #include <linux/sched/mm.h> |
| 7 | #include <linux/proc_fs.h> |
| 8 | #include <linux/smp.h> |
| 9 | #include <linux/init.h> |
| 10 | #include <linux/notifier.h> |
| 11 | #include <linux/sched/signal.h> |
| 12 | #include <linux/sched/hotplug.h> |
| 13 | #include <linux/sched/isolation.h> |
| 14 | #include <linux/sched/task.h> |
| 15 | #include <linux/sched/smt.h> |
| 16 | #include <linux/unistd.h> |
| 17 | #include <linux/cpu.h> |
| 18 | #include <linux/oom.h> |
| 19 | #include <linux/rcupdate.h> |
| 20 | #include <linux/delay.h> |
| 21 | #include <linux/export.h> |
| 22 | #include <linux/bug.h> |
| 23 | #include <linux/kthread.h> |
| 24 | #include <linux/stop_machine.h> |
| 25 | #include <linux/mutex.h> |
| 26 | #include <linux/gfp.h> |
| 27 | #include <linux/suspend.h> |
| 28 | #include <linux/lockdep.h> |
| 29 | #include <linux/tick.h> |
| 30 | #include <linux/irq.h> |
| 31 | #include <linux/nmi.h> |
| 32 | #include <linux/smpboot.h> |
| 33 | #include <linux/relay.h> |
| 34 | #include <linux/slab.h> |
| 35 | #include <linux/scs.h> |
| 36 | #include <linux/percpu-rwsem.h> |
| 37 | #include <linux/cpuset.h> |
| 38 | #include <linux/random.h> |
| 39 | #include <linux/cc_platform.h> |
| 40 | #include <linux/parser.h> |
| 41 | |
| 42 | #include <trace/events/power.h> |
| 43 | #define CREATE_TRACE_POINTS |
| 44 | #include <trace/events/cpuhp.h> |
| 45 | |
| 46 | #include "smpboot.h" |
| 47 | |
| 48 | /** |
| 49 | * struct cpuhp_cpu_state - Per cpu hotplug state storage |
| 50 | * @state: The current cpu state |
| 51 | * @target: The target state |
| 52 | * @fail: Current CPU hotplug callback state |
| 53 | * @thread: Pointer to the hotplug thread |
| 54 | * @should_run: Thread should execute |
| 55 | * @rollback: Perform a rollback |
| 56 | * @single: Single callback invocation |
| 57 | * @bringup: Single callback bringup or teardown selector |
| 58 | * @node: Remote CPU node; for multi-instance, do a |
| 59 | * single entry callback for install/remove |
| 60 | * @last: For multi-instance rollback, remember how far we got |
| 61 | * @cb_state: The state for a single callback (install/uninstall) |
| 62 | * @result: Result of the operation |
| 63 | * @ap_sync_state: State for AP synchronization |
| 64 | * @done_up: Signal completion to the issuer of the task for cpu-up |
| 65 | * @done_down: Signal completion to the issuer of the task for cpu-down |
| 66 | */ |
| 67 | struct cpuhp_cpu_state { |
| 68 | enum cpuhp_state state; |
| 69 | enum cpuhp_state target; |
| 70 | enum cpuhp_state fail; |
| 71 | #ifdef CONFIG_SMP |
| 72 | struct task_struct *thread; |
| 73 | bool should_run; |
| 74 | bool rollback; |
| 75 | bool single; |
| 76 | bool bringup; |
| 77 | struct hlist_node *node; |
| 78 | struct hlist_node *last; |
| 79 | enum cpuhp_state cb_state; |
| 80 | int result; |
| 81 | atomic_t ap_sync_state; |
| 82 | struct completion done_up; |
| 83 | struct completion done_down; |
| 84 | #endif |
| 85 | }; |
| 86 | |
| 87 | static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = { |
| 88 | .fail = CPUHP_INVALID, |
| 89 | }; |
| 90 | |
| 91 | #ifdef CONFIG_SMP |
| 92 | cpumask_t cpus_booted_once_mask; |
| 93 | #endif |
| 94 | |
| 95 | #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP) |
| 96 | static struct lockdep_map cpuhp_state_up_map = |
| 97 | STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up" , &cpuhp_state_up_map); |
| 98 | static struct lockdep_map cpuhp_state_down_map = |
| 99 | STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down" , &cpuhp_state_down_map); |
| 100 | |
| 101 | |
| 102 | static inline void cpuhp_lock_acquire(bool bringup) |
| 103 | { |
| 104 | lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map); |
| 105 | } |
| 106 | |
| 107 | static inline void cpuhp_lock_release(bool bringup) |
| 108 | { |
| 109 | lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map); |
| 110 | } |
| 111 | #else |
| 112 | |
| 113 | static inline void cpuhp_lock_acquire(bool bringup) { } |
| 114 | static inline void cpuhp_lock_release(bool bringup) { } |
| 115 | |
| 116 | #endif |
| 117 | |
| 118 | /** |
| 119 | * struct cpuhp_step - Hotplug state machine step |
| 120 | * @name: Name of the step |
| 121 | * @startup: Startup function of the step |
| 122 | * @teardown: Teardown function of the step |
| 123 | * @cant_stop: Bringup/teardown can't be stopped at this step |
| 124 | * @multi_instance: State has multiple instances which get added afterwards |
| 125 | */ |
| 126 | struct cpuhp_step { |
| 127 | const char *name; |
| 128 | union { |
| 129 | int (*single)(unsigned int cpu); |
| 130 | int (*multi)(unsigned int cpu, |
| 131 | struct hlist_node *node); |
| 132 | } startup; |
| 133 | union { |
| 134 | int (*single)(unsigned int cpu); |
| 135 | int (*multi)(unsigned int cpu, |
| 136 | struct hlist_node *node); |
| 137 | } teardown; |
| 138 | /* private: */ |
| 139 | struct hlist_head list; |
| 140 | /* public: */ |
| 141 | bool cant_stop; |
| 142 | bool multi_instance; |
| 143 | }; |
| 144 | |
| 145 | static DEFINE_MUTEX(cpuhp_state_mutex); |
| 146 | static struct cpuhp_step cpuhp_hp_states[]; |
| 147 | |
| 148 | static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state) |
| 149 | { |
| 150 | return cpuhp_hp_states + state; |
| 151 | } |
| 152 | |
| 153 | static bool cpuhp_step_empty(bool bringup, struct cpuhp_step *step) |
| 154 | { |
| 155 | return bringup ? !step->startup.single : !step->teardown.single; |
| 156 | } |
| 157 | |
| 158 | /** |
| 159 | * cpuhp_invoke_callback - Invoke the callbacks for a given state |
| 160 | * @cpu: The cpu for which the callback should be invoked |
| 161 | * @state: The state to do callbacks for |
| 162 | * @bringup: True if the bringup callback should be invoked |
| 163 | * @node: For multi-instance, do a single entry callback for install/remove |
| 164 | * @lastp: For multi-instance rollback, remember how far we got |
| 165 | * |
| 166 | * Called from cpu hotplug and from the state register machinery. |
| 167 | * |
| 168 | * Return: %0 on success or a negative errno code |
| 169 | */ |
| 170 | static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state, |
| 171 | bool bringup, struct hlist_node *node, |
| 172 | struct hlist_node **lastp) |
| 173 | { |
| 174 | struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); |
| 175 | struct cpuhp_step *step = cpuhp_get_step(state); |
| 176 | int (*cbm)(unsigned int cpu, struct hlist_node *node); |
| 177 | int (*cb)(unsigned int cpu); |
| 178 | int ret, cnt; |
| 179 | |
| 180 | if (st->fail == state) { |
| 181 | st->fail = CPUHP_INVALID; |
| 182 | return -EAGAIN; |
| 183 | } |
| 184 | |
| 185 | if (cpuhp_step_empty(bringup, step)) { |
| 186 | WARN_ON_ONCE(1); |
| 187 | return 0; |
| 188 | } |
| 189 | |
| 190 | if (!step->multi_instance) { |
| 191 | WARN_ON_ONCE(lastp && *lastp); |
| 192 | cb = bringup ? step->startup.single : step->teardown.single; |
| 193 | |
| 194 | trace_cpuhp_enter(cpu, target: st->target, idx: state, fun: cb); |
| 195 | ret = cb(cpu); |
| 196 | trace_cpuhp_exit(cpu, state: st->state, idx: state, ret); |
| 197 | return ret; |
| 198 | } |
| 199 | cbm = bringup ? step->startup.multi : step->teardown.multi; |
| 200 | |
| 201 | /* Single invocation for instance add/remove */ |
| 202 | if (node) { |
| 203 | WARN_ON_ONCE(lastp && *lastp); |
| 204 | trace_cpuhp_multi_enter(cpu, target: st->target, idx: state, fun: cbm, node); |
| 205 | ret = cbm(cpu, node); |
| 206 | trace_cpuhp_exit(cpu, state: st->state, idx: state, ret); |
| 207 | return ret; |
| 208 | } |
| 209 | |
| 210 | /* State transition. Invoke on all instances */ |
| 211 | cnt = 0; |
| 212 | hlist_for_each(node, &step->list) { |
| 213 | if (lastp && node == *lastp) |
| 214 | break; |
| 215 | |
| 216 | trace_cpuhp_multi_enter(cpu, target: st->target, idx: state, fun: cbm, node); |
| 217 | ret = cbm(cpu, node); |
| 218 | trace_cpuhp_exit(cpu, state: st->state, idx: state, ret); |
| 219 | if (ret) { |
| 220 | if (!lastp) |
| 221 | goto err; |
| 222 | |
| 223 | *lastp = node; |
| 224 | return ret; |
| 225 | } |
| 226 | cnt++; |
| 227 | } |
| 228 | if (lastp) |
| 229 | *lastp = NULL; |
| 230 | return 0; |
| 231 | err: |
| 232 | /* Rollback the instances if one failed */ |
| 233 | cbm = !bringup ? step->startup.multi : step->teardown.multi; |
| 234 | if (!cbm) |
| 235 | return ret; |
| 236 | |
| 237 | hlist_for_each(node, &step->list) { |
| 238 | if (!cnt--) |
| 239 | break; |
| 240 | |
| 241 | trace_cpuhp_multi_enter(cpu, target: st->target, idx: state, fun: cbm, node); |
| 242 | ret = cbm(cpu, node); |
| 243 | trace_cpuhp_exit(cpu, state: st->state, idx: state, ret); |
| 244 | /* |
| 245 | * Rollback must not fail, |
| 246 | */ |
| 247 | WARN_ON_ONCE(ret); |
| 248 | } |
| 249 | return ret; |
| 250 | } |
| 251 | |
| 252 | #ifdef CONFIG_SMP |
| 253 | static bool cpuhp_is_ap_state(enum cpuhp_state state) |
| 254 | { |
| 255 | /* |
| 256 | * The extra check for CPUHP_TEARDOWN_CPU is only for documentation |
| 257 | * purposes as that state is handled explicitly in cpu_down. |
| 258 | */ |
| 259 | return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU; |
| 260 | } |
| 261 | |
| 262 | static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup) |
| 263 | { |
| 264 | struct completion *done = bringup ? &st->done_up : &st->done_down; |
| 265 | wait_for_completion(done); |
| 266 | } |
| 267 | |
| 268 | static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup) |
| 269 | { |
| 270 | struct completion *done = bringup ? &st->done_up : &st->done_down; |
| 271 | complete(done); |
| 272 | } |
| 273 | |
| 274 | /* |
| 275 | * The former STARTING/DYING states, ran with IRQs disabled and must not fail. |
| 276 | */ |
| 277 | static bool cpuhp_is_atomic_state(enum cpuhp_state state) |
| 278 | { |
| 279 | return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE; |
| 280 | } |
| 281 | |
| 282 | /* Synchronization state management */ |
| 283 | enum cpuhp_sync_state { |
| 284 | SYNC_STATE_DEAD, |
| 285 | SYNC_STATE_KICKED, |
| 286 | SYNC_STATE_SHOULD_DIE, |
| 287 | SYNC_STATE_ALIVE, |
| 288 | SYNC_STATE_SHOULD_ONLINE, |
| 289 | SYNC_STATE_ONLINE, |
| 290 | }; |
| 291 | |
| 292 | #ifdef CONFIG_HOTPLUG_CORE_SYNC |
| 293 | /** |
| 294 | * cpuhp_ap_update_sync_state - Update synchronization state during bringup/teardown |
| 295 | * @state: The synchronization state to set |
| 296 | * |
| 297 | * No synchronization point. Just update of the synchronization state, but implies |
| 298 | * a full barrier so that the AP changes are visible before the control CPU proceeds. |
| 299 | */ |
| 300 | static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state) |
| 301 | { |
| 302 | atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state); |
| 303 | |
| 304 | (void)atomic_xchg(v: st, new: state); |
| 305 | } |
| 306 | |
| 307 | void __weak arch_cpuhp_sync_state_poll(void) { cpu_relax(); } |
| 308 | |
| 309 | static bool cpuhp_wait_for_sync_state(unsigned int cpu, enum cpuhp_sync_state state, |
| 310 | enum cpuhp_sync_state next_state) |
| 311 | { |
| 312 | atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu); |
| 313 | ktime_t now, end, start = ktime_get(); |
| 314 | int sync; |
| 315 | |
| 316 | end = start + 10ULL * NSEC_PER_SEC; |
| 317 | |
| 318 | sync = atomic_read(v: st); |
| 319 | while (1) { |
| 320 | if (sync == state) { |
| 321 | if (!atomic_try_cmpxchg(v: st, old: &sync, new: next_state)) |
| 322 | continue; |
| 323 | return true; |
| 324 | } |
| 325 | |
| 326 | now = ktime_get(); |
| 327 | if (now > end) { |
| 328 | /* Timeout. Leave the state unchanged */ |
| 329 | return false; |
| 330 | } else if (now - start < NSEC_PER_MSEC) { |
| 331 | /* Poll for one millisecond */ |
| 332 | arch_cpuhp_sync_state_poll(); |
| 333 | } else { |
| 334 | usleep_range(USEC_PER_MSEC, max: 2 * USEC_PER_MSEC); |
| 335 | } |
| 336 | sync = atomic_read(v: st); |
| 337 | } |
| 338 | return true; |
| 339 | } |
| 340 | #else /* CONFIG_HOTPLUG_CORE_SYNC */ |
| 341 | static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state) { } |
| 342 | #endif /* !CONFIG_HOTPLUG_CORE_SYNC */ |
| 343 | |
| 344 | #ifdef CONFIG_HOTPLUG_CORE_SYNC_DEAD |
| 345 | /** |
| 346 | * cpuhp_ap_report_dead - Update synchronization state to DEAD |
| 347 | * |
| 348 | * No synchronization point. Just update of the synchronization state. |
| 349 | */ |
| 350 | void cpuhp_ap_report_dead(void) |
| 351 | { |
| 352 | cpuhp_ap_update_sync_state(state: SYNC_STATE_DEAD); |
| 353 | } |
| 354 | |
| 355 | void __weak arch_cpuhp_cleanup_dead_cpu(unsigned int cpu) { } |
| 356 | |
| 357 | /* |
| 358 | * Late CPU shutdown synchronization point. Cannot use cpuhp_state::done_down |
| 359 | * because the AP cannot issue complete() at this stage. |
| 360 | */ |
| 361 | static void cpuhp_bp_sync_dead(unsigned int cpu) |
| 362 | { |
| 363 | atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu); |
| 364 | int sync = atomic_read(v: st); |
| 365 | |
| 366 | do { |
| 367 | /* CPU can have reported dead already. Don't overwrite that! */ |
| 368 | if (sync == SYNC_STATE_DEAD) |
| 369 | break; |
| 370 | } while (!atomic_try_cmpxchg(v: st, old: &sync, new: SYNC_STATE_SHOULD_DIE)); |
| 371 | |
| 372 | if (cpuhp_wait_for_sync_state(cpu, state: SYNC_STATE_DEAD, next_state: SYNC_STATE_DEAD)) { |
| 373 | /* CPU reached dead state. Invoke the cleanup function */ |
| 374 | arch_cpuhp_cleanup_dead_cpu(cpu); |
| 375 | return; |
| 376 | } |
| 377 | |
| 378 | /* No further action possible. Emit message and give up. */ |
| 379 | pr_err("CPU%u failed to report dead state\n" , cpu); |
| 380 | } |
| 381 | #else /* CONFIG_HOTPLUG_CORE_SYNC_DEAD */ |
| 382 | static inline void cpuhp_bp_sync_dead(unsigned int cpu) { } |
| 383 | #endif /* !CONFIG_HOTPLUG_CORE_SYNC_DEAD */ |
| 384 | |
| 385 | #ifdef CONFIG_HOTPLUG_CORE_SYNC_FULL |
| 386 | /** |
| 387 | * cpuhp_ap_sync_alive - Synchronize AP with the control CPU once it is alive |
| 388 | * |
| 389 | * Updates the AP synchronization state to SYNC_STATE_ALIVE and waits |
| 390 | * for the BP to release it. |
| 391 | */ |
| 392 | void cpuhp_ap_sync_alive(void) |
| 393 | { |
| 394 | atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state); |
| 395 | |
| 396 | cpuhp_ap_update_sync_state(state: SYNC_STATE_ALIVE); |
| 397 | |
| 398 | /* Wait for the control CPU to release it. */ |
| 399 | while (atomic_read(v: st) != SYNC_STATE_SHOULD_ONLINE) |
| 400 | cpu_relax(); |
| 401 | } |
| 402 | |
| 403 | static bool cpuhp_can_boot_ap(unsigned int cpu) |
| 404 | { |
| 405 | atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu); |
| 406 | int sync = atomic_read(v: st); |
| 407 | |
| 408 | again: |
| 409 | switch (sync) { |
| 410 | case SYNC_STATE_DEAD: |
| 411 | /* CPU is properly dead */ |
| 412 | break; |
| 413 | case SYNC_STATE_KICKED: |
| 414 | /* CPU did not come up in previous attempt */ |
| 415 | break; |
| 416 | case SYNC_STATE_ALIVE: |
| 417 | /* CPU is stuck cpuhp_ap_sync_alive(). */ |
| 418 | break; |
| 419 | default: |
| 420 | /* CPU failed to report online or dead and is in limbo state. */ |
| 421 | return false; |
| 422 | } |
| 423 | |
| 424 | /* Prepare for booting */ |
| 425 | if (!atomic_try_cmpxchg(v: st, old: &sync, new: SYNC_STATE_KICKED)) |
| 426 | goto again; |
| 427 | |
| 428 | return true; |
| 429 | } |
| 430 | |
| 431 | void __weak arch_cpuhp_cleanup_kick_cpu(unsigned int cpu) { } |
| 432 | |
| 433 | /* |
| 434 | * Early CPU bringup synchronization point. Cannot use cpuhp_state::done_up |
| 435 | * because the AP cannot issue complete() so early in the bringup. |
| 436 | */ |
| 437 | static int cpuhp_bp_sync_alive(unsigned int cpu) |
| 438 | { |
| 439 | int ret = 0; |
| 440 | |
| 441 | if (!IS_ENABLED(CONFIG_HOTPLUG_CORE_SYNC_FULL)) |
| 442 | return 0; |
| 443 | |
| 444 | if (!cpuhp_wait_for_sync_state(cpu, state: SYNC_STATE_ALIVE, next_state: SYNC_STATE_SHOULD_ONLINE)) { |
| 445 | pr_err("CPU%u failed to report alive state\n" , cpu); |
| 446 | ret = -EIO; |
| 447 | } |
| 448 | |
| 449 | /* Let the architecture cleanup the kick alive mechanics. */ |
| 450 | arch_cpuhp_cleanup_kick_cpu(cpu); |
| 451 | return ret; |
| 452 | } |
| 453 | #else /* CONFIG_HOTPLUG_CORE_SYNC_FULL */ |
| 454 | static inline int cpuhp_bp_sync_alive(unsigned int cpu) { return 0; } |
| 455 | static inline bool cpuhp_can_boot_ap(unsigned int cpu) { return true; } |
| 456 | #endif /* !CONFIG_HOTPLUG_CORE_SYNC_FULL */ |
| 457 | |
| 458 | /* Serializes the updates to cpu_online_mask, cpu_present_mask */ |
| 459 | static DEFINE_MUTEX(cpu_add_remove_lock); |
| 460 | bool cpuhp_tasks_frozen; |
| 461 | EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen); |
| 462 | |
| 463 | /* |
| 464 | * The following two APIs (cpu_maps_update_begin/done) must be used when |
| 465 | * attempting to serialize the updates to cpu_online_mask & cpu_present_mask. |
| 466 | */ |
| 467 | void cpu_maps_update_begin(void) |
| 468 | { |
| 469 | mutex_lock(lock: &cpu_add_remove_lock); |
| 470 | } |
| 471 | |
| 472 | void cpu_maps_update_done(void) |
| 473 | { |
| 474 | mutex_unlock(lock: &cpu_add_remove_lock); |
| 475 | } |
| 476 | |
| 477 | /* |
| 478 | * If set, cpu_up and cpu_down will return -EBUSY and do nothing. |
| 479 | * Should always be manipulated under cpu_add_remove_lock |
| 480 | */ |
| 481 | static int cpu_hotplug_disabled; |
| 482 | |
| 483 | #ifdef CONFIG_HOTPLUG_CPU |
| 484 | |
| 485 | DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock); |
| 486 | |
| 487 | static bool cpu_hotplug_offline_disabled __ro_after_init; |
| 488 | |
| 489 | void cpus_read_lock(void) |
| 490 | { |
| 491 | percpu_down_read(sem: &cpu_hotplug_lock); |
| 492 | } |
| 493 | EXPORT_SYMBOL_GPL(cpus_read_lock); |
| 494 | |
| 495 | int cpus_read_trylock(void) |
| 496 | { |
| 497 | return percpu_down_read_trylock(sem: &cpu_hotplug_lock); |
| 498 | } |
| 499 | EXPORT_SYMBOL_GPL(cpus_read_trylock); |
| 500 | |
| 501 | void cpus_read_unlock(void) |
| 502 | { |
| 503 | percpu_up_read(sem: &cpu_hotplug_lock); |
| 504 | } |
| 505 | EXPORT_SYMBOL_GPL(cpus_read_unlock); |
| 506 | |
| 507 | void cpus_write_lock(void) |
| 508 | { |
| 509 | percpu_down_write(&cpu_hotplug_lock); |
| 510 | } |
| 511 | |
| 512 | void cpus_write_unlock(void) |
| 513 | { |
| 514 | percpu_up_write(&cpu_hotplug_lock); |
| 515 | } |
| 516 | |
| 517 | void lockdep_assert_cpus_held(void) |
| 518 | { |
| 519 | /* |
| 520 | * We can't have hotplug operations before userspace starts running, |
| 521 | * and some init codepaths will knowingly not take the hotplug lock. |
| 522 | * This is all valid, so mute lockdep until it makes sense to report |
| 523 | * unheld locks. |
| 524 | */ |
| 525 | if (system_state < SYSTEM_RUNNING) |
| 526 | return; |
| 527 | |
| 528 | percpu_rwsem_assert_held(&cpu_hotplug_lock); |
| 529 | } |
| 530 | EXPORT_SYMBOL_GPL(lockdep_assert_cpus_held); |
| 531 | |
| 532 | #ifdef CONFIG_LOCKDEP |
| 533 | int lockdep_is_cpus_held(void) |
| 534 | { |
| 535 | return percpu_rwsem_is_held(&cpu_hotplug_lock); |
| 536 | } |
| 537 | #endif |
| 538 | |
| 539 | static void lockdep_acquire_cpus_lock(void) |
| 540 | { |
| 541 | rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_); |
| 542 | } |
| 543 | |
| 544 | static void lockdep_release_cpus_lock(void) |
| 545 | { |
| 546 | rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_); |
| 547 | } |
| 548 | |
| 549 | /* Declare CPU offlining not supported */ |
| 550 | void cpu_hotplug_disable_offlining(void) |
| 551 | { |
| 552 | cpu_maps_update_begin(); |
| 553 | cpu_hotplug_offline_disabled = true; |
| 554 | cpu_maps_update_done(); |
| 555 | } |
| 556 | |
| 557 | /* |
| 558 | * Wait for currently running CPU hotplug operations to complete (if any) and |
| 559 | * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects |
| 560 | * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the |
| 561 | * hotplug path before performing hotplug operations. So acquiring that lock |
| 562 | * guarantees mutual exclusion from any currently running hotplug operations. |
| 563 | */ |
| 564 | void cpu_hotplug_disable(void) |
| 565 | { |
| 566 | cpu_maps_update_begin(); |
| 567 | cpu_hotplug_disabled++; |
| 568 | cpu_maps_update_done(); |
| 569 | } |
| 570 | EXPORT_SYMBOL_GPL(cpu_hotplug_disable); |
| 571 | |
| 572 | static void __cpu_hotplug_enable(void) |
| 573 | { |
| 574 | if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n" )) |
| 575 | return; |
| 576 | cpu_hotplug_disabled--; |
| 577 | } |
| 578 | |
| 579 | void cpu_hotplug_enable(void) |
| 580 | { |
| 581 | cpu_maps_update_begin(); |
| 582 | __cpu_hotplug_enable(); |
| 583 | cpu_maps_update_done(); |
| 584 | } |
| 585 | EXPORT_SYMBOL_GPL(cpu_hotplug_enable); |
| 586 | |
| 587 | #else |
| 588 | |
| 589 | static void lockdep_acquire_cpus_lock(void) |
| 590 | { |
| 591 | } |
| 592 | |
| 593 | static void lockdep_release_cpus_lock(void) |
| 594 | { |
| 595 | } |
| 596 | |
| 597 | #endif /* CONFIG_HOTPLUG_CPU */ |
| 598 | |
| 599 | /* |
| 600 | * Architectures that need SMT-specific errata handling during SMT hotplug |
| 601 | * should override this. |
| 602 | */ |
| 603 | void __weak arch_smt_update(void) { } |
| 604 | |
| 605 | #ifdef CONFIG_HOTPLUG_SMT |
| 606 | |
| 607 | enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED; |
| 608 | static unsigned int cpu_smt_max_threads __ro_after_init; |
| 609 | unsigned int cpu_smt_num_threads __read_mostly = UINT_MAX; |
| 610 | |
| 611 | void __init cpu_smt_disable(bool force) |
| 612 | { |
| 613 | if (!cpu_smt_possible()) |
| 614 | return; |
| 615 | |
| 616 | if (force) { |
| 617 | pr_info("SMT: Force disabled\n" ); |
| 618 | cpu_smt_control = CPU_SMT_FORCE_DISABLED; |
| 619 | } else { |
| 620 | pr_info("SMT: disabled\n" ); |
| 621 | cpu_smt_control = CPU_SMT_DISABLED; |
| 622 | } |
| 623 | cpu_smt_num_threads = 1; |
| 624 | } |
| 625 | |
| 626 | /* |
| 627 | * The decision whether SMT is supported can only be done after the full |
| 628 | * CPU identification. Called from architecture code. |
| 629 | */ |
| 630 | void __init cpu_smt_set_num_threads(unsigned int num_threads, |
| 631 | unsigned int max_threads) |
| 632 | { |
| 633 | WARN_ON(!num_threads || (num_threads > max_threads)); |
| 634 | |
| 635 | if (max_threads == 1) |
| 636 | cpu_smt_control = CPU_SMT_NOT_SUPPORTED; |
| 637 | |
| 638 | cpu_smt_max_threads = max_threads; |
| 639 | |
| 640 | /* |
| 641 | * If SMT has been disabled via the kernel command line or SMT is |
| 642 | * not supported, set cpu_smt_num_threads to 1 for consistency. |
| 643 | * If enabled, take the architecture requested number of threads |
| 644 | * to bring up into account. |
| 645 | */ |
| 646 | if (cpu_smt_control != CPU_SMT_ENABLED) |
| 647 | cpu_smt_num_threads = 1; |
| 648 | else if (num_threads < cpu_smt_num_threads) |
| 649 | cpu_smt_num_threads = num_threads; |
| 650 | } |
| 651 | |
| 652 | static int __init smt_cmdline_disable(char *str) |
| 653 | { |
| 654 | cpu_smt_disable(force: str && !strcmp(str, "force" )); |
| 655 | return 0; |
| 656 | } |
| 657 | early_param("nosmt" , smt_cmdline_disable); |
| 658 | |
| 659 | /* |
| 660 | * For Archicture supporting partial SMT states check if the thread is allowed. |
| 661 | * Otherwise this has already been checked through cpu_smt_max_threads when |
| 662 | * setting the SMT level. |
| 663 | */ |
| 664 | static inline bool cpu_smt_thread_allowed(unsigned int cpu) |
| 665 | { |
| 666 | #ifdef CONFIG_SMT_NUM_THREADS_DYNAMIC |
| 667 | return topology_smt_thread_allowed(cpu); |
| 668 | #else |
| 669 | return true; |
| 670 | #endif |
| 671 | } |
| 672 | |
| 673 | static inline bool cpu_bootable(unsigned int cpu) |
| 674 | { |
| 675 | if (cpu_smt_control == CPU_SMT_ENABLED && cpu_smt_thread_allowed(cpu)) |
| 676 | return true; |
| 677 | |
| 678 | /* All CPUs are bootable if controls are not configured */ |
| 679 | if (cpu_smt_control == CPU_SMT_NOT_IMPLEMENTED) |
| 680 | return true; |
| 681 | |
| 682 | /* All CPUs are bootable if CPU is not SMT capable */ |
| 683 | if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED) |
| 684 | return true; |
| 685 | |
| 686 | if (topology_is_primary_thread(cpu)) |
| 687 | return true; |
| 688 | |
| 689 | /* |
| 690 | * On x86 it's required to boot all logical CPUs at least once so |
| 691 | * that the init code can get a chance to set CR4.MCE on each |
| 692 | * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any |
| 693 | * core will shutdown the machine. |
| 694 | */ |
| 695 | return !cpumask_test_cpu(cpu, cpumask: &cpus_booted_once_mask); |
| 696 | } |
| 697 | |
| 698 | /* Returns true if SMT is supported and not forcefully (irreversibly) disabled */ |
| 699 | bool cpu_smt_possible(void) |
| 700 | { |
| 701 | return cpu_smt_control != CPU_SMT_FORCE_DISABLED && |
| 702 | cpu_smt_control != CPU_SMT_NOT_SUPPORTED; |
| 703 | } |
| 704 | EXPORT_SYMBOL_GPL(cpu_smt_possible); |
| 705 | |
| 706 | #else |
| 707 | static inline bool cpu_bootable(unsigned int cpu) { return true; } |
| 708 | #endif |
| 709 | |
| 710 | static inline enum cpuhp_state |
| 711 | cpuhp_set_state(int cpu, struct cpuhp_cpu_state *st, enum cpuhp_state target) |
| 712 | { |
| 713 | enum cpuhp_state prev_state = st->state; |
| 714 | bool bringup = st->state < target; |
| 715 | |
| 716 | st->rollback = false; |
| 717 | st->last = NULL; |
| 718 | |
| 719 | st->target = target; |
| 720 | st->single = false; |
| 721 | st->bringup = bringup; |
| 722 | if (cpu_dying(cpu) != !bringup) |
| 723 | set_cpu_dying(cpu, !bringup); |
| 724 | |
| 725 | return prev_state; |
| 726 | } |
| 727 | |
| 728 | static inline void |
| 729 | cpuhp_reset_state(int cpu, struct cpuhp_cpu_state *st, |
| 730 | enum cpuhp_state prev_state) |
| 731 | { |
| 732 | bool bringup = !st->bringup; |
| 733 | |
| 734 | st->target = prev_state; |
| 735 | |
| 736 | /* |
| 737 | * Already rolling back. No need invert the bringup value or to change |
| 738 | * the current state. |
| 739 | */ |
| 740 | if (st->rollback) |
| 741 | return; |
| 742 | |
| 743 | st->rollback = true; |
| 744 | |
| 745 | /* |
| 746 | * If we have st->last we need to undo partial multi_instance of this |
| 747 | * state first. Otherwise start undo at the previous state. |
| 748 | */ |
| 749 | if (!st->last) { |
| 750 | if (st->bringup) |
| 751 | st->state--; |
| 752 | else |
| 753 | st->state++; |
| 754 | } |
| 755 | |
| 756 | st->bringup = bringup; |
| 757 | if (cpu_dying(cpu) != !bringup) |
| 758 | set_cpu_dying(cpu, !bringup); |
| 759 | } |
| 760 | |
| 761 | /* Regular hotplug invocation of the AP hotplug thread */ |
| 762 | static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st) |
| 763 | { |
| 764 | if (!st->single && st->state == st->target) |
| 765 | return; |
| 766 | |
| 767 | st->result = 0; |
| 768 | /* |
| 769 | * Make sure the above stores are visible before should_run becomes |
| 770 | * true. Paired with the mb() above in cpuhp_thread_fun() |
| 771 | */ |
| 772 | smp_mb(); |
| 773 | st->should_run = true; |
| 774 | wake_up_process(tsk: st->thread); |
| 775 | wait_for_ap_thread(st, bringup: st->bringup); |
| 776 | } |
| 777 | |
| 778 | static int cpuhp_kick_ap(int cpu, struct cpuhp_cpu_state *st, |
| 779 | enum cpuhp_state target) |
| 780 | { |
| 781 | enum cpuhp_state prev_state; |
| 782 | int ret; |
| 783 | |
| 784 | prev_state = cpuhp_set_state(cpu, st, target); |
| 785 | __cpuhp_kick_ap(st); |
| 786 | if ((ret = st->result)) { |
| 787 | cpuhp_reset_state(cpu, st, prev_state); |
| 788 | __cpuhp_kick_ap(st); |
| 789 | } |
| 790 | |
| 791 | return ret; |
| 792 | } |
| 793 | |
| 794 | static int bringup_wait_for_ap_online(unsigned int cpu) |
| 795 | { |
| 796 | struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); |
| 797 | |
| 798 | /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */ |
| 799 | wait_for_ap_thread(st, bringup: true); |
| 800 | if (WARN_ON_ONCE((!cpu_online(cpu)))) |
| 801 | return -ECANCELED; |
| 802 | |
| 803 | /* Unpark the hotplug thread of the target cpu */ |
| 804 | kthread_unpark(k: st->thread); |
| 805 | |
| 806 | /* |
| 807 | * SMT soft disabling on X86 requires to bring the CPU out of the |
| 808 | * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit. The |
| 809 | * CPU marked itself as booted_once in notify_cpu_starting() so the |
| 810 | * cpu_bootable() check will now return false if this is not the |
| 811 | * primary sibling. |
| 812 | */ |
| 813 | if (!cpu_bootable(cpu)) |
| 814 | return -ECANCELED; |
| 815 | return 0; |
| 816 | } |
| 817 | |
| 818 | #ifdef CONFIG_HOTPLUG_SPLIT_STARTUP |
| 819 | static int cpuhp_kick_ap_alive(unsigned int cpu) |
| 820 | { |
| 821 | if (!cpuhp_can_boot_ap(cpu)) |
| 822 | return -EAGAIN; |
| 823 | |
| 824 | return arch_cpuhp_kick_ap_alive(cpu, tidle: idle_thread_get(cpu)); |
| 825 | } |
| 826 | |
| 827 | static int cpuhp_bringup_ap(unsigned int cpu) |
| 828 | { |
| 829 | struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); |
| 830 | int ret; |
| 831 | |
| 832 | /* |
| 833 | * Some architectures have to walk the irq descriptors to |
| 834 | * setup the vector space for the cpu which comes online. |
| 835 | * Prevent irq alloc/free across the bringup. |
| 836 | */ |
| 837 | irq_lock_sparse(); |
| 838 | |
| 839 | ret = cpuhp_bp_sync_alive(cpu); |
| 840 | if (ret) |
| 841 | goto out_unlock; |
| 842 | |
| 843 | ret = bringup_wait_for_ap_online(cpu); |
| 844 | if (ret) |
| 845 | goto out_unlock; |
| 846 | |
| 847 | irq_unlock_sparse(); |
| 848 | |
| 849 | if (st->target <= CPUHP_AP_ONLINE_IDLE) |
| 850 | return 0; |
| 851 | |
| 852 | return cpuhp_kick_ap(cpu, st, target: st->target); |
| 853 | |
| 854 | out_unlock: |
| 855 | irq_unlock_sparse(); |
| 856 | return ret; |
| 857 | } |
| 858 | #else |
| 859 | static int bringup_cpu(unsigned int cpu) |
| 860 | { |
| 861 | struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); |
| 862 | struct task_struct *idle = idle_thread_get(cpu); |
| 863 | int ret; |
| 864 | |
| 865 | if (!cpuhp_can_boot_ap(cpu)) |
| 866 | return -EAGAIN; |
| 867 | |
| 868 | /* |
| 869 | * Some architectures have to walk the irq descriptors to |
| 870 | * setup the vector space for the cpu which comes online. |
| 871 | * |
| 872 | * Prevent irq alloc/free across the bringup by acquiring the |
| 873 | * sparse irq lock. Hold it until the upcoming CPU completes the |
| 874 | * startup in cpuhp_online_idle() which allows to avoid |
| 875 | * intermediate synchronization points in the architecture code. |
| 876 | */ |
| 877 | irq_lock_sparse(); |
| 878 | |
| 879 | ret = __cpu_up(cpu, idle); |
| 880 | if (ret) |
| 881 | goto out_unlock; |
| 882 | |
| 883 | ret = cpuhp_bp_sync_alive(cpu); |
| 884 | if (ret) |
| 885 | goto out_unlock; |
| 886 | |
| 887 | ret = bringup_wait_for_ap_online(cpu); |
| 888 | if (ret) |
| 889 | goto out_unlock; |
| 890 | |
| 891 | irq_unlock_sparse(); |
| 892 | |
| 893 | if (st->target <= CPUHP_AP_ONLINE_IDLE) |
| 894 | return 0; |
| 895 | |
| 896 | return cpuhp_kick_ap(cpu, st, st->target); |
| 897 | |
| 898 | out_unlock: |
| 899 | irq_unlock_sparse(); |
| 900 | return ret; |
| 901 | } |
| 902 | #endif |
| 903 | |
| 904 | static int finish_cpu(unsigned int cpu) |
| 905 | { |
| 906 | struct task_struct *idle = idle_thread_get(cpu); |
| 907 | struct mm_struct *mm = idle->active_mm; |
| 908 | |
| 909 | /* |
| 910 | * sched_force_init_mm() ensured the use of &init_mm, |
| 911 | * drop that refcount now that the CPU has stopped. |
| 912 | */ |
| 913 | WARN_ON(mm != &init_mm); |
| 914 | idle->active_mm = NULL; |
| 915 | mmdrop_lazy_tlb(mm); |
| 916 | |
| 917 | return 0; |
| 918 | } |
| 919 | |
| 920 | /* |
| 921 | * Hotplug state machine related functions |
| 922 | */ |
| 923 | |
| 924 | /* |
| 925 | * Get the next state to run. Empty ones will be skipped. Returns true if a |
| 926 | * state must be run. |
| 927 | * |
| 928 | * st->state will be modified ahead of time, to match state_to_run, as if it |
| 929 | * has already ran. |
| 930 | */ |
| 931 | static bool cpuhp_next_state(bool bringup, |
| 932 | enum cpuhp_state *state_to_run, |
| 933 | struct cpuhp_cpu_state *st, |
| 934 | enum cpuhp_state target) |
| 935 | { |
| 936 | do { |
| 937 | if (bringup) { |
| 938 | if (st->state >= target) |
| 939 | return false; |
| 940 | |
| 941 | *state_to_run = ++st->state; |
| 942 | } else { |
| 943 | if (st->state <= target) |
| 944 | return false; |
| 945 | |
| 946 | *state_to_run = st->state--; |
| 947 | } |
| 948 | |
| 949 | if (!cpuhp_step_empty(bringup, step: cpuhp_get_step(state: *state_to_run))) |
| 950 | break; |
| 951 | } while (true); |
| 952 | |
| 953 | return true; |
| 954 | } |
| 955 | |
| 956 | static int __cpuhp_invoke_callback_range(bool bringup, |
| 957 | unsigned int cpu, |
| 958 | struct cpuhp_cpu_state *st, |
| 959 | enum cpuhp_state target, |
| 960 | bool nofail) |
| 961 | { |
| 962 | enum cpuhp_state state; |
| 963 | int ret = 0; |
| 964 | |
| 965 | while (cpuhp_next_state(bringup, state_to_run: &state, st, target)) { |
| 966 | int err; |
| 967 | |
| 968 | err = cpuhp_invoke_callback(cpu, state, bringup, NULL, NULL); |
| 969 | if (!err) |
| 970 | continue; |
| 971 | |
| 972 | if (nofail) { |
| 973 | pr_warn("CPU %u %s state %s (%d) failed (%d)\n" , |
| 974 | cpu, bringup ? "UP" : "DOWN" , |
| 975 | cpuhp_get_step(st->state)->name, |
| 976 | st->state, err); |
| 977 | ret = -1; |
| 978 | } else { |
| 979 | ret = err; |
| 980 | break; |
| 981 | } |
| 982 | } |
| 983 | |
| 984 | return ret; |
| 985 | } |
| 986 | |
| 987 | static inline int cpuhp_invoke_callback_range(bool bringup, |
| 988 | unsigned int cpu, |
| 989 | struct cpuhp_cpu_state *st, |
| 990 | enum cpuhp_state target) |
| 991 | { |
| 992 | return __cpuhp_invoke_callback_range(bringup, cpu, st, target, nofail: false); |
| 993 | } |
| 994 | |
| 995 | static inline void cpuhp_invoke_callback_range_nofail(bool bringup, |
| 996 | unsigned int cpu, |
| 997 | struct cpuhp_cpu_state *st, |
| 998 | enum cpuhp_state target) |
| 999 | { |
| 1000 | __cpuhp_invoke_callback_range(bringup, cpu, st, target, nofail: true); |
| 1001 | } |
| 1002 | |
| 1003 | static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st) |
| 1004 | { |
| 1005 | if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) |
| 1006 | return true; |
| 1007 | /* |
| 1008 | * When CPU hotplug is disabled, then taking the CPU down is not |
| 1009 | * possible because takedown_cpu() and the architecture and |
| 1010 | * subsystem specific mechanisms are not available. So the CPU |
| 1011 | * which would be completely unplugged again needs to stay around |
| 1012 | * in the current state. |
| 1013 | */ |
| 1014 | return st->state <= CPUHP_BRINGUP_CPU; |
| 1015 | } |
| 1016 | |
| 1017 | static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, |
| 1018 | enum cpuhp_state target) |
| 1019 | { |
| 1020 | enum cpuhp_state prev_state = st->state; |
| 1021 | int ret = 0; |
| 1022 | |
| 1023 | ret = cpuhp_invoke_callback_range(bringup: true, cpu, st, target); |
| 1024 | if (ret) { |
| 1025 | pr_debug("CPU UP failed (%d) CPU %u state %s (%d)\n" , |
| 1026 | ret, cpu, cpuhp_get_step(st->state)->name, |
| 1027 | st->state); |
| 1028 | |
| 1029 | cpuhp_reset_state(cpu, st, prev_state); |
| 1030 | if (can_rollback_cpu(st)) |
| 1031 | WARN_ON(cpuhp_invoke_callback_range(false, cpu, st, |
| 1032 | prev_state)); |
| 1033 | } |
| 1034 | return ret; |
| 1035 | } |
| 1036 | |
| 1037 | /* |
| 1038 | * The cpu hotplug threads manage the bringup and teardown of the cpus |
| 1039 | */ |
| 1040 | static int cpuhp_should_run(unsigned int cpu) |
| 1041 | { |
| 1042 | struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); |
| 1043 | |
| 1044 | return st->should_run; |
| 1045 | } |
| 1046 | |
| 1047 | /* |
| 1048 | * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke |
| 1049 | * callbacks when a state gets [un]installed at runtime. |
| 1050 | * |
| 1051 | * Each invocation of this function by the smpboot thread does a single AP |
| 1052 | * state callback. |
| 1053 | * |
| 1054 | * It has 3 modes of operation: |
| 1055 | * - single: runs st->cb_state |
| 1056 | * - up: runs ++st->state, while st->state < st->target |
| 1057 | * - down: runs st->state--, while st->state > st->target |
| 1058 | * |
| 1059 | * When complete or on error, should_run is cleared and the completion is fired. |
| 1060 | */ |
| 1061 | static void cpuhp_thread_fun(unsigned int cpu) |
| 1062 | { |
| 1063 | struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); |
| 1064 | bool bringup = st->bringup; |
| 1065 | enum cpuhp_state state; |
| 1066 | |
| 1067 | if (WARN_ON_ONCE(!st->should_run)) |
| 1068 | return; |
| 1069 | |
| 1070 | /* |
| 1071 | * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures |
| 1072 | * that if we see ->should_run we also see the rest of the state. |
| 1073 | */ |
| 1074 | smp_mb(); |
| 1075 | |
| 1076 | /* |
| 1077 | * The BP holds the hotplug lock, but we're now running on the AP, |
| 1078 | * ensure that anybody asserting the lock is held, will actually find |
| 1079 | * it so. |
| 1080 | */ |
| 1081 | lockdep_acquire_cpus_lock(); |
| 1082 | cpuhp_lock_acquire(bringup); |
| 1083 | |
| 1084 | if (st->single) { |
| 1085 | state = st->cb_state; |
| 1086 | st->should_run = false; |
| 1087 | } else { |
| 1088 | st->should_run = cpuhp_next_state(bringup, state_to_run: &state, st, target: st->target); |
| 1089 | if (!st->should_run) |
| 1090 | goto end; |
| 1091 | } |
| 1092 | |
| 1093 | WARN_ON_ONCE(!cpuhp_is_ap_state(state)); |
| 1094 | |
| 1095 | if (cpuhp_is_atomic_state(state)) { |
| 1096 | local_irq_disable(); |
| 1097 | st->result = cpuhp_invoke_callback(cpu, state, bringup, node: st->node, lastp: &st->last); |
| 1098 | local_irq_enable(); |
| 1099 | |
| 1100 | /* |
| 1101 | * STARTING/DYING must not fail! |
| 1102 | */ |
| 1103 | WARN_ON_ONCE(st->result); |
| 1104 | } else { |
| 1105 | st->result = cpuhp_invoke_callback(cpu, state, bringup, node: st->node, lastp: &st->last); |
| 1106 | } |
| 1107 | |
| 1108 | if (st->result) { |
| 1109 | /* |
| 1110 | * If we fail on a rollback, we're up a creek without no |
| 1111 | * paddle, no way forward, no way back. We loose, thanks for |
| 1112 | * playing. |
| 1113 | */ |
| 1114 | WARN_ON_ONCE(st->rollback); |
| 1115 | st->should_run = false; |
| 1116 | } |
| 1117 | |
| 1118 | end: |
| 1119 | cpuhp_lock_release(bringup); |
| 1120 | lockdep_release_cpus_lock(); |
| 1121 | |
| 1122 | if (!st->should_run) |
| 1123 | complete_ap_thread(st, bringup); |
| 1124 | } |
| 1125 | |
| 1126 | /* Invoke a single callback on a remote cpu */ |
| 1127 | static int |
| 1128 | cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup, |
| 1129 | struct hlist_node *node) |
| 1130 | { |
| 1131 | struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); |
| 1132 | int ret; |
| 1133 | |
| 1134 | if (!cpu_online(cpu)) |
| 1135 | return 0; |
| 1136 | |
| 1137 | cpuhp_lock_acquire(bringup: false); |
| 1138 | cpuhp_lock_release(bringup: false); |
| 1139 | |
| 1140 | cpuhp_lock_acquire(bringup: true); |
| 1141 | cpuhp_lock_release(bringup: true); |
| 1142 | |
| 1143 | /* |
| 1144 | * If we are up and running, use the hotplug thread. For early calls |
| 1145 | * we invoke the thread function directly. |
| 1146 | */ |
| 1147 | if (!st->thread) |
| 1148 | return cpuhp_invoke_callback(cpu, state, bringup, node, NULL); |
| 1149 | |
| 1150 | st->rollback = false; |
| 1151 | st->last = NULL; |
| 1152 | |
| 1153 | st->node = node; |
| 1154 | st->bringup = bringup; |
| 1155 | st->cb_state = state; |
| 1156 | st->single = true; |
| 1157 | |
| 1158 | __cpuhp_kick_ap(st); |
| 1159 | |
| 1160 | /* |
| 1161 | * If we failed and did a partial, do a rollback. |
| 1162 | */ |
| 1163 | if ((ret = st->result) && st->last) { |
| 1164 | st->rollback = true; |
| 1165 | st->bringup = !bringup; |
| 1166 | |
| 1167 | __cpuhp_kick_ap(st); |
| 1168 | } |
| 1169 | |
| 1170 | /* |
| 1171 | * Clean up the leftovers so the next hotplug operation wont use stale |
| 1172 | * data. |
| 1173 | */ |
| 1174 | st->node = st->last = NULL; |
| 1175 | return ret; |
| 1176 | } |
| 1177 | |
| 1178 | static int cpuhp_kick_ap_work(unsigned int cpu) |
| 1179 | { |
| 1180 | struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); |
| 1181 | enum cpuhp_state prev_state = st->state; |
| 1182 | int ret; |
| 1183 | |
| 1184 | cpuhp_lock_acquire(bringup: false); |
| 1185 | cpuhp_lock_release(bringup: false); |
| 1186 | |
| 1187 | cpuhp_lock_acquire(bringup: true); |
| 1188 | cpuhp_lock_release(bringup: true); |
| 1189 | |
| 1190 | trace_cpuhp_enter(cpu, target: st->target, idx: prev_state, fun: cpuhp_kick_ap_work); |
| 1191 | ret = cpuhp_kick_ap(cpu, st, target: st->target); |
| 1192 | trace_cpuhp_exit(cpu, state: st->state, idx: prev_state, ret); |
| 1193 | |
| 1194 | return ret; |
| 1195 | } |
| 1196 | |
| 1197 | static struct smp_hotplug_thread cpuhp_threads = { |
| 1198 | .store = &cpuhp_state.thread, |
| 1199 | .thread_should_run = cpuhp_should_run, |
| 1200 | .thread_fn = cpuhp_thread_fun, |
| 1201 | .thread_comm = "cpuhp/%u" , |
| 1202 | .selfparking = true, |
| 1203 | }; |
| 1204 | |
| 1205 | static __init void cpuhp_init_state(void) |
| 1206 | { |
| 1207 | struct cpuhp_cpu_state *st; |
| 1208 | int cpu; |
| 1209 | |
| 1210 | for_each_possible_cpu(cpu) { |
| 1211 | st = per_cpu_ptr(&cpuhp_state, cpu); |
| 1212 | init_completion(x: &st->done_up); |
| 1213 | init_completion(x: &st->done_down); |
| 1214 | } |
| 1215 | } |
| 1216 | |
| 1217 | void __init cpuhp_threads_init(void) |
| 1218 | { |
| 1219 | cpuhp_init_state(); |
| 1220 | BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads)); |
| 1221 | kthread_unpark(this_cpu_read(cpuhp_state.thread)); |
| 1222 | } |
| 1223 | |
| 1224 | #ifdef CONFIG_HOTPLUG_CPU |
| 1225 | #ifndef arch_clear_mm_cpumask_cpu |
| 1226 | #define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm)) |
| 1227 | #endif |
| 1228 | |
| 1229 | /** |
| 1230 | * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU |
| 1231 | * @cpu: a CPU id |
| 1232 | * |
| 1233 | * This function walks all processes, finds a valid mm struct for each one and |
| 1234 | * then clears a corresponding bit in mm's cpumask. While this all sounds |
| 1235 | * trivial, there are various non-obvious corner cases, which this function |
| 1236 | * tries to solve in a safe manner. |
| 1237 | * |
| 1238 | * Also note that the function uses a somewhat relaxed locking scheme, so it may |
| 1239 | * be called only for an already offlined CPU. |
| 1240 | */ |
| 1241 | void clear_tasks_mm_cpumask(int cpu) |
| 1242 | { |
| 1243 | struct task_struct *p; |
| 1244 | |
| 1245 | /* |
| 1246 | * This function is called after the cpu is taken down and marked |
| 1247 | * offline, so its not like new tasks will ever get this cpu set in |
| 1248 | * their mm mask. -- Peter Zijlstra |
| 1249 | * Thus, we may use rcu_read_lock() here, instead of grabbing |
| 1250 | * full-fledged tasklist_lock. |
| 1251 | */ |
| 1252 | WARN_ON(cpu_online(cpu)); |
| 1253 | rcu_read_lock(); |
| 1254 | for_each_process(p) { |
| 1255 | struct task_struct *t; |
| 1256 | |
| 1257 | /* |
| 1258 | * Main thread might exit, but other threads may still have |
| 1259 | * a valid mm. Find one. |
| 1260 | */ |
| 1261 | t = find_lock_task_mm(p); |
| 1262 | if (!t) |
| 1263 | continue; |
| 1264 | arch_clear_mm_cpumask_cpu(cpu, t->mm); |
| 1265 | task_unlock(p: t); |
| 1266 | } |
| 1267 | rcu_read_unlock(); |
| 1268 | } |
| 1269 | |
| 1270 | /* Take this CPU down. */ |
| 1271 | static int take_cpu_down(void *_param) |
| 1272 | { |
| 1273 | struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); |
| 1274 | enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE); |
| 1275 | int err, cpu = smp_processor_id(); |
| 1276 | |
| 1277 | /* Ensure this CPU doesn't handle any more interrupts. */ |
| 1278 | err = __cpu_disable(); |
| 1279 | if (err < 0) |
| 1280 | return err; |
| 1281 | |
| 1282 | /* |
| 1283 | * Must be called from CPUHP_TEARDOWN_CPU, which means, as we are going |
| 1284 | * down, that the current state is CPUHP_TEARDOWN_CPU - 1. |
| 1285 | */ |
| 1286 | WARN_ON(st->state != (CPUHP_TEARDOWN_CPU - 1)); |
| 1287 | |
| 1288 | /* |
| 1289 | * Invoke the former CPU_DYING callbacks. DYING must not fail! |
| 1290 | */ |
| 1291 | cpuhp_invoke_callback_range_nofail(bringup: false, cpu, st, target); |
| 1292 | |
| 1293 | /* Park the stopper thread */ |
| 1294 | stop_machine_park(cpu); |
| 1295 | return 0; |
| 1296 | } |
| 1297 | |
| 1298 | static int takedown_cpu(unsigned int cpu) |
| 1299 | { |
| 1300 | struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); |
| 1301 | int err; |
| 1302 | |
| 1303 | /* Park the smpboot threads */ |
| 1304 | kthread_park(k: st->thread); |
| 1305 | |
| 1306 | /* |
| 1307 | * Prevent irq alloc/free while the dying cpu reorganizes the |
| 1308 | * interrupt affinities. |
| 1309 | */ |
| 1310 | irq_lock_sparse(); |
| 1311 | |
| 1312 | err = stop_machine_cpuslocked(fn: take_cpu_down, NULL, cpumask_of(cpu)); |
| 1313 | if (err) { |
| 1314 | /* CPU refused to die */ |
| 1315 | irq_unlock_sparse(); |
| 1316 | /* Unpark the hotplug thread so we can rollback there */ |
| 1317 | kthread_unpark(k: st->thread); |
| 1318 | return err; |
| 1319 | } |
| 1320 | BUG_ON(cpu_online(cpu)); |
| 1321 | |
| 1322 | /* |
| 1323 | * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed |
| 1324 | * all runnable tasks from the CPU, there's only the idle task left now |
| 1325 | * that the migration thread is done doing the stop_machine thing. |
| 1326 | * |
| 1327 | * Wait for the stop thread to go away. |
| 1328 | */ |
| 1329 | wait_for_ap_thread(st, bringup: false); |
| 1330 | BUG_ON(st->state != CPUHP_AP_IDLE_DEAD); |
| 1331 | |
| 1332 | /* Interrupts are moved away from the dying cpu, reenable alloc/free */ |
| 1333 | irq_unlock_sparse(); |
| 1334 | |
| 1335 | hotplug_cpu__broadcast_tick_pull(dead_cpu: cpu); |
| 1336 | /* This actually kills the CPU. */ |
| 1337 | __cpu_die(cpu); |
| 1338 | |
| 1339 | cpuhp_bp_sync_dead(cpu); |
| 1340 | |
| 1341 | lockdep_cleanup_dead_cpu(cpu, idle: idle_thread_get(cpu)); |
| 1342 | |
| 1343 | /* |
| 1344 | * Callbacks must be re-integrated right away to the RCU state machine. |
| 1345 | * Otherwise an RCU callback could block a further teardown function |
| 1346 | * waiting for its completion. |
| 1347 | */ |
| 1348 | rcutree_migrate_callbacks(cpu); |
| 1349 | |
| 1350 | return 0; |
| 1351 | } |
| 1352 | |
| 1353 | static void cpuhp_complete_idle_dead(void *arg) |
| 1354 | { |
| 1355 | struct cpuhp_cpu_state *st = arg; |
| 1356 | |
| 1357 | complete_ap_thread(st, bringup: false); |
| 1358 | } |
| 1359 | |
| 1360 | void cpuhp_report_idle_dead(void) |
| 1361 | { |
| 1362 | struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); |
| 1363 | |
| 1364 | BUG_ON(st->state != CPUHP_AP_OFFLINE); |
| 1365 | tick_assert_timekeeping_handover(); |
| 1366 | rcutree_report_cpu_dead(); |
| 1367 | st->state = CPUHP_AP_IDLE_DEAD; |
| 1368 | /* |
| 1369 | * We cannot call complete after rcutree_report_cpu_dead() so we delegate it |
| 1370 | * to an online cpu. |
| 1371 | */ |
| 1372 | smp_call_function_single(cpuid: cpumask_first(cpu_online_mask), |
| 1373 | func: cpuhp_complete_idle_dead, info: st, wait: 0); |
| 1374 | } |
| 1375 | |
| 1376 | static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, |
| 1377 | enum cpuhp_state target) |
| 1378 | { |
| 1379 | enum cpuhp_state prev_state = st->state; |
| 1380 | int ret = 0; |
| 1381 | |
| 1382 | ret = cpuhp_invoke_callback_range(bringup: false, cpu, st, target); |
| 1383 | if (ret) { |
| 1384 | pr_debug("CPU DOWN failed (%d) CPU %u state %s (%d)\n" , |
| 1385 | ret, cpu, cpuhp_get_step(st->state)->name, |
| 1386 | st->state); |
| 1387 | |
| 1388 | cpuhp_reset_state(cpu, st, prev_state); |
| 1389 | |
| 1390 | if (st->state < prev_state) |
| 1391 | WARN_ON(cpuhp_invoke_callback_range(true, cpu, st, |
| 1392 | prev_state)); |
| 1393 | } |
| 1394 | |
| 1395 | return ret; |
| 1396 | } |
| 1397 | |
| 1398 | /* Requires cpu_add_remove_lock to be held */ |
| 1399 | static int __ref _cpu_down(unsigned int cpu, int tasks_frozen, |
| 1400 | enum cpuhp_state target) |
| 1401 | { |
| 1402 | struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); |
| 1403 | int prev_state, ret = 0; |
| 1404 | |
| 1405 | if (num_online_cpus() == 1) |
| 1406 | return -EBUSY; |
| 1407 | |
| 1408 | if (!cpu_present(cpu)) |
| 1409 | return -EINVAL; |
| 1410 | |
| 1411 | cpus_write_lock(); |
| 1412 | |
| 1413 | cpuhp_tasks_frozen = tasks_frozen; |
| 1414 | |
| 1415 | prev_state = cpuhp_set_state(cpu, st, target); |
| 1416 | /* |
| 1417 | * If the current CPU state is in the range of the AP hotplug thread, |
| 1418 | * then we need to kick the thread. |
| 1419 | */ |
| 1420 | if (st->state > CPUHP_TEARDOWN_CPU) { |
| 1421 | st->target = max((int)target, CPUHP_TEARDOWN_CPU); |
| 1422 | ret = cpuhp_kick_ap_work(cpu); |
| 1423 | /* |
| 1424 | * The AP side has done the error rollback already. Just |
| 1425 | * return the error code.. |
| 1426 | */ |
| 1427 | if (ret) |
| 1428 | goto out; |
| 1429 | |
| 1430 | /* |
| 1431 | * We might have stopped still in the range of the AP hotplug |
| 1432 | * thread. Nothing to do anymore. |
| 1433 | */ |
| 1434 | if (st->state > CPUHP_TEARDOWN_CPU) |
| 1435 | goto out; |
| 1436 | |
| 1437 | st->target = target; |
| 1438 | } |
| 1439 | /* |
| 1440 | * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need |
| 1441 | * to do the further cleanups. |
| 1442 | */ |
| 1443 | ret = cpuhp_down_callbacks(cpu, st, target); |
| 1444 | if (ret && st->state < prev_state) { |
| 1445 | if (st->state == CPUHP_TEARDOWN_CPU) { |
| 1446 | cpuhp_reset_state(cpu, st, prev_state); |
| 1447 | __cpuhp_kick_ap(st); |
| 1448 | } else { |
| 1449 | WARN(1, "DEAD callback error for CPU%d" , cpu); |
| 1450 | } |
| 1451 | } |
| 1452 | |
| 1453 | out: |
| 1454 | cpus_write_unlock(); |
| 1455 | arch_smt_update(); |
| 1456 | return ret; |
| 1457 | } |
| 1458 | |
| 1459 | struct cpu_down_work { |
| 1460 | unsigned int cpu; |
| 1461 | enum cpuhp_state target; |
| 1462 | }; |
| 1463 | |
| 1464 | static long __cpu_down_maps_locked(void *arg) |
| 1465 | { |
| 1466 | struct cpu_down_work *work = arg; |
| 1467 | |
| 1468 | return _cpu_down(cpu: work->cpu, tasks_frozen: 0, target: work->target); |
| 1469 | } |
| 1470 | |
| 1471 | static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target) |
| 1472 | { |
| 1473 | struct cpu_down_work work = { .cpu = cpu, .target = target, }; |
| 1474 | |
| 1475 | /* |
| 1476 | * If the platform does not support hotplug, report it explicitly to |
| 1477 | * differentiate it from a transient offlining failure. |
| 1478 | */ |
| 1479 | if (cpu_hotplug_offline_disabled) |
| 1480 | return -EOPNOTSUPP; |
| 1481 | if (cpu_hotplug_disabled) |
| 1482 | return -EBUSY; |
| 1483 | |
| 1484 | /* |
| 1485 | * Ensure that the control task does not run on the to be offlined |
| 1486 | * CPU to prevent a deadlock against cfs_b->period_timer. |
| 1487 | * Also keep at least one housekeeping cpu onlined to avoid generating |
| 1488 | * an empty sched_domain span. |
| 1489 | */ |
| 1490 | for_each_cpu_and(cpu, cpu_online_mask, housekeeping_cpumask(HK_TYPE_DOMAIN)) { |
| 1491 | if (cpu != work.cpu) |
| 1492 | return work_on_cpu(cpu, __cpu_down_maps_locked, &work); |
| 1493 | } |
| 1494 | return -EBUSY; |
| 1495 | } |
| 1496 | |
| 1497 | static int cpu_down(unsigned int cpu, enum cpuhp_state target) |
| 1498 | { |
| 1499 | int err; |
| 1500 | |
| 1501 | cpu_maps_update_begin(); |
| 1502 | err = cpu_down_maps_locked(cpu, target); |
| 1503 | cpu_maps_update_done(); |
| 1504 | return err; |
| 1505 | } |
| 1506 | |
| 1507 | /** |
| 1508 | * cpu_device_down - Bring down a cpu device |
| 1509 | * @dev: Pointer to the cpu device to offline |
| 1510 | * |
| 1511 | * This function is meant to be used by device core cpu subsystem only. |
| 1512 | * |
| 1513 | * Other subsystems should use remove_cpu() instead. |
| 1514 | * |
| 1515 | * Return: %0 on success or a negative errno code |
| 1516 | */ |
| 1517 | int cpu_device_down(struct device *dev) |
| 1518 | { |
| 1519 | return cpu_down(cpu: dev->id, target: CPUHP_OFFLINE); |
| 1520 | } |
| 1521 | |
| 1522 | int remove_cpu(unsigned int cpu) |
| 1523 | { |
| 1524 | int ret; |
| 1525 | |
| 1526 | lock_device_hotplug(); |
| 1527 | ret = device_offline(dev: get_cpu_device(cpu)); |
| 1528 | unlock_device_hotplug(); |
| 1529 | |
| 1530 | return ret; |
| 1531 | } |
| 1532 | EXPORT_SYMBOL_GPL(remove_cpu); |
| 1533 | |
| 1534 | void smp_shutdown_nonboot_cpus(unsigned int primary_cpu) |
| 1535 | { |
| 1536 | unsigned int cpu; |
| 1537 | int error; |
| 1538 | |
| 1539 | cpu_maps_update_begin(); |
| 1540 | |
| 1541 | /* |
| 1542 | * Make certain the cpu I'm about to reboot on is online. |
| 1543 | * |
| 1544 | * This is inline to what migrate_to_reboot_cpu() already do. |
| 1545 | */ |
| 1546 | if (!cpu_online(cpu: primary_cpu)) |
| 1547 | primary_cpu = cpumask_first(cpu_online_mask); |
| 1548 | |
| 1549 | for_each_online_cpu(cpu) { |
| 1550 | if (cpu == primary_cpu) |
| 1551 | continue; |
| 1552 | |
| 1553 | error = cpu_down_maps_locked(cpu, target: CPUHP_OFFLINE); |
| 1554 | if (error) { |
| 1555 | pr_err("Failed to offline CPU%d - error=%d" , |
| 1556 | cpu, error); |
| 1557 | break; |
| 1558 | } |
| 1559 | } |
| 1560 | |
| 1561 | /* |
| 1562 | * Ensure all but the reboot CPU are offline. |
| 1563 | */ |
| 1564 | BUG_ON(num_online_cpus() > 1); |
| 1565 | |
| 1566 | /* |
| 1567 | * Make sure the CPUs won't be enabled by someone else after this |
| 1568 | * point. Kexec will reboot to a new kernel shortly resetting |
| 1569 | * everything along the way. |
| 1570 | */ |
| 1571 | cpu_hotplug_disabled++; |
| 1572 | |
| 1573 | cpu_maps_update_done(); |
| 1574 | } |
| 1575 | |
| 1576 | #else |
| 1577 | #define takedown_cpu NULL |
| 1578 | #endif /*CONFIG_HOTPLUG_CPU*/ |
| 1579 | |
| 1580 | /** |
| 1581 | * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU |
| 1582 | * @cpu: cpu that just started |
| 1583 | * |
| 1584 | * It must be called by the arch code on the new cpu, before the new cpu |
| 1585 | * enables interrupts and before the "boot" cpu returns from __cpu_up(). |
| 1586 | */ |
| 1587 | void notify_cpu_starting(unsigned int cpu) |
| 1588 | { |
| 1589 | struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); |
| 1590 | enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE); |
| 1591 | |
| 1592 | rcutree_report_cpu_starting(cpu); /* Enables RCU usage on this CPU. */ |
| 1593 | cpumask_set_cpu(cpu, dstp: &cpus_booted_once_mask); |
| 1594 | |
| 1595 | /* |
| 1596 | * STARTING must not fail! |
| 1597 | */ |
| 1598 | cpuhp_invoke_callback_range_nofail(bringup: true, cpu, st, target); |
| 1599 | } |
| 1600 | |
| 1601 | /* |
| 1602 | * Called from the idle task. Wake up the controlling task which brings the |
| 1603 | * hotplug thread of the upcoming CPU up and then delegates the rest of the |
| 1604 | * online bringup to the hotplug thread. |
| 1605 | */ |
| 1606 | void cpuhp_online_idle(enum cpuhp_state state) |
| 1607 | { |
| 1608 | struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); |
| 1609 | |
| 1610 | /* Happens for the boot cpu */ |
| 1611 | if (state != CPUHP_AP_ONLINE_IDLE) |
| 1612 | return; |
| 1613 | |
| 1614 | cpuhp_ap_update_sync_state(state: SYNC_STATE_ONLINE); |
| 1615 | |
| 1616 | /* |
| 1617 | * Unpark the stopper thread before we start the idle loop (and start |
| 1618 | * scheduling); this ensures the stopper task is always available. |
| 1619 | */ |
| 1620 | stop_machine_unpark(smp_processor_id()); |
| 1621 | |
| 1622 | st->state = CPUHP_AP_ONLINE_IDLE; |
| 1623 | complete_ap_thread(st, bringup: true); |
| 1624 | } |
| 1625 | |
| 1626 | /* Requires cpu_add_remove_lock to be held */ |
| 1627 | static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target) |
| 1628 | { |
| 1629 | struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); |
| 1630 | struct task_struct *idle; |
| 1631 | int ret = 0; |
| 1632 | |
| 1633 | cpus_write_lock(); |
| 1634 | |
| 1635 | if (!cpu_present(cpu)) { |
| 1636 | ret = -EINVAL; |
| 1637 | goto out; |
| 1638 | } |
| 1639 | |
| 1640 | /* |
| 1641 | * The caller of cpu_up() might have raced with another |
| 1642 | * caller. Nothing to do. |
| 1643 | */ |
| 1644 | if (st->state >= target) |
| 1645 | goto out; |
| 1646 | |
| 1647 | if (st->state == CPUHP_OFFLINE) { |
| 1648 | /* Let it fail before we try to bring the cpu up */ |
| 1649 | idle = idle_thread_get(cpu); |
| 1650 | if (IS_ERR(ptr: idle)) { |
| 1651 | ret = PTR_ERR(ptr: idle); |
| 1652 | goto out; |
| 1653 | } |
| 1654 | |
| 1655 | /* |
| 1656 | * Reset stale stack state from the last time this CPU was online. |
| 1657 | */ |
| 1658 | scs_task_reset(tsk: idle); |
| 1659 | kasan_unpoison_task_stack(task: idle); |
| 1660 | } |
| 1661 | |
| 1662 | cpuhp_tasks_frozen = tasks_frozen; |
| 1663 | |
| 1664 | cpuhp_set_state(cpu, st, target); |
| 1665 | /* |
| 1666 | * If the current CPU state is in the range of the AP hotplug thread, |
| 1667 | * then we need to kick the thread once more. |
| 1668 | */ |
| 1669 | if (st->state > CPUHP_BRINGUP_CPU) { |
| 1670 | ret = cpuhp_kick_ap_work(cpu); |
| 1671 | /* |
| 1672 | * The AP side has done the error rollback already. Just |
| 1673 | * return the error code.. |
| 1674 | */ |
| 1675 | if (ret) |
| 1676 | goto out; |
| 1677 | } |
| 1678 | |
| 1679 | /* |
| 1680 | * Try to reach the target state. We max out on the BP at |
| 1681 | * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is |
| 1682 | * responsible for bringing it up to the target state. |
| 1683 | */ |
| 1684 | target = min((int)target, CPUHP_BRINGUP_CPU); |
| 1685 | ret = cpuhp_up_callbacks(cpu, st, target); |
| 1686 | out: |
| 1687 | cpus_write_unlock(); |
| 1688 | arch_smt_update(); |
| 1689 | return ret; |
| 1690 | } |
| 1691 | |
| 1692 | static int cpu_up(unsigned int cpu, enum cpuhp_state target) |
| 1693 | { |
| 1694 | int err = 0; |
| 1695 | |
| 1696 | if (!cpu_possible(cpu)) { |
| 1697 | pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n" , |
| 1698 | cpu); |
| 1699 | return -EINVAL; |
| 1700 | } |
| 1701 | |
| 1702 | err = try_online_node(nid: cpu_to_node(cpu)); |
| 1703 | if (err) |
| 1704 | return err; |
| 1705 | |
| 1706 | cpu_maps_update_begin(); |
| 1707 | |
| 1708 | if (cpu_hotplug_disabled) { |
| 1709 | err = -EBUSY; |
| 1710 | goto out; |
| 1711 | } |
| 1712 | if (!cpu_bootable(cpu)) { |
| 1713 | err = -EPERM; |
| 1714 | goto out; |
| 1715 | } |
| 1716 | |
| 1717 | err = _cpu_up(cpu, tasks_frozen: 0, target); |
| 1718 | out: |
| 1719 | cpu_maps_update_done(); |
| 1720 | return err; |
| 1721 | } |
| 1722 | |
| 1723 | /** |
| 1724 | * cpu_device_up - Bring up a cpu device |
| 1725 | * @dev: Pointer to the cpu device to online |
| 1726 | * |
| 1727 | * This function is meant to be used by device core cpu subsystem only. |
| 1728 | * |
| 1729 | * Other subsystems should use add_cpu() instead. |
| 1730 | * |
| 1731 | * Return: %0 on success or a negative errno code |
| 1732 | */ |
| 1733 | int cpu_device_up(struct device *dev) |
| 1734 | { |
| 1735 | return cpu_up(cpu: dev->id, target: CPUHP_ONLINE); |
| 1736 | } |
| 1737 | |
| 1738 | int add_cpu(unsigned int cpu) |
| 1739 | { |
| 1740 | int ret; |
| 1741 | |
| 1742 | lock_device_hotplug(); |
| 1743 | ret = device_online(dev: get_cpu_device(cpu)); |
| 1744 | unlock_device_hotplug(); |
| 1745 | |
| 1746 | return ret; |
| 1747 | } |
| 1748 | EXPORT_SYMBOL_GPL(add_cpu); |
| 1749 | |
| 1750 | /** |
| 1751 | * bringup_hibernate_cpu - Bring up the CPU that we hibernated on |
| 1752 | * @sleep_cpu: The cpu we hibernated on and should be brought up. |
| 1753 | * |
| 1754 | * On some architectures like arm64, we can hibernate on any CPU, but on |
| 1755 | * wake up the CPU we hibernated on might be offline as a side effect of |
| 1756 | * using maxcpus= for example. |
| 1757 | * |
| 1758 | * Return: %0 on success or a negative errno code |
| 1759 | */ |
| 1760 | int bringup_hibernate_cpu(unsigned int sleep_cpu) |
| 1761 | { |
| 1762 | int ret; |
| 1763 | |
| 1764 | if (!cpu_online(cpu: sleep_cpu)) { |
| 1765 | pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n" ); |
| 1766 | ret = cpu_up(cpu: sleep_cpu, target: CPUHP_ONLINE); |
| 1767 | if (ret) { |
| 1768 | pr_err("Failed to bring hibernate-CPU up!\n" ); |
| 1769 | return ret; |
| 1770 | } |
| 1771 | } |
| 1772 | return 0; |
| 1773 | } |
| 1774 | |
| 1775 | static void __init cpuhp_bringup_mask(const struct cpumask *mask, unsigned int ncpus, |
| 1776 | enum cpuhp_state target) |
| 1777 | { |
| 1778 | unsigned int cpu; |
| 1779 | |
| 1780 | for_each_cpu(cpu, mask) { |
| 1781 | struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); |
| 1782 | |
| 1783 | if (cpu_up(cpu, target) && can_rollback_cpu(st)) { |
| 1784 | /* |
| 1785 | * If this failed then cpu_up() might have only |
| 1786 | * rolled back to CPUHP_BP_KICK_AP for the final |
| 1787 | * online. Clean it up. NOOP if already rolled back. |
| 1788 | */ |
| 1789 | WARN_ON(cpuhp_invoke_callback_range(false, cpu, st, CPUHP_OFFLINE)); |
| 1790 | } |
| 1791 | |
| 1792 | if (!--ncpus) |
| 1793 | break; |
| 1794 | } |
| 1795 | } |
| 1796 | |
| 1797 | #ifdef CONFIG_HOTPLUG_PARALLEL |
| 1798 | static bool __cpuhp_parallel_bringup __ro_after_init = true; |
| 1799 | |
| 1800 | static int __init parallel_bringup_parse_param(char *arg) |
| 1801 | { |
| 1802 | return kstrtobool(s: arg, res: &__cpuhp_parallel_bringup); |
| 1803 | } |
| 1804 | early_param("cpuhp.parallel" , parallel_bringup_parse_param); |
| 1805 | |
| 1806 | #ifdef CONFIG_HOTPLUG_SMT |
| 1807 | static inline bool cpuhp_smt_aware(void) |
| 1808 | { |
| 1809 | return cpu_smt_max_threads > 1; |
| 1810 | } |
| 1811 | |
| 1812 | static inline const struct cpumask *cpuhp_get_primary_thread_mask(void) |
| 1813 | { |
| 1814 | return cpu_primary_thread_mask; |
| 1815 | } |
| 1816 | #else |
| 1817 | static inline bool cpuhp_smt_aware(void) |
| 1818 | { |
| 1819 | return false; |
| 1820 | } |
| 1821 | static inline const struct cpumask *cpuhp_get_primary_thread_mask(void) |
| 1822 | { |
| 1823 | return cpu_none_mask; |
| 1824 | } |
| 1825 | #endif |
| 1826 | |
| 1827 | bool __weak arch_cpuhp_init_parallel_bringup(void) |
| 1828 | { |
| 1829 | return true; |
| 1830 | } |
| 1831 | |
| 1832 | /* |
| 1833 | * On architectures which have enabled parallel bringup this invokes all BP |
| 1834 | * prepare states for each of the to be onlined APs first. The last state |
| 1835 | * sends the startup IPI to the APs. The APs proceed through the low level |
| 1836 | * bringup code in parallel and then wait for the control CPU to release |
| 1837 | * them one by one for the final onlining procedure. |
| 1838 | * |
| 1839 | * This avoids waiting for each AP to respond to the startup IPI in |
| 1840 | * CPUHP_BRINGUP_CPU. |
| 1841 | */ |
| 1842 | static bool __init cpuhp_bringup_cpus_parallel(unsigned int ncpus) |
| 1843 | { |
| 1844 | const struct cpumask *mask = cpu_present_mask; |
| 1845 | |
| 1846 | if (__cpuhp_parallel_bringup) |
| 1847 | __cpuhp_parallel_bringup = arch_cpuhp_init_parallel_bringup(); |
| 1848 | if (!__cpuhp_parallel_bringup) |
| 1849 | return false; |
| 1850 | |
| 1851 | if (cpuhp_smt_aware()) { |
| 1852 | const struct cpumask *pmask = cpuhp_get_primary_thread_mask(); |
| 1853 | static struct cpumask tmp_mask __initdata; |
| 1854 | |
| 1855 | /* |
| 1856 | * X86 requires to prevent that SMT siblings stopped while |
| 1857 | * the primary thread does a microcode update for various |
| 1858 | * reasons. Bring the primary threads up first. |
| 1859 | */ |
| 1860 | cpumask_and(dstp: &tmp_mask, src1p: mask, src2p: pmask); |
| 1861 | cpuhp_bringup_mask(mask: &tmp_mask, ncpus, target: CPUHP_BP_KICK_AP); |
| 1862 | cpuhp_bringup_mask(mask: &tmp_mask, ncpus, target: CPUHP_ONLINE); |
| 1863 | /* Account for the online CPUs */ |
| 1864 | ncpus -= num_online_cpus(); |
| 1865 | if (!ncpus) |
| 1866 | return true; |
| 1867 | /* Create the mask for secondary CPUs */ |
| 1868 | cpumask_andnot(dstp: &tmp_mask, src1p: mask, src2p: pmask); |
| 1869 | mask = &tmp_mask; |
| 1870 | } |
| 1871 | |
| 1872 | /* Bring the not-yet started CPUs up */ |
| 1873 | cpuhp_bringup_mask(mask, ncpus, target: CPUHP_BP_KICK_AP); |
| 1874 | cpuhp_bringup_mask(mask, ncpus, target: CPUHP_ONLINE); |
| 1875 | return true; |
| 1876 | } |
| 1877 | #else |
| 1878 | static inline bool cpuhp_bringup_cpus_parallel(unsigned int ncpus) { return false; } |
| 1879 | #endif /* CONFIG_HOTPLUG_PARALLEL */ |
| 1880 | |
| 1881 | void __init bringup_nonboot_cpus(unsigned int max_cpus) |
| 1882 | { |
| 1883 | if (!max_cpus) |
| 1884 | return; |
| 1885 | |
| 1886 | /* Try parallel bringup optimization if enabled */ |
| 1887 | if (cpuhp_bringup_cpus_parallel(ncpus: max_cpus)) |
| 1888 | return; |
| 1889 | |
| 1890 | /* Full per CPU serialized bringup */ |
| 1891 | cpuhp_bringup_mask(cpu_present_mask, ncpus: max_cpus, target: CPUHP_ONLINE); |
| 1892 | } |
| 1893 | |
| 1894 | #ifdef CONFIG_PM_SLEEP_SMP |
| 1895 | static cpumask_var_t frozen_cpus; |
| 1896 | |
| 1897 | int freeze_secondary_cpus(int primary) |
| 1898 | { |
| 1899 | int cpu, error = 0; |
| 1900 | |
| 1901 | cpu_maps_update_begin(); |
| 1902 | if (primary == -1) { |
| 1903 | primary = cpumask_first(cpu_online_mask); |
| 1904 | if (!housekeeping_cpu(cpu: primary, type: HK_TYPE_TIMER)) |
| 1905 | primary = housekeeping_any_cpu(type: HK_TYPE_TIMER); |
| 1906 | } else { |
| 1907 | if (!cpu_online(cpu: primary)) |
| 1908 | primary = cpumask_first(cpu_online_mask); |
| 1909 | } |
| 1910 | |
| 1911 | /* |
| 1912 | * We take down all of the non-boot CPUs in one shot to avoid races |
| 1913 | * with the userspace trying to use the CPU hotplug at the same time |
| 1914 | */ |
| 1915 | cpumask_clear(dstp: frozen_cpus); |
| 1916 | |
| 1917 | pr_info("Disabling non-boot CPUs ...\n" ); |
| 1918 | for (cpu = nr_cpu_ids - 1; cpu >= 0; cpu--) { |
| 1919 | if (!cpu_online(cpu) || cpu == primary) |
| 1920 | continue; |
| 1921 | |
| 1922 | if (pm_wakeup_pending()) { |
| 1923 | pr_info("Wakeup pending. Abort CPU freeze\n" ); |
| 1924 | error = -EBUSY; |
| 1925 | break; |
| 1926 | } |
| 1927 | |
| 1928 | trace_suspend_resume(TPS("CPU_OFF" ), val: cpu, start: true); |
| 1929 | error = _cpu_down(cpu, tasks_frozen: 1, target: CPUHP_OFFLINE); |
| 1930 | trace_suspend_resume(TPS("CPU_OFF" ), val: cpu, start: false); |
| 1931 | if (!error) |
| 1932 | cpumask_set_cpu(cpu, dstp: frozen_cpus); |
| 1933 | else { |
| 1934 | pr_err("Error taking CPU%d down: %d\n" , cpu, error); |
| 1935 | break; |
| 1936 | } |
| 1937 | } |
| 1938 | |
| 1939 | if (!error) |
| 1940 | BUG_ON(num_online_cpus() > 1); |
| 1941 | else |
| 1942 | pr_err("Non-boot CPUs are not disabled\n" ); |
| 1943 | |
| 1944 | /* |
| 1945 | * Make sure the CPUs won't be enabled by someone else. We need to do |
| 1946 | * this even in case of failure as all freeze_secondary_cpus() users are |
| 1947 | * supposed to do thaw_secondary_cpus() on the failure path. |
| 1948 | */ |
| 1949 | cpu_hotplug_disabled++; |
| 1950 | |
| 1951 | cpu_maps_update_done(); |
| 1952 | return error; |
| 1953 | } |
| 1954 | |
| 1955 | void __weak arch_thaw_secondary_cpus_begin(void) |
| 1956 | { |
| 1957 | } |
| 1958 | |
| 1959 | void __weak arch_thaw_secondary_cpus_end(void) |
| 1960 | { |
| 1961 | } |
| 1962 | |
| 1963 | void thaw_secondary_cpus(void) |
| 1964 | { |
| 1965 | int cpu, error; |
| 1966 | |
| 1967 | /* Allow everyone to use the CPU hotplug again */ |
| 1968 | cpu_maps_update_begin(); |
| 1969 | __cpu_hotplug_enable(); |
| 1970 | if (cpumask_empty(srcp: frozen_cpus)) |
| 1971 | goto out; |
| 1972 | |
| 1973 | pr_info("Enabling non-boot CPUs ...\n" ); |
| 1974 | |
| 1975 | arch_thaw_secondary_cpus_begin(); |
| 1976 | |
| 1977 | for_each_cpu(cpu, frozen_cpus) { |
| 1978 | trace_suspend_resume(TPS("CPU_ON" ), val: cpu, start: true); |
| 1979 | error = _cpu_up(cpu, tasks_frozen: 1, target: CPUHP_ONLINE); |
| 1980 | trace_suspend_resume(TPS("CPU_ON" ), val: cpu, start: false); |
| 1981 | if (!error) { |
| 1982 | pr_info("CPU%d is up\n" , cpu); |
| 1983 | continue; |
| 1984 | } |
| 1985 | pr_warn("Error taking CPU%d up: %d\n" , cpu, error); |
| 1986 | } |
| 1987 | |
| 1988 | arch_thaw_secondary_cpus_end(); |
| 1989 | |
| 1990 | cpumask_clear(dstp: frozen_cpus); |
| 1991 | out: |
| 1992 | cpu_maps_update_done(); |
| 1993 | } |
| 1994 | |
| 1995 | static int __init alloc_frozen_cpus(void) |
| 1996 | { |
| 1997 | if (!alloc_cpumask_var(mask: &frozen_cpus, GFP_KERNEL|__GFP_ZERO)) |
| 1998 | return -ENOMEM; |
| 1999 | return 0; |
| 2000 | } |
| 2001 | core_initcall(alloc_frozen_cpus); |
| 2002 | |
| 2003 | /* |
| 2004 | * When callbacks for CPU hotplug notifications are being executed, we must |
| 2005 | * ensure that the state of the system with respect to the tasks being frozen |
| 2006 | * or not, as reported by the notification, remains unchanged *throughout the |
| 2007 | * duration* of the execution of the callbacks. |
| 2008 | * Hence we need to prevent the freezer from racing with regular CPU hotplug. |
| 2009 | * |
| 2010 | * This synchronization is implemented by mutually excluding regular CPU |
| 2011 | * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/ |
| 2012 | * Hibernate notifications. |
| 2013 | */ |
| 2014 | static int |
| 2015 | cpu_hotplug_pm_callback(struct notifier_block *nb, |
| 2016 | unsigned long action, void *ptr) |
| 2017 | { |
| 2018 | switch (action) { |
| 2019 | |
| 2020 | case PM_SUSPEND_PREPARE: |
| 2021 | case PM_HIBERNATION_PREPARE: |
| 2022 | cpu_hotplug_disable(); |
| 2023 | break; |
| 2024 | |
| 2025 | case PM_POST_SUSPEND: |
| 2026 | case PM_POST_HIBERNATION: |
| 2027 | cpu_hotplug_enable(); |
| 2028 | break; |
| 2029 | |
| 2030 | default: |
| 2031 | return NOTIFY_DONE; |
| 2032 | } |
| 2033 | |
| 2034 | return NOTIFY_OK; |
| 2035 | } |
| 2036 | |
| 2037 | |
| 2038 | static int __init cpu_hotplug_pm_sync_init(void) |
| 2039 | { |
| 2040 | /* |
| 2041 | * cpu_hotplug_pm_callback has higher priority than x86 |
| 2042 | * bsp_pm_callback which depends on cpu_hotplug_pm_callback |
| 2043 | * to disable cpu hotplug to avoid cpu hotplug race. |
| 2044 | */ |
| 2045 | pm_notifier(cpu_hotplug_pm_callback, 0); |
| 2046 | return 0; |
| 2047 | } |
| 2048 | core_initcall(cpu_hotplug_pm_sync_init); |
| 2049 | |
| 2050 | #endif /* CONFIG_PM_SLEEP_SMP */ |
| 2051 | |
| 2052 | int __boot_cpu_id; |
| 2053 | |
| 2054 | #endif /* CONFIG_SMP */ |
| 2055 | |
| 2056 | /* Boot processor state steps */ |
| 2057 | static struct cpuhp_step cpuhp_hp_states[] = { |
| 2058 | [CPUHP_OFFLINE] = { |
| 2059 | .name = "offline" , |
| 2060 | .startup.single = NULL, |
| 2061 | .teardown.single = NULL, |
| 2062 | }, |
| 2063 | #ifdef CONFIG_SMP |
| 2064 | [CPUHP_CREATE_THREADS]= { |
| 2065 | .name = "threads:prepare" , |
| 2066 | .startup.single = smpboot_create_threads, |
| 2067 | .teardown.single = NULL, |
| 2068 | .cant_stop = true, |
| 2069 | }, |
| 2070 | [CPUHP_RANDOM_PREPARE] = { |
| 2071 | .name = "random:prepare" , |
| 2072 | .startup.single = random_prepare_cpu, |
| 2073 | .teardown.single = NULL, |
| 2074 | }, |
| 2075 | [CPUHP_WORKQUEUE_PREP] = { |
| 2076 | .name = "workqueue:prepare" , |
| 2077 | .startup.single = workqueue_prepare_cpu, |
| 2078 | .teardown.single = NULL, |
| 2079 | }, |
| 2080 | [CPUHP_HRTIMERS_PREPARE] = { |
| 2081 | .name = "hrtimers:prepare" , |
| 2082 | .startup.single = hrtimers_prepare_cpu, |
| 2083 | .teardown.single = NULL, |
| 2084 | }, |
| 2085 | [CPUHP_SMPCFD_PREPARE] = { |
| 2086 | .name = "smpcfd:prepare" , |
| 2087 | .startup.single = smpcfd_prepare_cpu, |
| 2088 | .teardown.single = smpcfd_dead_cpu, |
| 2089 | }, |
| 2090 | [CPUHP_RELAY_PREPARE] = { |
| 2091 | .name = "relay:prepare" , |
| 2092 | .startup.single = relay_prepare_cpu, |
| 2093 | .teardown.single = NULL, |
| 2094 | }, |
| 2095 | [CPUHP_RCUTREE_PREP] = { |
| 2096 | .name = "RCU/tree:prepare" , |
| 2097 | .startup.single = rcutree_prepare_cpu, |
| 2098 | .teardown.single = rcutree_dead_cpu, |
| 2099 | }, |
| 2100 | /* |
| 2101 | * On the tear-down path, timers_dead_cpu() must be invoked |
| 2102 | * before blk_mq_queue_reinit_notify() from notify_dead(), |
| 2103 | * otherwise a RCU stall occurs. |
| 2104 | */ |
| 2105 | [CPUHP_TIMERS_PREPARE] = { |
| 2106 | .name = "timers:prepare" , |
| 2107 | .startup.single = timers_prepare_cpu, |
| 2108 | .teardown.single = timers_dead_cpu, |
| 2109 | }, |
| 2110 | |
| 2111 | #ifdef CONFIG_HOTPLUG_SPLIT_STARTUP |
| 2112 | /* |
| 2113 | * Kicks the AP alive. AP will wait in cpuhp_ap_sync_alive() until |
| 2114 | * the next step will release it. |
| 2115 | */ |
| 2116 | [CPUHP_BP_KICK_AP] = { |
| 2117 | .name = "cpu:kick_ap" , |
| 2118 | .startup.single = cpuhp_kick_ap_alive, |
| 2119 | }, |
| 2120 | |
| 2121 | /* |
| 2122 | * Waits for the AP to reach cpuhp_ap_sync_alive() and then |
| 2123 | * releases it for the complete bringup. |
| 2124 | */ |
| 2125 | [CPUHP_BRINGUP_CPU] = { |
| 2126 | .name = "cpu:bringup" , |
| 2127 | .startup.single = cpuhp_bringup_ap, |
| 2128 | .teardown.single = finish_cpu, |
| 2129 | .cant_stop = true, |
| 2130 | }, |
| 2131 | #else |
| 2132 | /* |
| 2133 | * All-in-one CPU bringup state which includes the kick alive. |
| 2134 | */ |
| 2135 | [CPUHP_BRINGUP_CPU] = { |
| 2136 | .name = "cpu:bringup" , |
| 2137 | .startup.single = bringup_cpu, |
| 2138 | .teardown.single = finish_cpu, |
| 2139 | .cant_stop = true, |
| 2140 | }, |
| 2141 | #endif |
| 2142 | /* Final state before CPU kills itself */ |
| 2143 | [CPUHP_AP_IDLE_DEAD] = { |
| 2144 | .name = "idle:dead" , |
| 2145 | }, |
| 2146 | /* |
| 2147 | * Last state before CPU enters the idle loop to die. Transient state |
| 2148 | * for synchronization. |
| 2149 | */ |
| 2150 | [CPUHP_AP_OFFLINE] = { |
| 2151 | .name = "ap:offline" , |
| 2152 | .cant_stop = true, |
| 2153 | }, |
| 2154 | /* First state is scheduler control. Interrupts are disabled */ |
| 2155 | [CPUHP_AP_SCHED_STARTING] = { |
| 2156 | .name = "sched:starting" , |
| 2157 | .startup.single = sched_cpu_starting, |
| 2158 | .teardown.single = sched_cpu_dying, |
| 2159 | }, |
| 2160 | [CPUHP_AP_RCUTREE_DYING] = { |
| 2161 | .name = "RCU/tree:dying" , |
| 2162 | .startup.single = NULL, |
| 2163 | .teardown.single = rcutree_dying_cpu, |
| 2164 | }, |
| 2165 | [CPUHP_AP_SMPCFD_DYING] = { |
| 2166 | .name = "smpcfd:dying" , |
| 2167 | .startup.single = NULL, |
| 2168 | .teardown.single = smpcfd_dying_cpu, |
| 2169 | }, |
| 2170 | [CPUHP_AP_HRTIMERS_DYING] = { |
| 2171 | .name = "hrtimers:dying" , |
| 2172 | .startup.single = hrtimers_cpu_starting, |
| 2173 | .teardown.single = hrtimers_cpu_dying, |
| 2174 | }, |
| 2175 | [CPUHP_AP_TICK_DYING] = { |
| 2176 | .name = "tick:dying" , |
| 2177 | .startup.single = NULL, |
| 2178 | .teardown.single = tick_cpu_dying, |
| 2179 | }, |
| 2180 | /* Entry state on starting. Interrupts enabled from here on. Transient |
| 2181 | * state for synchronsization */ |
| 2182 | [CPUHP_AP_ONLINE] = { |
| 2183 | .name = "ap:online" , |
| 2184 | }, |
| 2185 | /* |
| 2186 | * Handled on control processor until the plugged processor manages |
| 2187 | * this itself. |
| 2188 | */ |
| 2189 | [CPUHP_TEARDOWN_CPU] = { |
| 2190 | .name = "cpu:teardown" , |
| 2191 | .startup.single = NULL, |
| 2192 | .teardown.single = takedown_cpu, |
| 2193 | .cant_stop = true, |
| 2194 | }, |
| 2195 | |
| 2196 | [CPUHP_AP_SCHED_WAIT_EMPTY] = { |
| 2197 | .name = "sched:waitempty" , |
| 2198 | .startup.single = NULL, |
| 2199 | .teardown.single = sched_cpu_wait_empty, |
| 2200 | }, |
| 2201 | |
| 2202 | /* Handle smpboot threads park/unpark */ |
| 2203 | [CPUHP_AP_SMPBOOT_THREADS] = { |
| 2204 | .name = "smpboot/threads:online" , |
| 2205 | .startup.single = smpboot_unpark_threads, |
| 2206 | .teardown.single = smpboot_park_threads, |
| 2207 | }, |
| 2208 | [CPUHP_AP_IRQ_AFFINITY_ONLINE] = { |
| 2209 | .name = "irq/affinity:online" , |
| 2210 | .startup.single = irq_affinity_online_cpu, |
| 2211 | .teardown.single = NULL, |
| 2212 | }, |
| 2213 | [CPUHP_AP_PERF_ONLINE] = { |
| 2214 | .name = "perf:online" , |
| 2215 | .startup.single = perf_event_init_cpu, |
| 2216 | .teardown.single = perf_event_exit_cpu, |
| 2217 | }, |
| 2218 | [CPUHP_AP_WATCHDOG_ONLINE] = { |
| 2219 | .name = "lockup_detector:online" , |
| 2220 | .startup.single = lockup_detector_online_cpu, |
| 2221 | .teardown.single = lockup_detector_offline_cpu, |
| 2222 | }, |
| 2223 | [CPUHP_AP_WORKQUEUE_ONLINE] = { |
| 2224 | .name = "workqueue:online" , |
| 2225 | .startup.single = workqueue_online_cpu, |
| 2226 | .teardown.single = workqueue_offline_cpu, |
| 2227 | }, |
| 2228 | [CPUHP_AP_RANDOM_ONLINE] = { |
| 2229 | .name = "random:online" , |
| 2230 | .startup.single = random_online_cpu, |
| 2231 | .teardown.single = NULL, |
| 2232 | }, |
| 2233 | [CPUHP_AP_RCUTREE_ONLINE] = { |
| 2234 | .name = "RCU/tree:online" , |
| 2235 | .startup.single = rcutree_online_cpu, |
| 2236 | .teardown.single = rcutree_offline_cpu, |
| 2237 | }, |
| 2238 | #endif |
| 2239 | /* |
| 2240 | * The dynamically registered state space is here |
| 2241 | */ |
| 2242 | |
| 2243 | #ifdef CONFIG_SMP |
| 2244 | /* Last state is scheduler control setting the cpu active */ |
| 2245 | [CPUHP_AP_ACTIVE] = { |
| 2246 | .name = "sched:active" , |
| 2247 | .startup.single = sched_cpu_activate, |
| 2248 | .teardown.single = sched_cpu_deactivate, |
| 2249 | }, |
| 2250 | #endif |
| 2251 | |
| 2252 | /* CPU is fully up and running. */ |
| 2253 | [CPUHP_ONLINE] = { |
| 2254 | .name = "online" , |
| 2255 | .startup.single = NULL, |
| 2256 | .teardown.single = NULL, |
| 2257 | }, |
| 2258 | }; |
| 2259 | |
| 2260 | /* Sanity check for callbacks */ |
| 2261 | static int cpuhp_cb_check(enum cpuhp_state state) |
| 2262 | { |
| 2263 | if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE) |
| 2264 | return -EINVAL; |
| 2265 | return 0; |
| 2266 | } |
| 2267 | |
| 2268 | /* |
| 2269 | * Returns a free for dynamic slot assignment of the Online state. The states |
| 2270 | * are protected by the cpuhp_slot_states mutex and an empty slot is identified |
| 2271 | * by having no name assigned. |
| 2272 | */ |
| 2273 | static int cpuhp_reserve_state(enum cpuhp_state state) |
| 2274 | { |
| 2275 | enum cpuhp_state i, end; |
| 2276 | struct cpuhp_step *step; |
| 2277 | |
| 2278 | switch (state) { |
| 2279 | case CPUHP_AP_ONLINE_DYN: |
| 2280 | step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN; |
| 2281 | end = CPUHP_AP_ONLINE_DYN_END; |
| 2282 | break; |
| 2283 | case CPUHP_BP_PREPARE_DYN: |
| 2284 | step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN; |
| 2285 | end = CPUHP_BP_PREPARE_DYN_END; |
| 2286 | break; |
| 2287 | default: |
| 2288 | return -EINVAL; |
| 2289 | } |
| 2290 | |
| 2291 | for (i = state; i <= end; i++, step++) { |
| 2292 | if (!step->name) |
| 2293 | return i; |
| 2294 | } |
| 2295 | WARN(1, "No more dynamic states available for CPU hotplug\n" ); |
| 2296 | return -ENOSPC; |
| 2297 | } |
| 2298 | |
| 2299 | static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name, |
| 2300 | int (*startup)(unsigned int cpu), |
| 2301 | int (*teardown)(unsigned int cpu), |
| 2302 | bool multi_instance) |
| 2303 | { |
| 2304 | /* (Un)Install the callbacks for further cpu hotplug operations */ |
| 2305 | struct cpuhp_step *sp; |
| 2306 | int ret = 0; |
| 2307 | |
| 2308 | /* |
| 2309 | * If name is NULL, then the state gets removed. |
| 2310 | * |
| 2311 | * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on |
| 2312 | * the first allocation from these dynamic ranges, so the removal |
| 2313 | * would trigger a new allocation and clear the wrong (already |
| 2314 | * empty) state, leaving the callbacks of the to be cleared state |
| 2315 | * dangling, which causes wreckage on the next hotplug operation. |
| 2316 | */ |
| 2317 | if (name && (state == CPUHP_AP_ONLINE_DYN || |
| 2318 | state == CPUHP_BP_PREPARE_DYN)) { |
| 2319 | ret = cpuhp_reserve_state(state); |
| 2320 | if (ret < 0) |
| 2321 | return ret; |
| 2322 | state = ret; |
| 2323 | } |
| 2324 | sp = cpuhp_get_step(state); |
| 2325 | if (name && sp->name) |
| 2326 | return -EBUSY; |
| 2327 | |
| 2328 | sp->startup.single = startup; |
| 2329 | sp->teardown.single = teardown; |
| 2330 | sp->name = name; |
| 2331 | sp->multi_instance = multi_instance; |
| 2332 | INIT_HLIST_HEAD(&sp->list); |
| 2333 | return ret; |
| 2334 | } |
| 2335 | |
| 2336 | static void *cpuhp_get_teardown_cb(enum cpuhp_state state) |
| 2337 | { |
| 2338 | return cpuhp_get_step(state)->teardown.single; |
| 2339 | } |
| 2340 | |
| 2341 | /* |
| 2342 | * Call the startup/teardown function for a step either on the AP or |
| 2343 | * on the current CPU. |
| 2344 | */ |
| 2345 | static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup, |
| 2346 | struct hlist_node *node) |
| 2347 | { |
| 2348 | struct cpuhp_step *sp = cpuhp_get_step(state); |
| 2349 | int ret; |
| 2350 | |
| 2351 | /* |
| 2352 | * If there's nothing to do, we done. |
| 2353 | * Relies on the union for multi_instance. |
| 2354 | */ |
| 2355 | if (cpuhp_step_empty(bringup, step: sp)) |
| 2356 | return 0; |
| 2357 | /* |
| 2358 | * The non AP bound callbacks can fail on bringup. On teardown |
| 2359 | * e.g. module removal we crash for now. |
| 2360 | */ |
| 2361 | #ifdef CONFIG_SMP |
| 2362 | if (cpuhp_is_ap_state(state)) |
| 2363 | ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node); |
| 2364 | else |
| 2365 | ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL); |
| 2366 | #else |
| 2367 | ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL); |
| 2368 | #endif |
| 2369 | BUG_ON(ret && !bringup); |
| 2370 | return ret; |
| 2371 | } |
| 2372 | |
| 2373 | /* |
| 2374 | * Called from __cpuhp_setup_state on a recoverable failure. |
| 2375 | * |
| 2376 | * Note: The teardown callbacks for rollback are not allowed to fail! |
| 2377 | */ |
| 2378 | static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state, |
| 2379 | struct hlist_node *node) |
| 2380 | { |
| 2381 | int cpu; |
| 2382 | |
| 2383 | /* Roll back the already executed steps on the other cpus */ |
| 2384 | for_each_present_cpu(cpu) { |
| 2385 | struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); |
| 2386 | int cpustate = st->state; |
| 2387 | |
| 2388 | if (cpu >= failedcpu) |
| 2389 | break; |
| 2390 | |
| 2391 | /* Did we invoke the startup call on that cpu ? */ |
| 2392 | if (cpustate >= state) |
| 2393 | cpuhp_issue_call(cpu, state, bringup: false, node); |
| 2394 | } |
| 2395 | } |
| 2396 | |
| 2397 | int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state, |
| 2398 | struct hlist_node *node, |
| 2399 | bool invoke) |
| 2400 | { |
| 2401 | struct cpuhp_step *sp; |
| 2402 | int cpu; |
| 2403 | int ret; |
| 2404 | |
| 2405 | lockdep_assert_cpus_held(); |
| 2406 | |
| 2407 | sp = cpuhp_get_step(state); |
| 2408 | if (sp->multi_instance == false) |
| 2409 | return -EINVAL; |
| 2410 | |
| 2411 | mutex_lock(lock: &cpuhp_state_mutex); |
| 2412 | |
| 2413 | if (!invoke || !sp->startup.multi) |
| 2414 | goto add_node; |
| 2415 | |
| 2416 | /* |
| 2417 | * Try to call the startup callback for each present cpu |
| 2418 | * depending on the hotplug state of the cpu. |
| 2419 | */ |
| 2420 | for_each_present_cpu(cpu) { |
| 2421 | struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); |
| 2422 | int cpustate = st->state; |
| 2423 | |
| 2424 | if (cpustate < state) |
| 2425 | continue; |
| 2426 | |
| 2427 | ret = cpuhp_issue_call(cpu, state, bringup: true, node); |
| 2428 | if (ret) { |
| 2429 | if (sp->teardown.multi) |
| 2430 | cpuhp_rollback_install(failedcpu: cpu, state, node); |
| 2431 | goto unlock; |
| 2432 | } |
| 2433 | } |
| 2434 | add_node: |
| 2435 | ret = 0; |
| 2436 | hlist_add_head(n: node, h: &sp->list); |
| 2437 | unlock: |
| 2438 | mutex_unlock(lock: &cpuhp_state_mutex); |
| 2439 | return ret; |
| 2440 | } |
| 2441 | |
| 2442 | int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node, |
| 2443 | bool invoke) |
| 2444 | { |
| 2445 | int ret; |
| 2446 | |
| 2447 | cpus_read_lock(); |
| 2448 | ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke); |
| 2449 | cpus_read_unlock(); |
| 2450 | return ret; |
| 2451 | } |
| 2452 | EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance); |
| 2453 | |
| 2454 | /** |
| 2455 | * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state |
| 2456 | * @state: The state to setup |
| 2457 | * @name: Name of the step |
| 2458 | * @invoke: If true, the startup function is invoked for cpus where |
| 2459 | * cpu state >= @state |
| 2460 | * @startup: startup callback function |
| 2461 | * @teardown: teardown callback function |
| 2462 | * @multi_instance: State is set up for multiple instances which get |
| 2463 | * added afterwards. |
| 2464 | * |
| 2465 | * The caller needs to hold cpus read locked while calling this function. |
| 2466 | * Return: |
| 2467 | * On success: |
| 2468 | * Positive state number if @state is CPUHP_AP_ONLINE_DYN or CPUHP_BP_PREPARE_DYN; |
| 2469 | * 0 for all other states |
| 2470 | * On failure: proper (negative) error code |
| 2471 | */ |
| 2472 | int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state, |
| 2473 | const char *name, bool invoke, |
| 2474 | int (*startup)(unsigned int cpu), |
| 2475 | int (*teardown)(unsigned int cpu), |
| 2476 | bool multi_instance) |
| 2477 | { |
| 2478 | int cpu, ret = 0; |
| 2479 | bool dynstate; |
| 2480 | |
| 2481 | lockdep_assert_cpus_held(); |
| 2482 | |
| 2483 | if (cpuhp_cb_check(state) || !name) |
| 2484 | return -EINVAL; |
| 2485 | |
| 2486 | mutex_lock(lock: &cpuhp_state_mutex); |
| 2487 | |
| 2488 | ret = cpuhp_store_callbacks(state, name, startup, teardown, |
| 2489 | multi_instance); |
| 2490 | |
| 2491 | dynstate = state == CPUHP_AP_ONLINE_DYN || state == CPUHP_BP_PREPARE_DYN; |
| 2492 | if (ret > 0 && dynstate) { |
| 2493 | state = ret; |
| 2494 | ret = 0; |
| 2495 | } |
| 2496 | |
| 2497 | if (ret || !invoke || !startup) |
| 2498 | goto out; |
| 2499 | |
| 2500 | /* |
| 2501 | * Try to call the startup callback for each present cpu |
| 2502 | * depending on the hotplug state of the cpu. |
| 2503 | */ |
| 2504 | for_each_present_cpu(cpu) { |
| 2505 | struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); |
| 2506 | int cpustate = st->state; |
| 2507 | |
| 2508 | if (cpustate < state) |
| 2509 | continue; |
| 2510 | |
| 2511 | ret = cpuhp_issue_call(cpu, state, bringup: true, NULL); |
| 2512 | if (ret) { |
| 2513 | if (teardown) |
| 2514 | cpuhp_rollback_install(failedcpu: cpu, state, NULL); |
| 2515 | cpuhp_store_callbacks(state, NULL, NULL, NULL, multi_instance: false); |
| 2516 | goto out; |
| 2517 | } |
| 2518 | } |
| 2519 | out: |
| 2520 | mutex_unlock(lock: &cpuhp_state_mutex); |
| 2521 | /* |
| 2522 | * If the requested state is CPUHP_AP_ONLINE_DYN or CPUHP_BP_PREPARE_DYN, |
| 2523 | * return the dynamically allocated state in case of success. |
| 2524 | */ |
| 2525 | if (!ret && dynstate) |
| 2526 | return state; |
| 2527 | return ret; |
| 2528 | } |
| 2529 | EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked); |
| 2530 | |
| 2531 | int __cpuhp_setup_state(enum cpuhp_state state, |
| 2532 | const char *name, bool invoke, |
| 2533 | int (*startup)(unsigned int cpu), |
| 2534 | int (*teardown)(unsigned int cpu), |
| 2535 | bool multi_instance) |
| 2536 | { |
| 2537 | int ret; |
| 2538 | |
| 2539 | cpus_read_lock(); |
| 2540 | ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup, |
| 2541 | teardown, multi_instance); |
| 2542 | cpus_read_unlock(); |
| 2543 | return ret; |
| 2544 | } |
| 2545 | EXPORT_SYMBOL(__cpuhp_setup_state); |
| 2546 | |
| 2547 | int __cpuhp_state_remove_instance(enum cpuhp_state state, |
| 2548 | struct hlist_node *node, bool invoke) |
| 2549 | { |
| 2550 | struct cpuhp_step *sp = cpuhp_get_step(state); |
| 2551 | int cpu; |
| 2552 | |
| 2553 | BUG_ON(cpuhp_cb_check(state)); |
| 2554 | |
| 2555 | if (!sp->multi_instance) |
| 2556 | return -EINVAL; |
| 2557 | |
| 2558 | cpus_read_lock(); |
| 2559 | mutex_lock(lock: &cpuhp_state_mutex); |
| 2560 | |
| 2561 | if (!invoke || !cpuhp_get_teardown_cb(state)) |
| 2562 | goto remove; |
| 2563 | /* |
| 2564 | * Call the teardown callback for each present cpu depending |
| 2565 | * on the hotplug state of the cpu. This function is not |
| 2566 | * allowed to fail currently! |
| 2567 | */ |
| 2568 | for_each_present_cpu(cpu) { |
| 2569 | struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); |
| 2570 | int cpustate = st->state; |
| 2571 | |
| 2572 | if (cpustate >= state) |
| 2573 | cpuhp_issue_call(cpu, state, bringup: false, node); |
| 2574 | } |
| 2575 | |
| 2576 | remove: |
| 2577 | hlist_del(n: node); |
| 2578 | mutex_unlock(lock: &cpuhp_state_mutex); |
| 2579 | cpus_read_unlock(); |
| 2580 | |
| 2581 | return 0; |
| 2582 | } |
| 2583 | EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance); |
| 2584 | |
| 2585 | /** |
| 2586 | * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state |
| 2587 | * @state: The state to remove |
| 2588 | * @invoke: If true, the teardown function is invoked for cpus where |
| 2589 | * cpu state >= @state |
| 2590 | * |
| 2591 | * The caller needs to hold cpus read locked while calling this function. |
| 2592 | * The teardown callback is currently not allowed to fail. Think |
| 2593 | * about module removal! |
| 2594 | */ |
| 2595 | void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke) |
| 2596 | { |
| 2597 | struct cpuhp_step *sp = cpuhp_get_step(state); |
| 2598 | int cpu; |
| 2599 | |
| 2600 | BUG_ON(cpuhp_cb_check(state)); |
| 2601 | |
| 2602 | lockdep_assert_cpus_held(); |
| 2603 | |
| 2604 | mutex_lock(lock: &cpuhp_state_mutex); |
| 2605 | if (sp->multi_instance) { |
| 2606 | WARN(!hlist_empty(&sp->list), |
| 2607 | "Error: Removing state %d which has instances left.\n" , |
| 2608 | state); |
| 2609 | goto remove; |
| 2610 | } |
| 2611 | |
| 2612 | if (!invoke || !cpuhp_get_teardown_cb(state)) |
| 2613 | goto remove; |
| 2614 | |
| 2615 | /* |
| 2616 | * Call the teardown callback for each present cpu depending |
| 2617 | * on the hotplug state of the cpu. This function is not |
| 2618 | * allowed to fail currently! |
| 2619 | */ |
| 2620 | for_each_present_cpu(cpu) { |
| 2621 | struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); |
| 2622 | int cpustate = st->state; |
| 2623 | |
| 2624 | if (cpustate >= state) |
| 2625 | cpuhp_issue_call(cpu, state, bringup: false, NULL); |
| 2626 | } |
| 2627 | remove: |
| 2628 | cpuhp_store_callbacks(state, NULL, NULL, NULL, multi_instance: false); |
| 2629 | mutex_unlock(lock: &cpuhp_state_mutex); |
| 2630 | } |
| 2631 | EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked); |
| 2632 | |
| 2633 | void __cpuhp_remove_state(enum cpuhp_state state, bool invoke) |
| 2634 | { |
| 2635 | cpus_read_lock(); |
| 2636 | __cpuhp_remove_state_cpuslocked(state, invoke); |
| 2637 | cpus_read_unlock(); |
| 2638 | } |
| 2639 | EXPORT_SYMBOL(__cpuhp_remove_state); |
| 2640 | |
| 2641 | #ifdef CONFIG_HOTPLUG_SMT |
| 2642 | static void cpuhp_offline_cpu_device(unsigned int cpu) |
| 2643 | { |
| 2644 | struct device *dev = get_cpu_device(cpu); |
| 2645 | |
| 2646 | dev->offline = true; |
| 2647 | /* Tell user space about the state change */ |
| 2648 | kobject_uevent(kobj: &dev->kobj, action: KOBJ_OFFLINE); |
| 2649 | } |
| 2650 | |
| 2651 | static void cpuhp_online_cpu_device(unsigned int cpu) |
| 2652 | { |
| 2653 | struct device *dev = get_cpu_device(cpu); |
| 2654 | |
| 2655 | dev->offline = false; |
| 2656 | /* Tell user space about the state change */ |
| 2657 | kobject_uevent(kobj: &dev->kobj, action: KOBJ_ONLINE); |
| 2658 | } |
| 2659 | |
| 2660 | int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval) |
| 2661 | { |
| 2662 | int cpu, ret = 0; |
| 2663 | |
| 2664 | cpu_maps_update_begin(); |
| 2665 | for_each_online_cpu(cpu) { |
| 2666 | if (topology_is_primary_thread(cpu)) |
| 2667 | continue; |
| 2668 | /* |
| 2669 | * Disable can be called with CPU_SMT_ENABLED when changing |
| 2670 | * from a higher to lower number of SMT threads per core. |
| 2671 | */ |
| 2672 | if (ctrlval == CPU_SMT_ENABLED && cpu_smt_thread_allowed(cpu)) |
| 2673 | continue; |
| 2674 | ret = cpu_down_maps_locked(cpu, target: CPUHP_OFFLINE); |
| 2675 | if (ret) |
| 2676 | break; |
| 2677 | /* |
| 2678 | * As this needs to hold the cpu maps lock it's impossible |
| 2679 | * to call device_offline() because that ends up calling |
| 2680 | * cpu_down() which takes cpu maps lock. cpu maps lock |
| 2681 | * needs to be held as this might race against in kernel |
| 2682 | * abusers of the hotplug machinery (thermal management). |
| 2683 | * |
| 2684 | * So nothing would update device:offline state. That would |
| 2685 | * leave the sysfs entry stale and prevent onlining after |
| 2686 | * smt control has been changed to 'off' again. This is |
| 2687 | * called under the sysfs hotplug lock, so it is properly |
| 2688 | * serialized against the regular offline usage. |
| 2689 | */ |
| 2690 | cpuhp_offline_cpu_device(cpu); |
| 2691 | } |
| 2692 | if (!ret) |
| 2693 | cpu_smt_control = ctrlval; |
| 2694 | cpu_maps_update_done(); |
| 2695 | return ret; |
| 2696 | } |
| 2697 | |
| 2698 | /* Check if the core a CPU belongs to is online */ |
| 2699 | #if !defined(topology_is_core_online) |
| 2700 | static inline bool topology_is_core_online(unsigned int cpu) |
| 2701 | { |
| 2702 | return true; |
| 2703 | } |
| 2704 | #endif |
| 2705 | |
| 2706 | int cpuhp_smt_enable(void) |
| 2707 | { |
| 2708 | int cpu, ret = 0; |
| 2709 | |
| 2710 | cpu_maps_update_begin(); |
| 2711 | cpu_smt_control = CPU_SMT_ENABLED; |
| 2712 | for_each_present_cpu(cpu) { |
| 2713 | /* Skip online CPUs and CPUs on offline nodes */ |
| 2714 | if (cpu_online(cpu) || !node_online(cpu_to_node(cpu))) |
| 2715 | continue; |
| 2716 | if (!cpu_smt_thread_allowed(cpu) || !topology_is_core_online(cpu)) |
| 2717 | continue; |
| 2718 | ret = _cpu_up(cpu, tasks_frozen: 0, target: CPUHP_ONLINE); |
| 2719 | if (ret) |
| 2720 | break; |
| 2721 | /* See comment in cpuhp_smt_disable() */ |
| 2722 | cpuhp_online_cpu_device(cpu); |
| 2723 | } |
| 2724 | cpu_maps_update_done(); |
| 2725 | return ret; |
| 2726 | } |
| 2727 | #endif |
| 2728 | |
| 2729 | #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU) |
| 2730 | static ssize_t state_show(struct device *dev, |
| 2731 | struct device_attribute *attr, char *buf) |
| 2732 | { |
| 2733 | struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); |
| 2734 | |
| 2735 | return sprintf(buf, fmt: "%d\n" , st->state); |
| 2736 | } |
| 2737 | static DEVICE_ATTR_RO(state); |
| 2738 | |
| 2739 | static ssize_t target_store(struct device *dev, struct device_attribute *attr, |
| 2740 | const char *buf, size_t count) |
| 2741 | { |
| 2742 | struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); |
| 2743 | struct cpuhp_step *sp; |
| 2744 | int target, ret; |
| 2745 | |
| 2746 | ret = kstrtoint(s: buf, base: 10, res: &target); |
| 2747 | if (ret) |
| 2748 | return ret; |
| 2749 | |
| 2750 | #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL |
| 2751 | if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE) |
| 2752 | return -EINVAL; |
| 2753 | #else |
| 2754 | if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE) |
| 2755 | return -EINVAL; |
| 2756 | #endif |
| 2757 | |
| 2758 | ret = lock_device_hotplug_sysfs(); |
| 2759 | if (ret) |
| 2760 | return ret; |
| 2761 | |
| 2762 | mutex_lock(lock: &cpuhp_state_mutex); |
| 2763 | sp = cpuhp_get_step(state: target); |
| 2764 | ret = !sp->name || sp->cant_stop ? -EINVAL : 0; |
| 2765 | mutex_unlock(lock: &cpuhp_state_mutex); |
| 2766 | if (ret) |
| 2767 | goto out; |
| 2768 | |
| 2769 | if (st->state < target) |
| 2770 | ret = cpu_up(cpu: dev->id, target); |
| 2771 | else if (st->state > target) |
| 2772 | ret = cpu_down(cpu: dev->id, target); |
| 2773 | else if (WARN_ON(st->target != target)) |
| 2774 | st->target = target; |
| 2775 | out: |
| 2776 | unlock_device_hotplug(); |
| 2777 | return ret ? ret : count; |
| 2778 | } |
| 2779 | |
| 2780 | static ssize_t target_show(struct device *dev, |
| 2781 | struct device_attribute *attr, char *buf) |
| 2782 | { |
| 2783 | struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); |
| 2784 | |
| 2785 | return sprintf(buf, fmt: "%d\n" , st->target); |
| 2786 | } |
| 2787 | static DEVICE_ATTR_RW(target); |
| 2788 | |
| 2789 | static ssize_t fail_store(struct device *dev, struct device_attribute *attr, |
| 2790 | const char *buf, size_t count) |
| 2791 | { |
| 2792 | struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); |
| 2793 | struct cpuhp_step *sp; |
| 2794 | int fail, ret; |
| 2795 | |
| 2796 | ret = kstrtoint(s: buf, base: 10, res: &fail); |
| 2797 | if (ret) |
| 2798 | return ret; |
| 2799 | |
| 2800 | if (fail == CPUHP_INVALID) { |
| 2801 | st->fail = fail; |
| 2802 | return count; |
| 2803 | } |
| 2804 | |
| 2805 | if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE) |
| 2806 | return -EINVAL; |
| 2807 | |
| 2808 | /* |
| 2809 | * Cannot fail STARTING/DYING callbacks. |
| 2810 | */ |
| 2811 | if (cpuhp_is_atomic_state(state: fail)) |
| 2812 | return -EINVAL; |
| 2813 | |
| 2814 | /* |
| 2815 | * DEAD callbacks cannot fail... |
| 2816 | * ... neither can CPUHP_BRINGUP_CPU during hotunplug. The latter |
| 2817 | * triggering STARTING callbacks, a failure in this state would |
| 2818 | * hinder rollback. |
| 2819 | */ |
| 2820 | if (fail <= CPUHP_BRINGUP_CPU && st->state > CPUHP_BRINGUP_CPU) |
| 2821 | return -EINVAL; |
| 2822 | |
| 2823 | /* |
| 2824 | * Cannot fail anything that doesn't have callbacks. |
| 2825 | */ |
| 2826 | mutex_lock(lock: &cpuhp_state_mutex); |
| 2827 | sp = cpuhp_get_step(state: fail); |
| 2828 | if (!sp->startup.single && !sp->teardown.single) |
| 2829 | ret = -EINVAL; |
| 2830 | mutex_unlock(lock: &cpuhp_state_mutex); |
| 2831 | if (ret) |
| 2832 | return ret; |
| 2833 | |
| 2834 | st->fail = fail; |
| 2835 | |
| 2836 | return count; |
| 2837 | } |
| 2838 | |
| 2839 | static ssize_t fail_show(struct device *dev, |
| 2840 | struct device_attribute *attr, char *buf) |
| 2841 | { |
| 2842 | struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); |
| 2843 | |
| 2844 | return sprintf(buf, fmt: "%d\n" , st->fail); |
| 2845 | } |
| 2846 | |
| 2847 | static DEVICE_ATTR_RW(fail); |
| 2848 | |
| 2849 | static struct attribute *cpuhp_cpu_attrs[] = { |
| 2850 | &dev_attr_state.attr, |
| 2851 | &dev_attr_target.attr, |
| 2852 | &dev_attr_fail.attr, |
| 2853 | NULL |
| 2854 | }; |
| 2855 | |
| 2856 | static const struct attribute_group cpuhp_cpu_attr_group = { |
| 2857 | .attrs = cpuhp_cpu_attrs, |
| 2858 | .name = "hotplug" , |
| 2859 | }; |
| 2860 | |
| 2861 | static ssize_t states_show(struct device *dev, |
| 2862 | struct device_attribute *attr, char *buf) |
| 2863 | { |
| 2864 | ssize_t cur, res = 0; |
| 2865 | int i; |
| 2866 | |
| 2867 | mutex_lock(lock: &cpuhp_state_mutex); |
| 2868 | for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) { |
| 2869 | struct cpuhp_step *sp = cpuhp_get_step(state: i); |
| 2870 | |
| 2871 | if (sp->name) { |
| 2872 | cur = sprintf(buf, fmt: "%3d: %s\n" , i, sp->name); |
| 2873 | buf += cur; |
| 2874 | res += cur; |
| 2875 | } |
| 2876 | } |
| 2877 | mutex_unlock(lock: &cpuhp_state_mutex); |
| 2878 | return res; |
| 2879 | } |
| 2880 | static DEVICE_ATTR_RO(states); |
| 2881 | |
| 2882 | static struct attribute *cpuhp_cpu_root_attrs[] = { |
| 2883 | &dev_attr_states.attr, |
| 2884 | NULL |
| 2885 | }; |
| 2886 | |
| 2887 | static const struct attribute_group cpuhp_cpu_root_attr_group = { |
| 2888 | .attrs = cpuhp_cpu_root_attrs, |
| 2889 | .name = "hotplug" , |
| 2890 | }; |
| 2891 | |
| 2892 | #ifdef CONFIG_HOTPLUG_SMT |
| 2893 | |
| 2894 | static bool cpu_smt_num_threads_valid(unsigned int threads) |
| 2895 | { |
| 2896 | if (IS_ENABLED(CONFIG_SMT_NUM_THREADS_DYNAMIC)) |
| 2897 | return threads >= 1 && threads <= cpu_smt_max_threads; |
| 2898 | return threads == 1 || threads == cpu_smt_max_threads; |
| 2899 | } |
| 2900 | |
| 2901 | static ssize_t |
| 2902 | __store_smt_control(struct device *dev, struct device_attribute *attr, |
| 2903 | const char *buf, size_t count) |
| 2904 | { |
| 2905 | int ctrlval, ret, num_threads, orig_threads; |
| 2906 | bool force_off; |
| 2907 | |
| 2908 | if (cpu_smt_control == CPU_SMT_FORCE_DISABLED) |
| 2909 | return -EPERM; |
| 2910 | |
| 2911 | if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED) |
| 2912 | return -ENODEV; |
| 2913 | |
| 2914 | if (sysfs_streq(s1: buf, s2: "on" )) { |
| 2915 | ctrlval = CPU_SMT_ENABLED; |
| 2916 | num_threads = cpu_smt_max_threads; |
| 2917 | } else if (sysfs_streq(s1: buf, s2: "off" )) { |
| 2918 | ctrlval = CPU_SMT_DISABLED; |
| 2919 | num_threads = 1; |
| 2920 | } else if (sysfs_streq(s1: buf, s2: "forceoff" )) { |
| 2921 | ctrlval = CPU_SMT_FORCE_DISABLED; |
| 2922 | num_threads = 1; |
| 2923 | } else if (kstrtoint(s: buf, base: 10, res: &num_threads) == 0) { |
| 2924 | if (num_threads == 1) |
| 2925 | ctrlval = CPU_SMT_DISABLED; |
| 2926 | else if (cpu_smt_num_threads_valid(threads: num_threads)) |
| 2927 | ctrlval = CPU_SMT_ENABLED; |
| 2928 | else |
| 2929 | return -EINVAL; |
| 2930 | } else { |
| 2931 | return -EINVAL; |
| 2932 | } |
| 2933 | |
| 2934 | ret = lock_device_hotplug_sysfs(); |
| 2935 | if (ret) |
| 2936 | return ret; |
| 2937 | |
| 2938 | orig_threads = cpu_smt_num_threads; |
| 2939 | cpu_smt_num_threads = num_threads; |
| 2940 | |
| 2941 | force_off = ctrlval != cpu_smt_control && ctrlval == CPU_SMT_FORCE_DISABLED; |
| 2942 | |
| 2943 | if (num_threads > orig_threads) |
| 2944 | ret = cpuhp_smt_enable(); |
| 2945 | else if (num_threads < orig_threads || force_off) |
| 2946 | ret = cpuhp_smt_disable(ctrlval); |
| 2947 | |
| 2948 | unlock_device_hotplug(); |
| 2949 | return ret ? ret : count; |
| 2950 | } |
| 2951 | |
| 2952 | #else /* !CONFIG_HOTPLUG_SMT */ |
| 2953 | static ssize_t |
| 2954 | __store_smt_control(struct device *dev, struct device_attribute *attr, |
| 2955 | const char *buf, size_t count) |
| 2956 | { |
| 2957 | return -ENODEV; |
| 2958 | } |
| 2959 | #endif /* CONFIG_HOTPLUG_SMT */ |
| 2960 | |
| 2961 | static const char *smt_states[] = { |
| 2962 | [CPU_SMT_ENABLED] = "on" , |
| 2963 | [CPU_SMT_DISABLED] = "off" , |
| 2964 | [CPU_SMT_FORCE_DISABLED] = "forceoff" , |
| 2965 | [CPU_SMT_NOT_SUPPORTED] = "notsupported" , |
| 2966 | [CPU_SMT_NOT_IMPLEMENTED] = "notimplemented" , |
| 2967 | }; |
| 2968 | |
| 2969 | static ssize_t control_show(struct device *dev, |
| 2970 | struct device_attribute *attr, char *buf) |
| 2971 | { |
| 2972 | const char *state = smt_states[cpu_smt_control]; |
| 2973 | |
| 2974 | #ifdef CONFIG_HOTPLUG_SMT |
| 2975 | /* |
| 2976 | * If SMT is enabled but not all threads are enabled then show the |
| 2977 | * number of threads. If all threads are enabled show "on". Otherwise |
| 2978 | * show the state name. |
| 2979 | */ |
| 2980 | if (cpu_smt_control == CPU_SMT_ENABLED && |
| 2981 | cpu_smt_num_threads != cpu_smt_max_threads) |
| 2982 | return sysfs_emit(buf, fmt: "%d\n" , cpu_smt_num_threads); |
| 2983 | #endif |
| 2984 | |
| 2985 | return sysfs_emit(buf, fmt: "%s\n" , state); |
| 2986 | } |
| 2987 | |
| 2988 | static ssize_t control_store(struct device *dev, struct device_attribute *attr, |
| 2989 | const char *buf, size_t count) |
| 2990 | { |
| 2991 | return __store_smt_control(dev, attr, buf, count); |
| 2992 | } |
| 2993 | static DEVICE_ATTR_RW(control); |
| 2994 | |
| 2995 | static ssize_t active_show(struct device *dev, |
| 2996 | struct device_attribute *attr, char *buf) |
| 2997 | { |
| 2998 | return sysfs_emit(buf, fmt: "%d\n" , sched_smt_active()); |
| 2999 | } |
| 3000 | static DEVICE_ATTR_RO(active); |
| 3001 | |
| 3002 | static struct attribute *cpuhp_smt_attrs[] = { |
| 3003 | &dev_attr_control.attr, |
| 3004 | &dev_attr_active.attr, |
| 3005 | NULL |
| 3006 | }; |
| 3007 | |
| 3008 | static const struct attribute_group cpuhp_smt_attr_group = { |
| 3009 | .attrs = cpuhp_smt_attrs, |
| 3010 | .name = "smt" , |
| 3011 | }; |
| 3012 | |
| 3013 | static int __init cpu_smt_sysfs_init(void) |
| 3014 | { |
| 3015 | struct device *dev_root; |
| 3016 | int ret = -ENODEV; |
| 3017 | |
| 3018 | dev_root = bus_get_dev_root(bus: &cpu_subsys); |
| 3019 | if (dev_root) { |
| 3020 | ret = sysfs_create_group(kobj: &dev_root->kobj, grp: &cpuhp_smt_attr_group); |
| 3021 | put_device(dev: dev_root); |
| 3022 | } |
| 3023 | return ret; |
| 3024 | } |
| 3025 | |
| 3026 | static int __init cpuhp_sysfs_init(void) |
| 3027 | { |
| 3028 | struct device *dev_root; |
| 3029 | int cpu, ret; |
| 3030 | |
| 3031 | ret = cpu_smt_sysfs_init(); |
| 3032 | if (ret) |
| 3033 | return ret; |
| 3034 | |
| 3035 | dev_root = bus_get_dev_root(bus: &cpu_subsys); |
| 3036 | if (dev_root) { |
| 3037 | ret = sysfs_create_group(kobj: &dev_root->kobj, grp: &cpuhp_cpu_root_attr_group); |
| 3038 | put_device(dev: dev_root); |
| 3039 | if (ret) |
| 3040 | return ret; |
| 3041 | } |
| 3042 | |
| 3043 | for_each_possible_cpu(cpu) { |
| 3044 | struct device *dev = get_cpu_device(cpu); |
| 3045 | |
| 3046 | if (!dev) |
| 3047 | continue; |
| 3048 | ret = sysfs_create_group(kobj: &dev->kobj, grp: &cpuhp_cpu_attr_group); |
| 3049 | if (ret) |
| 3050 | return ret; |
| 3051 | } |
| 3052 | return 0; |
| 3053 | } |
| 3054 | device_initcall(cpuhp_sysfs_init); |
| 3055 | #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */ |
| 3056 | |
| 3057 | /* |
| 3058 | * cpu_bit_bitmap[] is a special, "compressed" data structure that |
| 3059 | * represents all NR_CPUS bits binary values of 1<<nr. |
| 3060 | * |
| 3061 | * It is used by cpumask_of() to get a constant address to a CPU |
| 3062 | * mask value that has a single bit set only. |
| 3063 | */ |
| 3064 | |
| 3065 | /* cpu_bit_bitmap[0] is empty - so we can back into it */ |
| 3066 | #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x)) |
| 3067 | #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1) |
| 3068 | #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2) |
| 3069 | #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4) |
| 3070 | |
| 3071 | const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = { |
| 3072 | |
| 3073 | MASK_DECLARE_8(0), MASK_DECLARE_8(8), |
| 3074 | MASK_DECLARE_8(16), MASK_DECLARE_8(24), |
| 3075 | #if BITS_PER_LONG > 32 |
| 3076 | MASK_DECLARE_8(32), MASK_DECLARE_8(40), |
| 3077 | MASK_DECLARE_8(48), MASK_DECLARE_8(56), |
| 3078 | #endif |
| 3079 | }; |
| 3080 | EXPORT_SYMBOL_GPL(cpu_bit_bitmap); |
| 3081 | |
| 3082 | const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL; |
| 3083 | EXPORT_SYMBOL(cpu_all_bits); |
| 3084 | |
| 3085 | #ifdef CONFIG_INIT_ALL_POSSIBLE |
| 3086 | struct cpumask __cpu_possible_mask __ro_after_init |
| 3087 | = {CPU_BITS_ALL}; |
| 3088 | #else |
| 3089 | struct cpumask __cpu_possible_mask __ro_after_init; |
| 3090 | #endif |
| 3091 | EXPORT_SYMBOL(__cpu_possible_mask); |
| 3092 | |
| 3093 | struct cpumask __cpu_online_mask __read_mostly; |
| 3094 | EXPORT_SYMBOL(__cpu_online_mask); |
| 3095 | |
| 3096 | struct cpumask __cpu_enabled_mask __read_mostly; |
| 3097 | EXPORT_SYMBOL(__cpu_enabled_mask); |
| 3098 | |
| 3099 | struct cpumask __cpu_present_mask __read_mostly; |
| 3100 | EXPORT_SYMBOL(__cpu_present_mask); |
| 3101 | |
| 3102 | struct cpumask __cpu_active_mask __read_mostly; |
| 3103 | EXPORT_SYMBOL(__cpu_active_mask); |
| 3104 | |
| 3105 | struct cpumask __cpu_dying_mask __read_mostly; |
| 3106 | EXPORT_SYMBOL(__cpu_dying_mask); |
| 3107 | |
| 3108 | atomic_t __num_online_cpus __read_mostly; |
| 3109 | EXPORT_SYMBOL(__num_online_cpus); |
| 3110 | |
| 3111 | void init_cpu_present(const struct cpumask *src) |
| 3112 | { |
| 3113 | cpumask_copy(dstp: &__cpu_present_mask, srcp: src); |
| 3114 | } |
| 3115 | |
| 3116 | void init_cpu_possible(const struct cpumask *src) |
| 3117 | { |
| 3118 | cpumask_copy(dstp: &__cpu_possible_mask, srcp: src); |
| 3119 | } |
| 3120 | |
| 3121 | void set_cpu_online(unsigned int cpu, bool online) |
| 3122 | { |
| 3123 | /* |
| 3124 | * atomic_inc/dec() is required to handle the horrid abuse of this |
| 3125 | * function by the reboot and kexec code which invoke it from |
| 3126 | * IPI/NMI broadcasts when shutting down CPUs. Invocation from |
| 3127 | * regular CPU hotplug is properly serialized. |
| 3128 | * |
| 3129 | * Note, that the fact that __num_online_cpus is of type atomic_t |
| 3130 | * does not protect readers which are not serialized against |
| 3131 | * concurrent hotplug operations. |
| 3132 | */ |
| 3133 | if (online) { |
| 3134 | if (!cpumask_test_and_set_cpu(cpu, cpumask: &__cpu_online_mask)) |
| 3135 | atomic_inc(v: &__num_online_cpus); |
| 3136 | } else { |
| 3137 | if (cpumask_test_and_clear_cpu(cpu, cpumask: &__cpu_online_mask)) |
| 3138 | atomic_dec(v: &__num_online_cpus); |
| 3139 | } |
| 3140 | } |
| 3141 | |
| 3142 | /* |
| 3143 | * Activate the first processor. |
| 3144 | */ |
| 3145 | void __init boot_cpu_init(void) |
| 3146 | { |
| 3147 | int cpu = smp_processor_id(); |
| 3148 | |
| 3149 | /* Mark the boot cpu "present", "online" etc for SMP and UP case */ |
| 3150 | set_cpu_online(cpu, online: true); |
| 3151 | set_cpu_active(cpu, true); |
| 3152 | set_cpu_present(cpu, true); |
| 3153 | set_cpu_possible(cpu, true); |
| 3154 | |
| 3155 | #ifdef CONFIG_SMP |
| 3156 | __boot_cpu_id = cpu; |
| 3157 | #endif |
| 3158 | } |
| 3159 | |
| 3160 | /* |
| 3161 | * Must be called _AFTER_ setting up the per_cpu areas |
| 3162 | */ |
| 3163 | void __init boot_cpu_hotplug_init(void) |
| 3164 | { |
| 3165 | #ifdef CONFIG_SMP |
| 3166 | cpumask_set_cpu(smp_processor_id(), dstp: &cpus_booted_once_mask); |
| 3167 | atomic_set(this_cpu_ptr(&cpuhp_state.ap_sync_state), i: SYNC_STATE_ONLINE); |
| 3168 | #endif |
| 3169 | this_cpu_write(cpuhp_state.state, CPUHP_ONLINE); |
| 3170 | this_cpu_write(cpuhp_state.target, CPUHP_ONLINE); |
| 3171 | } |
| 3172 | |
| 3173 | #ifdef CONFIG_CPU_MITIGATIONS |
| 3174 | /* |
| 3175 | * All except the cross-thread attack vector are mitigated by default. |
| 3176 | * Cross-thread mitigation often requires disabling SMT which is expensive |
| 3177 | * so cross-thread mitigations are only partially enabled by default. |
| 3178 | * |
| 3179 | * Guest-to-Host and Guest-to-Guest vectors are only needed if KVM support is |
| 3180 | * present. |
| 3181 | */ |
| 3182 | static bool attack_vectors[NR_CPU_ATTACK_VECTORS] __ro_after_init = { |
| 3183 | [CPU_MITIGATE_USER_KERNEL] = true, |
| 3184 | [CPU_MITIGATE_USER_USER] = true, |
| 3185 | [CPU_MITIGATE_GUEST_HOST] = IS_ENABLED(CONFIG_KVM), |
| 3186 | [CPU_MITIGATE_GUEST_GUEST] = IS_ENABLED(CONFIG_KVM), |
| 3187 | }; |
| 3188 | |
| 3189 | bool cpu_attack_vector_mitigated(enum cpu_attack_vectors v) |
| 3190 | { |
| 3191 | if (v < NR_CPU_ATTACK_VECTORS) |
| 3192 | return attack_vectors[v]; |
| 3193 | |
| 3194 | WARN_ONCE(1, "Invalid attack vector %d\n" , v); |
| 3195 | return false; |
| 3196 | } |
| 3197 | |
| 3198 | /* |
| 3199 | * There are 3 global options, 'off', 'auto', 'auto,nosmt'. These may optionally |
| 3200 | * be combined with attack-vector disables which follow them. |
| 3201 | * |
| 3202 | * Examples: |
| 3203 | * mitigations=auto,no_user_kernel,no_user_user,no_cross_thread |
| 3204 | * mitigations=auto,nosmt,no_guest_host,no_guest_guest |
| 3205 | * |
| 3206 | * mitigations=off is equivalent to disabling all attack vectors. |
| 3207 | */ |
| 3208 | enum cpu_mitigations { |
| 3209 | CPU_MITIGATIONS_OFF, |
| 3210 | CPU_MITIGATIONS_AUTO, |
| 3211 | CPU_MITIGATIONS_AUTO_NOSMT, |
| 3212 | }; |
| 3213 | |
| 3214 | enum { |
| 3215 | NO_USER_KERNEL, |
| 3216 | NO_USER_USER, |
| 3217 | NO_GUEST_HOST, |
| 3218 | NO_GUEST_GUEST, |
| 3219 | NO_CROSS_THREAD, |
| 3220 | NR_VECTOR_PARAMS, |
| 3221 | }; |
| 3222 | |
| 3223 | enum smt_mitigations smt_mitigations __ro_after_init = SMT_MITIGATIONS_AUTO; |
| 3224 | static enum cpu_mitigations cpu_mitigations __ro_after_init = CPU_MITIGATIONS_AUTO; |
| 3225 | |
| 3226 | static const match_table_t global_mitigations = { |
| 3227 | { CPU_MITIGATIONS_AUTO_NOSMT, "auto,nosmt" }, |
| 3228 | { .token: CPU_MITIGATIONS_AUTO, .pattern: "auto" }, |
| 3229 | { .token: CPU_MITIGATIONS_OFF, .pattern: "off" }, |
| 3230 | }; |
| 3231 | |
| 3232 | static const match_table_t vector_mitigations = { |
| 3233 | { NO_USER_KERNEL, "no_user_kernel" }, |
| 3234 | { .token: NO_USER_USER, .pattern: "no_user_user" }, |
| 3235 | { .token: NO_GUEST_HOST, .pattern: "no_guest_host" }, |
| 3236 | { .token: NO_GUEST_GUEST, .pattern: "no_guest_guest" }, |
| 3237 | { .token: NO_CROSS_THREAD, .pattern: "no_cross_thread" }, |
| 3238 | { .token: NR_VECTOR_PARAMS, NULL}, |
| 3239 | }; |
| 3240 | |
| 3241 | static int __init mitigations_parse_global_opt(char *arg) |
| 3242 | { |
| 3243 | int i; |
| 3244 | |
| 3245 | for (i = 0; i < ARRAY_SIZE(global_mitigations); i++) { |
| 3246 | const char *pattern = global_mitigations[i].pattern; |
| 3247 | |
| 3248 | if (!strncmp(arg, pattern, strlen(pattern))) { |
| 3249 | cpu_mitigations = global_mitigations[i].token; |
| 3250 | return strlen(pattern); |
| 3251 | } |
| 3252 | } |
| 3253 | |
| 3254 | return 0; |
| 3255 | } |
| 3256 | |
| 3257 | static int __init mitigations_parse_cmdline(char *arg) |
| 3258 | { |
| 3259 | char *s, *p; |
| 3260 | int len; |
| 3261 | |
| 3262 | len = mitigations_parse_global_opt(arg); |
| 3263 | |
| 3264 | if (cpu_mitigations_off()) { |
| 3265 | memset(s: attack_vectors, c: 0, n: sizeof(attack_vectors)); |
| 3266 | smt_mitigations = SMT_MITIGATIONS_OFF; |
| 3267 | } else if (cpu_mitigations_auto_nosmt()) { |
| 3268 | smt_mitigations = SMT_MITIGATIONS_ON; |
| 3269 | } |
| 3270 | |
| 3271 | p = arg + len; |
| 3272 | |
| 3273 | if (!*p) |
| 3274 | return 0; |
| 3275 | |
| 3276 | /* Attack vector controls may come after the ',' */ |
| 3277 | if (*p++ != ',' || !IS_ENABLED(CONFIG_ARCH_HAS_CPU_ATTACK_VECTORS)) { |
| 3278 | pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n" , arg); |
| 3279 | return 0; |
| 3280 | } |
| 3281 | |
| 3282 | while ((s = strsep(&p, "," )) != NULL) { |
| 3283 | switch (match_token(s, table: vector_mitigations, NULL)) { |
| 3284 | case NO_USER_KERNEL: |
| 3285 | attack_vectors[CPU_MITIGATE_USER_KERNEL] = false; |
| 3286 | break; |
| 3287 | case NO_USER_USER: |
| 3288 | attack_vectors[CPU_MITIGATE_USER_USER] = false; |
| 3289 | break; |
| 3290 | case NO_GUEST_HOST: |
| 3291 | attack_vectors[CPU_MITIGATE_GUEST_HOST] = false; |
| 3292 | break; |
| 3293 | case NO_GUEST_GUEST: |
| 3294 | attack_vectors[CPU_MITIGATE_GUEST_GUEST] = false; |
| 3295 | break; |
| 3296 | case NO_CROSS_THREAD: |
| 3297 | smt_mitigations = SMT_MITIGATIONS_OFF; |
| 3298 | break; |
| 3299 | default: |
| 3300 | pr_crit("Unsupported mitigations options %s\n" , s); |
| 3301 | return 0; |
| 3302 | } |
| 3303 | } |
| 3304 | |
| 3305 | return 0; |
| 3306 | } |
| 3307 | |
| 3308 | /* mitigations=off */ |
| 3309 | bool cpu_mitigations_off(void) |
| 3310 | { |
| 3311 | return cpu_mitigations == CPU_MITIGATIONS_OFF; |
| 3312 | } |
| 3313 | EXPORT_SYMBOL_GPL(cpu_mitigations_off); |
| 3314 | |
| 3315 | /* mitigations=auto,nosmt */ |
| 3316 | bool cpu_mitigations_auto_nosmt(void) |
| 3317 | { |
| 3318 | return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT; |
| 3319 | } |
| 3320 | EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt); |
| 3321 | #else |
| 3322 | static int __init mitigations_parse_cmdline(char *arg) |
| 3323 | { |
| 3324 | pr_crit("Kernel compiled without mitigations, ignoring 'mitigations'; system may still be vulnerable\n" ); |
| 3325 | return 0; |
| 3326 | } |
| 3327 | #endif |
| 3328 | early_param("mitigations" , mitigations_parse_cmdline); |
| 3329 | |