| 1 | // SPDX-License-Identifier: GPL-2.0 | 
|---|
| 2 | #include <linux/percpu.h> | 
|---|
| 3 | #include <linux/sched.h> | 
|---|
| 4 | #include <linux/osq_lock.h> | 
|---|
| 5 |  | 
|---|
| 6 | /* | 
|---|
| 7 | * An MCS like lock especially tailored for optimistic spinning for sleeping | 
|---|
| 8 | * lock implementations (mutex, rwsem, etc). | 
|---|
| 9 | * | 
|---|
| 10 | * Using a single mcs node per CPU is safe because sleeping locks should not be | 
|---|
| 11 | * called from interrupt context and we have preemption disabled while | 
|---|
| 12 | * spinning. | 
|---|
| 13 | */ | 
|---|
| 14 |  | 
|---|
| 15 | struct optimistic_spin_node { | 
|---|
| 16 | struct optimistic_spin_node *next, *prev; | 
|---|
| 17 | int locked; /* 1 if lock acquired */ | 
|---|
| 18 | int cpu; /* encoded CPU # + 1 value */ | 
|---|
| 19 | }; | 
|---|
| 20 |  | 
|---|
| 21 | static DEFINE_PER_CPU_SHARED_ALIGNED(struct optimistic_spin_node, osq_node); | 
|---|
| 22 |  | 
|---|
| 23 | /* | 
|---|
| 24 | * We use the value 0 to represent "no CPU", thus the encoded value | 
|---|
| 25 | * will be the CPU number incremented by 1. | 
|---|
| 26 | */ | 
|---|
| 27 | static inline int encode_cpu(int cpu_nr) | 
|---|
| 28 | { | 
|---|
| 29 | return cpu_nr + 1; | 
|---|
| 30 | } | 
|---|
| 31 |  | 
|---|
| 32 | static inline int node_cpu(struct optimistic_spin_node *node) | 
|---|
| 33 | { | 
|---|
| 34 | return node->cpu - 1; | 
|---|
| 35 | } | 
|---|
| 36 |  | 
|---|
| 37 | static inline struct optimistic_spin_node *decode_cpu(int encoded_cpu_val) | 
|---|
| 38 | { | 
|---|
| 39 | int cpu_nr = encoded_cpu_val - 1; | 
|---|
| 40 |  | 
|---|
| 41 | return per_cpu_ptr(&osq_node, cpu_nr); | 
|---|
| 42 | } | 
|---|
| 43 |  | 
|---|
| 44 | /* | 
|---|
| 45 | * Get a stable @node->next pointer, either for unlock() or unqueue() purposes. | 
|---|
| 46 | * Can return NULL in case we were the last queued and we updated @lock instead. | 
|---|
| 47 | * | 
|---|
| 48 | * If osq_lock() is being cancelled there must be a previous node | 
|---|
| 49 | * and 'old_cpu' is its CPU #. | 
|---|
| 50 | * For osq_unlock() there is never a previous node and old_cpu is | 
|---|
| 51 | * set to OSQ_UNLOCKED_VAL. | 
|---|
| 52 | */ | 
|---|
| 53 | static inline struct optimistic_spin_node * | 
|---|
| 54 | osq_wait_next(struct optimistic_spin_queue *lock, | 
|---|
| 55 | struct optimistic_spin_node *node, | 
|---|
| 56 | int old_cpu) | 
|---|
| 57 | { | 
|---|
| 58 | int curr = encode_cpu(smp_processor_id()); | 
|---|
| 59 |  | 
|---|
| 60 | for (;;) { | 
|---|
| 61 | if (atomic_read(v: &lock->tail) == curr && | 
|---|
| 62 | atomic_cmpxchg_acquire(v: &lock->tail, old: curr, new: old_cpu) == curr) { | 
|---|
| 63 | /* | 
|---|
| 64 | * We were the last queued, we moved @lock back. @prev | 
|---|
| 65 | * will now observe @lock and will complete its | 
|---|
| 66 | * unlock()/unqueue(). | 
|---|
| 67 | */ | 
|---|
| 68 | return NULL; | 
|---|
| 69 | } | 
|---|
| 70 |  | 
|---|
| 71 | /* | 
|---|
| 72 | * We must xchg() the @node->next value, because if we were to | 
|---|
| 73 | * leave it in, a concurrent unlock()/unqueue() from | 
|---|
| 74 | * @node->next might complete Step-A and think its @prev is | 
|---|
| 75 | * still valid. | 
|---|
| 76 | * | 
|---|
| 77 | * If the concurrent unlock()/unqueue() wins the race, we'll | 
|---|
| 78 | * wait for either @lock to point to us, through its Step-B, or | 
|---|
| 79 | * wait for a new @node->next from its Step-C. | 
|---|
| 80 | */ | 
|---|
| 81 | if (node->next) { | 
|---|
| 82 | struct optimistic_spin_node *next; | 
|---|
| 83 |  | 
|---|
| 84 | next = xchg(&node->next, NULL); | 
|---|
| 85 | if (next) | 
|---|
| 86 | return next; | 
|---|
| 87 | } | 
|---|
| 88 |  | 
|---|
| 89 | cpu_relax(); | 
|---|
| 90 | } | 
|---|
| 91 | } | 
|---|
| 92 |  | 
|---|
| 93 | bool osq_lock(struct optimistic_spin_queue *lock) | 
|---|
| 94 | { | 
|---|
| 95 | struct optimistic_spin_node *node = this_cpu_ptr(&osq_node); | 
|---|
| 96 | struct optimistic_spin_node *prev, *next; | 
|---|
| 97 | int curr = encode_cpu(smp_processor_id()); | 
|---|
| 98 | int old; | 
|---|
| 99 |  | 
|---|
| 100 | node->locked = 0; | 
|---|
| 101 | node->next = NULL; | 
|---|
| 102 | node->cpu = curr; | 
|---|
| 103 |  | 
|---|
| 104 | /* | 
|---|
| 105 | * We need both ACQUIRE (pairs with corresponding RELEASE in | 
|---|
| 106 | * unlock() uncontended, or fastpath) and RELEASE (to publish | 
|---|
| 107 | * the node fields we just initialised) semantics when updating | 
|---|
| 108 | * the lock tail. | 
|---|
| 109 | */ | 
|---|
| 110 | old = atomic_xchg(v: &lock->tail, new: curr); | 
|---|
| 111 | if (old == OSQ_UNLOCKED_VAL) | 
|---|
| 112 | return true; | 
|---|
| 113 |  | 
|---|
| 114 | prev = decode_cpu(encoded_cpu_val: old); | 
|---|
| 115 | node->prev = prev; | 
|---|
| 116 |  | 
|---|
| 117 | /* | 
|---|
| 118 | * osq_lock()			unqueue | 
|---|
| 119 | * | 
|---|
| 120 | * node->prev = prev		osq_wait_next() | 
|---|
| 121 | * WMB				MB | 
|---|
| 122 | * prev->next = node		next->prev = prev // unqueue-C | 
|---|
| 123 | * | 
|---|
| 124 | * Here 'node->prev' and 'next->prev' are the same variable and we need | 
|---|
| 125 | * to ensure these stores happen in-order to avoid corrupting the list. | 
|---|
| 126 | */ | 
|---|
| 127 | smp_wmb(); | 
|---|
| 128 |  | 
|---|
| 129 | WRITE_ONCE(prev->next, node); | 
|---|
| 130 |  | 
|---|
| 131 | /* | 
|---|
| 132 | * Normally @prev is untouchable after the above store; because at that | 
|---|
| 133 | * moment unlock can proceed and wipe the node element from stack. | 
|---|
| 134 | * | 
|---|
| 135 | * However, since our nodes are static per-cpu storage, we're | 
|---|
| 136 | * guaranteed their existence -- this allows us to apply | 
|---|
| 137 | * cmpxchg in an attempt to undo our queueing. | 
|---|
| 138 | */ | 
|---|
| 139 |  | 
|---|
| 140 | /* | 
|---|
| 141 | * Wait to acquire the lock or cancellation. Note that need_resched() | 
|---|
| 142 | * will come with an IPI, which will wake smp_cond_load_relaxed() if it | 
|---|
| 143 | * is implemented with a monitor-wait. vcpu_is_preempted() relies on | 
|---|
| 144 | * polling, be careful. | 
|---|
| 145 | */ | 
|---|
| 146 | if (smp_cond_load_relaxed(&node->locked, VAL || need_resched() || | 
|---|
| 147 | vcpu_is_preempted(node_cpu(node->prev)))) | 
|---|
| 148 | return true; | 
|---|
| 149 |  | 
|---|
| 150 | /* unqueue */ | 
|---|
| 151 | /* | 
|---|
| 152 | * Step - A  -- stabilize @prev | 
|---|
| 153 | * | 
|---|
| 154 | * Undo our @prev->next assignment; this will make @prev's | 
|---|
| 155 | * unlock()/unqueue() wait for a next pointer since @lock points to us | 
|---|
| 156 | * (or later). | 
|---|
| 157 | */ | 
|---|
| 158 |  | 
|---|
| 159 | for (;;) { | 
|---|
| 160 | /* | 
|---|
| 161 | * cpu_relax() below implies a compiler barrier which would | 
|---|
| 162 | * prevent this comparison being optimized away. | 
|---|
| 163 | */ | 
|---|
| 164 | if (data_race(prev->next) == node && | 
|---|
| 165 | cmpxchg(&prev->next, node, NULL) == node) | 
|---|
| 166 | break; | 
|---|
| 167 |  | 
|---|
| 168 | /* | 
|---|
| 169 | * We can only fail the cmpxchg() racing against an unlock(), | 
|---|
| 170 | * in which case we should observe @node->locked becoming | 
|---|
| 171 | * true. | 
|---|
| 172 | */ | 
|---|
| 173 | if (smp_load_acquire(&node->locked)) | 
|---|
| 174 | return true; | 
|---|
| 175 |  | 
|---|
| 176 | cpu_relax(); | 
|---|
| 177 |  | 
|---|
| 178 | /* | 
|---|
| 179 | * Or we race against a concurrent unqueue()'s step-B, in which | 
|---|
| 180 | * case its step-C will write us a new @node->prev pointer. | 
|---|
| 181 | */ | 
|---|
| 182 | prev = READ_ONCE(node->prev); | 
|---|
| 183 | } | 
|---|
| 184 |  | 
|---|
| 185 | /* | 
|---|
| 186 | * Step - B -- stabilize @next | 
|---|
| 187 | * | 
|---|
| 188 | * Similar to unlock(), wait for @node->next or move @lock from @node | 
|---|
| 189 | * back to @prev. | 
|---|
| 190 | */ | 
|---|
| 191 |  | 
|---|
| 192 | next = osq_wait_next(lock, node, old_cpu: prev->cpu); | 
|---|
| 193 | if (!next) | 
|---|
| 194 | return false; | 
|---|
| 195 |  | 
|---|
| 196 | /* | 
|---|
| 197 | * Step - C -- unlink | 
|---|
| 198 | * | 
|---|
| 199 | * @prev is stable because its still waiting for a new @prev->next | 
|---|
| 200 | * pointer, @next is stable because our @node->next pointer is NULL and | 
|---|
| 201 | * it will wait in Step-A. | 
|---|
| 202 | */ | 
|---|
| 203 |  | 
|---|
| 204 | WRITE_ONCE(next->prev, prev); | 
|---|
| 205 | WRITE_ONCE(prev->next, next); | 
|---|
| 206 |  | 
|---|
| 207 | return false; | 
|---|
| 208 | } | 
|---|
| 209 |  | 
|---|
| 210 | void osq_unlock(struct optimistic_spin_queue *lock) | 
|---|
| 211 | { | 
|---|
| 212 | struct optimistic_spin_node *node, *next; | 
|---|
| 213 | int curr = encode_cpu(smp_processor_id()); | 
|---|
| 214 |  | 
|---|
| 215 | /* | 
|---|
| 216 | * Fast path for the uncontended case. | 
|---|
| 217 | */ | 
|---|
| 218 | if (atomic_try_cmpxchg_release(v: &lock->tail, old: &curr, OSQ_UNLOCKED_VAL)) | 
|---|
| 219 | return; | 
|---|
| 220 |  | 
|---|
| 221 | /* | 
|---|
| 222 | * Second most likely case. | 
|---|
| 223 | */ | 
|---|
| 224 | node = this_cpu_ptr(&osq_node); | 
|---|
| 225 | next = xchg(&node->next, NULL); | 
|---|
| 226 | if (next) { | 
|---|
| 227 | WRITE_ONCE(next->locked, 1); | 
|---|
| 228 | return; | 
|---|
| 229 | } | 
|---|
| 230 |  | 
|---|
| 231 | next = osq_wait_next(lock, node, OSQ_UNLOCKED_VAL); | 
|---|
| 232 | if (next) | 
|---|
| 233 | WRITE_ONCE(next->locked, 1); | 
|---|
| 234 | } | 
|---|
| 235 |  | 
|---|