1// SPDX-License-Identifier: GPL-2.0
2
3#include <kunit/visibility.h>
4#include <linux/kernel.h>
5#include <linux/irqflags.h>
6#include <linux/string.h>
7#include <linux/errno.h>
8#include <linux/bug.h>
9#include "printk_ringbuffer.h"
10#include "internal.h"
11
12/**
13 * DOC: printk_ringbuffer overview
14 *
15 * Data Structure
16 * --------------
17 * The printk_ringbuffer is made up of 3 internal ringbuffers:
18 *
19 * desc_ring
20 * A ring of descriptors and their meta data (such as sequence number,
21 * timestamp, loglevel, etc.) as well as internal state information about
22 * the record and logical positions specifying where in the other
23 * ringbuffer the text strings are located.
24 *
25 * text_data_ring
26 * A ring of data blocks. A data block consists of an unsigned long
27 * integer (ID) that maps to a desc_ring index followed by the text
28 * string of the record.
29 *
30 * The internal state information of a descriptor is the key element to allow
31 * readers and writers to locklessly synchronize access to the data.
32 *
33 * Implementation
34 * --------------
35 *
36 * Descriptor Ring
37 * ~~~~~~~~~~~~~~~
38 * The descriptor ring is an array of descriptors. A descriptor contains
39 * essential meta data to track the data of a printk record using
40 * blk_lpos structs pointing to associated text data blocks (see
41 * "Data Rings" below). Each descriptor is assigned an ID that maps
42 * directly to index values of the descriptor array and has a state. The ID
43 * and the state are bitwise combined into a single descriptor field named
44 * @state_var, allowing ID and state to be synchronously and atomically
45 * updated.
46 *
47 * Descriptors have four states:
48 *
49 * reserved
50 * A writer is modifying the record.
51 *
52 * committed
53 * The record and all its data are written. A writer can reopen the
54 * descriptor (transitioning it back to reserved), but in the committed
55 * state the data is consistent.
56 *
57 * finalized
58 * The record and all its data are complete and available for reading. A
59 * writer cannot reopen the descriptor.
60 *
61 * reusable
62 * The record exists, but its text and/or meta data may no longer be
63 * available.
64 *
65 * Querying the @state_var of a record requires providing the ID of the
66 * descriptor to query. This can yield a possible fifth (pseudo) state:
67 *
68 * miss
69 * The descriptor being queried has an unexpected ID.
70 *
71 * The descriptor ring has a @tail_id that contains the ID of the oldest
72 * descriptor and @head_id that contains the ID of the newest descriptor.
73 *
74 * When a new descriptor should be created (and the ring is full), the tail
75 * descriptor is invalidated by first transitioning to the reusable state and
76 * then invalidating all tail data blocks up to and including the data blocks
77 * associated with the tail descriptor (for the text ring). Then
78 * @tail_id is advanced, followed by advancing @head_id. And finally the
79 * @state_var of the new descriptor is initialized to the new ID and reserved
80 * state.
81 *
82 * The @tail_id can only be advanced if the new @tail_id would be in the
83 * committed or reusable queried state. This makes it possible that a valid
84 * sequence number of the tail is always available.
85 *
86 * Descriptor Finalization
87 * ~~~~~~~~~~~~~~~~~~~~~~~
88 * When a writer calls the commit function prb_commit(), record data is
89 * fully stored and is consistent within the ringbuffer. However, a writer can
90 * reopen that record, claiming exclusive access (as with prb_reserve()), and
91 * modify that record. When finished, the writer must again commit the record.
92 *
93 * In order for a record to be made available to readers (and also become
94 * recyclable for writers), it must be finalized. A finalized record cannot be
95 * reopened and can never become "unfinalized". Record finalization can occur
96 * in three different scenarios:
97 *
98 * 1) A writer can simultaneously commit and finalize its record by calling
99 * prb_final_commit() instead of prb_commit().
100 *
101 * 2) When a new record is reserved and the previous record has been
102 * committed via prb_commit(), that previous record is automatically
103 * finalized.
104 *
105 * 3) When a record is committed via prb_commit() and a newer record
106 * already exists, the record being committed is automatically finalized.
107 *
108 * Data Ring
109 * ~~~~~~~~~
110 * The text data ring is a byte array composed of data blocks. Data blocks are
111 * referenced by blk_lpos structs that point to the logical position of the
112 * beginning of a data block and the beginning of the next adjacent data
113 * block. Logical positions are mapped directly to index values of the byte
114 * array ringbuffer.
115 *
116 * Each data block consists of an ID followed by the writer data. The ID is
117 * the identifier of a descriptor that is associated with the data block. A
118 * given data block is considered valid if all of the following conditions
119 * are met:
120 *
121 * 1) The descriptor associated with the data block is in the committed
122 * or finalized queried state.
123 *
124 * 2) The blk_lpos struct within the descriptor associated with the data
125 * block references back to the same data block.
126 *
127 * 3) The data block is within the head/tail logical position range.
128 *
129 * If the writer data of a data block would extend beyond the end of the
130 * byte array, only the ID of the data block is stored at the logical
131 * position and the full data block (ID and writer data) is stored at the
132 * beginning of the byte array. The referencing blk_lpos will point to the
133 * ID before the wrap and the next data block will be at the logical
134 * position adjacent the full data block after the wrap.
135 *
136 * Data rings have a @tail_lpos that points to the beginning of the oldest
137 * data block and a @head_lpos that points to the logical position of the
138 * next (not yet existing) data block.
139 *
140 * When a new data block should be created (and the ring is full), tail data
141 * blocks will first be invalidated by putting their associated descriptors
142 * into the reusable state and then pushing the @tail_lpos forward beyond
143 * them. Then the @head_lpos is pushed forward and is associated with a new
144 * descriptor. If a data block is not valid, the @tail_lpos cannot be
145 * advanced beyond it.
146 *
147 * Info Array
148 * ~~~~~~~~~~
149 * The general meta data of printk records are stored in printk_info structs,
150 * stored in an array with the same number of elements as the descriptor ring.
151 * Each info corresponds to the descriptor of the same index in the
152 * descriptor ring. Info validity is confirmed by evaluating the corresponding
153 * descriptor before and after loading the info.
154 *
155 * Usage
156 * -----
157 * Here are some simple examples demonstrating writers and readers. For the
158 * examples a global ringbuffer (test_rb) is available (which is not the
159 * actual ringbuffer used by printk)::
160 *
161 * DEFINE_PRINTKRB(test_rb, 15, 5);
162 *
163 * This ringbuffer allows up to 32768 records (2 ^ 15) and has a size of
164 * 1 MiB (2 ^ (15 + 5)) for text data.
165 *
166 * Sample writer code::
167 *
168 * const char *textstr = "message text";
169 * struct prb_reserved_entry e;
170 * struct printk_record r;
171 *
172 * // specify how much to allocate
173 * prb_rec_init_wr(&r, strlen(textstr) + 1);
174 *
175 * if (prb_reserve(&e, &test_rb, &r)) {
176 * snprintf(r.text_buf, r.text_buf_size, "%s", textstr);
177 *
178 * r.info->text_len = strlen(textstr);
179 * r.info->ts_nsec = local_clock();
180 * r.info->caller_id = printk_caller_id();
181 *
182 * // commit and finalize the record
183 * prb_final_commit(&e);
184 * }
185 *
186 * Note that additional writer functions are available to extend a record
187 * after it has been committed but not yet finalized. This can be done as
188 * long as no new records have been reserved and the caller is the same.
189 *
190 * Sample writer code (record extending)::
191 *
192 * // alternate rest of previous example
193 *
194 * r.info->text_len = strlen(textstr);
195 * r.info->ts_nsec = local_clock();
196 * r.info->caller_id = printk_caller_id();
197 *
198 * // commit the record (but do not finalize yet)
199 * prb_commit(&e);
200 * }
201 *
202 * ...
203 *
204 * // specify additional 5 bytes text space to extend
205 * prb_rec_init_wr(&r, 5);
206 *
207 * // try to extend, but only if it does not exceed 32 bytes
208 * if (prb_reserve_in_last(&e, &test_rb, &r, printk_caller_id(), 32)) {
209 * snprintf(&r.text_buf[r.info->text_len],
210 * r.text_buf_size - r.info->text_len, "hello");
211 *
212 * r.info->text_len += 5;
213 *
214 * // commit and finalize the record
215 * prb_final_commit(&e);
216 * }
217 *
218 * Sample reader code::
219 *
220 * struct printk_info info;
221 * struct printk_record r;
222 * char text_buf[32];
223 * u64 seq;
224 *
225 * prb_rec_init_rd(&r, &info, &text_buf[0], sizeof(text_buf));
226 *
227 * prb_for_each_record(0, &test_rb, &seq, &r) {
228 * if (info.seq != seq)
229 * pr_warn("lost %llu records\n", info.seq - seq);
230 *
231 * if (info.text_len > r.text_buf_size) {
232 * pr_warn("record %llu text truncated\n", info.seq);
233 * text_buf[r.text_buf_size - 1] = 0;
234 * }
235 *
236 * pr_info("%llu: %llu: %s\n", info.seq, info.ts_nsec,
237 * &text_buf[0]);
238 * }
239 *
240 * Note that additional less convenient reader functions are available to
241 * allow complex record access.
242 *
243 * ABA Issues
244 * ~~~~~~~~~~
245 * To help avoid ABA issues, descriptors are referenced by IDs (array index
246 * values combined with tagged bits counting array wraps) and data blocks are
247 * referenced by logical positions (array index values combined with tagged
248 * bits counting array wraps). However, on 32-bit systems the number of
249 * tagged bits is relatively small such that an ABA incident is (at least
250 * theoretically) possible. For example, if 4 million maximally sized (1KiB)
251 * printk messages were to occur in NMI context on a 32-bit system, the
252 * interrupted context would not be able to recognize that the 32-bit integer
253 * completely wrapped and thus represents a different data block than the one
254 * the interrupted context expects.
255 *
256 * To help combat this possibility, additional state checking is performed
257 * (such as using cmpxchg() even though set() would suffice). These extra
258 * checks are commented as such and will hopefully catch any ABA issue that
259 * a 32-bit system might experience.
260 *
261 * Memory Barriers
262 * ~~~~~~~~~~~~~~~
263 * Multiple memory barriers are used. To simplify proving correctness and
264 * generating litmus tests, lines of code related to memory barriers
265 * (loads, stores, and the associated memory barriers) are labeled::
266 *
267 * LMM(function:letter)
268 *
269 * Comments reference the labels using only the "function:letter" part.
270 *
271 * The memory barrier pairs and their ordering are:
272 *
273 * desc_reserve:D / desc_reserve:B
274 * push descriptor tail (id), then push descriptor head (id)
275 *
276 * desc_reserve:D / data_push_tail:B
277 * push data tail (lpos), then set new descriptor reserved (state)
278 *
279 * desc_reserve:D / desc_push_tail:C
280 * push descriptor tail (id), then set new descriptor reserved (state)
281 *
282 * desc_reserve:D / prb_first_seq:C
283 * push descriptor tail (id), then set new descriptor reserved (state)
284 *
285 * desc_reserve:F / desc_read:D
286 * set new descriptor id and reserved (state), then allow writer changes
287 *
288 * data_alloc:A (or data_realloc:A) / desc_read:D
289 * set old descriptor reusable (state), then modify new data block area
290 *
291 * data_alloc:A (or data_realloc:A) / data_push_tail:B
292 * push data tail (lpos), then modify new data block area
293 *
294 * _prb_commit:B / desc_read:B
295 * store writer changes, then set new descriptor committed (state)
296 *
297 * desc_reopen_last:A / _prb_commit:B
298 * set descriptor reserved (state), then read descriptor data
299 *
300 * _prb_commit:B / desc_reserve:D
301 * set new descriptor committed (state), then check descriptor head (id)
302 *
303 * data_push_tail:D / data_push_tail:A
304 * set descriptor reusable (state), then push data tail (lpos)
305 *
306 * desc_push_tail:B / desc_reserve:D
307 * set descriptor reusable (state), then push descriptor tail (id)
308 *
309 * desc_update_last_finalized:A / desc_last_finalized_seq:A
310 * store finalized record, then set new highest finalized sequence number
311 */
312
313#define DATA_SIZE(data_ring) _DATA_SIZE((data_ring)->size_bits)
314#define DATA_SIZE_MASK(data_ring) (DATA_SIZE(data_ring) - 1)
315
316#define DESCS_COUNT(desc_ring) _DESCS_COUNT((desc_ring)->count_bits)
317#define DESCS_COUNT_MASK(desc_ring) (DESCS_COUNT(desc_ring) - 1)
318
319/* Determine the data array index from a logical position. */
320#define DATA_INDEX(data_ring, lpos) ((lpos) & DATA_SIZE_MASK(data_ring))
321
322/* Determine the desc array index from an ID or sequence number. */
323#define DESC_INDEX(desc_ring, n) ((n) & DESCS_COUNT_MASK(desc_ring))
324
325/* Determine how many times the data array has wrapped. */
326#define DATA_WRAPS(data_ring, lpos) ((lpos) >> (data_ring)->size_bits)
327
328/* Determine if a logical position refers to a data-less block. */
329#define LPOS_DATALESS(lpos) ((lpos) & 1UL)
330#define BLK_DATALESS(blk) (LPOS_DATALESS((blk)->begin) && \
331 LPOS_DATALESS((blk)->next))
332
333/* Get the logical position at index 0 of the current wrap. */
334#define DATA_THIS_WRAP_START_LPOS(data_ring, lpos) \
335((lpos) & ~DATA_SIZE_MASK(data_ring))
336
337/* Get the ID for the same index of the previous wrap as the given ID. */
338#define DESC_ID_PREV_WRAP(desc_ring, id) \
339DESC_ID((id) - DESCS_COUNT(desc_ring))
340
341/*
342 * A data block: mapped directly to the beginning of the data block area
343 * specified as a logical position within the data ring.
344 *
345 * @id: the ID of the associated descriptor
346 * @data: the writer data
347 *
348 * Note that the size of a data block is only known by its associated
349 * descriptor.
350 */
351struct prb_data_block {
352 unsigned long id;
353 char data[];
354};
355
356/*
357 * Return the descriptor associated with @n. @n can be either a
358 * descriptor ID or a sequence number.
359 */
360static struct prb_desc *to_desc(struct prb_desc_ring *desc_ring, u64 n)
361{
362 return &desc_ring->descs[DESC_INDEX(desc_ring, n)];
363}
364
365/*
366 * Return the printk_info associated with @n. @n can be either a
367 * descriptor ID or a sequence number.
368 */
369static struct printk_info *to_info(struct prb_desc_ring *desc_ring, u64 n)
370{
371 return &desc_ring->infos[DESC_INDEX(desc_ring, n)];
372}
373
374static struct prb_data_block *to_block(struct prb_data_ring *data_ring,
375 unsigned long begin_lpos)
376{
377 return (void *)&data_ring->data[DATA_INDEX(data_ring, begin_lpos)];
378}
379
380/*
381 * Increase the data size to account for data block meta data plus any
382 * padding so that the adjacent data block is aligned on the ID size.
383 */
384static unsigned int to_blk_size(unsigned int size)
385{
386 struct prb_data_block *db = NULL;
387
388 size += sizeof(*db);
389 size = ALIGN(size, sizeof(db->id));
390 return size;
391}
392
393/*
394 * Sanity checker for reserve size. The ringbuffer code assumes that a data
395 * block does not exceed the maximum possible size that could fit within the
396 * ringbuffer. This function provides that basic size check so that the
397 * assumption is safe. In particular, it guarantees that data_push_tail() will
398 * never attempt to push the tail beyond the head.
399 */
400static bool data_check_size(struct prb_data_ring *data_ring, unsigned int size)
401{
402 /* Data-less blocks take no space. */
403 if (size == 0)
404 return true;
405
406 /*
407 * If data blocks were allowed to be larger than half the data ring
408 * size, a wrapping data block could require more space than the full
409 * ringbuffer.
410 */
411 return to_blk_size(size) <= DATA_SIZE(data_ring) / 2;
412}
413
414/* Query the state of a descriptor. */
415static enum desc_state get_desc_state(unsigned long id,
416 unsigned long state_val)
417{
418 if (id != DESC_ID(state_val))
419 return desc_miss;
420
421 return DESC_STATE(state_val);
422}
423
424/*
425 * Get a copy of a specified descriptor and return its queried state. If the
426 * descriptor is in an inconsistent state (miss or reserved), the caller can
427 * only expect the descriptor's @state_var field to be valid.
428 *
429 * The sequence number and caller_id can be optionally retrieved. Like all
430 * non-state_var data, they are only valid if the descriptor is in a
431 * consistent state.
432 */
433static enum desc_state desc_read(struct prb_desc_ring *desc_ring,
434 unsigned long id, struct prb_desc *desc_out,
435 u64 *seq_out, u32 *caller_id_out)
436{
437 struct printk_info *info = to_info(desc_ring, n: id);
438 struct prb_desc *desc = to_desc(desc_ring, n: id);
439 atomic_long_t *state_var = &desc->state_var;
440 enum desc_state d_state;
441 unsigned long state_val;
442
443 /* Check the descriptor state. */
444 state_val = atomic_long_read(v: state_var); /* LMM(desc_read:A) */
445 d_state = get_desc_state(id, state_val);
446 if (d_state == desc_miss || d_state == desc_reserved) {
447 /*
448 * The descriptor is in an inconsistent state. Set at least
449 * @state_var so that the caller can see the details of
450 * the inconsistent state.
451 */
452 goto out;
453 }
454
455 /*
456 * Guarantee the state is loaded before copying the descriptor
457 * content. This avoids copying obsolete descriptor content that might
458 * not apply to the descriptor state. This pairs with _prb_commit:B.
459 *
460 * Memory barrier involvement:
461 *
462 * If desc_read:A reads from _prb_commit:B, then desc_read:C reads
463 * from _prb_commit:A.
464 *
465 * Relies on:
466 *
467 * WMB from _prb_commit:A to _prb_commit:B
468 * matching
469 * RMB from desc_read:A to desc_read:C
470 */
471 smp_rmb(); /* LMM(desc_read:B) */
472
473 /*
474 * Copy the descriptor data. The data is not valid until the
475 * state has been re-checked. A memcpy() for all of @desc
476 * cannot be used because of the atomic_t @state_var field.
477 */
478 if (desc_out) {
479 memcpy(to: &desc_out->text_blk_lpos, from: &desc->text_blk_lpos,
480 len: sizeof(desc_out->text_blk_lpos)); /* LMM(desc_read:C) */
481 }
482 if (seq_out)
483 *seq_out = info->seq; /* also part of desc_read:C */
484 if (caller_id_out)
485 *caller_id_out = info->caller_id; /* also part of desc_read:C */
486
487 /*
488 * 1. Guarantee the descriptor content is loaded before re-checking
489 * the state. This avoids reading an obsolete descriptor state
490 * that may not apply to the copied content. This pairs with
491 * desc_reserve:F.
492 *
493 * Memory barrier involvement:
494 *
495 * If desc_read:C reads from desc_reserve:G, then desc_read:E
496 * reads from desc_reserve:F.
497 *
498 * Relies on:
499 *
500 * WMB from desc_reserve:F to desc_reserve:G
501 * matching
502 * RMB from desc_read:C to desc_read:E
503 *
504 * 2. Guarantee the record data is loaded before re-checking the
505 * state. This avoids reading an obsolete descriptor state that may
506 * not apply to the copied data. This pairs with data_alloc:A and
507 * data_realloc:A.
508 *
509 * Memory barrier involvement:
510 *
511 * If copy_data:A reads from data_alloc:B, then desc_read:E
512 * reads from desc_make_reusable:A.
513 *
514 * Relies on:
515 *
516 * MB from desc_make_reusable:A to data_alloc:B
517 * matching
518 * RMB from desc_read:C to desc_read:E
519 *
520 * Note: desc_make_reusable:A and data_alloc:B can be different
521 * CPUs. However, the data_alloc:B CPU (which performs the
522 * full memory barrier) must have previously seen
523 * desc_make_reusable:A.
524 */
525 smp_rmb(); /* LMM(desc_read:D) */
526
527 /*
528 * The data has been copied. Return the current descriptor state,
529 * which may have changed since the load above.
530 */
531 state_val = atomic_long_read(v: state_var); /* LMM(desc_read:E) */
532 d_state = get_desc_state(id, state_val);
533out:
534 if (desc_out)
535 atomic_long_set(v: &desc_out->state_var, i: state_val);
536 return d_state;
537}
538
539/*
540 * Take a specified descriptor out of the finalized state by attempting
541 * the transition from finalized to reusable. Either this context or some
542 * other context will have been successful.
543 */
544static void desc_make_reusable(struct prb_desc_ring *desc_ring,
545 unsigned long id)
546{
547 unsigned long val_finalized = DESC_SV(id, desc_finalized);
548 unsigned long val_reusable = DESC_SV(id, desc_reusable);
549 struct prb_desc *desc = to_desc(desc_ring, n: id);
550 atomic_long_t *state_var = &desc->state_var;
551
552 atomic_long_cmpxchg_relaxed(v: state_var, old: val_finalized,
553 new: val_reusable); /* LMM(desc_make_reusable:A) */
554}
555
556/*
557 * Given the text data ring, put the associated descriptor of each
558 * data block from @lpos_begin until @lpos_end into the reusable state.
559 *
560 * If there is any problem making the associated descriptor reusable, either
561 * the descriptor has not yet been finalized or another writer context has
562 * already pushed the tail lpos past the problematic data block. Regardless,
563 * on error the caller can re-load the tail lpos to determine the situation.
564 */
565static bool data_make_reusable(struct printk_ringbuffer *rb,
566 unsigned long lpos_begin,
567 unsigned long lpos_end,
568 unsigned long *lpos_out)
569{
570
571 struct prb_data_ring *data_ring = &rb->text_data_ring;
572 struct prb_desc_ring *desc_ring = &rb->desc_ring;
573 struct prb_data_block *blk;
574 enum desc_state d_state;
575 struct prb_desc desc;
576 struct prb_data_blk_lpos *blk_lpos = &desc.text_blk_lpos;
577 unsigned long id;
578
579 /* Loop until @lpos_begin has advanced to or beyond @lpos_end. */
580 while ((lpos_end - lpos_begin) - 1 < DATA_SIZE(data_ring)) {
581 blk = to_block(data_ring, begin_lpos: lpos_begin);
582
583 /*
584 * Load the block ID from the data block. This is a data race
585 * against a writer that may have newly reserved this data
586 * area. If the loaded value matches a valid descriptor ID,
587 * the blk_lpos of that descriptor will be checked to make
588 * sure it points back to this data block. If the check fails,
589 * the data area has been recycled by another writer.
590 */
591 id = blk->id; /* LMM(data_make_reusable:A) */
592
593 d_state = desc_read(desc_ring, id, desc_out: &desc,
594 NULL, NULL); /* LMM(data_make_reusable:B) */
595
596 switch (d_state) {
597 case desc_miss:
598 case desc_reserved:
599 case desc_committed:
600 return false;
601 case desc_finalized:
602 /*
603 * This data block is invalid if the descriptor
604 * does not point back to it.
605 */
606 if (blk_lpos->begin != lpos_begin)
607 return false;
608 desc_make_reusable(desc_ring, id);
609 break;
610 case desc_reusable:
611 /*
612 * This data block is invalid if the descriptor
613 * does not point back to it.
614 */
615 if (blk_lpos->begin != lpos_begin)
616 return false;
617 break;
618 }
619
620 /* Advance @lpos_begin to the next data block. */
621 lpos_begin = blk_lpos->next;
622 }
623
624 *lpos_out = lpos_begin;
625 return true;
626}
627
628/*
629 * Advance the data ring tail to at least @lpos. This function puts
630 * descriptors into the reusable state if the tail is pushed beyond
631 * their associated data block.
632 */
633static bool data_push_tail(struct printk_ringbuffer *rb, unsigned long lpos)
634{
635 struct prb_data_ring *data_ring = &rb->text_data_ring;
636 unsigned long tail_lpos_new;
637 unsigned long tail_lpos;
638 unsigned long next_lpos;
639
640 /* If @lpos is from a data-less block, there is nothing to do. */
641 if (LPOS_DATALESS(lpos))
642 return true;
643
644 /*
645 * Any descriptor states that have transitioned to reusable due to the
646 * data tail being pushed to this loaded value will be visible to this
647 * CPU. This pairs with data_push_tail:D.
648 *
649 * Memory barrier involvement:
650 *
651 * If data_push_tail:A reads from data_push_tail:D, then this CPU can
652 * see desc_make_reusable:A.
653 *
654 * Relies on:
655 *
656 * MB from desc_make_reusable:A to data_push_tail:D
657 * matches
658 * READFROM from data_push_tail:D to data_push_tail:A
659 * thus
660 * READFROM from desc_make_reusable:A to this CPU
661 */
662 tail_lpos = atomic_long_read(v: &data_ring->tail_lpos); /* LMM(data_push_tail:A) */
663
664 /*
665 * Loop until the tail lpos is at or beyond @lpos. This condition
666 * may already be satisfied, resulting in no full memory barrier
667 * from data_push_tail:D being performed. However, since this CPU
668 * sees the new tail lpos, any descriptor states that transitioned to
669 * the reusable state must already be visible.
670 */
671 while ((lpos - tail_lpos) - 1 < DATA_SIZE(data_ring)) {
672 /*
673 * Make all descriptors reusable that are associated with
674 * data blocks before @lpos.
675 */
676 if (!data_make_reusable(rb, lpos_begin: tail_lpos, lpos_end: lpos, lpos_out: &next_lpos)) {
677 /*
678 * 1. Guarantee the block ID loaded in
679 * data_make_reusable() is performed before
680 * reloading the tail lpos. The failed
681 * data_make_reusable() may be due to a newly
682 * recycled data area causing the tail lpos to
683 * have been previously pushed. This pairs with
684 * data_alloc:A and data_realloc:A.
685 *
686 * Memory barrier involvement:
687 *
688 * If data_make_reusable:A reads from data_alloc:B,
689 * then data_push_tail:C reads from
690 * data_push_tail:D.
691 *
692 * Relies on:
693 *
694 * MB from data_push_tail:D to data_alloc:B
695 * matching
696 * RMB from data_make_reusable:A to
697 * data_push_tail:C
698 *
699 * Note: data_push_tail:D and data_alloc:B can be
700 * different CPUs. However, the data_alloc:B
701 * CPU (which performs the full memory
702 * barrier) must have previously seen
703 * data_push_tail:D.
704 *
705 * 2. Guarantee the descriptor state loaded in
706 * data_make_reusable() is performed before
707 * reloading the tail lpos. The failed
708 * data_make_reusable() may be due to a newly
709 * recycled descriptor causing the tail lpos to
710 * have been previously pushed. This pairs with
711 * desc_reserve:D.
712 *
713 * Memory barrier involvement:
714 *
715 * If data_make_reusable:B reads from
716 * desc_reserve:F, then data_push_tail:C reads
717 * from data_push_tail:D.
718 *
719 * Relies on:
720 *
721 * MB from data_push_tail:D to desc_reserve:F
722 * matching
723 * RMB from data_make_reusable:B to
724 * data_push_tail:C
725 *
726 * Note: data_push_tail:D and desc_reserve:F can
727 * be different CPUs. However, the
728 * desc_reserve:F CPU (which performs the
729 * full memory barrier) must have previously
730 * seen data_push_tail:D.
731 */
732 smp_rmb(); /* LMM(data_push_tail:B) */
733
734 tail_lpos_new = atomic_long_read(v: &data_ring->tail_lpos
735 ); /* LMM(data_push_tail:C) */
736 if (tail_lpos_new == tail_lpos)
737 return false;
738
739 /* Another CPU pushed the tail. Try again. */
740 tail_lpos = tail_lpos_new;
741 continue;
742 }
743
744 /*
745 * Guarantee any descriptor states that have transitioned to
746 * reusable are stored before pushing the tail lpos. A full
747 * memory barrier is needed since other CPUs may have made
748 * the descriptor states reusable. This pairs with
749 * data_push_tail:A.
750 */
751 if (atomic_long_try_cmpxchg(v: &data_ring->tail_lpos, old: &tail_lpos,
752 new: next_lpos)) { /* LMM(data_push_tail:D) */
753 break;
754 }
755 }
756
757 return true;
758}
759
760/*
761 * Advance the desc ring tail. This function advances the tail by one
762 * descriptor, thus invalidating the oldest descriptor. Before advancing
763 * the tail, the tail descriptor is made reusable and all data blocks up to
764 * and including the descriptor's data block are invalidated (i.e. the data
765 * ring tail is pushed past the data block of the descriptor being made
766 * reusable).
767 */
768static bool desc_push_tail(struct printk_ringbuffer *rb,
769 unsigned long tail_id)
770{
771 struct prb_desc_ring *desc_ring = &rb->desc_ring;
772 enum desc_state d_state;
773 struct prb_desc desc;
774
775 d_state = desc_read(desc_ring, id: tail_id, desc_out: &desc, NULL, NULL);
776
777 switch (d_state) {
778 case desc_miss:
779 /*
780 * If the ID is exactly 1 wrap behind the expected, it is
781 * in the process of being reserved by another writer and
782 * must be considered reserved.
783 */
784 if (DESC_ID(atomic_long_read(&desc.state_var)) ==
785 DESC_ID_PREV_WRAP(desc_ring, tail_id)) {
786 return false;
787 }
788
789 /*
790 * The ID has changed. Another writer must have pushed the
791 * tail and recycled the descriptor already. Success is
792 * returned because the caller is only interested in the
793 * specified tail being pushed, which it was.
794 */
795 return true;
796 case desc_reserved:
797 case desc_committed:
798 return false;
799 case desc_finalized:
800 desc_make_reusable(desc_ring, id: tail_id);
801 break;
802 case desc_reusable:
803 break;
804 }
805
806 /*
807 * Data blocks must be invalidated before their associated
808 * descriptor can be made available for recycling. Invalidating
809 * them later is not possible because there is no way to trust
810 * data blocks once their associated descriptor is gone.
811 */
812
813 if (!data_push_tail(rb, lpos: desc.text_blk_lpos.next))
814 return false;
815
816 /*
817 * Check the next descriptor after @tail_id before pushing the tail
818 * to it because the tail must always be in a finalized or reusable
819 * state. The implementation of prb_first_seq() relies on this.
820 *
821 * A successful read implies that the next descriptor is less than or
822 * equal to @head_id so there is no risk of pushing the tail past the
823 * head.
824 */
825 d_state = desc_read(desc_ring, DESC_ID(tail_id + 1), desc_out: &desc,
826 NULL, NULL); /* LMM(desc_push_tail:A) */
827
828 if (d_state == desc_finalized || d_state == desc_reusable) {
829 /*
830 * Guarantee any descriptor states that have transitioned to
831 * reusable are stored before pushing the tail ID. This allows
832 * verifying the recycled descriptor state. A full memory
833 * barrier is needed since other CPUs may have made the
834 * descriptor states reusable. This pairs with desc_reserve:D.
835 */
836 atomic_long_cmpxchg(v: &desc_ring->tail_id, old: tail_id,
837 DESC_ID(tail_id + 1)); /* LMM(desc_push_tail:B) */
838 } else {
839 /*
840 * Guarantee the last state load from desc_read() is before
841 * reloading @tail_id in order to see a new tail ID in the
842 * case that the descriptor has been recycled. This pairs
843 * with desc_reserve:D.
844 *
845 * Memory barrier involvement:
846 *
847 * If desc_push_tail:A reads from desc_reserve:F, then
848 * desc_push_tail:D reads from desc_push_tail:B.
849 *
850 * Relies on:
851 *
852 * MB from desc_push_tail:B to desc_reserve:F
853 * matching
854 * RMB from desc_push_tail:A to desc_push_tail:D
855 *
856 * Note: desc_push_tail:B and desc_reserve:F can be different
857 * CPUs. However, the desc_reserve:F CPU (which performs
858 * the full memory barrier) must have previously seen
859 * desc_push_tail:B.
860 */
861 smp_rmb(); /* LMM(desc_push_tail:C) */
862
863 /*
864 * Re-check the tail ID. The descriptor following @tail_id is
865 * not in an allowed tail state. But if the tail has since
866 * been moved by another CPU, then it does not matter.
867 */
868 if (atomic_long_read(v: &desc_ring->tail_id) == tail_id) /* LMM(desc_push_tail:D) */
869 return false;
870 }
871
872 return true;
873}
874
875/* Reserve a new descriptor, invalidating the oldest if necessary. */
876static bool desc_reserve(struct printk_ringbuffer *rb, unsigned long *id_out)
877{
878 struct prb_desc_ring *desc_ring = &rb->desc_ring;
879 unsigned long prev_state_val;
880 unsigned long id_prev_wrap;
881 struct prb_desc *desc;
882 unsigned long head_id;
883 unsigned long id;
884
885 head_id = atomic_long_read(v: &desc_ring->head_id); /* LMM(desc_reserve:A) */
886
887 do {
888 id = DESC_ID(head_id + 1);
889 id_prev_wrap = DESC_ID_PREV_WRAP(desc_ring, id);
890
891 /*
892 * Guarantee the head ID is read before reading the tail ID.
893 * Since the tail ID is updated before the head ID, this
894 * guarantees that @id_prev_wrap is never ahead of the tail
895 * ID. This pairs with desc_reserve:D.
896 *
897 * Memory barrier involvement:
898 *
899 * If desc_reserve:A reads from desc_reserve:D, then
900 * desc_reserve:C reads from desc_push_tail:B.
901 *
902 * Relies on:
903 *
904 * MB from desc_push_tail:B to desc_reserve:D
905 * matching
906 * RMB from desc_reserve:A to desc_reserve:C
907 *
908 * Note: desc_push_tail:B and desc_reserve:D can be different
909 * CPUs. However, the desc_reserve:D CPU (which performs
910 * the full memory barrier) must have previously seen
911 * desc_push_tail:B.
912 */
913 smp_rmb(); /* LMM(desc_reserve:B) */
914
915 if (id_prev_wrap == atomic_long_read(v: &desc_ring->tail_id
916 )) { /* LMM(desc_reserve:C) */
917 /*
918 * Make space for the new descriptor by
919 * advancing the tail.
920 */
921 if (!desc_push_tail(rb, tail_id: id_prev_wrap))
922 return false;
923 }
924
925 /*
926 * 1. Guarantee the tail ID is read before validating the
927 * recycled descriptor state. A read memory barrier is
928 * sufficient for this. This pairs with desc_push_tail:B.
929 *
930 * Memory barrier involvement:
931 *
932 * If desc_reserve:C reads from desc_push_tail:B, then
933 * desc_reserve:E reads from desc_make_reusable:A.
934 *
935 * Relies on:
936 *
937 * MB from desc_make_reusable:A to desc_push_tail:B
938 * matching
939 * RMB from desc_reserve:C to desc_reserve:E
940 *
941 * Note: desc_make_reusable:A and desc_push_tail:B can be
942 * different CPUs. However, the desc_push_tail:B CPU
943 * (which performs the full memory barrier) must have
944 * previously seen desc_make_reusable:A.
945 *
946 * 2. Guarantee the tail ID is stored before storing the head
947 * ID. This pairs with desc_reserve:B.
948 *
949 * 3. Guarantee any data ring tail changes are stored before
950 * recycling the descriptor. Data ring tail changes can
951 * happen via desc_push_tail()->data_push_tail(). A full
952 * memory barrier is needed since another CPU may have
953 * pushed the data ring tails. This pairs with
954 * data_push_tail:B.
955 *
956 * 4. Guarantee a new tail ID is stored before recycling the
957 * descriptor. A full memory barrier is needed since
958 * another CPU may have pushed the tail ID. This pairs
959 * with desc_push_tail:C and this also pairs with
960 * prb_first_seq:C.
961 *
962 * 5. Guarantee the head ID is stored before trying to
963 * finalize the previous descriptor. This pairs with
964 * _prb_commit:B.
965 */
966 } while (!atomic_long_try_cmpxchg(v: &desc_ring->head_id, old: &head_id,
967 new: id)); /* LMM(desc_reserve:D) */
968
969 desc = to_desc(desc_ring, n: id);
970
971 /*
972 * If the descriptor has been recycled, verify the old state val.
973 * See "ABA Issues" about why this verification is performed.
974 */
975 prev_state_val = atomic_long_read(v: &desc->state_var); /* LMM(desc_reserve:E) */
976 if (prev_state_val &&
977 get_desc_state(id: id_prev_wrap, state_val: prev_state_val) != desc_reusable) {
978 WARN_ON_ONCE(1);
979 return false;
980 }
981
982 /*
983 * Assign the descriptor a new ID and set its state to reserved.
984 * See "ABA Issues" about why cmpxchg() instead of set() is used.
985 *
986 * Guarantee the new descriptor ID and state is stored before making
987 * any other changes. A write memory barrier is sufficient for this.
988 * This pairs with desc_read:D.
989 */
990 if (!atomic_long_try_cmpxchg(v: &desc->state_var, old: &prev_state_val,
991 DESC_SV(id, desc_reserved))) { /* LMM(desc_reserve:F) */
992 WARN_ON_ONCE(1);
993 return false;
994 }
995
996 /* Now data in @desc can be modified: LMM(desc_reserve:G) */
997
998 *id_out = id;
999 return true;
1000}
1001
1002/* Determine the end of a data block. */
1003static unsigned long get_next_lpos(struct prb_data_ring *data_ring,
1004 unsigned long lpos, unsigned int size)
1005{
1006 unsigned long begin_lpos;
1007 unsigned long next_lpos;
1008
1009 begin_lpos = lpos;
1010 next_lpos = lpos + size;
1011
1012 /* First check if the data block does not wrap. */
1013 if (DATA_WRAPS(data_ring, begin_lpos) == DATA_WRAPS(data_ring, next_lpos))
1014 return next_lpos;
1015
1016 /* Wrapping data blocks store their data at the beginning. */
1017 return (DATA_THIS_WRAP_START_LPOS(data_ring, next_lpos) + size);
1018}
1019
1020/*
1021 * Allocate a new data block, invalidating the oldest data block(s)
1022 * if necessary. This function also associates the data block with
1023 * a specified descriptor.
1024 */
1025static char *data_alloc(struct printk_ringbuffer *rb, unsigned int size,
1026 struct prb_data_blk_lpos *blk_lpos, unsigned long id)
1027{
1028 struct prb_data_ring *data_ring = &rb->text_data_ring;
1029 struct prb_data_block *blk;
1030 unsigned long begin_lpos;
1031 unsigned long next_lpos;
1032
1033 if (size == 0) {
1034 /*
1035 * Data blocks are not created for empty lines. Instead, the
1036 * reader will recognize these special lpos values and handle
1037 * it appropriately.
1038 */
1039 blk_lpos->begin = EMPTY_LINE_LPOS;
1040 blk_lpos->next = EMPTY_LINE_LPOS;
1041 return NULL;
1042 }
1043
1044 size = to_blk_size(size);
1045
1046 begin_lpos = atomic_long_read(v: &data_ring->head_lpos);
1047
1048 do {
1049 next_lpos = get_next_lpos(data_ring, lpos: begin_lpos, size);
1050
1051 /*
1052 * data_check_size() prevents data block allocation that could
1053 * cause illegal ringbuffer states. But double check that the
1054 * used space will not be bigger than the ring buffer. Wrapped
1055 * messages need to reserve more space, see get_next_lpos().
1056 *
1057 * Specify a data-less block when the check or the allocation
1058 * fails.
1059 */
1060 if (WARN_ON_ONCE(next_lpos - begin_lpos > DATA_SIZE(data_ring)) ||
1061 !data_push_tail(rb, lpos: next_lpos - DATA_SIZE(data_ring))) {
1062 blk_lpos->begin = FAILED_LPOS;
1063 blk_lpos->next = FAILED_LPOS;
1064 return NULL;
1065 }
1066
1067 /*
1068 * 1. Guarantee any descriptor states that have transitioned
1069 * to reusable are stored before modifying the newly
1070 * allocated data area. A full memory barrier is needed
1071 * since other CPUs may have made the descriptor states
1072 * reusable. See data_push_tail:A about why the reusable
1073 * states are visible. This pairs with desc_read:D.
1074 *
1075 * 2. Guarantee any updated tail lpos is stored before
1076 * modifying the newly allocated data area. Another CPU may
1077 * be in data_make_reusable() and is reading a block ID
1078 * from this area. data_make_reusable() can handle reading
1079 * a garbage block ID value, but then it must be able to
1080 * load a new tail lpos. A full memory barrier is needed
1081 * since other CPUs may have updated the tail lpos. This
1082 * pairs with data_push_tail:B.
1083 */
1084 } while (!atomic_long_try_cmpxchg(v: &data_ring->head_lpos, old: &begin_lpos,
1085 new: next_lpos)); /* LMM(data_alloc:A) */
1086
1087 blk = to_block(data_ring, begin_lpos);
1088 blk->id = id; /* LMM(data_alloc:B) */
1089
1090 if (DATA_WRAPS(data_ring, begin_lpos) != DATA_WRAPS(data_ring, next_lpos)) {
1091 /* Wrapping data blocks store their data at the beginning. */
1092 blk = to_block(data_ring, begin_lpos: 0);
1093
1094 /*
1095 * Store the ID on the wrapped block for consistency.
1096 * The printk_ringbuffer does not actually use it.
1097 */
1098 blk->id = id;
1099 }
1100
1101 blk_lpos->begin = begin_lpos;
1102 blk_lpos->next = next_lpos;
1103
1104 return &blk->data[0];
1105}
1106
1107/*
1108 * Try to resize an existing data block associated with the descriptor
1109 * specified by @id. If the resized data block should become wrapped, it
1110 * copies the old data to the new data block. If @size yields a data block
1111 * with the same or less size, the data block is left as is.
1112 *
1113 * Fail if this is not the last allocated data block or if there is not
1114 * enough space or it is not possible make enough space.
1115 *
1116 * Return a pointer to the beginning of the entire data buffer or NULL on
1117 * failure.
1118 */
1119static char *data_realloc(struct printk_ringbuffer *rb, unsigned int size,
1120 struct prb_data_blk_lpos *blk_lpos, unsigned long id)
1121{
1122 struct prb_data_ring *data_ring = &rb->text_data_ring;
1123 struct prb_data_block *blk;
1124 unsigned long head_lpos;
1125 unsigned long next_lpos;
1126 bool wrapped;
1127
1128 /* Reallocation only works if @blk_lpos is the newest data block. */
1129 head_lpos = atomic_long_read(v: &data_ring->head_lpos);
1130 if (head_lpos != blk_lpos->next)
1131 return NULL;
1132
1133 /* Keep track if @blk_lpos was a wrapping data block. */
1134 wrapped = (DATA_WRAPS(data_ring, blk_lpos->begin) != DATA_WRAPS(data_ring, blk_lpos->next));
1135
1136 size = to_blk_size(size);
1137
1138 next_lpos = get_next_lpos(data_ring, lpos: blk_lpos->begin, size);
1139
1140 /* If the data block does not increase, there is nothing to do. */
1141 if (head_lpos - next_lpos < DATA_SIZE(data_ring)) {
1142 if (wrapped)
1143 blk = to_block(data_ring, begin_lpos: 0);
1144 else
1145 blk = to_block(data_ring, begin_lpos: blk_lpos->begin);
1146 return &blk->data[0];
1147 }
1148
1149 /*
1150 * data_check_size() prevents data block reallocation that could
1151 * cause illegal ringbuffer states. But double check that the
1152 * new used space will not be bigger than the ring buffer. Wrapped
1153 * messages need to reserve more space, see get_next_lpos().
1154 *
1155 * Specify failure when the check or the allocation fails.
1156 */
1157 if (WARN_ON_ONCE(next_lpos - blk_lpos->begin > DATA_SIZE(data_ring)) ||
1158 !data_push_tail(rb, lpos: next_lpos - DATA_SIZE(data_ring))) {
1159 return NULL;
1160 }
1161
1162 /* The memory barrier involvement is the same as data_alloc:A. */
1163 if (!atomic_long_try_cmpxchg(v: &data_ring->head_lpos, old: &head_lpos,
1164 new: next_lpos)) { /* LMM(data_realloc:A) */
1165 return NULL;
1166 }
1167
1168 blk = to_block(data_ring, begin_lpos: blk_lpos->begin);
1169
1170 if (DATA_WRAPS(data_ring, blk_lpos->begin) != DATA_WRAPS(data_ring, next_lpos)) {
1171 struct prb_data_block *old_blk = blk;
1172
1173 /* Wrapping data blocks store their data at the beginning. */
1174 blk = to_block(data_ring, begin_lpos: 0);
1175
1176 /*
1177 * Store the ID on the wrapped block for consistency.
1178 * The printk_ringbuffer does not actually use it.
1179 */
1180 blk->id = id;
1181
1182 if (!wrapped) {
1183 /*
1184 * Since the allocated space is now in the newly
1185 * created wrapping data block, copy the content
1186 * from the old data block.
1187 */
1188 memcpy(to: &blk->data[0], from: &old_blk->data[0],
1189 len: (blk_lpos->next - blk_lpos->begin) - sizeof(blk->id));
1190 }
1191 }
1192
1193 blk_lpos->next = next_lpos;
1194
1195 return &blk->data[0];
1196}
1197
1198/* Return the number of bytes used by a data block. */
1199static unsigned int space_used(struct prb_data_ring *data_ring,
1200 struct prb_data_blk_lpos *blk_lpos)
1201{
1202 /* Data-less blocks take no space. */
1203 if (BLK_DATALESS(blk_lpos))
1204 return 0;
1205
1206 if (DATA_WRAPS(data_ring, blk_lpos->begin) == DATA_WRAPS(data_ring, blk_lpos->next)) {
1207 /* Data block does not wrap. */
1208 return (DATA_INDEX(data_ring, blk_lpos->next) -
1209 DATA_INDEX(data_ring, blk_lpos->begin));
1210 }
1211
1212 /*
1213 * For wrapping data blocks, the trailing (wasted) space is
1214 * also counted.
1215 */
1216 return (DATA_INDEX(data_ring, blk_lpos->next) +
1217 DATA_SIZE(data_ring) - DATA_INDEX(data_ring, blk_lpos->begin));
1218}
1219
1220/*
1221 * Given @blk_lpos, return a pointer to the writer data from the data block
1222 * and calculate the size of the data part. A NULL pointer is returned if
1223 * @blk_lpos specifies values that could never be legal.
1224 *
1225 * This function (used by readers) performs strict validation on the lpos
1226 * values to possibly detect bugs in the writer code. A WARN_ON_ONCE() is
1227 * triggered if an internal error is detected.
1228 */
1229static const char *get_data(struct prb_data_ring *data_ring,
1230 struct prb_data_blk_lpos *blk_lpos,
1231 unsigned int *data_size)
1232{
1233 struct prb_data_block *db;
1234
1235 /* Data-less data block description. */
1236 if (BLK_DATALESS(blk_lpos)) {
1237 /*
1238 * Records that are just empty lines are also valid, even
1239 * though they do not have a data block. For such records
1240 * explicitly return empty string data to signify success.
1241 */
1242 if (blk_lpos->begin == EMPTY_LINE_LPOS &&
1243 blk_lpos->next == EMPTY_LINE_LPOS) {
1244 *data_size = 0;
1245 return "";
1246 }
1247
1248 /* Data lost, invalid, or otherwise unavailable. */
1249 return NULL;
1250 }
1251
1252 /* Regular data block: @begin less than @next and in same wrap. */
1253 if (DATA_WRAPS(data_ring, blk_lpos->begin) == DATA_WRAPS(data_ring, blk_lpos->next) &&
1254 blk_lpos->begin < blk_lpos->next) {
1255 db = to_block(data_ring, begin_lpos: blk_lpos->begin);
1256 *data_size = blk_lpos->next - blk_lpos->begin;
1257
1258 /* Wrapping data block: @begin is one wrap behind @next. */
1259 } else if (DATA_WRAPS(data_ring, blk_lpos->begin + DATA_SIZE(data_ring)) ==
1260 DATA_WRAPS(data_ring, blk_lpos->next)) {
1261 db = to_block(data_ring, begin_lpos: 0);
1262 *data_size = DATA_INDEX(data_ring, blk_lpos->next);
1263
1264 /* Illegal block description. */
1265 } else {
1266 WARN_ON_ONCE(1);
1267 return NULL;
1268 }
1269
1270 /* A valid data block will always be aligned to the ID size. */
1271 if (WARN_ON_ONCE(blk_lpos->begin != ALIGN(blk_lpos->begin, sizeof(db->id))) ||
1272 WARN_ON_ONCE(blk_lpos->next != ALIGN(blk_lpos->next, sizeof(db->id)))) {
1273 return NULL;
1274 }
1275
1276 /* A valid data block will always have at least an ID. */
1277 if (WARN_ON_ONCE(*data_size < sizeof(db->id)))
1278 return NULL;
1279
1280 /* Subtract block ID space from size to reflect data size. */
1281 *data_size -= sizeof(db->id);
1282
1283 return &db->data[0];
1284}
1285
1286/*
1287 * Attempt to transition the newest descriptor from committed back to reserved
1288 * so that the record can be modified by a writer again. This is only possible
1289 * if the descriptor is not yet finalized and the provided @caller_id matches.
1290 */
1291static struct prb_desc *desc_reopen_last(struct prb_desc_ring *desc_ring,
1292 u32 caller_id, unsigned long *id_out)
1293{
1294 unsigned long prev_state_val;
1295 enum desc_state d_state;
1296 struct prb_desc desc;
1297 struct prb_desc *d;
1298 unsigned long id;
1299 u32 cid;
1300
1301 id = atomic_long_read(v: &desc_ring->head_id);
1302
1303 /*
1304 * To reduce unnecessarily reopening, first check if the descriptor
1305 * state and caller ID are correct.
1306 */
1307 d_state = desc_read(desc_ring, id, desc_out: &desc, NULL, caller_id_out: &cid);
1308 if (d_state != desc_committed || cid != caller_id)
1309 return NULL;
1310
1311 d = to_desc(desc_ring, n: id);
1312
1313 prev_state_val = DESC_SV(id, desc_committed);
1314
1315 /*
1316 * Guarantee the reserved state is stored before reading any
1317 * record data. A full memory barrier is needed because @state_var
1318 * modification is followed by reading. This pairs with _prb_commit:B.
1319 *
1320 * Memory barrier involvement:
1321 *
1322 * If desc_reopen_last:A reads from _prb_commit:B, then
1323 * prb_reserve_in_last:A reads from _prb_commit:A.
1324 *
1325 * Relies on:
1326 *
1327 * WMB from _prb_commit:A to _prb_commit:B
1328 * matching
1329 * MB If desc_reopen_last:A to prb_reserve_in_last:A
1330 */
1331 if (!atomic_long_try_cmpxchg(v: &d->state_var, old: &prev_state_val,
1332 DESC_SV(id, desc_reserved))) { /* LMM(desc_reopen_last:A) */
1333 return NULL;
1334 }
1335
1336 *id_out = id;
1337 return d;
1338}
1339
1340/**
1341 * prb_reserve_in_last() - Re-reserve and extend the space in the ringbuffer
1342 * used by the newest record.
1343 *
1344 * @e: The entry structure to setup.
1345 * @rb: The ringbuffer to re-reserve and extend data in.
1346 * @r: The record structure to allocate buffers for.
1347 * @caller_id: The caller ID of the caller (reserving writer).
1348 * @max_size: Fail if the extended size would be greater than this.
1349 *
1350 * This is the public function available to writers to re-reserve and extend
1351 * data.
1352 *
1353 * The writer specifies the text size to extend (not the new total size) by
1354 * setting the @text_buf_size field of @r. To ensure proper initialization
1355 * of @r, prb_rec_init_wr() should be used.
1356 *
1357 * This function will fail if @caller_id does not match the caller ID of the
1358 * newest record. In that case the caller must reserve new data using
1359 * prb_reserve().
1360 *
1361 * Context: Any context. Disables local interrupts on success.
1362 * Return: true if text data could be extended, otherwise false.
1363 *
1364 * On success:
1365 *
1366 * - @r->text_buf points to the beginning of the entire text buffer.
1367 *
1368 * - @r->text_buf_size is set to the new total size of the buffer.
1369 *
1370 * - @r->info is not touched so that @r->info->text_len could be used
1371 * to append the text.
1372 *
1373 * - prb_record_text_space() can be used on @e to query the new
1374 * actually used space.
1375 *
1376 * Important: All @r->info fields will already be set with the current values
1377 * for the record. I.e. @r->info->text_len will be less than
1378 * @text_buf_size. Writers can use @r->info->text_len to know
1379 * where concatenation begins and writers should update
1380 * @r->info->text_len after concatenating.
1381 */
1382bool prb_reserve_in_last(struct prb_reserved_entry *e, struct printk_ringbuffer *rb,
1383 struct printk_record *r, u32 caller_id, unsigned int max_size)
1384{
1385 struct prb_desc_ring *desc_ring = &rb->desc_ring;
1386 struct printk_info *info;
1387 unsigned int data_size;
1388 struct prb_desc *d;
1389 unsigned long id;
1390
1391 local_irq_save(e->irqflags);
1392
1393 /* Transition the newest descriptor back to the reserved state. */
1394 d = desc_reopen_last(desc_ring, caller_id, id_out: &id);
1395 if (!d) {
1396 local_irq_restore(e->irqflags);
1397 goto fail_reopen;
1398 }
1399
1400 /* Now the writer has exclusive access: LMM(prb_reserve_in_last:A) */
1401
1402 info = to_info(desc_ring, n: id);
1403
1404 /*
1405 * Set the @e fields here so that prb_commit() can be used if
1406 * anything fails from now on.
1407 */
1408 e->rb = rb;
1409 e->id = id;
1410
1411 /*
1412 * desc_reopen_last() checked the caller_id, but there was no
1413 * exclusive access at that point. The descriptor may have
1414 * changed since then.
1415 */
1416 if (caller_id != info->caller_id)
1417 goto fail;
1418
1419 if (BLK_DATALESS(&d->text_blk_lpos)) {
1420 if (WARN_ON_ONCE(info->text_len != 0)) {
1421 pr_warn_once("wrong text_len value (%hu, expecting 0)\n",
1422 info->text_len);
1423 info->text_len = 0;
1424 }
1425
1426 if (!data_check_size(data_ring: &rb->text_data_ring, size: r->text_buf_size))
1427 goto fail;
1428
1429 if (r->text_buf_size > max_size)
1430 goto fail;
1431
1432 r->text_buf = data_alloc(rb, size: r->text_buf_size,
1433 blk_lpos: &d->text_blk_lpos, id);
1434 } else {
1435 if (!get_data(data_ring: &rb->text_data_ring, blk_lpos: &d->text_blk_lpos, data_size: &data_size))
1436 goto fail;
1437
1438 /*
1439 * Increase the buffer size to include the original size. If
1440 * the meta data (@text_len) is not sane, use the full data
1441 * block size.
1442 */
1443 if (WARN_ON_ONCE(info->text_len > data_size)) {
1444 pr_warn_once("wrong text_len value (%hu, expecting <=%u)\n",
1445 info->text_len, data_size);
1446 info->text_len = data_size;
1447 }
1448 r->text_buf_size += info->text_len;
1449
1450 if (!data_check_size(data_ring: &rb->text_data_ring, size: r->text_buf_size))
1451 goto fail;
1452
1453 if (r->text_buf_size > max_size)
1454 goto fail;
1455
1456 r->text_buf = data_realloc(rb, size: r->text_buf_size,
1457 blk_lpos: &d->text_blk_lpos, id);
1458 }
1459 if (r->text_buf_size && !r->text_buf)
1460 goto fail;
1461
1462 r->info = info;
1463
1464 e->text_space = space_used(data_ring: &rb->text_data_ring, blk_lpos: &d->text_blk_lpos);
1465
1466 return true;
1467fail:
1468 prb_commit(e);
1469 /* prb_commit() re-enabled interrupts. */
1470fail_reopen:
1471 /* Make it clear to the caller that the re-reserve failed. */
1472 memset(s: r, c: 0, n: sizeof(*r));
1473 return false;
1474}
1475
1476/*
1477 * @last_finalized_seq value guarantees that all records up to and including
1478 * this sequence number are finalized and can be read. The only exception are
1479 * too old records which have already been overwritten.
1480 *
1481 * It is also guaranteed that @last_finalized_seq only increases.
1482 *
1483 * Be aware that finalized records following non-finalized records are not
1484 * reported because they are not yet available to the reader. For example,
1485 * a new record stored via printk() will not be available to a printer if
1486 * it follows a record that has not been finalized yet. However, once that
1487 * non-finalized record becomes finalized, @last_finalized_seq will be
1488 * appropriately updated and the full set of finalized records will be
1489 * available to the printer. And since each printk() caller will either
1490 * directly print or trigger deferred printing of all available unprinted
1491 * records, all printk() messages will get printed.
1492 */
1493static u64 desc_last_finalized_seq(struct printk_ringbuffer *rb)
1494{
1495 struct prb_desc_ring *desc_ring = &rb->desc_ring;
1496 unsigned long ulseq;
1497
1498 /*
1499 * Guarantee the sequence number is loaded before loading the
1500 * associated record in order to guarantee that the record can be
1501 * seen by this CPU. This pairs with desc_update_last_finalized:A.
1502 */
1503 ulseq = atomic_long_read_acquire(v: &desc_ring->last_finalized_seq
1504 ); /* LMM(desc_last_finalized_seq:A) */
1505
1506 return __ulseq_to_u64seq(rb, ulseq);
1507}
1508
1509static bool _prb_read_valid(struct printk_ringbuffer *rb, u64 *seq,
1510 struct printk_record *r, unsigned int *line_count);
1511
1512/*
1513 * Check if there are records directly following @last_finalized_seq that are
1514 * finalized. If so, update @last_finalized_seq to the latest of these
1515 * records. It is not allowed to skip over records that are not yet finalized.
1516 */
1517static void desc_update_last_finalized(struct printk_ringbuffer *rb)
1518{
1519 struct prb_desc_ring *desc_ring = &rb->desc_ring;
1520 u64 old_seq = desc_last_finalized_seq(rb);
1521 unsigned long oldval;
1522 unsigned long newval;
1523 u64 finalized_seq;
1524 u64 try_seq;
1525
1526try_again:
1527 finalized_seq = old_seq;
1528 try_seq = finalized_seq + 1;
1529
1530 /* Try to find later finalized records. */
1531 while (_prb_read_valid(rb, seq: &try_seq, NULL, NULL)) {
1532 finalized_seq = try_seq;
1533 try_seq++;
1534 }
1535
1536 /* No update needed if no later finalized record was found. */
1537 if (finalized_seq == old_seq)
1538 return;
1539
1540 oldval = __u64seq_to_ulseq(old_seq);
1541 newval = __u64seq_to_ulseq(finalized_seq);
1542
1543 /*
1544 * Set the sequence number of a later finalized record that has been
1545 * seen.
1546 *
1547 * Guarantee the record data is visible to other CPUs before storing
1548 * its sequence number. This pairs with desc_last_finalized_seq:A.
1549 *
1550 * Memory barrier involvement:
1551 *
1552 * If desc_last_finalized_seq:A reads from
1553 * desc_update_last_finalized:A, then desc_read:A reads from
1554 * _prb_commit:B.
1555 *
1556 * Relies on:
1557 *
1558 * RELEASE from _prb_commit:B to desc_update_last_finalized:A
1559 * matching
1560 * ACQUIRE from desc_last_finalized_seq:A to desc_read:A
1561 *
1562 * Note: _prb_commit:B and desc_update_last_finalized:A can be
1563 * different CPUs. However, the desc_update_last_finalized:A
1564 * CPU (which performs the release) must have previously seen
1565 * _prb_commit:B.
1566 */
1567 if (!atomic_long_try_cmpxchg_release(v: &desc_ring->last_finalized_seq,
1568 old: &oldval, new: newval)) { /* LMM(desc_update_last_finalized:A) */
1569 old_seq = __ulseq_to_u64seq(rb, oldval);
1570 goto try_again;
1571 }
1572}
1573
1574/*
1575 * Attempt to finalize a specified descriptor. If this fails, the descriptor
1576 * is either already final or it will finalize itself when the writer commits.
1577 */
1578static void desc_make_final(struct printk_ringbuffer *rb, unsigned long id)
1579{
1580 struct prb_desc_ring *desc_ring = &rb->desc_ring;
1581 unsigned long prev_state_val = DESC_SV(id, desc_committed);
1582 struct prb_desc *d = to_desc(desc_ring, n: id);
1583
1584 if (atomic_long_try_cmpxchg_relaxed(v: &d->state_var, old: &prev_state_val,
1585 DESC_SV(id, desc_finalized))) { /* LMM(desc_make_final:A) */
1586 desc_update_last_finalized(rb);
1587 }
1588}
1589
1590/**
1591 * prb_reserve() - Reserve space in the ringbuffer.
1592 *
1593 * @e: The entry structure to setup.
1594 * @rb: The ringbuffer to reserve data in.
1595 * @r: The record structure to allocate buffers for.
1596 *
1597 * This is the public function available to writers to reserve data.
1598 *
1599 * The writer specifies the text size to reserve by setting the
1600 * @text_buf_size field of @r. To ensure proper initialization of @r,
1601 * prb_rec_init_wr() should be used.
1602 *
1603 * Context: Any context. Disables local interrupts on success.
1604 * Return: true if at least text data could be allocated, otherwise false.
1605 *
1606 * On success, the fields @info and @text_buf of @r will be set by this
1607 * function and should be filled in by the writer before committing. Also
1608 * on success, prb_record_text_space() can be used on @e to query the actual
1609 * space used for the text data block.
1610 *
1611 * Important: @info->text_len needs to be set correctly by the writer in
1612 * order for data to be readable and/or extended. Its value
1613 * is initialized to 0.
1614 */
1615bool prb_reserve(struct prb_reserved_entry *e, struct printk_ringbuffer *rb,
1616 struct printk_record *r)
1617{
1618 struct prb_desc_ring *desc_ring = &rb->desc_ring;
1619 struct printk_info *info;
1620 struct prb_desc *d;
1621 unsigned long id;
1622 u64 seq;
1623
1624 if (!data_check_size(data_ring: &rb->text_data_ring, size: r->text_buf_size))
1625 goto fail;
1626
1627 /*
1628 * Descriptors in the reserved state act as blockers to all further
1629 * reservations once the desc_ring has fully wrapped. Disable
1630 * interrupts during the reserve/commit window in order to minimize
1631 * the likelihood of this happening.
1632 */
1633 local_irq_save(e->irqflags);
1634
1635 if (!desc_reserve(rb, id_out: &id)) {
1636 /* Descriptor reservation failures are tracked. */
1637 atomic_long_inc(v: &rb->fail);
1638 local_irq_restore(e->irqflags);
1639 goto fail;
1640 }
1641
1642 d = to_desc(desc_ring, n: id);
1643 info = to_info(desc_ring, n: id);
1644
1645 /*
1646 * All @info fields (except @seq) are cleared and must be filled in
1647 * by the writer. Save @seq before clearing because it is used to
1648 * determine the new sequence number.
1649 */
1650 seq = info->seq;
1651 memset(s: info, c: 0, n: sizeof(*info));
1652
1653 /*
1654 * Set the @e fields here so that prb_commit() can be used if
1655 * text data allocation fails.
1656 */
1657 e->rb = rb;
1658 e->id = id;
1659
1660 /*
1661 * Initialize the sequence number if it has "never been set".
1662 * Otherwise just increment it by a full wrap.
1663 *
1664 * @seq is considered "never been set" if it has a value of 0,
1665 * _except_ for @infos[0], which was specially setup by the ringbuffer
1666 * initializer and therefore is always considered as set.
1667 *
1668 * See the "Bootstrap" comment block in printk_ringbuffer.h for
1669 * details about how the initializer bootstraps the descriptors.
1670 */
1671 if (seq == 0 && DESC_INDEX(desc_ring, id) != 0)
1672 info->seq = DESC_INDEX(desc_ring, id);
1673 else
1674 info->seq = seq + DESCS_COUNT(desc_ring);
1675
1676 /*
1677 * New data is about to be reserved. Once that happens, previous
1678 * descriptors are no longer able to be extended. Finalize the
1679 * previous descriptor now so that it can be made available to
1680 * readers. (For seq==0 there is no previous descriptor.)
1681 */
1682 if (info->seq > 0)
1683 desc_make_final(rb, DESC_ID(id - 1));
1684
1685 r->text_buf = data_alloc(rb, size: r->text_buf_size, blk_lpos: &d->text_blk_lpos, id);
1686 /* If text data allocation fails, a data-less record is committed. */
1687 if (r->text_buf_size && !r->text_buf) {
1688 prb_commit(e);
1689 /* prb_commit() re-enabled interrupts. */
1690 goto fail;
1691 }
1692
1693 r->info = info;
1694
1695 /* Record full text space used by record. */
1696 e->text_space = space_used(data_ring: &rb->text_data_ring, blk_lpos: &d->text_blk_lpos);
1697
1698 return true;
1699fail:
1700 /* Make it clear to the caller that the reserve failed. */
1701 memset(s: r, c: 0, n: sizeof(*r));
1702 return false;
1703}
1704EXPORT_SYMBOL_IF_KUNIT(prb_reserve);
1705
1706/* Commit the data (possibly finalizing it) and restore interrupts. */
1707static void _prb_commit(struct prb_reserved_entry *e, unsigned long state_val)
1708{
1709 struct prb_desc_ring *desc_ring = &e->rb->desc_ring;
1710 struct prb_desc *d = to_desc(desc_ring, n: e->id);
1711 unsigned long prev_state_val = DESC_SV(e->id, desc_reserved);
1712
1713 /* Now the writer has finished all writing: LMM(_prb_commit:A) */
1714
1715 /*
1716 * Set the descriptor as committed. See "ABA Issues" about why
1717 * cmpxchg() instead of set() is used.
1718 *
1719 * 1 Guarantee all record data is stored before the descriptor state
1720 * is stored as committed. A write memory barrier is sufficient
1721 * for this. This pairs with desc_read:B and desc_reopen_last:A.
1722 *
1723 * 2. Guarantee the descriptor state is stored as committed before
1724 * re-checking the head ID in order to possibly finalize this
1725 * descriptor. This pairs with desc_reserve:D.
1726 *
1727 * Memory barrier involvement:
1728 *
1729 * If prb_commit:A reads from desc_reserve:D, then
1730 * desc_make_final:A reads from _prb_commit:B.
1731 *
1732 * Relies on:
1733 *
1734 * MB _prb_commit:B to prb_commit:A
1735 * matching
1736 * MB desc_reserve:D to desc_make_final:A
1737 */
1738 if (!atomic_long_try_cmpxchg(v: &d->state_var, old: &prev_state_val,
1739 DESC_SV(e->id, state_val))) { /* LMM(_prb_commit:B) */
1740 WARN_ON_ONCE(1);
1741 }
1742
1743 /* Restore interrupts, the reserve/commit window is finished. */
1744 local_irq_restore(e->irqflags);
1745}
1746
1747/**
1748 * prb_commit() - Commit (previously reserved) data to the ringbuffer.
1749 *
1750 * @e: The entry containing the reserved data information.
1751 *
1752 * This is the public function available to writers to commit data.
1753 *
1754 * Note that the data is not yet available to readers until it is finalized.
1755 * Finalizing happens automatically when space for the next record is
1756 * reserved.
1757 *
1758 * See prb_final_commit() for a version of this function that finalizes
1759 * immediately.
1760 *
1761 * Context: Any context. Enables local interrupts.
1762 */
1763void prb_commit(struct prb_reserved_entry *e)
1764{
1765 struct prb_desc_ring *desc_ring = &e->rb->desc_ring;
1766 unsigned long head_id;
1767
1768 _prb_commit(e, state_val: desc_committed);
1769
1770 /*
1771 * If this descriptor is no longer the head (i.e. a new record has
1772 * been allocated), extending the data for this record is no longer
1773 * allowed and therefore it must be finalized.
1774 */
1775 head_id = atomic_long_read(v: &desc_ring->head_id); /* LMM(prb_commit:A) */
1776 if (head_id != e->id)
1777 desc_make_final(rb: e->rb, id: e->id);
1778}
1779EXPORT_SYMBOL_IF_KUNIT(prb_commit);
1780
1781/**
1782 * prb_final_commit() - Commit and finalize (previously reserved) data to
1783 * the ringbuffer.
1784 *
1785 * @e: The entry containing the reserved data information.
1786 *
1787 * This is the public function available to writers to commit+finalize data.
1788 *
1789 * By finalizing, the data is made immediately available to readers.
1790 *
1791 * This function should only be used if there are no intentions of extending
1792 * this data using prb_reserve_in_last().
1793 *
1794 * Context: Any context. Enables local interrupts.
1795 */
1796void prb_final_commit(struct prb_reserved_entry *e)
1797{
1798 _prb_commit(e, state_val: desc_finalized);
1799
1800 desc_update_last_finalized(rb: e->rb);
1801}
1802
1803/*
1804 * Count the number of lines in provided text. All text has at least 1 line
1805 * (even if @text_size is 0). Each '\n' processed is counted as an additional
1806 * line.
1807 */
1808static unsigned int count_lines(const char *text, unsigned int text_size)
1809{
1810 unsigned int next_size = text_size;
1811 unsigned int line_count = 1;
1812 const char *next = text;
1813
1814 while (next_size) {
1815 next = memchr(next, '\n', next_size);
1816 if (!next)
1817 break;
1818 line_count++;
1819 next++;
1820 next_size = text_size - (next - text);
1821 }
1822
1823 return line_count;
1824}
1825
1826/*
1827 * Given @blk_lpos, copy an expected @len of data into the provided buffer.
1828 * If @line_count is provided, count the number of lines in the data.
1829 *
1830 * This function (used by readers) performs strict validation on the data
1831 * size to possibly detect bugs in the writer code. A WARN_ON_ONCE() is
1832 * triggered if an internal error is detected.
1833 */
1834static bool copy_data(struct prb_data_ring *data_ring,
1835 struct prb_data_blk_lpos *blk_lpos, u16 len, char *buf,
1836 unsigned int buf_size, unsigned int *line_count)
1837{
1838 unsigned int data_size;
1839 const char *data;
1840
1841 /* Caller might not want any data. */
1842 if ((!buf || !buf_size) && !line_count)
1843 return true;
1844
1845 data = get_data(data_ring, blk_lpos, data_size: &data_size);
1846 if (!data)
1847 return false;
1848
1849 /*
1850 * Actual cannot be less than expected. It can be more than expected
1851 * because of the trailing alignment padding.
1852 *
1853 * Note that invalid @len values can occur because the caller loads
1854 * the value during an allowed data race.
1855 */
1856 if (data_size < (unsigned int)len)
1857 return false;
1858
1859 /* Caller interested in the line count? */
1860 if (line_count)
1861 *line_count = count_lines(text: data, text_size: len);
1862
1863 /* Caller interested in the data content? */
1864 if (!buf || !buf_size)
1865 return true;
1866
1867 data_size = min_t(unsigned int, buf_size, len);
1868
1869 memcpy(to: &buf[0], from: data, len: data_size); /* LMM(copy_data:A) */
1870 return true;
1871}
1872
1873/*
1874 * This is an extended version of desc_read(). It gets a copy of a specified
1875 * descriptor. However, it also verifies that the record is finalized and has
1876 * the sequence number @seq. On success, 0 is returned.
1877 *
1878 * Error return values:
1879 * -EINVAL: A finalized record with sequence number @seq does not exist.
1880 * -ENOENT: A finalized record with sequence number @seq exists, but its data
1881 * is not available. This is a valid record, so readers should
1882 * continue with the next record.
1883 */
1884static int desc_read_finalized_seq(struct prb_desc_ring *desc_ring,
1885 unsigned long id, u64 seq,
1886 struct prb_desc *desc_out)
1887{
1888 struct prb_data_blk_lpos *blk_lpos = &desc_out->text_blk_lpos;
1889 enum desc_state d_state;
1890 u64 s;
1891
1892 d_state = desc_read(desc_ring, id, desc_out, seq_out: &s, NULL);
1893
1894 /*
1895 * An unexpected @id (desc_miss) or @seq mismatch means the record
1896 * does not exist. A descriptor in the reserved or committed state
1897 * means the record does not yet exist for the reader.
1898 */
1899 if (d_state == desc_miss ||
1900 d_state == desc_reserved ||
1901 d_state == desc_committed ||
1902 s != seq) {
1903 return -EINVAL;
1904 }
1905
1906 /*
1907 * A descriptor in the reusable state may no longer have its data
1908 * available; report it as existing but with lost data. Or the record
1909 * may actually be a record with lost data.
1910 */
1911 if (d_state == desc_reusable ||
1912 (blk_lpos->begin == FAILED_LPOS && blk_lpos->next == FAILED_LPOS)) {
1913 return -ENOENT;
1914 }
1915
1916 return 0;
1917}
1918
1919/*
1920 * Copy the ringbuffer data from the record with @seq to the provided
1921 * @r buffer. On success, 0 is returned.
1922 *
1923 * See desc_read_finalized_seq() for error return values.
1924 */
1925static int prb_read(struct printk_ringbuffer *rb, u64 seq,
1926 struct printk_record *r, unsigned int *line_count)
1927{
1928 struct prb_desc_ring *desc_ring = &rb->desc_ring;
1929 struct printk_info *info = to_info(desc_ring, n: seq);
1930 struct prb_desc *rdesc = to_desc(desc_ring, n: seq);
1931 atomic_long_t *state_var = &rdesc->state_var;
1932 struct prb_desc desc;
1933 unsigned long id;
1934 int err;
1935
1936 /* Extract the ID, used to specify the descriptor to read. */
1937 id = DESC_ID(atomic_long_read(state_var));
1938
1939 /* Get a local copy of the correct descriptor (if available). */
1940 err = desc_read_finalized_seq(desc_ring, id, seq, desc_out: &desc);
1941
1942 /*
1943 * If @r is NULL, the caller is only interested in the availability
1944 * of the record.
1945 */
1946 if (err || !r)
1947 return err;
1948
1949 /* If requested, copy meta data. */
1950 if (r->info)
1951 memcpy(to: r->info, from: info, len: sizeof(*(r->info)));
1952
1953 /* Copy text data. If it fails, this is a data-less record. */
1954 if (!copy_data(data_ring: &rb->text_data_ring, blk_lpos: &desc.text_blk_lpos, len: info->text_len,
1955 buf: r->text_buf, buf_size: r->text_buf_size, line_count)) {
1956 return -ENOENT;
1957 }
1958
1959 /* Ensure the record is still finalized and has the same @seq. */
1960 return desc_read_finalized_seq(desc_ring, id, seq, desc_out: &desc);
1961}
1962
1963/* Get the sequence number of the tail descriptor. */
1964u64 prb_first_seq(struct printk_ringbuffer *rb)
1965{
1966 struct prb_desc_ring *desc_ring = &rb->desc_ring;
1967 enum desc_state d_state;
1968 struct prb_desc desc;
1969 unsigned long id;
1970 u64 seq;
1971
1972 for (;;) {
1973 id = atomic_long_read(v: &rb->desc_ring.tail_id); /* LMM(prb_first_seq:A) */
1974
1975 d_state = desc_read(desc_ring, id, desc_out: &desc, seq_out: &seq, NULL); /* LMM(prb_first_seq:B) */
1976
1977 /*
1978 * This loop will not be infinite because the tail is
1979 * _always_ in the finalized or reusable state.
1980 */
1981 if (d_state == desc_finalized || d_state == desc_reusable)
1982 break;
1983
1984 /*
1985 * Guarantee the last state load from desc_read() is before
1986 * reloading @tail_id in order to see a new tail in the case
1987 * that the descriptor has been recycled. This pairs with
1988 * desc_reserve:D.
1989 *
1990 * Memory barrier involvement:
1991 *
1992 * If prb_first_seq:B reads from desc_reserve:F, then
1993 * prb_first_seq:A reads from desc_push_tail:B.
1994 *
1995 * Relies on:
1996 *
1997 * MB from desc_push_tail:B to desc_reserve:F
1998 * matching
1999 * RMB prb_first_seq:B to prb_first_seq:A
2000 */
2001 smp_rmb(); /* LMM(prb_first_seq:C) */
2002 }
2003
2004 return seq;
2005}
2006
2007/**
2008 * prb_next_reserve_seq() - Get the sequence number after the most recently
2009 * reserved record.
2010 *
2011 * @rb: The ringbuffer to get the sequence number from.
2012 *
2013 * This is the public function available to readers to see what sequence
2014 * number will be assigned to the next reserved record.
2015 *
2016 * Note that depending on the situation, this value can be equal to or
2017 * higher than the sequence number returned by prb_next_seq().
2018 *
2019 * Context: Any context.
2020 * Return: The sequence number that will be assigned to the next record
2021 * reserved.
2022 */
2023u64 prb_next_reserve_seq(struct printk_ringbuffer *rb)
2024{
2025 struct prb_desc_ring *desc_ring = &rb->desc_ring;
2026 unsigned long last_finalized_id;
2027 atomic_long_t *state_var;
2028 u64 last_finalized_seq;
2029 unsigned long head_id;
2030 struct prb_desc desc;
2031 unsigned long diff;
2032 struct prb_desc *d;
2033 int err;
2034
2035 /*
2036 * It may not be possible to read a sequence number for @head_id.
2037 * So the ID of @last_finailzed_seq is used to calculate what the
2038 * sequence number of @head_id will be.
2039 */
2040
2041try_again:
2042 last_finalized_seq = desc_last_finalized_seq(rb);
2043
2044 /*
2045 * @head_id is loaded after @last_finalized_seq to ensure that
2046 * it points to the record with @last_finalized_seq or newer.
2047 *
2048 * Memory barrier involvement:
2049 *
2050 * If desc_last_finalized_seq:A reads from
2051 * desc_update_last_finalized:A, then
2052 * prb_next_reserve_seq:A reads from desc_reserve:D.
2053 *
2054 * Relies on:
2055 *
2056 * RELEASE from desc_reserve:D to desc_update_last_finalized:A
2057 * matching
2058 * ACQUIRE from desc_last_finalized_seq:A to prb_next_reserve_seq:A
2059 *
2060 * Note: desc_reserve:D and desc_update_last_finalized:A can be
2061 * different CPUs. However, the desc_update_last_finalized:A CPU
2062 * (which performs the release) must have previously seen
2063 * desc_read:C, which implies desc_reserve:D can be seen.
2064 */
2065 head_id = atomic_long_read(v: &desc_ring->head_id); /* LMM(prb_next_reserve_seq:A) */
2066
2067 d = to_desc(desc_ring, n: last_finalized_seq);
2068 state_var = &d->state_var;
2069
2070 /* Extract the ID, used to specify the descriptor to read. */
2071 last_finalized_id = DESC_ID(atomic_long_read(state_var));
2072
2073 /* Ensure @last_finalized_id is correct. */
2074 err = desc_read_finalized_seq(desc_ring, id: last_finalized_id, seq: last_finalized_seq, desc_out: &desc);
2075
2076 if (err == -EINVAL) {
2077 if (last_finalized_seq == 0) {
2078 /*
2079 * No record has been finalized or even reserved yet.
2080 *
2081 * The @head_id is initialized such that the first
2082 * increment will yield the first record (seq=0).
2083 * Handle it separately to avoid a negative @diff
2084 * below.
2085 */
2086 if (head_id == DESC0_ID(desc_ring->count_bits))
2087 return 0;
2088
2089 /*
2090 * One or more descriptors are already reserved. Use
2091 * the descriptor ID of the first one (@seq=0) for
2092 * the @diff below.
2093 */
2094 last_finalized_id = DESC0_ID(desc_ring->count_bits) + 1;
2095 } else {
2096 /* Record must have been overwritten. Try again. */
2097 goto try_again;
2098 }
2099 }
2100
2101 /* Diff of known descriptor IDs to compute related sequence numbers. */
2102 diff = head_id - last_finalized_id;
2103
2104 /*
2105 * @head_id points to the most recently reserved record, but this
2106 * function returns the sequence number that will be assigned to the
2107 * next (not yet reserved) record. Thus +1 is needed.
2108 */
2109 return (last_finalized_seq + diff + 1);
2110}
2111
2112/*
2113 * Non-blocking read of a record.
2114 *
2115 * On success @seq is updated to the record that was read and (if provided)
2116 * @r and @line_count will contain the read/calculated data.
2117 *
2118 * On failure @seq is updated to a record that is not yet available to the
2119 * reader, but it will be the next record available to the reader.
2120 *
2121 * Note: When the current CPU is in panic, this function will skip over any
2122 * non-existent/non-finalized records in order to allow the panic CPU
2123 * to print any and all records that have been finalized.
2124 */
2125static bool _prb_read_valid(struct printk_ringbuffer *rb, u64 *seq,
2126 struct printk_record *r, unsigned int *line_count)
2127{
2128 u64 tail_seq;
2129 int err;
2130
2131 while ((err = prb_read(rb, seq: *seq, r, line_count))) {
2132 tail_seq = prb_first_seq(rb);
2133
2134 if (*seq < tail_seq) {
2135 /*
2136 * Behind the tail. Catch up and try again. This
2137 * can happen for -ENOENT and -EINVAL cases.
2138 */
2139 *seq = tail_seq;
2140
2141 } else if (err == -ENOENT) {
2142 /* Record exists, but the data was lost. Skip. */
2143 (*seq)++;
2144
2145 } else {
2146 /*
2147 * Non-existent/non-finalized record. Must stop.
2148 *
2149 * For panic situations it cannot be expected that
2150 * non-finalized records will become finalized. But
2151 * there may be other finalized records beyond that
2152 * need to be printed for a panic situation. If this
2153 * is the panic CPU, skip this
2154 * non-existent/non-finalized record unless non-panic
2155 * CPUs are still running and their debugging is
2156 * explicitly enabled.
2157 *
2158 * Note that new messages printed on panic CPU are
2159 * finalized when we are here. The only exception
2160 * might be the last message without trailing newline.
2161 * But it would have the sequence number returned
2162 * by "prb_next_reserve_seq() - 1".
2163 */
2164 if (panic_on_this_cpu() &&
2165 (!debug_non_panic_cpus || legacy_allow_panic_sync) &&
2166 ((*seq + 1) < prb_next_reserve_seq(rb))) {
2167 (*seq)++;
2168 } else {
2169 return false;
2170 }
2171 }
2172 }
2173
2174 return true;
2175}
2176
2177/**
2178 * prb_read_valid() - Non-blocking read of a requested record or (if gone)
2179 * the next available record.
2180 *
2181 * @rb: The ringbuffer to read from.
2182 * @seq: The sequence number of the record to read.
2183 * @r: A record data buffer to store the read record to.
2184 *
2185 * This is the public function available to readers to read a record.
2186 *
2187 * The reader provides the @info and @text_buf buffers of @r to be
2188 * filled in. Any of the buffer pointers can be set to NULL if the reader
2189 * is not interested in that data. To ensure proper initialization of @r,
2190 * prb_rec_init_rd() should be used.
2191 *
2192 * Context: Any context.
2193 * Return: true if a record was read, otherwise false.
2194 *
2195 * On success, the reader must check r->info.seq to see which record was
2196 * actually read. This allows the reader to detect dropped records.
2197 *
2198 * Failure means @seq refers to a record not yet available to the reader.
2199 */
2200bool prb_read_valid(struct printk_ringbuffer *rb, u64 seq,
2201 struct printk_record *r)
2202{
2203 return _prb_read_valid(rb, seq: &seq, r, NULL);
2204}
2205EXPORT_SYMBOL_IF_KUNIT(prb_read_valid);
2206
2207/**
2208 * prb_read_valid_info() - Non-blocking read of meta data for a requested
2209 * record or (if gone) the next available record.
2210 *
2211 * @rb: The ringbuffer to read from.
2212 * @seq: The sequence number of the record to read.
2213 * @info: A buffer to store the read record meta data to.
2214 * @line_count: A buffer to store the number of lines in the record text.
2215 *
2216 * This is the public function available to readers to read only the
2217 * meta data of a record.
2218 *
2219 * The reader provides the @info, @line_count buffers to be filled in.
2220 * Either of the buffer pointers can be set to NULL if the reader is not
2221 * interested in that data.
2222 *
2223 * Context: Any context.
2224 * Return: true if a record's meta data was read, otherwise false.
2225 *
2226 * On success, the reader must check info->seq to see which record meta data
2227 * was actually read. This allows the reader to detect dropped records.
2228 *
2229 * Failure means @seq refers to a record not yet available to the reader.
2230 */
2231bool prb_read_valid_info(struct printk_ringbuffer *rb, u64 seq,
2232 struct printk_info *info, unsigned int *line_count)
2233{
2234 struct printk_record r;
2235
2236 prb_rec_init_rd(r: &r, info, NULL, text_buf_size: 0);
2237
2238 return _prb_read_valid(rb, seq: &seq, r: &r, line_count);
2239}
2240
2241/**
2242 * prb_first_valid_seq() - Get the sequence number of the oldest available
2243 * record.
2244 *
2245 * @rb: The ringbuffer to get the sequence number from.
2246 *
2247 * This is the public function available to readers to see what the
2248 * first/oldest valid sequence number is.
2249 *
2250 * This provides readers a starting point to begin iterating the ringbuffer.
2251 *
2252 * Context: Any context.
2253 * Return: The sequence number of the first/oldest record or, if the
2254 * ringbuffer is empty, 0 is returned.
2255 */
2256u64 prb_first_valid_seq(struct printk_ringbuffer *rb)
2257{
2258 u64 seq = 0;
2259
2260 if (!_prb_read_valid(rb, seq: &seq, NULL, NULL))
2261 return 0;
2262
2263 return seq;
2264}
2265
2266/**
2267 * prb_next_seq() - Get the sequence number after the last available record.
2268 *
2269 * @rb: The ringbuffer to get the sequence number from.
2270 *
2271 * This is the public function available to readers to see what the next
2272 * newest sequence number available to readers will be.
2273 *
2274 * This provides readers a sequence number to jump to if all currently
2275 * available records should be skipped. It is guaranteed that all records
2276 * previous to the returned value have been finalized and are (or were)
2277 * available to the reader.
2278 *
2279 * Context: Any context.
2280 * Return: The sequence number of the next newest (not yet available) record
2281 * for readers.
2282 */
2283u64 prb_next_seq(struct printk_ringbuffer *rb)
2284{
2285 u64 seq;
2286
2287 seq = desc_last_finalized_seq(rb);
2288
2289 /*
2290 * Begin searching after the last finalized record.
2291 *
2292 * On 0, the search must begin at 0 because of hack#2
2293 * of the bootstrapping phase it is not known if a
2294 * record at index 0 exists.
2295 */
2296 if (seq != 0)
2297 seq++;
2298
2299 /*
2300 * The information about the last finalized @seq might be inaccurate.
2301 * Search forward to find the current one.
2302 */
2303 while (_prb_read_valid(rb, seq: &seq, NULL, NULL))
2304 seq++;
2305
2306 return seq;
2307}
2308
2309/**
2310 * prb_init() - Initialize a ringbuffer to use provided external buffers.
2311 *
2312 * @rb: The ringbuffer to initialize.
2313 * @text_buf: The data buffer for text data.
2314 * @textbits: The size of @text_buf as a power-of-2 value.
2315 * @descs: The descriptor buffer for ringbuffer records.
2316 * @descbits: The count of @descs items as a power-of-2 value.
2317 * @infos: The printk_info buffer for ringbuffer records.
2318 *
2319 * This is the public function available to writers to setup a ringbuffer
2320 * during runtime using provided buffers.
2321 *
2322 * This must match the initialization of DEFINE_PRINTKRB().
2323 *
2324 * Context: Any context.
2325 */
2326void prb_init(struct printk_ringbuffer *rb,
2327 char *text_buf, unsigned int textbits,
2328 struct prb_desc *descs, unsigned int descbits,
2329 struct printk_info *infos)
2330{
2331 memset(s: descs, c: 0, _DESCS_COUNT(descbits) * sizeof(descs[0]));
2332 memset(s: infos, c: 0, _DESCS_COUNT(descbits) * sizeof(infos[0]));
2333
2334 rb->desc_ring.count_bits = descbits;
2335 rb->desc_ring.descs = descs;
2336 rb->desc_ring.infos = infos;
2337 atomic_long_set(v: &rb->desc_ring.head_id, DESC0_ID(descbits));
2338 atomic_long_set(v: &rb->desc_ring.tail_id, DESC0_ID(descbits));
2339 atomic_long_set(v: &rb->desc_ring.last_finalized_seq, i: 0);
2340
2341 rb->text_data_ring.size_bits = textbits;
2342 rb->text_data_ring.data = text_buf;
2343 atomic_long_set(v: &rb->text_data_ring.head_lpos, BLK0_LPOS(textbits));
2344 atomic_long_set(v: &rb->text_data_ring.tail_lpos, BLK0_LPOS(textbits));
2345
2346 atomic_long_set(v: &rb->fail, i: 0);
2347
2348 atomic_long_set(v: &(descs[_DESCS_COUNT(descbits) - 1].state_var), DESC0_SV(descbits));
2349 descs[_DESCS_COUNT(descbits) - 1].text_blk_lpos.begin = FAILED_LPOS;
2350 descs[_DESCS_COUNT(descbits) - 1].text_blk_lpos.next = FAILED_LPOS;
2351
2352 infos[0].seq = -(u64)_DESCS_COUNT(descbits);
2353 infos[_DESCS_COUNT(descbits) - 1].seq = 0;
2354}
2355EXPORT_SYMBOL_IF_KUNIT(prb_init);
2356
2357/**
2358 * prb_record_text_space() - Query the full actual used ringbuffer space for
2359 * the text data of a reserved entry.
2360 *
2361 * @e: The successfully reserved entry to query.
2362 *
2363 * This is the public function available to writers to see how much actual
2364 * space is used in the ringbuffer to store the text data of the specified
2365 * entry.
2366 *
2367 * This function is only valid if @e has been successfully reserved using
2368 * prb_reserve().
2369 *
2370 * Context: Any context.
2371 * Return: The size in bytes used by the text data of the associated record.
2372 */
2373unsigned int prb_record_text_space(struct prb_reserved_entry *e)
2374{
2375 return e->text_space;
2376}
2377