| 1 | /* SPDX-License-Identifier: GPL-2.0+ */ | 
|---|
| 2 | /* | 
|---|
| 3 | * Read-Copy Update mechanism for mutual exclusion (tree-based version) | 
|---|
| 4 | * Internal non-public definitions that provide either classic | 
|---|
| 5 | * or preemptible semantics. | 
|---|
| 6 | * | 
|---|
| 7 | * Copyright Red Hat, 2009 | 
|---|
| 8 | * Copyright IBM Corporation, 2009 | 
|---|
| 9 | * | 
|---|
| 10 | * Author: Ingo Molnar <mingo@elte.hu> | 
|---|
| 11 | *	   Paul E. McKenney <paulmck@linux.ibm.com> | 
|---|
| 12 | */ | 
|---|
| 13 |  | 
|---|
| 14 | #include "../locking/rtmutex_common.h" | 
|---|
| 15 |  | 
|---|
| 16 | static bool rcu_rdp_is_offloaded(struct rcu_data *rdp) | 
|---|
| 17 | { | 
|---|
| 18 | /* | 
|---|
| 19 | * In order to read the offloaded state of an rdp in a safe | 
|---|
| 20 | * and stable way and prevent from its value to be changed | 
|---|
| 21 | * under us, we must either hold the barrier mutex, the cpu | 
|---|
| 22 | * hotplug lock (read or write) or the nocb lock. Local | 
|---|
| 23 | * non-preemptible reads are also safe. NOCB kthreads and | 
|---|
| 24 | * timers have their own means of synchronization against the | 
|---|
| 25 | * offloaded state updaters. | 
|---|
| 26 | */ | 
|---|
| 27 | RCU_NOCB_LOCKDEP_WARN( | 
|---|
| 28 | !(lockdep_is_held(&rcu_state.barrier_mutex) || | 
|---|
| 29 | (IS_ENABLED(CONFIG_HOTPLUG_CPU) && lockdep_is_cpus_held()) || | 
|---|
| 30 | lockdep_is_held(&rdp->nocb_lock) || | 
|---|
| 31 | lockdep_is_held(&rcu_state.nocb_mutex) || | 
|---|
| 32 | ((!(IS_ENABLED(CONFIG_PREEMPT_COUNT) && preemptible()) || softirq_count()) && | 
|---|
| 33 | rdp == this_cpu_ptr(&rcu_data)) || | 
|---|
| 34 | rcu_current_is_nocb_kthread(rdp)), | 
|---|
| 35 | "Unsafe read of RCU_NOCB offloaded state" | 
|---|
| 36 | ); | 
|---|
| 37 |  | 
|---|
| 38 | return rcu_segcblist_is_offloaded(rsclp: &rdp->cblist); | 
|---|
| 39 | } | 
|---|
| 40 |  | 
|---|
| 41 | /* | 
|---|
| 42 | * Check the RCU kernel configuration parameters and print informative | 
|---|
| 43 | * messages about anything out of the ordinary. | 
|---|
| 44 | */ | 
|---|
| 45 | static void __init rcu_bootup_announce_oddness(void) | 
|---|
| 46 | { | 
|---|
| 47 | if (IS_ENABLED(CONFIG_RCU_TRACE)) | 
|---|
| 48 | pr_info( "\tRCU event tracing is enabled.\n"); | 
|---|
| 49 | if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) || | 
|---|
| 50 | (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32)) | 
|---|
| 51 | pr_info( "\tCONFIG_RCU_FANOUT set to non-default value of %d.\n", | 
|---|
| 52 | RCU_FANOUT); | 
|---|
| 53 | if (rcu_fanout_exact) | 
|---|
| 54 | pr_info( "\tHierarchical RCU autobalancing is disabled.\n"); | 
|---|
| 55 | if (IS_ENABLED(CONFIG_PROVE_RCU)) | 
|---|
| 56 | pr_info( "\tRCU lockdep checking is enabled.\n"); | 
|---|
| 57 | if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) | 
|---|
| 58 | pr_info( "\tRCU strict (and thus non-scalable) grace periods are enabled.\n"); | 
|---|
| 59 | if (RCU_NUM_LVLS >= 4) | 
|---|
| 60 | pr_info( "\tFour(or more)-level hierarchy is enabled.\n"); | 
|---|
| 61 | if (RCU_FANOUT_LEAF != 16) | 
|---|
| 62 | pr_info( "\tBuild-time adjustment of leaf fanout to %d.\n", | 
|---|
| 63 | RCU_FANOUT_LEAF); | 
|---|
| 64 | if (rcu_fanout_leaf != RCU_FANOUT_LEAF) | 
|---|
| 65 | pr_info( "\tBoot-time adjustment of leaf fanout to %d.\n", | 
|---|
| 66 | rcu_fanout_leaf); | 
|---|
| 67 | if (nr_cpu_ids != NR_CPUS) | 
|---|
| 68 | pr_info( "\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids); | 
|---|
| 69 | #ifdef CONFIG_RCU_BOOST | 
|---|
| 70 | pr_info( "\tRCU priority boosting: priority %d delay %d ms.\n", | 
|---|
| 71 | kthread_prio, CONFIG_RCU_BOOST_DELAY); | 
|---|
| 72 | #endif | 
|---|
| 73 | if (blimit != DEFAULT_RCU_BLIMIT) | 
|---|
| 74 | pr_info( "\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit); | 
|---|
| 75 | if (qhimark != DEFAULT_RCU_QHIMARK) | 
|---|
| 76 | pr_info( "\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark); | 
|---|
| 77 | if (qlowmark != DEFAULT_RCU_QLOMARK) | 
|---|
| 78 | pr_info( "\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark); | 
|---|
| 79 | if (qovld != DEFAULT_RCU_QOVLD) | 
|---|
| 80 | pr_info( "\tBoot-time adjustment of callback overload level to %ld.\n", qovld); | 
|---|
| 81 | if (jiffies_till_first_fqs != ULONG_MAX) | 
|---|
| 82 | pr_info( "\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs); | 
|---|
| 83 | if (jiffies_till_next_fqs != ULONG_MAX) | 
|---|
| 84 | pr_info( "\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs); | 
|---|
| 85 | if (jiffies_till_sched_qs != ULONG_MAX) | 
|---|
| 86 | pr_info( "\tBoot-time adjustment of scheduler-enlistment delay to %ld jiffies.\n", jiffies_till_sched_qs); | 
|---|
| 87 | if (rcu_kick_kthreads) | 
|---|
| 88 | pr_info( "\tKick kthreads if too-long grace period.\n"); | 
|---|
| 89 | if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD)) | 
|---|
| 90 | pr_info( "\tRCU callback double-/use-after-free debug is enabled.\n"); | 
|---|
| 91 | if (gp_preinit_delay) | 
|---|
| 92 | pr_info( "\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay); | 
|---|
| 93 | if (gp_init_delay) | 
|---|
| 94 | pr_info( "\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay); | 
|---|
| 95 | if (gp_cleanup_delay) | 
|---|
| 96 | pr_info( "\tRCU debug GP cleanup slowdown %d jiffies.\n", gp_cleanup_delay); | 
|---|
| 97 | if (nohz_full_patience_delay < 0) { | 
|---|
| 98 | pr_info( "\tRCU NOCB CPU patience negative (%d), resetting to zero.\n", nohz_full_patience_delay); | 
|---|
| 99 | nohz_full_patience_delay = 0; | 
|---|
| 100 | } else if (nohz_full_patience_delay > 5 * MSEC_PER_SEC) { | 
|---|
| 101 | pr_info( "\tRCU NOCB CPU patience too large (%d), resetting to %ld.\n", nohz_full_patience_delay, 5 * MSEC_PER_SEC); | 
|---|
| 102 | nohz_full_patience_delay = 5 * MSEC_PER_SEC; | 
|---|
| 103 | } else if (nohz_full_patience_delay) { | 
|---|
| 104 | pr_info( "\tRCU NOCB CPU patience set to %d milliseconds.\n", nohz_full_patience_delay); | 
|---|
| 105 | } | 
|---|
| 106 | nohz_full_patience_delay_jiffies = msecs_to_jiffies(m: nohz_full_patience_delay); | 
|---|
| 107 | if (!use_softirq) | 
|---|
| 108 | pr_info( "\tRCU_SOFTIRQ processing moved to rcuc kthreads.\n"); | 
|---|
| 109 | if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG)) | 
|---|
| 110 | pr_info( "\tRCU debug extended QS entry/exit.\n"); | 
|---|
| 111 | rcupdate_announce_bootup_oddness(); | 
|---|
| 112 | } | 
|---|
| 113 |  | 
|---|
| 114 | #ifdef CONFIG_PREEMPT_RCU | 
|---|
| 115 |  | 
|---|
| 116 | static void rcu_report_exp_rnp(struct rcu_node *rnp, bool wake); | 
|---|
| 117 | static void rcu_read_unlock_special(struct task_struct *t); | 
|---|
| 118 |  | 
|---|
| 119 | /* | 
|---|
| 120 | * Tell them what RCU they are running. | 
|---|
| 121 | */ | 
|---|
| 122 | static void __init rcu_bootup_announce(void) | 
|---|
| 123 | { | 
|---|
| 124 | pr_info( "Preemptible hierarchical RCU implementation.\n"); | 
|---|
| 125 | rcu_bootup_announce_oddness(); | 
|---|
| 126 | } | 
|---|
| 127 |  | 
|---|
| 128 | /* Flags for rcu_preempt_ctxt_queue() decision table. */ | 
|---|
| 129 | #define RCU_GP_TASKS	0x8 | 
|---|
| 130 | #define RCU_EXP_TASKS	0x4 | 
|---|
| 131 | #define RCU_GP_BLKD	0x2 | 
|---|
| 132 | #define RCU_EXP_BLKD	0x1 | 
|---|
| 133 |  | 
|---|
| 134 | /* | 
|---|
| 135 | * Queues a task preempted within an RCU-preempt read-side critical | 
|---|
| 136 | * section into the appropriate location within the ->blkd_tasks list, | 
|---|
| 137 | * depending on the states of any ongoing normal and expedited grace | 
|---|
| 138 | * periods.  The ->gp_tasks pointer indicates which element the normal | 
|---|
| 139 | * grace period is waiting on (NULL if none), and the ->exp_tasks pointer | 
|---|
| 140 | * indicates which element the expedited grace period is waiting on (again, | 
|---|
| 141 | * NULL if none).  If a grace period is waiting on a given element in the | 
|---|
| 142 | * ->blkd_tasks list, it also waits on all subsequent elements.  Thus, | 
|---|
| 143 | * adding a task to the tail of the list blocks any grace period that is | 
|---|
| 144 | * already waiting on one of the elements.  In contrast, adding a task | 
|---|
| 145 | * to the head of the list won't block any grace period that is already | 
|---|
| 146 | * waiting on one of the elements. | 
|---|
| 147 | * | 
|---|
| 148 | * This queuing is imprecise, and can sometimes make an ongoing grace | 
|---|
| 149 | * period wait for a task that is not strictly speaking blocking it. | 
|---|
| 150 | * Given the choice, we needlessly block a normal grace period rather than | 
|---|
| 151 | * blocking an expedited grace period. | 
|---|
| 152 | * | 
|---|
| 153 | * Note that an endless sequence of expedited grace periods still cannot | 
|---|
| 154 | * indefinitely postpone a normal grace period.  Eventually, all of the | 
|---|
| 155 | * fixed number of preempted tasks blocking the normal grace period that are | 
|---|
| 156 | * not also blocking the expedited grace period will resume and complete | 
|---|
| 157 | * their RCU read-side critical sections.  At that point, the ->gp_tasks | 
|---|
| 158 | * pointer will equal the ->exp_tasks pointer, at which point the end of | 
|---|
| 159 | * the corresponding expedited grace period will also be the end of the | 
|---|
| 160 | * normal grace period. | 
|---|
| 161 | */ | 
|---|
| 162 | static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp) | 
|---|
| 163 | __releases(rnp->lock) /* But leaves rrupts disabled. */ | 
|---|
| 164 | { | 
|---|
| 165 | int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) + | 
|---|
| 166 | (rnp->exp_tasks ? RCU_EXP_TASKS : 0) + | 
|---|
| 167 | (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) + | 
|---|
| 168 | (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0); | 
|---|
| 169 | struct task_struct *t = current; | 
|---|
| 170 |  | 
|---|
| 171 | raw_lockdep_assert_held_rcu_node(rnp); | 
|---|
| 172 | WARN_ON_ONCE(rdp->mynode != rnp); | 
|---|
| 173 | WARN_ON_ONCE(!rcu_is_leaf_node(rnp)); | 
|---|
| 174 | /* RCU better not be waiting on newly onlined CPUs! */ | 
|---|
| 175 | WARN_ON_ONCE(rnp->qsmaskinitnext & ~rnp->qsmaskinit & rnp->qsmask & | 
|---|
| 176 | rdp->grpmask); | 
|---|
| 177 |  | 
|---|
| 178 | /* | 
|---|
| 179 | * Decide where to queue the newly blocked task.  In theory, | 
|---|
| 180 | * this could be an if-statement.  In practice, when I tried | 
|---|
| 181 | * that, it was quite messy. | 
|---|
| 182 | */ | 
|---|
| 183 | switch (blkd_state) { | 
|---|
| 184 | case 0: | 
|---|
| 185 | case                RCU_EXP_TASKS: | 
|---|
| 186 | case                RCU_EXP_TASKS | RCU_GP_BLKD: | 
|---|
| 187 | case RCU_GP_TASKS: | 
|---|
| 188 | case RCU_GP_TASKS | RCU_EXP_TASKS: | 
|---|
| 189 |  | 
|---|
| 190 | /* | 
|---|
| 191 | * Blocking neither GP, or first task blocking the normal | 
|---|
| 192 | * GP but not blocking the already-waiting expedited GP. | 
|---|
| 193 | * Queue at the head of the list to avoid unnecessarily | 
|---|
| 194 | * blocking the already-waiting GPs. | 
|---|
| 195 | */ | 
|---|
| 196 | list_add(new: &t->rcu_node_entry, head: &rnp->blkd_tasks); | 
|---|
| 197 | break; | 
|---|
| 198 |  | 
|---|
| 199 | case                                              RCU_EXP_BLKD: | 
|---|
| 200 | case                                RCU_GP_BLKD: | 
|---|
| 201 | case                                RCU_GP_BLKD | RCU_EXP_BLKD: | 
|---|
| 202 | case RCU_GP_TASKS |                               RCU_EXP_BLKD: | 
|---|
| 203 | case RCU_GP_TASKS |                 RCU_GP_BLKD | RCU_EXP_BLKD: | 
|---|
| 204 | case RCU_GP_TASKS | RCU_EXP_TASKS | RCU_GP_BLKD | RCU_EXP_BLKD: | 
|---|
| 205 |  | 
|---|
| 206 | /* | 
|---|
| 207 | * First task arriving that blocks either GP, or first task | 
|---|
| 208 | * arriving that blocks the expedited GP (with the normal | 
|---|
| 209 | * GP already waiting), or a task arriving that blocks | 
|---|
| 210 | * both GPs with both GPs already waiting.  Queue at the | 
|---|
| 211 | * tail of the list to avoid any GP waiting on any of the | 
|---|
| 212 | * already queued tasks that are not blocking it. | 
|---|
| 213 | */ | 
|---|
| 214 | list_add_tail(new: &t->rcu_node_entry, head: &rnp->blkd_tasks); | 
|---|
| 215 | break; | 
|---|
| 216 |  | 
|---|
| 217 | case                RCU_EXP_TASKS |               RCU_EXP_BLKD: | 
|---|
| 218 | case                RCU_EXP_TASKS | RCU_GP_BLKD | RCU_EXP_BLKD: | 
|---|
| 219 | case RCU_GP_TASKS | RCU_EXP_TASKS |               RCU_EXP_BLKD: | 
|---|
| 220 |  | 
|---|
| 221 | /* | 
|---|
| 222 | * Second or subsequent task blocking the expedited GP. | 
|---|
| 223 | * The task either does not block the normal GP, or is the | 
|---|
| 224 | * first task blocking the normal GP.  Queue just after | 
|---|
| 225 | * the first task blocking the expedited GP. | 
|---|
| 226 | */ | 
|---|
| 227 | list_add(new: &t->rcu_node_entry, head: rnp->exp_tasks); | 
|---|
| 228 | break; | 
|---|
| 229 |  | 
|---|
| 230 | case RCU_GP_TASKS |                 RCU_GP_BLKD: | 
|---|
| 231 | case RCU_GP_TASKS | RCU_EXP_TASKS | RCU_GP_BLKD: | 
|---|
| 232 |  | 
|---|
| 233 | /* | 
|---|
| 234 | * Second or subsequent task blocking the normal GP. | 
|---|
| 235 | * The task does not block the expedited GP. Queue just | 
|---|
| 236 | * after the first task blocking the normal GP. | 
|---|
| 237 | */ | 
|---|
| 238 | list_add(new: &t->rcu_node_entry, head: rnp->gp_tasks); | 
|---|
| 239 | break; | 
|---|
| 240 |  | 
|---|
| 241 | default: | 
|---|
| 242 |  | 
|---|
| 243 | /* Yet another exercise in excessive paranoia. */ | 
|---|
| 244 | WARN_ON_ONCE(1); | 
|---|
| 245 | break; | 
|---|
| 246 | } | 
|---|
| 247 |  | 
|---|
| 248 | /* | 
|---|
| 249 | * We have now queued the task.  If it was the first one to | 
|---|
| 250 | * block either grace period, update the ->gp_tasks and/or | 
|---|
| 251 | * ->exp_tasks pointers, respectively, to reference the newly | 
|---|
| 252 | * blocked tasks. | 
|---|
| 253 | */ | 
|---|
| 254 | if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) { | 
|---|
| 255 | WRITE_ONCE(rnp->gp_tasks, &t->rcu_node_entry); | 
|---|
| 256 | WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq); | 
|---|
| 257 | } | 
|---|
| 258 | if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD)) | 
|---|
| 259 | WRITE_ONCE(rnp->exp_tasks, &t->rcu_node_entry); | 
|---|
| 260 | WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) != | 
|---|
| 261 | !(rnp->qsmask & rdp->grpmask)); | 
|---|
| 262 | WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) != | 
|---|
| 263 | !(rnp->expmask & rdp->grpmask)); | 
|---|
| 264 | raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */ | 
|---|
| 265 |  | 
|---|
| 266 | /* | 
|---|
| 267 | * Report the quiescent state for the expedited GP.  This expedited | 
|---|
| 268 | * GP should not be able to end until we report, so there should be | 
|---|
| 269 | * no need to check for a subsequent expedited GP.  (Though we are | 
|---|
| 270 | * still in a quiescent state in any case.) | 
|---|
| 271 | * | 
|---|
| 272 | * Interrupts are disabled, so ->cpu_no_qs.b.exp cannot change. | 
|---|
| 273 | */ | 
|---|
| 274 | if (blkd_state & RCU_EXP_BLKD && rdp->cpu_no_qs.b.exp) | 
|---|
| 275 | rcu_report_exp_rdp(rdp); | 
|---|
| 276 | else | 
|---|
| 277 | WARN_ON_ONCE(rdp->cpu_no_qs.b.exp); | 
|---|
| 278 | ASSERT_EXCLUSIVE_WRITER_SCOPED(rdp->cpu_no_qs.b.exp); | 
|---|
| 279 | } | 
|---|
| 280 |  | 
|---|
| 281 | /* | 
|---|
| 282 | * Record a preemptible-RCU quiescent state for the specified CPU. | 
|---|
| 283 | * Note that this does not necessarily mean that the task currently running | 
|---|
| 284 | * on the CPU is in a quiescent state:  Instead, it means that the current | 
|---|
| 285 | * grace period need not wait on any RCU read-side critical section that | 
|---|
| 286 | * starts later on this CPU.  It also means that if the current task is | 
|---|
| 287 | * in an RCU read-side critical section, it has already added itself to | 
|---|
| 288 | * some leaf rcu_node structure's ->blkd_tasks list.  In addition to the | 
|---|
| 289 | * current task, there might be any number of other tasks blocked while | 
|---|
| 290 | * in an RCU read-side critical section. | 
|---|
| 291 | * | 
|---|
| 292 | * Unlike non-preemptible-RCU, quiescent state reports for expedited | 
|---|
| 293 | * grace periods are handled separately via deferred quiescent states | 
|---|
| 294 | * and context switch events. | 
|---|
| 295 | * | 
|---|
| 296 | * Callers to this function must disable preemption. | 
|---|
| 297 | */ | 
|---|
| 298 | static void rcu_qs(void) | 
|---|
| 299 | { | 
|---|
| 300 | RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!\n"); | 
|---|
| 301 | if (__this_cpu_read(rcu_data.cpu_no_qs.b.norm)) { | 
|---|
| 302 | trace_rcu_grace_period(TPS( "rcu_preempt"), | 
|---|
| 303 | __this_cpu_read(rcu_data.gp_seq), | 
|---|
| 304 | TPS( "cpuqs")); | 
|---|
| 305 | __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false); | 
|---|
| 306 | barrier(); /* Coordinate with rcu_flavor_sched_clock_irq(). */ | 
|---|
| 307 | WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, false); | 
|---|
| 308 | } | 
|---|
| 309 | } | 
|---|
| 310 |  | 
|---|
| 311 | /* | 
|---|
| 312 | * We have entered the scheduler, and the current task might soon be | 
|---|
| 313 | * context-switched away from.  If this task is in an RCU read-side | 
|---|
| 314 | * critical section, we will no longer be able to rely on the CPU to | 
|---|
| 315 | * record that fact, so we enqueue the task on the blkd_tasks list. | 
|---|
| 316 | * The task will dequeue itself when it exits the outermost enclosing | 
|---|
| 317 | * RCU read-side critical section.  Therefore, the current grace period | 
|---|
| 318 | * cannot be permitted to complete until the blkd_tasks list entries | 
|---|
| 319 | * predating the current grace period drain, in other words, until | 
|---|
| 320 | * rnp->gp_tasks becomes NULL. | 
|---|
| 321 | * | 
|---|
| 322 | * Caller must disable interrupts. | 
|---|
| 323 | */ | 
|---|
| 324 | void rcu_note_context_switch(bool preempt) | 
|---|
| 325 | { | 
|---|
| 326 | struct task_struct *t = current; | 
|---|
| 327 | struct rcu_data *rdp = this_cpu_ptr(&rcu_data); | 
|---|
| 328 | struct rcu_node *rnp; | 
|---|
| 329 |  | 
|---|
| 330 | trace_rcu_utilization(TPS( "Start context switch")); | 
|---|
| 331 | lockdep_assert_irqs_disabled(); | 
|---|
| 332 | WARN_ONCE(!preempt && rcu_preempt_depth() > 0, "Voluntary context switch within RCU read-side critical section!"); | 
|---|
| 333 | if (rcu_preempt_depth() > 0 && | 
|---|
| 334 | !t->rcu_read_unlock_special.b.blocked) { | 
|---|
| 335 |  | 
|---|
| 336 | /* Possibly blocking in an RCU read-side critical section. */ | 
|---|
| 337 | rnp = rdp->mynode; | 
|---|
| 338 | raw_spin_lock_rcu_node(rnp); | 
|---|
| 339 | t->rcu_read_unlock_special.b.blocked = true; | 
|---|
| 340 | t->rcu_blocked_node = rnp; | 
|---|
| 341 |  | 
|---|
| 342 | /* | 
|---|
| 343 | * Verify the CPU's sanity, trace the preemption, and | 
|---|
| 344 | * then queue the task as required based on the states | 
|---|
| 345 | * of any ongoing and expedited grace periods. | 
|---|
| 346 | */ | 
|---|
| 347 | WARN_ON_ONCE(!rcu_rdp_cpu_online(rdp)); | 
|---|
| 348 | WARN_ON_ONCE(!list_empty(&t->rcu_node_entry)); | 
|---|
| 349 | trace_rcu_preempt_task(rcuname: rcu_state.name, | 
|---|
| 350 | pid: t->pid, | 
|---|
| 351 | gp_seq: (rnp->qsmask & rdp->grpmask) | 
|---|
| 352 | ? rnp->gp_seq | 
|---|
| 353 | : rcu_seq_snap(sp: &rnp->gp_seq)); | 
|---|
| 354 | rcu_preempt_ctxt_queue(rnp, rdp); | 
|---|
| 355 | } else { | 
|---|
| 356 | rcu_preempt_deferred_qs(t); | 
|---|
| 357 | } | 
|---|
| 358 |  | 
|---|
| 359 | /* | 
|---|
| 360 | * Either we were not in an RCU read-side critical section to | 
|---|
| 361 | * begin with, or we have now recorded that critical section | 
|---|
| 362 | * globally.  Either way, we can now note a quiescent state | 
|---|
| 363 | * for this CPU.  Again, if we were in an RCU read-side critical | 
|---|
| 364 | * section, and if that critical section was blocking the current | 
|---|
| 365 | * grace period, then the fact that the task has been enqueued | 
|---|
| 366 | * means that we continue to block the current grace period. | 
|---|
| 367 | */ | 
|---|
| 368 | rcu_qs(); | 
|---|
| 369 | if (rdp->cpu_no_qs.b.exp) | 
|---|
| 370 | rcu_report_exp_rdp(rdp); | 
|---|
| 371 | rcu_tasks_qs(current, preempt); | 
|---|
| 372 | trace_rcu_utilization(TPS( "End context switch")); | 
|---|
| 373 | } | 
|---|
| 374 | EXPORT_SYMBOL_GPL(rcu_note_context_switch); | 
|---|
| 375 |  | 
|---|
| 376 | /* | 
|---|
| 377 | * Check for preempted RCU readers blocking the current grace period | 
|---|
| 378 | * for the specified rcu_node structure.  If the caller needs a reliable | 
|---|
| 379 | * answer, it must hold the rcu_node's ->lock. | 
|---|
| 380 | */ | 
|---|
| 381 | static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp) | 
|---|
| 382 | { | 
|---|
| 383 | return READ_ONCE(rnp->gp_tasks) != NULL; | 
|---|
| 384 | } | 
|---|
| 385 |  | 
|---|
| 386 | /* limit value for ->rcu_read_lock_nesting. */ | 
|---|
| 387 | #define RCU_NEST_PMAX (INT_MAX / 2) | 
|---|
| 388 |  | 
|---|
| 389 | static void rcu_preempt_read_enter(void) | 
|---|
| 390 | { | 
|---|
| 391 | WRITE_ONCE(current->rcu_read_lock_nesting, READ_ONCE(current->rcu_read_lock_nesting) + 1); | 
|---|
| 392 | } | 
|---|
| 393 |  | 
|---|
| 394 | static int rcu_preempt_read_exit(void) | 
|---|
| 395 | { | 
|---|
| 396 | int ret = READ_ONCE(current->rcu_read_lock_nesting) - 1; | 
|---|
| 397 |  | 
|---|
| 398 | WRITE_ONCE(current->rcu_read_lock_nesting, ret); | 
|---|
| 399 | return ret; | 
|---|
| 400 | } | 
|---|
| 401 |  | 
|---|
| 402 | static void rcu_preempt_depth_set(int val) | 
|---|
| 403 | { | 
|---|
| 404 | WRITE_ONCE(current->rcu_read_lock_nesting, val); | 
|---|
| 405 | } | 
|---|
| 406 |  | 
|---|
| 407 | /* | 
|---|
| 408 | * Preemptible RCU implementation for rcu_read_lock(). | 
|---|
| 409 | * Just increment ->rcu_read_lock_nesting, shared state will be updated | 
|---|
| 410 | * if we block. | 
|---|
| 411 | */ | 
|---|
| 412 | void __rcu_read_lock(void) | 
|---|
| 413 | { | 
|---|
| 414 | rcu_preempt_read_enter(); | 
|---|
| 415 | if (IS_ENABLED(CONFIG_PROVE_LOCKING)) | 
|---|
| 416 | WARN_ON_ONCE(rcu_preempt_depth() > RCU_NEST_PMAX); | 
|---|
| 417 | if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) && rcu_state.gp_kthread) | 
|---|
| 418 | WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, true); | 
|---|
| 419 | barrier();  /* critical section after entry code. */ | 
|---|
| 420 | } | 
|---|
| 421 | EXPORT_SYMBOL_GPL(__rcu_read_lock); | 
|---|
| 422 |  | 
|---|
| 423 | /* | 
|---|
| 424 | * Preemptible RCU implementation for rcu_read_unlock(). | 
|---|
| 425 | * Decrement ->rcu_read_lock_nesting.  If the result is zero (outermost | 
|---|
| 426 | * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then | 
|---|
| 427 | * invoke rcu_read_unlock_special() to clean up after a context switch | 
|---|
| 428 | * in an RCU read-side critical section and other special cases. | 
|---|
| 429 | */ | 
|---|
| 430 | void __rcu_read_unlock(void) | 
|---|
| 431 | { | 
|---|
| 432 | struct task_struct *t = current; | 
|---|
| 433 |  | 
|---|
| 434 | barrier();  // critical section before exit code. | 
|---|
| 435 | if (rcu_preempt_read_exit() == 0) { | 
|---|
| 436 | barrier();  // critical-section exit before .s check. | 
|---|
| 437 | if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s))) | 
|---|
| 438 | rcu_read_unlock_special(t); | 
|---|
| 439 | } | 
|---|
| 440 | if (IS_ENABLED(CONFIG_PROVE_LOCKING)) { | 
|---|
| 441 | int rrln = rcu_preempt_depth(); | 
|---|
| 442 |  | 
|---|
| 443 | WARN_ON_ONCE(rrln < 0 || rrln > RCU_NEST_PMAX); | 
|---|
| 444 | } | 
|---|
| 445 | } | 
|---|
| 446 | EXPORT_SYMBOL_GPL(__rcu_read_unlock); | 
|---|
| 447 |  | 
|---|
| 448 | /* | 
|---|
| 449 | * Advance a ->blkd_tasks-list pointer to the next entry, instead | 
|---|
| 450 | * returning NULL if at the end of the list. | 
|---|
| 451 | */ | 
|---|
| 452 | static struct list_head *rcu_next_node_entry(struct task_struct *t, | 
|---|
| 453 | struct rcu_node *rnp) | 
|---|
| 454 | { | 
|---|
| 455 | struct list_head *np; | 
|---|
| 456 |  | 
|---|
| 457 | np = t->rcu_node_entry.next; | 
|---|
| 458 | if (np == &rnp->blkd_tasks) | 
|---|
| 459 | np = NULL; | 
|---|
| 460 | return np; | 
|---|
| 461 | } | 
|---|
| 462 |  | 
|---|
| 463 | /* | 
|---|
| 464 | * Return true if the specified rcu_node structure has tasks that were | 
|---|
| 465 | * preempted within an RCU read-side critical section. | 
|---|
| 466 | */ | 
|---|
| 467 | static bool rcu_preempt_has_tasks(struct rcu_node *rnp) | 
|---|
| 468 | { | 
|---|
| 469 | return !list_empty(head: &rnp->blkd_tasks); | 
|---|
| 470 | } | 
|---|
| 471 |  | 
|---|
| 472 | /* | 
|---|
| 473 | * Report deferred quiescent states.  The deferral time can | 
|---|
| 474 | * be quite short, for example, in the case of the call from | 
|---|
| 475 | * rcu_read_unlock_special(). | 
|---|
| 476 | */ | 
|---|
| 477 | static notrace void | 
|---|
| 478 | rcu_preempt_deferred_qs_irqrestore(struct task_struct *t, unsigned long flags) | 
|---|
| 479 | { | 
|---|
| 480 | bool empty_exp; | 
|---|
| 481 | bool empty_norm; | 
|---|
| 482 | bool empty_exp_now; | 
|---|
| 483 | struct list_head *np; | 
|---|
| 484 | bool drop_boost_mutex = false; | 
|---|
| 485 | struct rcu_data *rdp; | 
|---|
| 486 | struct rcu_node *rnp; | 
|---|
| 487 | union rcu_special special; | 
|---|
| 488 |  | 
|---|
| 489 | rdp = this_cpu_ptr(&rcu_data); | 
|---|
| 490 | if (rdp->defer_qs_iw_pending == DEFER_QS_PENDING) | 
|---|
| 491 | rdp->defer_qs_iw_pending = DEFER_QS_IDLE; | 
|---|
| 492 |  | 
|---|
| 493 | /* | 
|---|
| 494 | * If RCU core is waiting for this CPU to exit its critical section, | 
|---|
| 495 | * report the fact that it has exited.  Because irqs are disabled, | 
|---|
| 496 | * t->rcu_read_unlock_special cannot change. | 
|---|
| 497 | */ | 
|---|
| 498 | special = t->rcu_read_unlock_special; | 
|---|
| 499 | if (!special.s && !rdp->cpu_no_qs.b.exp) { | 
|---|
| 500 | local_irq_restore(flags); | 
|---|
| 501 | return; | 
|---|
| 502 | } | 
|---|
| 503 | t->rcu_read_unlock_special.s = 0; | 
|---|
| 504 | if (special.b.need_qs) { | 
|---|
| 505 | if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) { | 
|---|
| 506 | rdp->cpu_no_qs.b.norm = false; | 
|---|
| 507 | rcu_report_qs_rdp(rdp); | 
|---|
| 508 | udelay(usec: rcu_unlock_delay); | 
|---|
| 509 | } else { | 
|---|
| 510 | rcu_qs(); | 
|---|
| 511 | } | 
|---|
| 512 | } | 
|---|
| 513 |  | 
|---|
| 514 | /* | 
|---|
| 515 | * Respond to a request by an expedited grace period for a | 
|---|
| 516 | * quiescent state from this CPU.  Note that requests from | 
|---|
| 517 | * tasks are handled when removing the task from the | 
|---|
| 518 | * blocked-tasks list below. | 
|---|
| 519 | */ | 
|---|
| 520 | if (rdp->cpu_no_qs.b.exp) | 
|---|
| 521 | rcu_report_exp_rdp(rdp); | 
|---|
| 522 |  | 
|---|
| 523 | /* Clean up if blocked during RCU read-side critical section. */ | 
|---|
| 524 | if (special.b.blocked) { | 
|---|
| 525 |  | 
|---|
| 526 | /* | 
|---|
| 527 | * Remove this task from the list it blocked on.  The task | 
|---|
| 528 | * now remains queued on the rcu_node corresponding to the | 
|---|
| 529 | * CPU it first blocked on, so there is no longer any need | 
|---|
| 530 | * to loop.  Retain a WARN_ON_ONCE() out of sheer paranoia. | 
|---|
| 531 | */ | 
|---|
| 532 | rnp = t->rcu_blocked_node; | 
|---|
| 533 | raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ | 
|---|
| 534 | WARN_ON_ONCE(rnp != t->rcu_blocked_node); | 
|---|
| 535 | WARN_ON_ONCE(!rcu_is_leaf_node(rnp)); | 
|---|
| 536 | empty_norm = !rcu_preempt_blocked_readers_cgp(rnp); | 
|---|
| 537 | WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq && | 
|---|
| 538 | (!empty_norm || rnp->qsmask)); | 
|---|
| 539 | empty_exp = sync_rcu_exp_done(rnp); | 
|---|
| 540 | np = rcu_next_node_entry(t, rnp); | 
|---|
| 541 | list_del_init(entry: &t->rcu_node_entry); | 
|---|
| 542 | t->rcu_blocked_node = NULL; | 
|---|
| 543 | trace_rcu_unlock_preempted_task(TPS( "rcu_preempt"), | 
|---|
| 544 | gp_seq: rnp->gp_seq, pid: t->pid); | 
|---|
| 545 | if (&t->rcu_node_entry == rnp->gp_tasks) | 
|---|
| 546 | WRITE_ONCE(rnp->gp_tasks, np); | 
|---|
| 547 | if (&t->rcu_node_entry == rnp->exp_tasks) | 
|---|
| 548 | WRITE_ONCE(rnp->exp_tasks, np); | 
|---|
| 549 | if (IS_ENABLED(CONFIG_RCU_BOOST)) { | 
|---|
| 550 | /* Snapshot ->boost_mtx ownership w/rnp->lock held. */ | 
|---|
| 551 | drop_boost_mutex = rt_mutex_owner(lock: &rnp->boost_mtx.rtmutex) == t; | 
|---|
| 552 | if (&t->rcu_node_entry == rnp->boost_tasks) | 
|---|
| 553 | WRITE_ONCE(rnp->boost_tasks, np); | 
|---|
| 554 | } | 
|---|
| 555 |  | 
|---|
| 556 | /* | 
|---|
| 557 | * If this was the last task on the current list, and if | 
|---|
| 558 | * we aren't waiting on any CPUs, report the quiescent state. | 
|---|
| 559 | * Note that rcu_report_unblock_qs_rnp() releases rnp->lock, | 
|---|
| 560 | * so we must take a snapshot of the expedited state. | 
|---|
| 561 | */ | 
|---|
| 562 | empty_exp_now = sync_rcu_exp_done(rnp); | 
|---|
| 563 | if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) { | 
|---|
| 564 | trace_rcu_quiescent_state_report(TPS( "preempt_rcu"), | 
|---|
| 565 | gp_seq: rnp->gp_seq, | 
|---|
| 566 | mask: 0, qsmask: rnp->qsmask, | 
|---|
| 567 | level: rnp->level, | 
|---|
| 568 | grplo: rnp->grplo, | 
|---|
| 569 | grphi: rnp->grphi, | 
|---|
| 570 | gp_tasks: !!rnp->gp_tasks); | 
|---|
| 571 | rcu_report_unblock_qs_rnp(rnp, flags); | 
|---|
| 572 | } else { | 
|---|
| 573 | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); | 
|---|
| 574 | } | 
|---|
| 575 |  | 
|---|
| 576 | /* | 
|---|
| 577 | * If this was the last task on the expedited lists, | 
|---|
| 578 | * then we need to report up the rcu_node hierarchy. | 
|---|
| 579 | */ | 
|---|
| 580 | if (!empty_exp && empty_exp_now) | 
|---|
| 581 | rcu_report_exp_rnp(rnp, wake: true); | 
|---|
| 582 |  | 
|---|
| 583 | /* Unboost if we were boosted. */ | 
|---|
| 584 | if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex) | 
|---|
| 585 | rt_mutex_futex_unlock(lock: &rnp->boost_mtx.rtmutex); | 
|---|
| 586 | } else { | 
|---|
| 587 | local_irq_restore(flags); | 
|---|
| 588 | } | 
|---|
| 589 | } | 
|---|
| 590 |  | 
|---|
| 591 | /* | 
|---|
| 592 | * Is a deferred quiescent-state pending, and are we also not in | 
|---|
| 593 | * an RCU read-side critical section?  It is the caller's responsibility | 
|---|
| 594 | * to ensure it is otherwise safe to report any deferred quiescent | 
|---|
| 595 | * states.  The reason for this is that it is safe to report a | 
|---|
| 596 | * quiescent state during context switch even though preemption | 
|---|
| 597 | * is disabled.  This function cannot be expected to understand these | 
|---|
| 598 | * nuances, so the caller must handle them. | 
|---|
| 599 | */ | 
|---|
| 600 | static notrace bool rcu_preempt_need_deferred_qs(struct task_struct *t) | 
|---|
| 601 | { | 
|---|
| 602 | return (__this_cpu_read(rcu_data.cpu_no_qs.b.exp) || | 
|---|
| 603 | READ_ONCE(t->rcu_read_unlock_special.s)) && | 
|---|
| 604 | rcu_preempt_depth() == 0; | 
|---|
| 605 | } | 
|---|
| 606 |  | 
|---|
| 607 | /* | 
|---|
| 608 | * Report a deferred quiescent state if needed and safe to do so. | 
|---|
| 609 | * As with rcu_preempt_need_deferred_qs(), "safe" involves only | 
|---|
| 610 | * not being in an RCU read-side critical section.  The caller must | 
|---|
| 611 | * evaluate safety in terms of interrupt, softirq, and preemption | 
|---|
| 612 | * disabling. | 
|---|
| 613 | */ | 
|---|
| 614 | notrace void rcu_preempt_deferred_qs(struct task_struct *t) | 
|---|
| 615 | { | 
|---|
| 616 | unsigned long flags; | 
|---|
| 617 |  | 
|---|
| 618 | if (!rcu_preempt_need_deferred_qs(t)) | 
|---|
| 619 | return; | 
|---|
| 620 | local_irq_save(flags); | 
|---|
| 621 | rcu_preempt_deferred_qs_irqrestore(t, flags); | 
|---|
| 622 | } | 
|---|
| 623 |  | 
|---|
| 624 | /* | 
|---|
| 625 | * Minimal handler to give the scheduler a chance to re-evaluate. | 
|---|
| 626 | */ | 
|---|
| 627 | static void rcu_preempt_deferred_qs_handler(struct irq_work *iwp) | 
|---|
| 628 | { | 
|---|
| 629 | struct rcu_data *rdp; | 
|---|
| 630 |  | 
|---|
| 631 | lockdep_assert_irqs_disabled(); | 
|---|
| 632 | rdp = container_of(iwp, struct rcu_data, defer_qs_iw); | 
|---|
| 633 |  | 
|---|
| 634 | /* | 
|---|
| 635 | * If the IRQ work handler happens to run in the middle of RCU read-side | 
|---|
| 636 | * critical section, it could be ineffective in getting the scheduler's | 
|---|
| 637 | * attention to report a deferred quiescent state (the whole point of the | 
|---|
| 638 | * IRQ work). For this reason, requeue the IRQ work. | 
|---|
| 639 | * | 
|---|
| 640 | * Basically, we want to avoid following situation: | 
|---|
| 641 | * 1. rcu_read_unlock() queues IRQ work (state -> DEFER_QS_PENDING) | 
|---|
| 642 | * 2. CPU enters new rcu_read_lock() | 
|---|
| 643 | * 3. IRQ work runs but cannot report QS due to rcu_preempt_depth() > 0 | 
|---|
| 644 | * 4. rcu_read_unlock() does not re-queue work (state still PENDING) | 
|---|
| 645 | * 5. Deferred QS reporting does not happen. | 
|---|
| 646 | */ | 
|---|
| 647 | if (rcu_preempt_depth() > 0) | 
|---|
| 648 | WRITE_ONCE(rdp->defer_qs_iw_pending, DEFER_QS_IDLE); | 
|---|
| 649 | } | 
|---|
| 650 |  | 
|---|
| 651 | /* | 
|---|
| 652 | * Check if expedited grace period processing during unlock is needed. | 
|---|
| 653 | * | 
|---|
| 654 | * This function determines whether expedited handling is required based on: | 
|---|
| 655 | * 1. Task blocking an expedited grace period (based on a heuristic, could be | 
|---|
| 656 | *    false-positive, see below.) | 
|---|
| 657 | * 2. CPU participating in an expedited grace period | 
|---|
| 658 | * 3. Strict grace period mode requiring expedited handling | 
|---|
| 659 | * 4. RCU priority deboosting needs when interrupts were disabled | 
|---|
| 660 | * | 
|---|
| 661 | * @t: The task being checked | 
|---|
| 662 | * @rdp: The per-CPU RCU data | 
|---|
| 663 | * @rnp: The RCU node for this CPU | 
|---|
| 664 | * @irqs_were_disabled: Whether interrupts were disabled before rcu_read_unlock() | 
|---|
| 665 | * | 
|---|
| 666 | * Returns true if expedited processing of the rcu_read_unlock() is needed. | 
|---|
| 667 | */ | 
|---|
| 668 | static bool rcu_unlock_needs_exp_handling(struct task_struct *t, | 
|---|
| 669 | struct rcu_data *rdp, | 
|---|
| 670 | struct rcu_node *rnp, | 
|---|
| 671 | bool irqs_were_disabled) | 
|---|
| 672 | { | 
|---|
| 673 | /* | 
|---|
| 674 | * Check if this task is blocking an expedited grace period. If the | 
|---|
| 675 | * task was preempted within an RCU read-side critical section and is | 
|---|
| 676 | * on the expedited grace period blockers list (exp_tasks), we need | 
|---|
| 677 | * expedited handling to unblock the expedited GP. This is not an exact | 
|---|
| 678 | * check because 't' might not be on the exp_tasks list at all - its | 
|---|
| 679 | * just a fast heuristic that can be false-positive sometimes. | 
|---|
| 680 | */ | 
|---|
| 681 | if (t->rcu_blocked_node && READ_ONCE(t->rcu_blocked_node->exp_tasks)) | 
|---|
| 682 | return true; | 
|---|
| 683 |  | 
|---|
| 684 | /* | 
|---|
| 685 | * Check if this CPU is participating in an expedited grace period. | 
|---|
| 686 | * The expmask bitmap tracks which CPUs need to check in for the | 
|---|
| 687 | * current expedited GP. If our CPU's bit is set, we need expedited | 
|---|
| 688 | * handling to help complete the expedited GP. | 
|---|
| 689 | */ | 
|---|
| 690 | if (rdp->grpmask & READ_ONCE(rnp->expmask)) | 
|---|
| 691 | return true; | 
|---|
| 692 |  | 
|---|
| 693 | /* | 
|---|
| 694 | * In CONFIG_RCU_STRICT_GRACE_PERIOD=y kernels, all grace periods | 
|---|
| 695 | * are treated as short for testing purposes even if that means | 
|---|
| 696 | * disturbing the system more. Check if either: | 
|---|
| 697 | * - This CPU has not yet reported a quiescent state, or | 
|---|
| 698 | * - This task was preempted within an RCU critical section | 
|---|
| 699 | * In either case, require expedited handling for strict GP mode. | 
|---|
| 700 | */ | 
|---|
| 701 | if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) && | 
|---|
| 702 | ((rdp->grpmask & READ_ONCE(rnp->qsmask)) || t->rcu_blocked_node)) | 
|---|
| 703 | return true; | 
|---|
| 704 |  | 
|---|
| 705 | /* | 
|---|
| 706 | * RCU priority boosting case: If a task is subject to RCU priority | 
|---|
| 707 | * boosting and exits an RCU read-side critical section with interrupts | 
|---|
| 708 | * disabled, we need expedited handling to ensure timely deboosting. | 
|---|
| 709 | * Without this, a low-priority task could incorrectly run at high | 
|---|
| 710 | * real-time priority for an extended period degrading real-time | 
|---|
| 711 | * responsiveness. This applies to all CONFIG_RCU_BOOST=y kernels, | 
|---|
| 712 | * not just to PREEMPT_RT. | 
|---|
| 713 | */ | 
|---|
| 714 | if (IS_ENABLED(CONFIG_RCU_BOOST) && irqs_were_disabled && t->rcu_blocked_node) | 
|---|
| 715 | return true; | 
|---|
| 716 |  | 
|---|
| 717 | return false; | 
|---|
| 718 | } | 
|---|
| 719 |  | 
|---|
| 720 | /* | 
|---|
| 721 | * Handle special cases during rcu_read_unlock(), such as needing to | 
|---|
| 722 | * notify RCU core processing or task having blocked during the RCU | 
|---|
| 723 | * read-side critical section. | 
|---|
| 724 | */ | 
|---|
| 725 | static void rcu_read_unlock_special(struct task_struct *t) | 
|---|
| 726 | { | 
|---|
| 727 | unsigned long flags; | 
|---|
| 728 | bool irqs_were_disabled; | 
|---|
| 729 | bool preempt_bh_were_disabled = | 
|---|
| 730 | !!(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK)); | 
|---|
| 731 |  | 
|---|
| 732 | /* NMI handlers cannot block and cannot safely manipulate state. */ | 
|---|
| 733 | if (in_nmi()) | 
|---|
| 734 | return; | 
|---|
| 735 |  | 
|---|
| 736 | local_irq_save(flags); | 
|---|
| 737 | irqs_were_disabled = irqs_disabled_flags(flags); | 
|---|
| 738 | if (preempt_bh_were_disabled || irqs_were_disabled) { | 
|---|
| 739 | bool needs_exp; // Expedited handling needed. | 
|---|
| 740 | struct rcu_data *rdp = this_cpu_ptr(&rcu_data); | 
|---|
| 741 | struct rcu_node *rnp = rdp->mynode; | 
|---|
| 742 |  | 
|---|
| 743 | needs_exp = rcu_unlock_needs_exp_handling(t, rdp, rnp, irqs_were_disabled); | 
|---|
| 744 |  | 
|---|
| 745 | // Need to defer quiescent state until everything is enabled. | 
|---|
| 746 | if (use_softirq && (in_hardirq() || (needs_exp && !irqs_were_disabled))) { | 
|---|
| 747 | // Using softirq, safe to awaken, and either the | 
|---|
| 748 | // wakeup is free or there is either an expedited | 
|---|
| 749 | // GP in flight or a potential need to deboost. | 
|---|
| 750 | raise_softirq_irqoff(nr: RCU_SOFTIRQ); | 
|---|
| 751 | } else { | 
|---|
| 752 | // Enabling BH or preempt does reschedule, so... | 
|---|
| 753 | // Also if no expediting and no possible deboosting, | 
|---|
| 754 | // slow is OK.  Plus nohz_full CPUs eventually get | 
|---|
| 755 | // tick enabled. | 
|---|
| 756 | set_tsk_need_resched(current); | 
|---|
| 757 | set_preempt_need_resched(); | 
|---|
| 758 | if (IS_ENABLED(CONFIG_IRQ_WORK) && irqs_were_disabled && | 
|---|
| 759 | needs_exp && rdp->defer_qs_iw_pending != DEFER_QS_PENDING && | 
|---|
| 760 | cpu_online(cpu: rdp->cpu)) { | 
|---|
| 761 | // Get scheduler to re-evaluate and call hooks. | 
|---|
| 762 | // If !IRQ_WORK, FQS scan will eventually IPI. | 
|---|
| 763 | rdp->defer_qs_iw_pending = DEFER_QS_PENDING; | 
|---|
| 764 | irq_work_queue_on(work: &rdp->defer_qs_iw, cpu: rdp->cpu); | 
|---|
| 765 | } | 
|---|
| 766 | } | 
|---|
| 767 | local_irq_restore(flags); | 
|---|
| 768 | return; | 
|---|
| 769 | } | 
|---|
| 770 | rcu_preempt_deferred_qs_irqrestore(t, flags); | 
|---|
| 771 | } | 
|---|
| 772 |  | 
|---|
| 773 | /* | 
|---|
| 774 | * Check that the list of blocked tasks for the newly completed grace | 
|---|
| 775 | * period is in fact empty.  It is a serious bug to complete a grace | 
|---|
| 776 | * period that still has RCU readers blocked!  This function must be | 
|---|
| 777 | * invoked -before- updating this rnp's ->gp_seq. | 
|---|
| 778 | * | 
|---|
| 779 | * Also, if there are blocked tasks on the list, they automatically | 
|---|
| 780 | * block the newly created grace period, so set up ->gp_tasks accordingly. | 
|---|
| 781 | */ | 
|---|
| 782 | static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) | 
|---|
| 783 | { | 
|---|
| 784 | struct task_struct *t; | 
|---|
| 785 |  | 
|---|
| 786 | RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n"); | 
|---|
| 787 | raw_lockdep_assert_held_rcu_node(rnp); | 
|---|
| 788 | if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp))) | 
|---|
| 789 | dump_blkd_tasks(rnp, ncheck: 10); | 
|---|
| 790 | if (rcu_preempt_has_tasks(rnp) && | 
|---|
| 791 | (rnp->qsmaskinit || rnp->wait_blkd_tasks)) { | 
|---|
| 792 | WRITE_ONCE(rnp->gp_tasks, rnp->blkd_tasks.next); | 
|---|
| 793 | t = container_of(rnp->gp_tasks, struct task_struct, | 
|---|
| 794 | rcu_node_entry); | 
|---|
| 795 | trace_rcu_unlock_preempted_task(TPS( "rcu_preempt-GPS"), | 
|---|
| 796 | gp_seq: rnp->gp_seq, pid: t->pid); | 
|---|
| 797 | } | 
|---|
| 798 | WARN_ON_ONCE(rnp->qsmask); | 
|---|
| 799 | } | 
|---|
| 800 |  | 
|---|
| 801 | /* | 
|---|
| 802 | * Check for a quiescent state from the current CPU, including voluntary | 
|---|
| 803 | * context switches for Tasks RCU.  When a task blocks, the task is | 
|---|
| 804 | * recorded in the corresponding CPU's rcu_node structure, which is checked | 
|---|
| 805 | * elsewhere, hence this function need only check for quiescent states | 
|---|
| 806 | * related to the current CPU, not to those related to tasks. | 
|---|
| 807 | */ | 
|---|
| 808 | static void rcu_flavor_sched_clock_irq(int user) | 
|---|
| 809 | { | 
|---|
| 810 | struct task_struct *t = current; | 
|---|
| 811 |  | 
|---|
| 812 | lockdep_assert_irqs_disabled(); | 
|---|
| 813 | if (rcu_preempt_depth() > 0 || | 
|---|
| 814 | (preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK))) { | 
|---|
| 815 | /* No QS, force context switch if deferred. */ | 
|---|
| 816 | if (rcu_preempt_need_deferred_qs(t)) { | 
|---|
| 817 | set_tsk_need_resched(t); | 
|---|
| 818 | set_preempt_need_resched(); | 
|---|
| 819 | } | 
|---|
| 820 | } else if (rcu_preempt_need_deferred_qs(t)) { | 
|---|
| 821 | rcu_preempt_deferred_qs(t); /* Report deferred QS. */ | 
|---|
| 822 | return; | 
|---|
| 823 | } else if (!WARN_ON_ONCE(rcu_preempt_depth())) { | 
|---|
| 824 | rcu_qs(); /* Report immediate QS. */ | 
|---|
| 825 | return; | 
|---|
| 826 | } | 
|---|
| 827 |  | 
|---|
| 828 | /* If GP is oldish, ask for help from rcu_read_unlock_special(). */ | 
|---|
| 829 | if (rcu_preempt_depth() > 0 && | 
|---|
| 830 | __this_cpu_read(rcu_data.core_needs_qs) && | 
|---|
| 831 | __this_cpu_read(rcu_data.cpu_no_qs.b.norm) && | 
|---|
| 832 | !t->rcu_read_unlock_special.b.need_qs && | 
|---|
| 833 | time_after(jiffies, rcu_state.gp_start + HZ)) | 
|---|
| 834 | t->rcu_read_unlock_special.b.need_qs = true; | 
|---|
| 835 | } | 
|---|
| 836 |  | 
|---|
| 837 | /* | 
|---|
| 838 | * Check for a task exiting while in a preemptible-RCU read-side | 
|---|
| 839 | * critical section, clean up if so.  No need to issue warnings, as | 
|---|
| 840 | * debug_check_no_locks_held() already does this if lockdep is enabled. | 
|---|
| 841 | * Besides, if this function does anything other than just immediately | 
|---|
| 842 | * return, there was a bug of some sort.  Spewing warnings from this | 
|---|
| 843 | * function is like as not to simply obscure important prior warnings. | 
|---|
| 844 | */ | 
|---|
| 845 | void exit_rcu(void) | 
|---|
| 846 | { | 
|---|
| 847 | struct task_struct *t = current; | 
|---|
| 848 |  | 
|---|
| 849 | if (unlikely(!list_empty(¤t->rcu_node_entry))) { | 
|---|
| 850 | rcu_preempt_depth_set(val: 1); | 
|---|
| 851 | barrier(); | 
|---|
| 852 | WRITE_ONCE(t->rcu_read_unlock_special.b.blocked, true); | 
|---|
| 853 | } else if (unlikely(rcu_preempt_depth())) { | 
|---|
| 854 | rcu_preempt_depth_set(val: 1); | 
|---|
| 855 | } else { | 
|---|
| 856 | return; | 
|---|
| 857 | } | 
|---|
| 858 | __rcu_read_unlock(); | 
|---|
| 859 | rcu_preempt_deferred_qs(current); | 
|---|
| 860 | } | 
|---|
| 861 |  | 
|---|
| 862 | /* | 
|---|
| 863 | * Dump the blocked-tasks state, but limit the list dump to the | 
|---|
| 864 | * specified number of elements. | 
|---|
| 865 | */ | 
|---|
| 866 | static void | 
|---|
| 867 | dump_blkd_tasks(struct rcu_node *rnp, int ncheck) | 
|---|
| 868 | { | 
|---|
| 869 | int cpu; | 
|---|
| 870 | int i; | 
|---|
| 871 | struct list_head *lhp; | 
|---|
| 872 | struct rcu_data *rdp; | 
|---|
| 873 | struct rcu_node *rnp1; | 
|---|
| 874 |  | 
|---|
| 875 | raw_lockdep_assert_held_rcu_node(rnp); | 
|---|
| 876 | pr_info( "%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n", | 
|---|
| 877 | __func__, rnp->grplo, rnp->grphi, rnp->level, | 
|---|
| 878 | (long)READ_ONCE(rnp->gp_seq), (long)rnp->completedqs); | 
|---|
| 879 | for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent) | 
|---|
| 880 | pr_info( "%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx\n", | 
|---|
| 881 | __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext); | 
|---|
| 882 | pr_info( "%s: ->gp_tasks %p ->boost_tasks %p ->exp_tasks %p\n", | 
|---|
| 883 | __func__, READ_ONCE(rnp->gp_tasks), data_race(rnp->boost_tasks), | 
|---|
| 884 | READ_ONCE(rnp->exp_tasks)); | 
|---|
| 885 | pr_info( "%s: ->blkd_tasks", __func__); | 
|---|
| 886 | i = 0; | 
|---|
| 887 | list_for_each(lhp, &rnp->blkd_tasks) { | 
|---|
| 888 | pr_cont( " %p", lhp); | 
|---|
| 889 | if (++i >= ncheck) | 
|---|
| 890 | break; | 
|---|
| 891 | } | 
|---|
| 892 | pr_cont( "\n"); | 
|---|
| 893 | for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) { | 
|---|
| 894 | rdp = per_cpu_ptr(&rcu_data, cpu); | 
|---|
| 895 | pr_info( "\t%d: %c online: %ld(%d) offline: %ld(%d)\n", | 
|---|
| 896 | cpu, ".o"[rcu_rdp_cpu_online(rdp)], | 
|---|
| 897 | (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_state, | 
|---|
| 898 | (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_state); | 
|---|
| 899 | } | 
|---|
| 900 | } | 
|---|
| 901 |  | 
|---|
| 902 | static void rcu_preempt_deferred_qs_init(struct rcu_data *rdp) | 
|---|
| 903 | { | 
|---|
| 904 | rdp->defer_qs_iw = IRQ_WORK_INIT_HARD(rcu_preempt_deferred_qs_handler); | 
|---|
| 905 | } | 
|---|
| 906 | #else /* #ifdef CONFIG_PREEMPT_RCU */ | 
|---|
| 907 |  | 
|---|
| 908 | /* | 
|---|
| 909 | * If strict grace periods are enabled, and if the calling | 
|---|
| 910 | * __rcu_read_unlock() marks the beginning of a quiescent state, immediately | 
|---|
| 911 | * report that quiescent state and, if requested, spin for a bit. | 
|---|
| 912 | */ | 
|---|
| 913 | void rcu_read_unlock_strict(void) | 
|---|
| 914 | { | 
|---|
| 915 | struct rcu_data *rdp; | 
|---|
| 916 |  | 
|---|
| 917 | if (irqs_disabled() || in_atomic_preempt_off() || !rcu_state.gp_kthread) | 
|---|
| 918 | return; | 
|---|
| 919 |  | 
|---|
| 920 | /* | 
|---|
| 921 | * rcu_report_qs_rdp() can only be invoked with a stable rdp and | 
|---|
| 922 | * from the local CPU. | 
|---|
| 923 | * | 
|---|
| 924 | * The in_atomic_preempt_off() check ensures that we come here holding | 
|---|
| 925 | * the last preempt_count (which will get dropped once we return to | 
|---|
| 926 | * __rcu_read_unlock(). | 
|---|
| 927 | */ | 
|---|
| 928 | rdp = this_cpu_ptr(&rcu_data); | 
|---|
| 929 | rdp->cpu_no_qs.b.norm = false; | 
|---|
| 930 | rcu_report_qs_rdp(rdp); | 
|---|
| 931 | udelay(rcu_unlock_delay); | 
|---|
| 932 | } | 
|---|
| 933 | EXPORT_SYMBOL_GPL(rcu_read_unlock_strict); | 
|---|
| 934 |  | 
|---|
| 935 | /* | 
|---|
| 936 | * Tell them what RCU they are running. | 
|---|
| 937 | */ | 
|---|
| 938 | static void __init rcu_bootup_announce(void) | 
|---|
| 939 | { | 
|---|
| 940 | pr_info( "Hierarchical RCU implementation.\n"); | 
|---|
| 941 | rcu_bootup_announce_oddness(); | 
|---|
| 942 | } | 
|---|
| 943 |  | 
|---|
| 944 | /* | 
|---|
| 945 | * Note a quiescent state for PREEMPTION=n.  Because we do not need to know | 
|---|
| 946 | * how many quiescent states passed, just if there was at least one since | 
|---|
| 947 | * the start of the grace period, this just sets a flag.  The caller must | 
|---|
| 948 | * have disabled preemption. | 
|---|
| 949 | */ | 
|---|
| 950 | static void rcu_qs(void) | 
|---|
| 951 | { | 
|---|
| 952 | RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!"); | 
|---|
| 953 | if (!__this_cpu_read(rcu_data.cpu_no_qs.s)) | 
|---|
| 954 | return; | 
|---|
| 955 | trace_rcu_grace_period(TPS( "rcu_sched"), | 
|---|
| 956 | __this_cpu_read(rcu_data.gp_seq), TPS( "cpuqs")); | 
|---|
| 957 | __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false); | 
|---|
| 958 | if (__this_cpu_read(rcu_data.cpu_no_qs.b.exp)) | 
|---|
| 959 | rcu_report_exp_rdp(this_cpu_ptr(&rcu_data)); | 
|---|
| 960 | } | 
|---|
| 961 |  | 
|---|
| 962 | /* | 
|---|
| 963 | * Register an urgently needed quiescent state.  If there is an | 
|---|
| 964 | * emergency, invoke rcu_momentary_eqs() to do a heavy-weight | 
|---|
| 965 | * dyntick-idle quiescent state visible to other CPUs, which will in | 
|---|
| 966 | * some cases serve for expedited as well as normal grace periods. | 
|---|
| 967 | * Either way, register a lightweight quiescent state. | 
|---|
| 968 | */ | 
|---|
| 969 | void rcu_all_qs(void) | 
|---|
| 970 | { | 
|---|
| 971 | unsigned long flags; | 
|---|
| 972 |  | 
|---|
| 973 | if (!raw_cpu_read(rcu_data.rcu_urgent_qs)) | 
|---|
| 974 | return; | 
|---|
| 975 | preempt_disable();  // For CONFIG_PREEMPT_COUNT=y kernels | 
|---|
| 976 | /* Load rcu_urgent_qs before other flags. */ | 
|---|
| 977 | if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) { | 
|---|
| 978 | preempt_enable(); | 
|---|
| 979 | return; | 
|---|
| 980 | } | 
|---|
| 981 | this_cpu_write(rcu_data.rcu_urgent_qs, false); | 
|---|
| 982 | if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) { | 
|---|
| 983 | local_irq_save(flags); | 
|---|
| 984 | rcu_momentary_eqs(); | 
|---|
| 985 | local_irq_restore(flags); | 
|---|
| 986 | } | 
|---|
| 987 | rcu_qs(); | 
|---|
| 988 | preempt_enable(); | 
|---|
| 989 | } | 
|---|
| 990 | EXPORT_SYMBOL_GPL(rcu_all_qs); | 
|---|
| 991 |  | 
|---|
| 992 | /* | 
|---|
| 993 | * Note a PREEMPTION=n context switch. The caller must have disabled interrupts. | 
|---|
| 994 | */ | 
|---|
| 995 | void rcu_note_context_switch(bool preempt) | 
|---|
| 996 | { | 
|---|
| 997 | trace_rcu_utilization(TPS( "Start context switch")); | 
|---|
| 998 | rcu_qs(); | 
|---|
| 999 | /* Load rcu_urgent_qs before other flags. */ | 
|---|
| 1000 | if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) | 
|---|
| 1001 | goto out; | 
|---|
| 1002 | this_cpu_write(rcu_data.rcu_urgent_qs, false); | 
|---|
| 1003 | if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) | 
|---|
| 1004 | rcu_momentary_eqs(); | 
|---|
| 1005 | out: | 
|---|
| 1006 | rcu_tasks_qs(current, preempt); | 
|---|
| 1007 | trace_rcu_utilization(TPS( "End context switch")); | 
|---|
| 1008 | } | 
|---|
| 1009 | EXPORT_SYMBOL_GPL(rcu_note_context_switch); | 
|---|
| 1010 |  | 
|---|
| 1011 | /* | 
|---|
| 1012 | * Because preemptible RCU does not exist, there are never any preempted | 
|---|
| 1013 | * RCU readers. | 
|---|
| 1014 | */ | 
|---|
| 1015 | static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp) | 
|---|
| 1016 | { | 
|---|
| 1017 | return 0; | 
|---|
| 1018 | } | 
|---|
| 1019 |  | 
|---|
| 1020 | /* | 
|---|
| 1021 | * Because there is no preemptible RCU, there can be no readers blocked. | 
|---|
| 1022 | */ | 
|---|
| 1023 | static bool rcu_preempt_has_tasks(struct rcu_node *rnp) | 
|---|
| 1024 | { | 
|---|
| 1025 | return false; | 
|---|
| 1026 | } | 
|---|
| 1027 |  | 
|---|
| 1028 | /* | 
|---|
| 1029 | * Because there is no preemptible RCU, there can be no deferred quiescent | 
|---|
| 1030 | * states. | 
|---|
| 1031 | */ | 
|---|
| 1032 | static notrace bool rcu_preempt_need_deferred_qs(struct task_struct *t) | 
|---|
| 1033 | { | 
|---|
| 1034 | return false; | 
|---|
| 1035 | } | 
|---|
| 1036 |  | 
|---|
| 1037 | // Except that we do need to respond to a request by an expedited | 
|---|
| 1038 | // grace period for a quiescent state from this CPU.  Note that in | 
|---|
| 1039 | // non-preemptible kernels, there can be no context switches within RCU | 
|---|
| 1040 | // read-side critical sections, which in turn means that the leaf rcu_node | 
|---|
| 1041 | // structure's blocked-tasks list is always empty.  is therefore no need to | 
|---|
| 1042 | // actually check it.  Instead, a quiescent state from this CPU suffices, | 
|---|
| 1043 | // and this function is only called from such a quiescent state. | 
|---|
| 1044 | notrace void rcu_preempt_deferred_qs(struct task_struct *t) | 
|---|
| 1045 | { | 
|---|
| 1046 | struct rcu_data *rdp = this_cpu_ptr(&rcu_data); | 
|---|
| 1047 |  | 
|---|
| 1048 | if (READ_ONCE(rdp->cpu_no_qs.b.exp)) | 
|---|
| 1049 | rcu_report_exp_rdp(rdp); | 
|---|
| 1050 | } | 
|---|
| 1051 |  | 
|---|
| 1052 | /* | 
|---|
| 1053 | * Because there is no preemptible RCU, there can be no readers blocked, | 
|---|
| 1054 | * so there is no need to check for blocked tasks.  So check only for | 
|---|
| 1055 | * bogus qsmask values. | 
|---|
| 1056 | */ | 
|---|
| 1057 | static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) | 
|---|
| 1058 | { | 
|---|
| 1059 | WARN_ON_ONCE(rnp->qsmask); | 
|---|
| 1060 | } | 
|---|
| 1061 |  | 
|---|
| 1062 | /* | 
|---|
| 1063 | * Check to see if this CPU is in a non-context-switch quiescent state, | 
|---|
| 1064 | * namely user mode and idle loop. | 
|---|
| 1065 | */ | 
|---|
| 1066 | static void rcu_flavor_sched_clock_irq(int user) | 
|---|
| 1067 | { | 
|---|
| 1068 | if (user || rcu_is_cpu_rrupt_from_idle() || | 
|---|
| 1069 | (IS_ENABLED(CONFIG_PREEMPT_COUNT) && | 
|---|
| 1070 | (preempt_count() == HARDIRQ_OFFSET))) { | 
|---|
| 1071 |  | 
|---|
| 1072 | /* | 
|---|
| 1073 | * Get here if this CPU took its interrupt from user | 
|---|
| 1074 | * mode, from the idle loop without this being a nested | 
|---|
| 1075 | * interrupt, or while not holding the task preempt count | 
|---|
| 1076 | * (with PREEMPT_COUNT=y). In this case, the CPU is in a | 
|---|
| 1077 | * quiescent state, so note it. | 
|---|
| 1078 | * | 
|---|
| 1079 | * No memory barrier is required here because rcu_qs() | 
|---|
| 1080 | * references only CPU-local variables that other CPUs | 
|---|
| 1081 | * neither access nor modify, at least not while the | 
|---|
| 1082 | * corresponding CPU is online. | 
|---|
| 1083 | */ | 
|---|
| 1084 | rcu_qs(); | 
|---|
| 1085 | } | 
|---|
| 1086 | } | 
|---|
| 1087 |  | 
|---|
| 1088 | /* | 
|---|
| 1089 | * Because preemptible RCU does not exist, tasks cannot possibly exit | 
|---|
| 1090 | * while in preemptible RCU read-side critical sections. | 
|---|
| 1091 | */ | 
|---|
| 1092 | void exit_rcu(void) | 
|---|
| 1093 | { | 
|---|
| 1094 | } | 
|---|
| 1095 |  | 
|---|
| 1096 | /* | 
|---|
| 1097 | * Dump the guaranteed-empty blocked-tasks state.  Trust but verify. | 
|---|
| 1098 | */ | 
|---|
| 1099 | static void | 
|---|
| 1100 | dump_blkd_tasks(struct rcu_node *rnp, int ncheck) | 
|---|
| 1101 | { | 
|---|
| 1102 | WARN_ON_ONCE(!list_empty(&rnp->blkd_tasks)); | 
|---|
| 1103 | } | 
|---|
| 1104 |  | 
|---|
| 1105 | static void rcu_preempt_deferred_qs_init(struct rcu_data *rdp) { } | 
|---|
| 1106 |  | 
|---|
| 1107 | #endif /* #else #ifdef CONFIG_PREEMPT_RCU */ | 
|---|
| 1108 |  | 
|---|
| 1109 | /* | 
|---|
| 1110 | * If boosting, set rcuc kthreads to realtime priority. | 
|---|
| 1111 | */ | 
|---|
| 1112 | static void rcu_cpu_kthread_setup(unsigned int cpu) | 
|---|
| 1113 | { | 
|---|
| 1114 | struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); | 
|---|
| 1115 | #ifdef CONFIG_RCU_BOOST | 
|---|
| 1116 | struct sched_param sp; | 
|---|
| 1117 |  | 
|---|
| 1118 | sp.sched_priority = kthread_prio; | 
|---|
| 1119 | sched_setscheduler_nocheck(current, SCHED_FIFO, &sp); | 
|---|
| 1120 | #endif /* #ifdef CONFIG_RCU_BOOST */ | 
|---|
| 1121 |  | 
|---|
| 1122 | WRITE_ONCE(rdp->rcuc_activity, jiffies); | 
|---|
| 1123 | } | 
|---|
| 1124 |  | 
|---|
| 1125 | static bool rcu_is_callbacks_nocb_kthread(struct rcu_data *rdp) | 
|---|
| 1126 | { | 
|---|
| 1127 | #ifdef CONFIG_RCU_NOCB_CPU | 
|---|
| 1128 | return rdp->nocb_cb_kthread == current; | 
|---|
| 1129 | #else | 
|---|
| 1130 | return false; | 
|---|
| 1131 | #endif | 
|---|
| 1132 | } | 
|---|
| 1133 |  | 
|---|
| 1134 | /* | 
|---|
| 1135 | * Is the current CPU running the RCU-callbacks kthread? | 
|---|
| 1136 | * Caller must have preemption disabled. | 
|---|
| 1137 | */ | 
|---|
| 1138 | static bool rcu_is_callbacks_kthread(struct rcu_data *rdp) | 
|---|
| 1139 | { | 
|---|
| 1140 | return rdp->rcu_cpu_kthread_task == current || | 
|---|
| 1141 | rcu_is_callbacks_nocb_kthread(rdp); | 
|---|
| 1142 | } | 
|---|
| 1143 |  | 
|---|
| 1144 | #ifdef CONFIG_RCU_BOOST | 
|---|
| 1145 |  | 
|---|
| 1146 | /* | 
|---|
| 1147 | * Carry out RCU priority boosting on the task indicated by ->exp_tasks | 
|---|
| 1148 | * or ->boost_tasks, advancing the pointer to the next task in the | 
|---|
| 1149 | * ->blkd_tasks list. | 
|---|
| 1150 | * | 
|---|
| 1151 | * Note that irqs must be enabled: boosting the task can block. | 
|---|
| 1152 | * Returns 1 if there are more tasks needing to be boosted. | 
|---|
| 1153 | */ | 
|---|
| 1154 | static int rcu_boost(struct rcu_node *rnp) | 
|---|
| 1155 | { | 
|---|
| 1156 | unsigned long flags; | 
|---|
| 1157 | struct task_struct *t; | 
|---|
| 1158 | struct list_head *tb; | 
|---|
| 1159 |  | 
|---|
| 1160 | if (READ_ONCE(rnp->exp_tasks) == NULL && | 
|---|
| 1161 | READ_ONCE(rnp->boost_tasks) == NULL) | 
|---|
| 1162 | return 0;  /* Nothing left to boost. */ | 
|---|
| 1163 |  | 
|---|
| 1164 | raw_spin_lock_irqsave_rcu_node(rnp, flags); | 
|---|
| 1165 |  | 
|---|
| 1166 | /* | 
|---|
| 1167 | * Recheck under the lock: all tasks in need of boosting | 
|---|
| 1168 | * might exit their RCU read-side critical sections on their own. | 
|---|
| 1169 | */ | 
|---|
| 1170 | if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) { | 
|---|
| 1171 | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); | 
|---|
| 1172 | return 0; | 
|---|
| 1173 | } | 
|---|
| 1174 |  | 
|---|
| 1175 | /* | 
|---|
| 1176 | * Preferentially boost tasks blocking expedited grace periods. | 
|---|
| 1177 | * This cannot starve the normal grace periods because a second | 
|---|
| 1178 | * expedited grace period must boost all blocked tasks, including | 
|---|
| 1179 | * those blocking the pre-existing normal grace period. | 
|---|
| 1180 | */ | 
|---|
| 1181 | if (rnp->exp_tasks != NULL) | 
|---|
| 1182 | tb = rnp->exp_tasks; | 
|---|
| 1183 | else | 
|---|
| 1184 | tb = rnp->boost_tasks; | 
|---|
| 1185 |  | 
|---|
| 1186 | /* | 
|---|
| 1187 | * We boost task t by manufacturing an rt_mutex that appears to | 
|---|
| 1188 | * be held by task t.  We leave a pointer to that rt_mutex where | 
|---|
| 1189 | * task t can find it, and task t will release the mutex when it | 
|---|
| 1190 | * exits its outermost RCU read-side critical section.  Then | 
|---|
| 1191 | * simply acquiring this artificial rt_mutex will boost task | 
|---|
| 1192 | * t's priority.  (Thanks to tglx for suggesting this approach!) | 
|---|
| 1193 | * | 
|---|
| 1194 | * Note that task t must acquire rnp->lock to remove itself from | 
|---|
| 1195 | * the ->blkd_tasks list, which it will do from exit() if from | 
|---|
| 1196 | * nowhere else.  We therefore are guaranteed that task t will | 
|---|
| 1197 | * stay around at least until we drop rnp->lock.  Note that | 
|---|
| 1198 | * rnp->lock also resolves races between our priority boosting | 
|---|
| 1199 | * and task t's exiting its outermost RCU read-side critical | 
|---|
| 1200 | * section. | 
|---|
| 1201 | */ | 
|---|
| 1202 | t = container_of(tb, struct task_struct, rcu_node_entry); | 
|---|
| 1203 | rt_mutex_init_proxy_locked(&rnp->boost_mtx.rtmutex, t); | 
|---|
| 1204 | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); | 
|---|
| 1205 | /* Lock only for side effect: boosts task t's priority. */ | 
|---|
| 1206 | rt_mutex_lock(&rnp->boost_mtx); | 
|---|
| 1207 | rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */ | 
|---|
| 1208 | rnp->n_boosts++; | 
|---|
| 1209 |  | 
|---|
| 1210 | return READ_ONCE(rnp->exp_tasks) != NULL || | 
|---|
| 1211 | READ_ONCE(rnp->boost_tasks) != NULL; | 
|---|
| 1212 | } | 
|---|
| 1213 |  | 
|---|
| 1214 | /* | 
|---|
| 1215 | * Priority-boosting kthread, one per leaf rcu_node. | 
|---|
| 1216 | */ | 
|---|
| 1217 | static int rcu_boost_kthread(void *arg) | 
|---|
| 1218 | { | 
|---|
| 1219 | struct rcu_node *rnp = (struct rcu_node *)arg; | 
|---|
| 1220 | int spincnt = 0; | 
|---|
| 1221 | int more2boost; | 
|---|
| 1222 |  | 
|---|
| 1223 | trace_rcu_utilization(TPS( "Start boost kthread@init")); | 
|---|
| 1224 | for (;;) { | 
|---|
| 1225 | WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_WAITING); | 
|---|
| 1226 | trace_rcu_utilization(TPS( "End boost kthread@rcu_wait")); | 
|---|
| 1227 | rcu_wait(READ_ONCE(rnp->boost_tasks) || | 
|---|
| 1228 | READ_ONCE(rnp->exp_tasks)); | 
|---|
| 1229 | trace_rcu_utilization(TPS( "Start boost kthread@rcu_wait")); | 
|---|
| 1230 | WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_RUNNING); | 
|---|
| 1231 | more2boost = rcu_boost(rnp); | 
|---|
| 1232 | if (more2boost) | 
|---|
| 1233 | spincnt++; | 
|---|
| 1234 | else | 
|---|
| 1235 | spincnt = 0; | 
|---|
| 1236 | if (spincnt > 10) { | 
|---|
| 1237 | WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_YIELDING); | 
|---|
| 1238 | trace_rcu_utilization(TPS( "End boost kthread@rcu_yield")); | 
|---|
| 1239 | schedule_timeout_idle(2); | 
|---|
| 1240 | trace_rcu_utilization(TPS( "Start boost kthread@rcu_yield")); | 
|---|
| 1241 | spincnt = 0; | 
|---|
| 1242 | } | 
|---|
| 1243 | } | 
|---|
| 1244 | /* NOTREACHED */ | 
|---|
| 1245 | trace_rcu_utilization(TPS( "End boost kthread@notreached")); | 
|---|
| 1246 | return 0; | 
|---|
| 1247 | } | 
|---|
| 1248 |  | 
|---|
| 1249 | /* | 
|---|
| 1250 | * Check to see if it is time to start boosting RCU readers that are | 
|---|
| 1251 | * blocking the current grace period, and, if so, tell the per-rcu_node | 
|---|
| 1252 | * kthread to start boosting them.  If there is an expedited grace | 
|---|
| 1253 | * period in progress, it is always time to boost. | 
|---|
| 1254 | * | 
|---|
| 1255 | * The caller must hold rnp->lock, which this function releases. | 
|---|
| 1256 | * The ->boost_kthread_task is immortal, so we don't need to worry | 
|---|
| 1257 | * about it going away. | 
|---|
| 1258 | */ | 
|---|
| 1259 | static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags) | 
|---|
| 1260 | __releases(rnp->lock) | 
|---|
| 1261 | { | 
|---|
| 1262 | raw_lockdep_assert_held_rcu_node(rnp); | 
|---|
| 1263 | if (!rnp->boost_kthread_task || | 
|---|
| 1264 | (!rcu_preempt_blocked_readers_cgp(rnp) && !rnp->exp_tasks)) { | 
|---|
| 1265 | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); | 
|---|
| 1266 | return; | 
|---|
| 1267 | } | 
|---|
| 1268 | if (rnp->exp_tasks != NULL || | 
|---|
| 1269 | (rnp->gp_tasks != NULL && | 
|---|
| 1270 | rnp->boost_tasks == NULL && | 
|---|
| 1271 | rnp->qsmask == 0 && | 
|---|
| 1272 | (!time_after(rnp->boost_time, jiffies) || rcu_state.cbovld || | 
|---|
| 1273 | IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)))) { | 
|---|
| 1274 | if (rnp->exp_tasks == NULL) | 
|---|
| 1275 | WRITE_ONCE(rnp->boost_tasks, rnp->gp_tasks); | 
|---|
| 1276 | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); | 
|---|
| 1277 | rcu_wake_cond(rnp->boost_kthread_task, | 
|---|
| 1278 | READ_ONCE(rnp->boost_kthread_status)); | 
|---|
| 1279 | } else { | 
|---|
| 1280 | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); | 
|---|
| 1281 | } | 
|---|
| 1282 | } | 
|---|
| 1283 |  | 
|---|
| 1284 | #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000) | 
|---|
| 1285 |  | 
|---|
| 1286 | /* | 
|---|
| 1287 | * Do priority-boost accounting for the start of a new grace period. | 
|---|
| 1288 | */ | 
|---|
| 1289 | static void rcu_preempt_boost_start_gp(struct rcu_node *rnp) | 
|---|
| 1290 | { | 
|---|
| 1291 | rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES; | 
|---|
| 1292 | } | 
|---|
| 1293 |  | 
|---|
| 1294 | /* | 
|---|
| 1295 | * Create an RCU-boost kthread for the specified node if one does not | 
|---|
| 1296 | * already exist.  We only create this kthread for preemptible RCU. | 
|---|
| 1297 | */ | 
|---|
| 1298 | static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp) | 
|---|
| 1299 | { | 
|---|
| 1300 | unsigned long flags; | 
|---|
| 1301 | int rnp_index = rnp - rcu_get_root(); | 
|---|
| 1302 | struct sched_param sp; | 
|---|
| 1303 | struct task_struct *t; | 
|---|
| 1304 |  | 
|---|
| 1305 | if (rnp->boost_kthread_task) | 
|---|
| 1306 | return; | 
|---|
| 1307 |  | 
|---|
| 1308 | t = kthread_create(rcu_boost_kthread, (void *)rnp, | 
|---|
| 1309 | "rcub/%d", rnp_index); | 
|---|
| 1310 | if (WARN_ON_ONCE(IS_ERR(t))) | 
|---|
| 1311 | return; | 
|---|
| 1312 |  | 
|---|
| 1313 | raw_spin_lock_irqsave_rcu_node(rnp, flags); | 
|---|
| 1314 | rnp->boost_kthread_task = t; | 
|---|
| 1315 | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); | 
|---|
| 1316 |  | 
|---|
| 1317 | sp.sched_priority = kthread_prio; | 
|---|
| 1318 | sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); | 
|---|
| 1319 | rcu_thread_affine_rnp(t, rnp); | 
|---|
| 1320 | wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */ | 
|---|
| 1321 | } | 
|---|
| 1322 |  | 
|---|
| 1323 | #else /* #ifdef CONFIG_RCU_BOOST */ | 
|---|
| 1324 |  | 
|---|
| 1325 | static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags) | 
|---|
| 1326 | __releases(rnp->lock) | 
|---|
| 1327 | { | 
|---|
| 1328 | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); | 
|---|
| 1329 | } | 
|---|
| 1330 |  | 
|---|
| 1331 | static void rcu_preempt_boost_start_gp(struct rcu_node *rnp) | 
|---|
| 1332 | { | 
|---|
| 1333 | } | 
|---|
| 1334 |  | 
|---|
| 1335 | static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp) | 
|---|
| 1336 | { | 
|---|
| 1337 | } | 
|---|
| 1338 |  | 
|---|
| 1339 | #endif /* #else #ifdef CONFIG_RCU_BOOST */ | 
|---|
| 1340 |  | 
|---|
| 1341 | /* | 
|---|
| 1342 | * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the | 
|---|
| 1343 | * grace-period kthread will do force_quiescent_state() processing? | 
|---|
| 1344 | * The idea is to avoid waking up RCU core processing on such a | 
|---|
| 1345 | * CPU unless the grace period has extended for too long. | 
|---|
| 1346 | * | 
|---|
| 1347 | * This code relies on the fact that all NO_HZ_FULL CPUs are also | 
|---|
| 1348 | * RCU_NOCB_CPU CPUs. | 
|---|
| 1349 | */ | 
|---|
| 1350 | static bool rcu_nohz_full_cpu(void) | 
|---|
| 1351 | { | 
|---|
| 1352 | #ifdef CONFIG_NO_HZ_FULL | 
|---|
| 1353 | if (tick_nohz_full_cpu(smp_processor_id()) && | 
|---|
| 1354 | (!rcu_gp_in_progress() || | 
|---|
| 1355 | time_before(jiffies, READ_ONCE(rcu_state.gp_start) + HZ))) | 
|---|
| 1356 | return true; | 
|---|
| 1357 | #endif /* #ifdef CONFIG_NO_HZ_FULL */ | 
|---|
| 1358 | return false; | 
|---|
| 1359 | } | 
|---|
| 1360 |  | 
|---|
| 1361 | /* | 
|---|
| 1362 | * Bind the RCU grace-period kthreads to the housekeeping CPU. | 
|---|
| 1363 | */ | 
|---|
| 1364 | static void rcu_bind_gp_kthread(void) | 
|---|
| 1365 | { | 
|---|
| 1366 | if (!tick_nohz_full_enabled()) | 
|---|
| 1367 | return; | 
|---|
| 1368 | housekeeping_affine(current, type: HK_TYPE_RCU); | 
|---|
| 1369 | } | 
|---|
| 1370 |  | 
|---|