| 1 | // SPDX-License-Identifier: GPL-2.0+ |
| 2 | /* |
| 3 | * Restartable sequences system call |
| 4 | * |
| 5 | * Copyright (C) 2015, Google, Inc., |
| 6 | * Paul Turner <pjt@google.com> and Andrew Hunter <ahh@google.com> |
| 7 | * Copyright (C) 2015-2018, EfficiOS Inc., |
| 8 | * Mathieu Desnoyers <mathieu.desnoyers@efficios.com> |
| 9 | */ |
| 10 | |
| 11 | #include <linux/sched.h> |
| 12 | #include <linux/uaccess.h> |
| 13 | #include <linux/syscalls.h> |
| 14 | #include <linux/rseq.h> |
| 15 | #include <linux/types.h> |
| 16 | #include <linux/ratelimit.h> |
| 17 | #include <asm/ptrace.h> |
| 18 | |
| 19 | #define CREATE_TRACE_POINTS |
| 20 | #include <trace/events/rseq.h> |
| 21 | |
| 22 | /* The original rseq structure size (including padding) is 32 bytes. */ |
| 23 | #define ORIG_RSEQ_SIZE 32 |
| 24 | |
| 25 | #define RSEQ_CS_NO_RESTART_FLAGS (RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT | \ |
| 26 | RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL | \ |
| 27 | RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE) |
| 28 | |
| 29 | #ifdef CONFIG_DEBUG_RSEQ |
| 30 | static struct rseq *rseq_kernel_fields(struct task_struct *t) |
| 31 | { |
| 32 | return (struct rseq *) t->rseq_fields; |
| 33 | } |
| 34 | |
| 35 | static int rseq_validate_ro_fields(struct task_struct *t) |
| 36 | { |
| 37 | static DEFINE_RATELIMIT_STATE(_rs, |
| 38 | DEFAULT_RATELIMIT_INTERVAL, |
| 39 | DEFAULT_RATELIMIT_BURST); |
| 40 | u32 cpu_id_start, cpu_id, node_id, mm_cid; |
| 41 | struct rseq __user *rseq = t->rseq; |
| 42 | |
| 43 | /* |
| 44 | * Validate fields which are required to be read-only by |
| 45 | * user-space. |
| 46 | */ |
| 47 | if (!user_read_access_begin(rseq, t->rseq_len)) |
| 48 | goto efault; |
| 49 | unsafe_get_user(cpu_id_start, &rseq->cpu_id_start, efault_end); |
| 50 | unsafe_get_user(cpu_id, &rseq->cpu_id, efault_end); |
| 51 | unsafe_get_user(node_id, &rseq->node_id, efault_end); |
| 52 | unsafe_get_user(mm_cid, &rseq->mm_cid, efault_end); |
| 53 | user_read_access_end(); |
| 54 | |
| 55 | if ((cpu_id_start != rseq_kernel_fields(t)->cpu_id_start || |
| 56 | cpu_id != rseq_kernel_fields(t)->cpu_id || |
| 57 | node_id != rseq_kernel_fields(t)->node_id || |
| 58 | mm_cid != rseq_kernel_fields(t)->mm_cid) && __ratelimit(&_rs)) { |
| 59 | |
| 60 | pr_warn("Detected rseq corruption for pid: %d, name: %s\n" |
| 61 | "\tcpu_id_start: %u ?= %u\n" |
| 62 | "\tcpu_id: %u ?= %u\n" |
| 63 | "\tnode_id: %u ?= %u\n" |
| 64 | "\tmm_cid: %u ?= %u\n" , |
| 65 | t->pid, t->comm, |
| 66 | cpu_id_start, rseq_kernel_fields(t)->cpu_id_start, |
| 67 | cpu_id, rseq_kernel_fields(t)->cpu_id, |
| 68 | node_id, rseq_kernel_fields(t)->node_id, |
| 69 | mm_cid, rseq_kernel_fields(t)->mm_cid); |
| 70 | } |
| 71 | |
| 72 | /* For now, only print a console warning on mismatch. */ |
| 73 | return 0; |
| 74 | |
| 75 | efault_end: |
| 76 | user_read_access_end(); |
| 77 | efault: |
| 78 | return -EFAULT; |
| 79 | } |
| 80 | |
| 81 | /* |
| 82 | * Update an rseq field and its in-kernel copy in lock-step to keep a coherent |
| 83 | * state. |
| 84 | */ |
| 85 | #define rseq_unsafe_put_user(t, value, field, error_label) \ |
| 86 | do { \ |
| 87 | unsafe_put_user(value, &t->rseq->field, error_label); \ |
| 88 | rseq_kernel_fields(t)->field = value; \ |
| 89 | } while (0) |
| 90 | |
| 91 | #else |
| 92 | static int rseq_validate_ro_fields(struct task_struct *t) |
| 93 | { |
| 94 | return 0; |
| 95 | } |
| 96 | |
| 97 | #define rseq_unsafe_put_user(t, value, field, error_label) \ |
| 98 | unsafe_put_user(value, &t->rseq->field, error_label) |
| 99 | #endif |
| 100 | |
| 101 | /* |
| 102 | * |
| 103 | * Restartable sequences are a lightweight interface that allows |
| 104 | * user-level code to be executed atomically relative to scheduler |
| 105 | * preemption and signal delivery. Typically used for implementing |
| 106 | * per-cpu operations. |
| 107 | * |
| 108 | * It allows user-space to perform update operations on per-cpu data |
| 109 | * without requiring heavy-weight atomic operations. |
| 110 | * |
| 111 | * Detailed algorithm of rseq user-space assembly sequences: |
| 112 | * |
| 113 | * init(rseq_cs) |
| 114 | * cpu = TLS->rseq::cpu_id_start |
| 115 | * [1] TLS->rseq::rseq_cs = rseq_cs |
| 116 | * [start_ip] ---------------------------- |
| 117 | * [2] if (cpu != TLS->rseq::cpu_id) |
| 118 | * goto abort_ip; |
| 119 | * [3] <last_instruction_in_cs> |
| 120 | * [post_commit_ip] ---------------------------- |
| 121 | * |
| 122 | * The address of jump target abort_ip must be outside the critical |
| 123 | * region, i.e.: |
| 124 | * |
| 125 | * [abort_ip] < [start_ip] || [abort_ip] >= [post_commit_ip] |
| 126 | * |
| 127 | * Steps [2]-[3] (inclusive) need to be a sequence of instructions in |
| 128 | * userspace that can handle being interrupted between any of those |
| 129 | * instructions, and then resumed to the abort_ip. |
| 130 | * |
| 131 | * 1. Userspace stores the address of the struct rseq_cs assembly |
| 132 | * block descriptor into the rseq_cs field of the registered |
| 133 | * struct rseq TLS area. This update is performed through a single |
| 134 | * store within the inline assembly instruction sequence. |
| 135 | * [start_ip] |
| 136 | * |
| 137 | * 2. Userspace tests to check whether the current cpu_id field match |
| 138 | * the cpu number loaded before start_ip, branching to abort_ip |
| 139 | * in case of a mismatch. |
| 140 | * |
| 141 | * If the sequence is preempted or interrupted by a signal |
| 142 | * at or after start_ip and before post_commit_ip, then the kernel |
| 143 | * clears TLS->__rseq_abi::rseq_cs, and sets the user-space return |
| 144 | * ip to abort_ip before returning to user-space, so the preempted |
| 145 | * execution resumes at abort_ip. |
| 146 | * |
| 147 | * 3. Userspace critical section final instruction before |
| 148 | * post_commit_ip is the commit. The critical section is |
| 149 | * self-terminating. |
| 150 | * [post_commit_ip] |
| 151 | * |
| 152 | * 4. <success> |
| 153 | * |
| 154 | * On failure at [2], or if interrupted by preempt or signal delivery |
| 155 | * between [1] and [3]: |
| 156 | * |
| 157 | * [abort_ip] |
| 158 | * F1. <failure> |
| 159 | */ |
| 160 | |
| 161 | static int rseq_update_cpu_node_id(struct task_struct *t) |
| 162 | { |
| 163 | struct rseq __user *rseq = t->rseq; |
| 164 | u32 cpu_id = raw_smp_processor_id(); |
| 165 | u32 node_id = cpu_to_node(cpu: cpu_id); |
| 166 | u32 mm_cid = task_mm_cid(t); |
| 167 | |
| 168 | /* |
| 169 | * Validate read-only rseq fields. |
| 170 | */ |
| 171 | if (rseq_validate_ro_fields(t)) |
| 172 | goto efault; |
| 173 | WARN_ON_ONCE((int) mm_cid < 0); |
| 174 | if (!user_write_access_begin(rseq, t->rseq_len)) |
| 175 | goto efault; |
| 176 | |
| 177 | rseq_unsafe_put_user(t, cpu_id, cpu_id_start, efault_end); |
| 178 | rseq_unsafe_put_user(t, cpu_id, cpu_id, efault_end); |
| 179 | rseq_unsafe_put_user(t, node_id, node_id, efault_end); |
| 180 | rseq_unsafe_put_user(t, mm_cid, mm_cid, efault_end); |
| 181 | |
| 182 | /* |
| 183 | * Additional feature fields added after ORIG_RSEQ_SIZE |
| 184 | * need to be conditionally updated only if |
| 185 | * t->rseq_len != ORIG_RSEQ_SIZE. |
| 186 | */ |
| 187 | user_write_access_end(); |
| 188 | trace_rseq_update(t); |
| 189 | return 0; |
| 190 | |
| 191 | efault_end: |
| 192 | user_write_access_end(); |
| 193 | efault: |
| 194 | return -EFAULT; |
| 195 | } |
| 196 | |
| 197 | static int rseq_reset_rseq_cpu_node_id(struct task_struct *t) |
| 198 | { |
| 199 | struct rseq __user *rseq = t->rseq; |
| 200 | u32 cpu_id_start = 0, cpu_id = RSEQ_CPU_ID_UNINITIALIZED, node_id = 0, |
| 201 | mm_cid = 0; |
| 202 | |
| 203 | /* |
| 204 | * Validate read-only rseq fields. |
| 205 | */ |
| 206 | if (rseq_validate_ro_fields(t)) |
| 207 | goto efault; |
| 208 | |
| 209 | if (!user_write_access_begin(rseq, t->rseq_len)) |
| 210 | goto efault; |
| 211 | |
| 212 | /* |
| 213 | * Reset all fields to their initial state. |
| 214 | * |
| 215 | * All fields have an initial state of 0 except cpu_id which is set to |
| 216 | * RSEQ_CPU_ID_UNINITIALIZED, so that any user coming in after |
| 217 | * unregistration can figure out that rseq needs to be registered |
| 218 | * again. |
| 219 | */ |
| 220 | rseq_unsafe_put_user(t, cpu_id_start, cpu_id_start, efault_end); |
| 221 | rseq_unsafe_put_user(t, cpu_id, cpu_id, efault_end); |
| 222 | rseq_unsafe_put_user(t, node_id, node_id, efault_end); |
| 223 | rseq_unsafe_put_user(t, mm_cid, mm_cid, efault_end); |
| 224 | |
| 225 | /* |
| 226 | * Additional feature fields added after ORIG_RSEQ_SIZE |
| 227 | * need to be conditionally reset only if |
| 228 | * t->rseq_len != ORIG_RSEQ_SIZE. |
| 229 | */ |
| 230 | user_write_access_end(); |
| 231 | return 0; |
| 232 | |
| 233 | efault_end: |
| 234 | user_write_access_end(); |
| 235 | efault: |
| 236 | return -EFAULT; |
| 237 | } |
| 238 | |
| 239 | /* |
| 240 | * Get the user-space pointer value stored in the 'rseq_cs' field. |
| 241 | */ |
| 242 | static int rseq_get_rseq_cs_ptr_val(struct rseq __user *rseq, u64 *rseq_cs) |
| 243 | { |
| 244 | if (!rseq_cs) |
| 245 | return -EFAULT; |
| 246 | |
| 247 | #ifdef CONFIG_64BIT |
| 248 | if (get_user(*rseq_cs, &rseq->rseq_cs)) |
| 249 | return -EFAULT; |
| 250 | #else |
| 251 | if (copy_from_user(rseq_cs, &rseq->rseq_cs, sizeof(*rseq_cs))) |
| 252 | return -EFAULT; |
| 253 | #endif |
| 254 | |
| 255 | return 0; |
| 256 | } |
| 257 | |
| 258 | /* |
| 259 | * If the rseq_cs field of 'struct rseq' contains a valid pointer to |
| 260 | * user-space, copy 'struct rseq_cs' from user-space and validate its fields. |
| 261 | */ |
| 262 | static int rseq_get_rseq_cs(struct task_struct *t, struct rseq_cs *rseq_cs) |
| 263 | { |
| 264 | struct rseq_cs __user *urseq_cs; |
| 265 | u64 ptr; |
| 266 | u32 __user *usig; |
| 267 | u32 sig; |
| 268 | int ret; |
| 269 | |
| 270 | ret = rseq_get_rseq_cs_ptr_val(rseq: t->rseq, rseq_cs: &ptr); |
| 271 | if (ret) |
| 272 | return ret; |
| 273 | |
| 274 | /* If the rseq_cs pointer is NULL, return a cleared struct rseq_cs. */ |
| 275 | if (!ptr) { |
| 276 | memset(s: rseq_cs, c: 0, n: sizeof(*rseq_cs)); |
| 277 | return 0; |
| 278 | } |
| 279 | /* Check that the pointer value fits in the user-space process space. */ |
| 280 | if (ptr >= TASK_SIZE) |
| 281 | return -EINVAL; |
| 282 | urseq_cs = (struct rseq_cs __user *)(unsigned long)ptr; |
| 283 | if (copy_from_user(to: rseq_cs, from: urseq_cs, n: sizeof(*rseq_cs))) |
| 284 | return -EFAULT; |
| 285 | |
| 286 | if (rseq_cs->start_ip >= TASK_SIZE || |
| 287 | rseq_cs->start_ip + rseq_cs->post_commit_offset >= TASK_SIZE || |
| 288 | rseq_cs->abort_ip >= TASK_SIZE || |
| 289 | rseq_cs->version > 0) |
| 290 | return -EINVAL; |
| 291 | /* Check for overflow. */ |
| 292 | if (rseq_cs->start_ip + rseq_cs->post_commit_offset < rseq_cs->start_ip) |
| 293 | return -EINVAL; |
| 294 | /* Ensure that abort_ip is not in the critical section. */ |
| 295 | if (rseq_cs->abort_ip - rseq_cs->start_ip < rseq_cs->post_commit_offset) |
| 296 | return -EINVAL; |
| 297 | |
| 298 | usig = (u32 __user *)(unsigned long)(rseq_cs->abort_ip - sizeof(u32)); |
| 299 | ret = get_user(sig, usig); |
| 300 | if (ret) |
| 301 | return ret; |
| 302 | |
| 303 | if (current->rseq_sig != sig) { |
| 304 | printk_ratelimited(KERN_WARNING |
| 305 | "Possible attack attempt. Unexpected rseq signature 0x%x, expecting 0x%x (pid=%d, addr=%p).\n" , |
| 306 | sig, current->rseq_sig, current->pid, usig); |
| 307 | return -EINVAL; |
| 308 | } |
| 309 | return 0; |
| 310 | } |
| 311 | |
| 312 | static bool rseq_warn_flags(const char *str, u32 flags) |
| 313 | { |
| 314 | u32 test_flags; |
| 315 | |
| 316 | if (!flags) |
| 317 | return false; |
| 318 | test_flags = flags & RSEQ_CS_NO_RESTART_FLAGS; |
| 319 | if (test_flags) |
| 320 | pr_warn_once("Deprecated flags (%u) in %s ABI structure" , test_flags, str); |
| 321 | test_flags = flags & ~RSEQ_CS_NO_RESTART_FLAGS; |
| 322 | if (test_flags) |
| 323 | pr_warn_once("Unknown flags (%u) in %s ABI structure" , test_flags, str); |
| 324 | return true; |
| 325 | } |
| 326 | |
| 327 | static int rseq_need_restart(struct task_struct *t, u32 cs_flags) |
| 328 | { |
| 329 | u32 flags, event_mask; |
| 330 | int ret; |
| 331 | |
| 332 | if (rseq_warn_flags(str: "rseq_cs" , flags: cs_flags)) |
| 333 | return -EINVAL; |
| 334 | |
| 335 | /* Get thread flags. */ |
| 336 | ret = get_user(flags, &t->rseq->flags); |
| 337 | if (ret) |
| 338 | return ret; |
| 339 | |
| 340 | if (rseq_warn_flags(str: "rseq" , flags)) |
| 341 | return -EINVAL; |
| 342 | |
| 343 | /* |
| 344 | * Load and clear event mask atomically with respect to |
| 345 | * scheduler preemption and membarrier IPIs. |
| 346 | */ |
| 347 | scoped_guard(RSEQ_EVENT_GUARD) { |
| 348 | event_mask = t->rseq_event_mask; |
| 349 | t->rseq_event_mask = 0; |
| 350 | } |
| 351 | |
| 352 | return !!event_mask; |
| 353 | } |
| 354 | |
| 355 | static int clear_rseq_cs(struct rseq __user *rseq) |
| 356 | { |
| 357 | /* |
| 358 | * The rseq_cs field is set to NULL on preemption or signal |
| 359 | * delivery on top of rseq assembly block, as well as on top |
| 360 | * of code outside of the rseq assembly block. This performs |
| 361 | * a lazy clear of the rseq_cs field. |
| 362 | * |
| 363 | * Set rseq_cs to NULL. |
| 364 | */ |
| 365 | #ifdef CONFIG_64BIT |
| 366 | return put_user(0UL, &rseq->rseq_cs); |
| 367 | #else |
| 368 | if (clear_user(&rseq->rseq_cs, sizeof(rseq->rseq_cs))) |
| 369 | return -EFAULT; |
| 370 | return 0; |
| 371 | #endif |
| 372 | } |
| 373 | |
| 374 | /* |
| 375 | * Unsigned comparison will be true when ip >= start_ip, and when |
| 376 | * ip < start_ip + post_commit_offset. |
| 377 | */ |
| 378 | static bool in_rseq_cs(unsigned long ip, struct rseq_cs *rseq_cs) |
| 379 | { |
| 380 | return ip - rseq_cs->start_ip < rseq_cs->post_commit_offset; |
| 381 | } |
| 382 | |
| 383 | static int rseq_ip_fixup(struct pt_regs *regs) |
| 384 | { |
| 385 | unsigned long ip = instruction_pointer(regs); |
| 386 | struct task_struct *t = current; |
| 387 | struct rseq_cs rseq_cs; |
| 388 | int ret; |
| 389 | |
| 390 | ret = rseq_get_rseq_cs(t, rseq_cs: &rseq_cs); |
| 391 | if (ret) |
| 392 | return ret; |
| 393 | |
| 394 | /* |
| 395 | * Handle potentially not being within a critical section. |
| 396 | * If not nested over a rseq critical section, restart is useless. |
| 397 | * Clear the rseq_cs pointer and return. |
| 398 | */ |
| 399 | if (!in_rseq_cs(ip, rseq_cs: &rseq_cs)) |
| 400 | return clear_rseq_cs(rseq: t->rseq); |
| 401 | ret = rseq_need_restart(t, cs_flags: rseq_cs.flags); |
| 402 | if (ret <= 0) |
| 403 | return ret; |
| 404 | ret = clear_rseq_cs(rseq: t->rseq); |
| 405 | if (ret) |
| 406 | return ret; |
| 407 | trace_rseq_ip_fixup(regs_ip: ip, start_ip: rseq_cs.start_ip, post_commit_offset: rseq_cs.post_commit_offset, |
| 408 | abort_ip: rseq_cs.abort_ip); |
| 409 | instruction_pointer_set(regs, val: (unsigned long)rseq_cs.abort_ip); |
| 410 | return 0; |
| 411 | } |
| 412 | |
| 413 | /* |
| 414 | * This resume handler must always be executed between any of: |
| 415 | * - preemption, |
| 416 | * - signal delivery, |
| 417 | * and return to user-space. |
| 418 | * |
| 419 | * This is how we can ensure that the entire rseq critical section |
| 420 | * will issue the commit instruction only if executed atomically with |
| 421 | * respect to other threads scheduled on the same CPU, and with respect |
| 422 | * to signal handlers. |
| 423 | */ |
| 424 | void __rseq_handle_notify_resume(struct ksignal *ksig, struct pt_regs *regs) |
| 425 | { |
| 426 | struct task_struct *t = current; |
| 427 | int ret, sig; |
| 428 | |
| 429 | if (unlikely(t->flags & PF_EXITING)) |
| 430 | return; |
| 431 | |
| 432 | /* |
| 433 | * regs is NULL if and only if the caller is in a syscall path. Skip |
| 434 | * fixup and leave rseq_cs as is so that rseq_sycall() will detect and |
| 435 | * kill a misbehaving userspace on debug kernels. |
| 436 | */ |
| 437 | if (regs) { |
| 438 | ret = rseq_ip_fixup(regs); |
| 439 | if (unlikely(ret < 0)) |
| 440 | goto error; |
| 441 | } |
| 442 | if (unlikely(rseq_update_cpu_node_id(t))) |
| 443 | goto error; |
| 444 | return; |
| 445 | |
| 446 | error: |
| 447 | sig = ksig ? ksig->sig : 0; |
| 448 | force_sigsegv(sig); |
| 449 | } |
| 450 | |
| 451 | #ifdef CONFIG_DEBUG_RSEQ |
| 452 | |
| 453 | /* |
| 454 | * Terminate the process if a syscall is issued within a restartable |
| 455 | * sequence. |
| 456 | */ |
| 457 | void rseq_syscall(struct pt_regs *regs) |
| 458 | { |
| 459 | unsigned long ip = instruction_pointer(regs); |
| 460 | struct task_struct *t = current; |
| 461 | struct rseq_cs rseq_cs; |
| 462 | |
| 463 | if (!t->rseq) |
| 464 | return; |
| 465 | if (rseq_get_rseq_cs(t, &rseq_cs) || in_rseq_cs(ip, &rseq_cs)) |
| 466 | force_sig(SIGSEGV); |
| 467 | } |
| 468 | |
| 469 | #endif |
| 470 | |
| 471 | /* |
| 472 | * sys_rseq - setup restartable sequences for caller thread. |
| 473 | */ |
| 474 | SYSCALL_DEFINE4(rseq, struct rseq __user *, rseq, u32, rseq_len, |
| 475 | int, flags, u32, sig) |
| 476 | { |
| 477 | int ret; |
| 478 | u64 rseq_cs; |
| 479 | |
| 480 | if (flags & RSEQ_FLAG_UNREGISTER) { |
| 481 | if (flags & ~RSEQ_FLAG_UNREGISTER) |
| 482 | return -EINVAL; |
| 483 | /* Unregister rseq for current thread. */ |
| 484 | if (current->rseq != rseq || !current->rseq) |
| 485 | return -EINVAL; |
| 486 | if (rseq_len != current->rseq_len) |
| 487 | return -EINVAL; |
| 488 | if (current->rseq_sig != sig) |
| 489 | return -EPERM; |
| 490 | ret = rseq_reset_rseq_cpu_node_id(current); |
| 491 | if (ret) |
| 492 | return ret; |
| 493 | current->rseq = NULL; |
| 494 | current->rseq_sig = 0; |
| 495 | current->rseq_len = 0; |
| 496 | return 0; |
| 497 | } |
| 498 | |
| 499 | if (unlikely(flags)) |
| 500 | return -EINVAL; |
| 501 | |
| 502 | if (current->rseq) { |
| 503 | /* |
| 504 | * If rseq is already registered, check whether |
| 505 | * the provided address differs from the prior |
| 506 | * one. |
| 507 | */ |
| 508 | if (current->rseq != rseq || rseq_len != current->rseq_len) |
| 509 | return -EINVAL; |
| 510 | if (current->rseq_sig != sig) |
| 511 | return -EPERM; |
| 512 | /* Already registered. */ |
| 513 | return -EBUSY; |
| 514 | } |
| 515 | |
| 516 | /* |
| 517 | * If there was no rseq previously registered, ensure the provided rseq |
| 518 | * is properly aligned, as communcated to user-space through the ELF |
| 519 | * auxiliary vector AT_RSEQ_ALIGN. If rseq_len is the original rseq |
| 520 | * size, the required alignment is the original struct rseq alignment. |
| 521 | * |
| 522 | * In order to be valid, rseq_len is either the original rseq size, or |
| 523 | * large enough to contain all supported fields, as communicated to |
| 524 | * user-space through the ELF auxiliary vector AT_RSEQ_FEATURE_SIZE. |
| 525 | */ |
| 526 | if (rseq_len < ORIG_RSEQ_SIZE || |
| 527 | (rseq_len == ORIG_RSEQ_SIZE && !IS_ALIGNED((unsigned long)rseq, ORIG_RSEQ_SIZE)) || |
| 528 | (rseq_len != ORIG_RSEQ_SIZE && (!IS_ALIGNED((unsigned long)rseq, __alignof__(*rseq)) || |
| 529 | rseq_len < offsetof(struct rseq, end)))) |
| 530 | return -EINVAL; |
| 531 | if (!access_ok(rseq, rseq_len)) |
| 532 | return -EFAULT; |
| 533 | |
| 534 | /* |
| 535 | * If the rseq_cs pointer is non-NULL on registration, clear it to |
| 536 | * avoid a potential segfault on return to user-space. The proper thing |
| 537 | * to do would have been to fail the registration but this would break |
| 538 | * older libcs that reuse the rseq area for new threads without |
| 539 | * clearing the fields. |
| 540 | */ |
| 541 | if (rseq_get_rseq_cs_ptr_val(rseq, rseq_cs: &rseq_cs)) |
| 542 | return -EFAULT; |
| 543 | if (rseq_cs && clear_rseq_cs(rseq)) |
| 544 | return -EFAULT; |
| 545 | |
| 546 | #ifdef CONFIG_DEBUG_RSEQ |
| 547 | /* |
| 548 | * Initialize the in-kernel rseq fields copy for validation of |
| 549 | * read-only fields. |
| 550 | */ |
| 551 | if (get_user(rseq_kernel_fields(current)->cpu_id_start, &rseq->cpu_id_start) || |
| 552 | get_user(rseq_kernel_fields(current)->cpu_id, &rseq->cpu_id) || |
| 553 | get_user(rseq_kernel_fields(current)->node_id, &rseq->node_id) || |
| 554 | get_user(rseq_kernel_fields(current)->mm_cid, &rseq->mm_cid)) |
| 555 | return -EFAULT; |
| 556 | #endif |
| 557 | /* |
| 558 | * Activate the registration by setting the rseq area address, length |
| 559 | * and signature in the task struct. |
| 560 | */ |
| 561 | current->rseq = rseq; |
| 562 | current->rseq_len = rseq_len; |
| 563 | current->rseq_sig = sig; |
| 564 | |
| 565 | /* |
| 566 | * If rseq was previously inactive, and has just been |
| 567 | * registered, ensure the cpu_id_start and cpu_id fields |
| 568 | * are updated before returning to user-space. |
| 569 | */ |
| 570 | rseq_set_notify_resume(current); |
| 571 | |
| 572 | return 0; |
| 573 | } |
| 574 | |