| 1 | // SPDX-License-Identifier: GPL-2.0 | 
|---|
| 2 | /* | 
|---|
| 3 | * kernel/sched/loadavg.c | 
|---|
| 4 | * | 
|---|
| 5 | * This file contains the magic bits required to compute the global loadavg | 
|---|
| 6 | * figure. Its a silly number but people think its important. We go through | 
|---|
| 7 | * great pains to make it work on big machines and tickless kernels. | 
|---|
| 8 | */ | 
|---|
| 9 | #include <linux/sched/nohz.h> | 
|---|
| 10 | #include "sched.h" | 
|---|
| 11 |  | 
|---|
| 12 | /* | 
|---|
| 13 | * Global load-average calculations | 
|---|
| 14 | * | 
|---|
| 15 | * We take a distributed and async approach to calculating the global load-avg | 
|---|
| 16 | * in order to minimize overhead. | 
|---|
| 17 | * | 
|---|
| 18 | * The global load average is an exponentially decaying average of nr_running + | 
|---|
| 19 | * nr_uninterruptible. | 
|---|
| 20 | * | 
|---|
| 21 | * Once every LOAD_FREQ: | 
|---|
| 22 | * | 
|---|
| 23 | *   nr_active = 0; | 
|---|
| 24 | *   for_each_possible_cpu(cpu) | 
|---|
| 25 | *	nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible; | 
|---|
| 26 | * | 
|---|
| 27 | *   avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n) | 
|---|
| 28 | * | 
|---|
| 29 | * Due to a number of reasons the above turns in the mess below: | 
|---|
| 30 | * | 
|---|
| 31 | *  - for_each_possible_cpu() is prohibitively expensive on machines with | 
|---|
| 32 | *    serious number of CPUs, therefore we need to take a distributed approach | 
|---|
| 33 | *    to calculating nr_active. | 
|---|
| 34 | * | 
|---|
| 35 | *        \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0 | 
|---|
| 36 | *                      = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) } | 
|---|
| 37 | * | 
|---|
| 38 | *    So assuming nr_active := 0 when we start out -- true per definition, we | 
|---|
| 39 | *    can simply take per-CPU deltas and fold those into a global accumulate | 
|---|
| 40 | *    to obtain the same result. See calc_load_fold_active(). | 
|---|
| 41 | * | 
|---|
| 42 | *    Furthermore, in order to avoid synchronizing all per-CPU delta folding | 
|---|
| 43 | *    across the machine, we assume 10 ticks is sufficient time for every | 
|---|
| 44 | *    CPU to have completed this task. | 
|---|
| 45 | * | 
|---|
| 46 | *    This places an upper-bound on the IRQ-off latency of the machine. Then | 
|---|
| 47 | *    again, being late doesn't loose the delta, just wrecks the sample. | 
|---|
| 48 | * | 
|---|
| 49 | *  - cpu_rq()->nr_uninterruptible isn't accurately tracked per-CPU because | 
|---|
| 50 | *    this would add another cross-CPU cache-line miss and atomic operation | 
|---|
| 51 | *    to the wakeup path. Instead we increment on whatever CPU the task ran | 
|---|
| 52 | *    when it went into uninterruptible state and decrement on whatever CPU | 
|---|
| 53 | *    did the wakeup. This means that only the sum of nr_uninterruptible over | 
|---|
| 54 | *    all CPUs yields the correct result. | 
|---|
| 55 | * | 
|---|
| 56 | *  This covers the NO_HZ=n code, for extra head-aches, see the comment below. | 
|---|
| 57 | */ | 
|---|
| 58 |  | 
|---|
| 59 | /* Variables and functions for calc_load */ | 
|---|
| 60 | atomic_long_t calc_load_tasks; | 
|---|
| 61 | unsigned long calc_load_update; | 
|---|
| 62 | unsigned long avenrun[3]; | 
|---|
| 63 | EXPORT_SYMBOL(avenrun); /* should be removed */ | 
|---|
| 64 |  | 
|---|
| 65 | /** | 
|---|
| 66 | * get_avenrun - get the load average array | 
|---|
| 67 | * @loads:	pointer to destination load array | 
|---|
| 68 | * @offset:	offset to add | 
|---|
| 69 | * @shift:	shift count to shift the result left | 
|---|
| 70 | * | 
|---|
| 71 | * These values are estimates at best, so no need for locking. | 
|---|
| 72 | */ | 
|---|
| 73 | void get_avenrun(unsigned long *loads, unsigned long offset, int shift) | 
|---|
| 74 | { | 
|---|
| 75 | loads[0] = (avenrun[0] + offset) << shift; | 
|---|
| 76 | loads[1] = (avenrun[1] + offset) << shift; | 
|---|
| 77 | loads[2] = (avenrun[2] + offset) << shift; | 
|---|
| 78 | } | 
|---|
| 79 |  | 
|---|
| 80 | long calc_load_fold_active(struct rq *this_rq, long adjust) | 
|---|
| 81 | { | 
|---|
| 82 | long nr_active, delta = 0; | 
|---|
| 83 |  | 
|---|
| 84 | nr_active = this_rq->nr_running - adjust; | 
|---|
| 85 | nr_active += (long)this_rq->nr_uninterruptible; | 
|---|
| 86 |  | 
|---|
| 87 | if (nr_active != this_rq->calc_load_active) { | 
|---|
| 88 | delta = nr_active - this_rq->calc_load_active; | 
|---|
| 89 | this_rq->calc_load_active = nr_active; | 
|---|
| 90 | } | 
|---|
| 91 |  | 
|---|
| 92 | return delta; | 
|---|
| 93 | } | 
|---|
| 94 |  | 
|---|
| 95 | /** | 
|---|
| 96 | * fixed_power_int - compute: x^n, in O(log n) time | 
|---|
| 97 | * | 
|---|
| 98 | * @x:         base of the power | 
|---|
| 99 | * @frac_bits: fractional bits of @x | 
|---|
| 100 | * @n:         power to raise @x to. | 
|---|
| 101 | * | 
|---|
| 102 | * By exploiting the relation between the definition of the natural power | 
|---|
| 103 | * function: x^n := x*x*...*x (x multiplied by itself for n times), and | 
|---|
| 104 | * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i, | 
|---|
| 105 | * (where: n_i \elem {0, 1}, the binary vector representing n), | 
|---|
| 106 | * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is | 
|---|
| 107 | * of course trivially computable in O(log_2 n), the length of our binary | 
|---|
| 108 | * vector. | 
|---|
| 109 | */ | 
|---|
| 110 | static unsigned long | 
|---|
| 111 | fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n) | 
|---|
| 112 | { | 
|---|
| 113 | unsigned long result = 1UL << frac_bits; | 
|---|
| 114 |  | 
|---|
| 115 | if (n) { | 
|---|
| 116 | for (;;) { | 
|---|
| 117 | if (n & 1) { | 
|---|
| 118 | result *= x; | 
|---|
| 119 | result += 1UL << (frac_bits - 1); | 
|---|
| 120 | result >>= frac_bits; | 
|---|
| 121 | } | 
|---|
| 122 | n >>= 1; | 
|---|
| 123 | if (!n) | 
|---|
| 124 | break; | 
|---|
| 125 | x *= x; | 
|---|
| 126 | x += 1UL << (frac_bits - 1); | 
|---|
| 127 | x >>= frac_bits; | 
|---|
| 128 | } | 
|---|
| 129 | } | 
|---|
| 130 |  | 
|---|
| 131 | return result; | 
|---|
| 132 | } | 
|---|
| 133 |  | 
|---|
| 134 | /* | 
|---|
| 135 | * a1 = a0 * e + a * (1 - e) | 
|---|
| 136 | * | 
|---|
| 137 | * a2 = a1 * e + a * (1 - e) | 
|---|
| 138 | *    = (a0 * e + a * (1 - e)) * e + a * (1 - e) | 
|---|
| 139 | *    = a0 * e^2 + a * (1 - e) * (1 + e) | 
|---|
| 140 | * | 
|---|
| 141 | * a3 = a2 * e + a * (1 - e) | 
|---|
| 142 | *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e) | 
|---|
| 143 | *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2) | 
|---|
| 144 | * | 
|---|
| 145 | *  ... | 
|---|
| 146 | * | 
|---|
| 147 | * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1] | 
|---|
| 148 | *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e) | 
|---|
| 149 | *    = a0 * e^n + a * (1 - e^n) | 
|---|
| 150 | * | 
|---|
| 151 | * [1] application of the geometric series: | 
|---|
| 152 | * | 
|---|
| 153 | *              n         1 - x^(n+1) | 
|---|
| 154 | *     S_n := \Sum x^i = ------------- | 
|---|
| 155 | *             i=0          1 - x | 
|---|
| 156 | */ | 
|---|
| 157 | unsigned long | 
|---|
| 158 | calc_load_n(unsigned long load, unsigned long exp, | 
|---|
| 159 | unsigned long active, unsigned int n) | 
|---|
| 160 | { | 
|---|
| 161 | return calc_load(load, exp: fixed_power_int(x: exp, FSHIFT, n), active); | 
|---|
| 162 | } | 
|---|
| 163 |  | 
|---|
| 164 | #ifdef CONFIG_NO_HZ_COMMON | 
|---|
| 165 | /* | 
|---|
| 166 | * Handle NO_HZ for the global load-average. | 
|---|
| 167 | * | 
|---|
| 168 | * Since the above described distributed algorithm to compute the global | 
|---|
| 169 | * load-average relies on per-CPU sampling from the tick, it is affected by | 
|---|
| 170 | * NO_HZ. | 
|---|
| 171 | * | 
|---|
| 172 | * The basic idea is to fold the nr_active delta into a global NO_HZ-delta upon | 
|---|
| 173 | * entering NO_HZ state such that we can include this as an 'extra' CPU delta | 
|---|
| 174 | * when we read the global state. | 
|---|
| 175 | * | 
|---|
| 176 | * Obviously reality has to ruin such a delightfully simple scheme: | 
|---|
| 177 | * | 
|---|
| 178 | *  - When we go NO_HZ idle during the window, we can negate our sample | 
|---|
| 179 | *    contribution, causing under-accounting. | 
|---|
| 180 | * | 
|---|
| 181 | *    We avoid this by keeping two NO_HZ-delta counters and flipping them | 
|---|
| 182 | *    when the window starts, thus separating old and new NO_HZ load. | 
|---|
| 183 | * | 
|---|
| 184 | *    The only trick is the slight shift in index flip for read vs write. | 
|---|
| 185 | * | 
|---|
| 186 | *        0s            5s            10s           15s | 
|---|
| 187 | *          +10           +10           +10           +10 | 
|---|
| 188 | *        |-|-----------|-|-----------|-|-----------|-| | 
|---|
| 189 | *    r:0 0 1           1 0           0 1           1 0 | 
|---|
| 190 | *    w:0 1 1           0 0           1 1           0 0 | 
|---|
| 191 | * | 
|---|
| 192 | *    This ensures we'll fold the old NO_HZ contribution in this window while | 
|---|
| 193 | *    accumulating the new one. | 
|---|
| 194 | * | 
|---|
| 195 | *  - When we wake up from NO_HZ during the window, we push up our | 
|---|
| 196 | *    contribution, since we effectively move our sample point to a known | 
|---|
| 197 | *    busy state. | 
|---|
| 198 | * | 
|---|
| 199 | *    This is solved by pushing the window forward, and thus skipping the | 
|---|
| 200 | *    sample, for this CPU (effectively using the NO_HZ-delta for this CPU which | 
|---|
| 201 | *    was in effect at the time the window opened). This also solves the issue | 
|---|
| 202 | *    of having to deal with a CPU having been in NO_HZ for multiple LOAD_FREQ | 
|---|
| 203 | *    intervals. | 
|---|
| 204 | * | 
|---|
| 205 | * When making the ILB scale, we should try to pull this in as well. | 
|---|
| 206 | */ | 
|---|
| 207 | static atomic_long_t calc_load_nohz[2]; | 
|---|
| 208 | static int calc_load_idx; | 
|---|
| 209 |  | 
|---|
| 210 | static inline int calc_load_write_idx(void) | 
|---|
| 211 | { | 
|---|
| 212 | int idx = calc_load_idx; | 
|---|
| 213 |  | 
|---|
| 214 | /* | 
|---|
| 215 | * See calc_global_nohz(), if we observe the new index, we also | 
|---|
| 216 | * need to observe the new update time. | 
|---|
| 217 | */ | 
|---|
| 218 | smp_rmb(); | 
|---|
| 219 |  | 
|---|
| 220 | /* | 
|---|
| 221 | * If the folding window started, make sure we start writing in the | 
|---|
| 222 | * next NO_HZ-delta. | 
|---|
| 223 | */ | 
|---|
| 224 | if (!time_before(jiffies, READ_ONCE(calc_load_update))) | 
|---|
| 225 | idx++; | 
|---|
| 226 |  | 
|---|
| 227 | return idx & 1; | 
|---|
| 228 | } | 
|---|
| 229 |  | 
|---|
| 230 | static inline int calc_load_read_idx(void) | 
|---|
| 231 | { | 
|---|
| 232 | return calc_load_idx & 1; | 
|---|
| 233 | } | 
|---|
| 234 |  | 
|---|
| 235 | static void calc_load_nohz_fold(struct rq *rq) | 
|---|
| 236 | { | 
|---|
| 237 | long delta; | 
|---|
| 238 |  | 
|---|
| 239 | delta = calc_load_fold_active(this_rq: rq, adjust: 0); | 
|---|
| 240 | if (delta) { | 
|---|
| 241 | int idx = calc_load_write_idx(); | 
|---|
| 242 |  | 
|---|
| 243 | atomic_long_add(i: delta, v: &calc_load_nohz[idx]); | 
|---|
| 244 | } | 
|---|
| 245 | } | 
|---|
| 246 |  | 
|---|
| 247 | void calc_load_nohz_start(void) | 
|---|
| 248 | { | 
|---|
| 249 | /* | 
|---|
| 250 | * We're going into NO_HZ mode, if there's any pending delta, fold it | 
|---|
| 251 | * into the pending NO_HZ delta. | 
|---|
| 252 | */ | 
|---|
| 253 | calc_load_nohz_fold(this_rq()); | 
|---|
| 254 | } | 
|---|
| 255 |  | 
|---|
| 256 | /* | 
|---|
| 257 | * Keep track of the load for NOHZ_FULL, must be called between | 
|---|
| 258 | * calc_load_nohz_{start,stop}(). | 
|---|
| 259 | */ | 
|---|
| 260 | void calc_load_nohz_remote(struct rq *rq) | 
|---|
| 261 | { | 
|---|
| 262 | calc_load_nohz_fold(rq); | 
|---|
| 263 | } | 
|---|
| 264 |  | 
|---|
| 265 | void calc_load_nohz_stop(void) | 
|---|
| 266 | { | 
|---|
| 267 | struct rq *this_rq = this_rq(); | 
|---|
| 268 |  | 
|---|
| 269 | /* | 
|---|
| 270 | * If we're still before the pending sample window, we're done. | 
|---|
| 271 | */ | 
|---|
| 272 | this_rq->calc_load_update = READ_ONCE(calc_load_update); | 
|---|
| 273 | if (time_before(jiffies, this_rq->calc_load_update)) | 
|---|
| 274 | return; | 
|---|
| 275 |  | 
|---|
| 276 | /* | 
|---|
| 277 | * We woke inside or after the sample window, this means we're already | 
|---|
| 278 | * accounted through the nohz accounting, so skip the entire deal and | 
|---|
| 279 | * sync up for the next window. | 
|---|
| 280 | */ | 
|---|
| 281 | if (time_before(jiffies, this_rq->calc_load_update + 10)) | 
|---|
| 282 | this_rq->calc_load_update += LOAD_FREQ; | 
|---|
| 283 | } | 
|---|
| 284 |  | 
|---|
| 285 | static long calc_load_nohz_read(void) | 
|---|
| 286 | { | 
|---|
| 287 | int idx = calc_load_read_idx(); | 
|---|
| 288 | long delta = 0; | 
|---|
| 289 |  | 
|---|
| 290 | if (atomic_long_read(v: &calc_load_nohz[idx])) | 
|---|
| 291 | delta = atomic_long_xchg(v: &calc_load_nohz[idx], new: 0); | 
|---|
| 292 |  | 
|---|
| 293 | return delta; | 
|---|
| 294 | } | 
|---|
| 295 |  | 
|---|
| 296 | /* | 
|---|
| 297 | * NO_HZ can leave us missing all per-CPU ticks calling | 
|---|
| 298 | * calc_load_fold_active(), but since a NO_HZ CPU folds its delta into | 
|---|
| 299 | * calc_load_nohz per calc_load_nohz_start(), all we need to do is fold | 
|---|
| 300 | * in the pending NO_HZ delta if our NO_HZ period crossed a load cycle boundary. | 
|---|
| 301 | * | 
|---|
| 302 | * Once we've updated the global active value, we need to apply the exponential | 
|---|
| 303 | * weights adjusted to the number of cycles missed. | 
|---|
| 304 | */ | 
|---|
| 305 | static void calc_global_nohz(void) | 
|---|
| 306 | { | 
|---|
| 307 | unsigned long sample_window; | 
|---|
| 308 | long delta, active, n; | 
|---|
| 309 |  | 
|---|
| 310 | sample_window = READ_ONCE(calc_load_update); | 
|---|
| 311 | if (!time_before(jiffies, sample_window + 10)) { | 
|---|
| 312 | /* | 
|---|
| 313 | * Catch-up, fold however many we are behind still | 
|---|
| 314 | */ | 
|---|
| 315 | delta = jiffies - sample_window - 10; | 
|---|
| 316 | n = 1 + (delta / LOAD_FREQ); | 
|---|
| 317 |  | 
|---|
| 318 | active = atomic_long_read(v: &calc_load_tasks); | 
|---|
| 319 | active = active > 0 ? active * FIXED_1 : 0; | 
|---|
| 320 |  | 
|---|
| 321 | avenrun[0] = calc_load_n(load: avenrun[0], EXP_1, active, n); | 
|---|
| 322 | avenrun[1] = calc_load_n(load: avenrun[1], EXP_5, active, n); | 
|---|
| 323 | avenrun[2] = calc_load_n(load: avenrun[2], EXP_15, active, n); | 
|---|
| 324 |  | 
|---|
| 325 | WRITE_ONCE(calc_load_update, sample_window + n * LOAD_FREQ); | 
|---|
| 326 | } | 
|---|
| 327 |  | 
|---|
| 328 | /* | 
|---|
| 329 | * Flip the NO_HZ index... | 
|---|
| 330 | * | 
|---|
| 331 | * Make sure we first write the new time then flip the index, so that | 
|---|
| 332 | * calc_load_write_idx() will see the new time when it reads the new | 
|---|
| 333 | * index, this avoids a double flip messing things up. | 
|---|
| 334 | */ | 
|---|
| 335 | smp_wmb(); | 
|---|
| 336 | calc_load_idx++; | 
|---|
| 337 | } | 
|---|
| 338 | #else /* !CONFIG_NO_HZ_COMMON: */ | 
|---|
| 339 |  | 
|---|
| 340 | static inline long calc_load_nohz_read(void) { return 0; } | 
|---|
| 341 | static inline void calc_global_nohz(void) { } | 
|---|
| 342 |  | 
|---|
| 343 | #endif /* !CONFIG_NO_HZ_COMMON */ | 
|---|
| 344 |  | 
|---|
| 345 | /* | 
|---|
| 346 | * calc_load - update the avenrun load estimates 10 ticks after the | 
|---|
| 347 | * CPUs have updated calc_load_tasks. | 
|---|
| 348 | * | 
|---|
| 349 | * Called from the global timer code. | 
|---|
| 350 | */ | 
|---|
| 351 | void calc_global_load(void) | 
|---|
| 352 | { | 
|---|
| 353 | unsigned long sample_window; | 
|---|
| 354 | long active, delta; | 
|---|
| 355 |  | 
|---|
| 356 | sample_window = READ_ONCE(calc_load_update); | 
|---|
| 357 | if (time_before(jiffies, sample_window + 10)) | 
|---|
| 358 | return; | 
|---|
| 359 |  | 
|---|
| 360 | /* | 
|---|
| 361 | * Fold the 'old' NO_HZ-delta to include all NO_HZ CPUs. | 
|---|
| 362 | */ | 
|---|
| 363 | delta = calc_load_nohz_read(); | 
|---|
| 364 | if (delta) | 
|---|
| 365 | atomic_long_add(i: delta, v: &calc_load_tasks); | 
|---|
| 366 |  | 
|---|
| 367 | active = atomic_long_read(v: &calc_load_tasks); | 
|---|
| 368 | active = active > 0 ? active * FIXED_1 : 0; | 
|---|
| 369 |  | 
|---|
| 370 | avenrun[0] = calc_load(load: avenrun[0], EXP_1, active); | 
|---|
| 371 | avenrun[1] = calc_load(load: avenrun[1], EXP_5, active); | 
|---|
| 372 | avenrun[2] = calc_load(load: avenrun[2], EXP_15, active); | 
|---|
| 373 |  | 
|---|
| 374 | WRITE_ONCE(calc_load_update, sample_window + LOAD_FREQ); | 
|---|
| 375 |  | 
|---|
| 376 | /* | 
|---|
| 377 | * In case we went to NO_HZ for multiple LOAD_FREQ intervals | 
|---|
| 378 | * catch up in bulk. | 
|---|
| 379 | */ | 
|---|
| 380 | calc_global_nohz(); | 
|---|
| 381 | } | 
|---|
| 382 |  | 
|---|
| 383 | /* | 
|---|
| 384 | * Called from sched_tick() to periodically update this CPU's | 
|---|
| 385 | * active count. | 
|---|
| 386 | */ | 
|---|
| 387 | void calc_global_load_tick(struct rq *this_rq) | 
|---|
| 388 | { | 
|---|
| 389 | long delta; | 
|---|
| 390 |  | 
|---|
| 391 | if (time_before(jiffies, this_rq->calc_load_update)) | 
|---|
| 392 | return; | 
|---|
| 393 |  | 
|---|
| 394 | delta  = calc_load_fold_active(this_rq, adjust: 0); | 
|---|
| 395 | if (delta) | 
|---|
| 396 | atomic_long_add(i: delta, v: &calc_load_tasks); | 
|---|
| 397 |  | 
|---|
| 398 | this_rq->calc_load_update += LOAD_FREQ; | 
|---|
| 399 | } | 
|---|
| 400 |  | 
|---|