| 1 | // SPDX-License-Identifier: GPL-2.0-or-later | 
|---|
| 2 | /* | 
|---|
| 3 | * Copyright (C) 2010-2017 Mathieu Desnoyers <mathieu.desnoyers@efficios.com> | 
|---|
| 4 | * | 
|---|
| 5 | * membarrier system call | 
|---|
| 6 | */ | 
|---|
| 7 | #include <uapi/linux/membarrier.h> | 
|---|
| 8 | #include "sched.h" | 
|---|
| 9 |  | 
|---|
| 10 | /* | 
|---|
| 11 | * For documentation purposes, here are some membarrier ordering | 
|---|
| 12 | * scenarios to keep in mind: | 
|---|
| 13 | * | 
|---|
| 14 | * A) Userspace thread execution after IPI vs membarrier's memory | 
|---|
| 15 | *    barrier before sending the IPI | 
|---|
| 16 | * | 
|---|
| 17 | * Userspace variables: | 
|---|
| 18 | * | 
|---|
| 19 | * int x = 0, y = 0; | 
|---|
| 20 | * | 
|---|
| 21 | * The memory barrier at the start of membarrier() on CPU0 is necessary in | 
|---|
| 22 | * order to enforce the guarantee that any writes occurring on CPU0 before | 
|---|
| 23 | * the membarrier() is executed will be visible to any code executing on | 
|---|
| 24 | * CPU1 after the IPI-induced memory barrier: | 
|---|
| 25 | * | 
|---|
| 26 | *         CPU0                              CPU1 | 
|---|
| 27 | * | 
|---|
| 28 | *         x = 1 | 
|---|
| 29 | *         membarrier(): | 
|---|
| 30 | *           a: smp_mb() | 
|---|
| 31 | *           b: send IPI                       IPI-induced mb | 
|---|
| 32 | *           c: smp_mb() | 
|---|
| 33 | *         r2 = y | 
|---|
| 34 | *                                           y = 1 | 
|---|
| 35 | *                                           barrier() | 
|---|
| 36 | *                                           r1 = x | 
|---|
| 37 | * | 
|---|
| 38 | *                     BUG_ON(r1 == 0 && r2 == 0) | 
|---|
| 39 | * | 
|---|
| 40 | * The write to y and load from x by CPU1 are unordered by the hardware, | 
|---|
| 41 | * so it's possible to have "r1 = x" reordered before "y = 1" at any | 
|---|
| 42 | * point after (b).  If the memory barrier at (a) is omitted, then "x = 1" | 
|---|
| 43 | * can be reordered after (a) (although not after (c)), so we get r1 == 0 | 
|---|
| 44 | * and r2 == 0.  This violates the guarantee that membarrier() is | 
|---|
| 45 | * supposed by provide. | 
|---|
| 46 | * | 
|---|
| 47 | * The timing of the memory barrier at (a) has to ensure that it executes | 
|---|
| 48 | * before the IPI-induced memory barrier on CPU1. | 
|---|
| 49 | * | 
|---|
| 50 | * B) Userspace thread execution before IPI vs membarrier's memory | 
|---|
| 51 | *    barrier after completing the IPI | 
|---|
| 52 | * | 
|---|
| 53 | * Userspace variables: | 
|---|
| 54 | * | 
|---|
| 55 | * int x = 0, y = 0; | 
|---|
| 56 | * | 
|---|
| 57 | * The memory barrier at the end of membarrier() on CPU0 is necessary in | 
|---|
| 58 | * order to enforce the guarantee that any writes occurring on CPU1 before | 
|---|
| 59 | * the membarrier() is executed will be visible to any code executing on | 
|---|
| 60 | * CPU0 after the membarrier(): | 
|---|
| 61 | * | 
|---|
| 62 | *         CPU0                              CPU1 | 
|---|
| 63 | * | 
|---|
| 64 | *                                           x = 1 | 
|---|
| 65 | *                                           barrier() | 
|---|
| 66 | *                                           y = 1 | 
|---|
| 67 | *         r2 = y | 
|---|
| 68 | *         membarrier(): | 
|---|
| 69 | *           a: smp_mb() | 
|---|
| 70 | *           b: send IPI                       IPI-induced mb | 
|---|
| 71 | *           c: smp_mb() | 
|---|
| 72 | *         r1 = x | 
|---|
| 73 | *         BUG_ON(r1 == 0 && r2 == 1) | 
|---|
| 74 | * | 
|---|
| 75 | * The writes to x and y are unordered by the hardware, so it's possible to | 
|---|
| 76 | * have "r2 = 1" even though the write to x doesn't execute until (b).  If | 
|---|
| 77 | * the memory barrier at (c) is omitted then "r1 = x" can be reordered | 
|---|
| 78 | * before (b) (although not before (a)), so we get "r1 = 0".  This violates | 
|---|
| 79 | * the guarantee that membarrier() is supposed to provide. | 
|---|
| 80 | * | 
|---|
| 81 | * The timing of the memory barrier at (c) has to ensure that it executes | 
|---|
| 82 | * after the IPI-induced memory barrier on CPU1. | 
|---|
| 83 | * | 
|---|
| 84 | * C) Scheduling userspace thread -> kthread -> userspace thread vs membarrier | 
|---|
| 85 | * | 
|---|
| 86 | *           CPU0                            CPU1 | 
|---|
| 87 | * | 
|---|
| 88 | *           membarrier(): | 
|---|
| 89 | *           a: smp_mb() | 
|---|
| 90 | *                                           d: switch to kthread (includes mb) | 
|---|
| 91 | *           b: read rq->curr->mm == NULL | 
|---|
| 92 | *                                           e: switch to user (includes mb) | 
|---|
| 93 | *           c: smp_mb() | 
|---|
| 94 | * | 
|---|
| 95 | * Using the scenario from (A), we can show that (a) needs to be paired | 
|---|
| 96 | * with (e). Using the scenario from (B), we can show that (c) needs to | 
|---|
| 97 | * be paired with (d). | 
|---|
| 98 | * | 
|---|
| 99 | * D) exit_mm vs membarrier | 
|---|
| 100 | * | 
|---|
| 101 | * Two thread groups are created, A and B.  Thread group B is created by | 
|---|
| 102 | * issuing clone from group A with flag CLONE_VM set, but not CLONE_THREAD. | 
|---|
| 103 | * Let's assume we have a single thread within each thread group (Thread A | 
|---|
| 104 | * and Thread B).  Thread A runs on CPU0, Thread B runs on CPU1. | 
|---|
| 105 | * | 
|---|
| 106 | *           CPU0                            CPU1 | 
|---|
| 107 | * | 
|---|
| 108 | *           membarrier(): | 
|---|
| 109 | *             a: smp_mb() | 
|---|
| 110 | *                                           exit_mm(): | 
|---|
| 111 | *                                             d: smp_mb() | 
|---|
| 112 | *                                             e: current->mm = NULL | 
|---|
| 113 | *             b: read rq->curr->mm == NULL | 
|---|
| 114 | *             c: smp_mb() | 
|---|
| 115 | * | 
|---|
| 116 | * Using scenario (B), we can show that (c) needs to be paired with (d). | 
|---|
| 117 | * | 
|---|
| 118 | * E) kthread_{use,unuse}_mm vs membarrier | 
|---|
| 119 | * | 
|---|
| 120 | *           CPU0                            CPU1 | 
|---|
| 121 | * | 
|---|
| 122 | *           membarrier(): | 
|---|
| 123 | *           a: smp_mb() | 
|---|
| 124 | *                                           kthread_unuse_mm() | 
|---|
| 125 | *                                             d: smp_mb() | 
|---|
| 126 | *                                             e: current->mm = NULL | 
|---|
| 127 | *           b: read rq->curr->mm == NULL | 
|---|
| 128 | *                                           kthread_use_mm() | 
|---|
| 129 | *                                             f: current->mm = mm | 
|---|
| 130 | *                                             g: smp_mb() | 
|---|
| 131 | *           c: smp_mb() | 
|---|
| 132 | * | 
|---|
| 133 | * Using the scenario from (A), we can show that (a) needs to be paired | 
|---|
| 134 | * with (g). Using the scenario from (B), we can show that (c) needs to | 
|---|
| 135 | * be paired with (d). | 
|---|
| 136 | */ | 
|---|
| 137 |  | 
|---|
| 138 | /* | 
|---|
| 139 | * Bitmask made from a "or" of all commands within enum membarrier_cmd, | 
|---|
| 140 | * except MEMBARRIER_CMD_QUERY. | 
|---|
| 141 | */ | 
|---|
| 142 | #ifdef CONFIG_ARCH_HAS_MEMBARRIER_SYNC_CORE | 
|---|
| 143 | #define MEMBARRIER_PRIVATE_EXPEDITED_SYNC_CORE_BITMASK			\ | 
|---|
| 144 | (MEMBARRIER_CMD_PRIVATE_EXPEDITED_SYNC_CORE			\ | 
|---|
| 145 | | MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED_SYNC_CORE) | 
|---|
| 146 | #else | 
|---|
| 147 | #define MEMBARRIER_PRIVATE_EXPEDITED_SYNC_CORE_BITMASK	0 | 
|---|
| 148 | #endif | 
|---|
| 149 |  | 
|---|
| 150 | #ifdef CONFIG_RSEQ | 
|---|
| 151 | #define MEMBARRIER_PRIVATE_EXPEDITED_RSEQ_BITMASK		\ | 
|---|
| 152 | (MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ			\ | 
|---|
| 153 | | MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED_RSEQ) | 
|---|
| 154 | #else | 
|---|
| 155 | #define MEMBARRIER_PRIVATE_EXPEDITED_RSEQ_BITMASK	0 | 
|---|
| 156 | #endif | 
|---|
| 157 |  | 
|---|
| 158 | #define MEMBARRIER_CMD_BITMASK						\ | 
|---|
| 159 | (MEMBARRIER_CMD_GLOBAL | MEMBARRIER_CMD_GLOBAL_EXPEDITED	\ | 
|---|
| 160 | | MEMBARRIER_CMD_REGISTER_GLOBAL_EXPEDITED			\ | 
|---|
| 161 | | MEMBARRIER_CMD_PRIVATE_EXPEDITED				\ | 
|---|
| 162 | | MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED			\ | 
|---|
| 163 | | MEMBARRIER_PRIVATE_EXPEDITED_SYNC_CORE_BITMASK		\ | 
|---|
| 164 | | MEMBARRIER_PRIVATE_EXPEDITED_RSEQ_BITMASK			\ | 
|---|
| 165 | | MEMBARRIER_CMD_GET_REGISTRATIONS) | 
|---|
| 166 |  | 
|---|
| 167 | static DEFINE_MUTEX(membarrier_ipi_mutex); | 
|---|
| 168 | #define SERIALIZE_IPI() guard(mutex)(&membarrier_ipi_mutex) | 
|---|
| 169 |  | 
|---|
| 170 | static void ipi_mb(void *info) | 
|---|
| 171 | { | 
|---|
| 172 | smp_mb();	/* IPIs should be serializing but paranoid. */ | 
|---|
| 173 | } | 
|---|
| 174 |  | 
|---|
| 175 | static void ipi_sync_core(void *info) | 
|---|
| 176 | { | 
|---|
| 177 | /* | 
|---|
| 178 | * The smp_mb() in membarrier after all the IPIs is supposed to | 
|---|
| 179 | * ensure that memory on remote CPUs that occur before the IPI | 
|---|
| 180 | * become visible to membarrier()'s caller -- see scenario B in | 
|---|
| 181 | * the big comment at the top of this file. | 
|---|
| 182 | * | 
|---|
| 183 | * A sync_core() would provide this guarantee, but | 
|---|
| 184 | * sync_core_before_usermode() might end up being deferred until | 
|---|
| 185 | * after membarrier()'s smp_mb(). | 
|---|
| 186 | */ | 
|---|
| 187 | smp_mb();	/* IPIs should be serializing but paranoid. */ | 
|---|
| 188 |  | 
|---|
| 189 | sync_core_before_usermode(); | 
|---|
| 190 | } | 
|---|
| 191 |  | 
|---|
| 192 | static void ipi_rseq(void *info) | 
|---|
| 193 | { | 
|---|
| 194 | /* | 
|---|
| 195 | * Ensure that all stores done by the calling thread are visible | 
|---|
| 196 | * to the current task before the current task resumes.  We could | 
|---|
| 197 | * probably optimize this away on most architectures, but by the | 
|---|
| 198 | * time we've already sent an IPI, the cost of the extra smp_mb() | 
|---|
| 199 | * is negligible. | 
|---|
| 200 | */ | 
|---|
| 201 | smp_mb(); | 
|---|
| 202 | rseq_preempt(current); | 
|---|
| 203 | } | 
|---|
| 204 |  | 
|---|
| 205 | static void ipi_sync_rq_state(void *info) | 
|---|
| 206 | { | 
|---|
| 207 | struct mm_struct *mm = (struct mm_struct *) info; | 
|---|
| 208 |  | 
|---|
| 209 | if (current->mm != mm) | 
|---|
| 210 | return; | 
|---|
| 211 | this_cpu_write(runqueues.membarrier_state, | 
|---|
| 212 | atomic_read(&mm->membarrier_state)); | 
|---|
| 213 | /* | 
|---|
| 214 | * Issue a memory barrier after setting | 
|---|
| 215 | * MEMBARRIER_STATE_GLOBAL_EXPEDITED in the current runqueue to | 
|---|
| 216 | * guarantee that no memory access following registration is reordered | 
|---|
| 217 | * before registration. | 
|---|
| 218 | */ | 
|---|
| 219 | smp_mb(); | 
|---|
| 220 | } | 
|---|
| 221 |  | 
|---|
| 222 | void membarrier_exec_mmap(struct mm_struct *mm) | 
|---|
| 223 | { | 
|---|
| 224 | /* | 
|---|
| 225 | * Issue a memory barrier before clearing membarrier_state to | 
|---|
| 226 | * guarantee that no memory access prior to exec is reordered after | 
|---|
| 227 | * clearing this state. | 
|---|
| 228 | */ | 
|---|
| 229 | smp_mb(); | 
|---|
| 230 | atomic_set(v: &mm->membarrier_state, i: 0); | 
|---|
| 231 | /* | 
|---|
| 232 | * Keep the runqueue membarrier_state in sync with this mm | 
|---|
| 233 | * membarrier_state. | 
|---|
| 234 | */ | 
|---|
| 235 | this_cpu_write(runqueues.membarrier_state, 0); | 
|---|
| 236 | } | 
|---|
| 237 |  | 
|---|
| 238 | void membarrier_update_current_mm(struct mm_struct *next_mm) | 
|---|
| 239 | { | 
|---|
| 240 | struct rq *rq = this_rq(); | 
|---|
| 241 | int membarrier_state = 0; | 
|---|
| 242 |  | 
|---|
| 243 | if (next_mm) | 
|---|
| 244 | membarrier_state = atomic_read(v: &next_mm->membarrier_state); | 
|---|
| 245 | if (READ_ONCE(rq->membarrier_state) == membarrier_state) | 
|---|
| 246 | return; | 
|---|
| 247 | WRITE_ONCE(rq->membarrier_state, membarrier_state); | 
|---|
| 248 | } | 
|---|
| 249 |  | 
|---|
| 250 | static int membarrier_global_expedited(void) | 
|---|
| 251 | { | 
|---|
| 252 | int cpu; | 
|---|
| 253 | cpumask_var_t tmpmask; | 
|---|
| 254 |  | 
|---|
| 255 | if (num_online_cpus() == 1) | 
|---|
| 256 | return 0; | 
|---|
| 257 |  | 
|---|
| 258 | /* | 
|---|
| 259 | * Matches memory barriers after rq->curr modification in | 
|---|
| 260 | * scheduler. | 
|---|
| 261 | */ | 
|---|
| 262 | smp_mb();	/* system call entry is not a mb. */ | 
|---|
| 263 |  | 
|---|
| 264 | if (!zalloc_cpumask_var(mask: &tmpmask, GFP_KERNEL)) | 
|---|
| 265 | return -ENOMEM; | 
|---|
| 266 |  | 
|---|
| 267 | SERIALIZE_IPI(); | 
|---|
| 268 | cpus_read_lock(); | 
|---|
| 269 | rcu_read_lock(); | 
|---|
| 270 | for_each_online_cpu(cpu) { | 
|---|
| 271 | struct task_struct *p; | 
|---|
| 272 |  | 
|---|
| 273 | /* | 
|---|
| 274 | * Skipping the current CPU is OK even through we can be | 
|---|
| 275 | * migrated at any point. The current CPU, at the point | 
|---|
| 276 | * where we read raw_smp_processor_id(), is ensured to | 
|---|
| 277 | * be in program order with respect to the caller | 
|---|
| 278 | * thread. Therefore, we can skip this CPU from the | 
|---|
| 279 | * iteration. | 
|---|
| 280 | */ | 
|---|
| 281 | if (cpu == raw_smp_processor_id()) | 
|---|
| 282 | continue; | 
|---|
| 283 |  | 
|---|
| 284 | if (!(READ_ONCE(cpu_rq(cpu)->membarrier_state) & | 
|---|
| 285 | MEMBARRIER_STATE_GLOBAL_EXPEDITED)) | 
|---|
| 286 | continue; | 
|---|
| 287 |  | 
|---|
| 288 | /* | 
|---|
| 289 | * Skip the CPU if it runs a kernel thread which is not using | 
|---|
| 290 | * a task mm. | 
|---|
| 291 | */ | 
|---|
| 292 | p = rcu_dereference(cpu_rq(cpu)->curr); | 
|---|
| 293 | if (!p->mm) | 
|---|
| 294 | continue; | 
|---|
| 295 |  | 
|---|
| 296 | __cpumask_set_cpu(cpu, dstp: tmpmask); | 
|---|
| 297 | } | 
|---|
| 298 | rcu_read_unlock(); | 
|---|
| 299 |  | 
|---|
| 300 | preempt_disable(); | 
|---|
| 301 | smp_call_function_many(mask: tmpmask, func: ipi_mb, NULL, wait: 1); | 
|---|
| 302 | preempt_enable(); | 
|---|
| 303 |  | 
|---|
| 304 | free_cpumask_var(mask: tmpmask); | 
|---|
| 305 | cpus_read_unlock(); | 
|---|
| 306 |  | 
|---|
| 307 | /* | 
|---|
| 308 | * Memory barrier on the caller thread _after_ we finished | 
|---|
| 309 | * waiting for the last IPI. Matches memory barriers before | 
|---|
| 310 | * rq->curr modification in scheduler. | 
|---|
| 311 | */ | 
|---|
| 312 | smp_mb();	/* exit from system call is not a mb */ | 
|---|
| 313 | return 0; | 
|---|
| 314 | } | 
|---|
| 315 |  | 
|---|
| 316 | static int membarrier_private_expedited(int flags, int cpu_id) | 
|---|
| 317 | { | 
|---|
| 318 | cpumask_var_t tmpmask; | 
|---|
| 319 | struct mm_struct *mm = current->mm; | 
|---|
| 320 | smp_call_func_t ipi_func = ipi_mb; | 
|---|
| 321 |  | 
|---|
| 322 | if (flags == MEMBARRIER_FLAG_SYNC_CORE) { | 
|---|
| 323 | if (!IS_ENABLED(CONFIG_ARCH_HAS_MEMBARRIER_SYNC_CORE)) | 
|---|
| 324 | return -EINVAL; | 
|---|
| 325 | if (!(atomic_read(v: &mm->membarrier_state) & | 
|---|
| 326 | MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE_READY)) | 
|---|
| 327 | return -EPERM; | 
|---|
| 328 | ipi_func = ipi_sync_core; | 
|---|
| 329 | prepare_sync_core_cmd(mm); | 
|---|
| 330 | } else if (flags == MEMBARRIER_FLAG_RSEQ) { | 
|---|
| 331 | if (!IS_ENABLED(CONFIG_RSEQ)) | 
|---|
| 332 | return -EINVAL; | 
|---|
| 333 | if (!(atomic_read(v: &mm->membarrier_state) & | 
|---|
| 334 | MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ_READY)) | 
|---|
| 335 | return -EPERM; | 
|---|
| 336 | ipi_func = ipi_rseq; | 
|---|
| 337 | } else { | 
|---|
| 338 | WARN_ON_ONCE(flags); | 
|---|
| 339 | if (!(atomic_read(v: &mm->membarrier_state) & | 
|---|
| 340 | MEMBARRIER_STATE_PRIVATE_EXPEDITED_READY)) | 
|---|
| 341 | return -EPERM; | 
|---|
| 342 | } | 
|---|
| 343 |  | 
|---|
| 344 | if (flags != MEMBARRIER_FLAG_SYNC_CORE && | 
|---|
| 345 | (atomic_read(v: &mm->mm_users) == 1 || num_online_cpus() == 1)) | 
|---|
| 346 | return 0; | 
|---|
| 347 |  | 
|---|
| 348 | /* | 
|---|
| 349 | * Matches memory barriers after rq->curr modification in | 
|---|
| 350 | * scheduler. | 
|---|
| 351 | * | 
|---|
| 352 | * On RISC-V, this barrier pairing is also needed for the | 
|---|
| 353 | * SYNC_CORE command when switching between processes, cf. | 
|---|
| 354 | * the inline comments in membarrier_arch_switch_mm(). | 
|---|
| 355 | */ | 
|---|
| 356 | smp_mb();	/* system call entry is not a mb. */ | 
|---|
| 357 |  | 
|---|
| 358 | if (cpu_id < 0 && !zalloc_cpumask_var(mask: &tmpmask, GFP_KERNEL)) | 
|---|
| 359 | return -ENOMEM; | 
|---|
| 360 |  | 
|---|
| 361 | SERIALIZE_IPI(); | 
|---|
| 362 | cpus_read_lock(); | 
|---|
| 363 |  | 
|---|
| 364 | if (cpu_id >= 0) { | 
|---|
| 365 | struct task_struct *p; | 
|---|
| 366 |  | 
|---|
| 367 | if (cpu_id >= nr_cpu_ids || !cpu_online(cpu: cpu_id)) | 
|---|
| 368 | goto out; | 
|---|
| 369 | rcu_read_lock(); | 
|---|
| 370 | p = rcu_dereference(cpu_rq(cpu_id)->curr); | 
|---|
| 371 | if (!p || p->mm != mm) { | 
|---|
| 372 | rcu_read_unlock(); | 
|---|
| 373 | goto out; | 
|---|
| 374 | } | 
|---|
| 375 | rcu_read_unlock(); | 
|---|
| 376 | } else { | 
|---|
| 377 | int cpu; | 
|---|
| 378 |  | 
|---|
| 379 | rcu_read_lock(); | 
|---|
| 380 | for_each_online_cpu(cpu) { | 
|---|
| 381 | struct task_struct *p; | 
|---|
| 382 |  | 
|---|
| 383 | p = rcu_dereference(cpu_rq(cpu)->curr); | 
|---|
| 384 | if (p && p->mm == mm) | 
|---|
| 385 | __cpumask_set_cpu(cpu, dstp: tmpmask); | 
|---|
| 386 | } | 
|---|
| 387 | rcu_read_unlock(); | 
|---|
| 388 | } | 
|---|
| 389 |  | 
|---|
| 390 | if (cpu_id >= 0) { | 
|---|
| 391 | /* | 
|---|
| 392 | * smp_call_function_single() will call ipi_func() if cpu_id | 
|---|
| 393 | * is the calling CPU. | 
|---|
| 394 | */ | 
|---|
| 395 | smp_call_function_single(cpuid: cpu_id, func: ipi_func, NULL, wait: 1); | 
|---|
| 396 | } else { | 
|---|
| 397 | /* | 
|---|
| 398 | * For regular membarrier, we can save a few cycles by | 
|---|
| 399 | * skipping the current cpu -- we're about to do smp_mb() | 
|---|
| 400 | * below, and if we migrate to a different cpu, this cpu | 
|---|
| 401 | * and the new cpu will execute a full barrier in the | 
|---|
| 402 | * scheduler. | 
|---|
| 403 | * | 
|---|
| 404 | * For SYNC_CORE, we do need a barrier on the current cpu -- | 
|---|
| 405 | * otherwise, if we are migrated and replaced by a different | 
|---|
| 406 | * task in the same mm just before, during, or after | 
|---|
| 407 | * membarrier, we will end up with some thread in the mm | 
|---|
| 408 | * running without a core sync. | 
|---|
| 409 | * | 
|---|
| 410 | * For RSEQ, don't rseq_preempt() the caller.  User code | 
|---|
| 411 | * is not supposed to issue syscalls at all from inside an | 
|---|
| 412 | * rseq critical section. | 
|---|
| 413 | */ | 
|---|
| 414 | if (flags != MEMBARRIER_FLAG_SYNC_CORE) { | 
|---|
| 415 | preempt_disable(); | 
|---|
| 416 | smp_call_function_many(mask: tmpmask, func: ipi_func, NULL, wait: true); | 
|---|
| 417 | preempt_enable(); | 
|---|
| 418 | } else { | 
|---|
| 419 | on_each_cpu_mask(mask: tmpmask, func: ipi_func, NULL, wait: true); | 
|---|
| 420 | } | 
|---|
| 421 | } | 
|---|
| 422 |  | 
|---|
| 423 | out: | 
|---|
| 424 | if (cpu_id < 0) | 
|---|
| 425 | free_cpumask_var(mask: tmpmask); | 
|---|
| 426 | cpus_read_unlock(); | 
|---|
| 427 |  | 
|---|
| 428 | /* | 
|---|
| 429 | * Memory barrier on the caller thread _after_ we finished | 
|---|
| 430 | * waiting for the last IPI. Matches memory barriers before | 
|---|
| 431 | * rq->curr modification in scheduler. | 
|---|
| 432 | */ | 
|---|
| 433 | smp_mb();	/* exit from system call is not a mb */ | 
|---|
| 434 |  | 
|---|
| 435 | return 0; | 
|---|
| 436 | } | 
|---|
| 437 |  | 
|---|
| 438 | static int sync_runqueues_membarrier_state(struct mm_struct *mm) | 
|---|
| 439 | { | 
|---|
| 440 | int membarrier_state = atomic_read(v: &mm->membarrier_state); | 
|---|
| 441 | cpumask_var_t tmpmask; | 
|---|
| 442 | int cpu; | 
|---|
| 443 |  | 
|---|
| 444 | if (atomic_read(v: &mm->mm_users) == 1 || num_online_cpus() == 1) { | 
|---|
| 445 | this_cpu_write(runqueues.membarrier_state, membarrier_state); | 
|---|
| 446 |  | 
|---|
| 447 | /* | 
|---|
| 448 | * For single mm user, we can simply issue a memory barrier | 
|---|
| 449 | * after setting MEMBARRIER_STATE_GLOBAL_EXPEDITED in the | 
|---|
| 450 | * mm and in the current runqueue to guarantee that no memory | 
|---|
| 451 | * access following registration is reordered before | 
|---|
| 452 | * registration. | 
|---|
| 453 | */ | 
|---|
| 454 | smp_mb(); | 
|---|
| 455 | return 0; | 
|---|
| 456 | } | 
|---|
| 457 |  | 
|---|
| 458 | if (!zalloc_cpumask_var(mask: &tmpmask, GFP_KERNEL)) | 
|---|
| 459 | return -ENOMEM; | 
|---|
| 460 |  | 
|---|
| 461 | /* | 
|---|
| 462 | * For mm with multiple users, we need to ensure all future | 
|---|
| 463 | * scheduler executions will observe @mm's new membarrier | 
|---|
| 464 | * state. | 
|---|
| 465 | */ | 
|---|
| 466 | synchronize_rcu(); | 
|---|
| 467 |  | 
|---|
| 468 | /* | 
|---|
| 469 | * For each cpu runqueue, if the task's mm match @mm, ensure that all | 
|---|
| 470 | * @mm's membarrier state set bits are also set in the runqueue's | 
|---|
| 471 | * membarrier state. This ensures that a runqueue scheduling | 
|---|
| 472 | * between threads which are users of @mm has its membarrier state | 
|---|
| 473 | * updated. | 
|---|
| 474 | */ | 
|---|
| 475 | SERIALIZE_IPI(); | 
|---|
| 476 | cpus_read_lock(); | 
|---|
| 477 | rcu_read_lock(); | 
|---|
| 478 | for_each_online_cpu(cpu) { | 
|---|
| 479 | struct rq *rq = cpu_rq(cpu); | 
|---|
| 480 | struct task_struct *p; | 
|---|
| 481 |  | 
|---|
| 482 | p = rcu_dereference(rq->curr); | 
|---|
| 483 | if (p && p->mm == mm) | 
|---|
| 484 | __cpumask_set_cpu(cpu, dstp: tmpmask); | 
|---|
| 485 | } | 
|---|
| 486 | rcu_read_unlock(); | 
|---|
| 487 |  | 
|---|
| 488 | on_each_cpu_mask(mask: tmpmask, func: ipi_sync_rq_state, info: mm, wait: true); | 
|---|
| 489 |  | 
|---|
| 490 | free_cpumask_var(mask: tmpmask); | 
|---|
| 491 | cpus_read_unlock(); | 
|---|
| 492 |  | 
|---|
| 493 | return 0; | 
|---|
| 494 | } | 
|---|
| 495 |  | 
|---|
| 496 | static int membarrier_register_global_expedited(void) | 
|---|
| 497 | { | 
|---|
| 498 | struct task_struct *p = current; | 
|---|
| 499 | struct mm_struct *mm = p->mm; | 
|---|
| 500 | int ret; | 
|---|
| 501 |  | 
|---|
| 502 | if (atomic_read(v: &mm->membarrier_state) & | 
|---|
| 503 | MEMBARRIER_STATE_GLOBAL_EXPEDITED_READY) | 
|---|
| 504 | return 0; | 
|---|
| 505 | atomic_or(i: MEMBARRIER_STATE_GLOBAL_EXPEDITED, v: &mm->membarrier_state); | 
|---|
| 506 | ret = sync_runqueues_membarrier_state(mm); | 
|---|
| 507 | if (ret) | 
|---|
| 508 | return ret; | 
|---|
| 509 | atomic_or(i: MEMBARRIER_STATE_GLOBAL_EXPEDITED_READY, | 
|---|
| 510 | v: &mm->membarrier_state); | 
|---|
| 511 |  | 
|---|
| 512 | return 0; | 
|---|
| 513 | } | 
|---|
| 514 |  | 
|---|
| 515 | static int membarrier_register_private_expedited(int flags) | 
|---|
| 516 | { | 
|---|
| 517 | struct task_struct *p = current; | 
|---|
| 518 | struct mm_struct *mm = p->mm; | 
|---|
| 519 | int ready_state = MEMBARRIER_STATE_PRIVATE_EXPEDITED_READY, | 
|---|
| 520 | set_state = MEMBARRIER_STATE_PRIVATE_EXPEDITED, | 
|---|
| 521 | ret; | 
|---|
| 522 |  | 
|---|
| 523 | if (flags == MEMBARRIER_FLAG_SYNC_CORE) { | 
|---|
| 524 | if (!IS_ENABLED(CONFIG_ARCH_HAS_MEMBARRIER_SYNC_CORE)) | 
|---|
| 525 | return -EINVAL; | 
|---|
| 526 | ready_state = | 
|---|
| 527 | MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE_READY; | 
|---|
| 528 | } else if (flags == MEMBARRIER_FLAG_RSEQ) { | 
|---|
| 529 | if (!IS_ENABLED(CONFIG_RSEQ)) | 
|---|
| 530 | return -EINVAL; | 
|---|
| 531 | ready_state = | 
|---|
| 532 | MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ_READY; | 
|---|
| 533 | } else { | 
|---|
| 534 | WARN_ON_ONCE(flags); | 
|---|
| 535 | } | 
|---|
| 536 |  | 
|---|
| 537 | /* | 
|---|
| 538 | * We need to consider threads belonging to different thread | 
|---|
| 539 | * groups, which use the same mm. (CLONE_VM but not | 
|---|
| 540 | * CLONE_THREAD). | 
|---|
| 541 | */ | 
|---|
| 542 | if ((atomic_read(v: &mm->membarrier_state) & ready_state) == ready_state) | 
|---|
| 543 | return 0; | 
|---|
| 544 | if (flags & MEMBARRIER_FLAG_SYNC_CORE) | 
|---|
| 545 | set_state |= MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE; | 
|---|
| 546 | if (flags & MEMBARRIER_FLAG_RSEQ) | 
|---|
| 547 | set_state |= MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ; | 
|---|
| 548 | atomic_or(i: set_state, v: &mm->membarrier_state); | 
|---|
| 549 | ret = sync_runqueues_membarrier_state(mm); | 
|---|
| 550 | if (ret) | 
|---|
| 551 | return ret; | 
|---|
| 552 | atomic_or(i: ready_state, v: &mm->membarrier_state); | 
|---|
| 553 |  | 
|---|
| 554 | return 0; | 
|---|
| 555 | } | 
|---|
| 556 |  | 
|---|
| 557 | static int membarrier_get_registrations(void) | 
|---|
| 558 | { | 
|---|
| 559 | struct task_struct *p = current; | 
|---|
| 560 | struct mm_struct *mm = p->mm; | 
|---|
| 561 | int registrations_mask = 0, membarrier_state, i; | 
|---|
| 562 | static const int states[] = { | 
|---|
| 563 | MEMBARRIER_STATE_GLOBAL_EXPEDITED | | 
|---|
| 564 | MEMBARRIER_STATE_GLOBAL_EXPEDITED_READY, | 
|---|
| 565 | MEMBARRIER_STATE_PRIVATE_EXPEDITED | | 
|---|
| 566 | MEMBARRIER_STATE_PRIVATE_EXPEDITED_READY, | 
|---|
| 567 | MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE | | 
|---|
| 568 | MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE_READY, | 
|---|
| 569 | MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ | | 
|---|
| 570 | MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ_READY | 
|---|
| 571 | }; | 
|---|
| 572 | static const int registration_cmds[] = { | 
|---|
| 573 | MEMBARRIER_CMD_REGISTER_GLOBAL_EXPEDITED, | 
|---|
| 574 | MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED, | 
|---|
| 575 | MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED_SYNC_CORE, | 
|---|
| 576 | MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED_RSEQ | 
|---|
| 577 | }; | 
|---|
| 578 | BUILD_BUG_ON(ARRAY_SIZE(states) != ARRAY_SIZE(registration_cmds)); | 
|---|
| 579 |  | 
|---|
| 580 | membarrier_state = atomic_read(v: &mm->membarrier_state); | 
|---|
| 581 | for (i = 0; i < ARRAY_SIZE(states); ++i) { | 
|---|
| 582 | if (membarrier_state & states[i]) { | 
|---|
| 583 | registrations_mask |= registration_cmds[i]; | 
|---|
| 584 | membarrier_state &= ~states[i]; | 
|---|
| 585 | } | 
|---|
| 586 | } | 
|---|
| 587 | WARN_ON_ONCE(membarrier_state != 0); | 
|---|
| 588 | return registrations_mask; | 
|---|
| 589 | } | 
|---|
| 590 |  | 
|---|
| 591 | /** | 
|---|
| 592 | * sys_membarrier - issue memory barriers on a set of threads | 
|---|
| 593 | * @cmd:    Takes command values defined in enum membarrier_cmd. | 
|---|
| 594 | * @flags:  Currently needs to be 0 for all commands other than | 
|---|
| 595 | *          MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ: in the latter | 
|---|
| 596 | *          case it can be MEMBARRIER_CMD_FLAG_CPU, indicating that @cpu_id | 
|---|
| 597 | *          contains the CPU on which to interrupt (= restart) | 
|---|
| 598 | *          the RSEQ critical section. | 
|---|
| 599 | * @cpu_id: if @flags == MEMBARRIER_CMD_FLAG_CPU, indicates the cpu on which | 
|---|
| 600 | *          RSEQ CS should be interrupted (@cmd must be | 
|---|
| 601 | *          MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ). | 
|---|
| 602 | * | 
|---|
| 603 | * If this system call is not implemented, -ENOSYS is returned. If the | 
|---|
| 604 | * command specified does not exist, not available on the running | 
|---|
| 605 | * kernel, or if the command argument is invalid, this system call | 
|---|
| 606 | * returns -EINVAL. For a given command, with flags argument set to 0, | 
|---|
| 607 | * if this system call returns -ENOSYS or -EINVAL, it is guaranteed to | 
|---|
| 608 | * always return the same value until reboot. In addition, it can return | 
|---|
| 609 | * -ENOMEM if there is not enough memory available to perform the system | 
|---|
| 610 | * call. | 
|---|
| 611 | * | 
|---|
| 612 | * All memory accesses performed in program order from each targeted thread | 
|---|
| 613 | * is guaranteed to be ordered with respect to sys_membarrier(). If we use | 
|---|
| 614 | * the semantic "barrier()" to represent a compiler barrier forcing memory | 
|---|
| 615 | * accesses to be performed in program order across the barrier, and | 
|---|
| 616 | * smp_mb() to represent explicit memory barriers forcing full memory | 
|---|
| 617 | * ordering across the barrier, we have the following ordering table for | 
|---|
| 618 | * each pair of barrier(), sys_membarrier() and smp_mb(): | 
|---|
| 619 | * | 
|---|
| 620 | * The pair ordering is detailed as (O: ordered, X: not ordered): | 
|---|
| 621 | * | 
|---|
| 622 | *                        barrier()   smp_mb() sys_membarrier() | 
|---|
| 623 | *        barrier()          X           X            O | 
|---|
| 624 | *        smp_mb()           X           O            O | 
|---|
| 625 | *        sys_membarrier()   O           O            O | 
|---|
| 626 | */ | 
|---|
| 627 | SYSCALL_DEFINE3(membarrier, int, cmd, unsigned int, flags, int, cpu_id) | 
|---|
| 628 | { | 
|---|
| 629 | switch (cmd) { | 
|---|
| 630 | case MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ: | 
|---|
| 631 | if (unlikely(flags && flags != MEMBARRIER_CMD_FLAG_CPU)) | 
|---|
| 632 | return -EINVAL; | 
|---|
| 633 | break; | 
|---|
| 634 | default: | 
|---|
| 635 | if (unlikely(flags)) | 
|---|
| 636 | return -EINVAL; | 
|---|
| 637 | } | 
|---|
| 638 |  | 
|---|
| 639 | if (!(flags & MEMBARRIER_CMD_FLAG_CPU)) | 
|---|
| 640 | cpu_id = -1; | 
|---|
| 641 |  | 
|---|
| 642 | switch (cmd) { | 
|---|
| 643 | case MEMBARRIER_CMD_QUERY: | 
|---|
| 644 | { | 
|---|
| 645 | int cmd_mask = MEMBARRIER_CMD_BITMASK; | 
|---|
| 646 |  | 
|---|
| 647 | if (tick_nohz_full_enabled()) | 
|---|
| 648 | cmd_mask &= ~MEMBARRIER_CMD_GLOBAL; | 
|---|
| 649 | return cmd_mask; | 
|---|
| 650 | } | 
|---|
| 651 | case MEMBARRIER_CMD_GLOBAL: | 
|---|
| 652 | /* MEMBARRIER_CMD_GLOBAL is not compatible with nohz_full. */ | 
|---|
| 653 | if (tick_nohz_full_enabled()) | 
|---|
| 654 | return -EINVAL; | 
|---|
| 655 | if (num_online_cpus() > 1) | 
|---|
| 656 | synchronize_rcu(); | 
|---|
| 657 | return 0; | 
|---|
| 658 | case MEMBARRIER_CMD_GLOBAL_EXPEDITED: | 
|---|
| 659 | return membarrier_global_expedited(); | 
|---|
| 660 | case MEMBARRIER_CMD_REGISTER_GLOBAL_EXPEDITED: | 
|---|
| 661 | return membarrier_register_global_expedited(); | 
|---|
| 662 | case MEMBARRIER_CMD_PRIVATE_EXPEDITED: | 
|---|
| 663 | return membarrier_private_expedited(flags: 0, cpu_id); | 
|---|
| 664 | case MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED: | 
|---|
| 665 | return membarrier_register_private_expedited(flags: 0); | 
|---|
| 666 | case MEMBARRIER_CMD_PRIVATE_EXPEDITED_SYNC_CORE: | 
|---|
| 667 | return membarrier_private_expedited(flags: MEMBARRIER_FLAG_SYNC_CORE, cpu_id); | 
|---|
| 668 | case MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED_SYNC_CORE: | 
|---|
| 669 | return membarrier_register_private_expedited(flags: MEMBARRIER_FLAG_SYNC_CORE); | 
|---|
| 670 | case MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ: | 
|---|
| 671 | return membarrier_private_expedited(flags: MEMBARRIER_FLAG_RSEQ, cpu_id); | 
|---|
| 672 | case MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED_RSEQ: | 
|---|
| 673 | return membarrier_register_private_expedited(flags: MEMBARRIER_FLAG_RSEQ); | 
|---|
| 674 | case MEMBARRIER_CMD_GET_REGISTRATIONS: | 
|---|
| 675 | return membarrier_get_registrations(); | 
|---|
| 676 | default: | 
|---|
| 677 | return -EINVAL; | 
|---|
| 678 | } | 
|---|
| 679 | } | 
|---|
| 680 |  | 
|---|