| 1 | // SPDX-License-Identifier: GPL-2.0 | 
|---|
| 2 | /* | 
|---|
| 3 | * Per Entity Load Tracking (PELT) | 
|---|
| 4 | * | 
|---|
| 5 | *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> | 
|---|
| 6 | * | 
|---|
| 7 | *  Interactivity improvements by Mike Galbraith | 
|---|
| 8 | *  (C) 2007 Mike Galbraith <efault@gmx.de> | 
|---|
| 9 | * | 
|---|
| 10 | *  Various enhancements by Dmitry Adamushko. | 
|---|
| 11 | *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> | 
|---|
| 12 | * | 
|---|
| 13 | *  Group scheduling enhancements by Srivatsa Vaddagiri | 
|---|
| 14 | *  Copyright IBM Corporation, 2007 | 
|---|
| 15 | *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> | 
|---|
| 16 | * | 
|---|
| 17 | *  Scaled math optimizations by Thomas Gleixner | 
|---|
| 18 | *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> | 
|---|
| 19 | * | 
|---|
| 20 | *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra | 
|---|
| 21 | *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra | 
|---|
| 22 | * | 
|---|
| 23 | *  Move PELT related code from fair.c into this pelt.c file | 
|---|
| 24 | *  Author: Vincent Guittot <vincent.guittot@linaro.org> | 
|---|
| 25 | */ | 
|---|
| 26 | #include "pelt.h" | 
|---|
| 27 |  | 
|---|
| 28 | /* | 
|---|
| 29 | * Approximate: | 
|---|
| 30 | *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period) | 
|---|
| 31 | */ | 
|---|
| 32 | static u64 decay_load(u64 val, u64 n) | 
|---|
| 33 | { | 
|---|
| 34 | unsigned int local_n; | 
|---|
| 35 |  | 
|---|
| 36 | if (unlikely(n > LOAD_AVG_PERIOD * 63)) | 
|---|
| 37 | return 0; | 
|---|
| 38 |  | 
|---|
| 39 | /* after bounds checking we can collapse to 32-bit */ | 
|---|
| 40 | local_n = n; | 
|---|
| 41 |  | 
|---|
| 42 | /* | 
|---|
| 43 | * As y^PERIOD = 1/2, we can combine | 
|---|
| 44 | *    y^n = 1/2^(n/PERIOD) * y^(n%PERIOD) | 
|---|
| 45 | * With a look-up table which covers y^n (n<PERIOD) | 
|---|
| 46 | * | 
|---|
| 47 | * To achieve constant time decay_load. | 
|---|
| 48 | */ | 
|---|
| 49 | if (unlikely(local_n >= LOAD_AVG_PERIOD)) { | 
|---|
| 50 | val >>= local_n / LOAD_AVG_PERIOD; | 
|---|
| 51 | local_n %= LOAD_AVG_PERIOD; | 
|---|
| 52 | } | 
|---|
| 53 |  | 
|---|
| 54 | val = mul_u64_u32_shr(a: val, mul: runnable_avg_yN_inv[local_n], shift: 32); | 
|---|
| 55 | return val; | 
|---|
| 56 | } | 
|---|
| 57 |  | 
|---|
| 58 | static u32 __accumulate_pelt_segments(u64 periods, u32 d1, u32 d3) | 
|---|
| 59 | { | 
|---|
| 60 | u32 c1, c2, c3 = d3; /* y^0 == 1 */ | 
|---|
| 61 |  | 
|---|
| 62 | /* | 
|---|
| 63 | * c1 = d1 y^p | 
|---|
| 64 | */ | 
|---|
| 65 | c1 = decay_load(val: (u64)d1, n: periods); | 
|---|
| 66 |  | 
|---|
| 67 | /* | 
|---|
| 68 | *            p-1 | 
|---|
| 69 | * c2 = 1024 \Sum y^n | 
|---|
| 70 | *            n=1 | 
|---|
| 71 | * | 
|---|
| 72 | *              inf        inf | 
|---|
| 73 | *    = 1024 ( \Sum y^n - \Sum y^n - y^0 ) | 
|---|
| 74 | *              n=0        n=p | 
|---|
| 75 | */ | 
|---|
| 76 | c2 = LOAD_AVG_MAX - decay_load(LOAD_AVG_MAX, n: periods) - 1024; | 
|---|
| 77 |  | 
|---|
| 78 | return c1 + c2 + c3; | 
|---|
| 79 | } | 
|---|
| 80 |  | 
|---|
| 81 | /* | 
|---|
| 82 | * Accumulate the three separate parts of the sum; d1 the remainder | 
|---|
| 83 | * of the last (incomplete) period, d2 the span of full periods and d3 | 
|---|
| 84 | * the remainder of the (incomplete) current period. | 
|---|
| 85 | * | 
|---|
| 86 | *           d1          d2           d3 | 
|---|
| 87 | *           ^           ^            ^ | 
|---|
| 88 | *           |           |            | | 
|---|
| 89 | *         |<->|<----------------->|<--->| | 
|---|
| 90 | * ... |---x---|------| ... |------|-----x (now) | 
|---|
| 91 | * | 
|---|
| 92 | *                           p-1 | 
|---|
| 93 | * u' = (u + d1) y^p + 1024 \Sum y^n + d3 y^0 | 
|---|
| 94 | *                           n=1 | 
|---|
| 95 | * | 
|---|
| 96 | *    = u y^p +					(Step 1) | 
|---|
| 97 | * | 
|---|
| 98 | *                     p-1 | 
|---|
| 99 | *      d1 y^p + 1024 \Sum y^n + d3 y^0		(Step 2) | 
|---|
| 100 | *                     n=1 | 
|---|
| 101 | */ | 
|---|
| 102 | static __always_inline u32 | 
|---|
| 103 | accumulate_sum(u64 delta, struct sched_avg *sa, | 
|---|
| 104 | unsigned long load, unsigned long runnable, int running) | 
|---|
| 105 | { | 
|---|
| 106 | u32 contrib = (u32)delta; /* p == 0 -> delta < 1024 */ | 
|---|
| 107 | u64 periods; | 
|---|
| 108 |  | 
|---|
| 109 | delta += sa->period_contrib; | 
|---|
| 110 | periods = delta / 1024; /* A period is 1024us (~1ms) */ | 
|---|
| 111 |  | 
|---|
| 112 | /* | 
|---|
| 113 | * Step 1: decay old *_sum if we crossed period boundaries. | 
|---|
| 114 | */ | 
|---|
| 115 | if (periods) { | 
|---|
| 116 | sa->load_sum = decay_load(val: sa->load_sum, n: periods); | 
|---|
| 117 | sa->runnable_sum = | 
|---|
| 118 | decay_load(val: sa->runnable_sum, n: periods); | 
|---|
| 119 | sa->util_sum = decay_load(val: (u64)(sa->util_sum), n: periods); | 
|---|
| 120 |  | 
|---|
| 121 | /* | 
|---|
| 122 | * Step 2 | 
|---|
| 123 | */ | 
|---|
| 124 | delta %= 1024; | 
|---|
| 125 | if (load) { | 
|---|
| 126 | /* | 
|---|
| 127 | * This relies on the: | 
|---|
| 128 | * | 
|---|
| 129 | * if (!load) | 
|---|
| 130 | *	runnable = running = 0; | 
|---|
| 131 | * | 
|---|
| 132 | * clause from ___update_load_sum(); this results in | 
|---|
| 133 | * the below usage of @contrib to disappear entirely, | 
|---|
| 134 | * so no point in calculating it. | 
|---|
| 135 | */ | 
|---|
| 136 | contrib = __accumulate_pelt_segments(periods, | 
|---|
| 137 | d1: 1024 - sa->period_contrib, d3: delta); | 
|---|
| 138 | } | 
|---|
| 139 | } | 
|---|
| 140 | sa->period_contrib = delta; | 
|---|
| 141 |  | 
|---|
| 142 | if (load) | 
|---|
| 143 | sa->load_sum += load * contrib; | 
|---|
| 144 | if (runnable) | 
|---|
| 145 | sa->runnable_sum += runnable * contrib << SCHED_CAPACITY_SHIFT; | 
|---|
| 146 | if (running) | 
|---|
| 147 | sa->util_sum += contrib << SCHED_CAPACITY_SHIFT; | 
|---|
| 148 |  | 
|---|
| 149 | return periods; | 
|---|
| 150 | } | 
|---|
| 151 |  | 
|---|
| 152 | /* | 
|---|
| 153 | * We can represent the historical contribution to runnable average as the | 
|---|
| 154 | * coefficients of a geometric series.  To do this we sub-divide our runnable | 
|---|
| 155 | * history into segments of approximately 1ms (1024us); label the segment that | 
|---|
| 156 | * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g. | 
|---|
| 157 | * | 
|---|
| 158 | * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ... | 
|---|
| 159 | *      p0            p1           p2 | 
|---|
| 160 | *     (now)       (~1ms ago)  (~2ms ago) | 
|---|
| 161 | * | 
|---|
| 162 | * Let u_i denote the fraction of p_i that the entity was runnable. | 
|---|
| 163 | * | 
|---|
| 164 | * We then designate the fractions u_i as our co-efficients, yielding the | 
|---|
| 165 | * following representation of historical load: | 
|---|
| 166 | *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ... | 
|---|
| 167 | * | 
|---|
| 168 | * We choose y based on the with of a reasonably scheduling period, fixing: | 
|---|
| 169 | *   y^32 = 0.5 | 
|---|
| 170 | * | 
|---|
| 171 | * This means that the contribution to load ~32ms ago (u_32) will be weighted | 
|---|
| 172 | * approximately half as much as the contribution to load within the last ms | 
|---|
| 173 | * (u_0). | 
|---|
| 174 | * | 
|---|
| 175 | * When a period "rolls over" and we have new u_0`, multiplying the previous | 
|---|
| 176 | * sum again by y is sufficient to update: | 
|---|
| 177 | *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... ) | 
|---|
| 178 | *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}] | 
|---|
| 179 | */ | 
|---|
| 180 | static __always_inline int | 
|---|
| 181 | ___update_load_sum(u64 now, struct sched_avg *sa, | 
|---|
| 182 | unsigned long load, unsigned long runnable, int running) | 
|---|
| 183 | { | 
|---|
| 184 | u64 delta; | 
|---|
| 185 |  | 
|---|
| 186 | delta = now - sa->last_update_time; | 
|---|
| 187 | /* | 
|---|
| 188 | * This should only happen when time goes backwards, which it | 
|---|
| 189 | * unfortunately does during sched clock init when we swap over to TSC. | 
|---|
| 190 | */ | 
|---|
| 191 | if ((s64)delta < 0) { | 
|---|
| 192 | sa->last_update_time = now; | 
|---|
| 193 | return 0; | 
|---|
| 194 | } | 
|---|
| 195 |  | 
|---|
| 196 | /* | 
|---|
| 197 | * Use 1024ns as the unit of measurement since it's a reasonable | 
|---|
| 198 | * approximation of 1us and fast to compute. | 
|---|
| 199 | */ | 
|---|
| 200 | delta >>= 10; | 
|---|
| 201 | if (!delta) | 
|---|
| 202 | return 0; | 
|---|
| 203 |  | 
|---|
| 204 | sa->last_update_time += delta << 10; | 
|---|
| 205 |  | 
|---|
| 206 | /* | 
|---|
| 207 | * running is a subset of runnable (weight) so running can't be set if | 
|---|
| 208 | * runnable is clear. But there are some corner cases where the current | 
|---|
| 209 | * se has been already dequeued but cfs_rq->curr still points to it. | 
|---|
| 210 | * This means that weight will be 0 but not running for a sched_entity | 
|---|
| 211 | * but also for a cfs_rq if the latter becomes idle. As an example, | 
|---|
| 212 | * this happens during sched_balance_newidle() which calls | 
|---|
| 213 | * sched_balance_update_blocked_averages(). | 
|---|
| 214 | * | 
|---|
| 215 | * Also see the comment in accumulate_sum(). | 
|---|
| 216 | */ | 
|---|
| 217 | if (!load) | 
|---|
| 218 | runnable = running = 0; | 
|---|
| 219 |  | 
|---|
| 220 | /* | 
|---|
| 221 | * Now we know we crossed measurement unit boundaries. The *_avg | 
|---|
| 222 | * accrues by two steps: | 
|---|
| 223 | * | 
|---|
| 224 | * Step 1: accumulate *_sum since last_update_time. If we haven't | 
|---|
| 225 | * crossed period boundaries, finish. | 
|---|
| 226 | */ | 
|---|
| 227 | if (!accumulate_sum(delta, sa, load, runnable, running)) | 
|---|
| 228 | return 0; | 
|---|
| 229 |  | 
|---|
| 230 | return 1; | 
|---|
| 231 | } | 
|---|
| 232 |  | 
|---|
| 233 | /* | 
|---|
| 234 | * When syncing *_avg with *_sum, we must take into account the current | 
|---|
| 235 | * position in the PELT segment otherwise the remaining part of the segment | 
|---|
| 236 | * will be considered as idle time whereas it's not yet elapsed and this will | 
|---|
| 237 | * generate unwanted oscillation in the range [1002..1024[. | 
|---|
| 238 | * | 
|---|
| 239 | * The max value of *_sum varies with the position in the time segment and is | 
|---|
| 240 | * equals to : | 
|---|
| 241 | * | 
|---|
| 242 | *   LOAD_AVG_MAX*y + sa->period_contrib | 
|---|
| 243 | * | 
|---|
| 244 | * which can be simplified into: | 
|---|
| 245 | * | 
|---|
| 246 | *   LOAD_AVG_MAX - 1024 + sa->period_contrib | 
|---|
| 247 | * | 
|---|
| 248 | * because LOAD_AVG_MAX*y == LOAD_AVG_MAX-1024 | 
|---|
| 249 | * | 
|---|
| 250 | * The same care must be taken when a sched entity is added, updated or | 
|---|
| 251 | * removed from a cfs_rq and we need to update sched_avg. Scheduler entities | 
|---|
| 252 | * and the cfs rq, to which they are attached, have the same position in the | 
|---|
| 253 | * time segment because they use the same clock. This means that we can use | 
|---|
| 254 | * the period_contrib of cfs_rq when updating the sched_avg of a sched_entity | 
|---|
| 255 | * if it's more convenient. | 
|---|
| 256 | */ | 
|---|
| 257 | static __always_inline void | 
|---|
| 258 | ___update_load_avg(struct sched_avg *sa, unsigned long load) | 
|---|
| 259 | { | 
|---|
| 260 | u32 divider = get_pelt_divider(avg: sa); | 
|---|
| 261 |  | 
|---|
| 262 | /* | 
|---|
| 263 | * Step 2: update *_avg. | 
|---|
| 264 | */ | 
|---|
| 265 | sa->load_avg = div_u64(dividend: load * sa->load_sum, divisor: divider); | 
|---|
| 266 | sa->runnable_avg = div_u64(dividend: sa->runnable_sum, divisor: divider); | 
|---|
| 267 | WRITE_ONCE(sa->util_avg, sa->util_sum / divider); | 
|---|
| 268 | } | 
|---|
| 269 |  | 
|---|
| 270 | /* | 
|---|
| 271 | * sched_entity: | 
|---|
| 272 | * | 
|---|
| 273 | *   task: | 
|---|
| 274 | *     se_weight()   = se->load.weight | 
|---|
| 275 | *     se_runnable() = !!on_rq | 
|---|
| 276 | * | 
|---|
| 277 | *   group: [ see update_cfs_group() ] | 
|---|
| 278 | *     se_weight()   = tg->weight * grq->load_avg / tg->load_avg | 
|---|
| 279 | *     se_runnable() = grq->h_nr_runnable | 
|---|
| 280 | * | 
|---|
| 281 | *   runnable_sum = se_runnable() * runnable = grq->runnable_sum | 
|---|
| 282 | *   runnable_avg = runnable_sum | 
|---|
| 283 | * | 
|---|
| 284 | *   load_sum := runnable | 
|---|
| 285 | *   load_avg = se_weight(se) * load_sum | 
|---|
| 286 | * | 
|---|
| 287 | * cfq_rq: | 
|---|
| 288 | * | 
|---|
| 289 | *   runnable_sum = \Sum se->avg.runnable_sum | 
|---|
| 290 | *   runnable_avg = \Sum se->avg.runnable_avg | 
|---|
| 291 | * | 
|---|
| 292 | *   load_sum = \Sum se_weight(se) * se->avg.load_sum | 
|---|
| 293 | *   load_avg = \Sum se->avg.load_avg | 
|---|
| 294 | */ | 
|---|
| 295 |  | 
|---|
| 296 | int __update_load_avg_blocked_se(u64 now, struct sched_entity *se) | 
|---|
| 297 | { | 
|---|
| 298 | if (___update_load_sum(now, sa: &se->avg, load: 0, runnable: 0, running: 0)) { | 
|---|
| 299 | ___update_load_avg(sa: &se->avg, load: se_weight(se)); | 
|---|
| 300 | trace_pelt_se_tp(se); | 
|---|
| 301 | return 1; | 
|---|
| 302 | } | 
|---|
| 303 |  | 
|---|
| 304 | return 0; | 
|---|
| 305 | } | 
|---|
| 306 |  | 
|---|
| 307 | int __update_load_avg_se(u64 now, struct cfs_rq *cfs_rq, struct sched_entity *se) | 
|---|
| 308 | { | 
|---|
| 309 | if (___update_load_sum(now, sa: &se->avg, load: !!se->on_rq, runnable: se_runnable(se), | 
|---|
| 310 | running: cfs_rq->curr == se)) { | 
|---|
| 311 |  | 
|---|
| 312 | ___update_load_avg(sa: &se->avg, load: se_weight(se)); | 
|---|
| 313 | cfs_se_util_change(avg: &se->avg); | 
|---|
| 314 | trace_pelt_se_tp(se); | 
|---|
| 315 | return 1; | 
|---|
| 316 | } | 
|---|
| 317 |  | 
|---|
| 318 | return 0; | 
|---|
| 319 | } | 
|---|
| 320 |  | 
|---|
| 321 | int __update_load_avg_cfs_rq(u64 now, struct cfs_rq *cfs_rq) | 
|---|
| 322 | { | 
|---|
| 323 | if (___update_load_sum(now, sa: &cfs_rq->avg, | 
|---|
| 324 | scale_load_down(cfs_rq->load.weight), | 
|---|
| 325 | runnable: cfs_rq->h_nr_runnable, | 
|---|
| 326 | running: cfs_rq->curr != NULL)) { | 
|---|
| 327 |  | 
|---|
| 328 | ___update_load_avg(sa: &cfs_rq->avg, load: 1); | 
|---|
| 329 | trace_pelt_cfs_tp(cfs_rq); | 
|---|
| 330 | return 1; | 
|---|
| 331 | } | 
|---|
| 332 |  | 
|---|
| 333 | return 0; | 
|---|
| 334 | } | 
|---|
| 335 |  | 
|---|
| 336 | /* | 
|---|
| 337 | * rt_rq: | 
|---|
| 338 | * | 
|---|
| 339 | *   util_sum = \Sum se->avg.util_sum but se->avg.util_sum is not tracked | 
|---|
| 340 | *   util_sum = cpu_scale * load_sum | 
|---|
| 341 | *   runnable_sum = util_sum | 
|---|
| 342 | * | 
|---|
| 343 | *   load_avg and runnable_avg are not supported and meaningless. | 
|---|
| 344 | * | 
|---|
| 345 | */ | 
|---|
| 346 |  | 
|---|
| 347 | int update_rt_rq_load_avg(u64 now, struct rq *rq, int running) | 
|---|
| 348 | { | 
|---|
| 349 | if (___update_load_sum(now, sa: &rq->avg_rt, | 
|---|
| 350 | load: running, | 
|---|
| 351 | runnable: running, | 
|---|
| 352 | running)) { | 
|---|
| 353 |  | 
|---|
| 354 | ___update_load_avg(sa: &rq->avg_rt, load: 1); | 
|---|
| 355 | trace_pelt_rt_tp(rq); | 
|---|
| 356 | return 1; | 
|---|
| 357 | } | 
|---|
| 358 |  | 
|---|
| 359 | return 0; | 
|---|
| 360 | } | 
|---|
| 361 |  | 
|---|
| 362 | /* | 
|---|
| 363 | * dl_rq: | 
|---|
| 364 | * | 
|---|
| 365 | *   util_sum = \Sum se->avg.util_sum but se->avg.util_sum is not tracked | 
|---|
| 366 | *   util_sum = cpu_scale * load_sum | 
|---|
| 367 | *   runnable_sum = util_sum | 
|---|
| 368 | * | 
|---|
| 369 | *   load_avg and runnable_avg are not supported and meaningless. | 
|---|
| 370 | * | 
|---|
| 371 | */ | 
|---|
| 372 |  | 
|---|
| 373 | int update_dl_rq_load_avg(u64 now, struct rq *rq, int running) | 
|---|
| 374 | { | 
|---|
| 375 | if (___update_load_sum(now, sa: &rq->avg_dl, | 
|---|
| 376 | load: running, | 
|---|
| 377 | runnable: running, | 
|---|
| 378 | running)) { | 
|---|
| 379 |  | 
|---|
| 380 | ___update_load_avg(sa: &rq->avg_dl, load: 1); | 
|---|
| 381 | trace_pelt_dl_tp(rq); | 
|---|
| 382 | return 1; | 
|---|
| 383 | } | 
|---|
| 384 |  | 
|---|
| 385 | return 0; | 
|---|
| 386 | } | 
|---|
| 387 |  | 
|---|
| 388 | #ifdef CONFIG_SCHED_HW_PRESSURE | 
|---|
| 389 | /* | 
|---|
| 390 | * hardware: | 
|---|
| 391 | * | 
|---|
| 392 | *   load_sum = \Sum se->avg.load_sum but se->avg.load_sum is not tracked | 
|---|
| 393 | * | 
|---|
| 394 | *   util_avg and runnable_load_avg are not supported and meaningless. | 
|---|
| 395 | * | 
|---|
| 396 | * Unlike rt/dl utilization tracking that track time spent by a cpu | 
|---|
| 397 | * running a rt/dl task through util_avg, the average HW pressure is | 
|---|
| 398 | * tracked through load_avg. This is because HW pressure signal is | 
|---|
| 399 | * time weighted "delta" capacity unlike util_avg which is binary. | 
|---|
| 400 | * "delta capacity" =  actual capacity  - | 
|---|
| 401 | *			capped capacity a cpu due to a HW event. | 
|---|
| 402 | */ | 
|---|
| 403 |  | 
|---|
| 404 | int update_hw_load_avg(u64 now, struct rq *rq, u64 capacity) | 
|---|
| 405 | { | 
|---|
| 406 | if (___update_load_sum(now, &rq->avg_hw, | 
|---|
| 407 | capacity, | 
|---|
| 408 | capacity, | 
|---|
| 409 | capacity)) { | 
|---|
| 410 | ___update_load_avg(&rq->avg_hw, 1); | 
|---|
| 411 | trace_pelt_hw_tp(rq); | 
|---|
| 412 | return 1; | 
|---|
| 413 | } | 
|---|
| 414 |  | 
|---|
| 415 | return 0; | 
|---|
| 416 | } | 
|---|
| 417 | #endif /* CONFIG_SCHED_HW_PRESSURE */ | 
|---|
| 418 |  | 
|---|
| 419 | #ifdef CONFIG_HAVE_SCHED_AVG_IRQ | 
|---|
| 420 | /* | 
|---|
| 421 | * IRQ: | 
|---|
| 422 | * | 
|---|
| 423 | *   util_sum = \Sum se->avg.util_sum but se->avg.util_sum is not tracked | 
|---|
| 424 | *   util_sum = cpu_scale * load_sum | 
|---|
| 425 | *   runnable_sum = util_sum | 
|---|
| 426 | * | 
|---|
| 427 | *   load_avg and runnable_avg are not supported and meaningless. | 
|---|
| 428 | * | 
|---|
| 429 | */ | 
|---|
| 430 |  | 
|---|
| 431 | int update_irq_load_avg(struct rq *rq, u64 running) | 
|---|
| 432 | { | 
|---|
| 433 | int ret = 0; | 
|---|
| 434 |  | 
|---|
| 435 | /* | 
|---|
| 436 | * We can't use clock_pelt because IRQ time is not accounted in | 
|---|
| 437 | * clock_task. Instead we directly scale the running time to | 
|---|
| 438 | * reflect the real amount of computation | 
|---|
| 439 | */ | 
|---|
| 440 | running = cap_scale(running, arch_scale_freq_capacity(cpu_of(rq))); | 
|---|
| 441 | running = cap_scale(running, arch_scale_cpu_capacity(cpu_of(rq))); | 
|---|
| 442 |  | 
|---|
| 443 | /* | 
|---|
| 444 | * We know the time that has been used by interrupt since last update | 
|---|
| 445 | * but we don't when. Let be pessimistic and assume that interrupt has | 
|---|
| 446 | * happened just before the update. This is not so far from reality | 
|---|
| 447 | * because interrupt will most probably wake up task and trig an update | 
|---|
| 448 | * of rq clock during which the metric is updated. | 
|---|
| 449 | * We start to decay with normal context time and then we add the | 
|---|
| 450 | * interrupt context time. | 
|---|
| 451 | * We can safely remove running from rq->clock because | 
|---|
| 452 | * rq->clock += delta with delta >= running | 
|---|
| 453 | */ | 
|---|
| 454 | ret = ___update_load_sum(rq->clock - running, &rq->avg_irq, | 
|---|
| 455 | 0, | 
|---|
| 456 | 0, | 
|---|
| 457 | 0); | 
|---|
| 458 | ret += ___update_load_sum(rq->clock, &rq->avg_irq, | 
|---|
| 459 | 1, | 
|---|
| 460 | 1, | 
|---|
| 461 | 1); | 
|---|
| 462 |  | 
|---|
| 463 | if (ret) { | 
|---|
| 464 | ___update_load_avg(&rq->avg_irq, 1); | 
|---|
| 465 | trace_pelt_irq_tp(rq); | 
|---|
| 466 | } | 
|---|
| 467 |  | 
|---|
| 468 | return ret; | 
|---|
| 469 | } | 
|---|
| 470 | #endif /* CONFIG_HAVE_SCHED_AVG_IRQ */ | 
|---|
| 471 |  | 
|---|
| 472 | /* | 
|---|
| 473 | * Load avg and utiliztion metrics need to be updated periodically and before | 
|---|
| 474 | * consumption. This function updates the metrics for all subsystems except for | 
|---|
| 475 | * the fair class. @rq must be locked and have its clock updated. | 
|---|
| 476 | */ | 
|---|
| 477 | bool update_other_load_avgs(struct rq *rq) | 
|---|
| 478 | { | 
|---|
| 479 | u64 now = rq_clock_pelt(rq); | 
|---|
| 480 | const struct sched_class *curr_class = rq->donor->sched_class; | 
|---|
| 481 | unsigned long hw_pressure = arch_scale_hw_pressure(cpu: cpu_of(rq)); | 
|---|
| 482 |  | 
|---|
| 483 | lockdep_assert_rq_held(rq); | 
|---|
| 484 |  | 
|---|
| 485 | /* hw_pressure doesn't care about invariance */ | 
|---|
| 486 | return update_rt_rq_load_avg(now, rq, running: curr_class == &rt_sched_class) | | 
|---|
| 487 | update_dl_rq_load_avg(now, rq, running: curr_class == &dl_sched_class) | | 
|---|
| 488 | update_hw_load_avg(now: rq_clock_task(rq), rq, capacity: hw_pressure) | | 
|---|
| 489 | update_irq_load_avg(rq, running: 0); | 
|---|
| 490 | } | 
|---|
| 491 |  | 
|---|