| 1 | /* SPDX-License-Identifier: GPL-2.0 */ | 
|---|
| 2 | #ifndef _KERNEL_STATS_H | 
|---|
| 3 | #define _KERNEL_STATS_H | 
|---|
| 4 |  | 
|---|
| 5 | #ifdef CONFIG_SCHEDSTATS | 
|---|
| 6 |  | 
|---|
| 7 | extern struct static_key_false sched_schedstats; | 
|---|
| 8 |  | 
|---|
| 9 | /* | 
|---|
| 10 | * Expects runqueue lock to be held for atomicity of update | 
|---|
| 11 | */ | 
|---|
| 12 | static inline void | 
|---|
| 13 | rq_sched_info_arrive(struct rq *rq, unsigned long long delta) | 
|---|
| 14 | { | 
|---|
| 15 | if (rq) { | 
|---|
| 16 | rq->rq_sched_info.run_delay += delta; | 
|---|
| 17 | rq->rq_sched_info.pcount++; | 
|---|
| 18 | } | 
|---|
| 19 | } | 
|---|
| 20 |  | 
|---|
| 21 | /* | 
|---|
| 22 | * Expects runqueue lock to be held for atomicity of update | 
|---|
| 23 | */ | 
|---|
| 24 | static inline void | 
|---|
| 25 | rq_sched_info_depart(struct rq *rq, unsigned long long delta) | 
|---|
| 26 | { | 
|---|
| 27 | if (rq) | 
|---|
| 28 | rq->rq_cpu_time += delta; | 
|---|
| 29 | } | 
|---|
| 30 |  | 
|---|
| 31 | static inline void | 
|---|
| 32 | rq_sched_info_dequeue(struct rq *rq, unsigned long long delta) | 
|---|
| 33 | { | 
|---|
| 34 | if (rq) | 
|---|
| 35 | rq->rq_sched_info.run_delay += delta; | 
|---|
| 36 | } | 
|---|
| 37 | #define   schedstat_enabled()		static_branch_unlikely(&sched_schedstats) | 
|---|
| 38 | #define __schedstat_inc(var)		do { var++; } while (0) | 
|---|
| 39 | #define   schedstat_inc(var)		do { if (schedstat_enabled()) { var++; } } while (0) | 
|---|
| 40 | #define __schedstat_add(var, amt)	do { var += (amt); } while (0) | 
|---|
| 41 | #define   schedstat_add(var, amt)	do { if (schedstat_enabled()) { var += (amt); } } while (0) | 
|---|
| 42 | #define __schedstat_set(var, val)	do { var = (val); } while (0) | 
|---|
| 43 | #define   schedstat_set(var, val)	do { if (schedstat_enabled()) { var = (val); } } while (0) | 
|---|
| 44 | #define   schedstat_val(var)		(var) | 
|---|
| 45 | #define   schedstat_val_or_zero(var)	((schedstat_enabled()) ? (var) : 0) | 
|---|
| 46 |  | 
|---|
| 47 | void __update_stats_wait_start(struct rq *rq, struct task_struct *p, | 
|---|
| 48 | struct sched_statistics *stats); | 
|---|
| 49 |  | 
|---|
| 50 | void __update_stats_wait_end(struct rq *rq, struct task_struct *p, | 
|---|
| 51 | struct sched_statistics *stats); | 
|---|
| 52 | void __update_stats_enqueue_sleeper(struct rq *rq, struct task_struct *p, | 
|---|
| 53 | struct sched_statistics *stats); | 
|---|
| 54 |  | 
|---|
| 55 | static inline void | 
|---|
| 56 | check_schedstat_required(void) | 
|---|
| 57 | { | 
|---|
| 58 | if (schedstat_enabled()) | 
|---|
| 59 | return; | 
|---|
| 60 |  | 
|---|
| 61 | /* Force schedstat enabled if a dependent tracepoint is active */ | 
|---|
| 62 | if (trace_sched_stat_wait_enabled()    || | 
|---|
| 63 | trace_sched_stat_sleep_enabled()   || | 
|---|
| 64 | trace_sched_stat_iowait_enabled()  || | 
|---|
| 65 | trace_sched_stat_blocked_enabled() || | 
|---|
| 66 | trace_sched_stat_runtime_enabled()) | 
|---|
| 67 | printk_deferred_once( "Scheduler tracepoints stat_sleep, stat_iowait, stat_blocked and stat_runtime require the kernel parameter schedstats=enable or kernel.sched_schedstats=1\n"); | 
|---|
| 68 | } | 
|---|
| 69 |  | 
|---|
| 70 | #else /* !CONFIG_SCHEDSTATS: */ | 
|---|
| 71 |  | 
|---|
| 72 | static inline void rq_sched_info_arrive  (struct rq *rq, unsigned long long delta) { } | 
|---|
| 73 | static inline void rq_sched_info_dequeue(struct rq *rq, unsigned long long delta) { } | 
|---|
| 74 | static inline void rq_sched_info_depart  (struct rq *rq, unsigned long long delta) { } | 
|---|
| 75 | # define   schedstat_enabled()		0 | 
|---|
| 76 | # define __schedstat_inc(var)		do { } while (0) | 
|---|
| 77 | # define   schedstat_inc(var)		do { } while (0) | 
|---|
| 78 | # define __schedstat_add(var, amt)	do { } while (0) | 
|---|
| 79 | # define   schedstat_add(var, amt)	do { } while (0) | 
|---|
| 80 | # define __schedstat_set(var, val)	do { } while (0) | 
|---|
| 81 | # define   schedstat_set(var, val)	do { } while (0) | 
|---|
| 82 | # define   schedstat_val(var)		0 | 
|---|
| 83 | # define   schedstat_val_or_zero(var)	0 | 
|---|
| 84 |  | 
|---|
| 85 | # define __update_stats_wait_start(rq, p, stats)       do { } while (0) | 
|---|
| 86 | # define __update_stats_wait_end(rq, p, stats)         do { } while (0) | 
|---|
| 87 | # define __update_stats_enqueue_sleeper(rq, p, stats)  do { } while (0) | 
|---|
| 88 | # define check_schedstat_required()                    do { } while (0) | 
|---|
| 89 |  | 
|---|
| 90 | #endif /* CONFIG_SCHEDSTATS */ | 
|---|
| 91 |  | 
|---|
| 92 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
|---|
| 93 | struct sched_entity_stats { | 
|---|
| 94 | struct sched_entity     se; | 
|---|
| 95 | struct sched_statistics stats; | 
|---|
| 96 | } __no_randomize_layout; | 
|---|
| 97 | #endif | 
|---|
| 98 |  | 
|---|
| 99 | static inline struct sched_statistics * | 
|---|
| 100 | __schedstats_from_se(struct sched_entity *se) | 
|---|
| 101 | { | 
|---|
| 102 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
|---|
| 103 | if (!entity_is_task(se)) | 
|---|
| 104 | return &container_of(se, struct sched_entity_stats, se)->stats; | 
|---|
| 105 | #endif | 
|---|
| 106 | return &task_of(se)->stats; | 
|---|
| 107 | } | 
|---|
| 108 |  | 
|---|
| 109 | #ifdef CONFIG_PSI | 
|---|
| 110 | void psi_task_change(struct task_struct *task, int clear, int set); | 
|---|
| 111 | void psi_task_switch(struct task_struct *prev, struct task_struct *next, | 
|---|
| 112 | bool sleep); | 
|---|
| 113 | #ifdef CONFIG_IRQ_TIME_ACCOUNTING | 
|---|
| 114 | void psi_account_irqtime(struct rq *rq, struct task_struct *curr, struct task_struct *prev); | 
|---|
| 115 | #else /* !CONFIG_IRQ_TIME_ACCOUNTING: */ | 
|---|
| 116 | static inline void psi_account_irqtime(struct rq *rq, struct task_struct *curr, | 
|---|
| 117 | struct task_struct *prev) {} | 
|---|
| 118 | #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */ | 
|---|
| 119 | /* | 
|---|
| 120 | * PSI tracks state that persists across sleeps, such as iowaits and | 
|---|
| 121 | * memory stalls. As a result, it has to distinguish between sleeps, | 
|---|
| 122 | * where a task's runnable state changes, and migrations, where a task | 
|---|
| 123 | * and its runnable state are being moved between CPUs and runqueues. | 
|---|
| 124 | * | 
|---|
| 125 | * A notable case is a task whose dequeue is delayed. PSI considers | 
|---|
| 126 | * those sleeping, but because they are still on the runqueue they can | 
|---|
| 127 | * go through migration requeues. In this case, *sleeping* states need | 
|---|
| 128 | * to be transferred. | 
|---|
| 129 | */ | 
|---|
| 130 | static inline void psi_enqueue(struct task_struct *p, int flags) | 
|---|
| 131 | { | 
|---|
| 132 | int clear = 0, set = 0; | 
|---|
| 133 |  | 
|---|
| 134 | if (static_branch_likely(&psi_disabled)) | 
|---|
| 135 | return; | 
|---|
| 136 |  | 
|---|
| 137 | /* Same runqueue, nothing changed for psi */ | 
|---|
| 138 | if (flags & ENQUEUE_RESTORE) | 
|---|
| 139 | return; | 
|---|
| 140 |  | 
|---|
| 141 | /* psi_sched_switch() will handle the flags */ | 
|---|
| 142 | if (task_on_cpu(task_rq(p), p)) | 
|---|
| 143 | return; | 
|---|
| 144 |  | 
|---|
| 145 | if (p->se.sched_delayed) { | 
|---|
| 146 | /* CPU migration of "sleeping" task */ | 
|---|
| 147 | WARN_ON_ONCE(!(flags & ENQUEUE_MIGRATED)); | 
|---|
| 148 | if (p->in_memstall) | 
|---|
| 149 | set |= TSK_MEMSTALL; | 
|---|
| 150 | if (p->in_iowait) | 
|---|
| 151 | set |= TSK_IOWAIT; | 
|---|
| 152 | } else if (flags & ENQUEUE_MIGRATED) { | 
|---|
| 153 | /* CPU migration of runnable task */ | 
|---|
| 154 | set = TSK_RUNNING; | 
|---|
| 155 | if (p->in_memstall) | 
|---|
| 156 | set |= TSK_MEMSTALL | TSK_MEMSTALL_RUNNING; | 
|---|
| 157 | } else { | 
|---|
| 158 | /* Wakeup of new or sleeping task */ | 
|---|
| 159 | if (p->in_iowait) | 
|---|
| 160 | clear |= TSK_IOWAIT; | 
|---|
| 161 | set = TSK_RUNNING; | 
|---|
| 162 | if (p->in_memstall) | 
|---|
| 163 | set |= TSK_MEMSTALL_RUNNING; | 
|---|
| 164 | } | 
|---|
| 165 |  | 
|---|
| 166 | psi_task_change(p, clear, set); | 
|---|
| 167 | } | 
|---|
| 168 |  | 
|---|
| 169 | static inline void psi_dequeue(struct task_struct *p, int flags) | 
|---|
| 170 | { | 
|---|
| 171 | if (static_branch_likely(&psi_disabled)) | 
|---|
| 172 | return; | 
|---|
| 173 |  | 
|---|
| 174 | /* Same runqueue, nothing changed for psi */ | 
|---|
| 175 | if (flags & DEQUEUE_SAVE) | 
|---|
| 176 | return; | 
|---|
| 177 |  | 
|---|
| 178 | /* | 
|---|
| 179 | * A voluntary sleep is a dequeue followed by a task switch. To | 
|---|
| 180 | * avoid walking all ancestors twice, psi_task_switch() handles | 
|---|
| 181 | * TSK_RUNNING and TSK_IOWAIT for us when it moves TSK_ONCPU. | 
|---|
| 182 | * Do nothing here. | 
|---|
| 183 | */ | 
|---|
| 184 | if (flags & DEQUEUE_SLEEP) | 
|---|
| 185 | return; | 
|---|
| 186 |  | 
|---|
| 187 | /* | 
|---|
| 188 | * When migrating a task to another CPU, clear all psi | 
|---|
| 189 | * state. The enqueue callback above will work it out. | 
|---|
| 190 | */ | 
|---|
| 191 | psi_task_change(p, p->psi_flags, 0); | 
|---|
| 192 | } | 
|---|
| 193 |  | 
|---|
| 194 | static inline void psi_ttwu_dequeue(struct task_struct *p) | 
|---|
| 195 | { | 
|---|
| 196 | if (static_branch_likely(&psi_disabled)) | 
|---|
| 197 | return; | 
|---|
| 198 | /* | 
|---|
| 199 | * Is the task being migrated during a wakeup? Make sure to | 
|---|
| 200 | * deregister its sleep-persistent psi states from the old | 
|---|
| 201 | * queue, and let psi_enqueue() know it has to requeue. | 
|---|
| 202 | */ | 
|---|
| 203 | if (unlikely(p->psi_flags)) { | 
|---|
| 204 | struct rq_flags rf; | 
|---|
| 205 | struct rq *rq; | 
|---|
| 206 |  | 
|---|
| 207 | rq = __task_rq_lock(p, &rf); | 
|---|
| 208 | psi_task_change(p, p->psi_flags, 0); | 
|---|
| 209 | __task_rq_unlock(rq, &rf); | 
|---|
| 210 | } | 
|---|
| 211 | } | 
|---|
| 212 |  | 
|---|
| 213 | static inline void psi_sched_switch(struct task_struct *prev, | 
|---|
| 214 | struct task_struct *next, | 
|---|
| 215 | bool sleep) | 
|---|
| 216 | { | 
|---|
| 217 | if (static_branch_likely(&psi_disabled)) | 
|---|
| 218 | return; | 
|---|
| 219 |  | 
|---|
| 220 | psi_task_switch(prev, next, sleep); | 
|---|
| 221 | } | 
|---|
| 222 |  | 
|---|
| 223 | #else /* !CONFIG_PSI: */ | 
|---|
| 224 | static inline void psi_enqueue(struct task_struct *p, bool migrate) {} | 
|---|
| 225 | static inline void psi_dequeue(struct task_struct *p, bool migrate) {} | 
|---|
| 226 | static inline void psi_ttwu_dequeue(struct task_struct *p) {} | 
|---|
| 227 | static inline void psi_sched_switch(struct task_struct *prev, | 
|---|
| 228 | struct task_struct *next, | 
|---|
| 229 | bool sleep) {} | 
|---|
| 230 | static inline void psi_account_irqtime(struct rq *rq, struct task_struct *curr, | 
|---|
| 231 | struct task_struct *prev) {} | 
|---|
| 232 | #endif /* !CONFIG_PSI */ | 
|---|
| 233 |  | 
|---|
| 234 | #ifdef CONFIG_SCHED_INFO | 
|---|
| 235 | /* | 
|---|
| 236 | * We are interested in knowing how long it was from the *first* time a | 
|---|
| 237 | * task was queued to the time that it finally hit a CPU, we call this routine | 
|---|
| 238 | * from dequeue_task() to account for possible rq->clock skew across CPUs. The | 
|---|
| 239 | * delta taken on each CPU would annul the skew. | 
|---|
| 240 | */ | 
|---|
| 241 | static inline void sched_info_dequeue(struct rq *rq, struct task_struct *t) | 
|---|
| 242 | { | 
|---|
| 243 | unsigned long long delta = 0; | 
|---|
| 244 |  | 
|---|
| 245 | if (!t->sched_info.last_queued) | 
|---|
| 246 | return; | 
|---|
| 247 |  | 
|---|
| 248 | delta = rq_clock(rq) - t->sched_info.last_queued; | 
|---|
| 249 | t->sched_info.last_queued = 0; | 
|---|
| 250 | t->sched_info.run_delay += delta; | 
|---|
| 251 | if (delta > t->sched_info.max_run_delay) | 
|---|
| 252 | t->sched_info.max_run_delay = delta; | 
|---|
| 253 | if (delta && (!t->sched_info.min_run_delay || delta < t->sched_info.min_run_delay)) | 
|---|
| 254 | t->sched_info.min_run_delay = delta; | 
|---|
| 255 | rq_sched_info_dequeue(rq, delta); | 
|---|
| 256 | } | 
|---|
| 257 |  | 
|---|
| 258 | /* | 
|---|
| 259 | * Called when a task finally hits the CPU.  We can now calculate how | 
|---|
| 260 | * long it was waiting to run.  We also note when it began so that we | 
|---|
| 261 | * can keep stats on how long its time-slice is. | 
|---|
| 262 | */ | 
|---|
| 263 | static void sched_info_arrive(struct rq *rq, struct task_struct *t) | 
|---|
| 264 | { | 
|---|
| 265 | unsigned long long now, delta = 0; | 
|---|
| 266 |  | 
|---|
| 267 | if (!t->sched_info.last_queued) | 
|---|
| 268 | return; | 
|---|
| 269 |  | 
|---|
| 270 | now = rq_clock(rq); | 
|---|
| 271 | delta = now - t->sched_info.last_queued; | 
|---|
| 272 | t->sched_info.last_queued = 0; | 
|---|
| 273 | t->sched_info.run_delay += delta; | 
|---|
| 274 | t->sched_info.last_arrival = now; | 
|---|
| 275 | t->sched_info.pcount++; | 
|---|
| 276 | if (delta > t->sched_info.max_run_delay) | 
|---|
| 277 | t->sched_info.max_run_delay = delta; | 
|---|
| 278 | if (delta && (!t->sched_info.min_run_delay || delta < t->sched_info.min_run_delay)) | 
|---|
| 279 | t->sched_info.min_run_delay = delta; | 
|---|
| 280 |  | 
|---|
| 281 | rq_sched_info_arrive(rq, delta); | 
|---|
| 282 | } | 
|---|
| 283 |  | 
|---|
| 284 | /* | 
|---|
| 285 | * This function is only called from enqueue_task(), but also only updates | 
|---|
| 286 | * the timestamp if it is already not set.  It's assumed that | 
|---|
| 287 | * sched_info_dequeue() will clear that stamp when appropriate. | 
|---|
| 288 | */ | 
|---|
| 289 | static inline void sched_info_enqueue(struct rq *rq, struct task_struct *t) | 
|---|
| 290 | { | 
|---|
| 291 | if (!t->sched_info.last_queued) | 
|---|
| 292 | t->sched_info.last_queued = rq_clock(rq); | 
|---|
| 293 | } | 
|---|
| 294 |  | 
|---|
| 295 | /* | 
|---|
| 296 | * Called when a process ceases being the active-running process involuntarily | 
|---|
| 297 | * due, typically, to expiring its time slice (this may also be called when | 
|---|
| 298 | * switching to the idle task).  Now we can calculate how long we ran. | 
|---|
| 299 | * Also, if the process is still in the TASK_RUNNING state, call | 
|---|
| 300 | * sched_info_enqueue() to mark that it has now again started waiting on | 
|---|
| 301 | * the runqueue. | 
|---|
| 302 | */ | 
|---|
| 303 | static inline void sched_info_depart(struct rq *rq, struct task_struct *t) | 
|---|
| 304 | { | 
|---|
| 305 | unsigned long long delta = rq_clock(rq) - t->sched_info.last_arrival; | 
|---|
| 306 |  | 
|---|
| 307 | rq_sched_info_depart(rq, delta); | 
|---|
| 308 |  | 
|---|
| 309 | if (task_is_running(t)) | 
|---|
| 310 | sched_info_enqueue(rq, t); | 
|---|
| 311 | } | 
|---|
| 312 |  | 
|---|
| 313 | /* | 
|---|
| 314 | * Called when tasks are switched involuntarily due, typically, to expiring | 
|---|
| 315 | * their time slice.  (This may also be called when switching to or from | 
|---|
| 316 | * the idle task.)  We are only called when prev != next. | 
|---|
| 317 | */ | 
|---|
| 318 | static inline void | 
|---|
| 319 | sched_info_switch(struct rq *rq, struct task_struct *prev, struct task_struct *next) | 
|---|
| 320 | { | 
|---|
| 321 | /* | 
|---|
| 322 | * prev now departs the CPU.  It's not interesting to record | 
|---|
| 323 | * stats about how efficient we were at scheduling the idle | 
|---|
| 324 | * process, however. | 
|---|
| 325 | */ | 
|---|
| 326 | if (prev != rq->idle) | 
|---|
| 327 | sched_info_depart(rq, t: prev); | 
|---|
| 328 |  | 
|---|
| 329 | if (next != rq->idle) | 
|---|
| 330 | sched_info_arrive(rq, t: next); | 
|---|
| 331 | } | 
|---|
| 332 |  | 
|---|
| 333 | #else /* !CONFIG_SCHED_INFO: */ | 
|---|
| 334 | # define sched_info_enqueue(rq, t)	do { } while (0) | 
|---|
| 335 | # define sched_info_dequeue(rq, t)	do { } while (0) | 
|---|
| 336 | # define sched_info_switch(rq, t, next)	do { } while (0) | 
|---|
| 337 | #endif /* !CONFIG_SCHED_INFO */ | 
|---|
| 338 |  | 
|---|
| 339 | #endif /* _KERNEL_STATS_H */ | 
|---|
| 340 |  | 
|---|