| 1 | // SPDX-License-Identifier: GPL-2.0-only |
| 2 | /* |
| 3 | * linux/kernel/signal.c |
| 4 | * |
| 5 | * Copyright (C) 1991, 1992 Linus Torvalds |
| 6 | * |
| 7 | * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson |
| 8 | * |
| 9 | * 2003-06-02 Jim Houston - Concurrent Computer Corp. |
| 10 | * Changes to use preallocated sigqueue structures |
| 11 | * to allow signals to be sent reliably. |
| 12 | */ |
| 13 | |
| 14 | #include <linux/slab.h> |
| 15 | #include <linux/export.h> |
| 16 | #include <linux/init.h> |
| 17 | #include <linux/sched/mm.h> |
| 18 | #include <linux/sched/user.h> |
| 19 | #include <linux/sched/debug.h> |
| 20 | #include <linux/sched/task.h> |
| 21 | #include <linux/sched/task_stack.h> |
| 22 | #include <linux/sched/cputime.h> |
| 23 | #include <linux/file.h> |
| 24 | #include <linux/fs.h> |
| 25 | #include <linux/mm.h> |
| 26 | #include <linux/proc_fs.h> |
| 27 | #include <linux/tty.h> |
| 28 | #include <linux/binfmts.h> |
| 29 | #include <linux/coredump.h> |
| 30 | #include <linux/security.h> |
| 31 | #include <linux/syscalls.h> |
| 32 | #include <linux/ptrace.h> |
| 33 | #include <linux/signal.h> |
| 34 | #include <linux/signalfd.h> |
| 35 | #include <linux/ratelimit.h> |
| 36 | #include <linux/task_work.h> |
| 37 | #include <linux/capability.h> |
| 38 | #include <linux/freezer.h> |
| 39 | #include <linux/pid_namespace.h> |
| 40 | #include <linux/nsproxy.h> |
| 41 | #include <linux/user_namespace.h> |
| 42 | #include <linux/uprobes.h> |
| 43 | #include <linux/compat.h> |
| 44 | #include <linux/cn_proc.h> |
| 45 | #include <linux/compiler.h> |
| 46 | #include <linux/posix-timers.h> |
| 47 | #include <linux/cgroup.h> |
| 48 | #include <linux/audit.h> |
| 49 | #include <linux/sysctl.h> |
| 50 | #include <uapi/linux/pidfd.h> |
| 51 | |
| 52 | #define CREATE_TRACE_POINTS |
| 53 | #include <trace/events/signal.h> |
| 54 | |
| 55 | #include <asm/param.h> |
| 56 | #include <linux/uaccess.h> |
| 57 | #include <asm/unistd.h> |
| 58 | #include <asm/siginfo.h> |
| 59 | #include <asm/cacheflush.h> |
| 60 | #include <asm/syscall.h> /* for syscall_get_* */ |
| 61 | |
| 62 | #include "time/posix-timers.h" |
| 63 | |
| 64 | /* |
| 65 | * SLAB caches for signal bits. |
| 66 | */ |
| 67 | |
| 68 | static struct kmem_cache *sigqueue_cachep; |
| 69 | |
| 70 | int print_fatal_signals __read_mostly; |
| 71 | |
| 72 | static void __user *sig_handler(struct task_struct *t, int sig) |
| 73 | { |
| 74 | return t->sighand->action[sig - 1].sa.sa_handler; |
| 75 | } |
| 76 | |
| 77 | static inline bool sig_handler_ignored(void __user *handler, int sig) |
| 78 | { |
| 79 | /* Is it explicitly or implicitly ignored? */ |
| 80 | return handler == SIG_IGN || |
| 81 | (handler == SIG_DFL && sig_kernel_ignore(sig)); |
| 82 | } |
| 83 | |
| 84 | static bool sig_task_ignored(struct task_struct *t, int sig, bool force) |
| 85 | { |
| 86 | void __user *handler; |
| 87 | |
| 88 | handler = sig_handler(t, sig); |
| 89 | |
| 90 | /* SIGKILL and SIGSTOP may not be sent to the global init */ |
| 91 | if (unlikely(is_global_init(t) && sig_kernel_only(sig))) |
| 92 | return true; |
| 93 | |
| 94 | if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) && |
| 95 | handler == SIG_DFL && !(force && sig_kernel_only(sig))) |
| 96 | return true; |
| 97 | |
| 98 | /* Only allow kernel generated signals to this kthread */ |
| 99 | if (unlikely((t->flags & PF_KTHREAD) && |
| 100 | (handler == SIG_KTHREAD_KERNEL) && !force)) |
| 101 | return true; |
| 102 | |
| 103 | return sig_handler_ignored(handler, sig); |
| 104 | } |
| 105 | |
| 106 | static bool sig_ignored(struct task_struct *t, int sig, bool force) |
| 107 | { |
| 108 | /* |
| 109 | * Blocked signals are never ignored, since the |
| 110 | * signal handler may change by the time it is |
| 111 | * unblocked. |
| 112 | */ |
| 113 | if (sigismember(set: &t->blocked, sig: sig) || sigismember(set: &t->real_blocked, sig: sig)) |
| 114 | return false; |
| 115 | |
| 116 | /* |
| 117 | * Tracers may want to know about even ignored signal unless it |
| 118 | * is SIGKILL which can't be reported anyway but can be ignored |
| 119 | * by SIGNAL_UNKILLABLE task. |
| 120 | */ |
| 121 | if (t->ptrace && sig != SIGKILL) |
| 122 | return false; |
| 123 | |
| 124 | return sig_task_ignored(t, sig, force); |
| 125 | } |
| 126 | |
| 127 | /* |
| 128 | * Re-calculate pending state from the set of locally pending |
| 129 | * signals, globally pending signals, and blocked signals. |
| 130 | */ |
| 131 | static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked) |
| 132 | { |
| 133 | unsigned long ready; |
| 134 | long i; |
| 135 | |
| 136 | switch (_NSIG_WORDS) { |
| 137 | default: |
| 138 | for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) |
| 139 | ready |= signal->sig[i] &~ blocked->sig[i]; |
| 140 | break; |
| 141 | |
| 142 | case 4: ready = signal->sig[3] &~ blocked->sig[3]; |
| 143 | ready |= signal->sig[2] &~ blocked->sig[2]; |
| 144 | ready |= signal->sig[1] &~ blocked->sig[1]; |
| 145 | ready |= signal->sig[0] &~ blocked->sig[0]; |
| 146 | break; |
| 147 | |
| 148 | case 2: ready = signal->sig[1] &~ blocked->sig[1]; |
| 149 | ready |= signal->sig[0] &~ blocked->sig[0]; |
| 150 | break; |
| 151 | |
| 152 | case 1: ready = signal->sig[0] &~ blocked->sig[0]; |
| 153 | } |
| 154 | return ready != 0; |
| 155 | } |
| 156 | |
| 157 | #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) |
| 158 | |
| 159 | static bool recalc_sigpending_tsk(struct task_struct *t) |
| 160 | { |
| 161 | if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) || |
| 162 | PENDING(&t->pending, &t->blocked) || |
| 163 | PENDING(&t->signal->shared_pending, &t->blocked) || |
| 164 | cgroup_task_frozen(task: t)) { |
| 165 | set_tsk_thread_flag(tsk: t, TIF_SIGPENDING); |
| 166 | return true; |
| 167 | } |
| 168 | |
| 169 | /* |
| 170 | * We must never clear the flag in another thread, or in current |
| 171 | * when it's possible the current syscall is returning -ERESTART*. |
| 172 | * So we don't clear it here, and only callers who know they should do. |
| 173 | */ |
| 174 | return false; |
| 175 | } |
| 176 | |
| 177 | void recalc_sigpending(void) |
| 178 | { |
| 179 | if (!recalc_sigpending_tsk(current) && !freezing(current)) { |
| 180 | if (unlikely(test_thread_flag(TIF_SIGPENDING))) |
| 181 | clear_thread_flag(TIF_SIGPENDING); |
| 182 | } |
| 183 | } |
| 184 | EXPORT_SYMBOL(recalc_sigpending); |
| 185 | |
| 186 | void calculate_sigpending(void) |
| 187 | { |
| 188 | /* Have any signals or users of TIF_SIGPENDING been delayed |
| 189 | * until after fork? |
| 190 | */ |
| 191 | spin_lock_irq(lock: ¤t->sighand->siglock); |
| 192 | set_tsk_thread_flag(current, TIF_SIGPENDING); |
| 193 | recalc_sigpending(); |
| 194 | spin_unlock_irq(lock: ¤t->sighand->siglock); |
| 195 | } |
| 196 | |
| 197 | /* Given the mask, find the first available signal that should be serviced. */ |
| 198 | |
| 199 | #define SYNCHRONOUS_MASK \ |
| 200 | (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \ |
| 201 | sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS)) |
| 202 | |
| 203 | int next_signal(struct sigpending *pending, sigset_t *mask) |
| 204 | { |
| 205 | unsigned long i, *s, *m, x; |
| 206 | int sig = 0; |
| 207 | |
| 208 | s = pending->signal.sig; |
| 209 | m = mask->sig; |
| 210 | |
| 211 | /* |
| 212 | * Handle the first word specially: it contains the |
| 213 | * synchronous signals that need to be dequeued first. |
| 214 | */ |
| 215 | x = *s &~ *m; |
| 216 | if (x) { |
| 217 | if (x & SYNCHRONOUS_MASK) |
| 218 | x &= SYNCHRONOUS_MASK; |
| 219 | sig = ffz(~x) + 1; |
| 220 | return sig; |
| 221 | } |
| 222 | |
| 223 | switch (_NSIG_WORDS) { |
| 224 | default: |
| 225 | for (i = 1; i < _NSIG_WORDS; ++i) { |
| 226 | x = *++s &~ *++m; |
| 227 | if (!x) |
| 228 | continue; |
| 229 | sig = ffz(~x) + i*_NSIG_BPW + 1; |
| 230 | break; |
| 231 | } |
| 232 | break; |
| 233 | |
| 234 | case 2: |
| 235 | x = s[1] &~ m[1]; |
| 236 | if (!x) |
| 237 | break; |
| 238 | sig = ffz(~x) + _NSIG_BPW + 1; |
| 239 | break; |
| 240 | |
| 241 | case 1: |
| 242 | /* Nothing to do */ |
| 243 | break; |
| 244 | } |
| 245 | |
| 246 | return sig; |
| 247 | } |
| 248 | |
| 249 | static inline void print_dropped_signal(int sig) |
| 250 | { |
| 251 | static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10); |
| 252 | |
| 253 | if (!print_fatal_signals) |
| 254 | return; |
| 255 | |
| 256 | if (!__ratelimit(&ratelimit_state)) |
| 257 | return; |
| 258 | |
| 259 | pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n" , |
| 260 | current->comm, current->pid, sig); |
| 261 | } |
| 262 | |
| 263 | /** |
| 264 | * task_set_jobctl_pending - set jobctl pending bits |
| 265 | * @task: target task |
| 266 | * @mask: pending bits to set |
| 267 | * |
| 268 | * Clear @mask from @task->jobctl. @mask must be subset of |
| 269 | * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK | |
| 270 | * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is |
| 271 | * cleared. If @task is already being killed or exiting, this function |
| 272 | * becomes noop. |
| 273 | * |
| 274 | * CONTEXT: |
| 275 | * Must be called with @task->sighand->siglock held. |
| 276 | * |
| 277 | * RETURNS: |
| 278 | * %true if @mask is set, %false if made noop because @task was dying. |
| 279 | */ |
| 280 | bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask) |
| 281 | { |
| 282 | BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME | |
| 283 | JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING)); |
| 284 | BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK)); |
| 285 | |
| 286 | if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING))) |
| 287 | return false; |
| 288 | |
| 289 | if (mask & JOBCTL_STOP_SIGMASK) |
| 290 | task->jobctl &= ~JOBCTL_STOP_SIGMASK; |
| 291 | |
| 292 | task->jobctl |= mask; |
| 293 | return true; |
| 294 | } |
| 295 | |
| 296 | /** |
| 297 | * task_clear_jobctl_trapping - clear jobctl trapping bit |
| 298 | * @task: target task |
| 299 | * |
| 300 | * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED. |
| 301 | * Clear it and wake up the ptracer. Note that we don't need any further |
| 302 | * locking. @task->siglock guarantees that @task->parent points to the |
| 303 | * ptracer. |
| 304 | * |
| 305 | * CONTEXT: |
| 306 | * Must be called with @task->sighand->siglock held. |
| 307 | */ |
| 308 | void task_clear_jobctl_trapping(struct task_struct *task) |
| 309 | { |
| 310 | if (unlikely(task->jobctl & JOBCTL_TRAPPING)) { |
| 311 | task->jobctl &= ~JOBCTL_TRAPPING; |
| 312 | smp_mb(); /* advised by wake_up_bit() */ |
| 313 | wake_up_bit(word: &task->jobctl, JOBCTL_TRAPPING_BIT); |
| 314 | } |
| 315 | } |
| 316 | |
| 317 | /** |
| 318 | * task_clear_jobctl_pending - clear jobctl pending bits |
| 319 | * @task: target task |
| 320 | * @mask: pending bits to clear |
| 321 | * |
| 322 | * Clear @mask from @task->jobctl. @mask must be subset of |
| 323 | * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other |
| 324 | * STOP bits are cleared together. |
| 325 | * |
| 326 | * If clearing of @mask leaves no stop or trap pending, this function calls |
| 327 | * task_clear_jobctl_trapping(). |
| 328 | * |
| 329 | * CONTEXT: |
| 330 | * Must be called with @task->sighand->siglock held. |
| 331 | */ |
| 332 | void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask) |
| 333 | { |
| 334 | BUG_ON(mask & ~JOBCTL_PENDING_MASK); |
| 335 | |
| 336 | if (mask & JOBCTL_STOP_PENDING) |
| 337 | mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED; |
| 338 | |
| 339 | task->jobctl &= ~mask; |
| 340 | |
| 341 | if (!(task->jobctl & JOBCTL_PENDING_MASK)) |
| 342 | task_clear_jobctl_trapping(task); |
| 343 | } |
| 344 | |
| 345 | /** |
| 346 | * task_participate_group_stop - participate in a group stop |
| 347 | * @task: task participating in a group stop |
| 348 | * |
| 349 | * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop. |
| 350 | * Group stop states are cleared and the group stop count is consumed if |
| 351 | * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group |
| 352 | * stop, the appropriate `SIGNAL_*` flags are set. |
| 353 | * |
| 354 | * CONTEXT: |
| 355 | * Must be called with @task->sighand->siglock held. |
| 356 | * |
| 357 | * RETURNS: |
| 358 | * %true if group stop completion should be notified to the parent, %false |
| 359 | * otherwise. |
| 360 | */ |
| 361 | static bool task_participate_group_stop(struct task_struct *task) |
| 362 | { |
| 363 | struct signal_struct *sig = task->signal; |
| 364 | bool consume = task->jobctl & JOBCTL_STOP_CONSUME; |
| 365 | |
| 366 | WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING)); |
| 367 | |
| 368 | task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING); |
| 369 | |
| 370 | if (!consume) |
| 371 | return false; |
| 372 | |
| 373 | if (!WARN_ON_ONCE(sig->group_stop_count == 0)) |
| 374 | sig->group_stop_count--; |
| 375 | |
| 376 | /* |
| 377 | * Tell the caller to notify completion iff we are entering into a |
| 378 | * fresh group stop. Read comment in do_signal_stop() for details. |
| 379 | */ |
| 380 | if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) { |
| 381 | signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED); |
| 382 | return true; |
| 383 | } |
| 384 | return false; |
| 385 | } |
| 386 | |
| 387 | void task_join_group_stop(struct task_struct *task) |
| 388 | { |
| 389 | unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK; |
| 390 | struct signal_struct *sig = current->signal; |
| 391 | |
| 392 | if (sig->group_stop_count) { |
| 393 | sig->group_stop_count++; |
| 394 | mask |= JOBCTL_STOP_CONSUME; |
| 395 | } else if (!(sig->flags & SIGNAL_STOP_STOPPED)) |
| 396 | return; |
| 397 | |
| 398 | /* Have the new thread join an on-going signal group stop */ |
| 399 | task_set_jobctl_pending(task, mask: mask | JOBCTL_STOP_PENDING); |
| 400 | } |
| 401 | |
| 402 | static struct ucounts *sig_get_ucounts(struct task_struct *t, int sig, |
| 403 | int override_rlimit) |
| 404 | { |
| 405 | struct ucounts *ucounts; |
| 406 | long sigpending; |
| 407 | |
| 408 | /* |
| 409 | * Protect access to @t credentials. This can go away when all |
| 410 | * callers hold rcu read lock. |
| 411 | * |
| 412 | * NOTE! A pending signal will hold on to the user refcount, |
| 413 | * and we get/put the refcount only when the sigpending count |
| 414 | * changes from/to zero. |
| 415 | */ |
| 416 | rcu_read_lock(); |
| 417 | ucounts = task_ucounts(t); |
| 418 | sigpending = inc_rlimit_get_ucounts(ucounts, type: UCOUNT_RLIMIT_SIGPENDING, |
| 419 | override_rlimit); |
| 420 | rcu_read_unlock(); |
| 421 | if (!sigpending) |
| 422 | return NULL; |
| 423 | |
| 424 | if (unlikely(!override_rlimit && sigpending > task_rlimit(t, RLIMIT_SIGPENDING))) { |
| 425 | dec_rlimit_put_ucounts(ucounts, type: UCOUNT_RLIMIT_SIGPENDING); |
| 426 | print_dropped_signal(sig); |
| 427 | return NULL; |
| 428 | } |
| 429 | |
| 430 | return ucounts; |
| 431 | } |
| 432 | |
| 433 | static void __sigqueue_init(struct sigqueue *q, struct ucounts *ucounts, |
| 434 | const unsigned int sigqueue_flags) |
| 435 | { |
| 436 | INIT_LIST_HEAD(list: &q->list); |
| 437 | q->flags = sigqueue_flags; |
| 438 | q->ucounts = ucounts; |
| 439 | } |
| 440 | |
| 441 | /* |
| 442 | * allocate a new signal queue record |
| 443 | * - this may be called without locks if and only if t == current, otherwise an |
| 444 | * appropriate lock must be held to stop the target task from exiting |
| 445 | */ |
| 446 | static struct sigqueue *sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags, |
| 447 | int override_rlimit) |
| 448 | { |
| 449 | struct ucounts *ucounts = sig_get_ucounts(t, sig, override_rlimit); |
| 450 | struct sigqueue *q; |
| 451 | |
| 452 | if (!ucounts) |
| 453 | return NULL; |
| 454 | |
| 455 | q = kmem_cache_alloc(sigqueue_cachep, gfp_flags); |
| 456 | if (!q) { |
| 457 | dec_rlimit_put_ucounts(ucounts, type: UCOUNT_RLIMIT_SIGPENDING); |
| 458 | return NULL; |
| 459 | } |
| 460 | |
| 461 | __sigqueue_init(q, ucounts, sigqueue_flags: 0); |
| 462 | return q; |
| 463 | } |
| 464 | |
| 465 | static void __sigqueue_free(struct sigqueue *q) |
| 466 | { |
| 467 | if (q->flags & SIGQUEUE_PREALLOC) { |
| 468 | posixtimer_sigqueue_putref(q); |
| 469 | return; |
| 470 | } |
| 471 | if (q->ucounts) { |
| 472 | dec_rlimit_put_ucounts(ucounts: q->ucounts, type: UCOUNT_RLIMIT_SIGPENDING); |
| 473 | q->ucounts = NULL; |
| 474 | } |
| 475 | kmem_cache_free(s: sigqueue_cachep, objp: q); |
| 476 | } |
| 477 | |
| 478 | void flush_sigqueue(struct sigpending *queue) |
| 479 | { |
| 480 | struct sigqueue *q; |
| 481 | |
| 482 | sigemptyset(set: &queue->signal); |
| 483 | while (!list_empty(head: &queue->list)) { |
| 484 | q = list_entry(queue->list.next, struct sigqueue , list); |
| 485 | list_del_init(entry: &q->list); |
| 486 | __sigqueue_free(q); |
| 487 | } |
| 488 | } |
| 489 | |
| 490 | /* |
| 491 | * Flush all pending signals for this kthread. |
| 492 | */ |
| 493 | void flush_signals(struct task_struct *t) |
| 494 | { |
| 495 | unsigned long flags; |
| 496 | |
| 497 | spin_lock_irqsave(&t->sighand->siglock, flags); |
| 498 | clear_tsk_thread_flag(tsk: t, TIF_SIGPENDING); |
| 499 | flush_sigqueue(queue: &t->pending); |
| 500 | flush_sigqueue(queue: &t->signal->shared_pending); |
| 501 | spin_unlock_irqrestore(lock: &t->sighand->siglock, flags); |
| 502 | } |
| 503 | EXPORT_SYMBOL(flush_signals); |
| 504 | |
| 505 | void ignore_signals(struct task_struct *t) |
| 506 | { |
| 507 | int i; |
| 508 | |
| 509 | for (i = 0; i < _NSIG; ++i) |
| 510 | t->sighand->action[i].sa.sa_handler = SIG_IGN; |
| 511 | |
| 512 | flush_signals(t); |
| 513 | } |
| 514 | |
| 515 | /* |
| 516 | * Flush all handlers for a task. |
| 517 | */ |
| 518 | |
| 519 | void |
| 520 | flush_signal_handlers(struct task_struct *t, int force_default) |
| 521 | { |
| 522 | int i; |
| 523 | struct k_sigaction *ka = &t->sighand->action[0]; |
| 524 | for (i = _NSIG ; i != 0 ; i--) { |
| 525 | if (force_default || ka->sa.sa_handler != SIG_IGN) |
| 526 | ka->sa.sa_handler = SIG_DFL; |
| 527 | ka->sa.sa_flags = 0; |
| 528 | #ifdef __ARCH_HAS_SA_RESTORER |
| 529 | ka->sa.sa_restorer = NULL; |
| 530 | #endif |
| 531 | sigemptyset(set: &ka->sa.sa_mask); |
| 532 | ka++; |
| 533 | } |
| 534 | } |
| 535 | |
| 536 | bool unhandled_signal(struct task_struct *tsk, int sig) |
| 537 | { |
| 538 | void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler; |
| 539 | if (is_global_init(tsk)) |
| 540 | return true; |
| 541 | |
| 542 | if (handler != SIG_IGN && handler != SIG_DFL) |
| 543 | return false; |
| 544 | |
| 545 | /* If dying, we handle all new signals by ignoring them */ |
| 546 | if (fatal_signal_pending(p: tsk)) |
| 547 | return false; |
| 548 | |
| 549 | /* if ptraced, let the tracer determine */ |
| 550 | return !tsk->ptrace; |
| 551 | } |
| 552 | |
| 553 | static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info, |
| 554 | struct sigqueue **timer_sigq) |
| 555 | { |
| 556 | struct sigqueue *q, *first = NULL; |
| 557 | |
| 558 | /* |
| 559 | * Collect the siginfo appropriate to this signal. Check if |
| 560 | * there is another siginfo for the same signal. |
| 561 | */ |
| 562 | list_for_each_entry(q, &list->list, list) { |
| 563 | if (q->info.si_signo == sig) { |
| 564 | if (first) |
| 565 | goto still_pending; |
| 566 | first = q; |
| 567 | } |
| 568 | } |
| 569 | |
| 570 | sigdelset(set: &list->signal, sig: sig); |
| 571 | |
| 572 | if (first) { |
| 573 | still_pending: |
| 574 | list_del_init(entry: &first->list); |
| 575 | copy_siginfo(to: info, from: &first->info); |
| 576 | |
| 577 | /* |
| 578 | * posix-timer signals are preallocated and freed when the last |
| 579 | * reference count is dropped in posixtimer_deliver_signal() or |
| 580 | * immediately on timer deletion when the signal is not pending. |
| 581 | * Spare the extra round through __sigqueue_free() which is |
| 582 | * ignoring preallocated signals. |
| 583 | */ |
| 584 | if (unlikely((first->flags & SIGQUEUE_PREALLOC) && (info->si_code == SI_TIMER))) |
| 585 | *timer_sigq = first; |
| 586 | else |
| 587 | __sigqueue_free(q: first); |
| 588 | } else { |
| 589 | /* |
| 590 | * Ok, it wasn't in the queue. This must be |
| 591 | * a fast-pathed signal or we must have been |
| 592 | * out of queue space. So zero out the info. |
| 593 | */ |
| 594 | clear_siginfo(info); |
| 595 | info->si_signo = sig; |
| 596 | info->si_errno = 0; |
| 597 | info->si_code = SI_USER; |
| 598 | info->si_pid = 0; |
| 599 | info->si_uid = 0; |
| 600 | } |
| 601 | } |
| 602 | |
| 603 | static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, |
| 604 | kernel_siginfo_t *info, struct sigqueue **timer_sigq) |
| 605 | { |
| 606 | int sig = next_signal(pending, mask); |
| 607 | |
| 608 | if (sig) |
| 609 | collect_signal(sig, list: pending, info, timer_sigq); |
| 610 | return sig; |
| 611 | } |
| 612 | |
| 613 | /* |
| 614 | * Try to dequeue a signal. If a deliverable signal is found fill in the |
| 615 | * caller provided siginfo and return the signal number. Otherwise return |
| 616 | * 0. |
| 617 | */ |
| 618 | int dequeue_signal(sigset_t *mask, kernel_siginfo_t *info, enum pid_type *type) |
| 619 | { |
| 620 | struct task_struct *tsk = current; |
| 621 | struct sigqueue *timer_sigq; |
| 622 | int signr; |
| 623 | |
| 624 | lockdep_assert_held(&tsk->sighand->siglock); |
| 625 | |
| 626 | again: |
| 627 | *type = PIDTYPE_PID; |
| 628 | timer_sigq = NULL; |
| 629 | signr = __dequeue_signal(pending: &tsk->pending, mask, info, timer_sigq: &timer_sigq); |
| 630 | if (!signr) { |
| 631 | *type = PIDTYPE_TGID; |
| 632 | signr = __dequeue_signal(pending: &tsk->signal->shared_pending, |
| 633 | mask, info, timer_sigq: &timer_sigq); |
| 634 | |
| 635 | if (unlikely(signr == SIGALRM)) |
| 636 | posixtimer_rearm_itimer(p: tsk); |
| 637 | } |
| 638 | |
| 639 | recalc_sigpending(); |
| 640 | if (!signr) |
| 641 | return 0; |
| 642 | |
| 643 | if (unlikely(sig_kernel_stop(signr))) { |
| 644 | /* |
| 645 | * Set a marker that we have dequeued a stop signal. Our |
| 646 | * caller might release the siglock and then the pending |
| 647 | * stop signal it is about to process is no longer in the |
| 648 | * pending bitmasks, but must still be cleared by a SIGCONT |
| 649 | * (and overruled by a SIGKILL). So those cases clear this |
| 650 | * shared flag after we've set it. Note that this flag may |
| 651 | * remain set after the signal we return is ignored or |
| 652 | * handled. That doesn't matter because its only purpose |
| 653 | * is to alert stop-signal processing code when another |
| 654 | * processor has come along and cleared the flag. |
| 655 | */ |
| 656 | current->jobctl |= JOBCTL_STOP_DEQUEUED; |
| 657 | } |
| 658 | |
| 659 | if (IS_ENABLED(CONFIG_POSIX_TIMERS) && unlikely(timer_sigq)) { |
| 660 | if (!posixtimer_deliver_signal(info, timer_sigq)) |
| 661 | goto again; |
| 662 | } |
| 663 | |
| 664 | return signr; |
| 665 | } |
| 666 | EXPORT_SYMBOL_GPL(dequeue_signal); |
| 667 | |
| 668 | static int dequeue_synchronous_signal(kernel_siginfo_t *info) |
| 669 | { |
| 670 | struct task_struct *tsk = current; |
| 671 | struct sigpending *pending = &tsk->pending; |
| 672 | struct sigqueue *q, *sync = NULL; |
| 673 | |
| 674 | /* |
| 675 | * Might a synchronous signal be in the queue? |
| 676 | */ |
| 677 | if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK)) |
| 678 | return 0; |
| 679 | |
| 680 | /* |
| 681 | * Return the first synchronous signal in the queue. |
| 682 | */ |
| 683 | list_for_each_entry(q, &pending->list, list) { |
| 684 | /* Synchronous signals have a positive si_code */ |
| 685 | if ((q->info.si_code > SI_USER) && |
| 686 | (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) { |
| 687 | sync = q; |
| 688 | goto next; |
| 689 | } |
| 690 | } |
| 691 | return 0; |
| 692 | next: |
| 693 | /* |
| 694 | * Check if there is another siginfo for the same signal. |
| 695 | */ |
| 696 | list_for_each_entry_continue(q, &pending->list, list) { |
| 697 | if (q->info.si_signo == sync->info.si_signo) |
| 698 | goto still_pending; |
| 699 | } |
| 700 | |
| 701 | sigdelset(set: &pending->signal, sig: sync->info.si_signo); |
| 702 | recalc_sigpending(); |
| 703 | still_pending: |
| 704 | list_del_init(entry: &sync->list); |
| 705 | copy_siginfo(to: info, from: &sync->info); |
| 706 | __sigqueue_free(q: sync); |
| 707 | return info->si_signo; |
| 708 | } |
| 709 | |
| 710 | /* |
| 711 | * Tell a process that it has a new active signal.. |
| 712 | * |
| 713 | * NOTE! we rely on the previous spin_lock to |
| 714 | * lock interrupts for us! We can only be called with |
| 715 | * "siglock" held, and the local interrupt must |
| 716 | * have been disabled when that got acquired! |
| 717 | * |
| 718 | * No need to set need_resched since signal event passing |
| 719 | * goes through ->blocked |
| 720 | */ |
| 721 | void signal_wake_up_state(struct task_struct *t, unsigned int state) |
| 722 | { |
| 723 | lockdep_assert_held(&t->sighand->siglock); |
| 724 | |
| 725 | set_tsk_thread_flag(tsk: t, TIF_SIGPENDING); |
| 726 | |
| 727 | /* |
| 728 | * TASK_WAKEKILL also means wake it up in the stopped/traced/killable |
| 729 | * case. We don't check t->state here because there is a race with it |
| 730 | * executing another processor and just now entering stopped state. |
| 731 | * By using wake_up_state, we ensure the process will wake up and |
| 732 | * handle its death signal. |
| 733 | */ |
| 734 | if (!wake_up_state(tsk: t, state: state | TASK_INTERRUPTIBLE)) |
| 735 | kick_process(tsk: t); |
| 736 | } |
| 737 | |
| 738 | static inline void posixtimer_sig_ignore(struct task_struct *tsk, struct sigqueue *q); |
| 739 | |
| 740 | static void sigqueue_free_ignored(struct task_struct *tsk, struct sigqueue *q) |
| 741 | { |
| 742 | if (likely(!(q->flags & SIGQUEUE_PREALLOC) || q->info.si_code != SI_TIMER)) |
| 743 | __sigqueue_free(q); |
| 744 | else |
| 745 | posixtimer_sig_ignore(tsk, q); |
| 746 | } |
| 747 | |
| 748 | /* Remove signals in mask from the pending set and queue. */ |
| 749 | static void flush_sigqueue_mask(struct task_struct *p, sigset_t *mask, struct sigpending *s) |
| 750 | { |
| 751 | struct sigqueue *q, *n; |
| 752 | sigset_t m; |
| 753 | |
| 754 | lockdep_assert_held(&p->sighand->siglock); |
| 755 | |
| 756 | sigandsets(r: &m, a: mask, b: &s->signal); |
| 757 | if (sigisemptyset(set: &m)) |
| 758 | return; |
| 759 | |
| 760 | sigandnsets(r: &s->signal, a: &s->signal, b: mask); |
| 761 | list_for_each_entry_safe(q, n, &s->list, list) { |
| 762 | if (sigismember(set: mask, sig: q->info.si_signo)) { |
| 763 | list_del_init(entry: &q->list); |
| 764 | sigqueue_free_ignored(tsk: p, q); |
| 765 | } |
| 766 | } |
| 767 | } |
| 768 | |
| 769 | static inline int is_si_special(const struct kernel_siginfo *info) |
| 770 | { |
| 771 | return info <= SEND_SIG_PRIV; |
| 772 | } |
| 773 | |
| 774 | static inline bool si_fromuser(const struct kernel_siginfo *info) |
| 775 | { |
| 776 | return info == SEND_SIG_NOINFO || |
| 777 | (!is_si_special(info) && SI_FROMUSER(info)); |
| 778 | } |
| 779 | |
| 780 | /* |
| 781 | * called with RCU read lock from check_kill_permission() |
| 782 | */ |
| 783 | static bool kill_ok_by_cred(struct task_struct *t) |
| 784 | { |
| 785 | const struct cred *cred = current_cred(); |
| 786 | const struct cred *tcred = __task_cred(t); |
| 787 | |
| 788 | return uid_eq(left: cred->euid, right: tcred->suid) || |
| 789 | uid_eq(left: cred->euid, right: tcred->uid) || |
| 790 | uid_eq(left: cred->uid, right: tcred->suid) || |
| 791 | uid_eq(left: cred->uid, right: tcred->uid) || |
| 792 | ns_capable(ns: tcred->user_ns, CAP_KILL); |
| 793 | } |
| 794 | |
| 795 | /* |
| 796 | * Bad permissions for sending the signal |
| 797 | * - the caller must hold the RCU read lock |
| 798 | */ |
| 799 | static int check_kill_permission(int sig, struct kernel_siginfo *info, |
| 800 | struct task_struct *t) |
| 801 | { |
| 802 | struct pid *sid; |
| 803 | int error; |
| 804 | |
| 805 | if (!valid_signal(sig)) |
| 806 | return -EINVAL; |
| 807 | |
| 808 | if (!si_fromuser(info)) |
| 809 | return 0; |
| 810 | |
| 811 | error = audit_signal_info(sig, t); /* Let audit system see the signal */ |
| 812 | if (error) |
| 813 | return error; |
| 814 | |
| 815 | if (!same_thread_group(current, p2: t) && |
| 816 | !kill_ok_by_cred(t)) { |
| 817 | switch (sig) { |
| 818 | case SIGCONT: |
| 819 | sid = task_session(task: t); |
| 820 | /* |
| 821 | * We don't return the error if sid == NULL. The |
| 822 | * task was unhashed, the caller must notice this. |
| 823 | */ |
| 824 | if (!sid || sid == task_session(current)) |
| 825 | break; |
| 826 | fallthrough; |
| 827 | default: |
| 828 | return -EPERM; |
| 829 | } |
| 830 | } |
| 831 | |
| 832 | return security_task_kill(p: t, info, sig, NULL); |
| 833 | } |
| 834 | |
| 835 | /** |
| 836 | * ptrace_trap_notify - schedule trap to notify ptracer |
| 837 | * @t: tracee wanting to notify tracer |
| 838 | * |
| 839 | * This function schedules sticky ptrace trap which is cleared on the next |
| 840 | * TRAP_STOP to notify ptracer of an event. @t must have been seized by |
| 841 | * ptracer. |
| 842 | * |
| 843 | * If @t is running, STOP trap will be taken. If trapped for STOP and |
| 844 | * ptracer is listening for events, tracee is woken up so that it can |
| 845 | * re-trap for the new event. If trapped otherwise, STOP trap will be |
| 846 | * eventually taken without returning to userland after the existing traps |
| 847 | * are finished by PTRACE_CONT. |
| 848 | * |
| 849 | * CONTEXT: |
| 850 | * Must be called with @task->sighand->siglock held. |
| 851 | */ |
| 852 | static void ptrace_trap_notify(struct task_struct *t) |
| 853 | { |
| 854 | WARN_ON_ONCE(!(t->ptrace & PT_SEIZED)); |
| 855 | lockdep_assert_held(&t->sighand->siglock); |
| 856 | |
| 857 | task_set_jobctl_pending(task: t, JOBCTL_TRAP_NOTIFY); |
| 858 | ptrace_signal_wake_up(t, resume: t->jobctl & JOBCTL_LISTENING); |
| 859 | } |
| 860 | |
| 861 | /* |
| 862 | * Handle magic process-wide effects of stop/continue signals. Unlike |
| 863 | * the signal actions, these happen immediately at signal-generation |
| 864 | * time regardless of blocking, ignoring, or handling. This does the |
| 865 | * actual continuing for SIGCONT, but not the actual stopping for stop |
| 866 | * signals. The process stop is done as a signal action for SIG_DFL. |
| 867 | * |
| 868 | * Returns true if the signal should be actually delivered, otherwise |
| 869 | * it should be dropped. |
| 870 | */ |
| 871 | static bool prepare_signal(int sig, struct task_struct *p, bool force) |
| 872 | { |
| 873 | struct signal_struct *signal = p->signal; |
| 874 | struct task_struct *t; |
| 875 | sigset_t flush; |
| 876 | |
| 877 | if (signal->flags & SIGNAL_GROUP_EXIT) { |
| 878 | if (signal->core_state) |
| 879 | return sig == SIGKILL; |
| 880 | /* |
| 881 | * The process is in the middle of dying, drop the signal. |
| 882 | */ |
| 883 | return false; |
| 884 | } else if (sig_kernel_stop(sig)) { |
| 885 | /* |
| 886 | * This is a stop signal. Remove SIGCONT from all queues. |
| 887 | */ |
| 888 | siginitset(set: &flush, sigmask(SIGCONT)); |
| 889 | flush_sigqueue_mask(p, mask: &flush, s: &signal->shared_pending); |
| 890 | for_each_thread(p, t) |
| 891 | flush_sigqueue_mask(p, mask: &flush, s: &t->pending); |
| 892 | } else if (sig == SIGCONT) { |
| 893 | unsigned int why; |
| 894 | /* |
| 895 | * Remove all stop signals from all queues, wake all threads. |
| 896 | */ |
| 897 | siginitset(set: &flush, SIG_KERNEL_STOP_MASK); |
| 898 | flush_sigqueue_mask(p, mask: &flush, s: &signal->shared_pending); |
| 899 | for_each_thread(p, t) { |
| 900 | flush_sigqueue_mask(p, mask: &flush, s: &t->pending); |
| 901 | task_clear_jobctl_pending(task: t, JOBCTL_STOP_PENDING); |
| 902 | if (likely(!(t->ptrace & PT_SEIZED))) { |
| 903 | t->jobctl &= ~JOBCTL_STOPPED; |
| 904 | wake_up_state(tsk: t, __TASK_STOPPED); |
| 905 | } else |
| 906 | ptrace_trap_notify(t); |
| 907 | } |
| 908 | |
| 909 | /* |
| 910 | * Notify the parent with CLD_CONTINUED if we were stopped. |
| 911 | * |
| 912 | * If we were in the middle of a group stop, we pretend it |
| 913 | * was already finished, and then continued. Since SIGCHLD |
| 914 | * doesn't queue we report only CLD_STOPPED, as if the next |
| 915 | * CLD_CONTINUED was dropped. |
| 916 | */ |
| 917 | why = 0; |
| 918 | if (signal->flags & SIGNAL_STOP_STOPPED) |
| 919 | why |= SIGNAL_CLD_CONTINUED; |
| 920 | else if (signal->group_stop_count) |
| 921 | why |= SIGNAL_CLD_STOPPED; |
| 922 | |
| 923 | if (why) { |
| 924 | /* |
| 925 | * The first thread which returns from do_signal_stop() |
| 926 | * will take ->siglock, notice SIGNAL_CLD_MASK, and |
| 927 | * notify its parent. See get_signal(). |
| 928 | */ |
| 929 | signal_set_stop_flags(sig: signal, flags: why | SIGNAL_STOP_CONTINUED); |
| 930 | signal->group_stop_count = 0; |
| 931 | signal->group_exit_code = 0; |
| 932 | } |
| 933 | } |
| 934 | |
| 935 | return !sig_ignored(t: p, sig, force); |
| 936 | } |
| 937 | |
| 938 | /* |
| 939 | * Test if P wants to take SIG. After we've checked all threads with this, |
| 940 | * it's equivalent to finding no threads not blocking SIG. Any threads not |
| 941 | * blocking SIG were ruled out because they are not running and already |
| 942 | * have pending signals. Such threads will dequeue from the shared queue |
| 943 | * as soon as they're available, so putting the signal on the shared queue |
| 944 | * will be equivalent to sending it to one such thread. |
| 945 | */ |
| 946 | static inline bool wants_signal(int sig, struct task_struct *p) |
| 947 | { |
| 948 | if (sigismember(set: &p->blocked, sig: sig)) |
| 949 | return false; |
| 950 | |
| 951 | if (p->flags & PF_EXITING) |
| 952 | return false; |
| 953 | |
| 954 | if (sig == SIGKILL) |
| 955 | return true; |
| 956 | |
| 957 | if (task_is_stopped_or_traced(p)) |
| 958 | return false; |
| 959 | |
| 960 | return task_curr(p) || !task_sigpending(p); |
| 961 | } |
| 962 | |
| 963 | static void complete_signal(int sig, struct task_struct *p, enum pid_type type) |
| 964 | { |
| 965 | struct signal_struct *signal = p->signal; |
| 966 | struct task_struct *t; |
| 967 | |
| 968 | /* |
| 969 | * Now find a thread we can wake up to take the signal off the queue. |
| 970 | * |
| 971 | * Try the suggested task first (may or may not be the main thread). |
| 972 | */ |
| 973 | if (wants_signal(sig, p)) |
| 974 | t = p; |
| 975 | else if ((type == PIDTYPE_PID) || thread_group_empty(p)) |
| 976 | /* |
| 977 | * There is just one thread and it does not need to be woken. |
| 978 | * It will dequeue unblocked signals before it runs again. |
| 979 | */ |
| 980 | return; |
| 981 | else { |
| 982 | /* |
| 983 | * Otherwise try to find a suitable thread. |
| 984 | */ |
| 985 | t = signal->curr_target; |
| 986 | while (!wants_signal(sig, p: t)) { |
| 987 | t = next_thread(p: t); |
| 988 | if (t == signal->curr_target) |
| 989 | /* |
| 990 | * No thread needs to be woken. |
| 991 | * Any eligible threads will see |
| 992 | * the signal in the queue soon. |
| 993 | */ |
| 994 | return; |
| 995 | } |
| 996 | signal->curr_target = t; |
| 997 | } |
| 998 | |
| 999 | /* |
| 1000 | * Found a killable thread. If the signal will be fatal, |
| 1001 | * then start taking the whole group down immediately. |
| 1002 | */ |
| 1003 | if (sig_fatal(p, sig) && |
| 1004 | (signal->core_state || !(signal->flags & SIGNAL_GROUP_EXIT)) && |
| 1005 | !sigismember(set: &t->real_blocked, sig: sig) && |
| 1006 | (sig == SIGKILL || !p->ptrace)) { |
| 1007 | /* |
| 1008 | * This signal will be fatal to the whole group. |
| 1009 | */ |
| 1010 | if (!sig_kernel_coredump(sig)) { |
| 1011 | /* |
| 1012 | * Start a group exit and wake everybody up. |
| 1013 | * This way we don't have other threads |
| 1014 | * running and doing things after a slower |
| 1015 | * thread has the fatal signal pending. |
| 1016 | */ |
| 1017 | signal->flags = SIGNAL_GROUP_EXIT; |
| 1018 | signal->group_exit_code = sig; |
| 1019 | signal->group_stop_count = 0; |
| 1020 | __for_each_thread(signal, t) { |
| 1021 | task_clear_jobctl_pending(task: t, JOBCTL_PENDING_MASK); |
| 1022 | sigaddset(set: &t->pending.signal, SIGKILL); |
| 1023 | signal_wake_up(t, fatal: 1); |
| 1024 | } |
| 1025 | return; |
| 1026 | } |
| 1027 | } |
| 1028 | |
| 1029 | /* |
| 1030 | * The signal is already in the shared-pending queue. |
| 1031 | * Tell the chosen thread to wake up and dequeue it. |
| 1032 | */ |
| 1033 | signal_wake_up(t, fatal: sig == SIGKILL); |
| 1034 | return; |
| 1035 | } |
| 1036 | |
| 1037 | static inline bool legacy_queue(struct sigpending *signals, int sig) |
| 1038 | { |
| 1039 | return (sig < SIGRTMIN) && sigismember(set: &signals->signal, sig: sig); |
| 1040 | } |
| 1041 | |
| 1042 | static int __send_signal_locked(int sig, struct kernel_siginfo *info, |
| 1043 | struct task_struct *t, enum pid_type type, bool force) |
| 1044 | { |
| 1045 | struct sigpending *pending; |
| 1046 | struct sigqueue *q; |
| 1047 | int override_rlimit; |
| 1048 | int ret = 0, result; |
| 1049 | |
| 1050 | lockdep_assert_held(&t->sighand->siglock); |
| 1051 | |
| 1052 | result = TRACE_SIGNAL_IGNORED; |
| 1053 | if (!prepare_signal(sig, p: t, force)) |
| 1054 | goto ret; |
| 1055 | |
| 1056 | pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending; |
| 1057 | /* |
| 1058 | * Short-circuit ignored signals and support queuing |
| 1059 | * exactly one non-rt signal, so that we can get more |
| 1060 | * detailed information about the cause of the signal. |
| 1061 | */ |
| 1062 | result = TRACE_SIGNAL_ALREADY_PENDING; |
| 1063 | if (legacy_queue(signals: pending, sig)) |
| 1064 | goto ret; |
| 1065 | |
| 1066 | result = TRACE_SIGNAL_DELIVERED; |
| 1067 | /* |
| 1068 | * Skip useless siginfo allocation for SIGKILL and kernel threads. |
| 1069 | */ |
| 1070 | if ((sig == SIGKILL) || (t->flags & PF_KTHREAD)) |
| 1071 | goto out_set; |
| 1072 | |
| 1073 | /* |
| 1074 | * Real-time signals must be queued if sent by sigqueue, or |
| 1075 | * some other real-time mechanism. It is implementation |
| 1076 | * defined whether kill() does so. We attempt to do so, on |
| 1077 | * the principle of least surprise, but since kill is not |
| 1078 | * allowed to fail with EAGAIN when low on memory we just |
| 1079 | * make sure at least one signal gets delivered and don't |
| 1080 | * pass on the info struct. |
| 1081 | */ |
| 1082 | if (sig < SIGRTMIN) |
| 1083 | override_rlimit = (is_si_special(info) || info->si_code >= 0); |
| 1084 | else |
| 1085 | override_rlimit = 0; |
| 1086 | |
| 1087 | q = sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit); |
| 1088 | |
| 1089 | if (q) { |
| 1090 | list_add_tail(new: &q->list, head: &pending->list); |
| 1091 | switch ((unsigned long) info) { |
| 1092 | case (unsigned long) SEND_SIG_NOINFO: |
| 1093 | clear_siginfo(info: &q->info); |
| 1094 | q->info.si_signo = sig; |
| 1095 | q->info.si_errno = 0; |
| 1096 | q->info.si_code = SI_USER; |
| 1097 | q->info.si_pid = task_tgid_nr_ns(current, |
| 1098 | ns: task_active_pid_ns(tsk: t)); |
| 1099 | rcu_read_lock(); |
| 1100 | q->info.si_uid = |
| 1101 | from_kuid_munged(task_cred_xxx(t, user_ns), |
| 1102 | current_uid()); |
| 1103 | rcu_read_unlock(); |
| 1104 | break; |
| 1105 | case (unsigned long) SEND_SIG_PRIV: |
| 1106 | clear_siginfo(info: &q->info); |
| 1107 | q->info.si_signo = sig; |
| 1108 | q->info.si_errno = 0; |
| 1109 | q->info.si_code = SI_KERNEL; |
| 1110 | q->info.si_pid = 0; |
| 1111 | q->info.si_uid = 0; |
| 1112 | break; |
| 1113 | default: |
| 1114 | copy_siginfo(to: &q->info, from: info); |
| 1115 | break; |
| 1116 | } |
| 1117 | } else if (!is_si_special(info) && |
| 1118 | sig >= SIGRTMIN && info->si_code != SI_USER) { |
| 1119 | /* |
| 1120 | * Queue overflow, abort. We may abort if the |
| 1121 | * signal was rt and sent by user using something |
| 1122 | * other than kill(). |
| 1123 | */ |
| 1124 | result = TRACE_SIGNAL_OVERFLOW_FAIL; |
| 1125 | ret = -EAGAIN; |
| 1126 | goto ret; |
| 1127 | } else { |
| 1128 | /* |
| 1129 | * This is a silent loss of information. We still |
| 1130 | * send the signal, but the *info bits are lost. |
| 1131 | */ |
| 1132 | result = TRACE_SIGNAL_LOSE_INFO; |
| 1133 | } |
| 1134 | |
| 1135 | out_set: |
| 1136 | signalfd_notify(tsk: t, sig); |
| 1137 | sigaddset(set: &pending->signal, sig: sig); |
| 1138 | |
| 1139 | /* Let multiprocess signals appear after on-going forks */ |
| 1140 | if (type > PIDTYPE_TGID) { |
| 1141 | struct multiprocess_signals *delayed; |
| 1142 | hlist_for_each_entry(delayed, &t->signal->multiprocess, node) { |
| 1143 | sigset_t *signal = &delayed->signal; |
| 1144 | /* Can't queue both a stop and a continue signal */ |
| 1145 | if (sig == SIGCONT) |
| 1146 | sigdelsetmask(set: signal, SIG_KERNEL_STOP_MASK); |
| 1147 | else if (sig_kernel_stop(sig)) |
| 1148 | sigdelset(set: signal, SIGCONT); |
| 1149 | sigaddset(set: signal, sig: sig); |
| 1150 | } |
| 1151 | } |
| 1152 | |
| 1153 | complete_signal(sig, p: t, type); |
| 1154 | ret: |
| 1155 | trace_signal_generate(sig, info, task: t, group: type != PIDTYPE_PID, result); |
| 1156 | return ret; |
| 1157 | } |
| 1158 | |
| 1159 | static inline bool has_si_pid_and_uid(struct kernel_siginfo *info) |
| 1160 | { |
| 1161 | bool ret = false; |
| 1162 | switch (siginfo_layout(sig: info->si_signo, si_code: info->si_code)) { |
| 1163 | case SIL_KILL: |
| 1164 | case SIL_CHLD: |
| 1165 | case SIL_RT: |
| 1166 | ret = true; |
| 1167 | break; |
| 1168 | case SIL_TIMER: |
| 1169 | case SIL_POLL: |
| 1170 | case SIL_FAULT: |
| 1171 | case SIL_FAULT_TRAPNO: |
| 1172 | case SIL_FAULT_MCEERR: |
| 1173 | case SIL_FAULT_BNDERR: |
| 1174 | case SIL_FAULT_PKUERR: |
| 1175 | case SIL_FAULT_PERF_EVENT: |
| 1176 | case SIL_SYS: |
| 1177 | ret = false; |
| 1178 | break; |
| 1179 | } |
| 1180 | return ret; |
| 1181 | } |
| 1182 | |
| 1183 | int send_signal_locked(int sig, struct kernel_siginfo *info, |
| 1184 | struct task_struct *t, enum pid_type type) |
| 1185 | { |
| 1186 | /* Should SIGKILL or SIGSTOP be received by a pid namespace init? */ |
| 1187 | bool force = false; |
| 1188 | |
| 1189 | if (info == SEND_SIG_NOINFO) { |
| 1190 | /* Force if sent from an ancestor pid namespace */ |
| 1191 | force = !task_pid_nr_ns(current, ns: task_active_pid_ns(tsk: t)); |
| 1192 | } else if (info == SEND_SIG_PRIV) { |
| 1193 | /* Don't ignore kernel generated signals */ |
| 1194 | force = true; |
| 1195 | } else if (has_si_pid_and_uid(info)) { |
| 1196 | /* SIGKILL and SIGSTOP is special or has ids */ |
| 1197 | struct user_namespace *t_user_ns; |
| 1198 | |
| 1199 | rcu_read_lock(); |
| 1200 | t_user_ns = task_cred_xxx(t, user_ns); |
| 1201 | if (current_user_ns() != t_user_ns) { |
| 1202 | kuid_t uid = make_kuid(from: current_user_ns(), uid: info->si_uid); |
| 1203 | info->si_uid = from_kuid_munged(to: t_user_ns, kuid: uid); |
| 1204 | } |
| 1205 | rcu_read_unlock(); |
| 1206 | |
| 1207 | /* A kernel generated signal? */ |
| 1208 | force = (info->si_code == SI_KERNEL); |
| 1209 | |
| 1210 | /* From an ancestor pid namespace? */ |
| 1211 | if (!task_pid_nr_ns(current, ns: task_active_pid_ns(tsk: t))) { |
| 1212 | info->si_pid = 0; |
| 1213 | force = true; |
| 1214 | } |
| 1215 | } |
| 1216 | return __send_signal_locked(sig, info, t, type, force); |
| 1217 | } |
| 1218 | |
| 1219 | static void print_fatal_signal(int signr) |
| 1220 | { |
| 1221 | struct pt_regs *regs = task_pt_regs(current); |
| 1222 | struct file *exe_file; |
| 1223 | |
| 1224 | exe_file = get_task_exe_file(current); |
| 1225 | if (exe_file) { |
| 1226 | pr_info("%pD: %s: potentially unexpected fatal signal %d.\n" , |
| 1227 | exe_file, current->comm, signr); |
| 1228 | fput(exe_file); |
| 1229 | } else { |
| 1230 | pr_info("%s: potentially unexpected fatal signal %d.\n" , |
| 1231 | current->comm, signr); |
| 1232 | } |
| 1233 | |
| 1234 | #if defined(__i386__) && !defined(__arch_um__) |
| 1235 | pr_info("code at %08lx: " , regs->ip); |
| 1236 | { |
| 1237 | int i; |
| 1238 | for (i = 0; i < 16; i++) { |
| 1239 | unsigned char insn; |
| 1240 | |
| 1241 | if (get_user(insn, (unsigned char *)(regs->ip + i))) |
| 1242 | break; |
| 1243 | pr_cont("%02x " , insn); |
| 1244 | } |
| 1245 | } |
| 1246 | pr_cont("\n" ); |
| 1247 | #endif |
| 1248 | preempt_disable(); |
| 1249 | show_regs(regs); |
| 1250 | preempt_enable(); |
| 1251 | } |
| 1252 | |
| 1253 | static int __init setup_print_fatal_signals(char *str) |
| 1254 | { |
| 1255 | get_option (str: &str, pint: &print_fatal_signals); |
| 1256 | |
| 1257 | return 1; |
| 1258 | } |
| 1259 | |
| 1260 | __setup("print-fatal-signals=" , setup_print_fatal_signals); |
| 1261 | |
| 1262 | int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p, |
| 1263 | enum pid_type type) |
| 1264 | { |
| 1265 | unsigned long flags; |
| 1266 | int ret = -ESRCH; |
| 1267 | |
| 1268 | if (lock_task_sighand(task: p, flags: &flags)) { |
| 1269 | ret = send_signal_locked(sig, info, t: p, type); |
| 1270 | unlock_task_sighand(task: p, flags: &flags); |
| 1271 | } |
| 1272 | |
| 1273 | return ret; |
| 1274 | } |
| 1275 | |
| 1276 | enum sig_handler { |
| 1277 | HANDLER_CURRENT, /* If reachable use the current handler */ |
| 1278 | HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */ |
| 1279 | HANDLER_EXIT, /* Only visible as the process exit code */ |
| 1280 | }; |
| 1281 | |
| 1282 | /* |
| 1283 | * Force a signal that the process can't ignore: if necessary |
| 1284 | * we unblock the signal and change any SIG_IGN to SIG_DFL. |
| 1285 | * |
| 1286 | * Note: If we unblock the signal, we always reset it to SIG_DFL, |
| 1287 | * since we do not want to have a signal handler that was blocked |
| 1288 | * be invoked when user space had explicitly blocked it. |
| 1289 | * |
| 1290 | * We don't want to have recursive SIGSEGV's etc, for example, |
| 1291 | * that is why we also clear SIGNAL_UNKILLABLE. |
| 1292 | */ |
| 1293 | static int |
| 1294 | force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t, |
| 1295 | enum sig_handler handler) |
| 1296 | { |
| 1297 | unsigned long int flags; |
| 1298 | int ret, blocked, ignored; |
| 1299 | struct k_sigaction *action; |
| 1300 | int sig = info->si_signo; |
| 1301 | |
| 1302 | spin_lock_irqsave(&t->sighand->siglock, flags); |
| 1303 | action = &t->sighand->action[sig-1]; |
| 1304 | ignored = action->sa.sa_handler == SIG_IGN; |
| 1305 | blocked = sigismember(set: &t->blocked, sig: sig); |
| 1306 | if (blocked || ignored || (handler != HANDLER_CURRENT)) { |
| 1307 | action->sa.sa_handler = SIG_DFL; |
| 1308 | if (handler == HANDLER_EXIT) |
| 1309 | action->sa.sa_flags |= SA_IMMUTABLE; |
| 1310 | if (blocked) |
| 1311 | sigdelset(set: &t->blocked, sig: sig); |
| 1312 | } |
| 1313 | /* |
| 1314 | * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect |
| 1315 | * debugging to leave init killable. But HANDLER_EXIT is always fatal. |
| 1316 | */ |
| 1317 | if (action->sa.sa_handler == SIG_DFL && |
| 1318 | (!t->ptrace || (handler == HANDLER_EXIT))) |
| 1319 | t->signal->flags &= ~SIGNAL_UNKILLABLE; |
| 1320 | ret = send_signal_locked(sig, info, t, type: PIDTYPE_PID); |
| 1321 | /* This can happen if the signal was already pending and blocked */ |
| 1322 | if (!task_sigpending(p: t)) |
| 1323 | signal_wake_up(t, fatal: 0); |
| 1324 | spin_unlock_irqrestore(lock: &t->sighand->siglock, flags); |
| 1325 | |
| 1326 | return ret; |
| 1327 | } |
| 1328 | |
| 1329 | int force_sig_info(struct kernel_siginfo *info) |
| 1330 | { |
| 1331 | return force_sig_info_to_task(info, current, handler: HANDLER_CURRENT); |
| 1332 | } |
| 1333 | |
| 1334 | /* |
| 1335 | * Nuke all other threads in the group. |
| 1336 | */ |
| 1337 | int zap_other_threads(struct task_struct *p) |
| 1338 | { |
| 1339 | struct task_struct *t; |
| 1340 | int count = 0; |
| 1341 | |
| 1342 | p->signal->group_stop_count = 0; |
| 1343 | |
| 1344 | for_other_threads(p, t) { |
| 1345 | task_clear_jobctl_pending(task: t, JOBCTL_PENDING_MASK); |
| 1346 | count++; |
| 1347 | |
| 1348 | /* Don't bother with already dead threads */ |
| 1349 | if (t->exit_state) |
| 1350 | continue; |
| 1351 | sigaddset(set: &t->pending.signal, SIGKILL); |
| 1352 | signal_wake_up(t, fatal: 1); |
| 1353 | } |
| 1354 | |
| 1355 | return count; |
| 1356 | } |
| 1357 | |
| 1358 | struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, |
| 1359 | unsigned long *flags) |
| 1360 | { |
| 1361 | struct sighand_struct *sighand; |
| 1362 | |
| 1363 | rcu_read_lock(); |
| 1364 | for (;;) { |
| 1365 | sighand = rcu_dereference(tsk->sighand); |
| 1366 | if (unlikely(sighand == NULL)) |
| 1367 | break; |
| 1368 | |
| 1369 | /* |
| 1370 | * This sighand can be already freed and even reused, but |
| 1371 | * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which |
| 1372 | * initializes ->siglock: this slab can't go away, it has |
| 1373 | * the same object type, ->siglock can't be reinitialized. |
| 1374 | * |
| 1375 | * We need to ensure that tsk->sighand is still the same |
| 1376 | * after we take the lock, we can race with de_thread() or |
| 1377 | * __exit_signal(). In the latter case the next iteration |
| 1378 | * must see ->sighand == NULL. |
| 1379 | */ |
| 1380 | spin_lock_irqsave(&sighand->siglock, *flags); |
| 1381 | if (likely(sighand == rcu_access_pointer(tsk->sighand))) |
| 1382 | break; |
| 1383 | spin_unlock_irqrestore(lock: &sighand->siglock, flags: *flags); |
| 1384 | } |
| 1385 | rcu_read_unlock(); |
| 1386 | |
| 1387 | return sighand; |
| 1388 | } |
| 1389 | |
| 1390 | #ifdef CONFIG_LOCKDEP |
| 1391 | void lockdep_assert_task_sighand_held(struct task_struct *task) |
| 1392 | { |
| 1393 | struct sighand_struct *sighand; |
| 1394 | |
| 1395 | rcu_read_lock(); |
| 1396 | sighand = rcu_dereference(task->sighand); |
| 1397 | if (sighand) |
| 1398 | lockdep_assert_held(&sighand->siglock); |
| 1399 | else |
| 1400 | WARN_ON_ONCE(1); |
| 1401 | rcu_read_unlock(); |
| 1402 | } |
| 1403 | #endif |
| 1404 | |
| 1405 | /* |
| 1406 | * send signal info to all the members of a thread group or to the |
| 1407 | * individual thread if type == PIDTYPE_PID. |
| 1408 | */ |
| 1409 | int group_send_sig_info(int sig, struct kernel_siginfo *info, |
| 1410 | struct task_struct *p, enum pid_type type) |
| 1411 | { |
| 1412 | int ret; |
| 1413 | |
| 1414 | rcu_read_lock(); |
| 1415 | ret = check_kill_permission(sig, info, t: p); |
| 1416 | rcu_read_unlock(); |
| 1417 | |
| 1418 | if (!ret && sig) |
| 1419 | ret = do_send_sig_info(sig, info, p, type); |
| 1420 | |
| 1421 | return ret; |
| 1422 | } |
| 1423 | |
| 1424 | /* |
| 1425 | * __kill_pgrp_info() sends a signal to a process group: this is what the tty |
| 1426 | * control characters do (^C, ^Z etc) |
| 1427 | * - the caller must hold at least a readlock on tasklist_lock |
| 1428 | */ |
| 1429 | int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp) |
| 1430 | { |
| 1431 | struct task_struct *p = NULL; |
| 1432 | int ret = -ESRCH; |
| 1433 | |
| 1434 | do_each_pid_task(pgrp, PIDTYPE_PGID, p) { |
| 1435 | int err = group_send_sig_info(sig, info, p, type: PIDTYPE_PGID); |
| 1436 | /* |
| 1437 | * If group_send_sig_info() succeeds at least once ret |
| 1438 | * becomes 0 and after that the code below has no effect. |
| 1439 | * Otherwise we return the last err or -ESRCH if this |
| 1440 | * process group is empty. |
| 1441 | */ |
| 1442 | if (ret) |
| 1443 | ret = err; |
| 1444 | } while_each_pid_task(pgrp, PIDTYPE_PGID, p); |
| 1445 | |
| 1446 | return ret; |
| 1447 | } |
| 1448 | |
| 1449 | static int kill_pid_info_type(int sig, struct kernel_siginfo *info, |
| 1450 | struct pid *pid, enum pid_type type) |
| 1451 | { |
| 1452 | int error = -ESRCH; |
| 1453 | struct task_struct *p; |
| 1454 | |
| 1455 | for (;;) { |
| 1456 | rcu_read_lock(); |
| 1457 | p = pid_task(pid, PIDTYPE_PID); |
| 1458 | if (p) |
| 1459 | error = group_send_sig_info(sig, info, p, type); |
| 1460 | rcu_read_unlock(); |
| 1461 | if (likely(!p || error != -ESRCH)) |
| 1462 | return error; |
| 1463 | /* |
| 1464 | * The task was unhashed in between, try again. If it |
| 1465 | * is dead, pid_task() will return NULL, if we race with |
| 1466 | * de_thread() it will find the new leader. |
| 1467 | */ |
| 1468 | } |
| 1469 | } |
| 1470 | |
| 1471 | int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid) |
| 1472 | { |
| 1473 | return kill_pid_info_type(sig, info, pid, type: PIDTYPE_TGID); |
| 1474 | } |
| 1475 | |
| 1476 | static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid) |
| 1477 | { |
| 1478 | int error; |
| 1479 | rcu_read_lock(); |
| 1480 | error = kill_pid_info(sig, info, pid: find_vpid(nr: pid)); |
| 1481 | rcu_read_unlock(); |
| 1482 | return error; |
| 1483 | } |
| 1484 | |
| 1485 | static inline bool kill_as_cred_perm(const struct cred *cred, |
| 1486 | struct task_struct *target) |
| 1487 | { |
| 1488 | const struct cred *pcred = __task_cred(target); |
| 1489 | |
| 1490 | return uid_eq(left: cred->euid, right: pcred->suid) || |
| 1491 | uid_eq(left: cred->euid, right: pcred->uid) || |
| 1492 | uid_eq(left: cred->uid, right: pcred->suid) || |
| 1493 | uid_eq(left: cred->uid, right: pcred->uid); |
| 1494 | } |
| 1495 | |
| 1496 | /* |
| 1497 | * The usb asyncio usage of siginfo is wrong. The glibc support |
| 1498 | * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT. |
| 1499 | * AKA after the generic fields: |
| 1500 | * kernel_pid_t si_pid; |
| 1501 | * kernel_uid32_t si_uid; |
| 1502 | * sigval_t si_value; |
| 1503 | * |
| 1504 | * Unfortunately when usb generates SI_ASYNCIO it assumes the layout |
| 1505 | * after the generic fields is: |
| 1506 | * void __user *si_addr; |
| 1507 | * |
| 1508 | * This is a practical problem when there is a 64bit big endian kernel |
| 1509 | * and a 32bit userspace. As the 32bit address will encoded in the low |
| 1510 | * 32bits of the pointer. Those low 32bits will be stored at higher |
| 1511 | * address than appear in a 32 bit pointer. So userspace will not |
| 1512 | * see the address it was expecting for it's completions. |
| 1513 | * |
| 1514 | * There is nothing in the encoding that can allow |
| 1515 | * copy_siginfo_to_user32 to detect this confusion of formats, so |
| 1516 | * handle this by requiring the caller of kill_pid_usb_asyncio to |
| 1517 | * notice when this situration takes place and to store the 32bit |
| 1518 | * pointer in sival_int, instead of sival_addr of the sigval_t addr |
| 1519 | * parameter. |
| 1520 | */ |
| 1521 | int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr, |
| 1522 | struct pid *pid, const struct cred *cred) |
| 1523 | { |
| 1524 | struct kernel_siginfo info; |
| 1525 | struct task_struct *p; |
| 1526 | unsigned long flags; |
| 1527 | int ret = -EINVAL; |
| 1528 | |
| 1529 | if (!valid_signal(sig)) |
| 1530 | return ret; |
| 1531 | |
| 1532 | clear_siginfo(info: &info); |
| 1533 | info.si_signo = sig; |
| 1534 | info.si_errno = errno; |
| 1535 | info.si_code = SI_ASYNCIO; |
| 1536 | *((sigval_t *)&info.si_pid) = addr; |
| 1537 | |
| 1538 | rcu_read_lock(); |
| 1539 | p = pid_task(pid, PIDTYPE_PID); |
| 1540 | if (!p) { |
| 1541 | ret = -ESRCH; |
| 1542 | goto out_unlock; |
| 1543 | } |
| 1544 | if (!kill_as_cred_perm(cred, target: p)) { |
| 1545 | ret = -EPERM; |
| 1546 | goto out_unlock; |
| 1547 | } |
| 1548 | ret = security_task_kill(p, info: &info, sig, cred); |
| 1549 | if (ret) |
| 1550 | goto out_unlock; |
| 1551 | |
| 1552 | if (sig) { |
| 1553 | if (lock_task_sighand(task: p, flags: &flags)) { |
| 1554 | ret = __send_signal_locked(sig, info: &info, t: p, type: PIDTYPE_TGID, force: false); |
| 1555 | unlock_task_sighand(task: p, flags: &flags); |
| 1556 | } else |
| 1557 | ret = -ESRCH; |
| 1558 | } |
| 1559 | out_unlock: |
| 1560 | rcu_read_unlock(); |
| 1561 | return ret; |
| 1562 | } |
| 1563 | EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio); |
| 1564 | |
| 1565 | /* |
| 1566 | * kill_something_info() interprets pid in interesting ways just like kill(2). |
| 1567 | * |
| 1568 | * POSIX specifies that kill(-1,sig) is unspecified, but what we have |
| 1569 | * is probably wrong. Should make it like BSD or SYSV. |
| 1570 | */ |
| 1571 | |
| 1572 | static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid) |
| 1573 | { |
| 1574 | int ret; |
| 1575 | |
| 1576 | if (pid > 0) |
| 1577 | return kill_proc_info(sig, info, pid); |
| 1578 | |
| 1579 | /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */ |
| 1580 | if (pid == INT_MIN) |
| 1581 | return -ESRCH; |
| 1582 | |
| 1583 | read_lock(&tasklist_lock); |
| 1584 | if (pid != -1) { |
| 1585 | ret = __kill_pgrp_info(sig, info, |
| 1586 | pgrp: pid ? find_vpid(nr: -pid) : task_pgrp(current)); |
| 1587 | } else { |
| 1588 | int retval = 0, count = 0; |
| 1589 | struct task_struct * p; |
| 1590 | |
| 1591 | for_each_process(p) { |
| 1592 | if (task_pid_vnr(tsk: p) > 1 && |
| 1593 | !same_thread_group(p1: p, current)) { |
| 1594 | int err = group_send_sig_info(sig, info, p, |
| 1595 | type: PIDTYPE_MAX); |
| 1596 | ++count; |
| 1597 | if (err != -EPERM) |
| 1598 | retval = err; |
| 1599 | } |
| 1600 | } |
| 1601 | ret = count ? retval : -ESRCH; |
| 1602 | } |
| 1603 | read_unlock(&tasklist_lock); |
| 1604 | |
| 1605 | return ret; |
| 1606 | } |
| 1607 | |
| 1608 | /* |
| 1609 | * These are for backward compatibility with the rest of the kernel source. |
| 1610 | */ |
| 1611 | |
| 1612 | int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p) |
| 1613 | { |
| 1614 | /* |
| 1615 | * Make sure legacy kernel users don't send in bad values |
| 1616 | * (normal paths check this in check_kill_permission). |
| 1617 | */ |
| 1618 | if (!valid_signal(sig)) |
| 1619 | return -EINVAL; |
| 1620 | |
| 1621 | return do_send_sig_info(sig, info, p, type: PIDTYPE_PID); |
| 1622 | } |
| 1623 | EXPORT_SYMBOL(send_sig_info); |
| 1624 | |
| 1625 | #define __si_special(priv) \ |
| 1626 | ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) |
| 1627 | |
| 1628 | int |
| 1629 | send_sig(int sig, struct task_struct *p, int priv) |
| 1630 | { |
| 1631 | return send_sig_info(sig, __si_special(priv), p); |
| 1632 | } |
| 1633 | EXPORT_SYMBOL(send_sig); |
| 1634 | |
| 1635 | void force_sig(int sig) |
| 1636 | { |
| 1637 | struct kernel_siginfo info; |
| 1638 | |
| 1639 | clear_siginfo(info: &info); |
| 1640 | info.si_signo = sig; |
| 1641 | info.si_errno = 0; |
| 1642 | info.si_code = SI_KERNEL; |
| 1643 | info.si_pid = 0; |
| 1644 | info.si_uid = 0; |
| 1645 | force_sig_info(info: &info); |
| 1646 | } |
| 1647 | EXPORT_SYMBOL(force_sig); |
| 1648 | |
| 1649 | void force_fatal_sig(int sig) |
| 1650 | { |
| 1651 | struct kernel_siginfo info; |
| 1652 | |
| 1653 | clear_siginfo(info: &info); |
| 1654 | info.si_signo = sig; |
| 1655 | info.si_errno = 0; |
| 1656 | info.si_code = SI_KERNEL; |
| 1657 | info.si_pid = 0; |
| 1658 | info.si_uid = 0; |
| 1659 | force_sig_info_to_task(info: &info, current, handler: HANDLER_SIG_DFL); |
| 1660 | } |
| 1661 | |
| 1662 | void force_exit_sig(int sig) |
| 1663 | { |
| 1664 | struct kernel_siginfo info; |
| 1665 | |
| 1666 | clear_siginfo(info: &info); |
| 1667 | info.si_signo = sig; |
| 1668 | info.si_errno = 0; |
| 1669 | info.si_code = SI_KERNEL; |
| 1670 | info.si_pid = 0; |
| 1671 | info.si_uid = 0; |
| 1672 | force_sig_info_to_task(info: &info, current, handler: HANDLER_EXIT); |
| 1673 | } |
| 1674 | |
| 1675 | /* |
| 1676 | * When things go south during signal handling, we |
| 1677 | * will force a SIGSEGV. And if the signal that caused |
| 1678 | * the problem was already a SIGSEGV, we'll want to |
| 1679 | * make sure we don't even try to deliver the signal.. |
| 1680 | */ |
| 1681 | void force_sigsegv(int sig) |
| 1682 | { |
| 1683 | if (sig == SIGSEGV) |
| 1684 | force_fatal_sig(SIGSEGV); |
| 1685 | else |
| 1686 | force_sig(SIGSEGV); |
| 1687 | } |
| 1688 | |
| 1689 | int force_sig_fault_to_task(int sig, int code, void __user *addr, |
| 1690 | struct task_struct *t) |
| 1691 | { |
| 1692 | struct kernel_siginfo info; |
| 1693 | |
| 1694 | clear_siginfo(info: &info); |
| 1695 | info.si_signo = sig; |
| 1696 | info.si_errno = 0; |
| 1697 | info.si_code = code; |
| 1698 | info.si_addr = addr; |
| 1699 | return force_sig_info_to_task(info: &info, t, handler: HANDLER_CURRENT); |
| 1700 | } |
| 1701 | |
| 1702 | int force_sig_fault(int sig, int code, void __user *addr) |
| 1703 | { |
| 1704 | return force_sig_fault_to_task(sig, code, addr, current); |
| 1705 | } |
| 1706 | |
| 1707 | int send_sig_fault(int sig, int code, void __user *addr, struct task_struct *t) |
| 1708 | { |
| 1709 | struct kernel_siginfo info; |
| 1710 | |
| 1711 | clear_siginfo(info: &info); |
| 1712 | info.si_signo = sig; |
| 1713 | info.si_errno = 0; |
| 1714 | info.si_code = code; |
| 1715 | info.si_addr = addr; |
| 1716 | return send_sig_info(info.si_signo, &info, t); |
| 1717 | } |
| 1718 | |
| 1719 | int force_sig_mceerr(int code, void __user *addr, short lsb) |
| 1720 | { |
| 1721 | struct kernel_siginfo info; |
| 1722 | |
| 1723 | WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); |
| 1724 | clear_siginfo(info: &info); |
| 1725 | info.si_signo = SIGBUS; |
| 1726 | info.si_errno = 0; |
| 1727 | info.si_code = code; |
| 1728 | info.si_addr = addr; |
| 1729 | info.si_addr_lsb = lsb; |
| 1730 | return force_sig_info(info: &info); |
| 1731 | } |
| 1732 | |
| 1733 | int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t) |
| 1734 | { |
| 1735 | struct kernel_siginfo info; |
| 1736 | |
| 1737 | WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); |
| 1738 | clear_siginfo(info: &info); |
| 1739 | info.si_signo = SIGBUS; |
| 1740 | info.si_errno = 0; |
| 1741 | info.si_code = code; |
| 1742 | info.si_addr = addr; |
| 1743 | info.si_addr_lsb = lsb; |
| 1744 | return send_sig_info(info.si_signo, &info, t); |
| 1745 | } |
| 1746 | EXPORT_SYMBOL(send_sig_mceerr); |
| 1747 | |
| 1748 | int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper) |
| 1749 | { |
| 1750 | struct kernel_siginfo info; |
| 1751 | |
| 1752 | clear_siginfo(info: &info); |
| 1753 | info.si_signo = SIGSEGV; |
| 1754 | info.si_errno = 0; |
| 1755 | info.si_code = SEGV_BNDERR; |
| 1756 | info.si_addr = addr; |
| 1757 | info.si_lower = lower; |
| 1758 | info.si_upper = upper; |
| 1759 | return force_sig_info(info: &info); |
| 1760 | } |
| 1761 | |
| 1762 | #ifdef SEGV_PKUERR |
| 1763 | int force_sig_pkuerr(void __user *addr, u32 pkey) |
| 1764 | { |
| 1765 | struct kernel_siginfo info; |
| 1766 | |
| 1767 | clear_siginfo(info: &info); |
| 1768 | info.si_signo = SIGSEGV; |
| 1769 | info.si_errno = 0; |
| 1770 | info.si_code = SEGV_PKUERR; |
| 1771 | info.si_addr = addr; |
| 1772 | info.si_pkey = pkey; |
| 1773 | return force_sig_info(info: &info); |
| 1774 | } |
| 1775 | #endif |
| 1776 | |
| 1777 | int send_sig_perf(void __user *addr, u32 type, u64 sig_data) |
| 1778 | { |
| 1779 | struct kernel_siginfo info; |
| 1780 | |
| 1781 | clear_siginfo(info: &info); |
| 1782 | info.si_signo = SIGTRAP; |
| 1783 | info.si_errno = 0; |
| 1784 | info.si_code = TRAP_PERF; |
| 1785 | info.si_addr = addr; |
| 1786 | info.si_perf_data = sig_data; |
| 1787 | info.si_perf_type = type; |
| 1788 | |
| 1789 | /* |
| 1790 | * Signals generated by perf events should not terminate the whole |
| 1791 | * process if SIGTRAP is blocked, however, delivering the signal |
| 1792 | * asynchronously is better than not delivering at all. But tell user |
| 1793 | * space if the signal was asynchronous, so it can clearly be |
| 1794 | * distinguished from normal synchronous ones. |
| 1795 | */ |
| 1796 | info.si_perf_flags = sigismember(set: ¤t->blocked, sig: info.si_signo) ? |
| 1797 | TRAP_PERF_FLAG_ASYNC : |
| 1798 | 0; |
| 1799 | |
| 1800 | return send_sig_info(info.si_signo, &info, current); |
| 1801 | } |
| 1802 | |
| 1803 | /** |
| 1804 | * force_sig_seccomp - signals the task to allow in-process syscall emulation |
| 1805 | * @syscall: syscall number to send to userland |
| 1806 | * @reason: filter-supplied reason code to send to userland (via si_errno) |
| 1807 | * @force_coredump: true to trigger a coredump |
| 1808 | * |
| 1809 | * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info. |
| 1810 | */ |
| 1811 | int force_sig_seccomp(int syscall, int reason, bool force_coredump) |
| 1812 | { |
| 1813 | struct kernel_siginfo info; |
| 1814 | |
| 1815 | clear_siginfo(info: &info); |
| 1816 | info.si_signo = SIGSYS; |
| 1817 | info.si_code = SYS_SECCOMP; |
| 1818 | info.si_call_addr = (void __user *)KSTK_EIP(current); |
| 1819 | info.si_errno = reason; |
| 1820 | info.si_arch = syscall_get_arch(current); |
| 1821 | info.si_syscall = syscall; |
| 1822 | return force_sig_info_to_task(info: &info, current, |
| 1823 | handler: force_coredump ? HANDLER_EXIT : HANDLER_CURRENT); |
| 1824 | } |
| 1825 | |
| 1826 | /* For the crazy architectures that include trap information in |
| 1827 | * the errno field, instead of an actual errno value. |
| 1828 | */ |
| 1829 | int force_sig_ptrace_errno_trap(int errno, void __user *addr) |
| 1830 | { |
| 1831 | struct kernel_siginfo info; |
| 1832 | |
| 1833 | clear_siginfo(info: &info); |
| 1834 | info.si_signo = SIGTRAP; |
| 1835 | info.si_errno = errno; |
| 1836 | info.si_code = TRAP_HWBKPT; |
| 1837 | info.si_addr = addr; |
| 1838 | return force_sig_info(info: &info); |
| 1839 | } |
| 1840 | |
| 1841 | /* For the rare architectures that include trap information using |
| 1842 | * si_trapno. |
| 1843 | */ |
| 1844 | int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno) |
| 1845 | { |
| 1846 | struct kernel_siginfo info; |
| 1847 | |
| 1848 | clear_siginfo(info: &info); |
| 1849 | info.si_signo = sig; |
| 1850 | info.si_errno = 0; |
| 1851 | info.si_code = code; |
| 1852 | info.si_addr = addr; |
| 1853 | info.si_trapno = trapno; |
| 1854 | return force_sig_info(info: &info); |
| 1855 | } |
| 1856 | |
| 1857 | /* For the rare architectures that include trap information using |
| 1858 | * si_trapno. |
| 1859 | */ |
| 1860 | int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno, |
| 1861 | struct task_struct *t) |
| 1862 | { |
| 1863 | struct kernel_siginfo info; |
| 1864 | |
| 1865 | clear_siginfo(info: &info); |
| 1866 | info.si_signo = sig; |
| 1867 | info.si_errno = 0; |
| 1868 | info.si_code = code; |
| 1869 | info.si_addr = addr; |
| 1870 | info.si_trapno = trapno; |
| 1871 | return send_sig_info(info.si_signo, &info, t); |
| 1872 | } |
| 1873 | |
| 1874 | static int kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp) |
| 1875 | { |
| 1876 | int ret; |
| 1877 | read_lock(&tasklist_lock); |
| 1878 | ret = __kill_pgrp_info(sig, info, pgrp); |
| 1879 | read_unlock(&tasklist_lock); |
| 1880 | return ret; |
| 1881 | } |
| 1882 | |
| 1883 | int kill_pgrp(struct pid *pid, int sig, int priv) |
| 1884 | { |
| 1885 | return kill_pgrp_info(sig, __si_special(priv), pgrp: pid); |
| 1886 | } |
| 1887 | EXPORT_SYMBOL(kill_pgrp); |
| 1888 | |
| 1889 | int kill_pid(struct pid *pid, int sig, int priv) |
| 1890 | { |
| 1891 | return kill_pid_info(sig, __si_special(priv), pid); |
| 1892 | } |
| 1893 | EXPORT_SYMBOL(kill_pid); |
| 1894 | |
| 1895 | #ifdef CONFIG_POSIX_TIMERS |
| 1896 | /* |
| 1897 | * These functions handle POSIX timer signals. POSIX timers use |
| 1898 | * preallocated sigqueue structs for sending signals. |
| 1899 | */ |
| 1900 | static void __flush_itimer_signals(struct sigpending *pending) |
| 1901 | { |
| 1902 | sigset_t signal, retain; |
| 1903 | struct sigqueue *q, *n; |
| 1904 | |
| 1905 | signal = pending->signal; |
| 1906 | sigemptyset(set: &retain); |
| 1907 | |
| 1908 | list_for_each_entry_safe(q, n, &pending->list, list) { |
| 1909 | int sig = q->info.si_signo; |
| 1910 | |
| 1911 | if (likely(q->info.si_code != SI_TIMER)) { |
| 1912 | sigaddset(set: &retain, sig: sig); |
| 1913 | } else { |
| 1914 | sigdelset(set: &signal, sig: sig); |
| 1915 | list_del_init(entry: &q->list); |
| 1916 | __sigqueue_free(q); |
| 1917 | } |
| 1918 | } |
| 1919 | |
| 1920 | sigorsets(r: &pending->signal, a: &signal, b: &retain); |
| 1921 | } |
| 1922 | |
| 1923 | void flush_itimer_signals(void) |
| 1924 | { |
| 1925 | struct task_struct *tsk = current; |
| 1926 | |
| 1927 | guard(spinlock_irqsave)(l: &tsk->sighand->siglock); |
| 1928 | __flush_itimer_signals(pending: &tsk->pending); |
| 1929 | __flush_itimer_signals(pending: &tsk->signal->shared_pending); |
| 1930 | } |
| 1931 | |
| 1932 | bool posixtimer_init_sigqueue(struct sigqueue *q) |
| 1933 | { |
| 1934 | struct ucounts *ucounts = sig_get_ucounts(current, sig: -1, override_rlimit: 0); |
| 1935 | |
| 1936 | if (!ucounts) |
| 1937 | return false; |
| 1938 | clear_siginfo(info: &q->info); |
| 1939 | __sigqueue_init(q, ucounts, SIGQUEUE_PREALLOC); |
| 1940 | return true; |
| 1941 | } |
| 1942 | |
| 1943 | static void posixtimer_queue_sigqueue(struct sigqueue *q, struct task_struct *t, enum pid_type type) |
| 1944 | { |
| 1945 | struct sigpending *pending; |
| 1946 | int sig = q->info.si_signo; |
| 1947 | |
| 1948 | signalfd_notify(tsk: t, sig); |
| 1949 | pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending; |
| 1950 | list_add_tail(new: &q->list, head: &pending->list); |
| 1951 | sigaddset(set: &pending->signal, sig: sig); |
| 1952 | complete_signal(sig, p: t, type); |
| 1953 | } |
| 1954 | |
| 1955 | /* |
| 1956 | * This function is used by POSIX timers to deliver a timer signal. |
| 1957 | * Where type is PIDTYPE_PID (such as for timers with SIGEV_THREAD_ID |
| 1958 | * set), the signal must be delivered to the specific thread (queues |
| 1959 | * into t->pending). |
| 1960 | * |
| 1961 | * Where type is not PIDTYPE_PID, signals must be delivered to the |
| 1962 | * process. In this case, prefer to deliver to current if it is in |
| 1963 | * the same thread group as the target process and its sighand is |
| 1964 | * stable, which avoids unnecessarily waking up a potentially idle task. |
| 1965 | */ |
| 1966 | static inline struct task_struct *posixtimer_get_target(struct k_itimer *tmr) |
| 1967 | { |
| 1968 | struct task_struct *t = pid_task(pid: tmr->it_pid, tmr->it_pid_type); |
| 1969 | |
| 1970 | if (t && tmr->it_pid_type != PIDTYPE_PID && |
| 1971 | same_thread_group(p1: t, current) && !current->exit_state) |
| 1972 | t = current; |
| 1973 | return t; |
| 1974 | } |
| 1975 | |
| 1976 | void posixtimer_send_sigqueue(struct k_itimer *tmr) |
| 1977 | { |
| 1978 | struct sigqueue *q = &tmr->sigq; |
| 1979 | int sig = q->info.si_signo; |
| 1980 | struct task_struct *t; |
| 1981 | unsigned long flags; |
| 1982 | int result; |
| 1983 | |
| 1984 | guard(rcu)(); |
| 1985 | |
| 1986 | t = posixtimer_get_target(tmr); |
| 1987 | if (!t) |
| 1988 | return; |
| 1989 | |
| 1990 | if (!likely(lock_task_sighand(t, &flags))) |
| 1991 | return; |
| 1992 | |
| 1993 | /* |
| 1994 | * Update @tmr::sigqueue_seq for posix timer signals with sighand |
| 1995 | * locked to prevent a race against dequeue_signal(). |
| 1996 | */ |
| 1997 | tmr->it_sigqueue_seq = tmr->it_signal_seq; |
| 1998 | |
| 1999 | /* |
| 2000 | * Set the signal delivery status under sighand lock, so that the |
| 2001 | * ignored signal handling can distinguish between a periodic and a |
| 2002 | * non-periodic timer. |
| 2003 | */ |
| 2004 | tmr->it_sig_periodic = tmr->it_status == POSIX_TIMER_REQUEUE_PENDING; |
| 2005 | |
| 2006 | if (!prepare_signal(sig, p: t, force: false)) { |
| 2007 | result = TRACE_SIGNAL_IGNORED; |
| 2008 | |
| 2009 | if (!list_empty(head: &q->list)) { |
| 2010 | /* |
| 2011 | * The signal was ignored and blocked. The timer |
| 2012 | * expiry queued it because blocked signals are |
| 2013 | * queued independent of the ignored state. |
| 2014 | * |
| 2015 | * The unblocking set SIGPENDING, but the signal |
| 2016 | * was not yet dequeued from the pending list. |
| 2017 | * So prepare_signal() sees unblocked and ignored, |
| 2018 | * which ends up here. Leave it queued like a |
| 2019 | * regular signal. |
| 2020 | * |
| 2021 | * The same happens when the task group is exiting |
| 2022 | * and the signal is already queued. |
| 2023 | * prepare_signal() treats SIGNAL_GROUP_EXIT as |
| 2024 | * ignored independent of its queued state. This |
| 2025 | * gets cleaned up in __exit_signal(). |
| 2026 | */ |
| 2027 | goto out; |
| 2028 | } |
| 2029 | |
| 2030 | /* Periodic timers with SIG_IGN are queued on the ignored list */ |
| 2031 | if (tmr->it_sig_periodic) { |
| 2032 | /* |
| 2033 | * Already queued means the timer was rearmed after |
| 2034 | * the previous expiry got it on the ignore list. |
| 2035 | * Nothing to do for that case. |
| 2036 | */ |
| 2037 | if (hlist_unhashed(h: &tmr->ignored_list)) { |
| 2038 | /* |
| 2039 | * Take a signal reference and queue it on |
| 2040 | * the ignored list. |
| 2041 | */ |
| 2042 | posixtimer_sigqueue_getref(q); |
| 2043 | posixtimer_sig_ignore(tsk: t, q); |
| 2044 | } |
| 2045 | } else if (!hlist_unhashed(h: &tmr->ignored_list)) { |
| 2046 | /* |
| 2047 | * Covers the case where a timer was periodic and |
| 2048 | * then the signal was ignored. Later it was rearmed |
| 2049 | * as oneshot timer. The previous signal is invalid |
| 2050 | * now, and this oneshot signal has to be dropped. |
| 2051 | * Remove it from the ignored list and drop the |
| 2052 | * reference count as the signal is not longer |
| 2053 | * queued. |
| 2054 | */ |
| 2055 | hlist_del_init(n: &tmr->ignored_list); |
| 2056 | posixtimer_putref(tmr); |
| 2057 | } |
| 2058 | goto out; |
| 2059 | } |
| 2060 | |
| 2061 | if (unlikely(!list_empty(&q->list))) { |
| 2062 | /* This holds a reference count already */ |
| 2063 | result = TRACE_SIGNAL_ALREADY_PENDING; |
| 2064 | goto out; |
| 2065 | } |
| 2066 | |
| 2067 | /* |
| 2068 | * If the signal is on the ignore list, it got blocked after it was |
| 2069 | * ignored earlier. But nothing lifted the ignore. Move it back to |
| 2070 | * the pending list to be consistent with the regular signal |
| 2071 | * handling. This already holds a reference count. |
| 2072 | * |
| 2073 | * If it's not on the ignore list acquire a reference count. |
| 2074 | */ |
| 2075 | if (likely(hlist_unhashed(&tmr->ignored_list))) |
| 2076 | posixtimer_sigqueue_getref(q); |
| 2077 | else |
| 2078 | hlist_del_init(n: &tmr->ignored_list); |
| 2079 | |
| 2080 | posixtimer_queue_sigqueue(q, t, type: tmr->it_pid_type); |
| 2081 | result = TRACE_SIGNAL_DELIVERED; |
| 2082 | out: |
| 2083 | trace_signal_generate(sig, info: &q->info, task: t, group: tmr->it_pid_type != PIDTYPE_PID, result); |
| 2084 | unlock_task_sighand(task: t, flags: &flags); |
| 2085 | } |
| 2086 | |
| 2087 | static inline void posixtimer_sig_ignore(struct task_struct *tsk, struct sigqueue *q) |
| 2088 | { |
| 2089 | struct k_itimer *tmr = container_of(q, struct k_itimer, sigq); |
| 2090 | |
| 2091 | /* |
| 2092 | * If the timer is marked deleted already or the signal originates |
| 2093 | * from a non-periodic timer, then just drop the reference |
| 2094 | * count. Otherwise queue it on the ignored list. |
| 2095 | */ |
| 2096 | if (posixtimer_valid(timer: tmr) && tmr->it_sig_periodic) |
| 2097 | hlist_add_head(n: &tmr->ignored_list, h: &tsk->signal->ignored_posix_timers); |
| 2098 | else |
| 2099 | posixtimer_putref(tmr); |
| 2100 | } |
| 2101 | |
| 2102 | static void posixtimer_sig_unignore(struct task_struct *tsk, int sig) |
| 2103 | { |
| 2104 | struct hlist_head *head = &tsk->signal->ignored_posix_timers; |
| 2105 | struct hlist_node *tmp; |
| 2106 | struct k_itimer *tmr; |
| 2107 | |
| 2108 | if (likely(hlist_empty(head))) |
| 2109 | return; |
| 2110 | |
| 2111 | /* |
| 2112 | * Rearming a timer with sighand lock held is not possible due to |
| 2113 | * lock ordering vs. tmr::it_lock. Just stick the sigqueue back and |
| 2114 | * let the signal delivery path deal with it whether it needs to be |
| 2115 | * rearmed or not. This cannot be decided here w/o dropping sighand |
| 2116 | * lock and creating a loop retry horror show. |
| 2117 | */ |
| 2118 | hlist_for_each_entry_safe(tmr, tmp , head, ignored_list) { |
| 2119 | struct task_struct *target; |
| 2120 | |
| 2121 | /* |
| 2122 | * tmr::sigq.info.si_signo is immutable, so accessing it |
| 2123 | * without holding tmr::it_lock is safe. |
| 2124 | */ |
| 2125 | if (tmr->sigq.info.si_signo != sig) |
| 2126 | continue; |
| 2127 | |
| 2128 | hlist_del_init(n: &tmr->ignored_list); |
| 2129 | |
| 2130 | /* This should never happen and leaks a reference count */ |
| 2131 | if (WARN_ON_ONCE(!list_empty(&tmr->sigq.list))) |
| 2132 | continue; |
| 2133 | |
| 2134 | /* |
| 2135 | * Get the target for the signal. If target is a thread and |
| 2136 | * has exited by now, drop the reference count. |
| 2137 | */ |
| 2138 | guard(rcu)(); |
| 2139 | target = posixtimer_get_target(tmr); |
| 2140 | if (target) |
| 2141 | posixtimer_queue_sigqueue(q: &tmr->sigq, t: target, type: tmr->it_pid_type); |
| 2142 | else |
| 2143 | posixtimer_putref(tmr); |
| 2144 | } |
| 2145 | } |
| 2146 | #else /* CONFIG_POSIX_TIMERS */ |
| 2147 | static inline void posixtimer_sig_ignore(struct task_struct *tsk, struct sigqueue *q) { } |
| 2148 | static inline void posixtimer_sig_unignore(struct task_struct *tsk, int sig) { } |
| 2149 | #endif /* !CONFIG_POSIX_TIMERS */ |
| 2150 | |
| 2151 | void do_notify_pidfd(struct task_struct *task) |
| 2152 | { |
| 2153 | struct pid *pid = task_pid(task); |
| 2154 | |
| 2155 | WARN_ON(task->exit_state == 0); |
| 2156 | |
| 2157 | __wake_up(wq_head: &pid->wait_pidfd, TASK_NORMAL, nr: 0, |
| 2158 | poll_to_key(EPOLLIN | EPOLLRDNORM)); |
| 2159 | } |
| 2160 | |
| 2161 | /* |
| 2162 | * Let a parent know about the death of a child. |
| 2163 | * For a stopped/continued status change, use do_notify_parent_cldstop instead. |
| 2164 | * |
| 2165 | * Returns true if our parent ignored us and so we've switched to |
| 2166 | * self-reaping. |
| 2167 | */ |
| 2168 | bool do_notify_parent(struct task_struct *tsk, int sig) |
| 2169 | { |
| 2170 | struct kernel_siginfo info; |
| 2171 | unsigned long flags; |
| 2172 | struct sighand_struct *psig; |
| 2173 | bool autoreap = false; |
| 2174 | u64 utime, stime; |
| 2175 | |
| 2176 | WARN_ON_ONCE(sig == -1); |
| 2177 | |
| 2178 | /* do_notify_parent_cldstop should have been called instead. */ |
| 2179 | WARN_ON_ONCE(task_is_stopped_or_traced(tsk)); |
| 2180 | |
| 2181 | WARN_ON_ONCE(!tsk->ptrace && |
| 2182 | (tsk->group_leader != tsk || !thread_group_empty(tsk))); |
| 2183 | |
| 2184 | /* ptraced, or group-leader without sub-threads */ |
| 2185 | do_notify_pidfd(task: tsk); |
| 2186 | |
| 2187 | if (sig != SIGCHLD) { |
| 2188 | /* |
| 2189 | * This is only possible if parent == real_parent. |
| 2190 | * Check if it has changed security domain. |
| 2191 | */ |
| 2192 | if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id)) |
| 2193 | sig = SIGCHLD; |
| 2194 | } |
| 2195 | |
| 2196 | clear_siginfo(info: &info); |
| 2197 | info.si_signo = sig; |
| 2198 | info.si_errno = 0; |
| 2199 | /* |
| 2200 | * We are under tasklist_lock here so our parent is tied to |
| 2201 | * us and cannot change. |
| 2202 | * |
| 2203 | * task_active_pid_ns will always return the same pid namespace |
| 2204 | * until a task passes through release_task. |
| 2205 | * |
| 2206 | * write_lock() currently calls preempt_disable() which is the |
| 2207 | * same as rcu_read_lock(), but according to Oleg, this is not |
| 2208 | * correct to rely on this |
| 2209 | */ |
| 2210 | rcu_read_lock(); |
| 2211 | info.si_pid = task_pid_nr_ns(tsk, ns: task_active_pid_ns(tsk: tsk->parent)); |
| 2212 | info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns), |
| 2213 | task_uid(tsk)); |
| 2214 | rcu_read_unlock(); |
| 2215 | |
| 2216 | task_cputime(t: tsk, utime: &utime, stime: &stime); |
| 2217 | info.si_utime = nsec_to_clock_t(x: utime + tsk->signal->utime); |
| 2218 | info.si_stime = nsec_to_clock_t(x: stime + tsk->signal->stime); |
| 2219 | |
| 2220 | info.si_status = tsk->exit_code & 0x7f; |
| 2221 | if (tsk->exit_code & 0x80) |
| 2222 | info.si_code = CLD_DUMPED; |
| 2223 | else if (tsk->exit_code & 0x7f) |
| 2224 | info.si_code = CLD_KILLED; |
| 2225 | else { |
| 2226 | info.si_code = CLD_EXITED; |
| 2227 | info.si_status = tsk->exit_code >> 8; |
| 2228 | } |
| 2229 | |
| 2230 | psig = tsk->parent->sighand; |
| 2231 | spin_lock_irqsave(&psig->siglock, flags); |
| 2232 | if (!tsk->ptrace && sig == SIGCHLD && |
| 2233 | (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || |
| 2234 | (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { |
| 2235 | /* |
| 2236 | * We are exiting and our parent doesn't care. POSIX.1 |
| 2237 | * defines special semantics for setting SIGCHLD to SIG_IGN |
| 2238 | * or setting the SA_NOCLDWAIT flag: we should be reaped |
| 2239 | * automatically and not left for our parent's wait4 call. |
| 2240 | * Rather than having the parent do it as a magic kind of |
| 2241 | * signal handler, we just set this to tell do_exit that we |
| 2242 | * can be cleaned up without becoming a zombie. Note that |
| 2243 | * we still call __wake_up_parent in this case, because a |
| 2244 | * blocked sys_wait4 might now return -ECHILD. |
| 2245 | * |
| 2246 | * Whether we send SIGCHLD or not for SA_NOCLDWAIT |
| 2247 | * is implementation-defined: we do (if you don't want |
| 2248 | * it, just use SIG_IGN instead). |
| 2249 | */ |
| 2250 | autoreap = true; |
| 2251 | if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) |
| 2252 | sig = 0; |
| 2253 | } |
| 2254 | /* |
| 2255 | * Send with __send_signal as si_pid and si_uid are in the |
| 2256 | * parent's namespaces. |
| 2257 | */ |
| 2258 | if (valid_signal(sig) && sig) |
| 2259 | __send_signal_locked(sig, info: &info, t: tsk->parent, type: PIDTYPE_TGID, force: false); |
| 2260 | __wake_up_parent(p: tsk, parent: tsk->parent); |
| 2261 | spin_unlock_irqrestore(lock: &psig->siglock, flags); |
| 2262 | |
| 2263 | return autoreap; |
| 2264 | } |
| 2265 | |
| 2266 | /** |
| 2267 | * do_notify_parent_cldstop - notify parent of stopped/continued state change |
| 2268 | * @tsk: task reporting the state change |
| 2269 | * @for_ptracer: the notification is for ptracer |
| 2270 | * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report |
| 2271 | * |
| 2272 | * Notify @tsk's parent that the stopped/continued state has changed. If |
| 2273 | * @for_ptracer is %false, @tsk's group leader notifies to its real parent. |
| 2274 | * If %true, @tsk reports to @tsk->parent which should be the ptracer. |
| 2275 | * |
| 2276 | * CONTEXT: |
| 2277 | * Must be called with tasklist_lock at least read locked. |
| 2278 | */ |
| 2279 | static void do_notify_parent_cldstop(struct task_struct *tsk, |
| 2280 | bool for_ptracer, int why) |
| 2281 | { |
| 2282 | struct kernel_siginfo info; |
| 2283 | unsigned long flags; |
| 2284 | struct task_struct *parent; |
| 2285 | struct sighand_struct *sighand; |
| 2286 | u64 utime, stime; |
| 2287 | |
| 2288 | if (for_ptracer) { |
| 2289 | parent = tsk->parent; |
| 2290 | } else { |
| 2291 | tsk = tsk->group_leader; |
| 2292 | parent = tsk->real_parent; |
| 2293 | } |
| 2294 | |
| 2295 | clear_siginfo(info: &info); |
| 2296 | info.si_signo = SIGCHLD; |
| 2297 | info.si_errno = 0; |
| 2298 | /* |
| 2299 | * see comment in do_notify_parent() about the following 4 lines |
| 2300 | */ |
| 2301 | rcu_read_lock(); |
| 2302 | info.si_pid = task_pid_nr_ns(tsk, ns: task_active_pid_ns(tsk: parent)); |
| 2303 | info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk)); |
| 2304 | rcu_read_unlock(); |
| 2305 | |
| 2306 | task_cputime(t: tsk, utime: &utime, stime: &stime); |
| 2307 | info.si_utime = nsec_to_clock_t(x: utime); |
| 2308 | info.si_stime = nsec_to_clock_t(x: stime); |
| 2309 | |
| 2310 | info.si_code = why; |
| 2311 | switch (why) { |
| 2312 | case CLD_CONTINUED: |
| 2313 | info.si_status = SIGCONT; |
| 2314 | break; |
| 2315 | case CLD_STOPPED: |
| 2316 | info.si_status = tsk->signal->group_exit_code & 0x7f; |
| 2317 | break; |
| 2318 | case CLD_TRAPPED: |
| 2319 | info.si_status = tsk->exit_code & 0x7f; |
| 2320 | break; |
| 2321 | default: |
| 2322 | BUG(); |
| 2323 | } |
| 2324 | |
| 2325 | sighand = parent->sighand; |
| 2326 | spin_lock_irqsave(&sighand->siglock, flags); |
| 2327 | if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && |
| 2328 | !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) |
| 2329 | send_signal_locked(SIGCHLD, info: &info, t: parent, type: PIDTYPE_TGID); |
| 2330 | /* |
| 2331 | * Even if SIGCHLD is not generated, we must wake up wait4 calls. |
| 2332 | */ |
| 2333 | __wake_up_parent(p: tsk, parent); |
| 2334 | spin_unlock_irqrestore(lock: &sighand->siglock, flags); |
| 2335 | } |
| 2336 | |
| 2337 | /* |
| 2338 | * This must be called with current->sighand->siglock held. |
| 2339 | * |
| 2340 | * This should be the path for all ptrace stops. |
| 2341 | * We always set current->last_siginfo while stopped here. |
| 2342 | * That makes it a way to test a stopped process for |
| 2343 | * being ptrace-stopped vs being job-control-stopped. |
| 2344 | * |
| 2345 | * Returns the signal the ptracer requested the code resume |
| 2346 | * with. If the code did not stop because the tracer is gone, |
| 2347 | * the stop signal remains unchanged unless clear_code. |
| 2348 | */ |
| 2349 | static int ptrace_stop(int exit_code, int why, unsigned long message, |
| 2350 | kernel_siginfo_t *info) |
| 2351 | __releases(¤t->sighand->siglock) |
| 2352 | __acquires(¤t->sighand->siglock) |
| 2353 | { |
| 2354 | bool gstop_done = false; |
| 2355 | |
| 2356 | if (arch_ptrace_stop_needed()) { |
| 2357 | /* |
| 2358 | * The arch code has something special to do before a |
| 2359 | * ptrace stop. This is allowed to block, e.g. for faults |
| 2360 | * on user stack pages. We can't keep the siglock while |
| 2361 | * calling arch_ptrace_stop, so we must release it now. |
| 2362 | * To preserve proper semantics, we must do this before |
| 2363 | * any signal bookkeeping like checking group_stop_count. |
| 2364 | */ |
| 2365 | spin_unlock_irq(lock: ¤t->sighand->siglock); |
| 2366 | arch_ptrace_stop(); |
| 2367 | spin_lock_irq(lock: ¤t->sighand->siglock); |
| 2368 | } |
| 2369 | |
| 2370 | /* |
| 2371 | * After this point ptrace_signal_wake_up or signal_wake_up |
| 2372 | * will clear TASK_TRACED if ptrace_unlink happens or a fatal |
| 2373 | * signal comes in. Handle previous ptrace_unlinks and fatal |
| 2374 | * signals here to prevent ptrace_stop sleeping in schedule. |
| 2375 | */ |
| 2376 | if (!current->ptrace || __fatal_signal_pending(current)) |
| 2377 | return exit_code; |
| 2378 | |
| 2379 | set_special_state(TASK_TRACED); |
| 2380 | current->jobctl |= JOBCTL_TRACED; |
| 2381 | |
| 2382 | /* |
| 2383 | * We're committing to trapping. TRACED should be visible before |
| 2384 | * TRAPPING is cleared; otherwise, the tracer might fail do_wait(). |
| 2385 | * Also, transition to TRACED and updates to ->jobctl should be |
| 2386 | * atomic with respect to siglock and should be done after the arch |
| 2387 | * hook as siglock is released and regrabbed across it. |
| 2388 | * |
| 2389 | * TRACER TRACEE |
| 2390 | * |
| 2391 | * ptrace_attach() |
| 2392 | * [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED) |
| 2393 | * do_wait() |
| 2394 | * set_current_state() smp_wmb(); |
| 2395 | * ptrace_do_wait() |
| 2396 | * wait_task_stopped() |
| 2397 | * task_stopped_code() |
| 2398 | * [L] task_is_traced() [S] task_clear_jobctl_trapping(); |
| 2399 | */ |
| 2400 | smp_wmb(); |
| 2401 | |
| 2402 | current->ptrace_message = message; |
| 2403 | current->last_siginfo = info; |
| 2404 | current->exit_code = exit_code; |
| 2405 | |
| 2406 | /* |
| 2407 | * If @why is CLD_STOPPED, we're trapping to participate in a group |
| 2408 | * stop. Do the bookkeeping. Note that if SIGCONT was delievered |
| 2409 | * across siglock relocks since INTERRUPT was scheduled, PENDING |
| 2410 | * could be clear now. We act as if SIGCONT is received after |
| 2411 | * TASK_TRACED is entered - ignore it. |
| 2412 | */ |
| 2413 | if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING)) |
| 2414 | gstop_done = task_participate_group_stop(current); |
| 2415 | |
| 2416 | /* any trap clears pending STOP trap, STOP trap clears NOTIFY */ |
| 2417 | task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP); |
| 2418 | if (info && info->si_code >> 8 == PTRACE_EVENT_STOP) |
| 2419 | task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY); |
| 2420 | |
| 2421 | /* entering a trap, clear TRAPPING */ |
| 2422 | task_clear_jobctl_trapping(current); |
| 2423 | |
| 2424 | spin_unlock_irq(lock: ¤t->sighand->siglock); |
| 2425 | read_lock(&tasklist_lock); |
| 2426 | /* |
| 2427 | * Notify parents of the stop. |
| 2428 | * |
| 2429 | * While ptraced, there are two parents - the ptracer and |
| 2430 | * the real_parent of the group_leader. The ptracer should |
| 2431 | * know about every stop while the real parent is only |
| 2432 | * interested in the completion of group stop. The states |
| 2433 | * for the two don't interact with each other. Notify |
| 2434 | * separately unless they're gonna be duplicates. |
| 2435 | */ |
| 2436 | if (current->ptrace) |
| 2437 | do_notify_parent_cldstop(current, for_ptracer: true, why); |
| 2438 | if (gstop_done && (!current->ptrace || ptrace_reparented(current))) |
| 2439 | do_notify_parent_cldstop(current, for_ptracer: false, why); |
| 2440 | |
| 2441 | /* |
| 2442 | * The previous do_notify_parent_cldstop() invocation woke ptracer. |
| 2443 | * One a PREEMPTION kernel this can result in preemption requirement |
| 2444 | * which will be fulfilled after read_unlock() and the ptracer will be |
| 2445 | * put on the CPU. |
| 2446 | * The ptracer is in wait_task_inactive(, __TASK_TRACED) waiting for |
| 2447 | * this task wait in schedule(). If this task gets preempted then it |
| 2448 | * remains enqueued on the runqueue. The ptracer will observe this and |
| 2449 | * then sleep for a delay of one HZ tick. In the meantime this task |
| 2450 | * gets scheduled, enters schedule() and will wait for the ptracer. |
| 2451 | * |
| 2452 | * This preemption point is not bad from a correctness point of |
| 2453 | * view but extends the runtime by one HZ tick time due to the |
| 2454 | * ptracer's sleep. The preempt-disable section ensures that there |
| 2455 | * will be no preemption between unlock and schedule() and so |
| 2456 | * improving the performance since the ptracer will observe that |
| 2457 | * the tracee is scheduled out once it gets on the CPU. |
| 2458 | * |
| 2459 | * On PREEMPT_RT locking tasklist_lock does not disable preemption. |
| 2460 | * Therefore the task can be preempted after do_notify_parent_cldstop() |
| 2461 | * before unlocking tasklist_lock so there is no benefit in doing this. |
| 2462 | * |
| 2463 | * In fact disabling preemption is harmful on PREEMPT_RT because |
| 2464 | * the spinlock_t in cgroup_enter_frozen() must not be acquired |
| 2465 | * with preemption disabled due to the 'sleeping' spinlock |
| 2466 | * substitution of RT. |
| 2467 | */ |
| 2468 | if (!IS_ENABLED(CONFIG_PREEMPT_RT)) |
| 2469 | preempt_disable(); |
| 2470 | read_unlock(&tasklist_lock); |
| 2471 | cgroup_enter_frozen(); |
| 2472 | if (!IS_ENABLED(CONFIG_PREEMPT_RT)) |
| 2473 | preempt_enable_no_resched(); |
| 2474 | schedule(); |
| 2475 | cgroup_leave_frozen(always_leave: true); |
| 2476 | |
| 2477 | /* |
| 2478 | * We are back. Now reacquire the siglock before touching |
| 2479 | * last_siginfo, so that we are sure to have synchronized with |
| 2480 | * any signal-sending on another CPU that wants to examine it. |
| 2481 | */ |
| 2482 | spin_lock_irq(lock: ¤t->sighand->siglock); |
| 2483 | exit_code = current->exit_code; |
| 2484 | current->last_siginfo = NULL; |
| 2485 | current->ptrace_message = 0; |
| 2486 | current->exit_code = 0; |
| 2487 | |
| 2488 | /* LISTENING can be set only during STOP traps, clear it */ |
| 2489 | current->jobctl &= ~(JOBCTL_LISTENING | JOBCTL_PTRACE_FROZEN); |
| 2490 | |
| 2491 | /* |
| 2492 | * Queued signals ignored us while we were stopped for tracing. |
| 2493 | * So check for any that we should take before resuming user mode. |
| 2494 | * This sets TIF_SIGPENDING, but never clears it. |
| 2495 | */ |
| 2496 | recalc_sigpending_tsk(current); |
| 2497 | return exit_code; |
| 2498 | } |
| 2499 | |
| 2500 | static int ptrace_do_notify(int signr, int exit_code, int why, unsigned long message) |
| 2501 | { |
| 2502 | kernel_siginfo_t info; |
| 2503 | |
| 2504 | clear_siginfo(info: &info); |
| 2505 | info.si_signo = signr; |
| 2506 | info.si_code = exit_code; |
| 2507 | info.si_pid = task_pid_vnr(current); |
| 2508 | info.si_uid = from_kuid_munged(to: current_user_ns(), current_uid()); |
| 2509 | |
| 2510 | /* Let the debugger run. */ |
| 2511 | return ptrace_stop(exit_code, why, message, info: &info); |
| 2512 | } |
| 2513 | |
| 2514 | int ptrace_notify(int exit_code, unsigned long message) |
| 2515 | { |
| 2516 | int signr; |
| 2517 | |
| 2518 | BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); |
| 2519 | if (unlikely(task_work_pending(current))) |
| 2520 | task_work_run(); |
| 2521 | |
| 2522 | spin_lock_irq(lock: ¤t->sighand->siglock); |
| 2523 | signr = ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED, message); |
| 2524 | spin_unlock_irq(lock: ¤t->sighand->siglock); |
| 2525 | return signr; |
| 2526 | } |
| 2527 | |
| 2528 | /** |
| 2529 | * do_signal_stop - handle group stop for SIGSTOP and other stop signals |
| 2530 | * @signr: signr causing group stop if initiating |
| 2531 | * |
| 2532 | * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr |
| 2533 | * and participate in it. If already set, participate in the existing |
| 2534 | * group stop. If participated in a group stop (and thus slept), %true is |
| 2535 | * returned with siglock released. |
| 2536 | * |
| 2537 | * If ptraced, this function doesn't handle stop itself. Instead, |
| 2538 | * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock |
| 2539 | * untouched. The caller must ensure that INTERRUPT trap handling takes |
| 2540 | * places afterwards. |
| 2541 | * |
| 2542 | * CONTEXT: |
| 2543 | * Must be called with @current->sighand->siglock held, which is released |
| 2544 | * on %true return. |
| 2545 | * |
| 2546 | * RETURNS: |
| 2547 | * %false if group stop is already cancelled or ptrace trap is scheduled. |
| 2548 | * %true if participated in group stop. |
| 2549 | */ |
| 2550 | static bool do_signal_stop(int signr) |
| 2551 | __releases(¤t->sighand->siglock) |
| 2552 | { |
| 2553 | struct signal_struct *sig = current->signal; |
| 2554 | |
| 2555 | if (!(current->jobctl & JOBCTL_STOP_PENDING)) { |
| 2556 | unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME; |
| 2557 | struct task_struct *t; |
| 2558 | |
| 2559 | /* signr will be recorded in task->jobctl for retries */ |
| 2560 | WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK); |
| 2561 | |
| 2562 | if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) || |
| 2563 | unlikely(sig->flags & SIGNAL_GROUP_EXIT) || |
| 2564 | unlikely(sig->group_exec_task)) |
| 2565 | return false; |
| 2566 | /* |
| 2567 | * There is no group stop already in progress. We must |
| 2568 | * initiate one now. |
| 2569 | * |
| 2570 | * While ptraced, a task may be resumed while group stop is |
| 2571 | * still in effect and then receive a stop signal and |
| 2572 | * initiate another group stop. This deviates from the |
| 2573 | * usual behavior as two consecutive stop signals can't |
| 2574 | * cause two group stops when !ptraced. That is why we |
| 2575 | * also check !task_is_stopped(t) below. |
| 2576 | * |
| 2577 | * The condition can be distinguished by testing whether |
| 2578 | * SIGNAL_STOP_STOPPED is already set. Don't generate |
| 2579 | * group_exit_code in such case. |
| 2580 | * |
| 2581 | * This is not necessary for SIGNAL_STOP_CONTINUED because |
| 2582 | * an intervening stop signal is required to cause two |
| 2583 | * continued events regardless of ptrace. |
| 2584 | */ |
| 2585 | if (!(sig->flags & SIGNAL_STOP_STOPPED)) |
| 2586 | sig->group_exit_code = signr; |
| 2587 | |
| 2588 | sig->group_stop_count = 0; |
| 2589 | if (task_set_jobctl_pending(current, mask: signr | gstop)) |
| 2590 | sig->group_stop_count++; |
| 2591 | |
| 2592 | for_other_threads(current, t) { |
| 2593 | /* |
| 2594 | * Setting state to TASK_STOPPED for a group |
| 2595 | * stop is always done with the siglock held, |
| 2596 | * so this check has no races. |
| 2597 | */ |
| 2598 | if (!task_is_stopped(t) && |
| 2599 | task_set_jobctl_pending(task: t, mask: signr | gstop)) { |
| 2600 | sig->group_stop_count++; |
| 2601 | if (likely(!(t->ptrace & PT_SEIZED))) |
| 2602 | signal_wake_up(t, fatal: 0); |
| 2603 | else |
| 2604 | ptrace_trap_notify(t); |
| 2605 | } |
| 2606 | } |
| 2607 | } |
| 2608 | |
| 2609 | if (likely(!current->ptrace)) { |
| 2610 | int notify = 0; |
| 2611 | |
| 2612 | /* |
| 2613 | * If there are no other threads in the group, or if there |
| 2614 | * is a group stop in progress and we are the last to stop, |
| 2615 | * report to the parent. |
| 2616 | */ |
| 2617 | if (task_participate_group_stop(current)) |
| 2618 | notify = CLD_STOPPED; |
| 2619 | |
| 2620 | current->jobctl |= JOBCTL_STOPPED; |
| 2621 | set_special_state(TASK_STOPPED); |
| 2622 | spin_unlock_irq(lock: ¤t->sighand->siglock); |
| 2623 | |
| 2624 | /* |
| 2625 | * Notify the parent of the group stop completion. Because |
| 2626 | * we're not holding either the siglock or tasklist_lock |
| 2627 | * here, ptracer may attach inbetween; however, this is for |
| 2628 | * group stop and should always be delivered to the real |
| 2629 | * parent of the group leader. The new ptracer will get |
| 2630 | * its notification when this task transitions into |
| 2631 | * TASK_TRACED. |
| 2632 | */ |
| 2633 | if (notify) { |
| 2634 | read_lock(&tasklist_lock); |
| 2635 | do_notify_parent_cldstop(current, for_ptracer: false, why: notify); |
| 2636 | read_unlock(&tasklist_lock); |
| 2637 | } |
| 2638 | |
| 2639 | /* Now we don't run again until woken by SIGCONT or SIGKILL */ |
| 2640 | cgroup_enter_frozen(); |
| 2641 | schedule(); |
| 2642 | return true; |
| 2643 | } else { |
| 2644 | /* |
| 2645 | * While ptraced, group stop is handled by STOP trap. |
| 2646 | * Schedule it and let the caller deal with it. |
| 2647 | */ |
| 2648 | task_set_jobctl_pending(current, JOBCTL_TRAP_STOP); |
| 2649 | return false; |
| 2650 | } |
| 2651 | } |
| 2652 | |
| 2653 | /** |
| 2654 | * do_jobctl_trap - take care of ptrace jobctl traps |
| 2655 | * |
| 2656 | * When PT_SEIZED, it's used for both group stop and explicit |
| 2657 | * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with |
| 2658 | * accompanying siginfo. If stopped, lower eight bits of exit_code contain |
| 2659 | * the stop signal; otherwise, %SIGTRAP. |
| 2660 | * |
| 2661 | * When !PT_SEIZED, it's used only for group stop trap with stop signal |
| 2662 | * number as exit_code and no siginfo. |
| 2663 | * |
| 2664 | * CONTEXT: |
| 2665 | * Must be called with @current->sighand->siglock held, which may be |
| 2666 | * released and re-acquired before returning with intervening sleep. |
| 2667 | */ |
| 2668 | static void do_jobctl_trap(void) |
| 2669 | { |
| 2670 | struct signal_struct *signal = current->signal; |
| 2671 | int signr = current->jobctl & JOBCTL_STOP_SIGMASK; |
| 2672 | |
| 2673 | if (current->ptrace & PT_SEIZED) { |
| 2674 | if (!signal->group_stop_count && |
| 2675 | !(signal->flags & SIGNAL_STOP_STOPPED)) |
| 2676 | signr = SIGTRAP; |
| 2677 | WARN_ON_ONCE(!signr); |
| 2678 | ptrace_do_notify(signr, exit_code: signr | (PTRACE_EVENT_STOP << 8), |
| 2679 | CLD_STOPPED, message: 0); |
| 2680 | } else { |
| 2681 | WARN_ON_ONCE(!signr); |
| 2682 | ptrace_stop(exit_code: signr, CLD_STOPPED, message: 0, NULL); |
| 2683 | } |
| 2684 | } |
| 2685 | |
| 2686 | /** |
| 2687 | * do_freezer_trap - handle the freezer jobctl trap |
| 2688 | * |
| 2689 | * Puts the task into frozen state, if only the task is not about to quit. |
| 2690 | * In this case it drops JOBCTL_TRAP_FREEZE. |
| 2691 | * |
| 2692 | * CONTEXT: |
| 2693 | * Must be called with @current->sighand->siglock held, |
| 2694 | * which is always released before returning. |
| 2695 | */ |
| 2696 | static void do_freezer_trap(void) |
| 2697 | __releases(¤t->sighand->siglock) |
| 2698 | { |
| 2699 | /* |
| 2700 | * If there are other trap bits pending except JOBCTL_TRAP_FREEZE, |
| 2701 | * let's make another loop to give it a chance to be handled. |
| 2702 | * In any case, we'll return back. |
| 2703 | */ |
| 2704 | if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) != |
| 2705 | JOBCTL_TRAP_FREEZE) { |
| 2706 | spin_unlock_irq(lock: ¤t->sighand->siglock); |
| 2707 | return; |
| 2708 | } |
| 2709 | |
| 2710 | /* |
| 2711 | * Now we're sure that there is no pending fatal signal and no |
| 2712 | * pending traps. Clear TIF_SIGPENDING to not get out of schedule() |
| 2713 | * immediately (if there is a non-fatal signal pending), and |
| 2714 | * put the task into sleep. |
| 2715 | */ |
| 2716 | __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); |
| 2717 | clear_thread_flag(TIF_SIGPENDING); |
| 2718 | spin_unlock_irq(lock: ¤t->sighand->siglock); |
| 2719 | cgroup_enter_frozen(); |
| 2720 | schedule(); |
| 2721 | |
| 2722 | /* |
| 2723 | * We could've been woken by task_work, run it to clear |
| 2724 | * TIF_NOTIFY_SIGNAL. The caller will retry if necessary. |
| 2725 | */ |
| 2726 | clear_notify_signal(); |
| 2727 | if (unlikely(task_work_pending(current))) |
| 2728 | task_work_run(); |
| 2729 | } |
| 2730 | |
| 2731 | static int ptrace_signal(int signr, kernel_siginfo_t *info, enum pid_type type) |
| 2732 | { |
| 2733 | /* |
| 2734 | * We do not check sig_kernel_stop(signr) but set this marker |
| 2735 | * unconditionally because we do not know whether debugger will |
| 2736 | * change signr. This flag has no meaning unless we are going |
| 2737 | * to stop after return from ptrace_stop(). In this case it will |
| 2738 | * be checked in do_signal_stop(), we should only stop if it was |
| 2739 | * not cleared by SIGCONT while we were sleeping. See also the |
| 2740 | * comment in dequeue_signal(). |
| 2741 | */ |
| 2742 | current->jobctl |= JOBCTL_STOP_DEQUEUED; |
| 2743 | signr = ptrace_stop(exit_code: signr, CLD_TRAPPED, message: 0, info); |
| 2744 | |
| 2745 | /* We're back. Did the debugger cancel the sig? */ |
| 2746 | if (signr == 0) |
| 2747 | return signr; |
| 2748 | |
| 2749 | /* |
| 2750 | * Update the siginfo structure if the signal has |
| 2751 | * changed. If the debugger wanted something |
| 2752 | * specific in the siginfo structure then it should |
| 2753 | * have updated *info via PTRACE_SETSIGINFO. |
| 2754 | */ |
| 2755 | if (signr != info->si_signo) { |
| 2756 | clear_siginfo(info); |
| 2757 | info->si_signo = signr; |
| 2758 | info->si_errno = 0; |
| 2759 | info->si_code = SI_USER; |
| 2760 | rcu_read_lock(); |
| 2761 | info->si_pid = task_pid_vnr(current->parent); |
| 2762 | info->si_uid = from_kuid_munged(to: current_user_ns(), |
| 2763 | task_uid(current->parent)); |
| 2764 | rcu_read_unlock(); |
| 2765 | } |
| 2766 | |
| 2767 | /* If the (new) signal is now blocked, requeue it. */ |
| 2768 | if (sigismember(set: ¤t->blocked, sig: signr) || |
| 2769 | fatal_signal_pending(current)) { |
| 2770 | send_signal_locked(sig: signr, info, current, type); |
| 2771 | signr = 0; |
| 2772 | } |
| 2773 | |
| 2774 | return signr; |
| 2775 | } |
| 2776 | |
| 2777 | static void hide_si_addr_tag_bits(struct ksignal *ksig) |
| 2778 | { |
| 2779 | switch (siginfo_layout(sig: ksig->sig, si_code: ksig->info.si_code)) { |
| 2780 | case SIL_FAULT: |
| 2781 | case SIL_FAULT_TRAPNO: |
| 2782 | case SIL_FAULT_MCEERR: |
| 2783 | case SIL_FAULT_BNDERR: |
| 2784 | case SIL_FAULT_PKUERR: |
| 2785 | case SIL_FAULT_PERF_EVENT: |
| 2786 | ksig->info.si_addr = arch_untagged_si_addr( |
| 2787 | addr: ksig->info.si_addr, sig: ksig->sig, si_code: ksig->info.si_code); |
| 2788 | break; |
| 2789 | case SIL_KILL: |
| 2790 | case SIL_TIMER: |
| 2791 | case SIL_POLL: |
| 2792 | case SIL_CHLD: |
| 2793 | case SIL_RT: |
| 2794 | case SIL_SYS: |
| 2795 | break; |
| 2796 | } |
| 2797 | } |
| 2798 | |
| 2799 | bool get_signal(struct ksignal *ksig) |
| 2800 | { |
| 2801 | struct sighand_struct *sighand = current->sighand; |
| 2802 | struct signal_struct *signal = current->signal; |
| 2803 | int signr; |
| 2804 | |
| 2805 | clear_notify_signal(); |
| 2806 | if (unlikely(task_work_pending(current))) |
| 2807 | task_work_run(); |
| 2808 | |
| 2809 | if (!task_sigpending(current)) |
| 2810 | return false; |
| 2811 | |
| 2812 | if (unlikely(uprobe_deny_signal())) |
| 2813 | return false; |
| 2814 | |
| 2815 | /* |
| 2816 | * Do this once, we can't return to user-mode if freezing() == T. |
| 2817 | * do_signal_stop() and ptrace_stop() do freezable_schedule() and |
| 2818 | * thus do not need another check after return. |
| 2819 | */ |
| 2820 | try_to_freeze(); |
| 2821 | |
| 2822 | relock: |
| 2823 | spin_lock_irq(lock: &sighand->siglock); |
| 2824 | |
| 2825 | /* |
| 2826 | * Every stopped thread goes here after wakeup. Check to see if |
| 2827 | * we should notify the parent, prepare_signal(SIGCONT) encodes |
| 2828 | * the CLD_ si_code into SIGNAL_CLD_MASK bits. |
| 2829 | */ |
| 2830 | if (unlikely(signal->flags & SIGNAL_CLD_MASK)) { |
| 2831 | int why; |
| 2832 | |
| 2833 | if (signal->flags & SIGNAL_CLD_CONTINUED) |
| 2834 | why = CLD_CONTINUED; |
| 2835 | else |
| 2836 | why = CLD_STOPPED; |
| 2837 | |
| 2838 | signal->flags &= ~SIGNAL_CLD_MASK; |
| 2839 | |
| 2840 | spin_unlock_irq(lock: &sighand->siglock); |
| 2841 | |
| 2842 | /* |
| 2843 | * Notify the parent that we're continuing. This event is |
| 2844 | * always per-process and doesn't make whole lot of sense |
| 2845 | * for ptracers, who shouldn't consume the state via |
| 2846 | * wait(2) either, but, for backward compatibility, notify |
| 2847 | * the ptracer of the group leader too unless it's gonna be |
| 2848 | * a duplicate. |
| 2849 | */ |
| 2850 | read_lock(&tasklist_lock); |
| 2851 | do_notify_parent_cldstop(current, for_ptracer: false, why); |
| 2852 | |
| 2853 | if (ptrace_reparented(current->group_leader)) |
| 2854 | do_notify_parent_cldstop(current->group_leader, |
| 2855 | for_ptracer: true, why); |
| 2856 | read_unlock(&tasklist_lock); |
| 2857 | |
| 2858 | goto relock; |
| 2859 | } |
| 2860 | |
| 2861 | for (;;) { |
| 2862 | struct k_sigaction *ka; |
| 2863 | enum pid_type type; |
| 2864 | |
| 2865 | /* Has this task already been marked for death? */ |
| 2866 | if ((signal->flags & SIGNAL_GROUP_EXIT) || |
| 2867 | signal->group_exec_task) { |
| 2868 | signr = SIGKILL; |
| 2869 | sigdelset(set: ¤t->pending.signal, SIGKILL); |
| 2870 | trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO, |
| 2871 | ka: &sighand->action[SIGKILL-1]); |
| 2872 | recalc_sigpending(); |
| 2873 | /* |
| 2874 | * implies do_group_exit() or return to PF_USER_WORKER, |
| 2875 | * no need to initialize ksig->info/etc. |
| 2876 | */ |
| 2877 | goto fatal; |
| 2878 | } |
| 2879 | |
| 2880 | if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) && |
| 2881 | do_signal_stop(signr: 0)) |
| 2882 | goto relock; |
| 2883 | |
| 2884 | if (unlikely(current->jobctl & |
| 2885 | (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) { |
| 2886 | if (current->jobctl & JOBCTL_TRAP_MASK) { |
| 2887 | do_jobctl_trap(); |
| 2888 | spin_unlock_irq(lock: &sighand->siglock); |
| 2889 | } else if (current->jobctl & JOBCTL_TRAP_FREEZE) |
| 2890 | do_freezer_trap(); |
| 2891 | |
| 2892 | goto relock; |
| 2893 | } |
| 2894 | |
| 2895 | /* |
| 2896 | * If the task is leaving the frozen state, let's update |
| 2897 | * cgroup counters and reset the frozen bit. |
| 2898 | */ |
| 2899 | if (unlikely(cgroup_task_frozen(current))) { |
| 2900 | spin_unlock_irq(lock: &sighand->siglock); |
| 2901 | cgroup_leave_frozen(always_leave: false); |
| 2902 | goto relock; |
| 2903 | } |
| 2904 | |
| 2905 | /* |
| 2906 | * Signals generated by the execution of an instruction |
| 2907 | * need to be delivered before any other pending signals |
| 2908 | * so that the instruction pointer in the signal stack |
| 2909 | * frame points to the faulting instruction. |
| 2910 | */ |
| 2911 | type = PIDTYPE_PID; |
| 2912 | signr = dequeue_synchronous_signal(info: &ksig->info); |
| 2913 | if (!signr) |
| 2914 | signr = dequeue_signal(¤t->blocked, &ksig->info, &type); |
| 2915 | |
| 2916 | if (!signr) |
| 2917 | break; /* will return 0 */ |
| 2918 | |
| 2919 | if (unlikely(current->ptrace) && (signr != SIGKILL) && |
| 2920 | !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) { |
| 2921 | signr = ptrace_signal(signr, info: &ksig->info, type); |
| 2922 | if (!signr) |
| 2923 | continue; |
| 2924 | } |
| 2925 | |
| 2926 | ka = &sighand->action[signr-1]; |
| 2927 | |
| 2928 | /* Trace actually delivered signals. */ |
| 2929 | trace_signal_deliver(sig: signr, info: &ksig->info, ka); |
| 2930 | |
| 2931 | if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ |
| 2932 | continue; |
| 2933 | if (ka->sa.sa_handler != SIG_DFL) { |
| 2934 | /* Run the handler. */ |
| 2935 | ksig->ka = *ka; |
| 2936 | |
| 2937 | if (ka->sa.sa_flags & SA_ONESHOT) |
| 2938 | ka->sa.sa_handler = SIG_DFL; |
| 2939 | |
| 2940 | break; /* will return non-zero "signr" value */ |
| 2941 | } |
| 2942 | |
| 2943 | /* |
| 2944 | * Now we are doing the default action for this signal. |
| 2945 | */ |
| 2946 | if (sig_kernel_ignore(signr)) /* Default is nothing. */ |
| 2947 | continue; |
| 2948 | |
| 2949 | /* |
| 2950 | * Global init gets no signals it doesn't want. |
| 2951 | * Container-init gets no signals it doesn't want from same |
| 2952 | * container. |
| 2953 | * |
| 2954 | * Note that if global/container-init sees a sig_kernel_only() |
| 2955 | * signal here, the signal must have been generated internally |
| 2956 | * or must have come from an ancestor namespace. In either |
| 2957 | * case, the signal cannot be dropped. |
| 2958 | */ |
| 2959 | if (unlikely(signal->flags & SIGNAL_UNKILLABLE) && |
| 2960 | !sig_kernel_only(signr)) |
| 2961 | continue; |
| 2962 | |
| 2963 | if (sig_kernel_stop(signr)) { |
| 2964 | /* |
| 2965 | * The default action is to stop all threads in |
| 2966 | * the thread group. The job control signals |
| 2967 | * do nothing in an orphaned pgrp, but SIGSTOP |
| 2968 | * always works. Note that siglock needs to be |
| 2969 | * dropped during the call to is_orphaned_pgrp() |
| 2970 | * because of lock ordering with tasklist_lock. |
| 2971 | * This allows an intervening SIGCONT to be posted. |
| 2972 | * We need to check for that and bail out if necessary. |
| 2973 | */ |
| 2974 | if (signr != SIGSTOP) { |
| 2975 | spin_unlock_irq(lock: &sighand->siglock); |
| 2976 | |
| 2977 | /* signals can be posted during this window */ |
| 2978 | |
| 2979 | if (is_current_pgrp_orphaned()) |
| 2980 | goto relock; |
| 2981 | |
| 2982 | spin_lock_irq(lock: &sighand->siglock); |
| 2983 | } |
| 2984 | |
| 2985 | if (likely(do_signal_stop(signr))) { |
| 2986 | /* It released the siglock. */ |
| 2987 | goto relock; |
| 2988 | } |
| 2989 | |
| 2990 | /* |
| 2991 | * We didn't actually stop, due to a race |
| 2992 | * with SIGCONT or something like that. |
| 2993 | */ |
| 2994 | continue; |
| 2995 | } |
| 2996 | |
| 2997 | fatal: |
| 2998 | spin_unlock_irq(lock: &sighand->siglock); |
| 2999 | if (unlikely(cgroup_task_frozen(current))) |
| 3000 | cgroup_leave_frozen(always_leave: true); |
| 3001 | |
| 3002 | /* |
| 3003 | * Anything else is fatal, maybe with a core dump. |
| 3004 | */ |
| 3005 | current->flags |= PF_SIGNALED; |
| 3006 | |
| 3007 | if (sig_kernel_coredump(signr)) { |
| 3008 | if (print_fatal_signals) |
| 3009 | print_fatal_signal(signr); |
| 3010 | proc_coredump_connector(current); |
| 3011 | /* |
| 3012 | * If it was able to dump core, this kills all |
| 3013 | * other threads in the group and synchronizes with |
| 3014 | * their demise. If we lost the race with another |
| 3015 | * thread getting here, it set group_exit_code |
| 3016 | * first and our do_group_exit call below will use |
| 3017 | * that value and ignore the one we pass it. |
| 3018 | */ |
| 3019 | vfs_coredump(siginfo: &ksig->info); |
| 3020 | } |
| 3021 | |
| 3022 | /* |
| 3023 | * PF_USER_WORKER threads will catch and exit on fatal signals |
| 3024 | * themselves. They have cleanup that must be performed, so we |
| 3025 | * cannot call do_exit() on their behalf. Note that ksig won't |
| 3026 | * be properly initialized, PF_USER_WORKER's shouldn't use it. |
| 3027 | */ |
| 3028 | if (current->flags & PF_USER_WORKER) |
| 3029 | goto out; |
| 3030 | |
| 3031 | /* |
| 3032 | * Death signals, no core dump. |
| 3033 | */ |
| 3034 | do_group_exit(signr); |
| 3035 | /* NOTREACHED */ |
| 3036 | } |
| 3037 | spin_unlock_irq(lock: &sighand->siglock); |
| 3038 | |
| 3039 | ksig->sig = signr; |
| 3040 | |
| 3041 | if (signr && !(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS)) |
| 3042 | hide_si_addr_tag_bits(ksig); |
| 3043 | out: |
| 3044 | return signr > 0; |
| 3045 | } |
| 3046 | |
| 3047 | /** |
| 3048 | * signal_delivered - called after signal delivery to update blocked signals |
| 3049 | * @ksig: kernel signal struct |
| 3050 | * @stepping: nonzero if debugger single-step or block-step in use |
| 3051 | * |
| 3052 | * This function should be called when a signal has successfully been |
| 3053 | * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask |
| 3054 | * is always blocked), and the signal itself is blocked unless %SA_NODEFER |
| 3055 | * is set in @ksig->ka.sa.sa_flags. Tracing is notified. |
| 3056 | */ |
| 3057 | static void signal_delivered(struct ksignal *ksig, int stepping) |
| 3058 | { |
| 3059 | sigset_t blocked; |
| 3060 | |
| 3061 | /* A signal was successfully delivered, and the |
| 3062 | saved sigmask was stored on the signal frame, |
| 3063 | and will be restored by sigreturn. So we can |
| 3064 | simply clear the restore sigmask flag. */ |
| 3065 | clear_restore_sigmask(); |
| 3066 | |
| 3067 | sigorsets(r: &blocked, a: ¤t->blocked, b: &ksig->ka.sa.sa_mask); |
| 3068 | if (!(ksig->ka.sa.sa_flags & SA_NODEFER)) |
| 3069 | sigaddset(set: &blocked, sig: ksig->sig); |
| 3070 | set_current_blocked(&blocked); |
| 3071 | if (current->sas_ss_flags & SS_AUTODISARM) |
| 3072 | sas_ss_reset(current); |
| 3073 | if (stepping) |
| 3074 | ptrace_notify(SIGTRAP, message: 0); |
| 3075 | } |
| 3076 | |
| 3077 | void signal_setup_done(int failed, struct ksignal *ksig, int stepping) |
| 3078 | { |
| 3079 | if (failed) |
| 3080 | force_sigsegv(sig: ksig->sig); |
| 3081 | else |
| 3082 | signal_delivered(ksig, stepping); |
| 3083 | } |
| 3084 | |
| 3085 | /* |
| 3086 | * It could be that complete_signal() picked us to notify about the |
| 3087 | * group-wide signal. Other threads should be notified now to take |
| 3088 | * the shared signals in @which since we will not. |
| 3089 | */ |
| 3090 | static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which) |
| 3091 | { |
| 3092 | sigset_t retarget; |
| 3093 | struct task_struct *t; |
| 3094 | |
| 3095 | sigandsets(r: &retarget, a: &tsk->signal->shared_pending.signal, b: which); |
| 3096 | if (sigisemptyset(set: &retarget)) |
| 3097 | return; |
| 3098 | |
| 3099 | for_other_threads(tsk, t) { |
| 3100 | if (t->flags & PF_EXITING) |
| 3101 | continue; |
| 3102 | |
| 3103 | if (!has_pending_signals(signal: &retarget, blocked: &t->blocked)) |
| 3104 | continue; |
| 3105 | /* Remove the signals this thread can handle. */ |
| 3106 | sigandsets(r: &retarget, a: &retarget, b: &t->blocked); |
| 3107 | |
| 3108 | if (!task_sigpending(p: t)) |
| 3109 | signal_wake_up(t, fatal: 0); |
| 3110 | |
| 3111 | if (sigisemptyset(set: &retarget)) |
| 3112 | break; |
| 3113 | } |
| 3114 | } |
| 3115 | |
| 3116 | void exit_signals(struct task_struct *tsk) |
| 3117 | { |
| 3118 | int group_stop = 0; |
| 3119 | sigset_t unblocked; |
| 3120 | |
| 3121 | /* |
| 3122 | * @tsk is about to have PF_EXITING set - lock out users which |
| 3123 | * expect stable threadgroup. |
| 3124 | */ |
| 3125 | cgroup_threadgroup_change_begin(tsk); |
| 3126 | |
| 3127 | if (thread_group_empty(p: tsk) || (tsk->signal->flags & SIGNAL_GROUP_EXIT)) { |
| 3128 | sched_mm_cid_exit_signals(t: tsk); |
| 3129 | tsk->flags |= PF_EXITING; |
| 3130 | cgroup_threadgroup_change_end(tsk); |
| 3131 | return; |
| 3132 | } |
| 3133 | |
| 3134 | spin_lock_irq(lock: &tsk->sighand->siglock); |
| 3135 | /* |
| 3136 | * From now this task is not visible for group-wide signals, |
| 3137 | * see wants_signal(), do_signal_stop(). |
| 3138 | */ |
| 3139 | sched_mm_cid_exit_signals(t: tsk); |
| 3140 | tsk->flags |= PF_EXITING; |
| 3141 | |
| 3142 | cgroup_threadgroup_change_end(tsk); |
| 3143 | |
| 3144 | if (!task_sigpending(p: tsk)) |
| 3145 | goto out; |
| 3146 | |
| 3147 | unblocked = tsk->blocked; |
| 3148 | signotset(set: &unblocked); |
| 3149 | retarget_shared_pending(tsk, which: &unblocked); |
| 3150 | |
| 3151 | if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) && |
| 3152 | task_participate_group_stop(task: tsk)) |
| 3153 | group_stop = CLD_STOPPED; |
| 3154 | out: |
| 3155 | spin_unlock_irq(lock: &tsk->sighand->siglock); |
| 3156 | |
| 3157 | /* |
| 3158 | * If group stop has completed, deliver the notification. This |
| 3159 | * should always go to the real parent of the group leader. |
| 3160 | */ |
| 3161 | if (unlikely(group_stop)) { |
| 3162 | read_lock(&tasklist_lock); |
| 3163 | do_notify_parent_cldstop(tsk, for_ptracer: false, why: group_stop); |
| 3164 | read_unlock(&tasklist_lock); |
| 3165 | } |
| 3166 | } |
| 3167 | |
| 3168 | /* |
| 3169 | * System call entry points. |
| 3170 | */ |
| 3171 | |
| 3172 | /** |
| 3173 | * sys_restart_syscall - restart a system call |
| 3174 | */ |
| 3175 | SYSCALL_DEFINE0(restart_syscall) |
| 3176 | { |
| 3177 | struct restart_block *restart = ¤t->restart_block; |
| 3178 | return restart->fn(restart); |
| 3179 | } |
| 3180 | |
| 3181 | long do_no_restart_syscall(struct restart_block *param) |
| 3182 | { |
| 3183 | return -EINTR; |
| 3184 | } |
| 3185 | |
| 3186 | static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset) |
| 3187 | { |
| 3188 | if (task_sigpending(p: tsk) && !thread_group_empty(p: tsk)) { |
| 3189 | sigset_t newblocked; |
| 3190 | /* A set of now blocked but previously unblocked signals. */ |
| 3191 | sigandnsets(r: &newblocked, a: newset, b: ¤t->blocked); |
| 3192 | retarget_shared_pending(tsk, which: &newblocked); |
| 3193 | } |
| 3194 | tsk->blocked = *newset; |
| 3195 | recalc_sigpending(); |
| 3196 | } |
| 3197 | |
| 3198 | /** |
| 3199 | * set_current_blocked - change current->blocked mask |
| 3200 | * @newset: new mask |
| 3201 | * |
| 3202 | * It is wrong to change ->blocked directly, this helper should be used |
| 3203 | * to ensure the process can't miss a shared signal we are going to block. |
| 3204 | */ |
| 3205 | void set_current_blocked(sigset_t *newset) |
| 3206 | { |
| 3207 | sigdelsetmask(set: newset, sigmask(SIGKILL) | sigmask(SIGSTOP)); |
| 3208 | __set_current_blocked(newset); |
| 3209 | } |
| 3210 | |
| 3211 | void __set_current_blocked(const sigset_t *newset) |
| 3212 | { |
| 3213 | struct task_struct *tsk = current; |
| 3214 | |
| 3215 | /* |
| 3216 | * In case the signal mask hasn't changed, there is nothing we need |
| 3217 | * to do. The current->blocked shouldn't be modified by other task. |
| 3218 | */ |
| 3219 | if (sigequalsets(set1: &tsk->blocked, set2: newset)) |
| 3220 | return; |
| 3221 | |
| 3222 | spin_lock_irq(lock: &tsk->sighand->siglock); |
| 3223 | __set_task_blocked(tsk, newset); |
| 3224 | spin_unlock_irq(lock: &tsk->sighand->siglock); |
| 3225 | } |
| 3226 | |
| 3227 | /* |
| 3228 | * This is also useful for kernel threads that want to temporarily |
| 3229 | * (or permanently) block certain signals. |
| 3230 | * |
| 3231 | * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel |
| 3232 | * interface happily blocks "unblockable" signals like SIGKILL |
| 3233 | * and friends. |
| 3234 | */ |
| 3235 | int sigprocmask(int how, sigset_t *set, sigset_t *oldset) |
| 3236 | { |
| 3237 | struct task_struct *tsk = current; |
| 3238 | sigset_t newset; |
| 3239 | |
| 3240 | /* Lockless, only current can change ->blocked, never from irq */ |
| 3241 | if (oldset) |
| 3242 | *oldset = tsk->blocked; |
| 3243 | |
| 3244 | switch (how) { |
| 3245 | case SIG_BLOCK: |
| 3246 | sigorsets(r: &newset, a: &tsk->blocked, b: set); |
| 3247 | break; |
| 3248 | case SIG_UNBLOCK: |
| 3249 | sigandnsets(r: &newset, a: &tsk->blocked, b: set); |
| 3250 | break; |
| 3251 | case SIG_SETMASK: |
| 3252 | newset = *set; |
| 3253 | break; |
| 3254 | default: |
| 3255 | return -EINVAL; |
| 3256 | } |
| 3257 | |
| 3258 | __set_current_blocked(newset: &newset); |
| 3259 | return 0; |
| 3260 | } |
| 3261 | EXPORT_SYMBOL(sigprocmask); |
| 3262 | |
| 3263 | /* |
| 3264 | * The api helps set app-provided sigmasks. |
| 3265 | * |
| 3266 | * This is useful for syscalls such as ppoll, pselect, io_pgetevents and |
| 3267 | * epoll_pwait where a new sigmask is passed from userland for the syscalls. |
| 3268 | * |
| 3269 | * Note that it does set_restore_sigmask() in advance, so it must be always |
| 3270 | * paired with restore_saved_sigmask_unless() before return from syscall. |
| 3271 | */ |
| 3272 | int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize) |
| 3273 | { |
| 3274 | sigset_t kmask; |
| 3275 | |
| 3276 | if (!umask) |
| 3277 | return 0; |
| 3278 | if (sigsetsize != sizeof(sigset_t)) |
| 3279 | return -EINVAL; |
| 3280 | if (copy_from_user(to: &kmask, from: umask, n: sizeof(sigset_t))) |
| 3281 | return -EFAULT; |
| 3282 | |
| 3283 | set_restore_sigmask(); |
| 3284 | current->saved_sigmask = current->blocked; |
| 3285 | set_current_blocked(&kmask); |
| 3286 | |
| 3287 | return 0; |
| 3288 | } |
| 3289 | |
| 3290 | #ifdef CONFIG_COMPAT |
| 3291 | int set_compat_user_sigmask(const compat_sigset_t __user *umask, |
| 3292 | size_t sigsetsize) |
| 3293 | { |
| 3294 | sigset_t kmask; |
| 3295 | |
| 3296 | if (!umask) |
| 3297 | return 0; |
| 3298 | if (sigsetsize != sizeof(compat_sigset_t)) |
| 3299 | return -EINVAL; |
| 3300 | if (get_compat_sigset(set: &kmask, compat: umask)) |
| 3301 | return -EFAULT; |
| 3302 | |
| 3303 | set_restore_sigmask(); |
| 3304 | current->saved_sigmask = current->blocked; |
| 3305 | set_current_blocked(&kmask); |
| 3306 | |
| 3307 | return 0; |
| 3308 | } |
| 3309 | #endif |
| 3310 | |
| 3311 | /** |
| 3312 | * sys_rt_sigprocmask - change the list of currently blocked signals |
| 3313 | * @how: whether to add, remove, or set signals |
| 3314 | * @nset: stores pending signals |
| 3315 | * @oset: previous value of signal mask if non-null |
| 3316 | * @sigsetsize: size of sigset_t type |
| 3317 | */ |
| 3318 | SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset, |
| 3319 | sigset_t __user *, oset, size_t, sigsetsize) |
| 3320 | { |
| 3321 | sigset_t old_set, new_set; |
| 3322 | int error; |
| 3323 | |
| 3324 | /* XXX: Don't preclude handling different sized sigset_t's. */ |
| 3325 | if (sigsetsize != sizeof(sigset_t)) |
| 3326 | return -EINVAL; |
| 3327 | |
| 3328 | old_set = current->blocked; |
| 3329 | |
| 3330 | if (nset) { |
| 3331 | if (copy_from_user(to: &new_set, from: nset, n: sizeof(sigset_t))) |
| 3332 | return -EFAULT; |
| 3333 | sigdelsetmask(set: &new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); |
| 3334 | |
| 3335 | error = sigprocmask(how, &new_set, NULL); |
| 3336 | if (error) |
| 3337 | return error; |
| 3338 | } |
| 3339 | |
| 3340 | if (oset) { |
| 3341 | if (copy_to_user(to: oset, from: &old_set, n: sizeof(sigset_t))) |
| 3342 | return -EFAULT; |
| 3343 | } |
| 3344 | |
| 3345 | return 0; |
| 3346 | } |
| 3347 | |
| 3348 | #ifdef CONFIG_COMPAT |
| 3349 | COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset, |
| 3350 | compat_sigset_t __user *, oset, compat_size_t, sigsetsize) |
| 3351 | { |
| 3352 | sigset_t old_set = current->blocked; |
| 3353 | |
| 3354 | /* XXX: Don't preclude handling different sized sigset_t's. */ |
| 3355 | if (sigsetsize != sizeof(sigset_t)) |
| 3356 | return -EINVAL; |
| 3357 | |
| 3358 | if (nset) { |
| 3359 | sigset_t new_set; |
| 3360 | int error; |
| 3361 | if (get_compat_sigset(set: &new_set, compat: nset)) |
| 3362 | return -EFAULT; |
| 3363 | sigdelsetmask(set: &new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); |
| 3364 | |
| 3365 | error = sigprocmask(how, &new_set, NULL); |
| 3366 | if (error) |
| 3367 | return error; |
| 3368 | } |
| 3369 | return oset ? put_compat_sigset(compat: oset, set: &old_set, size: sizeof(*oset)) : 0; |
| 3370 | } |
| 3371 | #endif |
| 3372 | |
| 3373 | static void do_sigpending(sigset_t *set) |
| 3374 | { |
| 3375 | spin_lock_irq(lock: ¤t->sighand->siglock); |
| 3376 | sigorsets(r: set, a: ¤t->pending.signal, |
| 3377 | b: ¤t->signal->shared_pending.signal); |
| 3378 | spin_unlock_irq(lock: ¤t->sighand->siglock); |
| 3379 | |
| 3380 | /* Outside the lock because only this thread touches it. */ |
| 3381 | sigandsets(r: set, a: ¤t->blocked, b: set); |
| 3382 | } |
| 3383 | |
| 3384 | /** |
| 3385 | * sys_rt_sigpending - examine a pending signal that has been raised |
| 3386 | * while blocked |
| 3387 | * @uset: stores pending signals |
| 3388 | * @sigsetsize: size of sigset_t type or larger |
| 3389 | */ |
| 3390 | SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize) |
| 3391 | { |
| 3392 | sigset_t set; |
| 3393 | |
| 3394 | if (sigsetsize > sizeof(*uset)) |
| 3395 | return -EINVAL; |
| 3396 | |
| 3397 | do_sigpending(set: &set); |
| 3398 | |
| 3399 | if (copy_to_user(to: uset, from: &set, n: sigsetsize)) |
| 3400 | return -EFAULT; |
| 3401 | |
| 3402 | return 0; |
| 3403 | } |
| 3404 | |
| 3405 | #ifdef CONFIG_COMPAT |
| 3406 | COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset, |
| 3407 | compat_size_t, sigsetsize) |
| 3408 | { |
| 3409 | sigset_t set; |
| 3410 | |
| 3411 | if (sigsetsize > sizeof(*uset)) |
| 3412 | return -EINVAL; |
| 3413 | |
| 3414 | do_sigpending(set: &set); |
| 3415 | |
| 3416 | return put_compat_sigset(compat: uset, set: &set, size: sigsetsize); |
| 3417 | } |
| 3418 | #endif |
| 3419 | |
| 3420 | static const struct { |
| 3421 | unsigned char limit, layout; |
| 3422 | } sig_sicodes[] = { |
| 3423 | [SIGILL] = { NSIGILL, SIL_FAULT }, |
| 3424 | [SIGFPE] = { NSIGFPE, .layout: SIL_FAULT }, |
| 3425 | [SIGSEGV] = { NSIGSEGV, .layout: SIL_FAULT }, |
| 3426 | [SIGBUS] = { NSIGBUS, .layout: SIL_FAULT }, |
| 3427 | [SIGTRAP] = { NSIGTRAP, .layout: SIL_FAULT }, |
| 3428 | #if defined(SIGEMT) |
| 3429 | [SIGEMT] = { NSIGEMT, SIL_FAULT }, |
| 3430 | #endif |
| 3431 | [SIGCHLD] = { NSIGCHLD, .layout: SIL_CHLD }, |
| 3432 | [SIGPOLL] = { NSIGPOLL, .layout: SIL_POLL }, |
| 3433 | [SIGSYS] = { NSIGSYS, .layout: SIL_SYS }, |
| 3434 | }; |
| 3435 | |
| 3436 | static bool known_siginfo_layout(unsigned sig, int si_code) |
| 3437 | { |
| 3438 | if (si_code == SI_KERNEL) |
| 3439 | return true; |
| 3440 | else if ((si_code > SI_USER)) { |
| 3441 | if (sig_specific_sicodes(sig)) { |
| 3442 | if (si_code <= sig_sicodes[sig].limit) |
| 3443 | return true; |
| 3444 | } |
| 3445 | else if (si_code <= NSIGPOLL) |
| 3446 | return true; |
| 3447 | } |
| 3448 | else if (si_code >= SI_DETHREAD) |
| 3449 | return true; |
| 3450 | else if (si_code == SI_ASYNCNL) |
| 3451 | return true; |
| 3452 | return false; |
| 3453 | } |
| 3454 | |
| 3455 | enum siginfo_layout siginfo_layout(unsigned sig, int si_code) |
| 3456 | { |
| 3457 | enum siginfo_layout layout = SIL_KILL; |
| 3458 | if ((si_code > SI_USER) && (si_code < SI_KERNEL)) { |
| 3459 | if ((sig < ARRAY_SIZE(sig_sicodes)) && |
| 3460 | (si_code <= sig_sicodes[sig].limit)) { |
| 3461 | layout = sig_sicodes[sig].layout; |
| 3462 | /* Handle the exceptions */ |
| 3463 | if ((sig == SIGBUS) && |
| 3464 | (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO)) |
| 3465 | layout = SIL_FAULT_MCEERR; |
| 3466 | else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR)) |
| 3467 | layout = SIL_FAULT_BNDERR; |
| 3468 | #ifdef SEGV_PKUERR |
| 3469 | else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR)) |
| 3470 | layout = SIL_FAULT_PKUERR; |
| 3471 | #endif |
| 3472 | else if ((sig == SIGTRAP) && (si_code == TRAP_PERF)) |
| 3473 | layout = SIL_FAULT_PERF_EVENT; |
| 3474 | else if (IS_ENABLED(CONFIG_SPARC) && |
| 3475 | (sig == SIGILL) && (si_code == ILL_ILLTRP)) |
| 3476 | layout = SIL_FAULT_TRAPNO; |
| 3477 | else if (IS_ENABLED(CONFIG_ALPHA) && |
| 3478 | ((sig == SIGFPE) || |
| 3479 | ((sig == SIGTRAP) && (si_code == TRAP_UNK)))) |
| 3480 | layout = SIL_FAULT_TRAPNO; |
| 3481 | } |
| 3482 | else if (si_code <= NSIGPOLL) |
| 3483 | layout = SIL_POLL; |
| 3484 | } else { |
| 3485 | if (si_code == SI_TIMER) |
| 3486 | layout = SIL_TIMER; |
| 3487 | else if (si_code == SI_SIGIO) |
| 3488 | layout = SIL_POLL; |
| 3489 | else if (si_code < 0) |
| 3490 | layout = SIL_RT; |
| 3491 | } |
| 3492 | return layout; |
| 3493 | } |
| 3494 | |
| 3495 | static inline char __user *si_expansion(const siginfo_t __user *info) |
| 3496 | { |
| 3497 | return ((char __user *)info) + sizeof(struct kernel_siginfo); |
| 3498 | } |
| 3499 | |
| 3500 | int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from) |
| 3501 | { |
| 3502 | char __user *expansion = si_expansion(info: to); |
| 3503 | if (copy_to_user(to, from , n: sizeof(struct kernel_siginfo))) |
| 3504 | return -EFAULT; |
| 3505 | if (clear_user(to: expansion, SI_EXPANSION_SIZE)) |
| 3506 | return -EFAULT; |
| 3507 | return 0; |
| 3508 | } |
| 3509 | |
| 3510 | static int post_copy_siginfo_from_user(kernel_siginfo_t *info, |
| 3511 | const siginfo_t __user *from) |
| 3512 | { |
| 3513 | if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) { |
| 3514 | char __user *expansion = si_expansion(info: from); |
| 3515 | char buf[SI_EXPANSION_SIZE]; |
| 3516 | int i; |
| 3517 | /* |
| 3518 | * An unknown si_code might need more than |
| 3519 | * sizeof(struct kernel_siginfo) bytes. Verify all of the |
| 3520 | * extra bytes are 0. This guarantees copy_siginfo_to_user |
| 3521 | * will return this data to userspace exactly. |
| 3522 | */ |
| 3523 | if (copy_from_user(to: &buf, from: expansion, SI_EXPANSION_SIZE)) |
| 3524 | return -EFAULT; |
| 3525 | for (i = 0; i < SI_EXPANSION_SIZE; i++) { |
| 3526 | if (buf[i] != 0) |
| 3527 | return -E2BIG; |
| 3528 | } |
| 3529 | } |
| 3530 | return 0; |
| 3531 | } |
| 3532 | |
| 3533 | static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to, |
| 3534 | const siginfo_t __user *from) |
| 3535 | { |
| 3536 | if (copy_from_user(to, from, n: sizeof(struct kernel_siginfo))) |
| 3537 | return -EFAULT; |
| 3538 | to->si_signo = signo; |
| 3539 | return post_copy_siginfo_from_user(info: to, from); |
| 3540 | } |
| 3541 | |
| 3542 | int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from) |
| 3543 | { |
| 3544 | if (copy_from_user(to, from, n: sizeof(struct kernel_siginfo))) |
| 3545 | return -EFAULT; |
| 3546 | return post_copy_siginfo_from_user(info: to, from); |
| 3547 | } |
| 3548 | |
| 3549 | #ifdef CONFIG_COMPAT |
| 3550 | /** |
| 3551 | * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo |
| 3552 | * @to: compat siginfo destination |
| 3553 | * @from: kernel siginfo source |
| 3554 | * |
| 3555 | * Note: This function does not work properly for the SIGCHLD on x32, but |
| 3556 | * fortunately it doesn't have to. The only valid callers for this function are |
| 3557 | * copy_siginfo_to_user32, which is overriden for x32 and the coredump code. |
| 3558 | * The latter does not care because SIGCHLD will never cause a coredump. |
| 3559 | */ |
| 3560 | void copy_siginfo_to_external32(struct compat_siginfo *to, |
| 3561 | const struct kernel_siginfo *from) |
| 3562 | { |
| 3563 | memset(s: to, c: 0, n: sizeof(*to)); |
| 3564 | |
| 3565 | to->si_signo = from->si_signo; |
| 3566 | to->si_errno = from->si_errno; |
| 3567 | to->si_code = from->si_code; |
| 3568 | switch(siginfo_layout(sig: from->si_signo, si_code: from->si_code)) { |
| 3569 | case SIL_KILL: |
| 3570 | to->si_pid = from->si_pid; |
| 3571 | to->si_uid = from->si_uid; |
| 3572 | break; |
| 3573 | case SIL_TIMER: |
| 3574 | to->si_tid = from->si_tid; |
| 3575 | to->si_overrun = from->si_overrun; |
| 3576 | to->si_int = from->si_int; |
| 3577 | break; |
| 3578 | case SIL_POLL: |
| 3579 | to->si_band = from->si_band; |
| 3580 | to->si_fd = from->si_fd; |
| 3581 | break; |
| 3582 | case SIL_FAULT: |
| 3583 | to->si_addr = ptr_to_compat(uptr: from->si_addr); |
| 3584 | break; |
| 3585 | case SIL_FAULT_TRAPNO: |
| 3586 | to->si_addr = ptr_to_compat(uptr: from->si_addr); |
| 3587 | to->si_trapno = from->si_trapno; |
| 3588 | break; |
| 3589 | case SIL_FAULT_MCEERR: |
| 3590 | to->si_addr = ptr_to_compat(uptr: from->si_addr); |
| 3591 | to->si_addr_lsb = from->si_addr_lsb; |
| 3592 | break; |
| 3593 | case SIL_FAULT_BNDERR: |
| 3594 | to->si_addr = ptr_to_compat(uptr: from->si_addr); |
| 3595 | to->si_lower = ptr_to_compat(uptr: from->si_lower); |
| 3596 | to->si_upper = ptr_to_compat(uptr: from->si_upper); |
| 3597 | break; |
| 3598 | case SIL_FAULT_PKUERR: |
| 3599 | to->si_addr = ptr_to_compat(uptr: from->si_addr); |
| 3600 | to->si_pkey = from->si_pkey; |
| 3601 | break; |
| 3602 | case SIL_FAULT_PERF_EVENT: |
| 3603 | to->si_addr = ptr_to_compat(uptr: from->si_addr); |
| 3604 | to->si_perf_data = from->si_perf_data; |
| 3605 | to->si_perf_type = from->si_perf_type; |
| 3606 | to->si_perf_flags = from->si_perf_flags; |
| 3607 | break; |
| 3608 | case SIL_CHLD: |
| 3609 | to->si_pid = from->si_pid; |
| 3610 | to->si_uid = from->si_uid; |
| 3611 | to->si_status = from->si_status; |
| 3612 | to->si_utime = from->si_utime; |
| 3613 | to->si_stime = from->si_stime; |
| 3614 | break; |
| 3615 | case SIL_RT: |
| 3616 | to->si_pid = from->si_pid; |
| 3617 | to->si_uid = from->si_uid; |
| 3618 | to->si_int = from->si_int; |
| 3619 | break; |
| 3620 | case SIL_SYS: |
| 3621 | to->si_call_addr = ptr_to_compat(uptr: from->si_call_addr); |
| 3622 | to->si_syscall = from->si_syscall; |
| 3623 | to->si_arch = from->si_arch; |
| 3624 | break; |
| 3625 | } |
| 3626 | } |
| 3627 | |
| 3628 | int __copy_siginfo_to_user32(struct compat_siginfo __user *to, |
| 3629 | const struct kernel_siginfo *from) |
| 3630 | { |
| 3631 | struct compat_siginfo new; |
| 3632 | |
| 3633 | copy_siginfo_to_external32(to: &new, from); |
| 3634 | if (copy_to_user(to, from: &new, n: sizeof(struct compat_siginfo))) |
| 3635 | return -EFAULT; |
| 3636 | return 0; |
| 3637 | } |
| 3638 | |
| 3639 | static int post_copy_siginfo_from_user32(kernel_siginfo_t *to, |
| 3640 | const struct compat_siginfo *from) |
| 3641 | { |
| 3642 | clear_siginfo(info: to); |
| 3643 | to->si_signo = from->si_signo; |
| 3644 | to->si_errno = from->si_errno; |
| 3645 | to->si_code = from->si_code; |
| 3646 | switch(siginfo_layout(sig: from->si_signo, si_code: from->si_code)) { |
| 3647 | case SIL_KILL: |
| 3648 | to->si_pid = from->si_pid; |
| 3649 | to->si_uid = from->si_uid; |
| 3650 | break; |
| 3651 | case SIL_TIMER: |
| 3652 | to->si_tid = from->si_tid; |
| 3653 | to->si_overrun = from->si_overrun; |
| 3654 | to->si_int = from->si_int; |
| 3655 | break; |
| 3656 | case SIL_POLL: |
| 3657 | to->si_band = from->si_band; |
| 3658 | to->si_fd = from->si_fd; |
| 3659 | break; |
| 3660 | case SIL_FAULT: |
| 3661 | to->si_addr = compat_ptr(uptr: from->si_addr); |
| 3662 | break; |
| 3663 | case SIL_FAULT_TRAPNO: |
| 3664 | to->si_addr = compat_ptr(uptr: from->si_addr); |
| 3665 | to->si_trapno = from->si_trapno; |
| 3666 | break; |
| 3667 | case SIL_FAULT_MCEERR: |
| 3668 | to->si_addr = compat_ptr(uptr: from->si_addr); |
| 3669 | to->si_addr_lsb = from->si_addr_lsb; |
| 3670 | break; |
| 3671 | case SIL_FAULT_BNDERR: |
| 3672 | to->si_addr = compat_ptr(uptr: from->si_addr); |
| 3673 | to->si_lower = compat_ptr(uptr: from->si_lower); |
| 3674 | to->si_upper = compat_ptr(uptr: from->si_upper); |
| 3675 | break; |
| 3676 | case SIL_FAULT_PKUERR: |
| 3677 | to->si_addr = compat_ptr(uptr: from->si_addr); |
| 3678 | to->si_pkey = from->si_pkey; |
| 3679 | break; |
| 3680 | case SIL_FAULT_PERF_EVENT: |
| 3681 | to->si_addr = compat_ptr(uptr: from->si_addr); |
| 3682 | to->si_perf_data = from->si_perf_data; |
| 3683 | to->si_perf_type = from->si_perf_type; |
| 3684 | to->si_perf_flags = from->si_perf_flags; |
| 3685 | break; |
| 3686 | case SIL_CHLD: |
| 3687 | to->si_pid = from->si_pid; |
| 3688 | to->si_uid = from->si_uid; |
| 3689 | to->si_status = from->si_status; |
| 3690 | #ifdef CONFIG_X86_X32_ABI |
| 3691 | if (in_x32_syscall()) { |
| 3692 | to->si_utime = from->_sifields._sigchld_x32._utime; |
| 3693 | to->si_stime = from->_sifields._sigchld_x32._stime; |
| 3694 | } else |
| 3695 | #endif |
| 3696 | { |
| 3697 | to->si_utime = from->si_utime; |
| 3698 | to->si_stime = from->si_stime; |
| 3699 | } |
| 3700 | break; |
| 3701 | case SIL_RT: |
| 3702 | to->si_pid = from->si_pid; |
| 3703 | to->si_uid = from->si_uid; |
| 3704 | to->si_int = from->si_int; |
| 3705 | break; |
| 3706 | case SIL_SYS: |
| 3707 | to->si_call_addr = compat_ptr(uptr: from->si_call_addr); |
| 3708 | to->si_syscall = from->si_syscall; |
| 3709 | to->si_arch = from->si_arch; |
| 3710 | break; |
| 3711 | } |
| 3712 | return 0; |
| 3713 | } |
| 3714 | |
| 3715 | static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to, |
| 3716 | const struct compat_siginfo __user *ufrom) |
| 3717 | { |
| 3718 | struct compat_siginfo from; |
| 3719 | |
| 3720 | if (copy_from_user(to: &from, from: ufrom, n: sizeof(struct compat_siginfo))) |
| 3721 | return -EFAULT; |
| 3722 | |
| 3723 | from.si_signo = signo; |
| 3724 | return post_copy_siginfo_from_user32(to, from: &from); |
| 3725 | } |
| 3726 | |
| 3727 | int copy_siginfo_from_user32(struct kernel_siginfo *to, |
| 3728 | const struct compat_siginfo __user *ufrom) |
| 3729 | { |
| 3730 | struct compat_siginfo from; |
| 3731 | |
| 3732 | if (copy_from_user(to: &from, from: ufrom, n: sizeof(struct compat_siginfo))) |
| 3733 | return -EFAULT; |
| 3734 | |
| 3735 | return post_copy_siginfo_from_user32(to, from: &from); |
| 3736 | } |
| 3737 | #endif /* CONFIG_COMPAT */ |
| 3738 | |
| 3739 | /** |
| 3740 | * do_sigtimedwait - wait for queued signals specified in @which |
| 3741 | * @which: queued signals to wait for |
| 3742 | * @info: if non-null, the signal's siginfo is returned here |
| 3743 | * @ts: upper bound on process time suspension |
| 3744 | */ |
| 3745 | static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info, |
| 3746 | const struct timespec64 *ts) |
| 3747 | { |
| 3748 | ktime_t *to = NULL, timeout = KTIME_MAX; |
| 3749 | struct task_struct *tsk = current; |
| 3750 | sigset_t mask = *which; |
| 3751 | enum pid_type type; |
| 3752 | int sig, ret = 0; |
| 3753 | |
| 3754 | if (ts) { |
| 3755 | if (!timespec64_valid(ts)) |
| 3756 | return -EINVAL; |
| 3757 | timeout = timespec64_to_ktime(ts: *ts); |
| 3758 | to = &timeout; |
| 3759 | } |
| 3760 | |
| 3761 | /* |
| 3762 | * Invert the set of allowed signals to get those we want to block. |
| 3763 | */ |
| 3764 | sigdelsetmask(set: &mask, sigmask(SIGKILL) | sigmask(SIGSTOP)); |
| 3765 | signotset(set: &mask); |
| 3766 | |
| 3767 | spin_lock_irq(lock: &tsk->sighand->siglock); |
| 3768 | sig = dequeue_signal(&mask, info, &type); |
| 3769 | if (!sig && timeout) { |
| 3770 | /* |
| 3771 | * None ready, temporarily unblock those we're interested |
| 3772 | * while we are sleeping in so that we'll be awakened when |
| 3773 | * they arrive. Unblocking is always fine, we can avoid |
| 3774 | * set_current_blocked(). |
| 3775 | */ |
| 3776 | tsk->real_blocked = tsk->blocked; |
| 3777 | sigandsets(r: &tsk->blocked, a: &tsk->blocked, b: &mask); |
| 3778 | recalc_sigpending(); |
| 3779 | spin_unlock_irq(lock: &tsk->sighand->siglock); |
| 3780 | |
| 3781 | __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); |
| 3782 | ret = schedule_hrtimeout_range(expires: to, delta: tsk->timer_slack_ns, |
| 3783 | mode: HRTIMER_MODE_REL); |
| 3784 | spin_lock_irq(lock: &tsk->sighand->siglock); |
| 3785 | __set_task_blocked(tsk, newset: &tsk->real_blocked); |
| 3786 | sigemptyset(set: &tsk->real_blocked); |
| 3787 | sig = dequeue_signal(&mask, info, &type); |
| 3788 | } |
| 3789 | spin_unlock_irq(lock: &tsk->sighand->siglock); |
| 3790 | |
| 3791 | if (sig) |
| 3792 | return sig; |
| 3793 | return ret ? -EINTR : -EAGAIN; |
| 3794 | } |
| 3795 | |
| 3796 | /** |
| 3797 | * sys_rt_sigtimedwait - synchronously wait for queued signals specified |
| 3798 | * in @uthese |
| 3799 | * @uthese: queued signals to wait for |
| 3800 | * @uinfo: if non-null, the signal's siginfo is returned here |
| 3801 | * @uts: upper bound on process time suspension |
| 3802 | * @sigsetsize: size of sigset_t type |
| 3803 | */ |
| 3804 | SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese, |
| 3805 | siginfo_t __user *, uinfo, |
| 3806 | const struct __kernel_timespec __user *, uts, |
| 3807 | size_t, sigsetsize) |
| 3808 | { |
| 3809 | sigset_t these; |
| 3810 | struct timespec64 ts; |
| 3811 | kernel_siginfo_t info; |
| 3812 | int ret; |
| 3813 | |
| 3814 | /* XXX: Don't preclude handling different sized sigset_t's. */ |
| 3815 | if (sigsetsize != sizeof(sigset_t)) |
| 3816 | return -EINVAL; |
| 3817 | |
| 3818 | if (copy_from_user(to: &these, from: uthese, n: sizeof(these))) |
| 3819 | return -EFAULT; |
| 3820 | |
| 3821 | if (uts) { |
| 3822 | if (get_timespec64(ts: &ts, uts)) |
| 3823 | return -EFAULT; |
| 3824 | } |
| 3825 | |
| 3826 | ret = do_sigtimedwait(which: &these, info: &info, ts: uts ? &ts : NULL); |
| 3827 | |
| 3828 | if (ret > 0 && uinfo) { |
| 3829 | if (copy_siginfo_to_user(to: uinfo, from: &info)) |
| 3830 | ret = -EFAULT; |
| 3831 | } |
| 3832 | |
| 3833 | return ret; |
| 3834 | } |
| 3835 | |
| 3836 | #ifdef CONFIG_COMPAT_32BIT_TIME |
| 3837 | SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese, |
| 3838 | siginfo_t __user *, uinfo, |
| 3839 | const struct old_timespec32 __user *, uts, |
| 3840 | size_t, sigsetsize) |
| 3841 | { |
| 3842 | sigset_t these; |
| 3843 | struct timespec64 ts; |
| 3844 | kernel_siginfo_t info; |
| 3845 | int ret; |
| 3846 | |
| 3847 | if (sigsetsize != sizeof(sigset_t)) |
| 3848 | return -EINVAL; |
| 3849 | |
| 3850 | if (copy_from_user(to: &these, from: uthese, n: sizeof(these))) |
| 3851 | return -EFAULT; |
| 3852 | |
| 3853 | if (uts) { |
| 3854 | if (get_old_timespec32(&ts, uts)) |
| 3855 | return -EFAULT; |
| 3856 | } |
| 3857 | |
| 3858 | ret = do_sigtimedwait(which: &these, info: &info, ts: uts ? &ts : NULL); |
| 3859 | |
| 3860 | if (ret > 0 && uinfo) { |
| 3861 | if (copy_siginfo_to_user(to: uinfo, from: &info)) |
| 3862 | ret = -EFAULT; |
| 3863 | } |
| 3864 | |
| 3865 | return ret; |
| 3866 | } |
| 3867 | #endif |
| 3868 | |
| 3869 | #ifdef CONFIG_COMPAT |
| 3870 | COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese, |
| 3871 | struct compat_siginfo __user *, uinfo, |
| 3872 | struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize) |
| 3873 | { |
| 3874 | sigset_t s; |
| 3875 | struct timespec64 t; |
| 3876 | kernel_siginfo_t info; |
| 3877 | long ret; |
| 3878 | |
| 3879 | if (sigsetsize != sizeof(sigset_t)) |
| 3880 | return -EINVAL; |
| 3881 | |
| 3882 | if (get_compat_sigset(set: &s, compat: uthese)) |
| 3883 | return -EFAULT; |
| 3884 | |
| 3885 | if (uts) { |
| 3886 | if (get_timespec64(ts: &t, uts)) |
| 3887 | return -EFAULT; |
| 3888 | } |
| 3889 | |
| 3890 | ret = do_sigtimedwait(which: &s, info: &info, ts: uts ? &t : NULL); |
| 3891 | |
| 3892 | if (ret > 0 && uinfo) { |
| 3893 | if (copy_siginfo_to_user32(to: uinfo, from: &info)) |
| 3894 | ret = -EFAULT; |
| 3895 | } |
| 3896 | |
| 3897 | return ret; |
| 3898 | } |
| 3899 | |
| 3900 | #ifdef CONFIG_COMPAT_32BIT_TIME |
| 3901 | COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese, |
| 3902 | struct compat_siginfo __user *, uinfo, |
| 3903 | struct old_timespec32 __user *, uts, compat_size_t, sigsetsize) |
| 3904 | { |
| 3905 | sigset_t s; |
| 3906 | struct timespec64 t; |
| 3907 | kernel_siginfo_t info; |
| 3908 | long ret; |
| 3909 | |
| 3910 | if (sigsetsize != sizeof(sigset_t)) |
| 3911 | return -EINVAL; |
| 3912 | |
| 3913 | if (get_compat_sigset(set: &s, compat: uthese)) |
| 3914 | return -EFAULT; |
| 3915 | |
| 3916 | if (uts) { |
| 3917 | if (get_old_timespec32(&t, uts)) |
| 3918 | return -EFAULT; |
| 3919 | } |
| 3920 | |
| 3921 | ret = do_sigtimedwait(which: &s, info: &info, ts: uts ? &t : NULL); |
| 3922 | |
| 3923 | if (ret > 0 && uinfo) { |
| 3924 | if (copy_siginfo_to_user32(to: uinfo, from: &info)) |
| 3925 | ret = -EFAULT; |
| 3926 | } |
| 3927 | |
| 3928 | return ret; |
| 3929 | } |
| 3930 | #endif |
| 3931 | #endif |
| 3932 | |
| 3933 | static void prepare_kill_siginfo(int sig, struct kernel_siginfo *info, |
| 3934 | enum pid_type type) |
| 3935 | { |
| 3936 | clear_siginfo(info); |
| 3937 | info->si_signo = sig; |
| 3938 | info->si_errno = 0; |
| 3939 | info->si_code = (type == PIDTYPE_PID) ? SI_TKILL : SI_USER; |
| 3940 | info->si_pid = task_tgid_vnr(current); |
| 3941 | info->si_uid = from_kuid_munged(to: current_user_ns(), current_uid()); |
| 3942 | } |
| 3943 | |
| 3944 | /** |
| 3945 | * sys_kill - send a signal to a process |
| 3946 | * @pid: the PID of the process |
| 3947 | * @sig: signal to be sent |
| 3948 | */ |
| 3949 | SYSCALL_DEFINE2(kill, pid_t, pid, int, sig) |
| 3950 | { |
| 3951 | struct kernel_siginfo info; |
| 3952 | |
| 3953 | prepare_kill_siginfo(sig, info: &info, type: PIDTYPE_TGID); |
| 3954 | |
| 3955 | return kill_something_info(sig, info: &info, pid); |
| 3956 | } |
| 3957 | |
| 3958 | /* |
| 3959 | * Verify that the signaler and signalee either are in the same pid namespace |
| 3960 | * or that the signaler's pid namespace is an ancestor of the signalee's pid |
| 3961 | * namespace. |
| 3962 | */ |
| 3963 | static bool access_pidfd_pidns(struct pid *pid) |
| 3964 | { |
| 3965 | struct pid_namespace *active = task_active_pid_ns(current); |
| 3966 | struct pid_namespace *p = ns_of_pid(pid); |
| 3967 | |
| 3968 | for (;;) { |
| 3969 | if (!p) |
| 3970 | return false; |
| 3971 | if (p == active) |
| 3972 | break; |
| 3973 | p = p->parent; |
| 3974 | } |
| 3975 | |
| 3976 | return true; |
| 3977 | } |
| 3978 | |
| 3979 | static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo, |
| 3980 | siginfo_t __user *info) |
| 3981 | { |
| 3982 | #ifdef CONFIG_COMPAT |
| 3983 | /* |
| 3984 | * Avoid hooking up compat syscalls and instead handle necessary |
| 3985 | * conversions here. Note, this is a stop-gap measure and should not be |
| 3986 | * considered a generic solution. |
| 3987 | */ |
| 3988 | if (in_compat_syscall()) |
| 3989 | return copy_siginfo_from_user32( |
| 3990 | to: kinfo, ufrom: (struct compat_siginfo __user *)info); |
| 3991 | #endif |
| 3992 | return copy_siginfo_from_user(to: kinfo, from: info); |
| 3993 | } |
| 3994 | |
| 3995 | static struct pid *pidfd_to_pid(const struct file *file) |
| 3996 | { |
| 3997 | struct pid *pid; |
| 3998 | |
| 3999 | pid = pidfd_pid(file); |
| 4000 | if (!IS_ERR(ptr: pid)) |
| 4001 | return pid; |
| 4002 | |
| 4003 | return tgid_pidfd_to_pid(file); |
| 4004 | } |
| 4005 | |
| 4006 | #define PIDFD_SEND_SIGNAL_FLAGS \ |
| 4007 | (PIDFD_SIGNAL_THREAD | PIDFD_SIGNAL_THREAD_GROUP | \ |
| 4008 | PIDFD_SIGNAL_PROCESS_GROUP) |
| 4009 | |
| 4010 | static int do_pidfd_send_signal(struct pid *pid, int sig, enum pid_type type, |
| 4011 | siginfo_t __user *info, unsigned int flags) |
| 4012 | { |
| 4013 | kernel_siginfo_t kinfo; |
| 4014 | |
| 4015 | switch (flags) { |
| 4016 | case PIDFD_SIGNAL_THREAD: |
| 4017 | type = PIDTYPE_PID; |
| 4018 | break; |
| 4019 | case PIDFD_SIGNAL_THREAD_GROUP: |
| 4020 | type = PIDTYPE_TGID; |
| 4021 | break; |
| 4022 | case PIDFD_SIGNAL_PROCESS_GROUP: |
| 4023 | type = PIDTYPE_PGID; |
| 4024 | break; |
| 4025 | } |
| 4026 | |
| 4027 | if (info) { |
| 4028 | int ret; |
| 4029 | |
| 4030 | ret = copy_siginfo_from_user_any(kinfo: &kinfo, info); |
| 4031 | if (unlikely(ret)) |
| 4032 | return ret; |
| 4033 | |
| 4034 | if (unlikely(sig != kinfo.si_signo)) |
| 4035 | return -EINVAL; |
| 4036 | |
| 4037 | /* Only allow sending arbitrary signals to yourself. */ |
| 4038 | if ((task_pid(current) != pid || type > PIDTYPE_TGID) && |
| 4039 | (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL)) |
| 4040 | return -EPERM; |
| 4041 | } else { |
| 4042 | prepare_kill_siginfo(sig, info: &kinfo, type); |
| 4043 | } |
| 4044 | |
| 4045 | if (type == PIDTYPE_PGID) |
| 4046 | return kill_pgrp_info(sig, info: &kinfo, pgrp: pid); |
| 4047 | |
| 4048 | return kill_pid_info_type(sig, info: &kinfo, pid, type); |
| 4049 | } |
| 4050 | |
| 4051 | /** |
| 4052 | * sys_pidfd_send_signal - Signal a process through a pidfd |
| 4053 | * @pidfd: file descriptor of the process |
| 4054 | * @sig: signal to send |
| 4055 | * @info: signal info |
| 4056 | * @flags: future flags |
| 4057 | * |
| 4058 | * Send the signal to the thread group or to the individual thread depending |
| 4059 | * on PIDFD_THREAD. |
| 4060 | * In the future extension to @flags may be used to override the default scope |
| 4061 | * of @pidfd. |
| 4062 | * |
| 4063 | * Return: 0 on success, negative errno on failure |
| 4064 | */ |
| 4065 | SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig, |
| 4066 | siginfo_t __user *, info, unsigned int, flags) |
| 4067 | { |
| 4068 | struct pid *pid; |
| 4069 | enum pid_type type; |
| 4070 | int ret; |
| 4071 | |
| 4072 | /* Enforce flags be set to 0 until we add an extension. */ |
| 4073 | if (flags & ~PIDFD_SEND_SIGNAL_FLAGS) |
| 4074 | return -EINVAL; |
| 4075 | |
| 4076 | /* Ensure that only a single signal scope determining flag is set. */ |
| 4077 | if (hweight32(flags & PIDFD_SEND_SIGNAL_FLAGS) > 1) |
| 4078 | return -EINVAL; |
| 4079 | |
| 4080 | switch (pidfd) { |
| 4081 | case PIDFD_SELF_THREAD: |
| 4082 | pid = get_task_pid(current, type: PIDTYPE_PID); |
| 4083 | type = PIDTYPE_PID; |
| 4084 | break; |
| 4085 | case PIDFD_SELF_THREAD_GROUP: |
| 4086 | pid = get_task_pid(current, type: PIDTYPE_TGID); |
| 4087 | type = PIDTYPE_TGID; |
| 4088 | break; |
| 4089 | default: { |
| 4090 | CLASS(fd, f)(fd: pidfd); |
| 4091 | if (fd_empty(f)) |
| 4092 | return -EBADF; |
| 4093 | |
| 4094 | /* Is this a pidfd? */ |
| 4095 | pid = pidfd_to_pid(fd_file(f)); |
| 4096 | if (IS_ERR(ptr: pid)) |
| 4097 | return PTR_ERR(ptr: pid); |
| 4098 | |
| 4099 | if (!access_pidfd_pidns(pid)) |
| 4100 | return -EINVAL; |
| 4101 | |
| 4102 | /* Infer scope from the type of pidfd. */ |
| 4103 | if (fd_file(f)->f_flags & PIDFD_THREAD) |
| 4104 | type = PIDTYPE_PID; |
| 4105 | else |
| 4106 | type = PIDTYPE_TGID; |
| 4107 | |
| 4108 | return do_pidfd_send_signal(pid, sig, type, info, flags); |
| 4109 | } |
| 4110 | } |
| 4111 | |
| 4112 | ret = do_pidfd_send_signal(pid, sig, type, info, flags); |
| 4113 | put_pid(pid); |
| 4114 | |
| 4115 | return ret; |
| 4116 | } |
| 4117 | |
| 4118 | static int |
| 4119 | do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info) |
| 4120 | { |
| 4121 | struct task_struct *p; |
| 4122 | int error = -ESRCH; |
| 4123 | |
| 4124 | rcu_read_lock(); |
| 4125 | p = find_task_by_vpid(nr: pid); |
| 4126 | if (p && (tgid <= 0 || task_tgid_vnr(tsk: p) == tgid)) { |
| 4127 | error = check_kill_permission(sig, info, t: p); |
| 4128 | /* |
| 4129 | * The null signal is a permissions and process existence |
| 4130 | * probe. No signal is actually delivered. |
| 4131 | */ |
| 4132 | if (!error && sig) { |
| 4133 | error = do_send_sig_info(sig, info, p, type: PIDTYPE_PID); |
| 4134 | /* |
| 4135 | * If lock_task_sighand() failed we pretend the task |
| 4136 | * dies after receiving the signal. The window is tiny, |
| 4137 | * and the signal is private anyway. |
| 4138 | */ |
| 4139 | if (unlikely(error == -ESRCH)) |
| 4140 | error = 0; |
| 4141 | } |
| 4142 | } |
| 4143 | rcu_read_unlock(); |
| 4144 | |
| 4145 | return error; |
| 4146 | } |
| 4147 | |
| 4148 | static int do_tkill(pid_t tgid, pid_t pid, int sig) |
| 4149 | { |
| 4150 | struct kernel_siginfo info; |
| 4151 | |
| 4152 | prepare_kill_siginfo(sig, info: &info, type: PIDTYPE_PID); |
| 4153 | |
| 4154 | return do_send_specific(tgid, pid, sig, info: &info); |
| 4155 | } |
| 4156 | |
| 4157 | /** |
| 4158 | * sys_tgkill - send signal to one specific thread |
| 4159 | * @tgid: the thread group ID of the thread |
| 4160 | * @pid: the PID of the thread |
| 4161 | * @sig: signal to be sent |
| 4162 | * |
| 4163 | * This syscall also checks the @tgid and returns -ESRCH even if the PID |
| 4164 | * exists but it's not belonging to the target process anymore. This |
| 4165 | * method solves the problem of threads exiting and PIDs getting reused. |
| 4166 | */ |
| 4167 | SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig) |
| 4168 | { |
| 4169 | /* This is only valid for single tasks */ |
| 4170 | if (pid <= 0 || tgid <= 0) |
| 4171 | return -EINVAL; |
| 4172 | |
| 4173 | return do_tkill(tgid, pid, sig); |
| 4174 | } |
| 4175 | |
| 4176 | /** |
| 4177 | * sys_tkill - send signal to one specific task |
| 4178 | * @pid: the PID of the task |
| 4179 | * @sig: signal to be sent |
| 4180 | * |
| 4181 | * Send a signal to only one task, even if it's a CLONE_THREAD task. |
| 4182 | */ |
| 4183 | SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig) |
| 4184 | { |
| 4185 | /* This is only valid for single tasks */ |
| 4186 | if (pid <= 0) |
| 4187 | return -EINVAL; |
| 4188 | |
| 4189 | return do_tkill(tgid: 0, pid, sig); |
| 4190 | } |
| 4191 | |
| 4192 | static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info) |
| 4193 | { |
| 4194 | /* Not even root can pretend to send signals from the kernel. |
| 4195 | * Nor can they impersonate a kill()/tgkill(), which adds source info. |
| 4196 | */ |
| 4197 | if ((info->si_code >= 0 || info->si_code == SI_TKILL) && |
| 4198 | (task_pid_vnr(current) != pid)) |
| 4199 | return -EPERM; |
| 4200 | |
| 4201 | /* POSIX.1b doesn't mention process groups. */ |
| 4202 | return kill_proc_info(sig, info, pid); |
| 4203 | } |
| 4204 | |
| 4205 | /** |
| 4206 | * sys_rt_sigqueueinfo - send signal information to a signal |
| 4207 | * @pid: the PID of the thread |
| 4208 | * @sig: signal to be sent |
| 4209 | * @uinfo: signal info to be sent |
| 4210 | */ |
| 4211 | SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig, |
| 4212 | siginfo_t __user *, uinfo) |
| 4213 | { |
| 4214 | kernel_siginfo_t info; |
| 4215 | int ret = __copy_siginfo_from_user(signo: sig, to: &info, from: uinfo); |
| 4216 | if (unlikely(ret)) |
| 4217 | return ret; |
| 4218 | return do_rt_sigqueueinfo(pid, sig, info: &info); |
| 4219 | } |
| 4220 | |
| 4221 | #ifdef CONFIG_COMPAT |
| 4222 | COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo, |
| 4223 | compat_pid_t, pid, |
| 4224 | int, sig, |
| 4225 | struct compat_siginfo __user *, uinfo) |
| 4226 | { |
| 4227 | kernel_siginfo_t info; |
| 4228 | int ret = __copy_siginfo_from_user32(signo: sig, to: &info, ufrom: uinfo); |
| 4229 | if (unlikely(ret)) |
| 4230 | return ret; |
| 4231 | return do_rt_sigqueueinfo(pid, sig, info: &info); |
| 4232 | } |
| 4233 | #endif |
| 4234 | |
| 4235 | static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info) |
| 4236 | { |
| 4237 | /* This is only valid for single tasks */ |
| 4238 | if (pid <= 0 || tgid <= 0) |
| 4239 | return -EINVAL; |
| 4240 | |
| 4241 | /* Not even root can pretend to send signals from the kernel. |
| 4242 | * Nor can they impersonate a kill()/tgkill(), which adds source info. |
| 4243 | */ |
| 4244 | if ((info->si_code >= 0 || info->si_code == SI_TKILL) && |
| 4245 | (task_pid_vnr(current) != pid)) |
| 4246 | return -EPERM; |
| 4247 | |
| 4248 | return do_send_specific(tgid, pid, sig, info); |
| 4249 | } |
| 4250 | |
| 4251 | SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig, |
| 4252 | siginfo_t __user *, uinfo) |
| 4253 | { |
| 4254 | kernel_siginfo_t info; |
| 4255 | int ret = __copy_siginfo_from_user(signo: sig, to: &info, from: uinfo); |
| 4256 | if (unlikely(ret)) |
| 4257 | return ret; |
| 4258 | return do_rt_tgsigqueueinfo(tgid, pid, sig, info: &info); |
| 4259 | } |
| 4260 | |
| 4261 | #ifdef CONFIG_COMPAT |
| 4262 | COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo, |
| 4263 | compat_pid_t, tgid, |
| 4264 | compat_pid_t, pid, |
| 4265 | int, sig, |
| 4266 | struct compat_siginfo __user *, uinfo) |
| 4267 | { |
| 4268 | kernel_siginfo_t info; |
| 4269 | int ret = __copy_siginfo_from_user32(signo: sig, to: &info, ufrom: uinfo); |
| 4270 | if (unlikely(ret)) |
| 4271 | return ret; |
| 4272 | return do_rt_tgsigqueueinfo(tgid, pid, sig, info: &info); |
| 4273 | } |
| 4274 | #endif |
| 4275 | |
| 4276 | /* |
| 4277 | * For kthreads only, must not be used if cloned with CLONE_SIGHAND |
| 4278 | */ |
| 4279 | void kernel_sigaction(int sig, __sighandler_t action) |
| 4280 | { |
| 4281 | spin_lock_irq(lock: ¤t->sighand->siglock); |
| 4282 | current->sighand->action[sig - 1].sa.sa_handler = action; |
| 4283 | if (action == SIG_IGN) { |
| 4284 | sigset_t mask; |
| 4285 | |
| 4286 | sigemptyset(set: &mask); |
| 4287 | sigaddset(set: &mask, sig: sig); |
| 4288 | |
| 4289 | flush_sigqueue_mask(current, mask: &mask, s: ¤t->signal->shared_pending); |
| 4290 | flush_sigqueue_mask(current, mask: &mask, s: ¤t->pending); |
| 4291 | recalc_sigpending(); |
| 4292 | } |
| 4293 | spin_unlock_irq(lock: ¤t->sighand->siglock); |
| 4294 | } |
| 4295 | EXPORT_SYMBOL(kernel_sigaction); |
| 4296 | |
| 4297 | void __weak sigaction_compat_abi(struct k_sigaction *act, |
| 4298 | struct k_sigaction *oact) |
| 4299 | { |
| 4300 | } |
| 4301 | |
| 4302 | int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) |
| 4303 | { |
| 4304 | struct task_struct *p = current, *t; |
| 4305 | struct k_sigaction *k; |
| 4306 | sigset_t mask; |
| 4307 | |
| 4308 | if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) |
| 4309 | return -EINVAL; |
| 4310 | |
| 4311 | k = &p->sighand->action[sig-1]; |
| 4312 | |
| 4313 | spin_lock_irq(lock: &p->sighand->siglock); |
| 4314 | if (k->sa.sa_flags & SA_IMMUTABLE) { |
| 4315 | spin_unlock_irq(lock: &p->sighand->siglock); |
| 4316 | return -EINVAL; |
| 4317 | } |
| 4318 | if (oact) |
| 4319 | *oact = *k; |
| 4320 | |
| 4321 | /* |
| 4322 | * Make sure that we never accidentally claim to support SA_UNSUPPORTED, |
| 4323 | * e.g. by having an architecture use the bit in their uapi. |
| 4324 | */ |
| 4325 | BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED); |
| 4326 | |
| 4327 | /* |
| 4328 | * Clear unknown flag bits in order to allow userspace to detect missing |
| 4329 | * support for flag bits and to allow the kernel to use non-uapi bits |
| 4330 | * internally. |
| 4331 | */ |
| 4332 | if (act) |
| 4333 | act->sa.sa_flags &= UAPI_SA_FLAGS; |
| 4334 | if (oact) |
| 4335 | oact->sa.sa_flags &= UAPI_SA_FLAGS; |
| 4336 | |
| 4337 | sigaction_compat_abi(act, oact); |
| 4338 | |
| 4339 | if (act) { |
| 4340 | bool was_ignored = k->sa.sa_handler == SIG_IGN; |
| 4341 | |
| 4342 | sigdelsetmask(set: &act->sa.sa_mask, |
| 4343 | sigmask(SIGKILL) | sigmask(SIGSTOP)); |
| 4344 | *k = *act; |
| 4345 | /* |
| 4346 | * POSIX 3.3.1.3: |
| 4347 | * "Setting a signal action to SIG_IGN for a signal that is |
| 4348 | * pending shall cause the pending signal to be discarded, |
| 4349 | * whether or not it is blocked." |
| 4350 | * |
| 4351 | * "Setting a signal action to SIG_DFL for a signal that is |
| 4352 | * pending and whose default action is to ignore the signal |
| 4353 | * (for example, SIGCHLD), shall cause the pending signal to |
| 4354 | * be discarded, whether or not it is blocked" |
| 4355 | */ |
| 4356 | if (sig_handler_ignored(handler: sig_handler(t: p, sig), sig)) { |
| 4357 | sigemptyset(set: &mask); |
| 4358 | sigaddset(set: &mask, sig: sig); |
| 4359 | flush_sigqueue_mask(p, mask: &mask, s: &p->signal->shared_pending); |
| 4360 | for_each_thread(p, t) |
| 4361 | flush_sigqueue_mask(p, mask: &mask, s: &t->pending); |
| 4362 | } else if (was_ignored) { |
| 4363 | posixtimer_sig_unignore(tsk: p, sig); |
| 4364 | } |
| 4365 | } |
| 4366 | |
| 4367 | spin_unlock_irq(lock: &p->sighand->siglock); |
| 4368 | return 0; |
| 4369 | } |
| 4370 | |
| 4371 | #ifdef CONFIG_DYNAMIC_SIGFRAME |
| 4372 | static inline void sigaltstack_lock(void) |
| 4373 | __acquires(¤t->sighand->siglock) |
| 4374 | { |
| 4375 | spin_lock_irq(lock: ¤t->sighand->siglock); |
| 4376 | } |
| 4377 | |
| 4378 | static inline void sigaltstack_unlock(void) |
| 4379 | __releases(¤t->sighand->siglock) |
| 4380 | { |
| 4381 | spin_unlock_irq(lock: ¤t->sighand->siglock); |
| 4382 | } |
| 4383 | #else |
| 4384 | static inline void sigaltstack_lock(void) { } |
| 4385 | static inline void sigaltstack_unlock(void) { } |
| 4386 | #endif |
| 4387 | |
| 4388 | static int |
| 4389 | do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp, |
| 4390 | size_t min_ss_size) |
| 4391 | { |
| 4392 | struct task_struct *t = current; |
| 4393 | int ret = 0; |
| 4394 | |
| 4395 | if (oss) { |
| 4396 | memset(s: oss, c: 0, n: sizeof(stack_t)); |
| 4397 | oss->ss_sp = (void __user *) t->sas_ss_sp; |
| 4398 | oss->ss_size = t->sas_ss_size; |
| 4399 | oss->ss_flags = sas_ss_flags(sp) | |
| 4400 | (current->sas_ss_flags & SS_FLAG_BITS); |
| 4401 | } |
| 4402 | |
| 4403 | if (ss) { |
| 4404 | void __user *ss_sp = ss->ss_sp; |
| 4405 | size_t ss_size = ss->ss_size; |
| 4406 | unsigned ss_flags = ss->ss_flags; |
| 4407 | int ss_mode; |
| 4408 | |
| 4409 | if (unlikely(on_sig_stack(sp))) |
| 4410 | return -EPERM; |
| 4411 | |
| 4412 | ss_mode = ss_flags & ~SS_FLAG_BITS; |
| 4413 | if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK && |
| 4414 | ss_mode != 0)) |
| 4415 | return -EINVAL; |
| 4416 | |
| 4417 | /* |
| 4418 | * Return before taking any locks if no actual |
| 4419 | * sigaltstack changes were requested. |
| 4420 | */ |
| 4421 | if (t->sas_ss_sp == (unsigned long)ss_sp && |
| 4422 | t->sas_ss_size == ss_size && |
| 4423 | t->sas_ss_flags == ss_flags) |
| 4424 | return 0; |
| 4425 | |
| 4426 | sigaltstack_lock(); |
| 4427 | if (ss_mode == SS_DISABLE) { |
| 4428 | ss_size = 0; |
| 4429 | ss_sp = NULL; |
| 4430 | } else { |
| 4431 | if (unlikely(ss_size < min_ss_size)) |
| 4432 | ret = -ENOMEM; |
| 4433 | if (!sigaltstack_size_valid(ss_size)) |
| 4434 | ret = -ENOMEM; |
| 4435 | } |
| 4436 | if (!ret) { |
| 4437 | t->sas_ss_sp = (unsigned long) ss_sp; |
| 4438 | t->sas_ss_size = ss_size; |
| 4439 | t->sas_ss_flags = ss_flags; |
| 4440 | } |
| 4441 | sigaltstack_unlock(); |
| 4442 | } |
| 4443 | return ret; |
| 4444 | } |
| 4445 | |
| 4446 | SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss) |
| 4447 | { |
| 4448 | stack_t new, old; |
| 4449 | int err; |
| 4450 | if (uss && copy_from_user(to: &new, from: uss, n: sizeof(stack_t))) |
| 4451 | return -EFAULT; |
| 4452 | err = do_sigaltstack(ss: uss ? &new : NULL, oss: uoss ? &old : NULL, |
| 4453 | current_user_stack_pointer(), |
| 4454 | MINSIGSTKSZ); |
| 4455 | if (!err && uoss && copy_to_user(to: uoss, from: &old, n: sizeof(stack_t))) |
| 4456 | err = -EFAULT; |
| 4457 | return err; |
| 4458 | } |
| 4459 | |
| 4460 | int restore_altstack(const stack_t __user *uss) |
| 4461 | { |
| 4462 | stack_t new; |
| 4463 | if (copy_from_user(to: &new, from: uss, n: sizeof(stack_t))) |
| 4464 | return -EFAULT; |
| 4465 | (void)do_sigaltstack(ss: &new, NULL, current_user_stack_pointer(), |
| 4466 | MINSIGSTKSZ); |
| 4467 | /* squash all but EFAULT for now */ |
| 4468 | return 0; |
| 4469 | } |
| 4470 | |
| 4471 | int __save_altstack(stack_t __user *uss, unsigned long sp) |
| 4472 | { |
| 4473 | struct task_struct *t = current; |
| 4474 | int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) | |
| 4475 | __put_user(t->sas_ss_flags, &uss->ss_flags) | |
| 4476 | __put_user(t->sas_ss_size, &uss->ss_size); |
| 4477 | return err; |
| 4478 | } |
| 4479 | |
| 4480 | #ifdef CONFIG_COMPAT |
| 4481 | static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr, |
| 4482 | compat_stack_t __user *uoss_ptr) |
| 4483 | { |
| 4484 | stack_t uss, uoss; |
| 4485 | int ret; |
| 4486 | |
| 4487 | if (uss_ptr) { |
| 4488 | compat_stack_t uss32; |
| 4489 | if (copy_from_user(to: &uss32, from: uss_ptr, n: sizeof(compat_stack_t))) |
| 4490 | return -EFAULT; |
| 4491 | uss.ss_sp = compat_ptr(uptr: uss32.ss_sp); |
| 4492 | uss.ss_flags = uss32.ss_flags; |
| 4493 | uss.ss_size = uss32.ss_size; |
| 4494 | } |
| 4495 | ret = do_sigaltstack(ss: uss_ptr ? &uss : NULL, oss: &uoss, |
| 4496 | compat_user_stack_pointer(), |
| 4497 | COMPAT_MINSIGSTKSZ); |
| 4498 | if (ret >= 0 && uoss_ptr) { |
| 4499 | compat_stack_t old; |
| 4500 | memset(s: &old, c: 0, n: sizeof(old)); |
| 4501 | old.ss_sp = ptr_to_compat(uptr: uoss.ss_sp); |
| 4502 | old.ss_flags = uoss.ss_flags; |
| 4503 | old.ss_size = uoss.ss_size; |
| 4504 | if (copy_to_user(to: uoss_ptr, from: &old, n: sizeof(compat_stack_t))) |
| 4505 | ret = -EFAULT; |
| 4506 | } |
| 4507 | return ret; |
| 4508 | } |
| 4509 | |
| 4510 | COMPAT_SYSCALL_DEFINE2(sigaltstack, |
| 4511 | const compat_stack_t __user *, uss_ptr, |
| 4512 | compat_stack_t __user *, uoss_ptr) |
| 4513 | { |
| 4514 | return do_compat_sigaltstack(uss_ptr, uoss_ptr); |
| 4515 | } |
| 4516 | |
| 4517 | int compat_restore_altstack(const compat_stack_t __user *uss) |
| 4518 | { |
| 4519 | int err = do_compat_sigaltstack(uss_ptr: uss, NULL); |
| 4520 | /* squash all but -EFAULT for now */ |
| 4521 | return err == -EFAULT ? err : 0; |
| 4522 | } |
| 4523 | |
| 4524 | int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp) |
| 4525 | { |
| 4526 | int err; |
| 4527 | struct task_struct *t = current; |
| 4528 | err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), |
| 4529 | &uss->ss_sp) | |
| 4530 | __put_user(t->sas_ss_flags, &uss->ss_flags) | |
| 4531 | __put_user(t->sas_ss_size, &uss->ss_size); |
| 4532 | return err; |
| 4533 | } |
| 4534 | #endif |
| 4535 | |
| 4536 | #ifdef __ARCH_WANT_SYS_SIGPENDING |
| 4537 | |
| 4538 | /** |
| 4539 | * sys_sigpending - examine pending signals |
| 4540 | * @uset: where mask of pending signal is returned |
| 4541 | */ |
| 4542 | SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset) |
| 4543 | { |
| 4544 | sigset_t set; |
| 4545 | |
| 4546 | if (sizeof(old_sigset_t) > sizeof(*uset)) |
| 4547 | return -EINVAL; |
| 4548 | |
| 4549 | do_sigpending(set: &set); |
| 4550 | |
| 4551 | if (copy_to_user(to: uset, from: &set, n: sizeof(old_sigset_t))) |
| 4552 | return -EFAULT; |
| 4553 | |
| 4554 | return 0; |
| 4555 | } |
| 4556 | |
| 4557 | #ifdef CONFIG_COMPAT |
| 4558 | COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32) |
| 4559 | { |
| 4560 | sigset_t set; |
| 4561 | |
| 4562 | do_sigpending(set: &set); |
| 4563 | |
| 4564 | return put_user(set.sig[0], set32); |
| 4565 | } |
| 4566 | #endif |
| 4567 | |
| 4568 | #endif |
| 4569 | |
| 4570 | #ifdef __ARCH_WANT_SYS_SIGPROCMASK |
| 4571 | /** |
| 4572 | * sys_sigprocmask - examine and change blocked signals |
| 4573 | * @how: whether to add, remove, or set signals |
| 4574 | * @nset: signals to add or remove (if non-null) |
| 4575 | * @oset: previous value of signal mask if non-null |
| 4576 | * |
| 4577 | * Some platforms have their own version with special arguments; |
| 4578 | * others support only sys_rt_sigprocmask. |
| 4579 | */ |
| 4580 | |
| 4581 | SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset, |
| 4582 | old_sigset_t __user *, oset) |
| 4583 | { |
| 4584 | old_sigset_t old_set, new_set; |
| 4585 | sigset_t new_blocked; |
| 4586 | |
| 4587 | old_set = current->blocked.sig[0]; |
| 4588 | |
| 4589 | if (nset) { |
| 4590 | if (copy_from_user(to: &new_set, from: nset, n: sizeof(*nset))) |
| 4591 | return -EFAULT; |
| 4592 | |
| 4593 | new_blocked = current->blocked; |
| 4594 | |
| 4595 | switch (how) { |
| 4596 | case SIG_BLOCK: |
| 4597 | sigaddsetmask(set: &new_blocked, mask: new_set); |
| 4598 | break; |
| 4599 | case SIG_UNBLOCK: |
| 4600 | sigdelsetmask(set: &new_blocked, mask: new_set); |
| 4601 | break; |
| 4602 | case SIG_SETMASK: |
| 4603 | new_blocked.sig[0] = new_set; |
| 4604 | break; |
| 4605 | default: |
| 4606 | return -EINVAL; |
| 4607 | } |
| 4608 | |
| 4609 | set_current_blocked(&new_blocked); |
| 4610 | } |
| 4611 | |
| 4612 | if (oset) { |
| 4613 | if (copy_to_user(to: oset, from: &old_set, n: sizeof(*oset))) |
| 4614 | return -EFAULT; |
| 4615 | } |
| 4616 | |
| 4617 | return 0; |
| 4618 | } |
| 4619 | #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ |
| 4620 | |
| 4621 | #ifndef CONFIG_ODD_RT_SIGACTION |
| 4622 | /** |
| 4623 | * sys_rt_sigaction - alter an action taken by a process |
| 4624 | * @sig: signal to be sent |
| 4625 | * @act: new sigaction |
| 4626 | * @oact: used to save the previous sigaction |
| 4627 | * @sigsetsize: size of sigset_t type |
| 4628 | */ |
| 4629 | SYSCALL_DEFINE4(rt_sigaction, int, sig, |
| 4630 | const struct sigaction __user *, act, |
| 4631 | struct sigaction __user *, oact, |
| 4632 | size_t, sigsetsize) |
| 4633 | { |
| 4634 | struct k_sigaction new_sa, old_sa; |
| 4635 | int ret; |
| 4636 | |
| 4637 | /* XXX: Don't preclude handling different sized sigset_t's. */ |
| 4638 | if (sigsetsize != sizeof(sigset_t)) |
| 4639 | return -EINVAL; |
| 4640 | |
| 4641 | if (act && copy_from_user(to: &new_sa.sa, from: act, n: sizeof(new_sa.sa))) |
| 4642 | return -EFAULT; |
| 4643 | |
| 4644 | ret = do_sigaction(sig, act: act ? &new_sa : NULL, oact: oact ? &old_sa : NULL); |
| 4645 | if (ret) |
| 4646 | return ret; |
| 4647 | |
| 4648 | if (oact && copy_to_user(to: oact, from: &old_sa.sa, n: sizeof(old_sa.sa))) |
| 4649 | return -EFAULT; |
| 4650 | |
| 4651 | return 0; |
| 4652 | } |
| 4653 | #ifdef CONFIG_COMPAT |
| 4654 | COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig, |
| 4655 | const struct compat_sigaction __user *, act, |
| 4656 | struct compat_sigaction __user *, oact, |
| 4657 | compat_size_t, sigsetsize) |
| 4658 | { |
| 4659 | struct k_sigaction new_ka, old_ka; |
| 4660 | #ifdef __ARCH_HAS_SA_RESTORER |
| 4661 | compat_uptr_t restorer; |
| 4662 | #endif |
| 4663 | int ret; |
| 4664 | |
| 4665 | /* XXX: Don't preclude handling different sized sigset_t's. */ |
| 4666 | if (sigsetsize != sizeof(compat_sigset_t)) |
| 4667 | return -EINVAL; |
| 4668 | |
| 4669 | if (act) { |
| 4670 | compat_uptr_t handler; |
| 4671 | ret = get_user(handler, &act->sa_handler); |
| 4672 | new_ka.sa.sa_handler = compat_ptr(uptr: handler); |
| 4673 | #ifdef __ARCH_HAS_SA_RESTORER |
| 4674 | ret |= get_user(restorer, &act->sa_restorer); |
| 4675 | new_ka.sa.sa_restorer = compat_ptr(uptr: restorer); |
| 4676 | #endif |
| 4677 | ret |= get_compat_sigset(set: &new_ka.sa.sa_mask, compat: &act->sa_mask); |
| 4678 | ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags); |
| 4679 | if (ret) |
| 4680 | return -EFAULT; |
| 4681 | } |
| 4682 | |
| 4683 | ret = do_sigaction(sig, act: act ? &new_ka : NULL, oact: oact ? &old_ka : NULL); |
| 4684 | if (!ret && oact) { |
| 4685 | ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), |
| 4686 | &oact->sa_handler); |
| 4687 | ret |= put_compat_sigset(compat: &oact->sa_mask, set: &old_ka.sa.sa_mask, |
| 4688 | size: sizeof(oact->sa_mask)); |
| 4689 | ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags); |
| 4690 | #ifdef __ARCH_HAS_SA_RESTORER |
| 4691 | ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer), |
| 4692 | &oact->sa_restorer); |
| 4693 | #endif |
| 4694 | } |
| 4695 | return ret; |
| 4696 | } |
| 4697 | #endif |
| 4698 | #endif /* !CONFIG_ODD_RT_SIGACTION */ |
| 4699 | |
| 4700 | #ifdef CONFIG_OLD_SIGACTION |
| 4701 | SYSCALL_DEFINE3(sigaction, int, sig, |
| 4702 | const struct old_sigaction __user *, act, |
| 4703 | struct old_sigaction __user *, oact) |
| 4704 | { |
| 4705 | struct k_sigaction new_ka, old_ka; |
| 4706 | int ret; |
| 4707 | |
| 4708 | if (act) { |
| 4709 | old_sigset_t mask; |
| 4710 | if (!access_ok(act, sizeof(*act)) || |
| 4711 | __get_user(new_ka.sa.sa_handler, &act->sa_handler) || |
| 4712 | __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) || |
| 4713 | __get_user(new_ka.sa.sa_flags, &act->sa_flags) || |
| 4714 | __get_user(mask, &act->sa_mask)) |
| 4715 | return -EFAULT; |
| 4716 | #ifdef __ARCH_HAS_KA_RESTORER |
| 4717 | new_ka.ka_restorer = NULL; |
| 4718 | #endif |
| 4719 | siginitset(&new_ka.sa.sa_mask, mask); |
| 4720 | } |
| 4721 | |
| 4722 | ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); |
| 4723 | |
| 4724 | if (!ret && oact) { |
| 4725 | if (!access_ok(oact, sizeof(*oact)) || |
| 4726 | __put_user(old_ka.sa.sa_handler, &oact->sa_handler) || |
| 4727 | __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) || |
| 4728 | __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || |
| 4729 | __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) |
| 4730 | return -EFAULT; |
| 4731 | } |
| 4732 | |
| 4733 | return ret; |
| 4734 | } |
| 4735 | #endif |
| 4736 | #ifdef CONFIG_COMPAT_OLD_SIGACTION |
| 4737 | COMPAT_SYSCALL_DEFINE3(sigaction, int, sig, |
| 4738 | const struct compat_old_sigaction __user *, act, |
| 4739 | struct compat_old_sigaction __user *, oact) |
| 4740 | { |
| 4741 | struct k_sigaction new_ka, old_ka; |
| 4742 | int ret; |
| 4743 | compat_old_sigset_t mask; |
| 4744 | compat_uptr_t handler, restorer; |
| 4745 | |
| 4746 | if (act) { |
| 4747 | if (!access_ok(act, sizeof(*act)) || |
| 4748 | __get_user(handler, &act->sa_handler) || |
| 4749 | __get_user(restorer, &act->sa_restorer) || |
| 4750 | __get_user(new_ka.sa.sa_flags, &act->sa_flags) || |
| 4751 | __get_user(mask, &act->sa_mask)) |
| 4752 | return -EFAULT; |
| 4753 | |
| 4754 | #ifdef __ARCH_HAS_KA_RESTORER |
| 4755 | new_ka.ka_restorer = NULL; |
| 4756 | #endif |
| 4757 | new_ka.sa.sa_handler = compat_ptr(uptr: handler); |
| 4758 | new_ka.sa.sa_restorer = compat_ptr(uptr: restorer); |
| 4759 | siginitset(set: &new_ka.sa.sa_mask, mask); |
| 4760 | } |
| 4761 | |
| 4762 | ret = do_sigaction(sig, act: act ? &new_ka : NULL, oact: oact ? &old_ka : NULL); |
| 4763 | |
| 4764 | if (!ret && oact) { |
| 4765 | if (!access_ok(oact, sizeof(*oact)) || |
| 4766 | __put_user(ptr_to_compat(old_ka.sa.sa_handler), |
| 4767 | &oact->sa_handler) || |
| 4768 | __put_user(ptr_to_compat(old_ka.sa.sa_restorer), |
| 4769 | &oact->sa_restorer) || |
| 4770 | __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || |
| 4771 | __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) |
| 4772 | return -EFAULT; |
| 4773 | } |
| 4774 | return ret; |
| 4775 | } |
| 4776 | #endif |
| 4777 | |
| 4778 | #ifdef CONFIG_SGETMASK_SYSCALL |
| 4779 | |
| 4780 | /* |
| 4781 | * For backwards compatibility. Functionality superseded by sigprocmask. |
| 4782 | */ |
| 4783 | SYSCALL_DEFINE0(sgetmask) |
| 4784 | { |
| 4785 | /* SMP safe */ |
| 4786 | return current->blocked.sig[0]; |
| 4787 | } |
| 4788 | |
| 4789 | SYSCALL_DEFINE1(ssetmask, int, newmask) |
| 4790 | { |
| 4791 | int old = current->blocked.sig[0]; |
| 4792 | sigset_t newset; |
| 4793 | |
| 4794 | siginitset(set: &newset, mask: newmask); |
| 4795 | set_current_blocked(&newset); |
| 4796 | |
| 4797 | return old; |
| 4798 | } |
| 4799 | #endif /* CONFIG_SGETMASK_SYSCALL */ |
| 4800 | |
| 4801 | #ifdef __ARCH_WANT_SYS_SIGNAL |
| 4802 | /* |
| 4803 | * For backwards compatibility. Functionality superseded by sigaction. |
| 4804 | */ |
| 4805 | SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler) |
| 4806 | { |
| 4807 | struct k_sigaction new_sa, old_sa; |
| 4808 | int ret; |
| 4809 | |
| 4810 | new_sa.sa.sa_handler = handler; |
| 4811 | new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; |
| 4812 | sigemptyset(set: &new_sa.sa.sa_mask); |
| 4813 | |
| 4814 | ret = do_sigaction(sig, act: &new_sa, oact: &old_sa); |
| 4815 | |
| 4816 | return ret ? ret : (unsigned long)old_sa.sa.sa_handler; |
| 4817 | } |
| 4818 | #endif /* __ARCH_WANT_SYS_SIGNAL */ |
| 4819 | |
| 4820 | #ifdef __ARCH_WANT_SYS_PAUSE |
| 4821 | |
| 4822 | SYSCALL_DEFINE0(pause) |
| 4823 | { |
| 4824 | while (!signal_pending(current)) { |
| 4825 | __set_current_state(TASK_INTERRUPTIBLE); |
| 4826 | schedule(); |
| 4827 | } |
| 4828 | return -ERESTARTNOHAND; |
| 4829 | } |
| 4830 | |
| 4831 | #endif |
| 4832 | |
| 4833 | static int sigsuspend(sigset_t *set) |
| 4834 | { |
| 4835 | current->saved_sigmask = current->blocked; |
| 4836 | set_current_blocked(set); |
| 4837 | |
| 4838 | while (!signal_pending(current)) { |
| 4839 | __set_current_state(TASK_INTERRUPTIBLE); |
| 4840 | schedule(); |
| 4841 | } |
| 4842 | set_restore_sigmask(); |
| 4843 | return -ERESTARTNOHAND; |
| 4844 | } |
| 4845 | |
| 4846 | /** |
| 4847 | * sys_rt_sigsuspend - replace the signal mask for a value with the |
| 4848 | * @unewset value until a signal is received |
| 4849 | * @unewset: new signal mask value |
| 4850 | * @sigsetsize: size of sigset_t type |
| 4851 | */ |
| 4852 | SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize) |
| 4853 | { |
| 4854 | sigset_t newset; |
| 4855 | |
| 4856 | /* XXX: Don't preclude handling different sized sigset_t's. */ |
| 4857 | if (sigsetsize != sizeof(sigset_t)) |
| 4858 | return -EINVAL; |
| 4859 | |
| 4860 | if (copy_from_user(to: &newset, from: unewset, n: sizeof(newset))) |
| 4861 | return -EFAULT; |
| 4862 | return sigsuspend(set: &newset); |
| 4863 | } |
| 4864 | |
| 4865 | #ifdef CONFIG_COMPAT |
| 4866 | COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize) |
| 4867 | { |
| 4868 | sigset_t newset; |
| 4869 | |
| 4870 | /* XXX: Don't preclude handling different sized sigset_t's. */ |
| 4871 | if (sigsetsize != sizeof(sigset_t)) |
| 4872 | return -EINVAL; |
| 4873 | |
| 4874 | if (get_compat_sigset(set: &newset, compat: unewset)) |
| 4875 | return -EFAULT; |
| 4876 | return sigsuspend(set: &newset); |
| 4877 | } |
| 4878 | #endif |
| 4879 | |
| 4880 | #ifdef CONFIG_OLD_SIGSUSPEND |
| 4881 | SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask) |
| 4882 | { |
| 4883 | sigset_t blocked; |
| 4884 | siginitset(&blocked, mask); |
| 4885 | return sigsuspend(&blocked); |
| 4886 | } |
| 4887 | #endif |
| 4888 | #ifdef CONFIG_OLD_SIGSUSPEND3 |
| 4889 | SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask) |
| 4890 | { |
| 4891 | sigset_t blocked; |
| 4892 | siginitset(set: &blocked, mask); |
| 4893 | return sigsuspend(set: &blocked); |
| 4894 | } |
| 4895 | #endif |
| 4896 | |
| 4897 | __weak const char *arch_vma_name(struct vm_area_struct *vma) |
| 4898 | { |
| 4899 | return NULL; |
| 4900 | } |
| 4901 | |
| 4902 | static inline void siginfo_buildtime_checks(void) |
| 4903 | { |
| 4904 | BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE); |
| 4905 | |
| 4906 | /* Verify the offsets in the two siginfos match */ |
| 4907 | #define CHECK_OFFSET(field) \ |
| 4908 | BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field)) |
| 4909 | |
| 4910 | /* kill */ |
| 4911 | CHECK_OFFSET(si_pid); |
| 4912 | CHECK_OFFSET(si_uid); |
| 4913 | |
| 4914 | /* timer */ |
| 4915 | CHECK_OFFSET(si_tid); |
| 4916 | CHECK_OFFSET(si_overrun); |
| 4917 | CHECK_OFFSET(si_value); |
| 4918 | |
| 4919 | /* rt */ |
| 4920 | CHECK_OFFSET(si_pid); |
| 4921 | CHECK_OFFSET(si_uid); |
| 4922 | CHECK_OFFSET(si_value); |
| 4923 | |
| 4924 | /* sigchld */ |
| 4925 | CHECK_OFFSET(si_pid); |
| 4926 | CHECK_OFFSET(si_uid); |
| 4927 | CHECK_OFFSET(si_status); |
| 4928 | CHECK_OFFSET(si_utime); |
| 4929 | CHECK_OFFSET(si_stime); |
| 4930 | |
| 4931 | /* sigfault */ |
| 4932 | CHECK_OFFSET(si_addr); |
| 4933 | CHECK_OFFSET(si_trapno); |
| 4934 | CHECK_OFFSET(si_addr_lsb); |
| 4935 | CHECK_OFFSET(si_lower); |
| 4936 | CHECK_OFFSET(si_upper); |
| 4937 | CHECK_OFFSET(si_pkey); |
| 4938 | CHECK_OFFSET(si_perf_data); |
| 4939 | CHECK_OFFSET(si_perf_type); |
| 4940 | CHECK_OFFSET(si_perf_flags); |
| 4941 | |
| 4942 | /* sigpoll */ |
| 4943 | CHECK_OFFSET(si_band); |
| 4944 | CHECK_OFFSET(si_fd); |
| 4945 | |
| 4946 | /* sigsys */ |
| 4947 | CHECK_OFFSET(si_call_addr); |
| 4948 | CHECK_OFFSET(si_syscall); |
| 4949 | CHECK_OFFSET(si_arch); |
| 4950 | #undef CHECK_OFFSET |
| 4951 | |
| 4952 | /* usb asyncio */ |
| 4953 | BUILD_BUG_ON(offsetof(struct siginfo, si_pid) != |
| 4954 | offsetof(struct siginfo, si_addr)); |
| 4955 | if (sizeof(int) == sizeof(void __user *)) { |
| 4956 | BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) != |
| 4957 | sizeof(void __user *)); |
| 4958 | } else { |
| 4959 | BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) + |
| 4960 | sizeof_field(struct siginfo, si_uid)) != |
| 4961 | sizeof(void __user *)); |
| 4962 | BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) != |
| 4963 | offsetof(struct siginfo, si_uid)); |
| 4964 | } |
| 4965 | #ifdef CONFIG_COMPAT |
| 4966 | BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) != |
| 4967 | offsetof(struct compat_siginfo, si_addr)); |
| 4968 | BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) != |
| 4969 | sizeof(compat_uptr_t)); |
| 4970 | BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) != |
| 4971 | sizeof_field(struct siginfo, si_pid)); |
| 4972 | #endif |
| 4973 | } |
| 4974 | |
| 4975 | #if defined(CONFIG_SYSCTL) |
| 4976 | static const struct ctl_table signal_debug_table[] = { |
| 4977 | #ifdef CONFIG_SYSCTL_EXCEPTION_TRACE |
| 4978 | { |
| 4979 | .procname = "exception-trace" , |
| 4980 | .data = &show_unhandled_signals, |
| 4981 | .maxlen = sizeof(int), |
| 4982 | .mode = 0644, |
| 4983 | .proc_handler = proc_dointvec |
| 4984 | }, |
| 4985 | #endif |
| 4986 | }; |
| 4987 | |
| 4988 | static const struct ctl_table signal_table[] = { |
| 4989 | { |
| 4990 | .procname = "print-fatal-signals" , |
| 4991 | .data = &print_fatal_signals, |
| 4992 | .maxlen = sizeof(int), |
| 4993 | .mode = 0644, |
| 4994 | .proc_handler = proc_dointvec, |
| 4995 | }, |
| 4996 | }; |
| 4997 | |
| 4998 | static int __init init_signal_sysctls(void) |
| 4999 | { |
| 5000 | register_sysctl_init("debug" , signal_debug_table); |
| 5001 | register_sysctl_init("kernel" , signal_table); |
| 5002 | return 0; |
| 5003 | } |
| 5004 | early_initcall(init_signal_sysctls); |
| 5005 | #endif /* CONFIG_SYSCTL */ |
| 5006 | |
| 5007 | void __init signals_init(void) |
| 5008 | { |
| 5009 | siginfo_buildtime_checks(); |
| 5010 | |
| 5011 | sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT); |
| 5012 | } |
| 5013 | |
| 5014 | #ifdef CONFIG_KGDB_KDB |
| 5015 | #include <linux/kdb.h> |
| 5016 | /* |
| 5017 | * kdb_send_sig - Allows kdb to send signals without exposing |
| 5018 | * signal internals. This function checks if the required locks are |
| 5019 | * available before calling the main signal code, to avoid kdb |
| 5020 | * deadlocks. |
| 5021 | */ |
| 5022 | void kdb_send_sig(struct task_struct *t, int sig) |
| 5023 | { |
| 5024 | static struct task_struct *kdb_prev_t; |
| 5025 | int new_t, ret; |
| 5026 | if (!spin_trylock(&t->sighand->siglock)) { |
| 5027 | kdb_printf("Can't do kill command now.\n" |
| 5028 | "The sigmask lock is held somewhere else in " |
| 5029 | "kernel, try again later\n" ); |
| 5030 | return; |
| 5031 | } |
| 5032 | new_t = kdb_prev_t != t; |
| 5033 | kdb_prev_t = t; |
| 5034 | if (!task_is_running(t) && new_t) { |
| 5035 | spin_unlock(&t->sighand->siglock); |
| 5036 | kdb_printf("Process is not RUNNING, sending a signal from " |
| 5037 | "kdb risks deadlock\n" |
| 5038 | "on the run queue locks. " |
| 5039 | "The signal has _not_ been sent.\n" |
| 5040 | "Reissue the kill command if you want to risk " |
| 5041 | "the deadlock.\n" ); |
| 5042 | return; |
| 5043 | } |
| 5044 | ret = send_signal_locked(sig, SEND_SIG_PRIV, t, PIDTYPE_PID); |
| 5045 | spin_unlock(&t->sighand->siglock); |
| 5046 | if (ret) |
| 5047 | kdb_printf("Fail to deliver Signal %d to process %d.\n" , |
| 5048 | sig, t->pid); |
| 5049 | else |
| 5050 | kdb_printf("Signal %d is sent to process %d.\n" , sig, t->pid); |
| 5051 | } |
| 5052 | #endif /* CONFIG_KGDB_KDB */ |
| 5053 | |