1// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/kernel/sys.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8#include <linux/export.h>
9#include <linux/mm.h>
10#include <linux/mm_inline.h>
11#include <linux/utsname.h>
12#include <linux/mman.h>
13#include <linux/reboot.h>
14#include <linux/prctl.h>
15#include <linux/highuid.h>
16#include <linux/fs.h>
17#include <linux/kmod.h>
18#include <linux/ksm.h>
19#include <linux/perf_event.h>
20#include <linux/resource.h>
21#include <linux/kernel.h>
22#include <linux/workqueue.h>
23#include <linux/capability.h>
24#include <linux/device.h>
25#include <linux/key.h>
26#include <linux/times.h>
27#include <linux/posix-timers.h>
28#include <linux/security.h>
29#include <linux/random.h>
30#include <linux/suspend.h>
31#include <linux/tty.h>
32#include <linux/signal.h>
33#include <linux/cn_proc.h>
34#include <linux/getcpu.h>
35#include <linux/task_io_accounting_ops.h>
36#include <linux/seccomp.h>
37#include <linux/cpu.h>
38#include <linux/personality.h>
39#include <linux/ptrace.h>
40#include <linux/fs_struct.h>
41#include <linux/file.h>
42#include <linux/mount.h>
43#include <linux/gfp.h>
44#include <linux/syscore_ops.h>
45#include <linux/version.h>
46#include <linux/ctype.h>
47#include <linux/syscall_user_dispatch.h>
48
49#include <linux/compat.h>
50#include <linux/syscalls.h>
51#include <linux/kprobes.h>
52#include <linux/user_namespace.h>
53#include <linux/time_namespace.h>
54#include <linux/binfmts.h>
55#include <linux/futex.h>
56
57#include <linux/sched.h>
58#include <linux/sched/autogroup.h>
59#include <linux/sched/loadavg.h>
60#include <linux/sched/stat.h>
61#include <linux/sched/mm.h>
62#include <linux/sched/coredump.h>
63#include <linux/sched/task.h>
64#include <linux/sched/cputime.h>
65#include <linux/rcupdate.h>
66#include <linux/uidgid.h>
67#include <linux/cred.h>
68
69#include <linux/nospec.h>
70
71#include <linux/kmsg_dump.h>
72/* Move somewhere else to avoid recompiling? */
73#include <generated/utsrelease.h>
74
75#include <linux/uaccess.h>
76#include <asm/io.h>
77#include <asm/unistd.h>
78
79#include <trace/events/task.h>
80
81#include "uid16.h"
82
83#ifndef SET_UNALIGN_CTL
84# define SET_UNALIGN_CTL(a, b) (-EINVAL)
85#endif
86#ifndef GET_UNALIGN_CTL
87# define GET_UNALIGN_CTL(a, b) (-EINVAL)
88#endif
89#ifndef SET_FPEMU_CTL
90# define SET_FPEMU_CTL(a, b) (-EINVAL)
91#endif
92#ifndef GET_FPEMU_CTL
93# define GET_FPEMU_CTL(a, b) (-EINVAL)
94#endif
95#ifndef SET_FPEXC_CTL
96# define SET_FPEXC_CTL(a, b) (-EINVAL)
97#endif
98#ifndef GET_FPEXC_CTL
99# define GET_FPEXC_CTL(a, b) (-EINVAL)
100#endif
101#ifndef GET_ENDIAN
102# define GET_ENDIAN(a, b) (-EINVAL)
103#endif
104#ifndef SET_ENDIAN
105# define SET_ENDIAN(a, b) (-EINVAL)
106#endif
107#ifndef GET_TSC_CTL
108# define GET_TSC_CTL(a) (-EINVAL)
109#endif
110#ifndef SET_TSC_CTL
111# define SET_TSC_CTL(a) (-EINVAL)
112#endif
113#ifndef GET_FP_MODE
114# define GET_FP_MODE(a) (-EINVAL)
115#endif
116#ifndef SET_FP_MODE
117# define SET_FP_MODE(a,b) (-EINVAL)
118#endif
119#ifndef SVE_SET_VL
120# define SVE_SET_VL(a) (-EINVAL)
121#endif
122#ifndef SVE_GET_VL
123# define SVE_GET_VL() (-EINVAL)
124#endif
125#ifndef SME_SET_VL
126# define SME_SET_VL(a) (-EINVAL)
127#endif
128#ifndef SME_GET_VL
129# define SME_GET_VL() (-EINVAL)
130#endif
131#ifndef PAC_RESET_KEYS
132# define PAC_RESET_KEYS(a, b) (-EINVAL)
133#endif
134#ifndef PAC_SET_ENABLED_KEYS
135# define PAC_SET_ENABLED_KEYS(a, b, c) (-EINVAL)
136#endif
137#ifndef PAC_GET_ENABLED_KEYS
138# define PAC_GET_ENABLED_KEYS(a) (-EINVAL)
139#endif
140#ifndef SET_TAGGED_ADDR_CTRL
141# define SET_TAGGED_ADDR_CTRL(a) (-EINVAL)
142#endif
143#ifndef GET_TAGGED_ADDR_CTRL
144# define GET_TAGGED_ADDR_CTRL() (-EINVAL)
145#endif
146#ifndef RISCV_V_SET_CONTROL
147# define RISCV_V_SET_CONTROL(a) (-EINVAL)
148#endif
149#ifndef RISCV_V_GET_CONTROL
150# define RISCV_V_GET_CONTROL() (-EINVAL)
151#endif
152#ifndef RISCV_SET_ICACHE_FLUSH_CTX
153# define RISCV_SET_ICACHE_FLUSH_CTX(a, b) (-EINVAL)
154#endif
155#ifndef PPC_GET_DEXCR_ASPECT
156# define PPC_GET_DEXCR_ASPECT(a, b) (-EINVAL)
157#endif
158#ifndef PPC_SET_DEXCR_ASPECT
159# define PPC_SET_DEXCR_ASPECT(a, b, c) (-EINVAL)
160#endif
161
162/*
163 * this is where the system-wide overflow UID and GID are defined, for
164 * architectures that now have 32-bit UID/GID but didn't in the past
165 */
166
167int overflowuid = DEFAULT_OVERFLOWUID;
168int overflowgid = DEFAULT_OVERFLOWGID;
169
170EXPORT_SYMBOL(overflowuid);
171EXPORT_SYMBOL(overflowgid);
172
173/*
174 * the same as above, but for filesystems which can only store a 16-bit
175 * UID and GID. as such, this is needed on all architectures
176 */
177
178int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
179int fs_overflowgid = DEFAULT_FS_OVERFLOWGID;
180
181EXPORT_SYMBOL(fs_overflowuid);
182EXPORT_SYMBOL(fs_overflowgid);
183
184static const struct ctl_table overflow_sysctl_table[] = {
185 {
186 .procname = "overflowuid",
187 .data = &overflowuid,
188 .maxlen = sizeof(int),
189 .mode = 0644,
190 .proc_handler = proc_dointvec_minmax,
191 .extra1 = SYSCTL_ZERO,
192 .extra2 = SYSCTL_MAXOLDUID,
193 },
194 {
195 .procname = "overflowgid",
196 .data = &overflowgid,
197 .maxlen = sizeof(int),
198 .mode = 0644,
199 .proc_handler = proc_dointvec_minmax,
200 .extra1 = SYSCTL_ZERO,
201 .extra2 = SYSCTL_MAXOLDUID,
202 },
203};
204
205static int __init init_overflow_sysctl(void)
206{
207 register_sysctl_init("kernel", overflow_sysctl_table);
208 return 0;
209}
210
211postcore_initcall(init_overflow_sysctl);
212
213/*
214 * Returns true if current's euid is same as p's uid or euid,
215 * or has CAP_SYS_NICE to p's user_ns.
216 *
217 * Called with rcu_read_lock, creds are safe
218 */
219static bool set_one_prio_perm(struct task_struct *p)
220{
221 const struct cred *cred = current_cred(), *pcred = __task_cred(p);
222
223 if (uid_eq(left: pcred->uid, right: cred->euid) ||
224 uid_eq(left: pcred->euid, right: cred->euid))
225 return true;
226 if (ns_capable(ns: pcred->user_ns, CAP_SYS_NICE))
227 return true;
228 return false;
229}
230
231/*
232 * set the priority of a task
233 * - the caller must hold the RCU read lock
234 */
235static int set_one_prio(struct task_struct *p, int niceval, int error)
236{
237 int no_nice;
238
239 if (!set_one_prio_perm(p)) {
240 error = -EPERM;
241 goto out;
242 }
243 if (niceval < task_nice(p) && !can_nice(p, nice: niceval)) {
244 error = -EACCES;
245 goto out;
246 }
247 no_nice = security_task_setnice(p, nice: niceval);
248 if (no_nice) {
249 error = no_nice;
250 goto out;
251 }
252 if (error == -ESRCH)
253 error = 0;
254 set_user_nice(p, nice: niceval);
255out:
256 return error;
257}
258
259SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
260{
261 struct task_struct *g, *p;
262 struct user_struct *user;
263 const struct cred *cred = current_cred();
264 int error = -EINVAL;
265 struct pid *pgrp;
266 kuid_t uid;
267
268 if (which > PRIO_USER || which < PRIO_PROCESS)
269 goto out;
270
271 /* normalize: avoid signed division (rounding problems) */
272 error = -ESRCH;
273 if (niceval < MIN_NICE)
274 niceval = MIN_NICE;
275 if (niceval > MAX_NICE)
276 niceval = MAX_NICE;
277
278 rcu_read_lock();
279 switch (which) {
280 case PRIO_PROCESS:
281 if (who)
282 p = find_task_by_vpid(nr: who);
283 else
284 p = current;
285 if (p)
286 error = set_one_prio(p, niceval, error);
287 break;
288 case PRIO_PGRP:
289 if (who)
290 pgrp = find_vpid(nr: who);
291 else
292 pgrp = task_pgrp(current);
293 read_lock(&tasklist_lock);
294 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
295 error = set_one_prio(p, niceval, error);
296 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
297 read_unlock(&tasklist_lock);
298 break;
299 case PRIO_USER:
300 uid = make_kuid(from: cred->user_ns, uid: who);
301 user = cred->user;
302 if (!who)
303 uid = cred->uid;
304 else if (!uid_eq(left: uid, right: cred->uid)) {
305 user = find_user(uid);
306 if (!user)
307 goto out_unlock; /* No processes for this user */
308 }
309 for_each_process_thread(g, p) {
310 if (uid_eq(task_uid(p), right: uid) && task_pid_vnr(tsk: p))
311 error = set_one_prio(p, niceval, error);
312 }
313 if (!uid_eq(left: uid, right: cred->uid))
314 free_uid(user); /* For find_user() */
315 break;
316 }
317out_unlock:
318 rcu_read_unlock();
319out:
320 return error;
321}
322
323/*
324 * Ugh. To avoid negative return values, "getpriority()" will
325 * not return the normal nice-value, but a negated value that
326 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
327 * to stay compatible.
328 */
329SYSCALL_DEFINE2(getpriority, int, which, int, who)
330{
331 struct task_struct *g, *p;
332 struct user_struct *user;
333 const struct cred *cred = current_cred();
334 long niceval, retval = -ESRCH;
335 struct pid *pgrp;
336 kuid_t uid;
337
338 if (which > PRIO_USER || which < PRIO_PROCESS)
339 return -EINVAL;
340
341 rcu_read_lock();
342 switch (which) {
343 case PRIO_PROCESS:
344 if (who)
345 p = find_task_by_vpid(nr: who);
346 else
347 p = current;
348 if (p) {
349 niceval = nice_to_rlimit(nice: task_nice(p));
350 if (niceval > retval)
351 retval = niceval;
352 }
353 break;
354 case PRIO_PGRP:
355 if (who)
356 pgrp = find_vpid(nr: who);
357 else
358 pgrp = task_pgrp(current);
359 read_lock(&tasklist_lock);
360 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
361 niceval = nice_to_rlimit(nice: task_nice(p));
362 if (niceval > retval)
363 retval = niceval;
364 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
365 read_unlock(&tasklist_lock);
366 break;
367 case PRIO_USER:
368 uid = make_kuid(from: cred->user_ns, uid: who);
369 user = cred->user;
370 if (!who)
371 uid = cred->uid;
372 else if (!uid_eq(left: uid, right: cred->uid)) {
373 user = find_user(uid);
374 if (!user)
375 goto out_unlock; /* No processes for this user */
376 }
377 for_each_process_thread(g, p) {
378 if (uid_eq(task_uid(p), right: uid) && task_pid_vnr(tsk: p)) {
379 niceval = nice_to_rlimit(nice: task_nice(p));
380 if (niceval > retval)
381 retval = niceval;
382 }
383 }
384 if (!uid_eq(left: uid, right: cred->uid))
385 free_uid(user); /* for find_user() */
386 break;
387 }
388out_unlock:
389 rcu_read_unlock();
390
391 return retval;
392}
393
394/*
395 * Unprivileged users may change the real gid to the effective gid
396 * or vice versa. (BSD-style)
397 *
398 * If you set the real gid at all, or set the effective gid to a value not
399 * equal to the real gid, then the saved gid is set to the new effective gid.
400 *
401 * This makes it possible for a setgid program to completely drop its
402 * privileges, which is often a useful assertion to make when you are doing
403 * a security audit over a program.
404 *
405 * The general idea is that a program which uses just setregid() will be
406 * 100% compatible with BSD. A program which uses just setgid() will be
407 * 100% compatible with POSIX with saved IDs.
408 *
409 * SMP: There are not races, the GIDs are checked only by filesystem
410 * operations (as far as semantic preservation is concerned).
411 */
412#ifdef CONFIG_MULTIUSER
413long __sys_setregid(gid_t rgid, gid_t egid)
414{
415 struct user_namespace *ns = current_user_ns();
416 const struct cred *old;
417 struct cred *new;
418 int retval;
419 kgid_t krgid, kegid;
420
421 krgid = make_kgid(from: ns, gid: rgid);
422 kegid = make_kgid(from: ns, gid: egid);
423
424 if ((rgid != (gid_t) -1) && !gid_valid(gid: krgid))
425 return -EINVAL;
426 if ((egid != (gid_t) -1) && !gid_valid(gid: kegid))
427 return -EINVAL;
428
429 new = prepare_creds();
430 if (!new)
431 return -ENOMEM;
432 old = current_cred();
433
434 retval = -EPERM;
435 if (rgid != (gid_t) -1) {
436 if (gid_eq(left: old->gid, right: krgid) ||
437 gid_eq(left: old->egid, right: krgid) ||
438 ns_capable_setid(ns: old->user_ns, CAP_SETGID))
439 new->gid = krgid;
440 else
441 goto error;
442 }
443 if (egid != (gid_t) -1) {
444 if (gid_eq(left: old->gid, right: kegid) ||
445 gid_eq(left: old->egid, right: kegid) ||
446 gid_eq(left: old->sgid, right: kegid) ||
447 ns_capable_setid(ns: old->user_ns, CAP_SETGID))
448 new->egid = kegid;
449 else
450 goto error;
451 }
452
453 if (rgid != (gid_t) -1 ||
454 (egid != (gid_t) -1 && !gid_eq(left: kegid, right: old->gid)))
455 new->sgid = new->egid;
456 new->fsgid = new->egid;
457
458 retval = security_task_fix_setgid(new, old, LSM_SETID_RE);
459 if (retval < 0)
460 goto error;
461
462 return commit_creds(new);
463
464error:
465 abort_creds(new);
466 return retval;
467}
468
469SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
470{
471 return __sys_setregid(rgid, egid);
472}
473
474/*
475 * setgid() is implemented like SysV w/ SAVED_IDS
476 *
477 * SMP: Same implicit races as above.
478 */
479long __sys_setgid(gid_t gid)
480{
481 struct user_namespace *ns = current_user_ns();
482 const struct cred *old;
483 struct cred *new;
484 int retval;
485 kgid_t kgid;
486
487 kgid = make_kgid(from: ns, gid);
488 if (!gid_valid(gid: kgid))
489 return -EINVAL;
490
491 new = prepare_creds();
492 if (!new)
493 return -ENOMEM;
494 old = current_cred();
495
496 retval = -EPERM;
497 if (ns_capable_setid(ns: old->user_ns, CAP_SETGID))
498 new->gid = new->egid = new->sgid = new->fsgid = kgid;
499 else if (gid_eq(left: kgid, right: old->gid) || gid_eq(left: kgid, right: old->sgid))
500 new->egid = new->fsgid = kgid;
501 else
502 goto error;
503
504 retval = security_task_fix_setgid(new, old, LSM_SETID_ID);
505 if (retval < 0)
506 goto error;
507
508 return commit_creds(new);
509
510error:
511 abort_creds(new);
512 return retval;
513}
514
515SYSCALL_DEFINE1(setgid, gid_t, gid)
516{
517 return __sys_setgid(gid);
518}
519
520/*
521 * change the user struct in a credentials set to match the new UID
522 */
523static int set_user(struct cred *new)
524{
525 struct user_struct *new_user;
526
527 new_user = alloc_uid(new->uid);
528 if (!new_user)
529 return -EAGAIN;
530
531 free_uid(new->user);
532 new->user = new_user;
533 return 0;
534}
535
536static void flag_nproc_exceeded(struct cred *new)
537{
538 if (new->ucounts == current_ucounts())
539 return;
540
541 /*
542 * We don't fail in case of NPROC limit excess here because too many
543 * poorly written programs don't check set*uid() return code, assuming
544 * it never fails if called by root. We may still enforce NPROC limit
545 * for programs doing set*uid()+execve() by harmlessly deferring the
546 * failure to the execve() stage.
547 */
548 if (is_rlimit_overlimit(ucounts: new->ucounts, type: UCOUNT_RLIMIT_NPROC, max: rlimit(RLIMIT_NPROC)) &&
549 new->user != INIT_USER)
550 current->flags |= PF_NPROC_EXCEEDED;
551 else
552 current->flags &= ~PF_NPROC_EXCEEDED;
553}
554
555/*
556 * Unprivileged users may change the real uid to the effective uid
557 * or vice versa. (BSD-style)
558 *
559 * If you set the real uid at all, or set the effective uid to a value not
560 * equal to the real uid, then the saved uid is set to the new effective uid.
561 *
562 * This makes it possible for a setuid program to completely drop its
563 * privileges, which is often a useful assertion to make when you are doing
564 * a security audit over a program.
565 *
566 * The general idea is that a program which uses just setreuid() will be
567 * 100% compatible with BSD. A program which uses just setuid() will be
568 * 100% compatible with POSIX with saved IDs.
569 */
570long __sys_setreuid(uid_t ruid, uid_t euid)
571{
572 struct user_namespace *ns = current_user_ns();
573 const struct cred *old;
574 struct cred *new;
575 int retval;
576 kuid_t kruid, keuid;
577
578 kruid = make_kuid(from: ns, uid: ruid);
579 keuid = make_kuid(from: ns, uid: euid);
580
581 if ((ruid != (uid_t) -1) && !uid_valid(uid: kruid))
582 return -EINVAL;
583 if ((euid != (uid_t) -1) && !uid_valid(uid: keuid))
584 return -EINVAL;
585
586 new = prepare_creds();
587 if (!new)
588 return -ENOMEM;
589 old = current_cred();
590
591 retval = -EPERM;
592 if (ruid != (uid_t) -1) {
593 new->uid = kruid;
594 if (!uid_eq(left: old->uid, right: kruid) &&
595 !uid_eq(left: old->euid, right: kruid) &&
596 !ns_capable_setid(ns: old->user_ns, CAP_SETUID))
597 goto error;
598 }
599
600 if (euid != (uid_t) -1) {
601 new->euid = keuid;
602 if (!uid_eq(left: old->uid, right: keuid) &&
603 !uid_eq(left: old->euid, right: keuid) &&
604 !uid_eq(left: old->suid, right: keuid) &&
605 !ns_capable_setid(ns: old->user_ns, CAP_SETUID))
606 goto error;
607 }
608
609 if (!uid_eq(left: new->uid, right: old->uid)) {
610 retval = set_user(new);
611 if (retval < 0)
612 goto error;
613 }
614 if (ruid != (uid_t) -1 ||
615 (euid != (uid_t) -1 && !uid_eq(left: keuid, right: old->uid)))
616 new->suid = new->euid;
617 new->fsuid = new->euid;
618
619 retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
620 if (retval < 0)
621 goto error;
622
623 retval = set_cred_ucounts(new);
624 if (retval < 0)
625 goto error;
626
627 flag_nproc_exceeded(new);
628 return commit_creds(new);
629
630error:
631 abort_creds(new);
632 return retval;
633}
634
635SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
636{
637 return __sys_setreuid(ruid, euid);
638}
639
640/*
641 * setuid() is implemented like SysV with SAVED_IDS
642 *
643 * Note that SAVED_ID's is deficient in that a setuid root program
644 * like sendmail, for example, cannot set its uid to be a normal
645 * user and then switch back, because if you're root, setuid() sets
646 * the saved uid too. If you don't like this, blame the bright people
647 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
648 * will allow a root program to temporarily drop privileges and be able to
649 * regain them by swapping the real and effective uid.
650 */
651long __sys_setuid(uid_t uid)
652{
653 struct user_namespace *ns = current_user_ns();
654 const struct cred *old;
655 struct cred *new;
656 int retval;
657 kuid_t kuid;
658
659 kuid = make_kuid(from: ns, uid);
660 if (!uid_valid(uid: kuid))
661 return -EINVAL;
662
663 new = prepare_creds();
664 if (!new)
665 return -ENOMEM;
666 old = current_cred();
667
668 retval = -EPERM;
669 if (ns_capable_setid(ns: old->user_ns, CAP_SETUID)) {
670 new->suid = new->uid = kuid;
671 if (!uid_eq(left: kuid, right: old->uid)) {
672 retval = set_user(new);
673 if (retval < 0)
674 goto error;
675 }
676 } else if (!uid_eq(left: kuid, right: old->uid) && !uid_eq(left: kuid, right: new->suid)) {
677 goto error;
678 }
679
680 new->fsuid = new->euid = kuid;
681
682 retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
683 if (retval < 0)
684 goto error;
685
686 retval = set_cred_ucounts(new);
687 if (retval < 0)
688 goto error;
689
690 flag_nproc_exceeded(new);
691 return commit_creds(new);
692
693error:
694 abort_creds(new);
695 return retval;
696}
697
698SYSCALL_DEFINE1(setuid, uid_t, uid)
699{
700 return __sys_setuid(uid);
701}
702
703
704/*
705 * This function implements a generic ability to update ruid, euid,
706 * and suid. This allows you to implement the 4.4 compatible seteuid().
707 */
708long __sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
709{
710 struct user_namespace *ns = current_user_ns();
711 const struct cred *old;
712 struct cred *new;
713 int retval;
714 kuid_t kruid, keuid, ksuid;
715 bool ruid_new, euid_new, suid_new;
716
717 kruid = make_kuid(from: ns, uid: ruid);
718 keuid = make_kuid(from: ns, uid: euid);
719 ksuid = make_kuid(from: ns, uid: suid);
720
721 if ((ruid != (uid_t) -1) && !uid_valid(uid: kruid))
722 return -EINVAL;
723
724 if ((euid != (uid_t) -1) && !uid_valid(uid: keuid))
725 return -EINVAL;
726
727 if ((suid != (uid_t) -1) && !uid_valid(uid: ksuid))
728 return -EINVAL;
729
730 old = current_cred();
731
732 /* check for no-op */
733 if ((ruid == (uid_t) -1 || uid_eq(left: kruid, right: old->uid)) &&
734 (euid == (uid_t) -1 || (uid_eq(left: keuid, right: old->euid) &&
735 uid_eq(left: keuid, right: old->fsuid))) &&
736 (suid == (uid_t) -1 || uid_eq(left: ksuid, right: old->suid)))
737 return 0;
738
739 ruid_new = ruid != (uid_t) -1 && !uid_eq(left: kruid, right: old->uid) &&
740 !uid_eq(left: kruid, right: old->euid) && !uid_eq(left: kruid, right: old->suid);
741 euid_new = euid != (uid_t) -1 && !uid_eq(left: keuid, right: old->uid) &&
742 !uid_eq(left: keuid, right: old->euid) && !uid_eq(left: keuid, right: old->suid);
743 suid_new = suid != (uid_t) -1 && !uid_eq(left: ksuid, right: old->uid) &&
744 !uid_eq(left: ksuid, right: old->euid) && !uid_eq(left: ksuid, right: old->suid);
745 if ((ruid_new || euid_new || suid_new) &&
746 !ns_capable_setid(ns: old->user_ns, CAP_SETUID))
747 return -EPERM;
748
749 new = prepare_creds();
750 if (!new)
751 return -ENOMEM;
752
753 if (ruid != (uid_t) -1) {
754 new->uid = kruid;
755 if (!uid_eq(left: kruid, right: old->uid)) {
756 retval = set_user(new);
757 if (retval < 0)
758 goto error;
759 }
760 }
761 if (euid != (uid_t) -1)
762 new->euid = keuid;
763 if (suid != (uid_t) -1)
764 new->suid = ksuid;
765 new->fsuid = new->euid;
766
767 retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
768 if (retval < 0)
769 goto error;
770
771 retval = set_cred_ucounts(new);
772 if (retval < 0)
773 goto error;
774
775 flag_nproc_exceeded(new);
776 return commit_creds(new);
777
778error:
779 abort_creds(new);
780 return retval;
781}
782
783SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
784{
785 return __sys_setresuid(ruid, euid, suid);
786}
787
788SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
789{
790 const struct cred *cred = current_cred();
791 int retval;
792 uid_t ruid, euid, suid;
793
794 ruid = from_kuid_munged(to: cred->user_ns, kuid: cred->uid);
795 euid = from_kuid_munged(to: cred->user_ns, kuid: cred->euid);
796 suid = from_kuid_munged(to: cred->user_ns, kuid: cred->suid);
797
798 retval = put_user(ruid, ruidp);
799 if (!retval) {
800 retval = put_user(euid, euidp);
801 if (!retval)
802 return put_user(suid, suidp);
803 }
804 return retval;
805}
806
807/*
808 * Same as above, but for rgid, egid, sgid.
809 */
810long __sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
811{
812 struct user_namespace *ns = current_user_ns();
813 const struct cred *old;
814 struct cred *new;
815 int retval;
816 kgid_t krgid, kegid, ksgid;
817 bool rgid_new, egid_new, sgid_new;
818
819 krgid = make_kgid(from: ns, gid: rgid);
820 kegid = make_kgid(from: ns, gid: egid);
821 ksgid = make_kgid(from: ns, gid: sgid);
822
823 if ((rgid != (gid_t) -1) && !gid_valid(gid: krgid))
824 return -EINVAL;
825 if ((egid != (gid_t) -1) && !gid_valid(gid: kegid))
826 return -EINVAL;
827 if ((sgid != (gid_t) -1) && !gid_valid(gid: ksgid))
828 return -EINVAL;
829
830 old = current_cred();
831
832 /* check for no-op */
833 if ((rgid == (gid_t) -1 || gid_eq(left: krgid, right: old->gid)) &&
834 (egid == (gid_t) -1 || (gid_eq(left: kegid, right: old->egid) &&
835 gid_eq(left: kegid, right: old->fsgid))) &&
836 (sgid == (gid_t) -1 || gid_eq(left: ksgid, right: old->sgid)))
837 return 0;
838
839 rgid_new = rgid != (gid_t) -1 && !gid_eq(left: krgid, right: old->gid) &&
840 !gid_eq(left: krgid, right: old->egid) && !gid_eq(left: krgid, right: old->sgid);
841 egid_new = egid != (gid_t) -1 && !gid_eq(left: kegid, right: old->gid) &&
842 !gid_eq(left: kegid, right: old->egid) && !gid_eq(left: kegid, right: old->sgid);
843 sgid_new = sgid != (gid_t) -1 && !gid_eq(left: ksgid, right: old->gid) &&
844 !gid_eq(left: ksgid, right: old->egid) && !gid_eq(left: ksgid, right: old->sgid);
845 if ((rgid_new || egid_new || sgid_new) &&
846 !ns_capable_setid(ns: old->user_ns, CAP_SETGID))
847 return -EPERM;
848
849 new = prepare_creds();
850 if (!new)
851 return -ENOMEM;
852
853 if (rgid != (gid_t) -1)
854 new->gid = krgid;
855 if (egid != (gid_t) -1)
856 new->egid = kegid;
857 if (sgid != (gid_t) -1)
858 new->sgid = ksgid;
859 new->fsgid = new->egid;
860
861 retval = security_task_fix_setgid(new, old, LSM_SETID_RES);
862 if (retval < 0)
863 goto error;
864
865 return commit_creds(new);
866
867error:
868 abort_creds(new);
869 return retval;
870}
871
872SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
873{
874 return __sys_setresgid(rgid, egid, sgid);
875}
876
877SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
878{
879 const struct cred *cred = current_cred();
880 int retval;
881 gid_t rgid, egid, sgid;
882
883 rgid = from_kgid_munged(to: cred->user_ns, kgid: cred->gid);
884 egid = from_kgid_munged(to: cred->user_ns, kgid: cred->egid);
885 sgid = from_kgid_munged(to: cred->user_ns, kgid: cred->sgid);
886
887 retval = put_user(rgid, rgidp);
888 if (!retval) {
889 retval = put_user(egid, egidp);
890 if (!retval)
891 retval = put_user(sgid, sgidp);
892 }
893
894 return retval;
895}
896
897
898/*
899 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
900 * is used for "access()" and for the NFS daemon (letting nfsd stay at
901 * whatever uid it wants to). It normally shadows "euid", except when
902 * explicitly set by setfsuid() or for access..
903 */
904long __sys_setfsuid(uid_t uid)
905{
906 const struct cred *old;
907 struct cred *new;
908 uid_t old_fsuid;
909 kuid_t kuid;
910
911 old = current_cred();
912 old_fsuid = from_kuid_munged(to: old->user_ns, kuid: old->fsuid);
913
914 kuid = make_kuid(from: old->user_ns, uid);
915 if (!uid_valid(uid: kuid))
916 return old_fsuid;
917
918 new = prepare_creds();
919 if (!new)
920 return old_fsuid;
921
922 if (uid_eq(left: kuid, right: old->uid) || uid_eq(left: kuid, right: old->euid) ||
923 uid_eq(left: kuid, right: old->suid) || uid_eq(left: kuid, right: old->fsuid) ||
924 ns_capable_setid(ns: old->user_ns, CAP_SETUID)) {
925 if (!uid_eq(left: kuid, right: old->fsuid)) {
926 new->fsuid = kuid;
927 if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
928 goto change_okay;
929 }
930 }
931
932 abort_creds(new);
933 return old_fsuid;
934
935change_okay:
936 commit_creds(new);
937 return old_fsuid;
938}
939
940SYSCALL_DEFINE1(setfsuid, uid_t, uid)
941{
942 return __sys_setfsuid(uid);
943}
944
945/*
946 * Samma på svenska..
947 */
948long __sys_setfsgid(gid_t gid)
949{
950 const struct cred *old;
951 struct cred *new;
952 gid_t old_fsgid;
953 kgid_t kgid;
954
955 old = current_cred();
956 old_fsgid = from_kgid_munged(to: old->user_ns, kgid: old->fsgid);
957
958 kgid = make_kgid(from: old->user_ns, gid);
959 if (!gid_valid(gid: kgid))
960 return old_fsgid;
961
962 new = prepare_creds();
963 if (!new)
964 return old_fsgid;
965
966 if (gid_eq(left: kgid, right: old->gid) || gid_eq(left: kgid, right: old->egid) ||
967 gid_eq(left: kgid, right: old->sgid) || gid_eq(left: kgid, right: old->fsgid) ||
968 ns_capable_setid(ns: old->user_ns, CAP_SETGID)) {
969 if (!gid_eq(left: kgid, right: old->fsgid)) {
970 new->fsgid = kgid;
971 if (security_task_fix_setgid(new,old,LSM_SETID_FS) == 0)
972 goto change_okay;
973 }
974 }
975
976 abort_creds(new);
977 return old_fsgid;
978
979change_okay:
980 commit_creds(new);
981 return old_fsgid;
982}
983
984SYSCALL_DEFINE1(setfsgid, gid_t, gid)
985{
986 return __sys_setfsgid(gid);
987}
988#endif /* CONFIG_MULTIUSER */
989
990/**
991 * sys_getpid - return the thread group id of the current process
992 *
993 * Note, despite the name, this returns the tgid not the pid. The tgid and
994 * the pid are identical unless CLONE_THREAD was specified on clone() in
995 * which case the tgid is the same in all threads of the same group.
996 *
997 * This is SMP safe as current->tgid does not change.
998 */
999SYSCALL_DEFINE0(getpid)
1000{
1001 return task_tgid_vnr(current);
1002}
1003
1004/* Thread ID - the internal kernel "pid" */
1005SYSCALL_DEFINE0(gettid)
1006{
1007 return task_pid_vnr(current);
1008}
1009
1010/*
1011 * Accessing ->real_parent is not SMP-safe, it could
1012 * change from under us. However, we can use a stale
1013 * value of ->real_parent under rcu_read_lock(), see
1014 * release_task()->call_rcu(delayed_put_task_struct).
1015 */
1016SYSCALL_DEFINE0(getppid)
1017{
1018 int pid;
1019
1020 rcu_read_lock();
1021 pid = task_tgid_vnr(rcu_dereference(current->real_parent));
1022 rcu_read_unlock();
1023
1024 return pid;
1025}
1026
1027SYSCALL_DEFINE0(getuid)
1028{
1029 /* Only we change this so SMP safe */
1030 return from_kuid_munged(to: current_user_ns(), current_uid());
1031}
1032
1033SYSCALL_DEFINE0(geteuid)
1034{
1035 /* Only we change this so SMP safe */
1036 return from_kuid_munged(to: current_user_ns(), current_euid());
1037}
1038
1039SYSCALL_DEFINE0(getgid)
1040{
1041 /* Only we change this so SMP safe */
1042 return from_kgid_munged(to: current_user_ns(), current_gid());
1043}
1044
1045SYSCALL_DEFINE0(getegid)
1046{
1047 /* Only we change this so SMP safe */
1048 return from_kgid_munged(to: current_user_ns(), current_egid());
1049}
1050
1051static void do_sys_times(struct tms *tms)
1052{
1053 u64 tgutime, tgstime, cutime, cstime;
1054
1055 thread_group_cputime_adjusted(current, ut: &tgutime, st: &tgstime);
1056 cutime = current->signal->cutime;
1057 cstime = current->signal->cstime;
1058 tms->tms_utime = nsec_to_clock_t(x: tgutime);
1059 tms->tms_stime = nsec_to_clock_t(x: tgstime);
1060 tms->tms_cutime = nsec_to_clock_t(x: cutime);
1061 tms->tms_cstime = nsec_to_clock_t(x: cstime);
1062}
1063
1064SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
1065{
1066 if (tbuf) {
1067 struct tms tmp;
1068
1069 do_sys_times(tms: &tmp);
1070 if (copy_to_user(to: tbuf, from: &tmp, n: sizeof(struct tms)))
1071 return -EFAULT;
1072 }
1073 force_successful_syscall_return();
1074 return (long) jiffies_64_to_clock_t(x: get_jiffies_64());
1075}
1076
1077#ifdef CONFIG_COMPAT
1078static compat_clock_t clock_t_to_compat_clock_t(clock_t x)
1079{
1080 return compat_jiffies_to_clock_t(clock_t_to_jiffies(x));
1081}
1082
1083COMPAT_SYSCALL_DEFINE1(times, struct compat_tms __user *, tbuf)
1084{
1085 if (tbuf) {
1086 struct tms tms;
1087 struct compat_tms tmp;
1088
1089 do_sys_times(tms: &tms);
1090 /* Convert our struct tms to the compat version. */
1091 tmp.tms_utime = clock_t_to_compat_clock_t(x: tms.tms_utime);
1092 tmp.tms_stime = clock_t_to_compat_clock_t(x: tms.tms_stime);
1093 tmp.tms_cutime = clock_t_to_compat_clock_t(x: tms.tms_cutime);
1094 tmp.tms_cstime = clock_t_to_compat_clock_t(x: tms.tms_cstime);
1095 if (copy_to_user(to: tbuf, from: &tmp, n: sizeof(tmp)))
1096 return -EFAULT;
1097 }
1098 force_successful_syscall_return();
1099 return compat_jiffies_to_clock_t(jiffies);
1100}
1101#endif
1102
1103/*
1104 * This needs some heavy checking ...
1105 * I just haven't the stomach for it. I also don't fully
1106 * understand sessions/pgrp etc. Let somebody who does explain it.
1107 *
1108 * OK, I think I have the protection semantics right.... this is really
1109 * only important on a multi-user system anyway, to make sure one user
1110 * can't send a signal to a process owned by another. -TYT, 12/12/91
1111 *
1112 * !PF_FORKNOEXEC check to conform completely to POSIX.
1113 */
1114SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
1115{
1116 struct task_struct *p;
1117 struct task_struct *group_leader = current->group_leader;
1118 struct pid *pids[PIDTYPE_MAX] = { 0 };
1119 struct pid *pgrp;
1120 int err;
1121
1122 if (!pid)
1123 pid = task_pid_vnr(tsk: group_leader);
1124 if (!pgid)
1125 pgid = pid;
1126 if (pgid < 0)
1127 return -EINVAL;
1128 rcu_read_lock();
1129
1130 /* From this point forward we keep holding onto the tasklist lock
1131 * so that our parent does not change from under us. -DaveM
1132 */
1133 write_lock_irq(&tasklist_lock);
1134
1135 err = -ESRCH;
1136 p = find_task_by_vpid(nr: pid);
1137 if (!p)
1138 goto out;
1139
1140 err = -EINVAL;
1141 if (!thread_group_leader(p))
1142 goto out;
1143
1144 if (same_thread_group(p1: p->real_parent, p2: group_leader)) {
1145 err = -EPERM;
1146 if (task_session(task: p) != task_session(task: group_leader))
1147 goto out;
1148 err = -EACCES;
1149 if (!(p->flags & PF_FORKNOEXEC))
1150 goto out;
1151 } else {
1152 err = -ESRCH;
1153 if (p != group_leader)
1154 goto out;
1155 }
1156
1157 err = -EPERM;
1158 if (p->signal->leader)
1159 goto out;
1160
1161 pgrp = task_pid(task: p);
1162 if (pgid != pid) {
1163 struct task_struct *g;
1164
1165 pgrp = find_vpid(nr: pgid);
1166 g = pid_task(pid: pgrp, PIDTYPE_PGID);
1167 if (!g || task_session(task: g) != task_session(task: group_leader))
1168 goto out;
1169 }
1170
1171 err = security_task_setpgid(p, pgid);
1172 if (err)
1173 goto out;
1174
1175 if (task_pgrp(task: p) != pgrp)
1176 change_pid(pids, task: p, PIDTYPE_PGID, pid: pgrp);
1177
1178 err = 0;
1179out:
1180 /* All paths lead to here, thus we are safe. -DaveM */
1181 write_unlock_irq(&tasklist_lock);
1182 rcu_read_unlock();
1183 free_pids(pids);
1184 return err;
1185}
1186
1187static int do_getpgid(pid_t pid)
1188{
1189 struct task_struct *p;
1190 struct pid *grp;
1191 int retval;
1192
1193 rcu_read_lock();
1194 if (!pid)
1195 grp = task_pgrp(current);
1196 else {
1197 retval = -ESRCH;
1198 p = find_task_by_vpid(nr: pid);
1199 if (!p)
1200 goto out;
1201 grp = task_pgrp(task: p);
1202 if (!grp)
1203 goto out;
1204
1205 retval = security_task_getpgid(p);
1206 if (retval)
1207 goto out;
1208 }
1209 retval = pid_vnr(pid: grp);
1210out:
1211 rcu_read_unlock();
1212 return retval;
1213}
1214
1215SYSCALL_DEFINE1(getpgid, pid_t, pid)
1216{
1217 return do_getpgid(pid);
1218}
1219
1220#ifdef __ARCH_WANT_SYS_GETPGRP
1221
1222SYSCALL_DEFINE0(getpgrp)
1223{
1224 return do_getpgid(pid: 0);
1225}
1226
1227#endif
1228
1229SYSCALL_DEFINE1(getsid, pid_t, pid)
1230{
1231 struct task_struct *p;
1232 struct pid *sid;
1233 int retval;
1234
1235 rcu_read_lock();
1236 if (!pid)
1237 sid = task_session(current);
1238 else {
1239 retval = -ESRCH;
1240 p = find_task_by_vpid(nr: pid);
1241 if (!p)
1242 goto out;
1243 sid = task_session(task: p);
1244 if (!sid)
1245 goto out;
1246
1247 retval = security_task_getsid(p);
1248 if (retval)
1249 goto out;
1250 }
1251 retval = pid_vnr(pid: sid);
1252out:
1253 rcu_read_unlock();
1254 return retval;
1255}
1256
1257static void set_special_pids(struct pid **pids, struct pid *pid)
1258{
1259 struct task_struct *curr = current->group_leader;
1260
1261 if (task_session(task: curr) != pid)
1262 change_pid(pids, task: curr, PIDTYPE_SID, pid);
1263
1264 if (task_pgrp(task: curr) != pid)
1265 change_pid(pids, task: curr, PIDTYPE_PGID, pid);
1266}
1267
1268int ksys_setsid(void)
1269{
1270 struct task_struct *group_leader = current->group_leader;
1271 struct pid *sid = task_pid(task: group_leader);
1272 struct pid *pids[PIDTYPE_MAX] = { 0 };
1273 pid_t session = pid_vnr(pid: sid);
1274 int err = -EPERM;
1275
1276 write_lock_irq(&tasklist_lock);
1277 /* Fail if I am already a session leader */
1278 if (group_leader->signal->leader)
1279 goto out;
1280
1281 /* Fail if a process group id already exists that equals the
1282 * proposed session id.
1283 */
1284 if (pid_task(pid: sid, PIDTYPE_PGID))
1285 goto out;
1286
1287 group_leader->signal->leader = 1;
1288 set_special_pids(pids, pid: sid);
1289
1290 proc_clear_tty(p: group_leader);
1291
1292 err = session;
1293out:
1294 write_unlock_irq(&tasklist_lock);
1295 free_pids(pids);
1296 if (err > 0) {
1297 proc_sid_connector(task: group_leader);
1298 sched_autogroup_create_attach(p: group_leader);
1299 }
1300 return err;
1301}
1302
1303SYSCALL_DEFINE0(setsid)
1304{
1305 return ksys_setsid();
1306}
1307
1308DECLARE_RWSEM(uts_sem);
1309
1310#ifdef COMPAT_UTS_MACHINE
1311#define override_architecture(name) \
1312 (personality(current->personality) == PER_LINUX32 && \
1313 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1314 sizeof(COMPAT_UTS_MACHINE)))
1315#else
1316#define override_architecture(name) 0
1317#endif
1318
1319/*
1320 * Work around broken programs that cannot handle "Linux 3.0".
1321 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1322 * And we map 4.x and later versions to 2.6.60+x, so 4.0/5.0/6.0/... would be
1323 * 2.6.60.
1324 */
1325static int override_release(char __user *release, size_t len)
1326{
1327 int ret = 0;
1328
1329 if (current->personality & UNAME26) {
1330 const char *rest = UTS_RELEASE;
1331 char buf[65] = { 0 };
1332 int ndots = 0;
1333 unsigned v;
1334 size_t copy;
1335
1336 while (*rest) {
1337 if (*rest == '.' && ++ndots >= 3)
1338 break;
1339 if (!isdigit(c: *rest) && *rest != '.')
1340 break;
1341 rest++;
1342 }
1343 v = LINUX_VERSION_PATCHLEVEL + 60;
1344 copy = clamp_t(size_t, len, 1, sizeof(buf));
1345 copy = scnprintf(buf, size: copy, fmt: "2.6.%u%s", v, rest);
1346 ret = copy_to_user(to: release, from: buf, n: copy + 1);
1347 }
1348 return ret;
1349}
1350
1351SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1352{
1353 struct new_utsname tmp;
1354
1355 down_read(sem: &uts_sem);
1356 memcpy(to: &tmp, from: utsname(), len: sizeof(tmp));
1357 up_read(sem: &uts_sem);
1358 if (copy_to_user(to: name, from: &tmp, n: sizeof(tmp)))
1359 return -EFAULT;
1360
1361 if (override_release(release: name->release, len: sizeof(name->release)))
1362 return -EFAULT;
1363 if (override_architecture(name))
1364 return -EFAULT;
1365 return 0;
1366}
1367
1368#ifdef __ARCH_WANT_SYS_OLD_UNAME
1369/*
1370 * Old cruft
1371 */
1372SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1373{
1374 struct old_utsname tmp;
1375
1376 if (!name)
1377 return -EFAULT;
1378
1379 down_read(sem: &uts_sem);
1380 memcpy(to: &tmp, from: utsname(), len: sizeof(tmp));
1381 up_read(sem: &uts_sem);
1382 if (copy_to_user(to: name, from: &tmp, n: sizeof(tmp)))
1383 return -EFAULT;
1384
1385 if (override_release(release: name->release, len: sizeof(name->release)))
1386 return -EFAULT;
1387 if (override_architecture(name))
1388 return -EFAULT;
1389 return 0;
1390}
1391
1392SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1393{
1394 struct oldold_utsname tmp;
1395
1396 if (!name)
1397 return -EFAULT;
1398
1399 memset(s: &tmp, c: 0, n: sizeof(tmp));
1400
1401 down_read(sem: &uts_sem);
1402 memcpy(to: &tmp.sysname, from: &utsname()->sysname, __OLD_UTS_LEN);
1403 memcpy(to: &tmp.nodename, from: &utsname()->nodename, __OLD_UTS_LEN);
1404 memcpy(to: &tmp.release, from: &utsname()->release, __OLD_UTS_LEN);
1405 memcpy(to: &tmp.version, from: &utsname()->version, __OLD_UTS_LEN);
1406 memcpy(to: &tmp.machine, from: &utsname()->machine, __OLD_UTS_LEN);
1407 up_read(sem: &uts_sem);
1408 if (copy_to_user(to: name, from: &tmp, n: sizeof(tmp)))
1409 return -EFAULT;
1410
1411 if (override_architecture(name))
1412 return -EFAULT;
1413 if (override_release(release: name->release, len: sizeof(name->release)))
1414 return -EFAULT;
1415 return 0;
1416}
1417#endif
1418
1419SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1420{
1421 int errno;
1422 char tmp[__NEW_UTS_LEN];
1423
1424 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1425 return -EPERM;
1426
1427 if (len < 0 || len > __NEW_UTS_LEN)
1428 return -EINVAL;
1429 errno = -EFAULT;
1430 if (!copy_from_user(to: tmp, from: name, n: len)) {
1431 struct new_utsname *u;
1432
1433 add_device_randomness(buf: tmp, len);
1434 down_write(sem: &uts_sem);
1435 u = utsname();
1436 memcpy(to: u->nodename, from: tmp, len);
1437 memset(s: u->nodename + len, c: 0, n: sizeof(u->nodename) - len);
1438 errno = 0;
1439 uts_proc_notify(proc: UTS_PROC_HOSTNAME);
1440 up_write(sem: &uts_sem);
1441 }
1442 return errno;
1443}
1444
1445#ifdef __ARCH_WANT_SYS_GETHOSTNAME
1446
1447SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1448{
1449 int i;
1450 struct new_utsname *u;
1451 char tmp[__NEW_UTS_LEN + 1];
1452
1453 if (len < 0)
1454 return -EINVAL;
1455 down_read(sem: &uts_sem);
1456 u = utsname();
1457 i = 1 + strlen(u->nodename);
1458 if (i > len)
1459 i = len;
1460 memcpy(to: tmp, from: u->nodename, len: i);
1461 up_read(sem: &uts_sem);
1462 if (copy_to_user(to: name, from: tmp, n: i))
1463 return -EFAULT;
1464 return 0;
1465}
1466
1467#endif
1468
1469/*
1470 * Only setdomainname; getdomainname can be implemented by calling
1471 * uname()
1472 */
1473SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1474{
1475 int errno;
1476 char tmp[__NEW_UTS_LEN];
1477
1478 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1479 return -EPERM;
1480 if (len < 0 || len > __NEW_UTS_LEN)
1481 return -EINVAL;
1482
1483 errno = -EFAULT;
1484 if (!copy_from_user(to: tmp, from: name, n: len)) {
1485 struct new_utsname *u;
1486
1487 add_device_randomness(buf: tmp, len);
1488 down_write(sem: &uts_sem);
1489 u = utsname();
1490 memcpy(to: u->domainname, from: tmp, len);
1491 memset(s: u->domainname + len, c: 0, n: sizeof(u->domainname) - len);
1492 errno = 0;
1493 uts_proc_notify(proc: UTS_PROC_DOMAINNAME);
1494 up_write(sem: &uts_sem);
1495 }
1496 return errno;
1497}
1498
1499/* make sure you are allowed to change @tsk limits before calling this */
1500static int do_prlimit(struct task_struct *tsk, unsigned int resource,
1501 struct rlimit *new_rlim, struct rlimit *old_rlim)
1502{
1503 struct rlimit *rlim;
1504 int retval = 0;
1505
1506 if (resource >= RLIM_NLIMITS)
1507 return -EINVAL;
1508 resource = array_index_nospec(resource, RLIM_NLIMITS);
1509
1510 if (new_rlim) {
1511 if (new_rlim->rlim_cur > new_rlim->rlim_max)
1512 return -EINVAL;
1513 if (resource == RLIMIT_NOFILE &&
1514 new_rlim->rlim_max > sysctl_nr_open)
1515 return -EPERM;
1516 }
1517
1518 /* Holding a refcount on tsk protects tsk->signal from disappearing. */
1519 rlim = tsk->signal->rlim + resource;
1520 task_lock(p: tsk->group_leader);
1521 if (new_rlim) {
1522 /*
1523 * Keep the capable check against init_user_ns until cgroups can
1524 * contain all limits.
1525 */
1526 if (new_rlim->rlim_max > rlim->rlim_max &&
1527 !capable(CAP_SYS_RESOURCE))
1528 retval = -EPERM;
1529 if (!retval)
1530 retval = security_task_setrlimit(p: tsk, resource, new_rlim);
1531 }
1532 if (!retval) {
1533 if (old_rlim)
1534 *old_rlim = *rlim;
1535 if (new_rlim)
1536 *rlim = *new_rlim;
1537 }
1538 task_unlock(p: tsk->group_leader);
1539
1540 /*
1541 * RLIMIT_CPU handling. Arm the posix CPU timer if the limit is not
1542 * infinite. In case of RLIM_INFINITY the posix CPU timer code
1543 * ignores the rlimit.
1544 */
1545 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1546 new_rlim->rlim_cur != RLIM_INFINITY &&
1547 IS_ENABLED(CONFIG_POSIX_TIMERS)) {
1548 /*
1549 * update_rlimit_cpu can fail if the task is exiting, but there
1550 * may be other tasks in the thread group that are not exiting,
1551 * and they need their cpu timers adjusted.
1552 *
1553 * The group_leader is the last task to be released, so if we
1554 * cannot update_rlimit_cpu on it, then the entire process is
1555 * exiting and we do not need to update at all.
1556 */
1557 update_rlimit_cpu(task: tsk->group_leader, rlim_new: new_rlim->rlim_cur);
1558 }
1559
1560 return retval;
1561}
1562
1563SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1564{
1565 struct rlimit value;
1566 int ret;
1567
1568 ret = do_prlimit(current, resource, NULL, old_rlim: &value);
1569 if (!ret)
1570 ret = copy_to_user(to: rlim, from: &value, n: sizeof(*rlim)) ? -EFAULT : 0;
1571
1572 return ret;
1573}
1574
1575#ifdef CONFIG_COMPAT
1576
1577COMPAT_SYSCALL_DEFINE2(setrlimit, unsigned int, resource,
1578 struct compat_rlimit __user *, rlim)
1579{
1580 struct rlimit r;
1581 struct compat_rlimit r32;
1582
1583 if (copy_from_user(to: &r32, from: rlim, n: sizeof(struct compat_rlimit)))
1584 return -EFAULT;
1585
1586 if (r32.rlim_cur == COMPAT_RLIM_INFINITY)
1587 r.rlim_cur = RLIM_INFINITY;
1588 else
1589 r.rlim_cur = r32.rlim_cur;
1590 if (r32.rlim_max == COMPAT_RLIM_INFINITY)
1591 r.rlim_max = RLIM_INFINITY;
1592 else
1593 r.rlim_max = r32.rlim_max;
1594 return do_prlimit(current, resource, new_rlim: &r, NULL);
1595}
1596
1597COMPAT_SYSCALL_DEFINE2(getrlimit, unsigned int, resource,
1598 struct compat_rlimit __user *, rlim)
1599{
1600 struct rlimit r;
1601 int ret;
1602
1603 ret = do_prlimit(current, resource, NULL, old_rlim: &r);
1604 if (!ret) {
1605 struct compat_rlimit r32;
1606 if (r.rlim_cur > COMPAT_RLIM_INFINITY)
1607 r32.rlim_cur = COMPAT_RLIM_INFINITY;
1608 else
1609 r32.rlim_cur = r.rlim_cur;
1610 if (r.rlim_max > COMPAT_RLIM_INFINITY)
1611 r32.rlim_max = COMPAT_RLIM_INFINITY;
1612 else
1613 r32.rlim_max = r.rlim_max;
1614
1615 if (copy_to_user(to: rlim, from: &r32, n: sizeof(struct compat_rlimit)))
1616 return -EFAULT;
1617 }
1618 return ret;
1619}
1620
1621#endif
1622
1623#ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1624
1625/*
1626 * Back compatibility for getrlimit. Needed for some apps.
1627 */
1628SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1629 struct rlimit __user *, rlim)
1630{
1631 struct rlimit x;
1632 if (resource >= RLIM_NLIMITS)
1633 return -EINVAL;
1634
1635 resource = array_index_nospec(resource, RLIM_NLIMITS);
1636 task_lock(current->group_leader);
1637 x = current->signal->rlim[resource];
1638 task_unlock(current->group_leader);
1639 if (x.rlim_cur > 0x7FFFFFFF)
1640 x.rlim_cur = 0x7FFFFFFF;
1641 if (x.rlim_max > 0x7FFFFFFF)
1642 x.rlim_max = 0x7FFFFFFF;
1643 return copy_to_user(to: rlim, from: &x, n: sizeof(x)) ? -EFAULT : 0;
1644}
1645
1646#ifdef CONFIG_COMPAT
1647COMPAT_SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1648 struct compat_rlimit __user *, rlim)
1649{
1650 struct rlimit r;
1651
1652 if (resource >= RLIM_NLIMITS)
1653 return -EINVAL;
1654
1655 resource = array_index_nospec(resource, RLIM_NLIMITS);
1656 task_lock(current->group_leader);
1657 r = current->signal->rlim[resource];
1658 task_unlock(current->group_leader);
1659 if (r.rlim_cur > 0x7FFFFFFF)
1660 r.rlim_cur = 0x7FFFFFFF;
1661 if (r.rlim_max > 0x7FFFFFFF)
1662 r.rlim_max = 0x7FFFFFFF;
1663
1664 if (put_user(r.rlim_cur, &rlim->rlim_cur) ||
1665 put_user(r.rlim_max, &rlim->rlim_max))
1666 return -EFAULT;
1667 return 0;
1668}
1669#endif
1670
1671#endif
1672
1673static inline bool rlim64_is_infinity(__u64 rlim64)
1674{
1675#if BITS_PER_LONG < 64
1676 return rlim64 >= ULONG_MAX;
1677#else
1678 return rlim64 == RLIM64_INFINITY;
1679#endif
1680}
1681
1682static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1683{
1684 if (rlim->rlim_cur == RLIM_INFINITY)
1685 rlim64->rlim_cur = RLIM64_INFINITY;
1686 else
1687 rlim64->rlim_cur = rlim->rlim_cur;
1688 if (rlim->rlim_max == RLIM_INFINITY)
1689 rlim64->rlim_max = RLIM64_INFINITY;
1690 else
1691 rlim64->rlim_max = rlim->rlim_max;
1692}
1693
1694static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1695{
1696 if (rlim64_is_infinity(rlim64: rlim64->rlim_cur))
1697 rlim->rlim_cur = RLIM_INFINITY;
1698 else
1699 rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1700 if (rlim64_is_infinity(rlim64: rlim64->rlim_max))
1701 rlim->rlim_max = RLIM_INFINITY;
1702 else
1703 rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1704}
1705
1706/* rcu lock must be held */
1707static int check_prlimit_permission(struct task_struct *task,
1708 unsigned int flags)
1709{
1710 const struct cred *cred = current_cred(), *tcred;
1711 bool id_match;
1712
1713 if (current == task)
1714 return 0;
1715
1716 tcred = __task_cred(task);
1717 id_match = (uid_eq(left: cred->uid, right: tcred->euid) &&
1718 uid_eq(left: cred->uid, right: tcred->suid) &&
1719 uid_eq(left: cred->uid, right: tcred->uid) &&
1720 gid_eq(left: cred->gid, right: tcred->egid) &&
1721 gid_eq(left: cred->gid, right: tcred->sgid) &&
1722 gid_eq(left: cred->gid, right: tcred->gid));
1723 if (!id_match && !ns_capable(ns: tcred->user_ns, CAP_SYS_RESOURCE))
1724 return -EPERM;
1725
1726 return security_task_prlimit(cred, tcred, flags);
1727}
1728
1729SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1730 const struct rlimit64 __user *, new_rlim,
1731 struct rlimit64 __user *, old_rlim)
1732{
1733 struct rlimit64 old64, new64;
1734 struct rlimit old, new;
1735 struct task_struct *tsk;
1736 unsigned int checkflags = 0;
1737 bool need_tasklist;
1738 int ret;
1739
1740 if (old_rlim)
1741 checkflags |= LSM_PRLIMIT_READ;
1742
1743 if (new_rlim) {
1744 if (copy_from_user(to: &new64, from: new_rlim, n: sizeof(new64)))
1745 return -EFAULT;
1746 rlim64_to_rlim(rlim64: &new64, rlim: &new);
1747 checkflags |= LSM_PRLIMIT_WRITE;
1748 }
1749
1750 rcu_read_lock();
1751 tsk = pid ? find_task_by_vpid(nr: pid) : current;
1752 if (!tsk) {
1753 rcu_read_unlock();
1754 return -ESRCH;
1755 }
1756 ret = check_prlimit_permission(task: tsk, flags: checkflags);
1757 if (ret) {
1758 rcu_read_unlock();
1759 return ret;
1760 }
1761 get_task_struct(t: tsk);
1762 rcu_read_unlock();
1763
1764 need_tasklist = !same_thread_group(p1: tsk, current);
1765 if (need_tasklist) {
1766 /*
1767 * Ensure we can't race with group exit or de_thread(),
1768 * so tsk->group_leader can't be freed or changed until
1769 * read_unlock(tasklist_lock) below.
1770 */
1771 read_lock(&tasklist_lock);
1772 if (!pid_alive(p: tsk))
1773 ret = -ESRCH;
1774 }
1775
1776 if (!ret) {
1777 ret = do_prlimit(tsk, resource, new_rlim: new_rlim ? &new : NULL,
1778 old_rlim: old_rlim ? &old : NULL);
1779 }
1780
1781 if (need_tasklist)
1782 read_unlock(&tasklist_lock);
1783
1784 if (!ret && old_rlim) {
1785 rlim_to_rlim64(rlim: &old, rlim64: &old64);
1786 if (copy_to_user(to: old_rlim, from: &old64, n: sizeof(old64)))
1787 ret = -EFAULT;
1788 }
1789
1790 put_task_struct(t: tsk);
1791 return ret;
1792}
1793
1794SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1795{
1796 struct rlimit new_rlim;
1797
1798 if (copy_from_user(to: &new_rlim, from: rlim, n: sizeof(*rlim)))
1799 return -EFAULT;
1800 return do_prlimit(current, resource, new_rlim: &new_rlim, NULL);
1801}
1802
1803/*
1804 * It would make sense to put struct rusage in the task_struct,
1805 * except that would make the task_struct be *really big*. After
1806 * task_struct gets moved into malloc'ed memory, it would
1807 * make sense to do this. It will make moving the rest of the information
1808 * a lot simpler! (Which we're not doing right now because we're not
1809 * measuring them yet).
1810 *
1811 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1812 * races with threads incrementing their own counters. But since word
1813 * reads are atomic, we either get new values or old values and we don't
1814 * care which for the sums. We always take the siglock to protect reading
1815 * the c* fields from p->signal from races with exit.c updating those
1816 * fields when reaping, so a sample either gets all the additions of a
1817 * given child after it's reaped, or none so this sample is before reaping.
1818 *
1819 * Locking:
1820 * We need to take the siglock for CHILDEREN, SELF and BOTH
1821 * for the cases current multithreaded, non-current single threaded
1822 * non-current multithreaded. Thread traversal is now safe with
1823 * the siglock held.
1824 * Strictly speaking, we donot need to take the siglock if we are current and
1825 * single threaded, as no one else can take our signal_struct away, no one
1826 * else can reap the children to update signal->c* counters, and no one else
1827 * can race with the signal-> fields. If we do not take any lock, the
1828 * signal-> fields could be read out of order while another thread was just
1829 * exiting. So we should place a read memory barrier when we avoid the lock.
1830 * On the writer side, write memory barrier is implied in __exit_signal
1831 * as __exit_signal releases the siglock spinlock after updating the signal->
1832 * fields. But we don't do this yet to keep things simple.
1833 *
1834 */
1835
1836static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1837{
1838 r->ru_nvcsw += t->nvcsw;
1839 r->ru_nivcsw += t->nivcsw;
1840 r->ru_minflt += t->min_flt;
1841 r->ru_majflt += t->maj_flt;
1842 r->ru_inblock += task_io_get_inblock(p: t);
1843 r->ru_oublock += task_io_get_oublock(p: t);
1844}
1845
1846void getrusage(struct task_struct *p, int who, struct rusage *r)
1847{
1848 struct task_struct *t;
1849 unsigned long flags;
1850 u64 tgutime, tgstime, utime, stime;
1851 unsigned long maxrss;
1852 struct mm_struct *mm;
1853 struct signal_struct *sig = p->signal;
1854 unsigned int seq = 0;
1855
1856retry:
1857 memset(s: r, c: 0, n: sizeof(*r));
1858 utime = stime = 0;
1859 maxrss = 0;
1860
1861 if (who == RUSAGE_THREAD) {
1862 task_cputime_adjusted(current, ut: &utime, st: &stime);
1863 accumulate_thread_rusage(t: p, r);
1864 maxrss = sig->maxrss;
1865 goto out_thread;
1866 }
1867
1868 flags = read_seqbegin_or_lock_irqsave(lock: &sig->stats_lock, seq: &seq);
1869
1870 switch (who) {
1871 case RUSAGE_BOTH:
1872 case RUSAGE_CHILDREN:
1873 utime = sig->cutime;
1874 stime = sig->cstime;
1875 r->ru_nvcsw = sig->cnvcsw;
1876 r->ru_nivcsw = sig->cnivcsw;
1877 r->ru_minflt = sig->cmin_flt;
1878 r->ru_majflt = sig->cmaj_flt;
1879 r->ru_inblock = sig->cinblock;
1880 r->ru_oublock = sig->coublock;
1881 maxrss = sig->cmaxrss;
1882
1883 if (who == RUSAGE_CHILDREN)
1884 break;
1885 fallthrough;
1886
1887 case RUSAGE_SELF:
1888 r->ru_nvcsw += sig->nvcsw;
1889 r->ru_nivcsw += sig->nivcsw;
1890 r->ru_minflt += sig->min_flt;
1891 r->ru_majflt += sig->maj_flt;
1892 r->ru_inblock += sig->inblock;
1893 r->ru_oublock += sig->oublock;
1894 if (maxrss < sig->maxrss)
1895 maxrss = sig->maxrss;
1896
1897 rcu_read_lock();
1898 __for_each_thread(sig, t)
1899 accumulate_thread_rusage(t, r);
1900 rcu_read_unlock();
1901
1902 break;
1903
1904 default:
1905 BUG();
1906 }
1907
1908 if (need_seqretry(lock: &sig->stats_lock, seq)) {
1909 seq = 1;
1910 goto retry;
1911 }
1912 done_seqretry_irqrestore(lock: &sig->stats_lock, seq, flags);
1913
1914 if (who == RUSAGE_CHILDREN)
1915 goto out_children;
1916
1917 thread_group_cputime_adjusted(p, ut: &tgutime, st: &tgstime);
1918 utime += tgutime;
1919 stime += tgstime;
1920
1921out_thread:
1922 mm = get_task_mm(task: p);
1923 if (mm) {
1924 setmax_mm_hiwater_rss(maxrss: &maxrss, mm);
1925 mmput(mm);
1926 }
1927
1928out_children:
1929 r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1930 r->ru_utime = ns_to_kernel_old_timeval(nsec: utime);
1931 r->ru_stime = ns_to_kernel_old_timeval(nsec: stime);
1932}
1933
1934SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1935{
1936 struct rusage r;
1937
1938 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1939 who != RUSAGE_THREAD)
1940 return -EINVAL;
1941
1942 getrusage(current, who, r: &r);
1943 return copy_to_user(to: ru, from: &r, n: sizeof(r)) ? -EFAULT : 0;
1944}
1945
1946#ifdef CONFIG_COMPAT
1947COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1948{
1949 struct rusage r;
1950
1951 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1952 who != RUSAGE_THREAD)
1953 return -EINVAL;
1954
1955 getrusage(current, who, r: &r);
1956 return put_compat_rusage(&r, ru);
1957}
1958#endif
1959
1960SYSCALL_DEFINE1(umask, int, mask)
1961{
1962 mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1963 return mask;
1964}
1965
1966static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1967{
1968 CLASS(fd, exe)(fd);
1969 struct inode *inode;
1970 int err;
1971
1972 if (fd_empty(f: exe))
1973 return -EBADF;
1974
1975 inode = file_inode(fd_file(exe));
1976
1977 /*
1978 * Because the original mm->exe_file points to executable file, make
1979 * sure that this one is executable as well, to avoid breaking an
1980 * overall picture.
1981 */
1982 if (!S_ISREG(inode->i_mode) || path_noexec(path: &fd_file(exe)->f_path))
1983 return -EACCES;
1984
1985 err = file_permission(fd_file(exe), MAY_EXEC);
1986 if (err)
1987 return err;
1988
1989 return replace_mm_exe_file(mm, fd_file(exe));
1990}
1991
1992/*
1993 * Check arithmetic relations of passed addresses.
1994 *
1995 * WARNING: we don't require any capability here so be very careful
1996 * in what is allowed for modification from userspace.
1997 */
1998static int validate_prctl_map_addr(struct prctl_mm_map *prctl_map)
1999{
2000 unsigned long mmap_max_addr = TASK_SIZE;
2001 int error = -EINVAL, i;
2002
2003 static const unsigned char offsets[] = {
2004 offsetof(struct prctl_mm_map, start_code),
2005 offsetof(struct prctl_mm_map, end_code),
2006 offsetof(struct prctl_mm_map, start_data),
2007 offsetof(struct prctl_mm_map, end_data),
2008 offsetof(struct prctl_mm_map, start_brk),
2009 offsetof(struct prctl_mm_map, brk),
2010 offsetof(struct prctl_mm_map, start_stack),
2011 offsetof(struct prctl_mm_map, arg_start),
2012 offsetof(struct prctl_mm_map, arg_end),
2013 offsetof(struct prctl_mm_map, env_start),
2014 offsetof(struct prctl_mm_map, env_end),
2015 };
2016
2017 /*
2018 * Make sure the members are not somewhere outside
2019 * of allowed address space.
2020 */
2021 for (i = 0; i < ARRAY_SIZE(offsets); i++) {
2022 u64 val = *(u64 *)((char *)prctl_map + offsets[i]);
2023
2024 if ((unsigned long)val >= mmap_max_addr ||
2025 (unsigned long)val < mmap_min_addr)
2026 goto out;
2027 }
2028
2029 /*
2030 * Make sure the pairs are ordered.
2031 */
2032#define __prctl_check_order(__m1, __op, __m2) \
2033 ((unsigned long)prctl_map->__m1 __op \
2034 (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
2035 error = __prctl_check_order(start_code, <, end_code);
2036 error |= __prctl_check_order(start_data,<=, end_data);
2037 error |= __prctl_check_order(start_brk, <=, brk);
2038 error |= __prctl_check_order(arg_start, <=, arg_end);
2039 error |= __prctl_check_order(env_start, <=, env_end);
2040 if (error)
2041 goto out;
2042#undef __prctl_check_order
2043
2044 error = -EINVAL;
2045
2046 /*
2047 * Neither we should allow to override limits if they set.
2048 */
2049 if (check_data_rlimit(rlim: rlimit(RLIMIT_DATA), new: prctl_map->brk,
2050 start: prctl_map->start_brk, end_data: prctl_map->end_data,
2051 start_data: prctl_map->start_data))
2052 goto out;
2053
2054 error = 0;
2055out:
2056 return error;
2057}
2058
2059#ifdef CONFIG_CHECKPOINT_RESTORE
2060static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size)
2061{
2062 struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, };
2063 unsigned long user_auxv[AT_VECTOR_SIZE];
2064 struct mm_struct *mm = current->mm;
2065 int error;
2066
2067 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
2068 BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256);
2069
2070 if (opt == PR_SET_MM_MAP_SIZE)
2071 return put_user((unsigned int)sizeof(prctl_map),
2072 (unsigned int __user *)addr);
2073
2074 if (data_size != sizeof(prctl_map))
2075 return -EINVAL;
2076
2077 if (copy_from_user(&prctl_map, addr, sizeof(prctl_map)))
2078 return -EFAULT;
2079
2080 error = validate_prctl_map_addr(&prctl_map);
2081 if (error)
2082 return error;
2083
2084 if (prctl_map.auxv_size) {
2085 /*
2086 * Someone is trying to cheat the auxv vector.
2087 */
2088 if (!prctl_map.auxv ||
2089 prctl_map.auxv_size > sizeof(mm->saved_auxv))
2090 return -EINVAL;
2091
2092 memset(user_auxv, 0, sizeof(user_auxv));
2093 if (copy_from_user(user_auxv,
2094 (const void __user *)prctl_map.auxv,
2095 prctl_map.auxv_size))
2096 return -EFAULT;
2097
2098 /* Last entry must be AT_NULL as specification requires */
2099 user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL;
2100 user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL;
2101 }
2102
2103 if (prctl_map.exe_fd != (u32)-1) {
2104 /*
2105 * Check if the current user is checkpoint/restore capable.
2106 * At the time of this writing, it checks for CAP_SYS_ADMIN
2107 * or CAP_CHECKPOINT_RESTORE.
2108 * Note that a user with access to ptrace can masquerade an
2109 * arbitrary program as any executable, even setuid ones.
2110 * This may have implications in the tomoyo subsystem.
2111 */
2112 if (!checkpoint_restore_ns_capable(current_user_ns()))
2113 return -EPERM;
2114
2115 error = prctl_set_mm_exe_file(mm, prctl_map.exe_fd);
2116 if (error)
2117 return error;
2118 }
2119
2120 /*
2121 * arg_lock protects concurrent updates but we still need mmap_lock for
2122 * read to exclude races with sys_brk.
2123 */
2124 mmap_read_lock(mm);
2125
2126 /*
2127 * We don't validate if these members are pointing to
2128 * real present VMAs because application may have correspond
2129 * VMAs already unmapped and kernel uses these members for statistics
2130 * output in procfs mostly, except
2131 *
2132 * - @start_brk/@brk which are used in do_brk_flags but kernel lookups
2133 * for VMAs when updating these members so anything wrong written
2134 * here cause kernel to swear at userspace program but won't lead
2135 * to any problem in kernel itself
2136 */
2137
2138 spin_lock(&mm->arg_lock);
2139 mm->start_code = prctl_map.start_code;
2140 mm->end_code = prctl_map.end_code;
2141 mm->start_data = prctl_map.start_data;
2142 mm->end_data = prctl_map.end_data;
2143 mm->start_brk = prctl_map.start_brk;
2144 mm->brk = prctl_map.brk;
2145 mm->start_stack = prctl_map.start_stack;
2146 mm->arg_start = prctl_map.arg_start;
2147 mm->arg_end = prctl_map.arg_end;
2148 mm->env_start = prctl_map.env_start;
2149 mm->env_end = prctl_map.env_end;
2150 spin_unlock(&mm->arg_lock);
2151
2152 /*
2153 * Note this update of @saved_auxv is lockless thus
2154 * if someone reads this member in procfs while we're
2155 * updating -- it may get partly updated results. It's
2156 * known and acceptable trade off: we leave it as is to
2157 * not introduce additional locks here making the kernel
2158 * more complex.
2159 */
2160 if (prctl_map.auxv_size)
2161 memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv));
2162
2163 mmap_read_unlock(mm);
2164 return 0;
2165}
2166#endif /* CONFIG_CHECKPOINT_RESTORE */
2167
2168static int prctl_set_auxv(struct mm_struct *mm, unsigned long addr,
2169 unsigned long len)
2170{
2171 /*
2172 * This doesn't move the auxiliary vector itself since it's pinned to
2173 * mm_struct, but it permits filling the vector with new values. It's
2174 * up to the caller to provide sane values here, otherwise userspace
2175 * tools which use this vector might be unhappy.
2176 */
2177 unsigned long user_auxv[AT_VECTOR_SIZE] = {};
2178
2179 if (len > sizeof(user_auxv))
2180 return -EINVAL;
2181
2182 if (copy_from_user(to: user_auxv, from: (const void __user *)addr, n: len))
2183 return -EFAULT;
2184
2185 /* Make sure the last entry is always AT_NULL */
2186 user_auxv[AT_VECTOR_SIZE - 2] = 0;
2187 user_auxv[AT_VECTOR_SIZE - 1] = 0;
2188
2189 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
2190
2191 task_lock(current);
2192 memcpy(to: mm->saved_auxv, from: user_auxv, len);
2193 task_unlock(current);
2194
2195 return 0;
2196}
2197
2198static int prctl_set_mm(int opt, unsigned long addr,
2199 unsigned long arg4, unsigned long arg5)
2200{
2201 struct mm_struct *mm = current->mm;
2202 struct prctl_mm_map prctl_map = {
2203 .auxv = NULL,
2204 .auxv_size = 0,
2205 .exe_fd = -1,
2206 };
2207 struct vm_area_struct *vma;
2208 int error;
2209
2210 if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV &&
2211 opt != PR_SET_MM_MAP &&
2212 opt != PR_SET_MM_MAP_SIZE)))
2213 return -EINVAL;
2214
2215#ifdef CONFIG_CHECKPOINT_RESTORE
2216 if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE)
2217 return prctl_set_mm_map(opt, (const void __user *)addr, arg4);
2218#endif
2219
2220 if (!capable(CAP_SYS_RESOURCE))
2221 return -EPERM;
2222
2223 if (opt == PR_SET_MM_EXE_FILE)
2224 return prctl_set_mm_exe_file(mm, fd: (unsigned int)addr);
2225
2226 if (opt == PR_SET_MM_AUXV)
2227 return prctl_set_auxv(mm, addr, len: arg4);
2228
2229 if (addr >= TASK_SIZE || addr < mmap_min_addr)
2230 return -EINVAL;
2231
2232 error = -EINVAL;
2233
2234 /*
2235 * arg_lock protects concurrent updates of arg boundaries, we need
2236 * mmap_lock for a) concurrent sys_brk, b) finding VMA for addr
2237 * validation.
2238 */
2239 mmap_read_lock(mm);
2240 vma = find_vma(mm, addr);
2241
2242 spin_lock(lock: &mm->arg_lock);
2243 prctl_map.start_code = mm->start_code;
2244 prctl_map.end_code = mm->end_code;
2245 prctl_map.start_data = mm->start_data;
2246 prctl_map.end_data = mm->end_data;
2247 prctl_map.start_brk = mm->start_brk;
2248 prctl_map.brk = mm->brk;
2249 prctl_map.start_stack = mm->start_stack;
2250 prctl_map.arg_start = mm->arg_start;
2251 prctl_map.arg_end = mm->arg_end;
2252 prctl_map.env_start = mm->env_start;
2253 prctl_map.env_end = mm->env_end;
2254
2255 switch (opt) {
2256 case PR_SET_MM_START_CODE:
2257 prctl_map.start_code = addr;
2258 break;
2259 case PR_SET_MM_END_CODE:
2260 prctl_map.end_code = addr;
2261 break;
2262 case PR_SET_MM_START_DATA:
2263 prctl_map.start_data = addr;
2264 break;
2265 case PR_SET_MM_END_DATA:
2266 prctl_map.end_data = addr;
2267 break;
2268 case PR_SET_MM_START_STACK:
2269 prctl_map.start_stack = addr;
2270 break;
2271 case PR_SET_MM_START_BRK:
2272 prctl_map.start_brk = addr;
2273 break;
2274 case PR_SET_MM_BRK:
2275 prctl_map.brk = addr;
2276 break;
2277 case PR_SET_MM_ARG_START:
2278 prctl_map.arg_start = addr;
2279 break;
2280 case PR_SET_MM_ARG_END:
2281 prctl_map.arg_end = addr;
2282 break;
2283 case PR_SET_MM_ENV_START:
2284 prctl_map.env_start = addr;
2285 break;
2286 case PR_SET_MM_ENV_END:
2287 prctl_map.env_end = addr;
2288 break;
2289 default:
2290 goto out;
2291 }
2292
2293 error = validate_prctl_map_addr(prctl_map: &prctl_map);
2294 if (error)
2295 goto out;
2296
2297 switch (opt) {
2298 /*
2299 * If command line arguments and environment
2300 * are placed somewhere else on stack, we can
2301 * set them up here, ARG_START/END to setup
2302 * command line arguments and ENV_START/END
2303 * for environment.
2304 */
2305 case PR_SET_MM_START_STACK:
2306 case PR_SET_MM_ARG_START:
2307 case PR_SET_MM_ARG_END:
2308 case PR_SET_MM_ENV_START:
2309 case PR_SET_MM_ENV_END:
2310 if (!vma) {
2311 error = -EFAULT;
2312 goto out;
2313 }
2314 }
2315
2316 mm->start_code = prctl_map.start_code;
2317 mm->end_code = prctl_map.end_code;
2318 mm->start_data = prctl_map.start_data;
2319 mm->end_data = prctl_map.end_data;
2320 mm->start_brk = prctl_map.start_brk;
2321 mm->brk = prctl_map.brk;
2322 mm->start_stack = prctl_map.start_stack;
2323 mm->arg_start = prctl_map.arg_start;
2324 mm->arg_end = prctl_map.arg_end;
2325 mm->env_start = prctl_map.env_start;
2326 mm->env_end = prctl_map.env_end;
2327
2328 error = 0;
2329out:
2330 spin_unlock(lock: &mm->arg_lock);
2331 mmap_read_unlock(mm);
2332 return error;
2333}
2334
2335#ifdef CONFIG_CHECKPOINT_RESTORE
2336static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr)
2337{
2338 return put_user(me->clear_child_tid, tid_addr);
2339}
2340#else
2341static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr)
2342{
2343 return -EINVAL;
2344}
2345#endif
2346
2347static int propagate_has_child_subreaper(struct task_struct *p, void *data)
2348{
2349 /*
2350 * If task has has_child_subreaper - all its descendants
2351 * already have these flag too and new descendants will
2352 * inherit it on fork, skip them.
2353 *
2354 * If we've found child_reaper - skip descendants in
2355 * it's subtree as they will never get out pidns.
2356 */
2357 if (p->signal->has_child_subreaper ||
2358 is_child_reaper(pid: task_pid(task: p)))
2359 return 0;
2360
2361 p->signal->has_child_subreaper = 1;
2362 return 1;
2363}
2364
2365int __weak arch_prctl_spec_ctrl_get(struct task_struct *t, unsigned long which)
2366{
2367 return -EINVAL;
2368}
2369
2370int __weak arch_prctl_spec_ctrl_set(struct task_struct *t, unsigned long which,
2371 unsigned long ctrl)
2372{
2373 return -EINVAL;
2374}
2375
2376int __weak arch_get_shadow_stack_status(struct task_struct *t, unsigned long __user *status)
2377{
2378 return -EINVAL;
2379}
2380
2381int __weak arch_set_shadow_stack_status(struct task_struct *t, unsigned long status)
2382{
2383 return -EINVAL;
2384}
2385
2386int __weak arch_lock_shadow_stack_status(struct task_struct *t, unsigned long status)
2387{
2388 return -EINVAL;
2389}
2390
2391#define PR_IO_FLUSHER (PF_MEMALLOC_NOIO | PF_LOCAL_THROTTLE)
2392
2393static int prctl_set_vma(unsigned long opt, unsigned long addr,
2394 unsigned long size, unsigned long arg)
2395{
2396 int error;
2397
2398 switch (opt) {
2399 case PR_SET_VMA_ANON_NAME:
2400 error = set_anon_vma_name(addr, size, uname: (const char __user *)arg);
2401 break;
2402 default:
2403 error = -EINVAL;
2404 }
2405
2406 return error;
2407}
2408
2409static inline unsigned long get_current_mdwe(void)
2410{
2411 unsigned long ret = 0;
2412
2413 if (mm_flags_test(MMF_HAS_MDWE, current->mm))
2414 ret |= PR_MDWE_REFUSE_EXEC_GAIN;
2415 if (mm_flags_test(MMF_HAS_MDWE_NO_INHERIT, current->mm))
2416 ret |= PR_MDWE_NO_INHERIT;
2417
2418 return ret;
2419}
2420
2421static inline int prctl_set_mdwe(unsigned long bits, unsigned long arg3,
2422 unsigned long arg4, unsigned long arg5)
2423{
2424 unsigned long current_bits;
2425
2426 if (arg3 || arg4 || arg5)
2427 return -EINVAL;
2428
2429 if (bits & ~(PR_MDWE_REFUSE_EXEC_GAIN | PR_MDWE_NO_INHERIT))
2430 return -EINVAL;
2431
2432 /* NO_INHERIT only makes sense with REFUSE_EXEC_GAIN */
2433 if (bits & PR_MDWE_NO_INHERIT && !(bits & PR_MDWE_REFUSE_EXEC_GAIN))
2434 return -EINVAL;
2435
2436 /*
2437 * EOPNOTSUPP might be more appropriate here in principle, but
2438 * existing userspace depends on EINVAL specifically.
2439 */
2440 if (!arch_memory_deny_write_exec_supported())
2441 return -EINVAL;
2442
2443 current_bits = get_current_mdwe();
2444 if (current_bits && current_bits != bits)
2445 return -EPERM; /* Cannot unset the flags */
2446
2447 if (bits & PR_MDWE_NO_INHERIT)
2448 mm_flags_set(MMF_HAS_MDWE_NO_INHERIT, current->mm);
2449 if (bits & PR_MDWE_REFUSE_EXEC_GAIN)
2450 mm_flags_set(MMF_HAS_MDWE, current->mm);
2451
2452 return 0;
2453}
2454
2455static inline int prctl_get_mdwe(unsigned long arg2, unsigned long arg3,
2456 unsigned long arg4, unsigned long arg5)
2457{
2458 if (arg2 || arg3 || arg4 || arg5)
2459 return -EINVAL;
2460 return get_current_mdwe();
2461}
2462
2463static int prctl_get_auxv(void __user *addr, unsigned long len)
2464{
2465 struct mm_struct *mm = current->mm;
2466 unsigned long size = min_t(unsigned long, sizeof(mm->saved_auxv), len);
2467
2468 if (size && copy_to_user(to: addr, from: mm->saved_auxv, n: size))
2469 return -EFAULT;
2470 return sizeof(mm->saved_auxv);
2471}
2472
2473static int prctl_get_thp_disable(unsigned long arg2, unsigned long arg3,
2474 unsigned long arg4, unsigned long arg5)
2475{
2476 struct mm_struct *mm = current->mm;
2477
2478 if (arg2 || arg3 || arg4 || arg5)
2479 return -EINVAL;
2480
2481 /* If disabled, we return "1 | flags", otherwise 0. */
2482 if (mm_flags_test(MMF_DISABLE_THP_COMPLETELY, mm))
2483 return 1;
2484 else if (mm_flags_test(MMF_DISABLE_THP_EXCEPT_ADVISED, mm))
2485 return 1 | PR_THP_DISABLE_EXCEPT_ADVISED;
2486 return 0;
2487}
2488
2489static int prctl_set_thp_disable(bool thp_disable, unsigned long flags,
2490 unsigned long arg4, unsigned long arg5)
2491{
2492 struct mm_struct *mm = current->mm;
2493
2494 if (arg4 || arg5)
2495 return -EINVAL;
2496
2497 /* Flags are only allowed when disabling. */
2498 if ((!thp_disable && flags) || (flags & ~PR_THP_DISABLE_EXCEPT_ADVISED))
2499 return -EINVAL;
2500 if (mmap_write_lock_killable(current->mm))
2501 return -EINTR;
2502 if (thp_disable) {
2503 if (flags & PR_THP_DISABLE_EXCEPT_ADVISED) {
2504 mm_flags_clear(MMF_DISABLE_THP_COMPLETELY, mm);
2505 mm_flags_set(MMF_DISABLE_THP_EXCEPT_ADVISED, mm);
2506 } else {
2507 mm_flags_set(MMF_DISABLE_THP_COMPLETELY, mm);
2508 mm_flags_clear(MMF_DISABLE_THP_EXCEPT_ADVISED, mm);
2509 }
2510 } else {
2511 mm_flags_clear(MMF_DISABLE_THP_COMPLETELY, mm);
2512 mm_flags_clear(MMF_DISABLE_THP_EXCEPT_ADVISED, mm);
2513 }
2514 mmap_write_unlock(current->mm);
2515 return 0;
2516}
2517
2518SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2519 unsigned long, arg4, unsigned long, arg5)
2520{
2521 struct task_struct *me = current;
2522 unsigned char comm[sizeof(me->comm)];
2523 long error;
2524
2525 error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2526 if (error != -ENOSYS)
2527 return error;
2528
2529 error = 0;
2530 switch (option) {
2531 case PR_SET_PDEATHSIG:
2532 if (!valid_signal(sig: arg2)) {
2533 error = -EINVAL;
2534 break;
2535 }
2536 /*
2537 * Ensure that either:
2538 *
2539 * 1. Subsequent getppid() calls reflect the parent process having died.
2540 * 2. forget_original_parent() will send the new me->pdeath_signal.
2541 *
2542 * Also prevent the read of me->pdeath_signal from being a data race.
2543 */
2544 read_lock(&tasklist_lock);
2545 me->pdeath_signal = arg2;
2546 read_unlock(&tasklist_lock);
2547 break;
2548 case PR_GET_PDEATHSIG:
2549 error = put_user(me->pdeath_signal, (int __user *)arg2);
2550 break;
2551 case PR_GET_DUMPABLE:
2552 error = get_dumpable(mm: me->mm);
2553 break;
2554 case PR_SET_DUMPABLE:
2555 if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
2556 error = -EINVAL;
2557 break;
2558 }
2559 set_dumpable(mm: me->mm, value: arg2);
2560 break;
2561
2562 case PR_SET_UNALIGN:
2563 error = SET_UNALIGN_CTL(me, arg2);
2564 break;
2565 case PR_GET_UNALIGN:
2566 error = GET_UNALIGN_CTL(me, arg2);
2567 break;
2568 case PR_SET_FPEMU:
2569 error = SET_FPEMU_CTL(me, arg2);
2570 break;
2571 case PR_GET_FPEMU:
2572 error = GET_FPEMU_CTL(me, arg2);
2573 break;
2574 case PR_SET_FPEXC:
2575 error = SET_FPEXC_CTL(me, arg2);
2576 break;
2577 case PR_GET_FPEXC:
2578 error = GET_FPEXC_CTL(me, arg2);
2579 break;
2580 case PR_GET_TIMING:
2581 error = PR_TIMING_STATISTICAL;
2582 break;
2583 case PR_SET_TIMING:
2584 if (arg2 != PR_TIMING_STATISTICAL)
2585 error = -EINVAL;
2586 break;
2587 case PR_SET_NAME:
2588 comm[sizeof(me->comm) - 1] = 0;
2589 if (strncpy_from_user(dst: comm, src: (char __user *)arg2,
2590 count: sizeof(me->comm) - 1) < 0)
2591 return -EFAULT;
2592 set_task_comm(me, comm);
2593 proc_comm_connector(task: me);
2594 break;
2595 case PR_GET_NAME:
2596 get_task_comm(comm, me);
2597 if (copy_to_user(to: (char __user *)arg2, from: comm, n: sizeof(comm)))
2598 return -EFAULT;
2599 break;
2600 case PR_GET_ENDIAN:
2601 error = GET_ENDIAN(me, arg2);
2602 break;
2603 case PR_SET_ENDIAN:
2604 error = SET_ENDIAN(me, arg2);
2605 break;
2606 case PR_GET_SECCOMP:
2607 error = prctl_get_seccomp();
2608 break;
2609 case PR_SET_SECCOMP:
2610 error = prctl_set_seccomp(arg2, (char __user *)arg3);
2611 break;
2612 case PR_GET_TSC:
2613 error = GET_TSC_CTL(arg2);
2614 break;
2615 case PR_SET_TSC:
2616 error = SET_TSC_CTL(arg2);
2617 break;
2618 case PR_TASK_PERF_EVENTS_DISABLE:
2619 error = perf_event_task_disable();
2620 break;
2621 case PR_TASK_PERF_EVENTS_ENABLE:
2622 error = perf_event_task_enable();
2623 break;
2624 case PR_GET_TIMERSLACK:
2625 if (current->timer_slack_ns > ULONG_MAX)
2626 error = ULONG_MAX;
2627 else
2628 error = current->timer_slack_ns;
2629 break;
2630 case PR_SET_TIMERSLACK:
2631 if (rt_or_dl_task_policy(current))
2632 break;
2633 if (arg2 <= 0)
2634 current->timer_slack_ns =
2635 current->default_timer_slack_ns;
2636 else
2637 current->timer_slack_ns = arg2;
2638 break;
2639 case PR_MCE_KILL:
2640 if (arg4 | arg5)
2641 return -EINVAL;
2642 switch (arg2) {
2643 case PR_MCE_KILL_CLEAR:
2644 if (arg3 != 0)
2645 return -EINVAL;
2646 current->flags &= ~PF_MCE_PROCESS;
2647 break;
2648 case PR_MCE_KILL_SET:
2649 current->flags |= PF_MCE_PROCESS;
2650 if (arg3 == PR_MCE_KILL_EARLY)
2651 current->flags |= PF_MCE_EARLY;
2652 else if (arg3 == PR_MCE_KILL_LATE)
2653 current->flags &= ~PF_MCE_EARLY;
2654 else if (arg3 == PR_MCE_KILL_DEFAULT)
2655 current->flags &=
2656 ~(PF_MCE_EARLY|PF_MCE_PROCESS);
2657 else
2658 return -EINVAL;
2659 break;
2660 default:
2661 return -EINVAL;
2662 }
2663 break;
2664 case PR_MCE_KILL_GET:
2665 if (arg2 | arg3 | arg4 | arg5)
2666 return -EINVAL;
2667 if (current->flags & PF_MCE_PROCESS)
2668 error = (current->flags & PF_MCE_EARLY) ?
2669 PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2670 else
2671 error = PR_MCE_KILL_DEFAULT;
2672 break;
2673 case PR_SET_MM:
2674 error = prctl_set_mm(opt: arg2, addr: arg3, arg4, arg5);
2675 break;
2676 case PR_GET_TID_ADDRESS:
2677 error = prctl_get_tid_address(me, tid_addr: (int __user * __user *)arg2);
2678 break;
2679 case PR_SET_CHILD_SUBREAPER:
2680 me->signal->is_child_subreaper = !!arg2;
2681 if (!arg2)
2682 break;
2683
2684 walk_process_tree(top: me, propagate_has_child_subreaper, NULL);
2685 break;
2686 case PR_GET_CHILD_SUBREAPER:
2687 error = put_user(me->signal->is_child_subreaper,
2688 (int __user *)arg2);
2689 break;
2690 case PR_SET_NO_NEW_PRIVS:
2691 if (arg2 != 1 || arg3 || arg4 || arg5)
2692 return -EINVAL;
2693
2694 task_set_no_new_privs(current);
2695 break;
2696 case PR_GET_NO_NEW_PRIVS:
2697 if (arg2 || arg3 || arg4 || arg5)
2698 return -EINVAL;
2699 return task_no_new_privs(current) ? 1 : 0;
2700 case PR_GET_THP_DISABLE:
2701 error = prctl_get_thp_disable(arg2, arg3, arg4, arg5);
2702 break;
2703 case PR_SET_THP_DISABLE:
2704 error = prctl_set_thp_disable(thp_disable: arg2, flags: arg3, arg4, arg5);
2705 break;
2706 case PR_MPX_ENABLE_MANAGEMENT:
2707 case PR_MPX_DISABLE_MANAGEMENT:
2708 /* No longer implemented: */
2709 return -EINVAL;
2710 case PR_SET_FP_MODE:
2711 error = SET_FP_MODE(me, arg2);
2712 break;
2713 case PR_GET_FP_MODE:
2714 error = GET_FP_MODE(me);
2715 break;
2716 case PR_SVE_SET_VL:
2717 error = SVE_SET_VL(arg2);
2718 break;
2719 case PR_SVE_GET_VL:
2720 error = SVE_GET_VL();
2721 break;
2722 case PR_SME_SET_VL:
2723 error = SME_SET_VL(arg2);
2724 break;
2725 case PR_SME_GET_VL:
2726 error = SME_GET_VL();
2727 break;
2728 case PR_GET_SPECULATION_CTRL:
2729 if (arg3 || arg4 || arg5)
2730 return -EINVAL;
2731 error = arch_prctl_spec_ctrl_get(t: me, which: arg2);
2732 break;
2733 case PR_SET_SPECULATION_CTRL:
2734 if (arg4 || arg5)
2735 return -EINVAL;
2736 error = arch_prctl_spec_ctrl_set(t: me, which: arg2, ctrl: arg3);
2737 break;
2738 case PR_PAC_RESET_KEYS:
2739 if (arg3 || arg4 || arg5)
2740 return -EINVAL;
2741 error = PAC_RESET_KEYS(me, arg2);
2742 break;
2743 case PR_PAC_SET_ENABLED_KEYS:
2744 if (arg4 || arg5)
2745 return -EINVAL;
2746 error = PAC_SET_ENABLED_KEYS(me, arg2, arg3);
2747 break;
2748 case PR_PAC_GET_ENABLED_KEYS:
2749 if (arg2 || arg3 || arg4 || arg5)
2750 return -EINVAL;
2751 error = PAC_GET_ENABLED_KEYS(me);
2752 break;
2753 case PR_SET_TAGGED_ADDR_CTRL:
2754 if (arg3 || arg4 || arg5)
2755 return -EINVAL;
2756 error = SET_TAGGED_ADDR_CTRL(arg2);
2757 break;
2758 case PR_GET_TAGGED_ADDR_CTRL:
2759 if (arg2 || arg3 || arg4 || arg5)
2760 return -EINVAL;
2761 error = GET_TAGGED_ADDR_CTRL();
2762 break;
2763 case PR_SET_IO_FLUSHER:
2764 if (!capable(CAP_SYS_RESOURCE))
2765 return -EPERM;
2766
2767 if (arg3 || arg4 || arg5)
2768 return -EINVAL;
2769
2770 if (arg2 == 1)
2771 current->flags |= PR_IO_FLUSHER;
2772 else if (!arg2)
2773 current->flags &= ~PR_IO_FLUSHER;
2774 else
2775 return -EINVAL;
2776 break;
2777 case PR_GET_IO_FLUSHER:
2778 if (!capable(CAP_SYS_RESOURCE))
2779 return -EPERM;
2780
2781 if (arg2 || arg3 || arg4 || arg5)
2782 return -EINVAL;
2783
2784 error = (current->flags & PR_IO_FLUSHER) == PR_IO_FLUSHER;
2785 break;
2786 case PR_SET_SYSCALL_USER_DISPATCH:
2787 error = set_syscall_user_dispatch(mode: arg2, offset: arg3, len: arg4,
2788 selector: (char __user *) arg5);
2789 break;
2790#ifdef CONFIG_SCHED_CORE
2791 case PR_SCHED_CORE:
2792 error = sched_core_share_pid(arg2, arg3, arg4, arg5);
2793 break;
2794#endif
2795 case PR_SET_MDWE:
2796 error = prctl_set_mdwe(bits: arg2, arg3, arg4, arg5);
2797 break;
2798 case PR_GET_MDWE:
2799 error = prctl_get_mdwe(arg2, arg3, arg4, arg5);
2800 break;
2801 case PR_PPC_GET_DEXCR:
2802 if (arg3 || arg4 || arg5)
2803 return -EINVAL;
2804 error = PPC_GET_DEXCR_ASPECT(me, arg2);
2805 break;
2806 case PR_PPC_SET_DEXCR:
2807 if (arg4 || arg5)
2808 return -EINVAL;
2809 error = PPC_SET_DEXCR_ASPECT(me, arg2, arg3);
2810 break;
2811 case PR_SET_VMA:
2812 error = prctl_set_vma(opt: arg2, addr: arg3, size: arg4, arg: arg5);
2813 break;
2814 case PR_GET_AUXV:
2815 if (arg4 || arg5)
2816 return -EINVAL;
2817 error = prctl_get_auxv(addr: (void __user *)arg2, len: arg3);
2818 break;
2819#ifdef CONFIG_KSM
2820 case PR_SET_MEMORY_MERGE:
2821 if (arg3 || arg4 || arg5)
2822 return -EINVAL;
2823 if (mmap_write_lock_killable(me->mm))
2824 return -EINTR;
2825
2826 if (arg2)
2827 error = ksm_enable_merge_any(me->mm);
2828 else
2829 error = ksm_disable_merge_any(me->mm);
2830 mmap_write_unlock(me->mm);
2831 break;
2832 case PR_GET_MEMORY_MERGE:
2833 if (arg2 || arg3 || arg4 || arg5)
2834 return -EINVAL;
2835
2836 error = !!mm_flags_test(MMF_VM_MERGE_ANY, me->mm);
2837 break;
2838#endif
2839 case PR_RISCV_V_SET_CONTROL:
2840 error = RISCV_V_SET_CONTROL(arg2);
2841 break;
2842 case PR_RISCV_V_GET_CONTROL:
2843 error = RISCV_V_GET_CONTROL();
2844 break;
2845 case PR_RISCV_SET_ICACHE_FLUSH_CTX:
2846 error = RISCV_SET_ICACHE_FLUSH_CTX(arg2, arg3);
2847 break;
2848 case PR_GET_SHADOW_STACK_STATUS:
2849 if (arg3 || arg4 || arg5)
2850 return -EINVAL;
2851 error = arch_get_shadow_stack_status(t: me, status: (unsigned long __user *) arg2);
2852 break;
2853 case PR_SET_SHADOW_STACK_STATUS:
2854 if (arg3 || arg4 || arg5)
2855 return -EINVAL;
2856 error = arch_set_shadow_stack_status(t: me, status: arg2);
2857 break;
2858 case PR_LOCK_SHADOW_STACK_STATUS:
2859 if (arg3 || arg4 || arg5)
2860 return -EINVAL;
2861 error = arch_lock_shadow_stack_status(t: me, status: arg2);
2862 break;
2863 case PR_TIMER_CREATE_RESTORE_IDS:
2864 if (arg3 || arg4 || arg5)
2865 return -EINVAL;
2866 error = posixtimer_create_prctl(ctrl: arg2);
2867 break;
2868 case PR_FUTEX_HASH:
2869 error = futex_hash_prctl(arg2, arg3, arg4);
2870 break;
2871 default:
2872 trace_task_prctl_unknown(option, arg2, arg3, arg4, arg5);
2873 error = -EINVAL;
2874 break;
2875 }
2876 return error;
2877}
2878
2879SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2880 struct getcpu_cache __user *, unused)
2881{
2882 int err = 0;
2883 int cpu = raw_smp_processor_id();
2884
2885 if (cpup)
2886 err |= put_user(cpu, cpup);
2887 if (nodep)
2888 err |= put_user(cpu_to_node(cpu), nodep);
2889 return err ? -EFAULT : 0;
2890}
2891
2892/**
2893 * do_sysinfo - fill in sysinfo struct
2894 * @info: pointer to buffer to fill
2895 */
2896static int do_sysinfo(struct sysinfo *info)
2897{
2898 unsigned long mem_total, sav_total;
2899 unsigned int mem_unit, bitcount;
2900 struct timespec64 tp;
2901
2902 memset(s: info, c: 0, n: sizeof(struct sysinfo));
2903
2904 ktime_get_boottime_ts64(ts: &tp);
2905 timens_add_boottime(ts: &tp);
2906 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2907
2908 get_avenrun(loads: info->loads, offset: 0, SI_LOAD_SHIFT - FSHIFT);
2909
2910 info->procs = nr_threads;
2911
2912 si_meminfo(val: info);
2913 si_swapinfo(info);
2914
2915 /*
2916 * If the sum of all the available memory (i.e. ram + swap)
2917 * is less than can be stored in a 32 bit unsigned long then
2918 * we can be binary compatible with 2.2.x kernels. If not,
2919 * well, in that case 2.2.x was broken anyways...
2920 *
2921 * -Erik Andersen <andersee@debian.org>
2922 */
2923
2924 mem_total = info->totalram + info->totalswap;
2925 if (mem_total < info->totalram || mem_total < info->totalswap)
2926 goto out;
2927 bitcount = 0;
2928 mem_unit = info->mem_unit;
2929 while (mem_unit > 1) {
2930 bitcount++;
2931 mem_unit >>= 1;
2932 sav_total = mem_total;
2933 mem_total <<= 1;
2934 if (mem_total < sav_total)
2935 goto out;
2936 }
2937
2938 /*
2939 * If mem_total did not overflow, multiply all memory values by
2940 * info->mem_unit and set it to 1. This leaves things compatible
2941 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2942 * kernels...
2943 */
2944
2945 info->mem_unit = 1;
2946 info->totalram <<= bitcount;
2947 info->freeram <<= bitcount;
2948 info->sharedram <<= bitcount;
2949 info->bufferram <<= bitcount;
2950 info->totalswap <<= bitcount;
2951 info->freeswap <<= bitcount;
2952 info->totalhigh <<= bitcount;
2953 info->freehigh <<= bitcount;
2954
2955out:
2956 return 0;
2957}
2958
2959SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2960{
2961 struct sysinfo val;
2962
2963 do_sysinfo(info: &val);
2964
2965 if (copy_to_user(to: info, from: &val, n: sizeof(struct sysinfo)))
2966 return -EFAULT;
2967
2968 return 0;
2969}
2970
2971#ifdef CONFIG_COMPAT
2972struct compat_sysinfo {
2973 s32 uptime;
2974 u32 loads[3];
2975 u32 totalram;
2976 u32 freeram;
2977 u32 sharedram;
2978 u32 bufferram;
2979 u32 totalswap;
2980 u32 freeswap;
2981 u16 procs;
2982 u16 pad;
2983 u32 totalhigh;
2984 u32 freehigh;
2985 u32 mem_unit;
2986 char _f[20-2*sizeof(u32)-sizeof(int)];
2987};
2988
2989COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2990{
2991 struct sysinfo s;
2992 struct compat_sysinfo s_32;
2993
2994 do_sysinfo(info: &s);
2995
2996 /* Check to see if any memory value is too large for 32-bit and scale
2997 * down if needed
2998 */
2999 if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) {
3000 int bitcount = 0;
3001
3002 while (s.mem_unit < PAGE_SIZE) {
3003 s.mem_unit <<= 1;
3004 bitcount++;
3005 }
3006
3007 s.totalram >>= bitcount;
3008 s.freeram >>= bitcount;
3009 s.sharedram >>= bitcount;
3010 s.bufferram >>= bitcount;
3011 s.totalswap >>= bitcount;
3012 s.freeswap >>= bitcount;
3013 s.totalhigh >>= bitcount;
3014 s.freehigh >>= bitcount;
3015 }
3016
3017 memset(s: &s_32, c: 0, n: sizeof(s_32));
3018 s_32.uptime = s.uptime;
3019 s_32.loads[0] = s.loads[0];
3020 s_32.loads[1] = s.loads[1];
3021 s_32.loads[2] = s.loads[2];
3022 s_32.totalram = s.totalram;
3023 s_32.freeram = s.freeram;
3024 s_32.sharedram = s.sharedram;
3025 s_32.bufferram = s.bufferram;
3026 s_32.totalswap = s.totalswap;
3027 s_32.freeswap = s.freeswap;
3028 s_32.procs = s.procs;
3029 s_32.totalhigh = s.totalhigh;
3030 s_32.freehigh = s.freehigh;
3031 s_32.mem_unit = s.mem_unit;
3032 if (copy_to_user(to: info, from: &s_32, n: sizeof(s_32)))
3033 return -EFAULT;
3034 return 0;
3035}
3036#endif /* CONFIG_COMPAT */
3037