| 1 | // SPDX-License-Identifier: GPL-2.0 | 
|---|
| 2 | /* | 
|---|
| 3 | *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> | 
|---|
| 4 | *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar | 
|---|
| 5 | *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner | 
|---|
| 6 | * | 
|---|
| 7 | *  High-resolution kernel timers | 
|---|
| 8 | * | 
|---|
| 9 | *  In contrast to the low-resolution timeout API, aka timer wheel, | 
|---|
| 10 | *  hrtimers provide finer resolution and accuracy depending on system | 
|---|
| 11 | *  configuration and capabilities. | 
|---|
| 12 | * | 
|---|
| 13 | *  Started by: Thomas Gleixner and Ingo Molnar | 
|---|
| 14 | * | 
|---|
| 15 | *  Credits: | 
|---|
| 16 | *	Based on the original timer wheel code | 
|---|
| 17 | * | 
|---|
| 18 | *	Help, testing, suggestions, bugfixes, improvements were | 
|---|
| 19 | *	provided by: | 
|---|
| 20 | * | 
|---|
| 21 | *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel | 
|---|
| 22 | *	et. al. | 
|---|
| 23 | */ | 
|---|
| 24 |  | 
|---|
| 25 | #include <linux/cpu.h> | 
|---|
| 26 | #include <linux/export.h> | 
|---|
| 27 | #include <linux/percpu.h> | 
|---|
| 28 | #include <linux/hrtimer.h> | 
|---|
| 29 | #include <linux/notifier.h> | 
|---|
| 30 | #include <linux/syscalls.h> | 
|---|
| 31 | #include <linux/interrupt.h> | 
|---|
| 32 | #include <linux/tick.h> | 
|---|
| 33 | #include <linux/err.h> | 
|---|
| 34 | #include <linux/debugobjects.h> | 
|---|
| 35 | #include <linux/sched/signal.h> | 
|---|
| 36 | #include <linux/sched/sysctl.h> | 
|---|
| 37 | #include <linux/sched/rt.h> | 
|---|
| 38 | #include <linux/sched/deadline.h> | 
|---|
| 39 | #include <linux/sched/nohz.h> | 
|---|
| 40 | #include <linux/sched/debug.h> | 
|---|
| 41 | #include <linux/sched/isolation.h> | 
|---|
| 42 | #include <linux/timer.h> | 
|---|
| 43 | #include <linux/freezer.h> | 
|---|
| 44 | #include <linux/compat.h> | 
|---|
| 45 |  | 
|---|
| 46 | #include <linux/uaccess.h> | 
|---|
| 47 |  | 
|---|
| 48 | #include <trace/events/timer.h> | 
|---|
| 49 |  | 
|---|
| 50 | #include "tick-internal.h" | 
|---|
| 51 |  | 
|---|
| 52 | /* | 
|---|
| 53 | * Masks for selecting the soft and hard context timers from | 
|---|
| 54 | * cpu_base->active | 
|---|
| 55 | */ | 
|---|
| 56 | #define MASK_SHIFT		(HRTIMER_BASE_MONOTONIC_SOFT) | 
|---|
| 57 | #define HRTIMER_ACTIVE_HARD	((1U << MASK_SHIFT) - 1) | 
|---|
| 58 | #define HRTIMER_ACTIVE_SOFT	(HRTIMER_ACTIVE_HARD << MASK_SHIFT) | 
|---|
| 59 | #define HRTIMER_ACTIVE_ALL	(HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD) | 
|---|
| 60 |  | 
|---|
| 61 | static void retrigger_next_event(void *arg); | 
|---|
| 62 | static ktime_t __hrtimer_cb_get_time(clockid_t clock_id); | 
|---|
| 63 |  | 
|---|
| 64 | /* | 
|---|
| 65 | * The timer bases: | 
|---|
| 66 | * | 
|---|
| 67 | * There are more clockids than hrtimer bases. Thus, we index | 
|---|
| 68 | * into the timer bases by the hrtimer_base_type enum. When trying | 
|---|
| 69 | * to reach a base using a clockid, hrtimer_clockid_to_base() | 
|---|
| 70 | * is used to convert from clockid to the proper hrtimer_base_type. | 
|---|
| 71 | */ | 
|---|
| 72 | DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) = | 
|---|
| 73 | { | 
|---|
| 74 | .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock), | 
|---|
| 75 | .clock_base = | 
|---|
| 76 | { | 
|---|
| 77 | { | 
|---|
| 78 | .index = HRTIMER_BASE_MONOTONIC, | 
|---|
| 79 | .clockid = CLOCK_MONOTONIC, | 
|---|
| 80 | }, | 
|---|
| 81 | { | 
|---|
| 82 | .index = HRTIMER_BASE_REALTIME, | 
|---|
| 83 | .clockid = CLOCK_REALTIME, | 
|---|
| 84 | }, | 
|---|
| 85 | { | 
|---|
| 86 | .index = HRTIMER_BASE_BOOTTIME, | 
|---|
| 87 | .clockid = CLOCK_BOOTTIME, | 
|---|
| 88 | }, | 
|---|
| 89 | { | 
|---|
| 90 | .index = HRTIMER_BASE_TAI, | 
|---|
| 91 | .clockid = CLOCK_TAI, | 
|---|
| 92 | }, | 
|---|
| 93 | { | 
|---|
| 94 | .index = HRTIMER_BASE_MONOTONIC_SOFT, | 
|---|
| 95 | .clockid = CLOCK_MONOTONIC, | 
|---|
| 96 | }, | 
|---|
| 97 | { | 
|---|
| 98 | .index = HRTIMER_BASE_REALTIME_SOFT, | 
|---|
| 99 | .clockid = CLOCK_REALTIME, | 
|---|
| 100 | }, | 
|---|
| 101 | { | 
|---|
| 102 | .index = HRTIMER_BASE_BOOTTIME_SOFT, | 
|---|
| 103 | .clockid = CLOCK_BOOTTIME, | 
|---|
| 104 | }, | 
|---|
| 105 | { | 
|---|
| 106 | .index = HRTIMER_BASE_TAI_SOFT, | 
|---|
| 107 | .clockid = CLOCK_TAI, | 
|---|
| 108 | }, | 
|---|
| 109 | }, | 
|---|
| 110 | .csd = CSD_INIT(retrigger_next_event, NULL) | 
|---|
| 111 | }; | 
|---|
| 112 |  | 
|---|
| 113 | static inline bool hrtimer_base_is_online(struct hrtimer_cpu_base *base) | 
|---|
| 114 | { | 
|---|
| 115 | if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) | 
|---|
| 116 | return true; | 
|---|
| 117 | else | 
|---|
| 118 | return likely(base->online); | 
|---|
| 119 | } | 
|---|
| 120 |  | 
|---|
| 121 | /* | 
|---|
| 122 | * Functions and macros which are different for UP/SMP systems are kept in a | 
|---|
| 123 | * single place | 
|---|
| 124 | */ | 
|---|
| 125 | #ifdef CONFIG_SMP | 
|---|
| 126 |  | 
|---|
| 127 | /* | 
|---|
| 128 | * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base() | 
|---|
| 129 | * such that hrtimer_callback_running() can unconditionally dereference | 
|---|
| 130 | * timer->base->cpu_base | 
|---|
| 131 | */ | 
|---|
| 132 | static struct hrtimer_cpu_base migration_cpu_base = { | 
|---|
| 133 | .clock_base = { { | 
|---|
| 134 | .cpu_base = &migration_cpu_base, | 
|---|
| 135 | .seq      = SEQCNT_RAW_SPINLOCK_ZERO(migration_cpu_base.seq, | 
|---|
| 136 | &migration_cpu_base.lock), | 
|---|
| 137 | }, }, | 
|---|
| 138 | }; | 
|---|
| 139 |  | 
|---|
| 140 | #define migration_base	migration_cpu_base.clock_base[0] | 
|---|
| 141 |  | 
|---|
| 142 | /* | 
|---|
| 143 | * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock | 
|---|
| 144 | * means that all timers which are tied to this base via timer->base are | 
|---|
| 145 | * locked, and the base itself is locked too. | 
|---|
| 146 | * | 
|---|
| 147 | * So __run_timers/migrate_timers can safely modify all timers which could | 
|---|
| 148 | * be found on the lists/queues. | 
|---|
| 149 | * | 
|---|
| 150 | * When the timer's base is locked, and the timer removed from list, it is | 
|---|
| 151 | * possible to set timer->base = &migration_base and drop the lock: the timer | 
|---|
| 152 | * remains locked. | 
|---|
| 153 | */ | 
|---|
| 154 | static | 
|---|
| 155 | struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer, | 
|---|
| 156 | unsigned long *flags) | 
|---|
| 157 | __acquires(&timer->base->lock) | 
|---|
| 158 | { | 
|---|
| 159 | struct hrtimer_clock_base *base; | 
|---|
| 160 |  | 
|---|
| 161 | for (;;) { | 
|---|
| 162 | base = READ_ONCE(timer->base); | 
|---|
| 163 | if (likely(base != &migration_base)) { | 
|---|
| 164 | raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); | 
|---|
| 165 | if (likely(base == timer->base)) | 
|---|
| 166 | return base; | 
|---|
| 167 | /* The timer has migrated to another CPU: */ | 
|---|
| 168 | raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags); | 
|---|
| 169 | } | 
|---|
| 170 | cpu_relax(); | 
|---|
| 171 | } | 
|---|
| 172 | } | 
|---|
| 173 |  | 
|---|
| 174 | /* | 
|---|
| 175 | * Check if the elected target is suitable considering its next | 
|---|
| 176 | * event and the hotplug state of the current CPU. | 
|---|
| 177 | * | 
|---|
| 178 | * If the elected target is remote and its next event is after the timer | 
|---|
| 179 | * to queue, then a remote reprogram is necessary. However there is no | 
|---|
| 180 | * guarantee the IPI handling the operation would arrive in time to meet | 
|---|
| 181 | * the high resolution deadline. In this case the local CPU becomes a | 
|---|
| 182 | * preferred target, unless it is offline. | 
|---|
| 183 | * | 
|---|
| 184 | * High and low resolution modes are handled the same way for simplicity. | 
|---|
| 185 | * | 
|---|
| 186 | * Called with cpu_base->lock of target cpu held. | 
|---|
| 187 | */ | 
|---|
| 188 | static bool hrtimer_suitable_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base, | 
|---|
| 189 | struct hrtimer_cpu_base *new_cpu_base, | 
|---|
| 190 | struct hrtimer_cpu_base *this_cpu_base) | 
|---|
| 191 | { | 
|---|
| 192 | ktime_t expires; | 
|---|
| 193 |  | 
|---|
| 194 | /* | 
|---|
| 195 | * The local CPU clockevent can be reprogrammed. Also get_target_base() | 
|---|
| 196 | * guarantees it is online. | 
|---|
| 197 | */ | 
|---|
| 198 | if (new_cpu_base == this_cpu_base) | 
|---|
| 199 | return true; | 
|---|
| 200 |  | 
|---|
| 201 | /* | 
|---|
| 202 | * The offline local CPU can't be the default target if the | 
|---|
| 203 | * next remote target event is after this timer. Keep the | 
|---|
| 204 | * elected new base. An IPI will be issued to reprogram | 
|---|
| 205 | * it as a last resort. | 
|---|
| 206 | */ | 
|---|
| 207 | if (!hrtimer_base_is_online(base: this_cpu_base)) | 
|---|
| 208 | return true; | 
|---|
| 209 |  | 
|---|
| 210 | expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset); | 
|---|
| 211 |  | 
|---|
| 212 | return expires >= new_base->cpu_base->expires_next; | 
|---|
| 213 | } | 
|---|
| 214 |  | 
|---|
| 215 | static inline struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base, int pinned) | 
|---|
| 216 | { | 
|---|
| 217 | if (!hrtimer_base_is_online(base)) { | 
|---|
| 218 | int cpu = cpumask_any_and(cpu_online_mask, housekeeping_cpumask(HK_TYPE_TIMER)); | 
|---|
| 219 |  | 
|---|
| 220 | return &per_cpu(hrtimer_bases, cpu); | 
|---|
| 221 | } | 
|---|
| 222 |  | 
|---|
| 223 | #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) | 
|---|
| 224 | if (static_branch_likely(&timers_migration_enabled) && !pinned) | 
|---|
| 225 | return &per_cpu(hrtimer_bases, get_nohz_timer_target()); | 
|---|
| 226 | #endif | 
|---|
| 227 | return base; | 
|---|
| 228 | } | 
|---|
| 229 |  | 
|---|
| 230 | /* | 
|---|
| 231 | * We switch the timer base to a power-optimized selected CPU target, | 
|---|
| 232 | * if: | 
|---|
| 233 | *	- NO_HZ_COMMON is enabled | 
|---|
| 234 | *	- timer migration is enabled | 
|---|
| 235 | *	- the timer callback is not running | 
|---|
| 236 | *	- the timer is not the first expiring timer on the new target | 
|---|
| 237 | * | 
|---|
| 238 | * If one of the above requirements is not fulfilled we move the timer | 
|---|
| 239 | * to the current CPU or leave it on the previously assigned CPU if | 
|---|
| 240 | * the timer callback is currently running. | 
|---|
| 241 | */ | 
|---|
| 242 | static inline struct hrtimer_clock_base * | 
|---|
| 243 | switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base, | 
|---|
| 244 | int pinned) | 
|---|
| 245 | { | 
|---|
| 246 | struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base; | 
|---|
| 247 | struct hrtimer_clock_base *new_base; | 
|---|
| 248 | int basenum = base->index; | 
|---|
| 249 |  | 
|---|
| 250 | this_cpu_base = this_cpu_ptr(&hrtimer_bases); | 
|---|
| 251 | new_cpu_base = get_target_base(base: this_cpu_base, pinned); | 
|---|
| 252 | again: | 
|---|
| 253 | new_base = &new_cpu_base->clock_base[basenum]; | 
|---|
| 254 |  | 
|---|
| 255 | if (base != new_base) { | 
|---|
| 256 | /* | 
|---|
| 257 | * We are trying to move timer to new_base. | 
|---|
| 258 | * However we can't change timer's base while it is running, | 
|---|
| 259 | * so we keep it on the same CPU. No hassle vs. reprogramming | 
|---|
| 260 | * the event source in the high resolution case. The softirq | 
|---|
| 261 | * code will take care of this when the timer function has | 
|---|
| 262 | * completed. There is no conflict as we hold the lock until | 
|---|
| 263 | * the timer is enqueued. | 
|---|
| 264 | */ | 
|---|
| 265 | if (unlikely(hrtimer_callback_running(timer))) | 
|---|
| 266 | return base; | 
|---|
| 267 |  | 
|---|
| 268 | /* See the comment in lock_hrtimer_base() */ | 
|---|
| 269 | WRITE_ONCE(timer->base, &migration_base); | 
|---|
| 270 | raw_spin_unlock(&base->cpu_base->lock); | 
|---|
| 271 | raw_spin_lock(&new_base->cpu_base->lock); | 
|---|
| 272 |  | 
|---|
| 273 | if (!hrtimer_suitable_target(timer, new_base, new_cpu_base, | 
|---|
| 274 | this_cpu_base)) { | 
|---|
| 275 | raw_spin_unlock(&new_base->cpu_base->lock); | 
|---|
| 276 | raw_spin_lock(&base->cpu_base->lock); | 
|---|
| 277 | new_cpu_base = this_cpu_base; | 
|---|
| 278 | WRITE_ONCE(timer->base, base); | 
|---|
| 279 | goto again; | 
|---|
| 280 | } | 
|---|
| 281 | WRITE_ONCE(timer->base, new_base); | 
|---|
| 282 | } else { | 
|---|
| 283 | if (!hrtimer_suitable_target(timer, new_base,  new_cpu_base, this_cpu_base)) { | 
|---|
| 284 | new_cpu_base = this_cpu_base; | 
|---|
| 285 | goto again; | 
|---|
| 286 | } | 
|---|
| 287 | } | 
|---|
| 288 | return new_base; | 
|---|
| 289 | } | 
|---|
| 290 |  | 
|---|
| 291 | #else /* CONFIG_SMP */ | 
|---|
| 292 |  | 
|---|
| 293 | static inline struct hrtimer_clock_base * | 
|---|
| 294 | lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) | 
|---|
| 295 | __acquires(&timer->base->cpu_base->lock) | 
|---|
| 296 | { | 
|---|
| 297 | struct hrtimer_clock_base *base = timer->base; | 
|---|
| 298 |  | 
|---|
| 299 | raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); | 
|---|
| 300 |  | 
|---|
| 301 | return base; | 
|---|
| 302 | } | 
|---|
| 303 |  | 
|---|
| 304 | # define switch_hrtimer_base(t, b, p)	(b) | 
|---|
| 305 |  | 
|---|
| 306 | #endif	/* !CONFIG_SMP */ | 
|---|
| 307 |  | 
|---|
| 308 | /* | 
|---|
| 309 | * Functions for the union type storage format of ktime_t which are | 
|---|
| 310 | * too large for inlining: | 
|---|
| 311 | */ | 
|---|
| 312 | #if BITS_PER_LONG < 64 | 
|---|
| 313 | /* | 
|---|
| 314 | * Divide a ktime value by a nanosecond value | 
|---|
| 315 | */ | 
|---|
| 316 | s64 __ktime_divns(const ktime_t kt, s64 div) | 
|---|
| 317 | { | 
|---|
| 318 | int sft = 0; | 
|---|
| 319 | s64 dclc; | 
|---|
| 320 | u64 tmp; | 
|---|
| 321 |  | 
|---|
| 322 | dclc = ktime_to_ns(kt); | 
|---|
| 323 | tmp = dclc < 0 ? -dclc : dclc; | 
|---|
| 324 |  | 
|---|
| 325 | /* Make sure the divisor is less than 2^32: */ | 
|---|
| 326 | while (div >> 32) { | 
|---|
| 327 | sft++; | 
|---|
| 328 | div >>= 1; | 
|---|
| 329 | } | 
|---|
| 330 | tmp >>= sft; | 
|---|
| 331 | do_div(tmp, (u32) div); | 
|---|
| 332 | return dclc < 0 ? -tmp : tmp; | 
|---|
| 333 | } | 
|---|
| 334 | EXPORT_SYMBOL_GPL(__ktime_divns); | 
|---|
| 335 | #endif /* BITS_PER_LONG >= 64 */ | 
|---|
| 336 |  | 
|---|
| 337 | /* | 
|---|
| 338 | * Add two ktime values and do a safety check for overflow: | 
|---|
| 339 | */ | 
|---|
| 340 | ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs) | 
|---|
| 341 | { | 
|---|
| 342 | ktime_t res = ktime_add_unsafe(lhs, rhs); | 
|---|
| 343 |  | 
|---|
| 344 | /* | 
|---|
| 345 | * We use KTIME_SEC_MAX here, the maximum timeout which we can | 
|---|
| 346 | * return to user space in a timespec: | 
|---|
| 347 | */ | 
|---|
| 348 | if (res < 0 || res < lhs || res < rhs) | 
|---|
| 349 | res = ktime_set(KTIME_SEC_MAX, nsecs: 0); | 
|---|
| 350 |  | 
|---|
| 351 | return res; | 
|---|
| 352 | } | 
|---|
| 353 |  | 
|---|
| 354 | EXPORT_SYMBOL_GPL(ktime_add_safe); | 
|---|
| 355 |  | 
|---|
| 356 | #ifdef CONFIG_DEBUG_OBJECTS_TIMERS | 
|---|
| 357 |  | 
|---|
| 358 | static const struct debug_obj_descr hrtimer_debug_descr; | 
|---|
| 359 |  | 
|---|
| 360 | static void *hrtimer_debug_hint(void *addr) | 
|---|
| 361 | { | 
|---|
| 362 | return ACCESS_PRIVATE((struct hrtimer *)addr, function); | 
|---|
| 363 | } | 
|---|
| 364 |  | 
|---|
| 365 | /* | 
|---|
| 366 | * fixup_init is called when: | 
|---|
| 367 | * - an active object is initialized | 
|---|
| 368 | */ | 
|---|
| 369 | static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state) | 
|---|
| 370 | { | 
|---|
| 371 | struct hrtimer *timer = addr; | 
|---|
| 372 |  | 
|---|
| 373 | switch (state) { | 
|---|
| 374 | case ODEBUG_STATE_ACTIVE: | 
|---|
| 375 | hrtimer_cancel(timer); | 
|---|
| 376 | debug_object_init(timer, &hrtimer_debug_descr); | 
|---|
| 377 | return true; | 
|---|
| 378 | default: | 
|---|
| 379 | return false; | 
|---|
| 380 | } | 
|---|
| 381 | } | 
|---|
| 382 |  | 
|---|
| 383 | /* | 
|---|
| 384 | * fixup_activate is called when: | 
|---|
| 385 | * - an active object is activated | 
|---|
| 386 | * - an unknown non-static object is activated | 
|---|
| 387 | */ | 
|---|
| 388 | static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state) | 
|---|
| 389 | { | 
|---|
| 390 | switch (state) { | 
|---|
| 391 | case ODEBUG_STATE_ACTIVE: | 
|---|
| 392 | WARN_ON(1); | 
|---|
| 393 | fallthrough; | 
|---|
| 394 | default: | 
|---|
| 395 | return false; | 
|---|
| 396 | } | 
|---|
| 397 | } | 
|---|
| 398 |  | 
|---|
| 399 | /* | 
|---|
| 400 | * fixup_free is called when: | 
|---|
| 401 | * - an active object is freed | 
|---|
| 402 | */ | 
|---|
| 403 | static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state) | 
|---|
| 404 | { | 
|---|
| 405 | struct hrtimer *timer = addr; | 
|---|
| 406 |  | 
|---|
| 407 | switch (state) { | 
|---|
| 408 | case ODEBUG_STATE_ACTIVE: | 
|---|
| 409 | hrtimer_cancel(timer); | 
|---|
| 410 | debug_object_free(timer, &hrtimer_debug_descr); | 
|---|
| 411 | return true; | 
|---|
| 412 | default: | 
|---|
| 413 | return false; | 
|---|
| 414 | } | 
|---|
| 415 | } | 
|---|
| 416 |  | 
|---|
| 417 | static const struct debug_obj_descr hrtimer_debug_descr = { | 
|---|
| 418 | .name		= "hrtimer", | 
|---|
| 419 | .debug_hint	= hrtimer_debug_hint, | 
|---|
| 420 | .fixup_init	= hrtimer_fixup_init, | 
|---|
| 421 | .fixup_activate	= hrtimer_fixup_activate, | 
|---|
| 422 | .fixup_free	= hrtimer_fixup_free, | 
|---|
| 423 | }; | 
|---|
| 424 |  | 
|---|
| 425 | static inline void debug_hrtimer_init(struct hrtimer *timer) | 
|---|
| 426 | { | 
|---|
| 427 | debug_object_init(timer, &hrtimer_debug_descr); | 
|---|
| 428 | } | 
|---|
| 429 |  | 
|---|
| 430 | static inline void debug_hrtimer_init_on_stack(struct hrtimer *timer) | 
|---|
| 431 | { | 
|---|
| 432 | debug_object_init_on_stack(timer, &hrtimer_debug_descr); | 
|---|
| 433 | } | 
|---|
| 434 |  | 
|---|
| 435 | static inline void debug_hrtimer_activate(struct hrtimer *timer, | 
|---|
| 436 | enum hrtimer_mode mode) | 
|---|
| 437 | { | 
|---|
| 438 | debug_object_activate(timer, &hrtimer_debug_descr); | 
|---|
| 439 | } | 
|---|
| 440 |  | 
|---|
| 441 | static inline void debug_hrtimer_deactivate(struct hrtimer *timer) | 
|---|
| 442 | { | 
|---|
| 443 | debug_object_deactivate(timer, &hrtimer_debug_descr); | 
|---|
| 444 | } | 
|---|
| 445 |  | 
|---|
| 446 | void destroy_hrtimer_on_stack(struct hrtimer *timer) | 
|---|
| 447 | { | 
|---|
| 448 | debug_object_free(timer, &hrtimer_debug_descr); | 
|---|
| 449 | } | 
|---|
| 450 | EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack); | 
|---|
| 451 |  | 
|---|
| 452 | #else | 
|---|
| 453 |  | 
|---|
| 454 | static inline void debug_hrtimer_init(struct hrtimer *timer) { } | 
|---|
| 455 | static inline void debug_hrtimer_init_on_stack(struct hrtimer *timer) { } | 
|---|
| 456 | static inline void debug_hrtimer_activate(struct hrtimer *timer, | 
|---|
| 457 | enum hrtimer_mode mode) { } | 
|---|
| 458 | static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { } | 
|---|
| 459 | #endif | 
|---|
| 460 |  | 
|---|
| 461 | static inline void debug_setup(struct hrtimer *timer, clockid_t clockid, enum hrtimer_mode mode) | 
|---|
| 462 | { | 
|---|
| 463 | debug_hrtimer_init(timer); | 
|---|
| 464 | trace_hrtimer_setup(hrtimer: timer, clockid, mode); | 
|---|
| 465 | } | 
|---|
| 466 |  | 
|---|
| 467 | static inline void debug_setup_on_stack(struct hrtimer *timer, clockid_t clockid, | 
|---|
| 468 | enum hrtimer_mode mode) | 
|---|
| 469 | { | 
|---|
| 470 | debug_hrtimer_init_on_stack(timer); | 
|---|
| 471 | trace_hrtimer_setup(hrtimer: timer, clockid, mode); | 
|---|
| 472 | } | 
|---|
| 473 |  | 
|---|
| 474 | static inline void debug_activate(struct hrtimer *timer, | 
|---|
| 475 | enum hrtimer_mode mode) | 
|---|
| 476 | { | 
|---|
| 477 | debug_hrtimer_activate(timer, mode); | 
|---|
| 478 | trace_hrtimer_start(hrtimer: timer, mode); | 
|---|
| 479 | } | 
|---|
| 480 |  | 
|---|
| 481 | static inline void debug_deactivate(struct hrtimer *timer) | 
|---|
| 482 | { | 
|---|
| 483 | debug_hrtimer_deactivate(timer); | 
|---|
| 484 | trace_hrtimer_cancel(hrtimer: timer); | 
|---|
| 485 | } | 
|---|
| 486 |  | 
|---|
| 487 | static struct hrtimer_clock_base * | 
|---|
| 488 | __next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active) | 
|---|
| 489 | { | 
|---|
| 490 | unsigned int idx; | 
|---|
| 491 |  | 
|---|
| 492 | if (!*active) | 
|---|
| 493 | return NULL; | 
|---|
| 494 |  | 
|---|
| 495 | idx = __ffs(*active); | 
|---|
| 496 | *active &= ~(1U << idx); | 
|---|
| 497 |  | 
|---|
| 498 | return &cpu_base->clock_base[idx]; | 
|---|
| 499 | } | 
|---|
| 500 |  | 
|---|
| 501 | #define for_each_active_base(base, cpu_base, active)	\ | 
|---|
| 502 | while ((base = __next_base((cpu_base), &(active)))) | 
|---|
| 503 |  | 
|---|
| 504 | static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base, | 
|---|
| 505 | const struct hrtimer *exclude, | 
|---|
| 506 | unsigned int active, | 
|---|
| 507 | ktime_t expires_next) | 
|---|
| 508 | { | 
|---|
| 509 | struct hrtimer_clock_base *base; | 
|---|
| 510 | ktime_t expires; | 
|---|
| 511 |  | 
|---|
| 512 | for_each_active_base(base, cpu_base, active) { | 
|---|
| 513 | struct timerqueue_node *next; | 
|---|
| 514 | struct hrtimer *timer; | 
|---|
| 515 |  | 
|---|
| 516 | next = timerqueue_getnext(head: &base->active); | 
|---|
| 517 | timer = container_of(next, struct hrtimer, node); | 
|---|
| 518 | if (timer == exclude) { | 
|---|
| 519 | /* Get to the next timer in the queue. */ | 
|---|
| 520 | next = timerqueue_iterate_next(node: next); | 
|---|
| 521 | if (!next) | 
|---|
| 522 | continue; | 
|---|
| 523 |  | 
|---|
| 524 | timer = container_of(next, struct hrtimer, node); | 
|---|
| 525 | } | 
|---|
| 526 | expires = ktime_sub(hrtimer_get_expires(timer), base->offset); | 
|---|
| 527 | if (expires < expires_next) { | 
|---|
| 528 | expires_next = expires; | 
|---|
| 529 |  | 
|---|
| 530 | /* Skip cpu_base update if a timer is being excluded. */ | 
|---|
| 531 | if (exclude) | 
|---|
| 532 | continue; | 
|---|
| 533 |  | 
|---|
| 534 | if (timer->is_soft) | 
|---|
| 535 | cpu_base->softirq_next_timer = timer; | 
|---|
| 536 | else | 
|---|
| 537 | cpu_base->next_timer = timer; | 
|---|
| 538 | } | 
|---|
| 539 | } | 
|---|
| 540 | /* | 
|---|
| 541 | * clock_was_set() might have changed base->offset of any of | 
|---|
| 542 | * the clock bases so the result might be negative. Fix it up | 
|---|
| 543 | * to prevent a false positive in clockevents_program_event(). | 
|---|
| 544 | */ | 
|---|
| 545 | if (expires_next < 0) | 
|---|
| 546 | expires_next = 0; | 
|---|
| 547 | return expires_next; | 
|---|
| 548 | } | 
|---|
| 549 |  | 
|---|
| 550 | /* | 
|---|
| 551 | * Recomputes cpu_base::*next_timer and returns the earliest expires_next | 
|---|
| 552 | * but does not set cpu_base::*expires_next, that is done by | 
|---|
| 553 | * hrtimer[_force]_reprogram and hrtimer_interrupt only. When updating | 
|---|
| 554 | * cpu_base::*expires_next right away, reprogramming logic would no longer | 
|---|
| 555 | * work. | 
|---|
| 556 | * | 
|---|
| 557 | * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases, | 
|---|
| 558 | * those timers will get run whenever the softirq gets handled, at the end of | 
|---|
| 559 | * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases. | 
|---|
| 560 | * | 
|---|
| 561 | * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases. | 
|---|
| 562 | * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual | 
|---|
| 563 | * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD. | 
|---|
| 564 | * | 
|---|
| 565 | * @active_mask must be one of: | 
|---|
| 566 | *  - HRTIMER_ACTIVE_ALL, | 
|---|
| 567 | *  - HRTIMER_ACTIVE_SOFT, or | 
|---|
| 568 | *  - HRTIMER_ACTIVE_HARD. | 
|---|
| 569 | */ | 
|---|
| 570 | static ktime_t | 
|---|
| 571 | __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask) | 
|---|
| 572 | { | 
|---|
| 573 | unsigned int active; | 
|---|
| 574 | struct hrtimer *next_timer = NULL; | 
|---|
| 575 | ktime_t expires_next = KTIME_MAX; | 
|---|
| 576 |  | 
|---|
| 577 | if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) { | 
|---|
| 578 | active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT; | 
|---|
| 579 | cpu_base->softirq_next_timer = NULL; | 
|---|
| 580 | expires_next = __hrtimer_next_event_base(cpu_base, NULL, | 
|---|
| 581 | active, KTIME_MAX); | 
|---|
| 582 |  | 
|---|
| 583 | next_timer = cpu_base->softirq_next_timer; | 
|---|
| 584 | } | 
|---|
| 585 |  | 
|---|
| 586 | if (active_mask & HRTIMER_ACTIVE_HARD) { | 
|---|
| 587 | active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD; | 
|---|
| 588 | cpu_base->next_timer = next_timer; | 
|---|
| 589 | expires_next = __hrtimer_next_event_base(cpu_base, NULL, active, | 
|---|
| 590 | expires_next); | 
|---|
| 591 | } | 
|---|
| 592 |  | 
|---|
| 593 | return expires_next; | 
|---|
| 594 | } | 
|---|
| 595 |  | 
|---|
| 596 | static ktime_t hrtimer_update_next_event(struct hrtimer_cpu_base *cpu_base) | 
|---|
| 597 | { | 
|---|
| 598 | ktime_t expires_next, soft = KTIME_MAX; | 
|---|
| 599 |  | 
|---|
| 600 | /* | 
|---|
| 601 | * If the soft interrupt has already been activated, ignore the | 
|---|
| 602 | * soft bases. They will be handled in the already raised soft | 
|---|
| 603 | * interrupt. | 
|---|
| 604 | */ | 
|---|
| 605 | if (!cpu_base->softirq_activated) { | 
|---|
| 606 | soft = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT); | 
|---|
| 607 | /* | 
|---|
| 608 | * Update the soft expiry time. clock_settime() might have | 
|---|
| 609 | * affected it. | 
|---|
| 610 | */ | 
|---|
| 611 | cpu_base->softirq_expires_next = soft; | 
|---|
| 612 | } | 
|---|
| 613 |  | 
|---|
| 614 | expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_HARD); | 
|---|
| 615 | /* | 
|---|
| 616 | * If a softirq timer is expiring first, update cpu_base->next_timer | 
|---|
| 617 | * and program the hardware with the soft expiry time. | 
|---|
| 618 | */ | 
|---|
| 619 | if (expires_next > soft) { | 
|---|
| 620 | cpu_base->next_timer = cpu_base->softirq_next_timer; | 
|---|
| 621 | expires_next = soft; | 
|---|
| 622 | } | 
|---|
| 623 |  | 
|---|
| 624 | return expires_next; | 
|---|
| 625 | } | 
|---|
| 626 |  | 
|---|
| 627 | static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base) | 
|---|
| 628 | { | 
|---|
| 629 | ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset; | 
|---|
| 630 | ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset; | 
|---|
| 631 | ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset; | 
|---|
| 632 |  | 
|---|
| 633 | ktime_t now = ktime_get_update_offsets_now(cwsseq: &base->clock_was_set_seq, | 
|---|
| 634 | offs_real, offs_boot, offs_tai); | 
|---|
| 635 |  | 
|---|
| 636 | base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real; | 
|---|
| 637 | base->clock_base[HRTIMER_BASE_BOOTTIME_SOFT].offset = *offs_boot; | 
|---|
| 638 | base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai; | 
|---|
| 639 |  | 
|---|
| 640 | return now; | 
|---|
| 641 | } | 
|---|
| 642 |  | 
|---|
| 643 | /* | 
|---|
| 644 | * Is the high resolution mode active ? | 
|---|
| 645 | */ | 
|---|
| 646 | static inline int hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base) | 
|---|
| 647 | { | 
|---|
| 648 | return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ? | 
|---|
| 649 | cpu_base->hres_active : 0; | 
|---|
| 650 | } | 
|---|
| 651 |  | 
|---|
| 652 | static void __hrtimer_reprogram(struct hrtimer_cpu_base *cpu_base, | 
|---|
| 653 | struct hrtimer *next_timer, | 
|---|
| 654 | ktime_t expires_next) | 
|---|
| 655 | { | 
|---|
| 656 | cpu_base->expires_next = expires_next; | 
|---|
| 657 |  | 
|---|
| 658 | /* | 
|---|
| 659 | * If hres is not active, hardware does not have to be | 
|---|
| 660 | * reprogrammed yet. | 
|---|
| 661 | * | 
|---|
| 662 | * If a hang was detected in the last timer interrupt then we | 
|---|
| 663 | * leave the hang delay active in the hardware. We want the | 
|---|
| 664 | * system to make progress. That also prevents the following | 
|---|
| 665 | * scenario: | 
|---|
| 666 | * T1 expires 50ms from now | 
|---|
| 667 | * T2 expires 5s from now | 
|---|
| 668 | * | 
|---|
| 669 | * T1 is removed, so this code is called and would reprogram | 
|---|
| 670 | * the hardware to 5s from now. Any hrtimer_start after that | 
|---|
| 671 | * will not reprogram the hardware due to hang_detected being | 
|---|
| 672 | * set. So we'd effectively block all timers until the T2 event | 
|---|
| 673 | * fires. | 
|---|
| 674 | */ | 
|---|
| 675 | if (!hrtimer_hres_active(cpu_base) || cpu_base->hang_detected) | 
|---|
| 676 | return; | 
|---|
| 677 |  | 
|---|
| 678 | tick_program_event(expires: expires_next, force: 1); | 
|---|
| 679 | } | 
|---|
| 680 |  | 
|---|
| 681 | /* | 
|---|
| 682 | * Reprogram the event source with checking both queues for the | 
|---|
| 683 | * next event | 
|---|
| 684 | * Called with interrupts disabled and base->lock held | 
|---|
| 685 | */ | 
|---|
| 686 | static void | 
|---|
| 687 | hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal) | 
|---|
| 688 | { | 
|---|
| 689 | ktime_t expires_next; | 
|---|
| 690 |  | 
|---|
| 691 | expires_next = hrtimer_update_next_event(cpu_base); | 
|---|
| 692 |  | 
|---|
| 693 | if (skip_equal && expires_next == cpu_base->expires_next) | 
|---|
| 694 | return; | 
|---|
| 695 |  | 
|---|
| 696 | __hrtimer_reprogram(cpu_base, next_timer: cpu_base->next_timer, expires_next); | 
|---|
| 697 | } | 
|---|
| 698 |  | 
|---|
| 699 | /* High resolution timer related functions */ | 
|---|
| 700 | #ifdef CONFIG_HIGH_RES_TIMERS | 
|---|
| 701 |  | 
|---|
| 702 | /* | 
|---|
| 703 | * High resolution timer enabled ? | 
|---|
| 704 | */ | 
|---|
| 705 | static bool hrtimer_hres_enabled __read_mostly  = true; | 
|---|
| 706 | unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC; | 
|---|
| 707 | EXPORT_SYMBOL_GPL(hrtimer_resolution); | 
|---|
| 708 |  | 
|---|
| 709 | /* | 
|---|
| 710 | * Enable / Disable high resolution mode | 
|---|
| 711 | */ | 
|---|
| 712 | static int __init setup_hrtimer_hres(char *str) | 
|---|
| 713 | { | 
|---|
| 714 | return (kstrtobool(s: str, res: &hrtimer_hres_enabled) == 0); | 
|---|
| 715 | } | 
|---|
| 716 |  | 
|---|
| 717 | __setup( "highres=", setup_hrtimer_hres); | 
|---|
| 718 |  | 
|---|
| 719 | /* | 
|---|
| 720 | * hrtimer_high_res_enabled - query, if the highres mode is enabled | 
|---|
| 721 | */ | 
|---|
| 722 | static inline int hrtimer_is_hres_enabled(void) | 
|---|
| 723 | { | 
|---|
| 724 | return hrtimer_hres_enabled; | 
|---|
| 725 | } | 
|---|
| 726 |  | 
|---|
| 727 | /* | 
|---|
| 728 | * Switch to high resolution mode | 
|---|
| 729 | */ | 
|---|
| 730 | static void hrtimer_switch_to_hres(void) | 
|---|
| 731 | { | 
|---|
| 732 | struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases); | 
|---|
| 733 |  | 
|---|
| 734 | if (tick_init_highres()) { | 
|---|
| 735 | pr_warn( "Could not switch to high resolution mode on CPU %u\n", | 
|---|
| 736 | base->cpu); | 
|---|
| 737 | return; | 
|---|
| 738 | } | 
|---|
| 739 | base->hres_active = 1; | 
|---|
| 740 | hrtimer_resolution = HIGH_RES_NSEC; | 
|---|
| 741 |  | 
|---|
| 742 | tick_setup_sched_timer(hrtimer: true); | 
|---|
| 743 | /* "Retrigger" the interrupt to get things going */ | 
|---|
| 744 | retrigger_next_event(NULL); | 
|---|
| 745 | } | 
|---|
| 746 |  | 
|---|
| 747 | #else | 
|---|
| 748 |  | 
|---|
| 749 | static inline int hrtimer_is_hres_enabled(void) { return 0; } | 
|---|
| 750 | static inline void hrtimer_switch_to_hres(void) { } | 
|---|
| 751 |  | 
|---|
| 752 | #endif /* CONFIG_HIGH_RES_TIMERS */ | 
|---|
| 753 | /* | 
|---|
| 754 | * Retrigger next event is called after clock was set with interrupts | 
|---|
| 755 | * disabled through an SMP function call or directly from low level | 
|---|
| 756 | * resume code. | 
|---|
| 757 | * | 
|---|
| 758 | * This is only invoked when: | 
|---|
| 759 | *	- CONFIG_HIGH_RES_TIMERS is enabled. | 
|---|
| 760 | *	- CONFIG_NOHZ_COMMON is enabled | 
|---|
| 761 | * | 
|---|
| 762 | * For the other cases this function is empty and because the call sites | 
|---|
| 763 | * are optimized out it vanishes as well, i.e. no need for lots of | 
|---|
| 764 | * #ifdeffery. | 
|---|
| 765 | */ | 
|---|
| 766 | static void retrigger_next_event(void *arg) | 
|---|
| 767 | { | 
|---|
| 768 | struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases); | 
|---|
| 769 |  | 
|---|
| 770 | /* | 
|---|
| 771 | * When high resolution mode or nohz is active, then the offsets of | 
|---|
| 772 | * CLOCK_REALTIME/TAI/BOOTTIME have to be updated. Otherwise the | 
|---|
| 773 | * next tick will take care of that. | 
|---|
| 774 | * | 
|---|
| 775 | * If high resolution mode is active then the next expiring timer | 
|---|
| 776 | * must be reevaluated and the clock event device reprogrammed if | 
|---|
| 777 | * necessary. | 
|---|
| 778 | * | 
|---|
| 779 | * In the NOHZ case the update of the offset and the reevaluation | 
|---|
| 780 | * of the next expiring timer is enough. The return from the SMP | 
|---|
| 781 | * function call will take care of the reprogramming in case the | 
|---|
| 782 | * CPU was in a NOHZ idle sleep. | 
|---|
| 783 | * | 
|---|
| 784 | * In periodic low resolution mode, the next softirq expiration | 
|---|
| 785 | * must also be updated. | 
|---|
| 786 | */ | 
|---|
| 787 | raw_spin_lock(&base->lock); | 
|---|
| 788 | hrtimer_update_base(base); | 
|---|
| 789 | if (hrtimer_hres_active(cpu_base: base)) | 
|---|
| 790 | hrtimer_force_reprogram(cpu_base: base, skip_equal: 0); | 
|---|
| 791 | else | 
|---|
| 792 | hrtimer_update_next_event(cpu_base: base); | 
|---|
| 793 | raw_spin_unlock(&base->lock); | 
|---|
| 794 | } | 
|---|
| 795 |  | 
|---|
| 796 | /* | 
|---|
| 797 | * When a timer is enqueued and expires earlier than the already enqueued | 
|---|
| 798 | * timers, we have to check, whether it expires earlier than the timer for | 
|---|
| 799 | * which the clock event device was armed. | 
|---|
| 800 | * | 
|---|
| 801 | * Called with interrupts disabled and base->cpu_base.lock held | 
|---|
| 802 | */ | 
|---|
| 803 | static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram) | 
|---|
| 804 | { | 
|---|
| 805 | struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); | 
|---|
| 806 | struct hrtimer_clock_base *base = timer->base; | 
|---|
| 807 | ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset); | 
|---|
| 808 |  | 
|---|
| 809 | WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0); | 
|---|
| 810 |  | 
|---|
| 811 | /* | 
|---|
| 812 | * CLOCK_REALTIME timer might be requested with an absolute | 
|---|
| 813 | * expiry time which is less than base->offset. Set it to 0. | 
|---|
| 814 | */ | 
|---|
| 815 | if (expires < 0) | 
|---|
| 816 | expires = 0; | 
|---|
| 817 |  | 
|---|
| 818 | if (timer->is_soft) { | 
|---|
| 819 | /* | 
|---|
| 820 | * soft hrtimer could be started on a remote CPU. In this | 
|---|
| 821 | * case softirq_expires_next needs to be updated on the | 
|---|
| 822 | * remote CPU. The soft hrtimer will not expire before the | 
|---|
| 823 | * first hard hrtimer on the remote CPU - | 
|---|
| 824 | * hrtimer_check_target() prevents this case. | 
|---|
| 825 | */ | 
|---|
| 826 | struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base; | 
|---|
| 827 |  | 
|---|
| 828 | if (timer_cpu_base->softirq_activated) | 
|---|
| 829 | return; | 
|---|
| 830 |  | 
|---|
| 831 | if (!ktime_before(cmp1: expires, cmp2: timer_cpu_base->softirq_expires_next)) | 
|---|
| 832 | return; | 
|---|
| 833 |  | 
|---|
| 834 | timer_cpu_base->softirq_next_timer = timer; | 
|---|
| 835 | timer_cpu_base->softirq_expires_next = expires; | 
|---|
| 836 |  | 
|---|
| 837 | if (!ktime_before(cmp1: expires, cmp2: timer_cpu_base->expires_next) || | 
|---|
| 838 | !reprogram) | 
|---|
| 839 | return; | 
|---|
| 840 | } | 
|---|
| 841 |  | 
|---|
| 842 | /* | 
|---|
| 843 | * If the timer is not on the current cpu, we cannot reprogram | 
|---|
| 844 | * the other cpus clock event device. | 
|---|
| 845 | */ | 
|---|
| 846 | if (base->cpu_base != cpu_base) | 
|---|
| 847 | return; | 
|---|
| 848 |  | 
|---|
| 849 | if (expires >= cpu_base->expires_next) | 
|---|
| 850 | return; | 
|---|
| 851 |  | 
|---|
| 852 | /* | 
|---|
| 853 | * If the hrtimer interrupt is running, then it will reevaluate the | 
|---|
| 854 | * clock bases and reprogram the clock event device. | 
|---|
| 855 | */ | 
|---|
| 856 | if (cpu_base->in_hrtirq) | 
|---|
| 857 | return; | 
|---|
| 858 |  | 
|---|
| 859 | cpu_base->next_timer = timer; | 
|---|
| 860 |  | 
|---|
| 861 | __hrtimer_reprogram(cpu_base, next_timer: timer, expires_next: expires); | 
|---|
| 862 | } | 
|---|
| 863 |  | 
|---|
| 864 | static bool update_needs_ipi(struct hrtimer_cpu_base *cpu_base, | 
|---|
| 865 | unsigned int active) | 
|---|
| 866 | { | 
|---|
| 867 | struct hrtimer_clock_base *base; | 
|---|
| 868 | unsigned int seq; | 
|---|
| 869 | ktime_t expires; | 
|---|
| 870 |  | 
|---|
| 871 | /* | 
|---|
| 872 | * Update the base offsets unconditionally so the following | 
|---|
| 873 | * checks whether the SMP function call is required works. | 
|---|
| 874 | * | 
|---|
| 875 | * The update is safe even when the remote CPU is in the hrtimer | 
|---|
| 876 | * interrupt or the hrtimer soft interrupt and expiring affected | 
|---|
| 877 | * bases. Either it will see the update before handling a base or | 
|---|
| 878 | * it will see it when it finishes the processing and reevaluates | 
|---|
| 879 | * the next expiring timer. | 
|---|
| 880 | */ | 
|---|
| 881 | seq = cpu_base->clock_was_set_seq; | 
|---|
| 882 | hrtimer_update_base(base: cpu_base); | 
|---|
| 883 |  | 
|---|
| 884 | /* | 
|---|
| 885 | * If the sequence did not change over the update then the | 
|---|
| 886 | * remote CPU already handled it. | 
|---|
| 887 | */ | 
|---|
| 888 | if (seq == cpu_base->clock_was_set_seq) | 
|---|
| 889 | return false; | 
|---|
| 890 |  | 
|---|
| 891 | /* | 
|---|
| 892 | * If the remote CPU is currently handling an hrtimer interrupt, it | 
|---|
| 893 | * will reevaluate the first expiring timer of all clock bases | 
|---|
| 894 | * before reprogramming. Nothing to do here. | 
|---|
| 895 | */ | 
|---|
| 896 | if (cpu_base->in_hrtirq) | 
|---|
| 897 | return false; | 
|---|
| 898 |  | 
|---|
| 899 | /* | 
|---|
| 900 | * Walk the affected clock bases and check whether the first expiring | 
|---|
| 901 | * timer in a clock base is moving ahead of the first expiring timer of | 
|---|
| 902 | * @cpu_base. If so, the IPI must be invoked because per CPU clock | 
|---|
| 903 | * event devices cannot be remotely reprogrammed. | 
|---|
| 904 | */ | 
|---|
| 905 | active &= cpu_base->active_bases; | 
|---|
| 906 |  | 
|---|
| 907 | for_each_active_base(base, cpu_base, active) { | 
|---|
| 908 | struct timerqueue_node *next; | 
|---|
| 909 |  | 
|---|
| 910 | next = timerqueue_getnext(head: &base->active); | 
|---|
| 911 | expires = ktime_sub(next->expires, base->offset); | 
|---|
| 912 | if (expires < cpu_base->expires_next) | 
|---|
| 913 | return true; | 
|---|
| 914 |  | 
|---|
| 915 | /* Extra check for softirq clock bases */ | 
|---|
| 916 | if (base->clockid < HRTIMER_BASE_MONOTONIC_SOFT) | 
|---|
| 917 | continue; | 
|---|
| 918 | if (cpu_base->softirq_activated) | 
|---|
| 919 | continue; | 
|---|
| 920 | if (expires < cpu_base->softirq_expires_next) | 
|---|
| 921 | return true; | 
|---|
| 922 | } | 
|---|
| 923 | return false; | 
|---|
| 924 | } | 
|---|
| 925 |  | 
|---|
| 926 | /* | 
|---|
| 927 | * Clock was set. This might affect CLOCK_REALTIME, CLOCK_TAI and | 
|---|
| 928 | * CLOCK_BOOTTIME (for late sleep time injection). | 
|---|
| 929 | * | 
|---|
| 930 | * This requires to update the offsets for these clocks | 
|---|
| 931 | * vs. CLOCK_MONOTONIC. When high resolution timers are enabled, then this | 
|---|
| 932 | * also requires to eventually reprogram the per CPU clock event devices | 
|---|
| 933 | * when the change moves an affected timer ahead of the first expiring | 
|---|
| 934 | * timer on that CPU. Obviously remote per CPU clock event devices cannot | 
|---|
| 935 | * be reprogrammed. The other reason why an IPI has to be sent is when the | 
|---|
| 936 | * system is in !HIGH_RES and NOHZ mode. The NOHZ mode updates the offsets | 
|---|
| 937 | * in the tick, which obviously might be stopped, so this has to bring out | 
|---|
| 938 | * the remote CPU which might sleep in idle to get this sorted. | 
|---|
| 939 | */ | 
|---|
| 940 | void clock_was_set(unsigned int bases) | 
|---|
| 941 | { | 
|---|
| 942 | struct hrtimer_cpu_base *cpu_base = raw_cpu_ptr(&hrtimer_bases); | 
|---|
| 943 | cpumask_var_t mask; | 
|---|
| 944 | int cpu; | 
|---|
| 945 |  | 
|---|
| 946 | if (!hrtimer_hres_active(cpu_base) && !tick_nohz_active) | 
|---|
| 947 | goto out_timerfd; | 
|---|
| 948 |  | 
|---|
| 949 | if (!zalloc_cpumask_var(mask: &mask, GFP_KERNEL)) { | 
|---|
| 950 | on_each_cpu(func: retrigger_next_event, NULL, wait: 1); | 
|---|
| 951 | goto out_timerfd; | 
|---|
| 952 | } | 
|---|
| 953 |  | 
|---|
| 954 | /* Avoid interrupting CPUs if possible */ | 
|---|
| 955 | cpus_read_lock(); | 
|---|
| 956 | for_each_online_cpu(cpu) { | 
|---|
| 957 | unsigned long flags; | 
|---|
| 958 |  | 
|---|
| 959 | cpu_base = &per_cpu(hrtimer_bases, cpu); | 
|---|
| 960 | raw_spin_lock_irqsave(&cpu_base->lock, flags); | 
|---|
| 961 |  | 
|---|
| 962 | if (update_needs_ipi(cpu_base, active: bases)) | 
|---|
| 963 | cpumask_set_cpu(cpu, dstp: mask); | 
|---|
| 964 |  | 
|---|
| 965 | raw_spin_unlock_irqrestore(&cpu_base->lock, flags); | 
|---|
| 966 | } | 
|---|
| 967 |  | 
|---|
| 968 | preempt_disable(); | 
|---|
| 969 | smp_call_function_many(mask, func: retrigger_next_event, NULL, wait: 1); | 
|---|
| 970 | preempt_enable(); | 
|---|
| 971 | cpus_read_unlock(); | 
|---|
| 972 | free_cpumask_var(mask); | 
|---|
| 973 |  | 
|---|
| 974 | out_timerfd: | 
|---|
| 975 | timerfd_clock_was_set(); | 
|---|
| 976 | } | 
|---|
| 977 |  | 
|---|
| 978 | static void clock_was_set_work(struct work_struct *work) | 
|---|
| 979 | { | 
|---|
| 980 | clock_was_set(CLOCK_SET_WALL); | 
|---|
| 981 | } | 
|---|
| 982 |  | 
|---|
| 983 | static DECLARE_WORK(hrtimer_work, clock_was_set_work); | 
|---|
| 984 |  | 
|---|
| 985 | /* | 
|---|
| 986 | * Called from timekeeping code to reprogram the hrtimer interrupt device | 
|---|
| 987 | * on all cpus and to notify timerfd. | 
|---|
| 988 | */ | 
|---|
| 989 | void clock_was_set_delayed(void) | 
|---|
| 990 | { | 
|---|
| 991 | schedule_work(work: &hrtimer_work); | 
|---|
| 992 | } | 
|---|
| 993 |  | 
|---|
| 994 | /* | 
|---|
| 995 | * Called during resume either directly from via timekeeping_resume() | 
|---|
| 996 | * or in the case of s2idle from tick_unfreeze() to ensure that the | 
|---|
| 997 | * hrtimers are up to date. | 
|---|
| 998 | */ | 
|---|
| 999 | void hrtimers_resume_local(void) | 
|---|
| 1000 | { | 
|---|
| 1001 | lockdep_assert_irqs_disabled(); | 
|---|
| 1002 | /* Retrigger on the local CPU */ | 
|---|
| 1003 | retrigger_next_event(NULL); | 
|---|
| 1004 | } | 
|---|
| 1005 |  | 
|---|
| 1006 | /* | 
|---|
| 1007 | * Counterpart to lock_hrtimer_base above: | 
|---|
| 1008 | */ | 
|---|
| 1009 | static inline | 
|---|
| 1010 | void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) | 
|---|
| 1011 | __releases(&timer->base->cpu_base->lock) | 
|---|
| 1012 | { | 
|---|
| 1013 | raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags); | 
|---|
| 1014 | } | 
|---|
| 1015 |  | 
|---|
| 1016 | /** | 
|---|
| 1017 | * hrtimer_forward() - forward the timer expiry | 
|---|
| 1018 | * @timer:	hrtimer to forward | 
|---|
| 1019 | * @now:	forward past this time | 
|---|
| 1020 | * @interval:	the interval to forward | 
|---|
| 1021 | * | 
|---|
| 1022 | * Forward the timer expiry so it will expire in the future. | 
|---|
| 1023 | * | 
|---|
| 1024 | * .. note:: | 
|---|
| 1025 | *  This only updates the timer expiry value and does not requeue the timer. | 
|---|
| 1026 | * | 
|---|
| 1027 | * There is also a variant of the function hrtimer_forward_now(). | 
|---|
| 1028 | * | 
|---|
| 1029 | * Context: Can be safely called from the callback function of @timer. If called | 
|---|
| 1030 | *          from other contexts @timer must neither be enqueued nor running the | 
|---|
| 1031 | *          callback and the caller needs to take care of serialization. | 
|---|
| 1032 | * | 
|---|
| 1033 | * Return: The number of overruns are returned. | 
|---|
| 1034 | */ | 
|---|
| 1035 | u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval) | 
|---|
| 1036 | { | 
|---|
| 1037 | u64 orun = 1; | 
|---|
| 1038 | ktime_t delta; | 
|---|
| 1039 |  | 
|---|
| 1040 | delta = ktime_sub(now, hrtimer_get_expires(timer)); | 
|---|
| 1041 |  | 
|---|
| 1042 | if (delta < 0) | 
|---|
| 1043 | return 0; | 
|---|
| 1044 |  | 
|---|
| 1045 | if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED)) | 
|---|
| 1046 | return 0; | 
|---|
| 1047 |  | 
|---|
| 1048 | if (interval < hrtimer_resolution) | 
|---|
| 1049 | interval = hrtimer_resolution; | 
|---|
| 1050 |  | 
|---|
| 1051 | if (unlikely(delta >= interval)) { | 
|---|
| 1052 | s64 incr = ktime_to_ns(kt: interval); | 
|---|
| 1053 |  | 
|---|
| 1054 | orun = ktime_divns(kt: delta, div: incr); | 
|---|
| 1055 | hrtimer_add_expires_ns(timer, ns: incr * orun); | 
|---|
| 1056 | if (hrtimer_get_expires_tv64(timer) > now) | 
|---|
| 1057 | return orun; | 
|---|
| 1058 | /* | 
|---|
| 1059 | * This (and the ktime_add() below) is the | 
|---|
| 1060 | * correction for exact: | 
|---|
| 1061 | */ | 
|---|
| 1062 | orun++; | 
|---|
| 1063 | } | 
|---|
| 1064 | hrtimer_add_expires(timer, time: interval); | 
|---|
| 1065 |  | 
|---|
| 1066 | return orun; | 
|---|
| 1067 | } | 
|---|
| 1068 | EXPORT_SYMBOL_GPL(hrtimer_forward); | 
|---|
| 1069 |  | 
|---|
| 1070 | /* | 
|---|
| 1071 | * enqueue_hrtimer - internal function to (re)start a timer | 
|---|
| 1072 | * | 
|---|
| 1073 | * The timer is inserted in expiry order. Insertion into the | 
|---|
| 1074 | * red black tree is O(log(n)). Must hold the base lock. | 
|---|
| 1075 | * | 
|---|
| 1076 | * Returns true when the new timer is the leftmost timer in the tree. | 
|---|
| 1077 | */ | 
|---|
| 1078 | static bool enqueue_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, | 
|---|
| 1079 | enum hrtimer_mode mode) | 
|---|
| 1080 | { | 
|---|
| 1081 | debug_activate(timer, mode); | 
|---|
| 1082 | WARN_ON_ONCE(!base->cpu_base->online); | 
|---|
| 1083 |  | 
|---|
| 1084 | base->cpu_base->active_bases |= 1 << base->index; | 
|---|
| 1085 |  | 
|---|
| 1086 | /* Pairs with the lockless read in hrtimer_is_queued() */ | 
|---|
| 1087 | WRITE_ONCE(timer->state, HRTIMER_STATE_ENQUEUED); | 
|---|
| 1088 |  | 
|---|
| 1089 | return timerqueue_add(head: &base->active, node: &timer->node); | 
|---|
| 1090 | } | 
|---|
| 1091 |  | 
|---|
| 1092 | /* | 
|---|
| 1093 | * __remove_hrtimer - internal function to remove a timer | 
|---|
| 1094 | * | 
|---|
| 1095 | * Caller must hold the base lock. | 
|---|
| 1096 | * | 
|---|
| 1097 | * High resolution timer mode reprograms the clock event device when the | 
|---|
| 1098 | * timer is the one which expires next. The caller can disable this by setting | 
|---|
| 1099 | * reprogram to zero. This is useful, when the context does a reprogramming | 
|---|
| 1100 | * anyway (e.g. timer interrupt) | 
|---|
| 1101 | */ | 
|---|
| 1102 | static void __remove_hrtimer(struct hrtimer *timer, | 
|---|
| 1103 | struct hrtimer_clock_base *base, | 
|---|
| 1104 | u8 newstate, int reprogram) | 
|---|
| 1105 | { | 
|---|
| 1106 | struct hrtimer_cpu_base *cpu_base = base->cpu_base; | 
|---|
| 1107 | u8 state = timer->state; | 
|---|
| 1108 |  | 
|---|
| 1109 | /* Pairs with the lockless read in hrtimer_is_queued() */ | 
|---|
| 1110 | WRITE_ONCE(timer->state, newstate); | 
|---|
| 1111 | if (!(state & HRTIMER_STATE_ENQUEUED)) | 
|---|
| 1112 | return; | 
|---|
| 1113 |  | 
|---|
| 1114 | if (!timerqueue_del(head: &base->active, node: &timer->node)) | 
|---|
| 1115 | cpu_base->active_bases &= ~(1 << base->index); | 
|---|
| 1116 |  | 
|---|
| 1117 | /* | 
|---|
| 1118 | * Note: If reprogram is false we do not update | 
|---|
| 1119 | * cpu_base->next_timer. This happens when we remove the first | 
|---|
| 1120 | * timer on a remote cpu. No harm as we never dereference | 
|---|
| 1121 | * cpu_base->next_timer. So the worst thing what can happen is | 
|---|
| 1122 | * an superfluous call to hrtimer_force_reprogram() on the | 
|---|
| 1123 | * remote cpu later on if the same timer gets enqueued again. | 
|---|
| 1124 | */ | 
|---|
| 1125 | if (reprogram && timer == cpu_base->next_timer) | 
|---|
| 1126 | hrtimer_force_reprogram(cpu_base, skip_equal: 1); | 
|---|
| 1127 | } | 
|---|
| 1128 |  | 
|---|
| 1129 | /* | 
|---|
| 1130 | * remove hrtimer, called with base lock held | 
|---|
| 1131 | */ | 
|---|
| 1132 | static inline int | 
|---|
| 1133 | remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, | 
|---|
| 1134 | bool restart, bool keep_local) | 
|---|
| 1135 | { | 
|---|
| 1136 | u8 state = timer->state; | 
|---|
| 1137 |  | 
|---|
| 1138 | if (state & HRTIMER_STATE_ENQUEUED) { | 
|---|
| 1139 | bool reprogram; | 
|---|
| 1140 |  | 
|---|
| 1141 | /* | 
|---|
| 1142 | * Remove the timer and force reprogramming when high | 
|---|
| 1143 | * resolution mode is active and the timer is on the current | 
|---|
| 1144 | * CPU. If we remove a timer on another CPU, reprogramming is | 
|---|
| 1145 | * skipped. The interrupt event on this CPU is fired and | 
|---|
| 1146 | * reprogramming happens in the interrupt handler. This is a | 
|---|
| 1147 | * rare case and less expensive than a smp call. | 
|---|
| 1148 | */ | 
|---|
| 1149 | debug_deactivate(timer); | 
|---|
| 1150 | reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases); | 
|---|
| 1151 |  | 
|---|
| 1152 | /* | 
|---|
| 1153 | * If the timer is not restarted then reprogramming is | 
|---|
| 1154 | * required if the timer is local. If it is local and about | 
|---|
| 1155 | * to be restarted, avoid programming it twice (on removal | 
|---|
| 1156 | * and a moment later when it's requeued). | 
|---|
| 1157 | */ | 
|---|
| 1158 | if (!restart) | 
|---|
| 1159 | state = HRTIMER_STATE_INACTIVE; | 
|---|
| 1160 | else | 
|---|
| 1161 | reprogram &= !keep_local; | 
|---|
| 1162 |  | 
|---|
| 1163 | __remove_hrtimer(timer, base, newstate: state, reprogram); | 
|---|
| 1164 | return 1; | 
|---|
| 1165 | } | 
|---|
| 1166 | return 0; | 
|---|
| 1167 | } | 
|---|
| 1168 |  | 
|---|
| 1169 | static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim, | 
|---|
| 1170 | const enum hrtimer_mode mode) | 
|---|
| 1171 | { | 
|---|
| 1172 | #ifdef CONFIG_TIME_LOW_RES | 
|---|
| 1173 | /* | 
|---|
| 1174 | * CONFIG_TIME_LOW_RES indicates that the system has no way to return | 
|---|
| 1175 | * granular time values. For relative timers we add hrtimer_resolution | 
|---|
| 1176 | * (i.e. one jiffy) to prevent short timeouts. | 
|---|
| 1177 | */ | 
|---|
| 1178 | timer->is_rel = mode & HRTIMER_MODE_REL; | 
|---|
| 1179 | if (timer->is_rel) | 
|---|
| 1180 | tim = ktime_add_safe(tim, hrtimer_resolution); | 
|---|
| 1181 | #endif | 
|---|
| 1182 | return tim; | 
|---|
| 1183 | } | 
|---|
| 1184 |  | 
|---|
| 1185 | static void | 
|---|
| 1186 | hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram) | 
|---|
| 1187 | { | 
|---|
| 1188 | ktime_t expires; | 
|---|
| 1189 |  | 
|---|
| 1190 | /* | 
|---|
| 1191 | * Find the next SOFT expiration. | 
|---|
| 1192 | */ | 
|---|
| 1193 | expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT); | 
|---|
| 1194 |  | 
|---|
| 1195 | /* | 
|---|
| 1196 | * reprogramming needs to be triggered, even if the next soft | 
|---|
| 1197 | * hrtimer expires at the same time than the next hard | 
|---|
| 1198 | * hrtimer. cpu_base->softirq_expires_next needs to be updated! | 
|---|
| 1199 | */ | 
|---|
| 1200 | if (expires == KTIME_MAX) | 
|---|
| 1201 | return; | 
|---|
| 1202 |  | 
|---|
| 1203 | /* | 
|---|
| 1204 | * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event() | 
|---|
| 1205 | * cpu_base->*expires_next is only set by hrtimer_reprogram() | 
|---|
| 1206 | */ | 
|---|
| 1207 | hrtimer_reprogram(timer: cpu_base->softirq_next_timer, reprogram); | 
|---|
| 1208 | } | 
|---|
| 1209 |  | 
|---|
| 1210 | static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, | 
|---|
| 1211 | u64 delta_ns, const enum hrtimer_mode mode, | 
|---|
| 1212 | struct hrtimer_clock_base *base) | 
|---|
| 1213 | { | 
|---|
| 1214 | struct hrtimer_cpu_base *this_cpu_base = this_cpu_ptr(&hrtimer_bases); | 
|---|
| 1215 | struct hrtimer_clock_base *new_base; | 
|---|
| 1216 | bool force_local, first; | 
|---|
| 1217 |  | 
|---|
| 1218 | /* | 
|---|
| 1219 | * If the timer is on the local cpu base and is the first expiring | 
|---|
| 1220 | * timer then this might end up reprogramming the hardware twice | 
|---|
| 1221 | * (on removal and on enqueue). To avoid that by prevent the | 
|---|
| 1222 | * reprogram on removal, keep the timer local to the current CPU | 
|---|
| 1223 | * and enforce reprogramming after it is queued no matter whether | 
|---|
| 1224 | * it is the new first expiring timer again or not. | 
|---|
| 1225 | */ | 
|---|
| 1226 | force_local = base->cpu_base == this_cpu_base; | 
|---|
| 1227 | force_local &= base->cpu_base->next_timer == timer; | 
|---|
| 1228 |  | 
|---|
| 1229 | /* | 
|---|
| 1230 | * Don't force local queuing if this enqueue happens on a unplugged | 
|---|
| 1231 | * CPU after hrtimer_cpu_dying() has been invoked. | 
|---|
| 1232 | */ | 
|---|
| 1233 | force_local &= this_cpu_base->online; | 
|---|
| 1234 |  | 
|---|
| 1235 | /* | 
|---|
| 1236 | * Remove an active timer from the queue. In case it is not queued | 
|---|
| 1237 | * on the current CPU, make sure that remove_hrtimer() updates the | 
|---|
| 1238 | * remote data correctly. | 
|---|
| 1239 | * | 
|---|
| 1240 | * If it's on the current CPU and the first expiring timer, then | 
|---|
| 1241 | * skip reprogramming, keep the timer local and enforce | 
|---|
| 1242 | * reprogramming later if it was the first expiring timer.  This | 
|---|
| 1243 | * avoids programming the underlying clock event twice (once at | 
|---|
| 1244 | * removal and once after enqueue). | 
|---|
| 1245 | */ | 
|---|
| 1246 | remove_hrtimer(timer, base, restart: true, keep_local: force_local); | 
|---|
| 1247 |  | 
|---|
| 1248 | if (mode & HRTIMER_MODE_REL) | 
|---|
| 1249 | tim = ktime_add_safe(tim, __hrtimer_cb_get_time(clock_id: base->clockid)); | 
|---|
| 1250 |  | 
|---|
| 1251 | tim = hrtimer_update_lowres(timer, tim, mode); | 
|---|
| 1252 |  | 
|---|
| 1253 | hrtimer_set_expires_range_ns(timer, time: tim, delta: delta_ns); | 
|---|
| 1254 |  | 
|---|
| 1255 | /* Switch the timer base, if necessary: */ | 
|---|
| 1256 | if (!force_local) { | 
|---|
| 1257 | new_base = switch_hrtimer_base(timer, base, | 
|---|
| 1258 | pinned: mode & HRTIMER_MODE_PINNED); | 
|---|
| 1259 | } else { | 
|---|
| 1260 | new_base = base; | 
|---|
| 1261 | } | 
|---|
| 1262 |  | 
|---|
| 1263 | first = enqueue_hrtimer(timer, base: new_base, mode); | 
|---|
| 1264 | if (!force_local) { | 
|---|
| 1265 | /* | 
|---|
| 1266 | * If the current CPU base is online, then the timer is | 
|---|
| 1267 | * never queued on a remote CPU if it would be the first | 
|---|
| 1268 | * expiring timer there. | 
|---|
| 1269 | */ | 
|---|
| 1270 | if (hrtimer_base_is_online(base: this_cpu_base)) | 
|---|
| 1271 | return first; | 
|---|
| 1272 |  | 
|---|
| 1273 | /* | 
|---|
| 1274 | * Timer was enqueued remote because the current base is | 
|---|
| 1275 | * already offline. If the timer is the first to expire, | 
|---|
| 1276 | * kick the remote CPU to reprogram the clock event. | 
|---|
| 1277 | */ | 
|---|
| 1278 | if (first) { | 
|---|
| 1279 | struct hrtimer_cpu_base *new_cpu_base = new_base->cpu_base; | 
|---|
| 1280 |  | 
|---|
| 1281 | smp_call_function_single_async(cpu: new_cpu_base->cpu, csd: &new_cpu_base->csd); | 
|---|
| 1282 | } | 
|---|
| 1283 | return 0; | 
|---|
| 1284 | } | 
|---|
| 1285 |  | 
|---|
| 1286 | /* | 
|---|
| 1287 | * Timer was forced to stay on the current CPU to avoid | 
|---|
| 1288 | * reprogramming on removal and enqueue. Force reprogram the | 
|---|
| 1289 | * hardware by evaluating the new first expiring timer. | 
|---|
| 1290 | */ | 
|---|
| 1291 | hrtimer_force_reprogram(cpu_base: new_base->cpu_base, skip_equal: 1); | 
|---|
| 1292 | return 0; | 
|---|
| 1293 | } | 
|---|
| 1294 |  | 
|---|
| 1295 | /** | 
|---|
| 1296 | * hrtimer_start_range_ns - (re)start an hrtimer | 
|---|
| 1297 | * @timer:	the timer to be added | 
|---|
| 1298 | * @tim:	expiry time | 
|---|
| 1299 | * @delta_ns:	"slack" range for the timer | 
|---|
| 1300 | * @mode:	timer mode: absolute (HRTIMER_MODE_ABS) or | 
|---|
| 1301 | *		relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED); | 
|---|
| 1302 | *		softirq based mode is considered for debug purpose only! | 
|---|
| 1303 | */ | 
|---|
| 1304 | void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, | 
|---|
| 1305 | u64 delta_ns, const enum hrtimer_mode mode) | 
|---|
| 1306 | { | 
|---|
| 1307 | struct hrtimer_clock_base *base; | 
|---|
| 1308 | unsigned long flags; | 
|---|
| 1309 |  | 
|---|
| 1310 | /* | 
|---|
| 1311 | * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft | 
|---|
| 1312 | * match on CONFIG_PREEMPT_RT = n. With PREEMPT_RT check the hard | 
|---|
| 1313 | * expiry mode because unmarked timers are moved to softirq expiry. | 
|---|
| 1314 | */ | 
|---|
| 1315 | if (!IS_ENABLED(CONFIG_PREEMPT_RT)) | 
|---|
| 1316 | WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft); | 
|---|
| 1317 | else | 
|---|
| 1318 | WARN_ON_ONCE(!(mode & HRTIMER_MODE_HARD) ^ !timer->is_hard); | 
|---|
| 1319 |  | 
|---|
| 1320 | base = lock_hrtimer_base(timer, flags: &flags); | 
|---|
| 1321 |  | 
|---|
| 1322 | if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base)) | 
|---|
| 1323 | hrtimer_reprogram(timer, reprogram: true); | 
|---|
| 1324 |  | 
|---|
| 1325 | unlock_hrtimer_base(timer, flags: &flags); | 
|---|
| 1326 | } | 
|---|
| 1327 | EXPORT_SYMBOL_GPL(hrtimer_start_range_ns); | 
|---|
| 1328 |  | 
|---|
| 1329 | /** | 
|---|
| 1330 | * hrtimer_try_to_cancel - try to deactivate a timer | 
|---|
| 1331 | * @timer:	hrtimer to stop | 
|---|
| 1332 | * | 
|---|
| 1333 | * Returns: | 
|---|
| 1334 | * | 
|---|
| 1335 | *  *  0 when the timer was not active | 
|---|
| 1336 | *  *  1 when the timer was active | 
|---|
| 1337 | *  * -1 when the timer is currently executing the callback function and | 
|---|
| 1338 | *    cannot be stopped | 
|---|
| 1339 | */ | 
|---|
| 1340 | int hrtimer_try_to_cancel(struct hrtimer *timer) | 
|---|
| 1341 | { | 
|---|
| 1342 | struct hrtimer_clock_base *base; | 
|---|
| 1343 | unsigned long flags; | 
|---|
| 1344 | int ret = -1; | 
|---|
| 1345 |  | 
|---|
| 1346 | /* | 
|---|
| 1347 | * Check lockless first. If the timer is not active (neither | 
|---|
| 1348 | * enqueued nor running the callback, nothing to do here.  The | 
|---|
| 1349 | * base lock does not serialize against a concurrent enqueue, | 
|---|
| 1350 | * so we can avoid taking it. | 
|---|
| 1351 | */ | 
|---|
| 1352 | if (!hrtimer_active(timer)) | 
|---|
| 1353 | return 0; | 
|---|
| 1354 |  | 
|---|
| 1355 | base = lock_hrtimer_base(timer, flags: &flags); | 
|---|
| 1356 |  | 
|---|
| 1357 | if (!hrtimer_callback_running(timer)) | 
|---|
| 1358 | ret = remove_hrtimer(timer, base, restart: false, keep_local: false); | 
|---|
| 1359 |  | 
|---|
| 1360 | unlock_hrtimer_base(timer, flags: &flags); | 
|---|
| 1361 |  | 
|---|
| 1362 | return ret; | 
|---|
| 1363 |  | 
|---|
| 1364 | } | 
|---|
| 1365 | EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel); | 
|---|
| 1366 |  | 
|---|
| 1367 | #ifdef CONFIG_PREEMPT_RT | 
|---|
| 1368 | static void hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base) | 
|---|
| 1369 | { | 
|---|
| 1370 | spin_lock_init(&base->softirq_expiry_lock); | 
|---|
| 1371 | } | 
|---|
| 1372 |  | 
|---|
| 1373 | static void hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base) | 
|---|
| 1374 | __acquires(&base->softirq_expiry_lock) | 
|---|
| 1375 | { | 
|---|
| 1376 | spin_lock(&base->softirq_expiry_lock); | 
|---|
| 1377 | } | 
|---|
| 1378 |  | 
|---|
| 1379 | static void hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base) | 
|---|
| 1380 | __releases(&base->softirq_expiry_lock) | 
|---|
| 1381 | { | 
|---|
| 1382 | spin_unlock(&base->softirq_expiry_lock); | 
|---|
| 1383 | } | 
|---|
| 1384 |  | 
|---|
| 1385 | /* | 
|---|
| 1386 | * The counterpart to hrtimer_cancel_wait_running(). | 
|---|
| 1387 | * | 
|---|
| 1388 | * If there is a waiter for cpu_base->expiry_lock, then it was waiting for | 
|---|
| 1389 | * the timer callback to finish. Drop expiry_lock and reacquire it. That | 
|---|
| 1390 | * allows the waiter to acquire the lock and make progress. | 
|---|
| 1391 | */ | 
|---|
| 1392 | static void hrtimer_sync_wait_running(struct hrtimer_cpu_base *cpu_base, | 
|---|
| 1393 | unsigned long flags) | 
|---|
| 1394 | { | 
|---|
| 1395 | if (atomic_read(&cpu_base->timer_waiters)) { | 
|---|
| 1396 | raw_spin_unlock_irqrestore(&cpu_base->lock, flags); | 
|---|
| 1397 | spin_unlock(&cpu_base->softirq_expiry_lock); | 
|---|
| 1398 | spin_lock(&cpu_base->softirq_expiry_lock); | 
|---|
| 1399 | raw_spin_lock_irq(&cpu_base->lock); | 
|---|
| 1400 | } | 
|---|
| 1401 | } | 
|---|
| 1402 |  | 
|---|
| 1403 | #ifdef CONFIG_SMP | 
|---|
| 1404 | static __always_inline bool is_migration_base(struct hrtimer_clock_base *base) | 
|---|
| 1405 | { | 
|---|
| 1406 | return base == &migration_base; | 
|---|
| 1407 | } | 
|---|
| 1408 | #else | 
|---|
| 1409 | static __always_inline bool is_migration_base(struct hrtimer_clock_base *base) | 
|---|
| 1410 | { | 
|---|
| 1411 | return false; | 
|---|
| 1412 | } | 
|---|
| 1413 | #endif | 
|---|
| 1414 |  | 
|---|
| 1415 | /* | 
|---|
| 1416 | * This function is called on PREEMPT_RT kernels when the fast path | 
|---|
| 1417 | * deletion of a timer failed because the timer callback function was | 
|---|
| 1418 | * running. | 
|---|
| 1419 | * | 
|---|
| 1420 | * This prevents priority inversion: if the soft irq thread is preempted | 
|---|
| 1421 | * in the middle of a timer callback, then calling hrtimer_cancel() can | 
|---|
| 1422 | * lead to two issues: | 
|---|
| 1423 | * | 
|---|
| 1424 | *  - If the caller is on a remote CPU then it has to spin wait for the timer | 
|---|
| 1425 | *    handler to complete. This can result in unbound priority inversion. | 
|---|
| 1426 | * | 
|---|
| 1427 | *  - If the caller originates from the task which preempted the timer | 
|---|
| 1428 | *    handler on the same CPU, then spin waiting for the timer handler to | 
|---|
| 1429 | *    complete is never going to end. | 
|---|
| 1430 | */ | 
|---|
| 1431 | void hrtimer_cancel_wait_running(const struct hrtimer *timer) | 
|---|
| 1432 | { | 
|---|
| 1433 | /* Lockless read. Prevent the compiler from reloading it below */ | 
|---|
| 1434 | struct hrtimer_clock_base *base = READ_ONCE(timer->base); | 
|---|
| 1435 |  | 
|---|
| 1436 | /* | 
|---|
| 1437 | * Just relax if the timer expires in hard interrupt context or if | 
|---|
| 1438 | * it is currently on the migration base. | 
|---|
| 1439 | */ | 
|---|
| 1440 | if (!timer->is_soft || is_migration_base(base)) { | 
|---|
| 1441 | cpu_relax(); | 
|---|
| 1442 | return; | 
|---|
| 1443 | } | 
|---|
| 1444 |  | 
|---|
| 1445 | /* | 
|---|
| 1446 | * Mark the base as contended and grab the expiry lock, which is | 
|---|
| 1447 | * held by the softirq across the timer callback. Drop the lock | 
|---|
| 1448 | * immediately so the softirq can expire the next timer. In theory | 
|---|
| 1449 | * the timer could already be running again, but that's more than | 
|---|
| 1450 | * unlikely and just causes another wait loop. | 
|---|
| 1451 | */ | 
|---|
| 1452 | atomic_inc(&base->cpu_base->timer_waiters); | 
|---|
| 1453 | spin_lock_bh(&base->cpu_base->softirq_expiry_lock); | 
|---|
| 1454 | atomic_dec(&base->cpu_base->timer_waiters); | 
|---|
| 1455 | spin_unlock_bh(&base->cpu_base->softirq_expiry_lock); | 
|---|
| 1456 | } | 
|---|
| 1457 | #else | 
|---|
| 1458 | static inline void | 
|---|
| 1459 | hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base) { } | 
|---|
| 1460 | static inline void | 
|---|
| 1461 | hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base) { } | 
|---|
| 1462 | static inline void | 
|---|
| 1463 | hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base) { } | 
|---|
| 1464 | static inline void hrtimer_sync_wait_running(struct hrtimer_cpu_base *base, | 
|---|
| 1465 | unsigned long flags) { } | 
|---|
| 1466 | #endif | 
|---|
| 1467 |  | 
|---|
| 1468 | /** | 
|---|
| 1469 | * hrtimer_cancel - cancel a timer and wait for the handler to finish. | 
|---|
| 1470 | * @timer:	the timer to be cancelled | 
|---|
| 1471 | * | 
|---|
| 1472 | * Returns: | 
|---|
| 1473 | *  0 when the timer was not active | 
|---|
| 1474 | *  1 when the timer was active | 
|---|
| 1475 | */ | 
|---|
| 1476 | int hrtimer_cancel(struct hrtimer *timer) | 
|---|
| 1477 | { | 
|---|
| 1478 | int ret; | 
|---|
| 1479 |  | 
|---|
| 1480 | do { | 
|---|
| 1481 | ret = hrtimer_try_to_cancel(timer); | 
|---|
| 1482 |  | 
|---|
| 1483 | if (ret < 0) | 
|---|
| 1484 | hrtimer_cancel_wait_running(timer); | 
|---|
| 1485 | } while (ret < 0); | 
|---|
| 1486 | return ret; | 
|---|
| 1487 | } | 
|---|
| 1488 | EXPORT_SYMBOL_GPL(hrtimer_cancel); | 
|---|
| 1489 |  | 
|---|
| 1490 | /** | 
|---|
| 1491 | * __hrtimer_get_remaining - get remaining time for the timer | 
|---|
| 1492 | * @timer:	the timer to read | 
|---|
| 1493 | * @adjust:	adjust relative timers when CONFIG_TIME_LOW_RES=y | 
|---|
| 1494 | */ | 
|---|
| 1495 | ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust) | 
|---|
| 1496 | { | 
|---|
| 1497 | unsigned long flags; | 
|---|
| 1498 | ktime_t rem; | 
|---|
| 1499 |  | 
|---|
| 1500 | lock_hrtimer_base(timer, flags: &flags); | 
|---|
| 1501 | if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust) | 
|---|
| 1502 | rem = hrtimer_expires_remaining_adjusted(timer); | 
|---|
| 1503 | else | 
|---|
| 1504 | rem = hrtimer_expires_remaining(timer); | 
|---|
| 1505 | unlock_hrtimer_base(timer, flags: &flags); | 
|---|
| 1506 |  | 
|---|
| 1507 | return rem; | 
|---|
| 1508 | } | 
|---|
| 1509 | EXPORT_SYMBOL_GPL(__hrtimer_get_remaining); | 
|---|
| 1510 |  | 
|---|
| 1511 | #ifdef CONFIG_NO_HZ_COMMON | 
|---|
| 1512 | /** | 
|---|
| 1513 | * hrtimer_get_next_event - get the time until next expiry event | 
|---|
| 1514 | * | 
|---|
| 1515 | * Returns the next expiry time or KTIME_MAX if no timer is pending. | 
|---|
| 1516 | */ | 
|---|
| 1517 | u64 hrtimer_get_next_event(void) | 
|---|
| 1518 | { | 
|---|
| 1519 | struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); | 
|---|
| 1520 | u64 expires = KTIME_MAX; | 
|---|
| 1521 | unsigned long flags; | 
|---|
| 1522 |  | 
|---|
| 1523 | raw_spin_lock_irqsave(&cpu_base->lock, flags); | 
|---|
| 1524 |  | 
|---|
| 1525 | if (!hrtimer_hres_active(cpu_base)) | 
|---|
| 1526 | expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL); | 
|---|
| 1527 |  | 
|---|
| 1528 | raw_spin_unlock_irqrestore(&cpu_base->lock, flags); | 
|---|
| 1529 |  | 
|---|
| 1530 | return expires; | 
|---|
| 1531 | } | 
|---|
| 1532 |  | 
|---|
| 1533 | /** | 
|---|
| 1534 | * hrtimer_next_event_without - time until next expiry event w/o one timer | 
|---|
| 1535 | * @exclude:	timer to exclude | 
|---|
| 1536 | * | 
|---|
| 1537 | * Returns the next expiry time over all timers except for the @exclude one or | 
|---|
| 1538 | * KTIME_MAX if none of them is pending. | 
|---|
| 1539 | */ | 
|---|
| 1540 | u64 hrtimer_next_event_without(const struct hrtimer *exclude) | 
|---|
| 1541 | { | 
|---|
| 1542 | struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); | 
|---|
| 1543 | u64 expires = KTIME_MAX; | 
|---|
| 1544 | unsigned long flags; | 
|---|
| 1545 |  | 
|---|
| 1546 | raw_spin_lock_irqsave(&cpu_base->lock, flags); | 
|---|
| 1547 |  | 
|---|
| 1548 | if (hrtimer_hres_active(cpu_base)) { | 
|---|
| 1549 | unsigned int active; | 
|---|
| 1550 |  | 
|---|
| 1551 | if (!cpu_base->softirq_activated) { | 
|---|
| 1552 | active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT; | 
|---|
| 1553 | expires = __hrtimer_next_event_base(cpu_base, exclude, | 
|---|
| 1554 | active, KTIME_MAX); | 
|---|
| 1555 | } | 
|---|
| 1556 | active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD; | 
|---|
| 1557 | expires = __hrtimer_next_event_base(cpu_base, exclude, active, | 
|---|
| 1558 | expires_next: expires); | 
|---|
| 1559 | } | 
|---|
| 1560 |  | 
|---|
| 1561 | raw_spin_unlock_irqrestore(&cpu_base->lock, flags); | 
|---|
| 1562 |  | 
|---|
| 1563 | return expires; | 
|---|
| 1564 | } | 
|---|
| 1565 | #endif | 
|---|
| 1566 |  | 
|---|
| 1567 | static inline int hrtimer_clockid_to_base(clockid_t clock_id) | 
|---|
| 1568 | { | 
|---|
| 1569 | switch (clock_id) { | 
|---|
| 1570 | case CLOCK_MONOTONIC: | 
|---|
| 1571 | return HRTIMER_BASE_MONOTONIC; | 
|---|
| 1572 | case CLOCK_REALTIME: | 
|---|
| 1573 | return HRTIMER_BASE_REALTIME; | 
|---|
| 1574 | case CLOCK_BOOTTIME: | 
|---|
| 1575 | return HRTIMER_BASE_BOOTTIME; | 
|---|
| 1576 | case CLOCK_TAI: | 
|---|
| 1577 | return HRTIMER_BASE_TAI; | 
|---|
| 1578 | default: | 
|---|
| 1579 | WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id); | 
|---|
| 1580 | return HRTIMER_BASE_MONOTONIC; | 
|---|
| 1581 | } | 
|---|
| 1582 | } | 
|---|
| 1583 |  | 
|---|
| 1584 | static ktime_t __hrtimer_cb_get_time(clockid_t clock_id) | 
|---|
| 1585 | { | 
|---|
| 1586 | switch (clock_id) { | 
|---|
| 1587 | case CLOCK_MONOTONIC: | 
|---|
| 1588 | return ktime_get(); | 
|---|
| 1589 | case CLOCK_REALTIME: | 
|---|
| 1590 | return ktime_get_real(); | 
|---|
| 1591 | case CLOCK_BOOTTIME: | 
|---|
| 1592 | return ktime_get_boottime(); | 
|---|
| 1593 | case CLOCK_TAI: | 
|---|
| 1594 | return ktime_get_clocktai(); | 
|---|
| 1595 | default: | 
|---|
| 1596 | WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id); | 
|---|
| 1597 | return ktime_get(); | 
|---|
| 1598 | } | 
|---|
| 1599 | } | 
|---|
| 1600 |  | 
|---|
| 1601 | ktime_t hrtimer_cb_get_time(const struct hrtimer *timer) | 
|---|
| 1602 | { | 
|---|
| 1603 | return __hrtimer_cb_get_time(clock_id: timer->base->clockid); | 
|---|
| 1604 | } | 
|---|
| 1605 | EXPORT_SYMBOL_GPL(hrtimer_cb_get_time); | 
|---|
| 1606 |  | 
|---|
| 1607 | static void __hrtimer_setup(struct hrtimer *timer, | 
|---|
| 1608 | enum hrtimer_restart (*function)(struct hrtimer *), | 
|---|
| 1609 | clockid_t clock_id, enum hrtimer_mode mode) | 
|---|
| 1610 | { | 
|---|
| 1611 | bool softtimer = !!(mode & HRTIMER_MODE_SOFT); | 
|---|
| 1612 | struct hrtimer_cpu_base *cpu_base; | 
|---|
| 1613 | int base; | 
|---|
| 1614 |  | 
|---|
| 1615 | /* | 
|---|
| 1616 | * On PREEMPT_RT enabled kernels hrtimers which are not explicitly | 
|---|
| 1617 | * marked for hard interrupt expiry mode are moved into soft | 
|---|
| 1618 | * interrupt context for latency reasons and because the callbacks | 
|---|
| 1619 | * can invoke functions which might sleep on RT, e.g. spin_lock(). | 
|---|
| 1620 | */ | 
|---|
| 1621 | if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(mode & HRTIMER_MODE_HARD)) | 
|---|
| 1622 | softtimer = true; | 
|---|
| 1623 |  | 
|---|
| 1624 | memset(s: timer, c: 0, n: sizeof(struct hrtimer)); | 
|---|
| 1625 |  | 
|---|
| 1626 | cpu_base = raw_cpu_ptr(&hrtimer_bases); | 
|---|
| 1627 |  | 
|---|
| 1628 | /* | 
|---|
| 1629 | * POSIX magic: Relative CLOCK_REALTIME timers are not affected by | 
|---|
| 1630 | * clock modifications, so they needs to become CLOCK_MONOTONIC to | 
|---|
| 1631 | * ensure POSIX compliance. | 
|---|
| 1632 | */ | 
|---|
| 1633 | if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL) | 
|---|
| 1634 | clock_id = CLOCK_MONOTONIC; | 
|---|
| 1635 |  | 
|---|
| 1636 | base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0; | 
|---|
| 1637 | base += hrtimer_clockid_to_base(clock_id); | 
|---|
| 1638 | timer->is_soft = softtimer; | 
|---|
| 1639 | timer->is_hard = !!(mode & HRTIMER_MODE_HARD); | 
|---|
| 1640 | timer->base = &cpu_base->clock_base[base]; | 
|---|
| 1641 | timerqueue_init(node: &timer->node); | 
|---|
| 1642 |  | 
|---|
| 1643 | if (WARN_ON_ONCE(!function)) | 
|---|
| 1644 | ACCESS_PRIVATE(timer, function) = hrtimer_dummy_timeout; | 
|---|
| 1645 | else | 
|---|
| 1646 | ACCESS_PRIVATE(timer, function) = function; | 
|---|
| 1647 | } | 
|---|
| 1648 |  | 
|---|
| 1649 | /** | 
|---|
| 1650 | * hrtimer_setup - initialize a timer to the given clock | 
|---|
| 1651 | * @timer:	the timer to be initialized | 
|---|
| 1652 | * @function:	the callback function | 
|---|
| 1653 | * @clock_id:	the clock to be used | 
|---|
| 1654 | * @mode:       The modes which are relevant for initialization: | 
|---|
| 1655 | *              HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT, | 
|---|
| 1656 | *              HRTIMER_MODE_REL_SOFT | 
|---|
| 1657 | * | 
|---|
| 1658 | *              The PINNED variants of the above can be handed in, | 
|---|
| 1659 | *              but the PINNED bit is ignored as pinning happens | 
|---|
| 1660 | *              when the hrtimer is started | 
|---|
| 1661 | */ | 
|---|
| 1662 | void hrtimer_setup(struct hrtimer *timer, enum hrtimer_restart (*function)(struct hrtimer *), | 
|---|
| 1663 | clockid_t clock_id, enum hrtimer_mode mode) | 
|---|
| 1664 | { | 
|---|
| 1665 | debug_setup(timer, clockid: clock_id, mode); | 
|---|
| 1666 | __hrtimer_setup(timer, function, clock_id, mode); | 
|---|
| 1667 | } | 
|---|
| 1668 | EXPORT_SYMBOL_GPL(hrtimer_setup); | 
|---|
| 1669 |  | 
|---|
| 1670 | /** | 
|---|
| 1671 | * hrtimer_setup_on_stack - initialize a timer on stack memory | 
|---|
| 1672 | * @timer:	The timer to be initialized | 
|---|
| 1673 | * @function:	the callback function | 
|---|
| 1674 | * @clock_id:	The clock to be used | 
|---|
| 1675 | * @mode:       The timer mode | 
|---|
| 1676 | * | 
|---|
| 1677 | * Similar to hrtimer_setup(), except that this one must be used if struct hrtimer is in stack | 
|---|
| 1678 | * memory. | 
|---|
| 1679 | */ | 
|---|
| 1680 | void hrtimer_setup_on_stack(struct hrtimer *timer, | 
|---|
| 1681 | enum hrtimer_restart (*function)(struct hrtimer *), | 
|---|
| 1682 | clockid_t clock_id, enum hrtimer_mode mode) | 
|---|
| 1683 | { | 
|---|
| 1684 | debug_setup_on_stack(timer, clockid: clock_id, mode); | 
|---|
| 1685 | __hrtimer_setup(timer, function, clock_id, mode); | 
|---|
| 1686 | } | 
|---|
| 1687 | EXPORT_SYMBOL_GPL(hrtimer_setup_on_stack); | 
|---|
| 1688 |  | 
|---|
| 1689 | /* | 
|---|
| 1690 | * A timer is active, when it is enqueued into the rbtree or the | 
|---|
| 1691 | * callback function is running or it's in the state of being migrated | 
|---|
| 1692 | * to another cpu. | 
|---|
| 1693 | * | 
|---|
| 1694 | * It is important for this function to not return a false negative. | 
|---|
| 1695 | */ | 
|---|
| 1696 | bool hrtimer_active(const struct hrtimer *timer) | 
|---|
| 1697 | { | 
|---|
| 1698 | struct hrtimer_clock_base *base; | 
|---|
| 1699 | unsigned int seq; | 
|---|
| 1700 |  | 
|---|
| 1701 | do { | 
|---|
| 1702 | base = READ_ONCE(timer->base); | 
|---|
| 1703 | seq = raw_read_seqcount_begin(&base->seq); | 
|---|
| 1704 |  | 
|---|
| 1705 | if (timer->state != HRTIMER_STATE_INACTIVE || | 
|---|
| 1706 | base->running == timer) | 
|---|
| 1707 | return true; | 
|---|
| 1708 |  | 
|---|
| 1709 | } while (read_seqcount_retry(&base->seq, seq) || | 
|---|
| 1710 | base != READ_ONCE(timer->base)); | 
|---|
| 1711 |  | 
|---|
| 1712 | return false; | 
|---|
| 1713 | } | 
|---|
| 1714 | EXPORT_SYMBOL_GPL(hrtimer_active); | 
|---|
| 1715 |  | 
|---|
| 1716 | /* | 
|---|
| 1717 | * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3 | 
|---|
| 1718 | * distinct sections: | 
|---|
| 1719 | * | 
|---|
| 1720 | *  - queued:	the timer is queued | 
|---|
| 1721 | *  - callback:	the timer is being ran | 
|---|
| 1722 | *  - post:	the timer is inactive or (re)queued | 
|---|
| 1723 | * | 
|---|
| 1724 | * On the read side we ensure we observe timer->state and cpu_base->running | 
|---|
| 1725 | * from the same section, if anything changed while we looked at it, we retry. | 
|---|
| 1726 | * This includes timer->base changing because sequence numbers alone are | 
|---|
| 1727 | * insufficient for that. | 
|---|
| 1728 | * | 
|---|
| 1729 | * The sequence numbers are required because otherwise we could still observe | 
|---|
| 1730 | * a false negative if the read side got smeared over multiple consecutive | 
|---|
| 1731 | * __run_hrtimer() invocations. | 
|---|
| 1732 | */ | 
|---|
| 1733 |  | 
|---|
| 1734 | static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base, | 
|---|
| 1735 | struct hrtimer_clock_base *base, | 
|---|
| 1736 | struct hrtimer *timer, ktime_t *now, | 
|---|
| 1737 | unsigned long flags) __must_hold(&cpu_base->lock) | 
|---|
| 1738 | { | 
|---|
| 1739 | enum hrtimer_restart (*fn)(struct hrtimer *); | 
|---|
| 1740 | bool expires_in_hardirq; | 
|---|
| 1741 | int restart; | 
|---|
| 1742 |  | 
|---|
| 1743 | lockdep_assert_held(&cpu_base->lock); | 
|---|
| 1744 |  | 
|---|
| 1745 | debug_deactivate(timer); | 
|---|
| 1746 | base->running = timer; | 
|---|
| 1747 |  | 
|---|
| 1748 | /* | 
|---|
| 1749 | * Separate the ->running assignment from the ->state assignment. | 
|---|
| 1750 | * | 
|---|
| 1751 | * As with a regular write barrier, this ensures the read side in | 
|---|
| 1752 | * hrtimer_active() cannot observe base->running == NULL && | 
|---|
| 1753 | * timer->state == INACTIVE. | 
|---|
| 1754 | */ | 
|---|
| 1755 | raw_write_seqcount_barrier(&base->seq); | 
|---|
| 1756 |  | 
|---|
| 1757 | __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, reprogram: 0); | 
|---|
| 1758 | fn = ACCESS_PRIVATE(timer, function); | 
|---|
| 1759 |  | 
|---|
| 1760 | /* | 
|---|
| 1761 | * Clear the 'is relative' flag for the TIME_LOW_RES case. If the | 
|---|
| 1762 | * timer is restarted with a period then it becomes an absolute | 
|---|
| 1763 | * timer. If its not restarted it does not matter. | 
|---|
| 1764 | */ | 
|---|
| 1765 | if (IS_ENABLED(CONFIG_TIME_LOW_RES)) | 
|---|
| 1766 | timer->is_rel = false; | 
|---|
| 1767 |  | 
|---|
| 1768 | /* | 
|---|
| 1769 | * The timer is marked as running in the CPU base, so it is | 
|---|
| 1770 | * protected against migration to a different CPU even if the lock | 
|---|
| 1771 | * is dropped. | 
|---|
| 1772 | */ | 
|---|
| 1773 | raw_spin_unlock_irqrestore(&cpu_base->lock, flags); | 
|---|
| 1774 | trace_hrtimer_expire_entry(hrtimer: timer, now); | 
|---|
| 1775 | expires_in_hardirq = lockdep_hrtimer_enter(timer); | 
|---|
| 1776 |  | 
|---|
| 1777 | restart = fn(timer); | 
|---|
| 1778 |  | 
|---|
| 1779 | lockdep_hrtimer_exit(expires_in_hardirq); | 
|---|
| 1780 | trace_hrtimer_expire_exit(hrtimer: timer); | 
|---|
| 1781 | raw_spin_lock_irq(&cpu_base->lock); | 
|---|
| 1782 |  | 
|---|
| 1783 | /* | 
|---|
| 1784 | * Note: We clear the running state after enqueue_hrtimer and | 
|---|
| 1785 | * we do not reprogram the event hardware. Happens either in | 
|---|
| 1786 | * hrtimer_start_range_ns() or in hrtimer_interrupt() | 
|---|
| 1787 | * | 
|---|
| 1788 | * Note: Because we dropped the cpu_base->lock above, | 
|---|
| 1789 | * hrtimer_start_range_ns() can have popped in and enqueued the timer | 
|---|
| 1790 | * for us already. | 
|---|
| 1791 | */ | 
|---|
| 1792 | if (restart != HRTIMER_NORESTART && | 
|---|
| 1793 | !(timer->state & HRTIMER_STATE_ENQUEUED)) | 
|---|
| 1794 | enqueue_hrtimer(timer, base, mode: HRTIMER_MODE_ABS); | 
|---|
| 1795 |  | 
|---|
| 1796 | /* | 
|---|
| 1797 | * Separate the ->running assignment from the ->state assignment. | 
|---|
| 1798 | * | 
|---|
| 1799 | * As with a regular write barrier, this ensures the read side in | 
|---|
| 1800 | * hrtimer_active() cannot observe base->running.timer == NULL && | 
|---|
| 1801 | * timer->state == INACTIVE. | 
|---|
| 1802 | */ | 
|---|
| 1803 | raw_write_seqcount_barrier(&base->seq); | 
|---|
| 1804 |  | 
|---|
| 1805 | WARN_ON_ONCE(base->running != timer); | 
|---|
| 1806 | base->running = NULL; | 
|---|
| 1807 | } | 
|---|
| 1808 |  | 
|---|
| 1809 | static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now, | 
|---|
| 1810 | unsigned long flags, unsigned int active_mask) | 
|---|
| 1811 | { | 
|---|
| 1812 | struct hrtimer_clock_base *base; | 
|---|
| 1813 | unsigned int active = cpu_base->active_bases & active_mask; | 
|---|
| 1814 |  | 
|---|
| 1815 | for_each_active_base(base, cpu_base, active) { | 
|---|
| 1816 | struct timerqueue_node *node; | 
|---|
| 1817 | ktime_t basenow; | 
|---|
| 1818 |  | 
|---|
| 1819 | basenow = ktime_add(now, base->offset); | 
|---|
| 1820 |  | 
|---|
| 1821 | while ((node = timerqueue_getnext(head: &base->active))) { | 
|---|
| 1822 | struct hrtimer *timer; | 
|---|
| 1823 |  | 
|---|
| 1824 | timer = container_of(node, struct hrtimer, node); | 
|---|
| 1825 |  | 
|---|
| 1826 | /* | 
|---|
| 1827 | * The immediate goal for using the softexpires is | 
|---|
| 1828 | * minimizing wakeups, not running timers at the | 
|---|
| 1829 | * earliest interrupt after their soft expiration. | 
|---|
| 1830 | * This allows us to avoid using a Priority Search | 
|---|
| 1831 | * Tree, which can answer a stabbing query for | 
|---|
| 1832 | * overlapping intervals and instead use the simple | 
|---|
| 1833 | * BST we already have. | 
|---|
| 1834 | * We don't add extra wakeups by delaying timers that | 
|---|
| 1835 | * are right-of a not yet expired timer, because that | 
|---|
| 1836 | * timer will have to trigger a wakeup anyway. | 
|---|
| 1837 | */ | 
|---|
| 1838 | if (basenow < hrtimer_get_softexpires_tv64(timer)) | 
|---|
| 1839 | break; | 
|---|
| 1840 |  | 
|---|
| 1841 | __run_hrtimer(cpu_base, base, timer, now: &basenow, flags); | 
|---|
| 1842 | if (active_mask == HRTIMER_ACTIVE_SOFT) | 
|---|
| 1843 | hrtimer_sync_wait_running(base: cpu_base, flags); | 
|---|
| 1844 | } | 
|---|
| 1845 | } | 
|---|
| 1846 | } | 
|---|
| 1847 |  | 
|---|
| 1848 | static __latent_entropy void hrtimer_run_softirq(void) | 
|---|
| 1849 | { | 
|---|
| 1850 | struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); | 
|---|
| 1851 | unsigned long flags; | 
|---|
| 1852 | ktime_t now; | 
|---|
| 1853 |  | 
|---|
| 1854 | hrtimer_cpu_base_lock_expiry(base: cpu_base); | 
|---|
| 1855 | raw_spin_lock_irqsave(&cpu_base->lock, flags); | 
|---|
| 1856 |  | 
|---|
| 1857 | now = hrtimer_update_base(base: cpu_base); | 
|---|
| 1858 | __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT); | 
|---|
| 1859 |  | 
|---|
| 1860 | cpu_base->softirq_activated = 0; | 
|---|
| 1861 | hrtimer_update_softirq_timer(cpu_base, reprogram: true); | 
|---|
| 1862 |  | 
|---|
| 1863 | raw_spin_unlock_irqrestore(&cpu_base->lock, flags); | 
|---|
| 1864 | hrtimer_cpu_base_unlock_expiry(base: cpu_base); | 
|---|
| 1865 | } | 
|---|
| 1866 |  | 
|---|
| 1867 | #ifdef CONFIG_HIGH_RES_TIMERS | 
|---|
| 1868 |  | 
|---|
| 1869 | /* | 
|---|
| 1870 | * High resolution timer interrupt | 
|---|
| 1871 | * Called with interrupts disabled | 
|---|
| 1872 | */ | 
|---|
| 1873 | void hrtimer_interrupt(struct clock_event_device *dev) | 
|---|
| 1874 | { | 
|---|
| 1875 | struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); | 
|---|
| 1876 | ktime_t expires_next, now, entry_time, delta; | 
|---|
| 1877 | unsigned long flags; | 
|---|
| 1878 | int retries = 0; | 
|---|
| 1879 |  | 
|---|
| 1880 | BUG_ON(!cpu_base->hres_active); | 
|---|
| 1881 | cpu_base->nr_events++; | 
|---|
| 1882 | dev->next_event = KTIME_MAX; | 
|---|
| 1883 |  | 
|---|
| 1884 | raw_spin_lock_irqsave(&cpu_base->lock, flags); | 
|---|
| 1885 | entry_time = now = hrtimer_update_base(base: cpu_base); | 
|---|
| 1886 | retry: | 
|---|
| 1887 | cpu_base->in_hrtirq = 1; | 
|---|
| 1888 | /* | 
|---|
| 1889 | * We set expires_next to KTIME_MAX here with cpu_base->lock | 
|---|
| 1890 | * held to prevent that a timer is enqueued in our queue via | 
|---|
| 1891 | * the migration code. This does not affect enqueueing of | 
|---|
| 1892 | * timers which run their callback and need to be requeued on | 
|---|
| 1893 | * this CPU. | 
|---|
| 1894 | */ | 
|---|
| 1895 | cpu_base->expires_next = KTIME_MAX; | 
|---|
| 1896 |  | 
|---|
| 1897 | if (!ktime_before(cmp1: now, cmp2: cpu_base->softirq_expires_next)) { | 
|---|
| 1898 | cpu_base->softirq_expires_next = KTIME_MAX; | 
|---|
| 1899 | cpu_base->softirq_activated = 1; | 
|---|
| 1900 | raise_timer_softirq(nr: HRTIMER_SOFTIRQ); | 
|---|
| 1901 | } | 
|---|
| 1902 |  | 
|---|
| 1903 | __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD); | 
|---|
| 1904 |  | 
|---|
| 1905 | /* Reevaluate the clock bases for the [soft] next expiry */ | 
|---|
| 1906 | expires_next = hrtimer_update_next_event(cpu_base); | 
|---|
| 1907 | /* | 
|---|
| 1908 | * Store the new expiry value so the migration code can verify | 
|---|
| 1909 | * against it. | 
|---|
| 1910 | */ | 
|---|
| 1911 | cpu_base->expires_next = expires_next; | 
|---|
| 1912 | cpu_base->in_hrtirq = 0; | 
|---|
| 1913 | raw_spin_unlock_irqrestore(&cpu_base->lock, flags); | 
|---|
| 1914 |  | 
|---|
| 1915 | /* Reprogramming necessary ? */ | 
|---|
| 1916 | if (!tick_program_event(expires: expires_next, force: 0)) { | 
|---|
| 1917 | cpu_base->hang_detected = 0; | 
|---|
| 1918 | return; | 
|---|
| 1919 | } | 
|---|
| 1920 |  | 
|---|
| 1921 | /* | 
|---|
| 1922 | * The next timer was already expired due to: | 
|---|
| 1923 | * - tracing | 
|---|
| 1924 | * - long lasting callbacks | 
|---|
| 1925 | * - being scheduled away when running in a VM | 
|---|
| 1926 | * | 
|---|
| 1927 | * We need to prevent that we loop forever in the hrtimer | 
|---|
| 1928 | * interrupt routine. We give it 3 attempts to avoid | 
|---|
| 1929 | * overreacting on some spurious event. | 
|---|
| 1930 | * | 
|---|
| 1931 | * Acquire base lock for updating the offsets and retrieving | 
|---|
| 1932 | * the current time. | 
|---|
| 1933 | */ | 
|---|
| 1934 | raw_spin_lock_irqsave(&cpu_base->lock, flags); | 
|---|
| 1935 | now = hrtimer_update_base(base: cpu_base); | 
|---|
| 1936 | cpu_base->nr_retries++; | 
|---|
| 1937 | if (++retries < 3) | 
|---|
| 1938 | goto retry; | 
|---|
| 1939 | /* | 
|---|
| 1940 | * Give the system a chance to do something else than looping | 
|---|
| 1941 | * here. We stored the entry time, so we know exactly how long | 
|---|
| 1942 | * we spent here. We schedule the next event this amount of | 
|---|
| 1943 | * time away. | 
|---|
| 1944 | */ | 
|---|
| 1945 | cpu_base->nr_hangs++; | 
|---|
| 1946 | cpu_base->hang_detected = 1; | 
|---|
| 1947 | raw_spin_unlock_irqrestore(&cpu_base->lock, flags); | 
|---|
| 1948 |  | 
|---|
| 1949 | delta = ktime_sub(now, entry_time); | 
|---|
| 1950 | if ((unsigned int)delta > cpu_base->max_hang_time) | 
|---|
| 1951 | cpu_base->max_hang_time = (unsigned int) delta; | 
|---|
| 1952 | /* | 
|---|
| 1953 | * Limit it to a sensible value as we enforce a longer | 
|---|
| 1954 | * delay. Give the CPU at least 100ms to catch up. | 
|---|
| 1955 | */ | 
|---|
| 1956 | if (delta > 100 * NSEC_PER_MSEC) | 
|---|
| 1957 | expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC); | 
|---|
| 1958 | else | 
|---|
| 1959 | expires_next = ktime_add(now, delta); | 
|---|
| 1960 | tick_program_event(expires: expires_next, force: 1); | 
|---|
| 1961 | pr_warn_once( "hrtimer: interrupt took %llu ns\n", ktime_to_ns(delta)); | 
|---|
| 1962 | } | 
|---|
| 1963 | #endif /* !CONFIG_HIGH_RES_TIMERS */ | 
|---|
| 1964 |  | 
|---|
| 1965 | /* | 
|---|
| 1966 | * Called from run_local_timers in hardirq context every jiffy | 
|---|
| 1967 | */ | 
|---|
| 1968 | void hrtimer_run_queues(void) | 
|---|
| 1969 | { | 
|---|
| 1970 | struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); | 
|---|
| 1971 | unsigned long flags; | 
|---|
| 1972 | ktime_t now; | 
|---|
| 1973 |  | 
|---|
| 1974 | if (hrtimer_hres_active(cpu_base)) | 
|---|
| 1975 | return; | 
|---|
| 1976 |  | 
|---|
| 1977 | /* | 
|---|
| 1978 | * This _is_ ugly: We have to check periodically, whether we | 
|---|
| 1979 | * can switch to highres and / or nohz mode. The clocksource | 
|---|
| 1980 | * switch happens with xtime_lock held. Notification from | 
|---|
| 1981 | * there only sets the check bit in the tick_oneshot code, | 
|---|
| 1982 | * otherwise we might deadlock vs. xtime_lock. | 
|---|
| 1983 | */ | 
|---|
| 1984 | if (tick_check_oneshot_change(allow_nohz: !hrtimer_is_hres_enabled())) { | 
|---|
| 1985 | hrtimer_switch_to_hres(); | 
|---|
| 1986 | return; | 
|---|
| 1987 | } | 
|---|
| 1988 |  | 
|---|
| 1989 | raw_spin_lock_irqsave(&cpu_base->lock, flags); | 
|---|
| 1990 | now = hrtimer_update_base(base: cpu_base); | 
|---|
| 1991 |  | 
|---|
| 1992 | if (!ktime_before(cmp1: now, cmp2: cpu_base->softirq_expires_next)) { | 
|---|
| 1993 | cpu_base->softirq_expires_next = KTIME_MAX; | 
|---|
| 1994 | cpu_base->softirq_activated = 1; | 
|---|
| 1995 | raise_timer_softirq(nr: HRTIMER_SOFTIRQ); | 
|---|
| 1996 | } | 
|---|
| 1997 |  | 
|---|
| 1998 | __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD); | 
|---|
| 1999 | raw_spin_unlock_irqrestore(&cpu_base->lock, flags); | 
|---|
| 2000 | } | 
|---|
| 2001 |  | 
|---|
| 2002 | /* | 
|---|
| 2003 | * Sleep related functions: | 
|---|
| 2004 | */ | 
|---|
| 2005 | static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer) | 
|---|
| 2006 | { | 
|---|
| 2007 | struct hrtimer_sleeper *t = | 
|---|
| 2008 | container_of(timer, struct hrtimer_sleeper, timer); | 
|---|
| 2009 | struct task_struct *task = t->task; | 
|---|
| 2010 |  | 
|---|
| 2011 | t->task = NULL; | 
|---|
| 2012 | if (task) | 
|---|
| 2013 | wake_up_process(tsk: task); | 
|---|
| 2014 |  | 
|---|
| 2015 | return HRTIMER_NORESTART; | 
|---|
| 2016 | } | 
|---|
| 2017 |  | 
|---|
| 2018 | /** | 
|---|
| 2019 | * hrtimer_sleeper_start_expires - Start a hrtimer sleeper timer | 
|---|
| 2020 | * @sl:		sleeper to be started | 
|---|
| 2021 | * @mode:	timer mode abs/rel | 
|---|
| 2022 | * | 
|---|
| 2023 | * Wrapper around hrtimer_start_expires() for hrtimer_sleeper based timers | 
|---|
| 2024 | * to allow PREEMPT_RT to tweak the delivery mode (soft/hardirq context) | 
|---|
| 2025 | */ | 
|---|
| 2026 | void hrtimer_sleeper_start_expires(struct hrtimer_sleeper *sl, | 
|---|
| 2027 | enum hrtimer_mode mode) | 
|---|
| 2028 | { | 
|---|
| 2029 | /* | 
|---|
| 2030 | * Make the enqueue delivery mode check work on RT. If the sleeper | 
|---|
| 2031 | * was initialized for hard interrupt delivery, force the mode bit. | 
|---|
| 2032 | * This is a special case for hrtimer_sleepers because | 
|---|
| 2033 | * __hrtimer_setup_sleeper() determines the delivery mode on RT so the | 
|---|
| 2034 | * fiddling with this decision is avoided at the call sites. | 
|---|
| 2035 | */ | 
|---|
| 2036 | if (IS_ENABLED(CONFIG_PREEMPT_RT) && sl->timer.is_hard) | 
|---|
| 2037 | mode |= HRTIMER_MODE_HARD; | 
|---|
| 2038 |  | 
|---|
| 2039 | hrtimer_start_expires(timer: &sl->timer, mode); | 
|---|
| 2040 | } | 
|---|
| 2041 | EXPORT_SYMBOL_GPL(hrtimer_sleeper_start_expires); | 
|---|
| 2042 |  | 
|---|
| 2043 | static void __hrtimer_setup_sleeper(struct hrtimer_sleeper *sl, | 
|---|
| 2044 | clockid_t clock_id, enum hrtimer_mode mode) | 
|---|
| 2045 | { | 
|---|
| 2046 | /* | 
|---|
| 2047 | * On PREEMPT_RT enabled kernels hrtimers which are not explicitly | 
|---|
| 2048 | * marked for hard interrupt expiry mode are moved into soft | 
|---|
| 2049 | * interrupt context either for latency reasons or because the | 
|---|
| 2050 | * hrtimer callback takes regular spinlocks or invokes other | 
|---|
| 2051 | * functions which are not suitable for hard interrupt context on | 
|---|
| 2052 | * PREEMPT_RT. | 
|---|
| 2053 | * | 
|---|
| 2054 | * The hrtimer_sleeper callback is RT compatible in hard interrupt | 
|---|
| 2055 | * context, but there is a latency concern: Untrusted userspace can | 
|---|
| 2056 | * spawn many threads which arm timers for the same expiry time on | 
|---|
| 2057 | * the same CPU. That causes a latency spike due to the wakeup of | 
|---|
| 2058 | * a gazillion threads. | 
|---|
| 2059 | * | 
|---|
| 2060 | * OTOH, privileged real-time user space applications rely on the | 
|---|
| 2061 | * low latency of hard interrupt wakeups. If the current task is in | 
|---|
| 2062 | * a real-time scheduling class, mark the mode for hard interrupt | 
|---|
| 2063 | * expiry. | 
|---|
| 2064 | */ | 
|---|
| 2065 | if (IS_ENABLED(CONFIG_PREEMPT_RT)) { | 
|---|
| 2066 | if (rt_or_dl_task_policy(current) && !(mode & HRTIMER_MODE_SOFT)) | 
|---|
| 2067 | mode |= HRTIMER_MODE_HARD; | 
|---|
| 2068 | } | 
|---|
| 2069 |  | 
|---|
| 2070 | __hrtimer_setup(timer: &sl->timer, function: hrtimer_wakeup, clock_id, mode); | 
|---|
| 2071 | sl->task = current; | 
|---|
| 2072 | } | 
|---|
| 2073 |  | 
|---|
| 2074 | /** | 
|---|
| 2075 | * hrtimer_setup_sleeper_on_stack - initialize a sleeper in stack memory | 
|---|
| 2076 | * @sl:		sleeper to be initialized | 
|---|
| 2077 | * @clock_id:	the clock to be used | 
|---|
| 2078 | * @mode:	timer mode abs/rel | 
|---|
| 2079 | */ | 
|---|
| 2080 | void hrtimer_setup_sleeper_on_stack(struct hrtimer_sleeper *sl, | 
|---|
| 2081 | clockid_t clock_id, enum hrtimer_mode mode) | 
|---|
| 2082 | { | 
|---|
| 2083 | debug_setup_on_stack(timer: &sl->timer, clockid: clock_id, mode); | 
|---|
| 2084 | __hrtimer_setup_sleeper(sl, clock_id, mode); | 
|---|
| 2085 | } | 
|---|
| 2086 | EXPORT_SYMBOL_GPL(hrtimer_setup_sleeper_on_stack); | 
|---|
| 2087 |  | 
|---|
| 2088 | int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts) | 
|---|
| 2089 | { | 
|---|
| 2090 | switch(restart->nanosleep.type) { | 
|---|
| 2091 | #ifdef CONFIG_COMPAT_32BIT_TIME | 
|---|
| 2092 | case TT_COMPAT: | 
|---|
| 2093 | if (put_old_timespec32(ts, restart->nanosleep.compat_rmtp)) | 
|---|
| 2094 | return -EFAULT; | 
|---|
| 2095 | break; | 
|---|
| 2096 | #endif | 
|---|
| 2097 | case TT_NATIVE: | 
|---|
| 2098 | if (put_timespec64(ts, uts: restart->nanosleep.rmtp)) | 
|---|
| 2099 | return -EFAULT; | 
|---|
| 2100 | break; | 
|---|
| 2101 | default: | 
|---|
| 2102 | BUG(); | 
|---|
| 2103 | } | 
|---|
| 2104 | return -ERESTART_RESTARTBLOCK; | 
|---|
| 2105 | } | 
|---|
| 2106 |  | 
|---|
| 2107 | static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode) | 
|---|
| 2108 | { | 
|---|
| 2109 | struct restart_block *restart; | 
|---|
| 2110 |  | 
|---|
| 2111 | do { | 
|---|
| 2112 | set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); | 
|---|
| 2113 | hrtimer_sleeper_start_expires(t, mode); | 
|---|
| 2114 |  | 
|---|
| 2115 | if (likely(t->task)) | 
|---|
| 2116 | schedule(); | 
|---|
| 2117 |  | 
|---|
| 2118 | hrtimer_cancel(&t->timer); | 
|---|
| 2119 | mode = HRTIMER_MODE_ABS; | 
|---|
| 2120 |  | 
|---|
| 2121 | } while (t->task && !signal_pending(current)); | 
|---|
| 2122 |  | 
|---|
| 2123 | __set_current_state(TASK_RUNNING); | 
|---|
| 2124 |  | 
|---|
| 2125 | if (!t->task) | 
|---|
| 2126 | return 0; | 
|---|
| 2127 |  | 
|---|
| 2128 | restart = ¤t->restart_block; | 
|---|
| 2129 | if (restart->nanosleep.type != TT_NONE) { | 
|---|
| 2130 | ktime_t rem = hrtimer_expires_remaining(timer: &t->timer); | 
|---|
| 2131 | struct timespec64 rmt; | 
|---|
| 2132 |  | 
|---|
| 2133 | if (rem <= 0) | 
|---|
| 2134 | return 0; | 
|---|
| 2135 | rmt = ktime_to_timespec64(rem); | 
|---|
| 2136 |  | 
|---|
| 2137 | return nanosleep_copyout(restart, ts: &rmt); | 
|---|
| 2138 | } | 
|---|
| 2139 | return -ERESTART_RESTARTBLOCK; | 
|---|
| 2140 | } | 
|---|
| 2141 |  | 
|---|
| 2142 | static long __sched hrtimer_nanosleep_restart(struct restart_block *restart) | 
|---|
| 2143 | { | 
|---|
| 2144 | struct hrtimer_sleeper t; | 
|---|
| 2145 | int ret; | 
|---|
| 2146 |  | 
|---|
| 2147 | hrtimer_setup_sleeper_on_stack(&t, restart->nanosleep.clockid, HRTIMER_MODE_ABS); | 
|---|
| 2148 | hrtimer_set_expires_tv64(timer: &t.timer, tv64: restart->nanosleep.expires); | 
|---|
| 2149 | ret = do_nanosleep(t: &t, mode: HRTIMER_MODE_ABS); | 
|---|
| 2150 | destroy_hrtimer_on_stack(timer: &t.timer); | 
|---|
| 2151 | return ret; | 
|---|
| 2152 | } | 
|---|
| 2153 |  | 
|---|
| 2154 | long hrtimer_nanosleep(ktime_t rqtp, const enum hrtimer_mode mode, | 
|---|
| 2155 | const clockid_t clockid) | 
|---|
| 2156 | { | 
|---|
| 2157 | struct restart_block *restart; | 
|---|
| 2158 | struct hrtimer_sleeper t; | 
|---|
| 2159 | int ret = 0; | 
|---|
| 2160 |  | 
|---|
| 2161 | hrtimer_setup_sleeper_on_stack(&t, clockid, mode); | 
|---|
| 2162 | hrtimer_set_expires_range_ns(timer: &t.timer, time: rqtp, current->timer_slack_ns); | 
|---|
| 2163 | ret = do_nanosleep(t: &t, mode); | 
|---|
| 2164 | if (ret != -ERESTART_RESTARTBLOCK) | 
|---|
| 2165 | goto out; | 
|---|
| 2166 |  | 
|---|
| 2167 | /* Absolute timers do not update the rmtp value and restart: */ | 
|---|
| 2168 | if (mode == HRTIMER_MODE_ABS) { | 
|---|
| 2169 | ret = -ERESTARTNOHAND; | 
|---|
| 2170 | goto out; | 
|---|
| 2171 | } | 
|---|
| 2172 |  | 
|---|
| 2173 | restart = ¤t->restart_block; | 
|---|
| 2174 | restart->nanosleep.clockid = t.timer.base->clockid; | 
|---|
| 2175 | restart->nanosleep.expires = hrtimer_get_expires_tv64(timer: &t.timer); | 
|---|
| 2176 | set_restart_fn(restart, fn: hrtimer_nanosleep_restart); | 
|---|
| 2177 | out: | 
|---|
| 2178 | destroy_hrtimer_on_stack(timer: &t.timer); | 
|---|
| 2179 | return ret; | 
|---|
| 2180 | } | 
|---|
| 2181 |  | 
|---|
| 2182 | #ifdef CONFIG_64BIT | 
|---|
| 2183 |  | 
|---|
| 2184 | SYSCALL_DEFINE2(nanosleep, struct __kernel_timespec __user *, rqtp, | 
|---|
| 2185 | struct __kernel_timespec __user *, rmtp) | 
|---|
| 2186 | { | 
|---|
| 2187 | struct timespec64 tu; | 
|---|
| 2188 |  | 
|---|
| 2189 | if (get_timespec64(ts: &tu, uts: rqtp)) | 
|---|
| 2190 | return -EFAULT; | 
|---|
| 2191 |  | 
|---|
| 2192 | if (!timespec64_valid(ts: &tu)) | 
|---|
| 2193 | return -EINVAL; | 
|---|
| 2194 |  | 
|---|
| 2195 | current->restart_block.fn = do_no_restart_syscall; | 
|---|
| 2196 | current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE; | 
|---|
| 2197 | current->restart_block.nanosleep.rmtp = rmtp; | 
|---|
| 2198 | return hrtimer_nanosleep(rqtp: timespec64_to_ktime(ts: tu), mode: HRTIMER_MODE_REL, | 
|---|
| 2199 | CLOCK_MONOTONIC); | 
|---|
| 2200 | } | 
|---|
| 2201 |  | 
|---|
| 2202 | #endif | 
|---|
| 2203 |  | 
|---|
| 2204 | #ifdef CONFIG_COMPAT_32BIT_TIME | 
|---|
| 2205 |  | 
|---|
| 2206 | SYSCALL_DEFINE2(nanosleep_time32, struct old_timespec32 __user *, rqtp, | 
|---|
| 2207 | struct old_timespec32 __user *, rmtp) | 
|---|
| 2208 | { | 
|---|
| 2209 | struct timespec64 tu; | 
|---|
| 2210 |  | 
|---|
| 2211 | if (get_old_timespec32(&tu, rqtp)) | 
|---|
| 2212 | return -EFAULT; | 
|---|
| 2213 |  | 
|---|
| 2214 | if (!timespec64_valid(ts: &tu)) | 
|---|
| 2215 | return -EINVAL; | 
|---|
| 2216 |  | 
|---|
| 2217 | current->restart_block.fn = do_no_restart_syscall; | 
|---|
| 2218 | current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE; | 
|---|
| 2219 | current->restart_block.nanosleep.compat_rmtp = rmtp; | 
|---|
| 2220 | return hrtimer_nanosleep(rqtp: timespec64_to_ktime(ts: tu), mode: HRTIMER_MODE_REL, | 
|---|
| 2221 | CLOCK_MONOTONIC); | 
|---|
| 2222 | } | 
|---|
| 2223 | #endif | 
|---|
| 2224 |  | 
|---|
| 2225 | /* | 
|---|
| 2226 | * Functions related to boot-time initialization: | 
|---|
| 2227 | */ | 
|---|
| 2228 | int hrtimers_prepare_cpu(unsigned int cpu) | 
|---|
| 2229 | { | 
|---|
| 2230 | struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu); | 
|---|
| 2231 | int i; | 
|---|
| 2232 |  | 
|---|
| 2233 | for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { | 
|---|
| 2234 | struct hrtimer_clock_base *clock_b = &cpu_base->clock_base[i]; | 
|---|
| 2235 |  | 
|---|
| 2236 | clock_b->cpu_base = cpu_base; | 
|---|
| 2237 | seqcount_raw_spinlock_init(&clock_b->seq, &cpu_base->lock); | 
|---|
| 2238 | timerqueue_init_head(head: &clock_b->active); | 
|---|
| 2239 | } | 
|---|
| 2240 |  | 
|---|
| 2241 | cpu_base->cpu = cpu; | 
|---|
| 2242 | hrtimer_cpu_base_init_expiry_lock(base: cpu_base); | 
|---|
| 2243 | return 0; | 
|---|
| 2244 | } | 
|---|
| 2245 |  | 
|---|
| 2246 | int hrtimers_cpu_starting(unsigned int cpu) | 
|---|
| 2247 | { | 
|---|
| 2248 | struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); | 
|---|
| 2249 |  | 
|---|
| 2250 | /* Clear out any left over state from a CPU down operation */ | 
|---|
| 2251 | cpu_base->active_bases = 0; | 
|---|
| 2252 | cpu_base->hres_active = 0; | 
|---|
| 2253 | cpu_base->hang_detected = 0; | 
|---|
| 2254 | cpu_base->next_timer = NULL; | 
|---|
| 2255 | cpu_base->softirq_next_timer = NULL; | 
|---|
| 2256 | cpu_base->expires_next = KTIME_MAX; | 
|---|
| 2257 | cpu_base->softirq_expires_next = KTIME_MAX; | 
|---|
| 2258 | cpu_base->online = 1; | 
|---|
| 2259 | return 0; | 
|---|
| 2260 | } | 
|---|
| 2261 |  | 
|---|
| 2262 | #ifdef CONFIG_HOTPLUG_CPU | 
|---|
| 2263 |  | 
|---|
| 2264 | static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base, | 
|---|
| 2265 | struct hrtimer_clock_base *new_base) | 
|---|
| 2266 | { | 
|---|
| 2267 | struct hrtimer *timer; | 
|---|
| 2268 | struct timerqueue_node *node; | 
|---|
| 2269 |  | 
|---|
| 2270 | while ((node = timerqueue_getnext(head: &old_base->active))) { | 
|---|
| 2271 | timer = container_of(node, struct hrtimer, node); | 
|---|
| 2272 | BUG_ON(hrtimer_callback_running(timer)); | 
|---|
| 2273 | debug_deactivate(timer); | 
|---|
| 2274 |  | 
|---|
| 2275 | /* | 
|---|
| 2276 | * Mark it as ENQUEUED not INACTIVE otherwise the | 
|---|
| 2277 | * timer could be seen as !active and just vanish away | 
|---|
| 2278 | * under us on another CPU | 
|---|
| 2279 | */ | 
|---|
| 2280 | __remove_hrtimer(timer, base: old_base, HRTIMER_STATE_ENQUEUED, reprogram: 0); | 
|---|
| 2281 | timer->base = new_base; | 
|---|
| 2282 | /* | 
|---|
| 2283 | * Enqueue the timers on the new cpu. This does not | 
|---|
| 2284 | * reprogram the event device in case the timer | 
|---|
| 2285 | * expires before the earliest on this CPU, but we run | 
|---|
| 2286 | * hrtimer_interrupt after we migrated everything to | 
|---|
| 2287 | * sort out already expired timers and reprogram the | 
|---|
| 2288 | * event device. | 
|---|
| 2289 | */ | 
|---|
| 2290 | enqueue_hrtimer(timer, base: new_base, mode: HRTIMER_MODE_ABS); | 
|---|
| 2291 | } | 
|---|
| 2292 | } | 
|---|
| 2293 |  | 
|---|
| 2294 | int hrtimers_cpu_dying(unsigned int dying_cpu) | 
|---|
| 2295 | { | 
|---|
| 2296 | int i, ncpu = cpumask_any_and(cpu_active_mask, housekeeping_cpumask(HK_TYPE_TIMER)); | 
|---|
| 2297 | struct hrtimer_cpu_base *old_base, *new_base; | 
|---|
| 2298 |  | 
|---|
| 2299 | old_base = this_cpu_ptr(&hrtimer_bases); | 
|---|
| 2300 | new_base = &per_cpu(hrtimer_bases, ncpu); | 
|---|
| 2301 |  | 
|---|
| 2302 | /* | 
|---|
| 2303 | * The caller is globally serialized and nobody else | 
|---|
| 2304 | * takes two locks at once, deadlock is not possible. | 
|---|
| 2305 | */ | 
|---|
| 2306 | raw_spin_lock(&old_base->lock); | 
|---|
| 2307 | raw_spin_lock_nested(&new_base->lock, SINGLE_DEPTH_NESTING); | 
|---|
| 2308 |  | 
|---|
| 2309 | for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { | 
|---|
| 2310 | migrate_hrtimer_list(old_base: &old_base->clock_base[i], | 
|---|
| 2311 | new_base: &new_base->clock_base[i]); | 
|---|
| 2312 | } | 
|---|
| 2313 |  | 
|---|
| 2314 | /* Tell the other CPU to retrigger the next event */ | 
|---|
| 2315 | smp_call_function_single(cpuid: ncpu, func: retrigger_next_event, NULL, wait: 0); | 
|---|
| 2316 |  | 
|---|
| 2317 | raw_spin_unlock(&new_base->lock); | 
|---|
| 2318 | old_base->online = 0; | 
|---|
| 2319 | raw_spin_unlock(&old_base->lock); | 
|---|
| 2320 |  | 
|---|
| 2321 | return 0; | 
|---|
| 2322 | } | 
|---|
| 2323 |  | 
|---|
| 2324 | #endif /* CONFIG_HOTPLUG_CPU */ | 
|---|
| 2325 |  | 
|---|
| 2326 | void __init hrtimers_init(void) | 
|---|
| 2327 | { | 
|---|
| 2328 | hrtimers_prepare_cpu(smp_processor_id()); | 
|---|
| 2329 | hrtimers_cpu_starting(smp_processor_id()); | 
|---|
| 2330 | open_softirq(nr: HRTIMER_SOFTIRQ, action: hrtimer_run_softirq); | 
|---|
| 2331 | } | 
|---|
| 2332 |  | 
|---|