| 1 | // SPDX-License-Identifier: GPL-2.0 | 
|---|
| 2 | /* | 
|---|
| 3 | * Implement CPU time clocks for the POSIX clock interface. | 
|---|
| 4 | */ | 
|---|
| 5 |  | 
|---|
| 6 | #include <linux/sched/signal.h> | 
|---|
| 7 | #include <linux/sched/cputime.h> | 
|---|
| 8 | #include <linux/posix-timers.h> | 
|---|
| 9 | #include <linux/errno.h> | 
|---|
| 10 | #include <linux/math64.h> | 
|---|
| 11 | #include <linux/uaccess.h> | 
|---|
| 12 | #include <linux/kernel_stat.h> | 
|---|
| 13 | #include <trace/events/timer.h> | 
|---|
| 14 | #include <linux/tick.h> | 
|---|
| 15 | #include <linux/workqueue.h> | 
|---|
| 16 | #include <linux/compat.h> | 
|---|
| 17 | #include <linux/sched/deadline.h> | 
|---|
| 18 | #include <linux/task_work.h> | 
|---|
| 19 |  | 
|---|
| 20 | #include "posix-timers.h" | 
|---|
| 21 |  | 
|---|
| 22 | static void posix_cpu_timer_rearm(struct k_itimer *timer); | 
|---|
| 23 |  | 
|---|
| 24 | void posix_cputimers_group_init(struct posix_cputimers *pct, u64 cpu_limit) | 
|---|
| 25 | { | 
|---|
| 26 | posix_cputimers_init(pct); | 
|---|
| 27 | if (cpu_limit != RLIM_INFINITY) { | 
|---|
| 28 | pct->bases[CPUCLOCK_PROF].nextevt = cpu_limit * NSEC_PER_SEC; | 
|---|
| 29 | pct->timers_active = true; | 
|---|
| 30 | } | 
|---|
| 31 | } | 
|---|
| 32 |  | 
|---|
| 33 | /* | 
|---|
| 34 | * Called after updating RLIMIT_CPU to run cpu timer and update | 
|---|
| 35 | * tsk->signal->posix_cputimers.bases[clock].nextevt expiration cache if | 
|---|
| 36 | * necessary. Needs siglock protection since other code may update the | 
|---|
| 37 | * expiration cache as well. | 
|---|
| 38 | * | 
|---|
| 39 | * Returns 0 on success, -ESRCH on failure.  Can fail if the task is exiting and | 
|---|
| 40 | * we cannot lock_task_sighand.  Cannot fail if task is current. | 
|---|
| 41 | */ | 
|---|
| 42 | int update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new) | 
|---|
| 43 | { | 
|---|
| 44 | u64 nsecs = rlim_new * NSEC_PER_SEC; | 
|---|
| 45 | unsigned long irq_fl; | 
|---|
| 46 |  | 
|---|
| 47 | if (!lock_task_sighand(task, flags: &irq_fl)) | 
|---|
| 48 | return -ESRCH; | 
|---|
| 49 | set_process_cpu_timer(task, CPUCLOCK_PROF, newval: &nsecs, NULL); | 
|---|
| 50 | unlock_task_sighand(task, flags: &irq_fl); | 
|---|
| 51 | return 0; | 
|---|
| 52 | } | 
|---|
| 53 |  | 
|---|
| 54 | /* | 
|---|
| 55 | * Functions for validating access to tasks. | 
|---|
| 56 | */ | 
|---|
| 57 | static struct pid *pid_for_clock(const clockid_t clock, bool gettime) | 
|---|
| 58 | { | 
|---|
| 59 | const bool thread = !!CPUCLOCK_PERTHREAD(clock); | 
|---|
| 60 | const pid_t upid = CPUCLOCK_PID(clock); | 
|---|
| 61 | struct pid *pid; | 
|---|
| 62 |  | 
|---|
| 63 | if (CPUCLOCK_WHICH(clock) >= CPUCLOCK_MAX) | 
|---|
| 64 | return NULL; | 
|---|
| 65 |  | 
|---|
| 66 | /* | 
|---|
| 67 | * If the encoded PID is 0, then the timer is targeted at current | 
|---|
| 68 | * or the process to which current belongs. | 
|---|
| 69 | */ | 
|---|
| 70 | if (upid == 0) | 
|---|
| 71 | return thread ? task_pid(current) : task_tgid(current); | 
|---|
| 72 |  | 
|---|
| 73 | pid = find_vpid(nr: upid); | 
|---|
| 74 | if (!pid) | 
|---|
| 75 | return NULL; | 
|---|
| 76 |  | 
|---|
| 77 | if (thread) { | 
|---|
| 78 | struct task_struct *tsk = pid_task(pid, PIDTYPE_PID); | 
|---|
| 79 | return (tsk && same_thread_group(p1: tsk, current)) ? pid : NULL; | 
|---|
| 80 | } | 
|---|
| 81 |  | 
|---|
| 82 | /* | 
|---|
| 83 | * For clock_gettime(PROCESS) allow finding the process by | 
|---|
| 84 | * with the pid of the current task.  The code needs the tgid | 
|---|
| 85 | * of the process so that pid_task(pid, PIDTYPE_TGID) can be | 
|---|
| 86 | * used to find the process. | 
|---|
| 87 | */ | 
|---|
| 88 | if (gettime && (pid == task_pid(current))) | 
|---|
| 89 | return task_tgid(current); | 
|---|
| 90 |  | 
|---|
| 91 | /* | 
|---|
| 92 | * For processes require that pid identifies a process. | 
|---|
| 93 | */ | 
|---|
| 94 | return pid_has_task(pid, type: PIDTYPE_TGID) ? pid : NULL; | 
|---|
| 95 | } | 
|---|
| 96 |  | 
|---|
| 97 | static inline int validate_clock_permissions(const clockid_t clock) | 
|---|
| 98 | { | 
|---|
| 99 | int ret; | 
|---|
| 100 |  | 
|---|
| 101 | rcu_read_lock(); | 
|---|
| 102 | ret = pid_for_clock(clock, gettime: false) ? 0 : -EINVAL; | 
|---|
| 103 | rcu_read_unlock(); | 
|---|
| 104 |  | 
|---|
| 105 | return ret; | 
|---|
| 106 | } | 
|---|
| 107 |  | 
|---|
| 108 | static inline enum pid_type clock_pid_type(const clockid_t clock) | 
|---|
| 109 | { | 
|---|
| 110 | return CPUCLOCK_PERTHREAD(clock) ? PIDTYPE_PID : PIDTYPE_TGID; | 
|---|
| 111 | } | 
|---|
| 112 |  | 
|---|
| 113 | static inline struct task_struct *cpu_timer_task_rcu(struct k_itimer *timer) | 
|---|
| 114 | { | 
|---|
| 115 | return pid_task(pid: timer->it.cpu.pid, clock_pid_type(clock: timer->it_clock)); | 
|---|
| 116 | } | 
|---|
| 117 |  | 
|---|
| 118 | /* | 
|---|
| 119 | * Update expiry time from increment, and increase overrun count, | 
|---|
| 120 | * given the current clock sample. | 
|---|
| 121 | */ | 
|---|
| 122 | static u64 bump_cpu_timer(struct k_itimer *timer, u64 now) | 
|---|
| 123 | { | 
|---|
| 124 | u64 delta, incr, expires = timer->it.cpu.node.expires; | 
|---|
| 125 | int i; | 
|---|
| 126 |  | 
|---|
| 127 | if (!timer->it_interval) | 
|---|
| 128 | return expires; | 
|---|
| 129 |  | 
|---|
| 130 | if (now < expires) | 
|---|
| 131 | return expires; | 
|---|
| 132 |  | 
|---|
| 133 | incr = timer->it_interval; | 
|---|
| 134 | delta = now + incr - expires; | 
|---|
| 135 |  | 
|---|
| 136 | /* Don't use (incr*2 < delta), incr*2 might overflow. */ | 
|---|
| 137 | for (i = 0; incr < delta - incr; i++) | 
|---|
| 138 | incr = incr << 1; | 
|---|
| 139 |  | 
|---|
| 140 | for (; i >= 0; incr >>= 1, i--) { | 
|---|
| 141 | if (delta < incr) | 
|---|
| 142 | continue; | 
|---|
| 143 |  | 
|---|
| 144 | timer->it.cpu.node.expires += incr; | 
|---|
| 145 | timer->it_overrun += 1LL << i; | 
|---|
| 146 | delta -= incr; | 
|---|
| 147 | } | 
|---|
| 148 | return timer->it.cpu.node.expires; | 
|---|
| 149 | } | 
|---|
| 150 |  | 
|---|
| 151 | /* Check whether all cache entries contain U64_MAX, i.e. eternal expiry time */ | 
|---|
| 152 | static inline bool expiry_cache_is_inactive(const struct posix_cputimers *pct) | 
|---|
| 153 | { | 
|---|
| 154 | return !(~pct->bases[CPUCLOCK_PROF].nextevt | | 
|---|
| 155 | ~pct->bases[CPUCLOCK_VIRT].nextevt | | 
|---|
| 156 | ~pct->bases[CPUCLOCK_SCHED].nextevt); | 
|---|
| 157 | } | 
|---|
| 158 |  | 
|---|
| 159 | static int | 
|---|
| 160 | posix_cpu_clock_getres(const clockid_t which_clock, struct timespec64 *tp) | 
|---|
| 161 | { | 
|---|
| 162 | int error = validate_clock_permissions(clock: which_clock); | 
|---|
| 163 |  | 
|---|
| 164 | if (!error) { | 
|---|
| 165 | tp->tv_sec = 0; | 
|---|
| 166 | tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ); | 
|---|
| 167 | if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { | 
|---|
| 168 | /* | 
|---|
| 169 | * If sched_clock is using a cycle counter, we | 
|---|
| 170 | * don't have any idea of its true resolution | 
|---|
| 171 | * exported, but it is much more than 1s/HZ. | 
|---|
| 172 | */ | 
|---|
| 173 | tp->tv_nsec = 1; | 
|---|
| 174 | } | 
|---|
| 175 | } | 
|---|
| 176 | return error; | 
|---|
| 177 | } | 
|---|
| 178 |  | 
|---|
| 179 | static int | 
|---|
| 180 | posix_cpu_clock_set(const clockid_t clock, const struct timespec64 *tp) | 
|---|
| 181 | { | 
|---|
| 182 | int error = validate_clock_permissions(clock); | 
|---|
| 183 |  | 
|---|
| 184 | /* | 
|---|
| 185 | * You can never reset a CPU clock, but we check for other errors | 
|---|
| 186 | * in the call before failing with EPERM. | 
|---|
| 187 | */ | 
|---|
| 188 | return error ? : -EPERM; | 
|---|
| 189 | } | 
|---|
| 190 |  | 
|---|
| 191 | /* | 
|---|
| 192 | * Sample a per-thread clock for the given task. clkid is validated. | 
|---|
| 193 | */ | 
|---|
| 194 | static u64 cpu_clock_sample(const clockid_t clkid, struct task_struct *p) | 
|---|
| 195 | { | 
|---|
| 196 | u64 utime, stime; | 
|---|
| 197 |  | 
|---|
| 198 | if (clkid == CPUCLOCK_SCHED) | 
|---|
| 199 | return task_sched_runtime(task: p); | 
|---|
| 200 |  | 
|---|
| 201 | task_cputime(t: p, utime: &utime, stime: &stime); | 
|---|
| 202 |  | 
|---|
| 203 | switch (clkid) { | 
|---|
| 204 | case CPUCLOCK_PROF: | 
|---|
| 205 | return utime + stime; | 
|---|
| 206 | case CPUCLOCK_VIRT: | 
|---|
| 207 | return utime; | 
|---|
| 208 | default: | 
|---|
| 209 | WARN_ON_ONCE(1); | 
|---|
| 210 | } | 
|---|
| 211 | return 0; | 
|---|
| 212 | } | 
|---|
| 213 |  | 
|---|
| 214 | static inline void store_samples(u64 *samples, u64 stime, u64 utime, u64 rtime) | 
|---|
| 215 | { | 
|---|
| 216 | samples[CPUCLOCK_PROF] = stime + utime; | 
|---|
| 217 | samples[CPUCLOCK_VIRT] = utime; | 
|---|
| 218 | samples[CPUCLOCK_SCHED] = rtime; | 
|---|
| 219 | } | 
|---|
| 220 |  | 
|---|
| 221 | static void task_sample_cputime(struct task_struct *p, u64 *samples) | 
|---|
| 222 | { | 
|---|
| 223 | u64 stime, utime; | 
|---|
| 224 |  | 
|---|
| 225 | task_cputime(t: p, utime: &utime, stime: &stime); | 
|---|
| 226 | store_samples(samples, stime, utime, rtime: p->se.sum_exec_runtime); | 
|---|
| 227 | } | 
|---|
| 228 |  | 
|---|
| 229 | static void proc_sample_cputime_atomic(struct task_cputime_atomic *at, | 
|---|
| 230 | u64 *samples) | 
|---|
| 231 | { | 
|---|
| 232 | u64 stime, utime, rtime; | 
|---|
| 233 |  | 
|---|
| 234 | utime = atomic64_read(v: &at->utime); | 
|---|
| 235 | stime = atomic64_read(v: &at->stime); | 
|---|
| 236 | rtime = atomic64_read(v: &at->sum_exec_runtime); | 
|---|
| 237 | store_samples(samples, stime, utime, rtime); | 
|---|
| 238 | } | 
|---|
| 239 |  | 
|---|
| 240 | /* | 
|---|
| 241 | * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg | 
|---|
| 242 | * to avoid race conditions with concurrent updates to cputime. | 
|---|
| 243 | */ | 
|---|
| 244 | static inline void __update_gt_cputime(atomic64_t *cputime, u64 sum_cputime) | 
|---|
| 245 | { | 
|---|
| 246 | u64 curr_cputime = atomic64_read(v: cputime); | 
|---|
| 247 |  | 
|---|
| 248 | do { | 
|---|
| 249 | if (sum_cputime <= curr_cputime) | 
|---|
| 250 | return; | 
|---|
| 251 | } while (!atomic64_try_cmpxchg(v: cputime, old: &curr_cputime, new: sum_cputime)); | 
|---|
| 252 | } | 
|---|
| 253 |  | 
|---|
| 254 | static void update_gt_cputime(struct task_cputime_atomic *cputime_atomic, | 
|---|
| 255 | struct task_cputime *sum) | 
|---|
| 256 | { | 
|---|
| 257 | __update_gt_cputime(cputime: &cputime_atomic->utime, sum_cputime: sum->utime); | 
|---|
| 258 | __update_gt_cputime(cputime: &cputime_atomic->stime, sum_cputime: sum->stime); | 
|---|
| 259 | __update_gt_cputime(cputime: &cputime_atomic->sum_exec_runtime, sum_cputime: sum->sum_exec_runtime); | 
|---|
| 260 | } | 
|---|
| 261 |  | 
|---|
| 262 | /** | 
|---|
| 263 | * thread_group_sample_cputime - Sample cputime for a given task | 
|---|
| 264 | * @tsk:	Task for which cputime needs to be started | 
|---|
| 265 | * @samples:	Storage for time samples | 
|---|
| 266 | * | 
|---|
| 267 | * Called from sys_getitimer() to calculate the expiry time of an active | 
|---|
| 268 | * timer. That means group cputime accounting is already active. Called | 
|---|
| 269 | * with task sighand lock held. | 
|---|
| 270 | * | 
|---|
| 271 | * Updates @times with an uptodate sample of the thread group cputimes. | 
|---|
| 272 | */ | 
|---|
| 273 | void thread_group_sample_cputime(struct task_struct *tsk, u64 *samples) | 
|---|
| 274 | { | 
|---|
| 275 | struct thread_group_cputimer *cputimer = &tsk->signal->cputimer; | 
|---|
| 276 | struct posix_cputimers *pct = &tsk->signal->posix_cputimers; | 
|---|
| 277 |  | 
|---|
| 278 | WARN_ON_ONCE(!pct->timers_active); | 
|---|
| 279 |  | 
|---|
| 280 | proc_sample_cputime_atomic(at: &cputimer->cputime_atomic, samples); | 
|---|
| 281 | } | 
|---|
| 282 |  | 
|---|
| 283 | /** | 
|---|
| 284 | * thread_group_start_cputime - Start cputime and return a sample | 
|---|
| 285 | * @tsk:	Task for which cputime needs to be started | 
|---|
| 286 | * @samples:	Storage for time samples | 
|---|
| 287 | * | 
|---|
| 288 | * The thread group cputime accounting is avoided when there are no posix | 
|---|
| 289 | * CPU timers armed. Before starting a timer it's required to check whether | 
|---|
| 290 | * the time accounting is active. If not, a full update of the atomic | 
|---|
| 291 | * accounting store needs to be done and the accounting enabled. | 
|---|
| 292 | * | 
|---|
| 293 | * Updates @times with an uptodate sample of the thread group cputimes. | 
|---|
| 294 | */ | 
|---|
| 295 | static void thread_group_start_cputime(struct task_struct *tsk, u64 *samples) | 
|---|
| 296 | { | 
|---|
| 297 | struct thread_group_cputimer *cputimer = &tsk->signal->cputimer; | 
|---|
| 298 | struct posix_cputimers *pct = &tsk->signal->posix_cputimers; | 
|---|
| 299 |  | 
|---|
| 300 | lockdep_assert_task_sighand_held(task: tsk); | 
|---|
| 301 |  | 
|---|
| 302 | /* Check if cputimer isn't running. This is accessed without locking. */ | 
|---|
| 303 | if (!READ_ONCE(pct->timers_active)) { | 
|---|
| 304 | struct task_cputime sum; | 
|---|
| 305 |  | 
|---|
| 306 | /* | 
|---|
| 307 | * The POSIX timer interface allows for absolute time expiry | 
|---|
| 308 | * values through the TIMER_ABSTIME flag, therefore we have | 
|---|
| 309 | * to synchronize the timer to the clock every time we start it. | 
|---|
| 310 | */ | 
|---|
| 311 | thread_group_cputime(tsk, times: &sum); | 
|---|
| 312 | update_gt_cputime(cputime_atomic: &cputimer->cputime_atomic, sum: &sum); | 
|---|
| 313 |  | 
|---|
| 314 | /* | 
|---|
| 315 | * We're setting timers_active without a lock. Ensure this | 
|---|
| 316 | * only gets written to in one operation. We set it after | 
|---|
| 317 | * update_gt_cputime() as a small optimization, but | 
|---|
| 318 | * barriers are not required because update_gt_cputime() | 
|---|
| 319 | * can handle concurrent updates. | 
|---|
| 320 | */ | 
|---|
| 321 | WRITE_ONCE(pct->timers_active, true); | 
|---|
| 322 | } | 
|---|
| 323 | proc_sample_cputime_atomic(at: &cputimer->cputime_atomic, samples); | 
|---|
| 324 | } | 
|---|
| 325 |  | 
|---|
| 326 | static void __thread_group_cputime(struct task_struct *tsk, u64 *samples) | 
|---|
| 327 | { | 
|---|
| 328 | struct task_cputime ct; | 
|---|
| 329 |  | 
|---|
| 330 | thread_group_cputime(tsk, times: &ct); | 
|---|
| 331 | store_samples(samples, stime: ct.stime, utime: ct.utime, rtime: ct.sum_exec_runtime); | 
|---|
| 332 | } | 
|---|
| 333 |  | 
|---|
| 334 | /* | 
|---|
| 335 | * Sample a process (thread group) clock for the given task clkid. If the | 
|---|
| 336 | * group's cputime accounting is already enabled, read the atomic | 
|---|
| 337 | * store. Otherwise a full update is required.  clkid is already validated. | 
|---|
| 338 | */ | 
|---|
| 339 | static u64 cpu_clock_sample_group(const clockid_t clkid, struct task_struct *p, | 
|---|
| 340 | bool start) | 
|---|
| 341 | { | 
|---|
| 342 | struct thread_group_cputimer *cputimer = &p->signal->cputimer; | 
|---|
| 343 | struct posix_cputimers *pct = &p->signal->posix_cputimers; | 
|---|
| 344 | u64 samples[CPUCLOCK_MAX]; | 
|---|
| 345 |  | 
|---|
| 346 | if (!READ_ONCE(pct->timers_active)) { | 
|---|
| 347 | if (start) | 
|---|
| 348 | thread_group_start_cputime(tsk: p, samples); | 
|---|
| 349 | else | 
|---|
| 350 | __thread_group_cputime(tsk: p, samples); | 
|---|
| 351 | } else { | 
|---|
| 352 | proc_sample_cputime_atomic(at: &cputimer->cputime_atomic, samples); | 
|---|
| 353 | } | 
|---|
| 354 |  | 
|---|
| 355 | return samples[clkid]; | 
|---|
| 356 | } | 
|---|
| 357 |  | 
|---|
| 358 | static int posix_cpu_clock_get(const clockid_t clock, struct timespec64 *tp) | 
|---|
| 359 | { | 
|---|
| 360 | const clockid_t clkid = CPUCLOCK_WHICH(clock); | 
|---|
| 361 | struct task_struct *tsk; | 
|---|
| 362 | u64 t; | 
|---|
| 363 |  | 
|---|
| 364 | rcu_read_lock(); | 
|---|
| 365 | tsk = pid_task(pid: pid_for_clock(clock, gettime: true), clock_pid_type(clock)); | 
|---|
| 366 | if (!tsk) { | 
|---|
| 367 | rcu_read_unlock(); | 
|---|
| 368 | return -EINVAL; | 
|---|
| 369 | } | 
|---|
| 370 |  | 
|---|
| 371 | if (CPUCLOCK_PERTHREAD(clock)) | 
|---|
| 372 | t = cpu_clock_sample(clkid, p: tsk); | 
|---|
| 373 | else | 
|---|
| 374 | t = cpu_clock_sample_group(clkid, p: tsk, start: false); | 
|---|
| 375 | rcu_read_unlock(); | 
|---|
| 376 |  | 
|---|
| 377 | *tp = ns_to_timespec64(nsec: t); | 
|---|
| 378 | return 0; | 
|---|
| 379 | } | 
|---|
| 380 |  | 
|---|
| 381 | /* | 
|---|
| 382 | * Validate the clockid_t for a new CPU-clock timer, and initialize the timer. | 
|---|
| 383 | * This is called from sys_timer_create() and do_cpu_nanosleep() with the | 
|---|
| 384 | * new timer already all-zeros initialized. | 
|---|
| 385 | */ | 
|---|
| 386 | static int posix_cpu_timer_create(struct k_itimer *new_timer) | 
|---|
| 387 | { | 
|---|
| 388 | static struct lock_class_key posix_cpu_timers_key; | 
|---|
| 389 | struct pid *pid; | 
|---|
| 390 |  | 
|---|
| 391 | rcu_read_lock(); | 
|---|
| 392 | pid = pid_for_clock(clock: new_timer->it_clock, gettime: false); | 
|---|
| 393 | if (!pid) { | 
|---|
| 394 | rcu_read_unlock(); | 
|---|
| 395 | return -EINVAL; | 
|---|
| 396 | } | 
|---|
| 397 |  | 
|---|
| 398 | /* | 
|---|
| 399 | * If posix timer expiry is handled in task work context then | 
|---|
| 400 | * timer::it_lock can be taken without disabling interrupts as all | 
|---|
| 401 | * other locking happens in task context. This requires a separate | 
|---|
| 402 | * lock class key otherwise regular posix timer expiry would record | 
|---|
| 403 | * the lock class being taken in interrupt context and generate a | 
|---|
| 404 | * false positive warning. | 
|---|
| 405 | */ | 
|---|
| 406 | if (IS_ENABLED(CONFIG_POSIX_CPU_TIMERS_TASK_WORK)) | 
|---|
| 407 | lockdep_set_class(&new_timer->it_lock, &posix_cpu_timers_key); | 
|---|
| 408 |  | 
|---|
| 409 | new_timer->kclock = &clock_posix_cpu; | 
|---|
| 410 | timerqueue_init(node: &new_timer->it.cpu.node); | 
|---|
| 411 | new_timer->it.cpu.pid = get_pid(pid); | 
|---|
| 412 | rcu_read_unlock(); | 
|---|
| 413 | return 0; | 
|---|
| 414 | } | 
|---|
| 415 |  | 
|---|
| 416 | static struct posix_cputimer_base *timer_base(struct k_itimer *timer, | 
|---|
| 417 | struct task_struct *tsk) | 
|---|
| 418 | { | 
|---|
| 419 | int clkidx = CPUCLOCK_WHICH(timer->it_clock); | 
|---|
| 420 |  | 
|---|
| 421 | if (CPUCLOCK_PERTHREAD(timer->it_clock)) | 
|---|
| 422 | return tsk->posix_cputimers.bases + clkidx; | 
|---|
| 423 | else | 
|---|
| 424 | return tsk->signal->posix_cputimers.bases + clkidx; | 
|---|
| 425 | } | 
|---|
| 426 |  | 
|---|
| 427 | /* | 
|---|
| 428 | * Force recalculating the base earliest expiration on the next tick. | 
|---|
| 429 | * This will also re-evaluate the need to keep around the process wide | 
|---|
| 430 | * cputime counter and tick dependency and eventually shut these down | 
|---|
| 431 | * if necessary. | 
|---|
| 432 | */ | 
|---|
| 433 | static void trigger_base_recalc_expires(struct k_itimer *timer, | 
|---|
| 434 | struct task_struct *tsk) | 
|---|
| 435 | { | 
|---|
| 436 | struct posix_cputimer_base *base = timer_base(timer, tsk); | 
|---|
| 437 |  | 
|---|
| 438 | base->nextevt = 0; | 
|---|
| 439 | } | 
|---|
| 440 |  | 
|---|
| 441 | /* | 
|---|
| 442 | * Dequeue the timer and reset the base if it was its earliest expiration. | 
|---|
| 443 | * It makes sure the next tick recalculates the base next expiration so we | 
|---|
| 444 | * don't keep the costly process wide cputime counter around for a random | 
|---|
| 445 | * amount of time, along with the tick dependency. | 
|---|
| 446 | * | 
|---|
| 447 | * If another timer gets queued between this and the next tick, its | 
|---|
| 448 | * expiration will update the base next event if necessary on the next | 
|---|
| 449 | * tick. | 
|---|
| 450 | */ | 
|---|
| 451 | static void disarm_timer(struct k_itimer *timer, struct task_struct *p) | 
|---|
| 452 | { | 
|---|
| 453 | struct cpu_timer *ctmr = &timer->it.cpu; | 
|---|
| 454 | struct posix_cputimer_base *base; | 
|---|
| 455 |  | 
|---|
| 456 | if (!cpu_timer_dequeue(ctmr)) | 
|---|
| 457 | return; | 
|---|
| 458 |  | 
|---|
| 459 | base = timer_base(timer, tsk: p); | 
|---|
| 460 | if (cpu_timer_getexpires(ctmr) == base->nextevt) | 
|---|
| 461 | trigger_base_recalc_expires(timer, tsk: p); | 
|---|
| 462 | } | 
|---|
| 463 |  | 
|---|
| 464 |  | 
|---|
| 465 | /* | 
|---|
| 466 | * Clean up a CPU-clock timer that is about to be destroyed. | 
|---|
| 467 | * This is called from timer deletion with the timer already locked. | 
|---|
| 468 | * If we return TIMER_RETRY, it's necessary to release the timer's lock | 
|---|
| 469 | * and try again.  (This happens when the timer is in the middle of firing.) | 
|---|
| 470 | */ | 
|---|
| 471 | static int posix_cpu_timer_del(struct k_itimer *timer) | 
|---|
| 472 | { | 
|---|
| 473 | struct cpu_timer *ctmr = &timer->it.cpu; | 
|---|
| 474 | struct sighand_struct *sighand; | 
|---|
| 475 | struct task_struct *p; | 
|---|
| 476 | unsigned long flags; | 
|---|
| 477 | int ret = 0; | 
|---|
| 478 |  | 
|---|
| 479 | rcu_read_lock(); | 
|---|
| 480 | p = cpu_timer_task_rcu(timer); | 
|---|
| 481 | if (!p) | 
|---|
| 482 | goto out; | 
|---|
| 483 |  | 
|---|
| 484 | /* | 
|---|
| 485 | * Protect against sighand release/switch in exit/exec and process/ | 
|---|
| 486 | * thread timer list entry concurrent read/writes. | 
|---|
| 487 | */ | 
|---|
| 488 | sighand = lock_task_sighand(task: p, flags: &flags); | 
|---|
| 489 | if (unlikely(sighand == NULL)) { | 
|---|
| 490 | /* | 
|---|
| 491 | * This raced with the reaping of the task. The exit cleanup | 
|---|
| 492 | * should have removed this timer from the timer queue. | 
|---|
| 493 | */ | 
|---|
| 494 | WARN_ON_ONCE(ctmr->head || timerqueue_node_queued(&ctmr->node)); | 
|---|
| 495 | } else { | 
|---|
| 496 | if (timer->it.cpu.firing) { | 
|---|
| 497 | /* | 
|---|
| 498 | * Prevent signal delivery. The timer cannot be dequeued | 
|---|
| 499 | * because it is on the firing list which is not protected | 
|---|
| 500 | * by sighand->lock. The delivery path is waiting for | 
|---|
| 501 | * the timer lock. So go back, unlock and retry. | 
|---|
| 502 | */ | 
|---|
| 503 | timer->it.cpu.firing = false; | 
|---|
| 504 | ret = TIMER_RETRY; | 
|---|
| 505 | } else { | 
|---|
| 506 | disarm_timer(timer, p); | 
|---|
| 507 | } | 
|---|
| 508 | unlock_task_sighand(task: p, flags: &flags); | 
|---|
| 509 | } | 
|---|
| 510 |  | 
|---|
| 511 | out: | 
|---|
| 512 | rcu_read_unlock(); | 
|---|
| 513 |  | 
|---|
| 514 | if (!ret) { | 
|---|
| 515 | put_pid(pid: ctmr->pid); | 
|---|
| 516 | timer->it_status = POSIX_TIMER_DISARMED; | 
|---|
| 517 | } | 
|---|
| 518 | return ret; | 
|---|
| 519 | } | 
|---|
| 520 |  | 
|---|
| 521 | static void cleanup_timerqueue(struct timerqueue_head *head) | 
|---|
| 522 | { | 
|---|
| 523 | struct timerqueue_node *node; | 
|---|
| 524 | struct cpu_timer *ctmr; | 
|---|
| 525 |  | 
|---|
| 526 | while ((node = timerqueue_getnext(head))) { | 
|---|
| 527 | timerqueue_del(head, node); | 
|---|
| 528 | ctmr = container_of(node, struct cpu_timer, node); | 
|---|
| 529 | ctmr->head = NULL; | 
|---|
| 530 | } | 
|---|
| 531 | } | 
|---|
| 532 |  | 
|---|
| 533 | /* | 
|---|
| 534 | * Clean out CPU timers which are still armed when a thread exits. The | 
|---|
| 535 | * timers are only removed from the list. No other updates are done. The | 
|---|
| 536 | * corresponding posix timers are still accessible, but cannot be rearmed. | 
|---|
| 537 | * | 
|---|
| 538 | * This must be called with the siglock held. | 
|---|
| 539 | */ | 
|---|
| 540 | static void cleanup_timers(struct posix_cputimers *pct) | 
|---|
| 541 | { | 
|---|
| 542 | cleanup_timerqueue(head: &pct->bases[CPUCLOCK_PROF].tqhead); | 
|---|
| 543 | cleanup_timerqueue(head: &pct->bases[CPUCLOCK_VIRT].tqhead); | 
|---|
| 544 | cleanup_timerqueue(head: &pct->bases[CPUCLOCK_SCHED].tqhead); | 
|---|
| 545 | } | 
|---|
| 546 |  | 
|---|
| 547 | /* | 
|---|
| 548 | * These are both called with the siglock held, when the current thread | 
|---|
| 549 | * is being reaped.  When the final (leader) thread in the group is reaped, | 
|---|
| 550 | * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit. | 
|---|
| 551 | */ | 
|---|
| 552 | void posix_cpu_timers_exit(struct task_struct *tsk) | 
|---|
| 553 | { | 
|---|
| 554 | cleanup_timers(pct: &tsk->posix_cputimers); | 
|---|
| 555 | } | 
|---|
| 556 | void posix_cpu_timers_exit_group(struct task_struct *tsk) | 
|---|
| 557 | { | 
|---|
| 558 | cleanup_timers(pct: &tsk->signal->posix_cputimers); | 
|---|
| 559 | } | 
|---|
| 560 |  | 
|---|
| 561 | /* | 
|---|
| 562 | * Insert the timer on the appropriate list before any timers that | 
|---|
| 563 | * expire later.  This must be called with the sighand lock held. | 
|---|
| 564 | */ | 
|---|
| 565 | static void arm_timer(struct k_itimer *timer, struct task_struct *p) | 
|---|
| 566 | { | 
|---|
| 567 | struct posix_cputimer_base *base = timer_base(timer, tsk: p); | 
|---|
| 568 | struct cpu_timer *ctmr = &timer->it.cpu; | 
|---|
| 569 | u64 newexp = cpu_timer_getexpires(ctmr); | 
|---|
| 570 |  | 
|---|
| 571 | timer->it_status = POSIX_TIMER_ARMED; | 
|---|
| 572 | if (!cpu_timer_enqueue(head: &base->tqhead, ctmr)) | 
|---|
| 573 | return; | 
|---|
| 574 |  | 
|---|
| 575 | /* | 
|---|
| 576 | * We are the new earliest-expiring POSIX 1.b timer, hence | 
|---|
| 577 | * need to update expiration cache. Take into account that | 
|---|
| 578 | * for process timers we share expiration cache with itimers | 
|---|
| 579 | * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME. | 
|---|
| 580 | */ | 
|---|
| 581 | if (newexp < base->nextevt) | 
|---|
| 582 | base->nextevt = newexp; | 
|---|
| 583 |  | 
|---|
| 584 | if (CPUCLOCK_PERTHREAD(timer->it_clock)) | 
|---|
| 585 | tick_dep_set_task(tsk: p, bit: TICK_DEP_BIT_POSIX_TIMER); | 
|---|
| 586 | else | 
|---|
| 587 | tick_dep_set_signal(tsk: p, bit: TICK_DEP_BIT_POSIX_TIMER); | 
|---|
| 588 | } | 
|---|
| 589 |  | 
|---|
| 590 | /* | 
|---|
| 591 | * The timer is locked, fire it and arrange for its reload. | 
|---|
| 592 | */ | 
|---|
| 593 | static void cpu_timer_fire(struct k_itimer *timer) | 
|---|
| 594 | { | 
|---|
| 595 | struct cpu_timer *ctmr = &timer->it.cpu; | 
|---|
| 596 |  | 
|---|
| 597 | timer->it_status = POSIX_TIMER_DISARMED; | 
|---|
| 598 |  | 
|---|
| 599 | if (unlikely(ctmr->nanosleep)) { | 
|---|
| 600 | /* | 
|---|
| 601 | * This a special case for clock_nanosleep, | 
|---|
| 602 | * not a normal timer from sys_timer_create. | 
|---|
| 603 | */ | 
|---|
| 604 | wake_up_process(tsk: timer->it_process); | 
|---|
| 605 | cpu_timer_setexpires(ctmr, exp: 0); | 
|---|
| 606 | } else { | 
|---|
| 607 | posix_timer_queue_signal(timr: timer); | 
|---|
| 608 | /* Disable oneshot timers */ | 
|---|
| 609 | if (!timer->it_interval) | 
|---|
| 610 | cpu_timer_setexpires(ctmr, exp: 0); | 
|---|
| 611 | } | 
|---|
| 612 | } | 
|---|
| 613 |  | 
|---|
| 614 | static void __posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec64 *itp, u64 now); | 
|---|
| 615 |  | 
|---|
| 616 | /* | 
|---|
| 617 | * Guts of sys_timer_settime for CPU timers. | 
|---|
| 618 | * This is called with the timer locked and interrupts disabled. | 
|---|
| 619 | * If we return TIMER_RETRY, it's necessary to release the timer's lock | 
|---|
| 620 | * and try again.  (This happens when the timer is in the middle of firing.) | 
|---|
| 621 | */ | 
|---|
| 622 | static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags, | 
|---|
| 623 | struct itimerspec64 *new, struct itimerspec64 *old) | 
|---|
| 624 | { | 
|---|
| 625 | bool sigev_none = timer->it_sigev_notify == SIGEV_NONE; | 
|---|
| 626 | clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock); | 
|---|
| 627 | struct cpu_timer *ctmr = &timer->it.cpu; | 
|---|
| 628 | u64 old_expires, new_expires, now; | 
|---|
| 629 | struct sighand_struct *sighand; | 
|---|
| 630 | struct task_struct *p; | 
|---|
| 631 | unsigned long flags; | 
|---|
| 632 | int ret = 0; | 
|---|
| 633 |  | 
|---|
| 634 | rcu_read_lock(); | 
|---|
| 635 | p = cpu_timer_task_rcu(timer); | 
|---|
| 636 | if (!p) { | 
|---|
| 637 | /* | 
|---|
| 638 | * If p has just been reaped, we can no | 
|---|
| 639 | * longer get any information about it at all. | 
|---|
| 640 | */ | 
|---|
| 641 | rcu_read_unlock(); | 
|---|
| 642 | return -ESRCH; | 
|---|
| 643 | } | 
|---|
| 644 |  | 
|---|
| 645 | /* | 
|---|
| 646 | * Use the to_ktime conversion because that clamps the maximum | 
|---|
| 647 | * value to KTIME_MAX and avoid multiplication overflows. | 
|---|
| 648 | */ | 
|---|
| 649 | new_expires = ktime_to_ns(kt: timespec64_to_ktime(ts: new->it_value)); | 
|---|
| 650 |  | 
|---|
| 651 | /* | 
|---|
| 652 | * Protect against sighand release/switch in exit/exec and p->cpu_timers | 
|---|
| 653 | * and p->signal->cpu_timers read/write in arm_timer() | 
|---|
| 654 | */ | 
|---|
| 655 | sighand = lock_task_sighand(task: p, flags: &flags); | 
|---|
| 656 | /* | 
|---|
| 657 | * If p has just been reaped, we can no | 
|---|
| 658 | * longer get any information about it at all. | 
|---|
| 659 | */ | 
|---|
| 660 | if (unlikely(sighand == NULL)) { | 
|---|
| 661 | rcu_read_unlock(); | 
|---|
| 662 | return -ESRCH; | 
|---|
| 663 | } | 
|---|
| 664 |  | 
|---|
| 665 | /* Retrieve the current expiry time before disarming the timer */ | 
|---|
| 666 | old_expires = cpu_timer_getexpires(ctmr); | 
|---|
| 667 |  | 
|---|
| 668 | if (unlikely(timer->it.cpu.firing)) { | 
|---|
| 669 | /* | 
|---|
| 670 | * Prevent signal delivery. The timer cannot be dequeued | 
|---|
| 671 | * because it is on the firing list which is not protected | 
|---|
| 672 | * by sighand->lock. The delivery path is waiting for | 
|---|
| 673 | * the timer lock. So go back, unlock and retry. | 
|---|
| 674 | */ | 
|---|
| 675 | timer->it.cpu.firing = false; | 
|---|
| 676 | ret = TIMER_RETRY; | 
|---|
| 677 | } else { | 
|---|
| 678 | cpu_timer_dequeue(ctmr); | 
|---|
| 679 | timer->it_status = POSIX_TIMER_DISARMED; | 
|---|
| 680 | } | 
|---|
| 681 |  | 
|---|
| 682 | /* | 
|---|
| 683 | * Sample the current clock for saving the previous setting | 
|---|
| 684 | * and for rearming the timer. | 
|---|
| 685 | */ | 
|---|
| 686 | if (CPUCLOCK_PERTHREAD(timer->it_clock)) | 
|---|
| 687 | now = cpu_clock_sample(clkid, p); | 
|---|
| 688 | else | 
|---|
| 689 | now = cpu_clock_sample_group(clkid, p, start: !sigev_none); | 
|---|
| 690 |  | 
|---|
| 691 | /* Retrieve the previous expiry value if requested. */ | 
|---|
| 692 | if (old) { | 
|---|
| 693 | old->it_value = (struct timespec64){ }; | 
|---|
| 694 | if (old_expires) | 
|---|
| 695 | __posix_cpu_timer_get(timer, itp: old, now); | 
|---|
| 696 | } | 
|---|
| 697 |  | 
|---|
| 698 | /* Retry if the timer expiry is running concurrently */ | 
|---|
| 699 | if (unlikely(ret)) { | 
|---|
| 700 | unlock_task_sighand(task: p, flags: &flags); | 
|---|
| 701 | goto out; | 
|---|
| 702 | } | 
|---|
| 703 |  | 
|---|
| 704 | /* Convert relative expiry time to absolute */ | 
|---|
| 705 | if (new_expires && !(timer_flags & TIMER_ABSTIME)) | 
|---|
| 706 | new_expires += now; | 
|---|
| 707 |  | 
|---|
| 708 | /* Set the new expiry time (might be 0) */ | 
|---|
| 709 | cpu_timer_setexpires(ctmr, exp: new_expires); | 
|---|
| 710 |  | 
|---|
| 711 | /* | 
|---|
| 712 | * Arm the timer if it is not disabled, the new expiry value has | 
|---|
| 713 | * not yet expired and the timer requires signal delivery. | 
|---|
| 714 | * SIGEV_NONE timers are never armed. In case the timer is not | 
|---|
| 715 | * armed, enforce the reevaluation of the timer base so that the | 
|---|
| 716 | * process wide cputime counter can be disabled eventually. | 
|---|
| 717 | */ | 
|---|
| 718 | if (likely(!sigev_none)) { | 
|---|
| 719 | if (new_expires && now < new_expires) | 
|---|
| 720 | arm_timer(timer, p); | 
|---|
| 721 | else | 
|---|
| 722 | trigger_base_recalc_expires(timer, tsk: p); | 
|---|
| 723 | } | 
|---|
| 724 |  | 
|---|
| 725 | unlock_task_sighand(task: p, flags: &flags); | 
|---|
| 726 |  | 
|---|
| 727 | posix_timer_set_common(timer, new_setting: new); | 
|---|
| 728 |  | 
|---|
| 729 | /* | 
|---|
| 730 | * If the new expiry time was already in the past the timer was not | 
|---|
| 731 | * queued. Fire it immediately even if the thread never runs to | 
|---|
| 732 | * accumulate more time on this clock. | 
|---|
| 733 | */ | 
|---|
| 734 | if (!sigev_none && new_expires && now >= new_expires) | 
|---|
| 735 | cpu_timer_fire(timer); | 
|---|
| 736 | out: | 
|---|
| 737 | rcu_read_unlock(); | 
|---|
| 738 | return ret; | 
|---|
| 739 | } | 
|---|
| 740 |  | 
|---|
| 741 | static void __posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec64 *itp, u64 now) | 
|---|
| 742 | { | 
|---|
| 743 | bool sigev_none = timer->it_sigev_notify == SIGEV_NONE; | 
|---|
| 744 | u64 expires, iv = timer->it_interval; | 
|---|
| 745 |  | 
|---|
| 746 | /* | 
|---|
| 747 | * Make sure that interval timers are moved forward for the | 
|---|
| 748 | * following cases: | 
|---|
| 749 | *  - SIGEV_NONE timers which are never armed | 
|---|
| 750 | *  - Timers which expired, but the signal has not yet been | 
|---|
| 751 | *    delivered | 
|---|
| 752 | */ | 
|---|
| 753 | if (iv && timer->it_status != POSIX_TIMER_ARMED) | 
|---|
| 754 | expires = bump_cpu_timer(timer, now); | 
|---|
| 755 | else | 
|---|
| 756 | expires = cpu_timer_getexpires(ctmr: &timer->it.cpu); | 
|---|
| 757 |  | 
|---|
| 758 | /* | 
|---|
| 759 | * Expired interval timers cannot have a remaining time <= 0. | 
|---|
| 760 | * The kernel has to move them forward so that the next | 
|---|
| 761 | * timer expiry is > @now. | 
|---|
| 762 | */ | 
|---|
| 763 | if (now < expires) { | 
|---|
| 764 | itp->it_value = ns_to_timespec64(nsec: expires - now); | 
|---|
| 765 | } else { | 
|---|
| 766 | /* | 
|---|
| 767 | * A single shot SIGEV_NONE timer must return 0, when it is | 
|---|
| 768 | * expired! Timers which have a real signal delivery mode | 
|---|
| 769 | * must return a remaining time greater than 0 because the | 
|---|
| 770 | * signal has not yet been delivered. | 
|---|
| 771 | */ | 
|---|
| 772 | if (!sigev_none) | 
|---|
| 773 | itp->it_value.tv_nsec = 1; | 
|---|
| 774 | } | 
|---|
| 775 | } | 
|---|
| 776 |  | 
|---|
| 777 | static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec64 *itp) | 
|---|
| 778 | { | 
|---|
| 779 | clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock); | 
|---|
| 780 | struct task_struct *p; | 
|---|
| 781 | u64 now; | 
|---|
| 782 |  | 
|---|
| 783 | rcu_read_lock(); | 
|---|
| 784 | p = cpu_timer_task_rcu(timer); | 
|---|
| 785 | if (p && cpu_timer_getexpires(ctmr: &timer->it.cpu)) { | 
|---|
| 786 | itp->it_interval = ktime_to_timespec64(timer->it_interval); | 
|---|
| 787 |  | 
|---|
| 788 | if (CPUCLOCK_PERTHREAD(timer->it_clock)) | 
|---|
| 789 | now = cpu_clock_sample(clkid, p); | 
|---|
| 790 | else | 
|---|
| 791 | now = cpu_clock_sample_group(clkid, p, start: false); | 
|---|
| 792 |  | 
|---|
| 793 | __posix_cpu_timer_get(timer, itp, now); | 
|---|
| 794 | } | 
|---|
| 795 | rcu_read_unlock(); | 
|---|
| 796 | } | 
|---|
| 797 |  | 
|---|
| 798 | #define MAX_COLLECTED	20 | 
|---|
| 799 |  | 
|---|
| 800 | static u64 collect_timerqueue(struct timerqueue_head *head, | 
|---|
| 801 | struct list_head *firing, u64 now) | 
|---|
| 802 | { | 
|---|
| 803 | struct timerqueue_node *next; | 
|---|
| 804 | int i = 0; | 
|---|
| 805 |  | 
|---|
| 806 | while ((next = timerqueue_getnext(head))) { | 
|---|
| 807 | struct cpu_timer *ctmr; | 
|---|
| 808 | u64 expires; | 
|---|
| 809 |  | 
|---|
| 810 | ctmr = container_of(next, struct cpu_timer, node); | 
|---|
| 811 | expires = cpu_timer_getexpires(ctmr); | 
|---|
| 812 | /* Limit the number of timers to expire at once */ | 
|---|
| 813 | if (++i == MAX_COLLECTED || now < expires) | 
|---|
| 814 | return expires; | 
|---|
| 815 |  | 
|---|
| 816 | ctmr->firing = true; | 
|---|
| 817 | /* See posix_cpu_timer_wait_running() */ | 
|---|
| 818 | rcu_assign_pointer(ctmr->handling, current); | 
|---|
| 819 | cpu_timer_dequeue(ctmr); | 
|---|
| 820 | list_add_tail(new: &ctmr->elist, head: firing); | 
|---|
| 821 | } | 
|---|
| 822 |  | 
|---|
| 823 | return U64_MAX; | 
|---|
| 824 | } | 
|---|
| 825 |  | 
|---|
| 826 | static void collect_posix_cputimers(struct posix_cputimers *pct, u64 *samples, | 
|---|
| 827 | struct list_head *firing) | 
|---|
| 828 | { | 
|---|
| 829 | struct posix_cputimer_base *base = pct->bases; | 
|---|
| 830 | int i; | 
|---|
| 831 |  | 
|---|
| 832 | for (i = 0; i < CPUCLOCK_MAX; i++, base++) { | 
|---|
| 833 | base->nextevt = collect_timerqueue(head: &base->tqhead, firing, | 
|---|
| 834 | now: samples[i]); | 
|---|
| 835 | } | 
|---|
| 836 | } | 
|---|
| 837 |  | 
|---|
| 838 | static inline void check_dl_overrun(struct task_struct *tsk) | 
|---|
| 839 | { | 
|---|
| 840 | if (tsk->dl.dl_overrun) { | 
|---|
| 841 | tsk->dl.dl_overrun = 0; | 
|---|
| 842 | send_signal_locked(SIGXCPU, SEND_SIG_PRIV, p: tsk, type: PIDTYPE_TGID); | 
|---|
| 843 | } | 
|---|
| 844 | } | 
|---|
| 845 |  | 
|---|
| 846 | static bool check_rlimit(u64 time, u64 limit, int signo, bool rt, bool hard) | 
|---|
| 847 | { | 
|---|
| 848 | if (time < limit) | 
|---|
| 849 | return false; | 
|---|
| 850 |  | 
|---|
| 851 | if (print_fatal_signals) { | 
|---|
| 852 | pr_info( "%s Watchdog Timeout (%s): %s[%d]\n", | 
|---|
| 853 | rt ? "RT": "CPU", hard ? "hard": "soft", | 
|---|
| 854 | current->comm, task_pid_nr(current)); | 
|---|
| 855 | } | 
|---|
| 856 | send_signal_locked(sig: signo, SEND_SIG_PRIV, current, type: PIDTYPE_TGID); | 
|---|
| 857 | return true; | 
|---|
| 858 | } | 
|---|
| 859 |  | 
|---|
| 860 | /* | 
|---|
| 861 | * Check for any per-thread CPU timers that have fired and move them off | 
|---|
| 862 | * the tsk->cpu_timers[N] list onto the firing list.  Here we update the | 
|---|
| 863 | * tsk->it_*_expires values to reflect the remaining thread CPU timers. | 
|---|
| 864 | */ | 
|---|
| 865 | static void check_thread_timers(struct task_struct *tsk, | 
|---|
| 866 | struct list_head *firing) | 
|---|
| 867 | { | 
|---|
| 868 | struct posix_cputimers *pct = &tsk->posix_cputimers; | 
|---|
| 869 | u64 samples[CPUCLOCK_MAX]; | 
|---|
| 870 | unsigned long soft; | 
|---|
| 871 |  | 
|---|
| 872 | if (dl_task(p: tsk)) | 
|---|
| 873 | check_dl_overrun(tsk); | 
|---|
| 874 |  | 
|---|
| 875 | if (expiry_cache_is_inactive(pct)) | 
|---|
| 876 | return; | 
|---|
| 877 |  | 
|---|
| 878 | task_sample_cputime(p: tsk, samples); | 
|---|
| 879 | collect_posix_cputimers(pct, samples, firing); | 
|---|
| 880 |  | 
|---|
| 881 | /* | 
|---|
| 882 | * Check for the special case thread timers. | 
|---|
| 883 | */ | 
|---|
| 884 | soft = task_rlimit(task: tsk, RLIMIT_RTTIME); | 
|---|
| 885 | if (soft != RLIM_INFINITY) { | 
|---|
| 886 | /* Task RT timeout is accounted in jiffies. RTTIME is usec */ | 
|---|
| 887 | unsigned long rttime = tsk->rt.timeout * (USEC_PER_SEC / HZ); | 
|---|
| 888 | unsigned long hard = task_rlimit_max(task: tsk, RLIMIT_RTTIME); | 
|---|
| 889 |  | 
|---|
| 890 | /* At the hard limit, send SIGKILL. No further action. */ | 
|---|
| 891 | if (hard != RLIM_INFINITY && | 
|---|
| 892 | check_rlimit(time: rttime, limit: hard, SIGKILL, rt: true, hard: true)) | 
|---|
| 893 | return; | 
|---|
| 894 |  | 
|---|
| 895 | /* At the soft limit, send a SIGXCPU every second */ | 
|---|
| 896 | if (check_rlimit(time: rttime, limit: soft, SIGXCPU, rt: true, hard: false)) { | 
|---|
| 897 | soft += USEC_PER_SEC; | 
|---|
| 898 | tsk->signal->rlim[RLIMIT_RTTIME].rlim_cur = soft; | 
|---|
| 899 | } | 
|---|
| 900 | } | 
|---|
| 901 |  | 
|---|
| 902 | if (expiry_cache_is_inactive(pct)) | 
|---|
| 903 | tick_dep_clear_task(tsk, bit: TICK_DEP_BIT_POSIX_TIMER); | 
|---|
| 904 | } | 
|---|
| 905 |  | 
|---|
| 906 | static inline void stop_process_timers(struct signal_struct *sig) | 
|---|
| 907 | { | 
|---|
| 908 | struct posix_cputimers *pct = &sig->posix_cputimers; | 
|---|
| 909 |  | 
|---|
| 910 | /* Turn off the active flag. This is done without locking. */ | 
|---|
| 911 | WRITE_ONCE(pct->timers_active, false); | 
|---|
| 912 | tick_dep_clear_signal(signal: sig, bit: TICK_DEP_BIT_POSIX_TIMER); | 
|---|
| 913 | } | 
|---|
| 914 |  | 
|---|
| 915 | static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it, | 
|---|
| 916 | u64 *expires, u64 cur_time, int signo) | 
|---|
| 917 | { | 
|---|
| 918 | if (!it->expires) | 
|---|
| 919 | return; | 
|---|
| 920 |  | 
|---|
| 921 | if (cur_time >= it->expires) { | 
|---|
| 922 | if (it->incr) | 
|---|
| 923 | it->expires += it->incr; | 
|---|
| 924 | else | 
|---|
| 925 | it->expires = 0; | 
|---|
| 926 |  | 
|---|
| 927 | trace_itimer_expire(which: signo == SIGPROF ? | 
|---|
| 928 | ITIMER_PROF : ITIMER_VIRTUAL, | 
|---|
| 929 | pid: task_tgid(task: tsk), now: cur_time); | 
|---|
| 930 | send_signal_locked(sig: signo, SEND_SIG_PRIV, p: tsk, type: PIDTYPE_TGID); | 
|---|
| 931 | } | 
|---|
| 932 |  | 
|---|
| 933 | if (it->expires && it->expires < *expires) | 
|---|
| 934 | *expires = it->expires; | 
|---|
| 935 | } | 
|---|
| 936 |  | 
|---|
| 937 | /* | 
|---|
| 938 | * Check for any per-thread CPU timers that have fired and move them | 
|---|
| 939 | * off the tsk->*_timers list onto the firing list.  Per-thread timers | 
|---|
| 940 | * have already been taken off. | 
|---|
| 941 | */ | 
|---|
| 942 | static void check_process_timers(struct task_struct *tsk, | 
|---|
| 943 | struct list_head *firing) | 
|---|
| 944 | { | 
|---|
| 945 | struct signal_struct *const sig = tsk->signal; | 
|---|
| 946 | struct posix_cputimers *pct = &sig->posix_cputimers; | 
|---|
| 947 | u64 samples[CPUCLOCK_MAX]; | 
|---|
| 948 | unsigned long soft; | 
|---|
| 949 |  | 
|---|
| 950 | /* | 
|---|
| 951 | * If there are no active process wide timers (POSIX 1.b, itimers, | 
|---|
| 952 | * RLIMIT_CPU) nothing to check. Also skip the process wide timer | 
|---|
| 953 | * processing when there is already another task handling them. | 
|---|
| 954 | */ | 
|---|
| 955 | if (!READ_ONCE(pct->timers_active) || pct->expiry_active) | 
|---|
| 956 | return; | 
|---|
| 957 |  | 
|---|
| 958 | /* | 
|---|
| 959 | * Signify that a thread is checking for process timers. | 
|---|
| 960 | * Write access to this field is protected by the sighand lock. | 
|---|
| 961 | */ | 
|---|
| 962 | pct->expiry_active = true; | 
|---|
| 963 |  | 
|---|
| 964 | /* | 
|---|
| 965 | * Collect the current process totals. Group accounting is active | 
|---|
| 966 | * so the sample can be taken directly. | 
|---|
| 967 | */ | 
|---|
| 968 | proc_sample_cputime_atomic(at: &sig->cputimer.cputime_atomic, samples); | 
|---|
| 969 | collect_posix_cputimers(pct, samples, firing); | 
|---|
| 970 |  | 
|---|
| 971 | /* | 
|---|
| 972 | * Check for the special case process timers. | 
|---|
| 973 | */ | 
|---|
| 974 | check_cpu_itimer(tsk, it: &sig->it[CPUCLOCK_PROF], | 
|---|
| 975 | expires: &pct->bases[CPUCLOCK_PROF].nextevt, | 
|---|
| 976 | cur_time: samples[CPUCLOCK_PROF], SIGPROF); | 
|---|
| 977 | check_cpu_itimer(tsk, it: &sig->it[CPUCLOCK_VIRT], | 
|---|
| 978 | expires: &pct->bases[CPUCLOCK_VIRT].nextevt, | 
|---|
| 979 | cur_time: samples[CPUCLOCK_VIRT], SIGVTALRM); | 
|---|
| 980 |  | 
|---|
| 981 | soft = task_rlimit(task: tsk, RLIMIT_CPU); | 
|---|
| 982 | if (soft != RLIM_INFINITY) { | 
|---|
| 983 | /* RLIMIT_CPU is in seconds. Samples are nanoseconds */ | 
|---|
| 984 | unsigned long hard = task_rlimit_max(task: tsk, RLIMIT_CPU); | 
|---|
| 985 | u64 ptime = samples[CPUCLOCK_PROF]; | 
|---|
| 986 | u64 softns = (u64)soft * NSEC_PER_SEC; | 
|---|
| 987 | u64 hardns = (u64)hard * NSEC_PER_SEC; | 
|---|
| 988 |  | 
|---|
| 989 | /* At the hard limit, send SIGKILL. No further action. */ | 
|---|
| 990 | if (hard != RLIM_INFINITY && | 
|---|
| 991 | check_rlimit(time: ptime, limit: hardns, SIGKILL, rt: false, hard: true)) | 
|---|
| 992 | return; | 
|---|
| 993 |  | 
|---|
| 994 | /* At the soft limit, send a SIGXCPU every second */ | 
|---|
| 995 | if (check_rlimit(time: ptime, limit: softns, SIGXCPU, rt: false, hard: false)) { | 
|---|
| 996 | sig->rlim[RLIMIT_CPU].rlim_cur = soft + 1; | 
|---|
| 997 | softns += NSEC_PER_SEC; | 
|---|
| 998 | } | 
|---|
| 999 |  | 
|---|
| 1000 | /* Update the expiry cache */ | 
|---|
| 1001 | if (softns < pct->bases[CPUCLOCK_PROF].nextevt) | 
|---|
| 1002 | pct->bases[CPUCLOCK_PROF].nextevt = softns; | 
|---|
| 1003 | } | 
|---|
| 1004 |  | 
|---|
| 1005 | if (expiry_cache_is_inactive(pct)) | 
|---|
| 1006 | stop_process_timers(sig); | 
|---|
| 1007 |  | 
|---|
| 1008 | pct->expiry_active = false; | 
|---|
| 1009 | } | 
|---|
| 1010 |  | 
|---|
| 1011 | /* | 
|---|
| 1012 | * This is called from the signal code (via posixtimer_rearm) | 
|---|
| 1013 | * when the last timer signal was delivered and we have to reload the timer. | 
|---|
| 1014 | */ | 
|---|
| 1015 | static void posix_cpu_timer_rearm(struct k_itimer *timer) | 
|---|
| 1016 | { | 
|---|
| 1017 | clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock); | 
|---|
| 1018 | struct task_struct *p; | 
|---|
| 1019 | struct sighand_struct *sighand; | 
|---|
| 1020 | unsigned long flags; | 
|---|
| 1021 | u64 now; | 
|---|
| 1022 |  | 
|---|
| 1023 | rcu_read_lock(); | 
|---|
| 1024 | p = cpu_timer_task_rcu(timer); | 
|---|
| 1025 | if (!p) | 
|---|
| 1026 | goto out; | 
|---|
| 1027 |  | 
|---|
| 1028 | /* Protect timer list r/w in arm_timer() */ | 
|---|
| 1029 | sighand = lock_task_sighand(task: p, flags: &flags); | 
|---|
| 1030 | if (unlikely(sighand == NULL)) | 
|---|
| 1031 | goto out; | 
|---|
| 1032 |  | 
|---|
| 1033 | /* | 
|---|
| 1034 | * Fetch the current sample and update the timer's expiry time. | 
|---|
| 1035 | */ | 
|---|
| 1036 | if (CPUCLOCK_PERTHREAD(timer->it_clock)) | 
|---|
| 1037 | now = cpu_clock_sample(clkid, p); | 
|---|
| 1038 | else | 
|---|
| 1039 | now = cpu_clock_sample_group(clkid, p, start: true); | 
|---|
| 1040 |  | 
|---|
| 1041 | bump_cpu_timer(timer, now); | 
|---|
| 1042 |  | 
|---|
| 1043 | /* | 
|---|
| 1044 | * Now re-arm for the new expiry time. | 
|---|
| 1045 | */ | 
|---|
| 1046 | arm_timer(timer, p); | 
|---|
| 1047 | unlock_task_sighand(task: p, flags: &flags); | 
|---|
| 1048 | out: | 
|---|
| 1049 | rcu_read_unlock(); | 
|---|
| 1050 | } | 
|---|
| 1051 |  | 
|---|
| 1052 | /** | 
|---|
| 1053 | * task_cputimers_expired - Check whether posix CPU timers are expired | 
|---|
| 1054 | * | 
|---|
| 1055 | * @samples:	Array of current samples for the CPUCLOCK clocks | 
|---|
| 1056 | * @pct:	Pointer to a posix_cputimers container | 
|---|
| 1057 | * | 
|---|
| 1058 | * Returns true if any member of @samples is greater than the corresponding | 
|---|
| 1059 | * member of @pct->bases[CLK].nextevt. False otherwise | 
|---|
| 1060 | */ | 
|---|
| 1061 | static inline bool | 
|---|
| 1062 | task_cputimers_expired(const u64 *samples, struct posix_cputimers *pct) | 
|---|
| 1063 | { | 
|---|
| 1064 | int i; | 
|---|
| 1065 |  | 
|---|
| 1066 | for (i = 0; i < CPUCLOCK_MAX; i++) { | 
|---|
| 1067 | if (samples[i] >= pct->bases[i].nextevt) | 
|---|
| 1068 | return true; | 
|---|
| 1069 | } | 
|---|
| 1070 | return false; | 
|---|
| 1071 | } | 
|---|
| 1072 |  | 
|---|
| 1073 | /** | 
|---|
| 1074 | * fastpath_timer_check - POSIX CPU timers fast path. | 
|---|
| 1075 | * | 
|---|
| 1076 | * @tsk:	The task (thread) being checked. | 
|---|
| 1077 | * | 
|---|
| 1078 | * Check the task and thread group timers.  If both are zero (there are no | 
|---|
| 1079 | * timers set) return false.  Otherwise snapshot the task and thread group | 
|---|
| 1080 | * timers and compare them with the corresponding expiration times.  Return | 
|---|
| 1081 | * true if a timer has expired, else return false. | 
|---|
| 1082 | */ | 
|---|
| 1083 | static inline bool fastpath_timer_check(struct task_struct *tsk) | 
|---|
| 1084 | { | 
|---|
| 1085 | struct posix_cputimers *pct = &tsk->posix_cputimers; | 
|---|
| 1086 | struct signal_struct *sig; | 
|---|
| 1087 |  | 
|---|
| 1088 | if (!expiry_cache_is_inactive(pct)) { | 
|---|
| 1089 | u64 samples[CPUCLOCK_MAX]; | 
|---|
| 1090 |  | 
|---|
| 1091 | task_sample_cputime(p: tsk, samples); | 
|---|
| 1092 | if (task_cputimers_expired(samples, pct)) | 
|---|
| 1093 | return true; | 
|---|
| 1094 | } | 
|---|
| 1095 |  | 
|---|
| 1096 | sig = tsk->signal; | 
|---|
| 1097 | pct = &sig->posix_cputimers; | 
|---|
| 1098 | /* | 
|---|
| 1099 | * Check if thread group timers expired when timers are active and | 
|---|
| 1100 | * no other thread in the group is already handling expiry for | 
|---|
| 1101 | * thread group cputimers. These fields are read without the | 
|---|
| 1102 | * sighand lock. However, this is fine because this is meant to be | 
|---|
| 1103 | * a fastpath heuristic to determine whether we should try to | 
|---|
| 1104 | * acquire the sighand lock to handle timer expiry. | 
|---|
| 1105 | * | 
|---|
| 1106 | * In the worst case scenario, if concurrently timers_active is set | 
|---|
| 1107 | * or expiry_active is cleared, but the current thread doesn't see | 
|---|
| 1108 | * the change yet, the timer checks are delayed until the next | 
|---|
| 1109 | * thread in the group gets a scheduler interrupt to handle the | 
|---|
| 1110 | * timer. This isn't an issue in practice because these types of | 
|---|
| 1111 | * delays with signals actually getting sent are expected. | 
|---|
| 1112 | */ | 
|---|
| 1113 | if (READ_ONCE(pct->timers_active) && !READ_ONCE(pct->expiry_active)) { | 
|---|
| 1114 | u64 samples[CPUCLOCK_MAX]; | 
|---|
| 1115 |  | 
|---|
| 1116 | proc_sample_cputime_atomic(at: &sig->cputimer.cputime_atomic, | 
|---|
| 1117 | samples); | 
|---|
| 1118 |  | 
|---|
| 1119 | if (task_cputimers_expired(samples, pct)) | 
|---|
| 1120 | return true; | 
|---|
| 1121 | } | 
|---|
| 1122 |  | 
|---|
| 1123 | if (dl_task(p: tsk) && tsk->dl.dl_overrun) | 
|---|
| 1124 | return true; | 
|---|
| 1125 |  | 
|---|
| 1126 | return false; | 
|---|
| 1127 | } | 
|---|
| 1128 |  | 
|---|
| 1129 | static void handle_posix_cpu_timers(struct task_struct *tsk); | 
|---|
| 1130 |  | 
|---|
| 1131 | #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK | 
|---|
| 1132 | static void posix_cpu_timers_work(struct callback_head *work) | 
|---|
| 1133 | { | 
|---|
| 1134 | struct posix_cputimers_work *cw = container_of(work, typeof(*cw), work); | 
|---|
| 1135 |  | 
|---|
| 1136 | mutex_lock(lock: &cw->mutex); | 
|---|
| 1137 | handle_posix_cpu_timers(current); | 
|---|
| 1138 | mutex_unlock(lock: &cw->mutex); | 
|---|
| 1139 | } | 
|---|
| 1140 |  | 
|---|
| 1141 | /* | 
|---|
| 1142 | * Invoked from the posix-timer core when a cancel operation failed because | 
|---|
| 1143 | * the timer is marked firing. The caller holds rcu_read_lock(), which | 
|---|
| 1144 | * protects the timer and the task which is expiring it from being freed. | 
|---|
| 1145 | */ | 
|---|
| 1146 | static void posix_cpu_timer_wait_running(struct k_itimer *timr) | 
|---|
| 1147 | { | 
|---|
| 1148 | struct task_struct *tsk = rcu_dereference(timr->it.cpu.handling); | 
|---|
| 1149 |  | 
|---|
| 1150 | /* Has the handling task completed expiry already? */ | 
|---|
| 1151 | if (!tsk) | 
|---|
| 1152 | return; | 
|---|
| 1153 |  | 
|---|
| 1154 | /* Ensure that the task cannot go away */ | 
|---|
| 1155 | get_task_struct(t: tsk); | 
|---|
| 1156 | /* Now drop the RCU protection so the mutex can be locked */ | 
|---|
| 1157 | rcu_read_unlock(); | 
|---|
| 1158 | /* Wait on the expiry mutex */ | 
|---|
| 1159 | mutex_lock(lock: &tsk->posix_cputimers_work.mutex); | 
|---|
| 1160 | /* Release it immediately again. */ | 
|---|
| 1161 | mutex_unlock(lock: &tsk->posix_cputimers_work.mutex); | 
|---|
| 1162 | /* Drop the task reference. */ | 
|---|
| 1163 | put_task_struct(t: tsk); | 
|---|
| 1164 | /* Relock RCU so the callsite is balanced */ | 
|---|
| 1165 | rcu_read_lock(); | 
|---|
| 1166 | } | 
|---|
| 1167 |  | 
|---|
| 1168 | static void posix_cpu_timer_wait_running_nsleep(struct k_itimer *timr) | 
|---|
| 1169 | { | 
|---|
| 1170 | /* Ensure that timr->it.cpu.handling task cannot go away */ | 
|---|
| 1171 | rcu_read_lock(); | 
|---|
| 1172 | spin_unlock_irq(lock: &timr->it_lock); | 
|---|
| 1173 | posix_cpu_timer_wait_running(timr); | 
|---|
| 1174 | rcu_read_unlock(); | 
|---|
| 1175 | /* @timr is on stack and is valid */ | 
|---|
| 1176 | spin_lock_irq(lock: &timr->it_lock); | 
|---|
| 1177 | } | 
|---|
| 1178 |  | 
|---|
| 1179 | /* | 
|---|
| 1180 | * Clear existing posix CPU timers task work. | 
|---|
| 1181 | */ | 
|---|
| 1182 | void clear_posix_cputimers_work(struct task_struct *p) | 
|---|
| 1183 | { | 
|---|
| 1184 | /* | 
|---|
| 1185 | * A copied work entry from the old task is not meaningful, clear it. | 
|---|
| 1186 | * N.B. init_task_work will not do this. | 
|---|
| 1187 | */ | 
|---|
| 1188 | memset(s: &p->posix_cputimers_work.work, c: 0, | 
|---|
| 1189 | n: sizeof(p->posix_cputimers_work.work)); | 
|---|
| 1190 | init_task_work(twork: &p->posix_cputimers_work.work, | 
|---|
| 1191 | func: posix_cpu_timers_work); | 
|---|
| 1192 | mutex_init(&p->posix_cputimers_work.mutex); | 
|---|
| 1193 | p->posix_cputimers_work.scheduled = false; | 
|---|
| 1194 | } | 
|---|
| 1195 |  | 
|---|
| 1196 | /* | 
|---|
| 1197 | * Initialize posix CPU timers task work in init task. Out of line to | 
|---|
| 1198 | * keep the callback static and to avoid header recursion hell. | 
|---|
| 1199 | */ | 
|---|
| 1200 | void __init posix_cputimers_init_work(void) | 
|---|
| 1201 | { | 
|---|
| 1202 | clear_posix_cputimers_work(current); | 
|---|
| 1203 | } | 
|---|
| 1204 |  | 
|---|
| 1205 | /* | 
|---|
| 1206 | * Note: All operations on tsk->posix_cputimer_work.scheduled happen either | 
|---|
| 1207 | * in hard interrupt context or in task context with interrupts | 
|---|
| 1208 | * disabled. Aside of that the writer/reader interaction is always in the | 
|---|
| 1209 | * context of the current task, which means they are strict per CPU. | 
|---|
| 1210 | */ | 
|---|
| 1211 | static inline bool posix_cpu_timers_work_scheduled(struct task_struct *tsk) | 
|---|
| 1212 | { | 
|---|
| 1213 | return tsk->posix_cputimers_work.scheduled; | 
|---|
| 1214 | } | 
|---|
| 1215 |  | 
|---|
| 1216 | static inline void __run_posix_cpu_timers(struct task_struct *tsk) | 
|---|
| 1217 | { | 
|---|
| 1218 | if (WARN_ON_ONCE(tsk->posix_cputimers_work.scheduled)) | 
|---|
| 1219 | return; | 
|---|
| 1220 |  | 
|---|
| 1221 | /* Schedule task work to actually expire the timers */ | 
|---|
| 1222 | tsk->posix_cputimers_work.scheduled = true; | 
|---|
| 1223 | task_work_add(task: tsk, twork: &tsk->posix_cputimers_work.work, mode: TWA_RESUME); | 
|---|
| 1224 | } | 
|---|
| 1225 |  | 
|---|
| 1226 | static inline bool posix_cpu_timers_enable_work(struct task_struct *tsk, | 
|---|
| 1227 | unsigned long start) | 
|---|
| 1228 | { | 
|---|
| 1229 | bool ret = true; | 
|---|
| 1230 |  | 
|---|
| 1231 | /* | 
|---|
| 1232 | * On !RT kernels interrupts are disabled while collecting expired | 
|---|
| 1233 | * timers, so no tick can happen and the fast path check can be | 
|---|
| 1234 | * reenabled without further checks. | 
|---|
| 1235 | */ | 
|---|
| 1236 | if (!IS_ENABLED(CONFIG_PREEMPT_RT)) { | 
|---|
| 1237 | tsk->posix_cputimers_work.scheduled = false; | 
|---|
| 1238 | return true; | 
|---|
| 1239 | } | 
|---|
| 1240 |  | 
|---|
| 1241 | /* | 
|---|
| 1242 | * On RT enabled kernels ticks can happen while the expired timers | 
|---|
| 1243 | * are collected under sighand lock. But any tick which observes | 
|---|
| 1244 | * the CPUTIMERS_WORK_SCHEDULED bit set, does not run the fastpath | 
|---|
| 1245 | * checks. So reenabling the tick work has do be done carefully: | 
|---|
| 1246 | * | 
|---|
| 1247 | * Disable interrupts and run the fast path check if jiffies have | 
|---|
| 1248 | * advanced since the collecting of expired timers started. If | 
|---|
| 1249 | * jiffies have not advanced or the fast path check did not find | 
|---|
| 1250 | * newly expired timers, reenable the fast path check in the timer | 
|---|
| 1251 | * interrupt. If there are newly expired timers, return false and | 
|---|
| 1252 | * let the collection loop repeat. | 
|---|
| 1253 | */ | 
|---|
| 1254 | local_irq_disable(); | 
|---|
| 1255 | if (start != jiffies && fastpath_timer_check(tsk)) | 
|---|
| 1256 | ret = false; | 
|---|
| 1257 | else | 
|---|
| 1258 | tsk->posix_cputimers_work.scheduled = false; | 
|---|
| 1259 | local_irq_enable(); | 
|---|
| 1260 |  | 
|---|
| 1261 | return ret; | 
|---|
| 1262 | } | 
|---|
| 1263 | #else /* CONFIG_POSIX_CPU_TIMERS_TASK_WORK */ | 
|---|
| 1264 | static inline void __run_posix_cpu_timers(struct task_struct *tsk) | 
|---|
| 1265 | { | 
|---|
| 1266 | lockdep_posixtimer_enter(); | 
|---|
| 1267 | handle_posix_cpu_timers(tsk); | 
|---|
| 1268 | lockdep_posixtimer_exit(); | 
|---|
| 1269 | } | 
|---|
| 1270 |  | 
|---|
| 1271 | static void posix_cpu_timer_wait_running(struct k_itimer *timr) | 
|---|
| 1272 | { | 
|---|
| 1273 | cpu_relax(); | 
|---|
| 1274 | } | 
|---|
| 1275 |  | 
|---|
| 1276 | static void posix_cpu_timer_wait_running_nsleep(struct k_itimer *timr) | 
|---|
| 1277 | { | 
|---|
| 1278 | spin_unlock_irq(&timr->it_lock); | 
|---|
| 1279 | cpu_relax(); | 
|---|
| 1280 | spin_lock_irq(&timr->it_lock); | 
|---|
| 1281 | } | 
|---|
| 1282 |  | 
|---|
| 1283 | static inline bool posix_cpu_timers_work_scheduled(struct task_struct *tsk) | 
|---|
| 1284 | { | 
|---|
| 1285 | return false; | 
|---|
| 1286 | } | 
|---|
| 1287 |  | 
|---|
| 1288 | static inline bool posix_cpu_timers_enable_work(struct task_struct *tsk, | 
|---|
| 1289 | unsigned long start) | 
|---|
| 1290 | { | 
|---|
| 1291 | return true; | 
|---|
| 1292 | } | 
|---|
| 1293 | #endif /* CONFIG_POSIX_CPU_TIMERS_TASK_WORK */ | 
|---|
| 1294 |  | 
|---|
| 1295 | static void handle_posix_cpu_timers(struct task_struct *tsk) | 
|---|
| 1296 | { | 
|---|
| 1297 | struct k_itimer *timer, *next; | 
|---|
| 1298 | unsigned long flags, start; | 
|---|
| 1299 | LIST_HEAD(firing); | 
|---|
| 1300 |  | 
|---|
| 1301 | if (!lock_task_sighand(task: tsk, flags: &flags)) | 
|---|
| 1302 | return; | 
|---|
| 1303 |  | 
|---|
| 1304 | do { | 
|---|
| 1305 | /* | 
|---|
| 1306 | * On RT locking sighand lock does not disable interrupts, | 
|---|
| 1307 | * so this needs to be careful vs. ticks. Store the current | 
|---|
| 1308 | * jiffies value. | 
|---|
| 1309 | */ | 
|---|
| 1310 | start = READ_ONCE(jiffies); | 
|---|
| 1311 | barrier(); | 
|---|
| 1312 |  | 
|---|
| 1313 | /* | 
|---|
| 1314 | * Here we take off tsk->signal->cpu_timers[N] and | 
|---|
| 1315 | * tsk->cpu_timers[N] all the timers that are firing, and | 
|---|
| 1316 | * put them on the firing list. | 
|---|
| 1317 | */ | 
|---|
| 1318 | check_thread_timers(tsk, firing: &firing); | 
|---|
| 1319 |  | 
|---|
| 1320 | check_process_timers(tsk, firing: &firing); | 
|---|
| 1321 |  | 
|---|
| 1322 | /* | 
|---|
| 1323 | * The above timer checks have updated the expiry cache and | 
|---|
| 1324 | * because nothing can have queued or modified timers after | 
|---|
| 1325 | * sighand lock was taken above it is guaranteed to be | 
|---|
| 1326 | * consistent. So the next timer interrupt fastpath check | 
|---|
| 1327 | * will find valid data. | 
|---|
| 1328 | * | 
|---|
| 1329 | * If timer expiry runs in the timer interrupt context then | 
|---|
| 1330 | * the loop is not relevant as timers will be directly | 
|---|
| 1331 | * expired in interrupt context. The stub function below | 
|---|
| 1332 | * returns always true which allows the compiler to | 
|---|
| 1333 | * optimize the loop out. | 
|---|
| 1334 | * | 
|---|
| 1335 | * If timer expiry is deferred to task work context then | 
|---|
| 1336 | * the following rules apply: | 
|---|
| 1337 | * | 
|---|
| 1338 | * - On !RT kernels no tick can have happened on this CPU | 
|---|
| 1339 | *   after sighand lock was acquired because interrupts are | 
|---|
| 1340 | *   disabled. So reenabling task work before dropping | 
|---|
| 1341 | *   sighand lock and reenabling interrupts is race free. | 
|---|
| 1342 | * | 
|---|
| 1343 | * - On RT kernels ticks might have happened but the tick | 
|---|
| 1344 | *   work ignored posix CPU timer handling because the | 
|---|
| 1345 | *   CPUTIMERS_WORK_SCHEDULED bit is set. Reenabling work | 
|---|
| 1346 | *   must be done very carefully including a check whether | 
|---|
| 1347 | *   ticks have happened since the start of the timer | 
|---|
| 1348 | *   expiry checks. posix_cpu_timers_enable_work() takes | 
|---|
| 1349 | *   care of that and eventually lets the expiry checks | 
|---|
| 1350 | *   run again. | 
|---|
| 1351 | */ | 
|---|
| 1352 | } while (!posix_cpu_timers_enable_work(tsk, start)); | 
|---|
| 1353 |  | 
|---|
| 1354 | /* | 
|---|
| 1355 | * We must release sighand lock before taking any timer's lock. | 
|---|
| 1356 | * There is a potential race with timer deletion here, as the | 
|---|
| 1357 | * siglock now protects our private firing list.  We have set | 
|---|
| 1358 | * the firing flag in each timer, so that a deletion attempt | 
|---|
| 1359 | * that gets the timer lock before we do will give it up and | 
|---|
| 1360 | * spin until we've taken care of that timer below. | 
|---|
| 1361 | */ | 
|---|
| 1362 | unlock_task_sighand(task: tsk, flags: &flags); | 
|---|
| 1363 |  | 
|---|
| 1364 | /* | 
|---|
| 1365 | * Now that all the timers on our list have the firing flag, | 
|---|
| 1366 | * no one will touch their list entries but us.  We'll take | 
|---|
| 1367 | * each timer's lock before clearing its firing flag, so no | 
|---|
| 1368 | * timer call will interfere. | 
|---|
| 1369 | */ | 
|---|
| 1370 | list_for_each_entry_safe(timer, next, &firing, it.cpu.elist) { | 
|---|
| 1371 | bool cpu_firing; | 
|---|
| 1372 |  | 
|---|
| 1373 | /* | 
|---|
| 1374 | * spin_lock() is sufficient here even independent of the | 
|---|
| 1375 | * expiry context. If expiry happens in hard interrupt | 
|---|
| 1376 | * context it's obvious. For task work context it's safe | 
|---|
| 1377 | * because all other operations on timer::it_lock happen in | 
|---|
| 1378 | * task context (syscall or exit). | 
|---|
| 1379 | */ | 
|---|
| 1380 | spin_lock(lock: &timer->it_lock); | 
|---|
| 1381 | list_del_init(entry: &timer->it.cpu.elist); | 
|---|
| 1382 | cpu_firing = timer->it.cpu.firing; | 
|---|
| 1383 | timer->it.cpu.firing = false; | 
|---|
| 1384 | /* | 
|---|
| 1385 | * If the firing flag is cleared then this raced with a | 
|---|
| 1386 | * timer rearm/delete operation. So don't generate an | 
|---|
| 1387 | * event. | 
|---|
| 1388 | */ | 
|---|
| 1389 | if (likely(cpu_firing)) | 
|---|
| 1390 | cpu_timer_fire(timer); | 
|---|
| 1391 | /* See posix_cpu_timer_wait_running() */ | 
|---|
| 1392 | rcu_assign_pointer(timer->it.cpu.handling, NULL); | 
|---|
| 1393 | spin_unlock(lock: &timer->it_lock); | 
|---|
| 1394 | } | 
|---|
| 1395 | } | 
|---|
| 1396 |  | 
|---|
| 1397 | /* | 
|---|
| 1398 | * This is called from the timer interrupt handler.  The irq handler has | 
|---|
| 1399 | * already updated our counts.  We need to check if any timers fire now. | 
|---|
| 1400 | * Interrupts are disabled. | 
|---|
| 1401 | */ | 
|---|
| 1402 | void run_posix_cpu_timers(void) | 
|---|
| 1403 | { | 
|---|
| 1404 | struct task_struct *tsk = current; | 
|---|
| 1405 |  | 
|---|
| 1406 | lockdep_assert_irqs_disabled(); | 
|---|
| 1407 |  | 
|---|
| 1408 | /* | 
|---|
| 1409 | * Ensure that release_task(tsk) can't happen while | 
|---|
| 1410 | * handle_posix_cpu_timers() is running. Otherwise, a concurrent | 
|---|
| 1411 | * posix_cpu_timer_del() may fail to lock_task_sighand(tsk) and | 
|---|
| 1412 | * miss timer->it.cpu.firing != 0. | 
|---|
| 1413 | */ | 
|---|
| 1414 | if (tsk->exit_state) | 
|---|
| 1415 | return; | 
|---|
| 1416 |  | 
|---|
| 1417 | /* | 
|---|
| 1418 | * If the actual expiry is deferred to task work context and the | 
|---|
| 1419 | * work is already scheduled there is no point to do anything here. | 
|---|
| 1420 | */ | 
|---|
| 1421 | if (posix_cpu_timers_work_scheduled(tsk)) | 
|---|
| 1422 | return; | 
|---|
| 1423 |  | 
|---|
| 1424 | /* | 
|---|
| 1425 | * The fast path checks that there are no expired thread or thread | 
|---|
| 1426 | * group timers.  If that's so, just return. | 
|---|
| 1427 | */ | 
|---|
| 1428 | if (!fastpath_timer_check(tsk)) | 
|---|
| 1429 | return; | 
|---|
| 1430 |  | 
|---|
| 1431 | __run_posix_cpu_timers(tsk); | 
|---|
| 1432 | } | 
|---|
| 1433 |  | 
|---|
| 1434 | /* | 
|---|
| 1435 | * Set one of the process-wide special case CPU timers or RLIMIT_CPU. | 
|---|
| 1436 | * The tsk->sighand->siglock must be held by the caller. | 
|---|
| 1437 | */ | 
|---|
| 1438 | void set_process_cpu_timer(struct task_struct *tsk, unsigned int clkid, | 
|---|
| 1439 | u64 *newval, u64 *oldval) | 
|---|
| 1440 | { | 
|---|
| 1441 | u64 now, *nextevt; | 
|---|
| 1442 |  | 
|---|
| 1443 | if (WARN_ON_ONCE(clkid >= CPUCLOCK_SCHED)) | 
|---|
| 1444 | return; | 
|---|
| 1445 |  | 
|---|
| 1446 | nextevt = &tsk->signal->posix_cputimers.bases[clkid].nextevt; | 
|---|
| 1447 | now = cpu_clock_sample_group(clkid, p: tsk, start: true); | 
|---|
| 1448 |  | 
|---|
| 1449 | if (oldval) { | 
|---|
| 1450 | /* | 
|---|
| 1451 | * We are setting itimer. The *oldval is absolute and we update | 
|---|
| 1452 | * it to be relative, *newval argument is relative and we update | 
|---|
| 1453 | * it to be absolute. | 
|---|
| 1454 | */ | 
|---|
| 1455 | if (*oldval) { | 
|---|
| 1456 | if (*oldval <= now) { | 
|---|
| 1457 | /* Just about to fire. */ | 
|---|
| 1458 | *oldval = TICK_NSEC; | 
|---|
| 1459 | } else { | 
|---|
| 1460 | *oldval -= now; | 
|---|
| 1461 | } | 
|---|
| 1462 | } | 
|---|
| 1463 |  | 
|---|
| 1464 | if (*newval) | 
|---|
| 1465 | *newval += now; | 
|---|
| 1466 | } | 
|---|
| 1467 |  | 
|---|
| 1468 | /* | 
|---|
| 1469 | * Update expiration cache if this is the earliest timer. CPUCLOCK_PROF | 
|---|
| 1470 | * expiry cache is also used by RLIMIT_CPU!. | 
|---|
| 1471 | */ | 
|---|
| 1472 | if (*newval < *nextevt) | 
|---|
| 1473 | *nextevt = *newval; | 
|---|
| 1474 |  | 
|---|
| 1475 | tick_dep_set_signal(tsk, bit: TICK_DEP_BIT_POSIX_TIMER); | 
|---|
| 1476 | } | 
|---|
| 1477 |  | 
|---|
| 1478 | static int do_cpu_nanosleep(const clockid_t which_clock, int flags, | 
|---|
| 1479 | const struct timespec64 *rqtp) | 
|---|
| 1480 | { | 
|---|
| 1481 | struct itimerspec64 it; | 
|---|
| 1482 | struct k_itimer timer; | 
|---|
| 1483 | u64 expires; | 
|---|
| 1484 | int error; | 
|---|
| 1485 |  | 
|---|
| 1486 | /* | 
|---|
| 1487 | * Set up a temporary timer and then wait for it to go off. | 
|---|
| 1488 | */ | 
|---|
| 1489 | memset(s: &timer, c: 0, n: sizeof timer); | 
|---|
| 1490 | spin_lock_init(&timer.it_lock); | 
|---|
| 1491 | timer.it_clock = which_clock; | 
|---|
| 1492 | timer.it_overrun = -1; | 
|---|
| 1493 | error = posix_cpu_timer_create(new_timer: &timer); | 
|---|
| 1494 | timer.it_process = current; | 
|---|
| 1495 | timer.it.cpu.nanosleep = true; | 
|---|
| 1496 |  | 
|---|
| 1497 | if (!error) { | 
|---|
| 1498 | static struct itimerspec64 zero_it; | 
|---|
| 1499 | struct restart_block *restart; | 
|---|
| 1500 |  | 
|---|
| 1501 | memset(s: &it, c: 0, n: sizeof(it)); | 
|---|
| 1502 | it.it_value = *rqtp; | 
|---|
| 1503 |  | 
|---|
| 1504 | spin_lock_irq(lock: &timer.it_lock); | 
|---|
| 1505 | error = posix_cpu_timer_set(timer: &timer, timer_flags: flags, new: &it, NULL); | 
|---|
| 1506 | if (error) { | 
|---|
| 1507 | spin_unlock_irq(lock: &timer.it_lock); | 
|---|
| 1508 | return error; | 
|---|
| 1509 | } | 
|---|
| 1510 |  | 
|---|
| 1511 | while (!signal_pending(current)) { | 
|---|
| 1512 | if (!cpu_timer_getexpires(ctmr: &timer.it.cpu)) { | 
|---|
| 1513 | /* | 
|---|
| 1514 | * Our timer fired and was reset, below | 
|---|
| 1515 | * deletion can not fail. | 
|---|
| 1516 | */ | 
|---|
| 1517 | posix_cpu_timer_del(timer: &timer); | 
|---|
| 1518 | spin_unlock_irq(lock: &timer.it_lock); | 
|---|
| 1519 | return 0; | 
|---|
| 1520 | } | 
|---|
| 1521 |  | 
|---|
| 1522 | /* | 
|---|
| 1523 | * Block until cpu_timer_fire (or a signal) wakes us. | 
|---|
| 1524 | */ | 
|---|
| 1525 | __set_current_state(TASK_INTERRUPTIBLE); | 
|---|
| 1526 | spin_unlock_irq(lock: &timer.it_lock); | 
|---|
| 1527 | schedule(); | 
|---|
| 1528 | spin_lock_irq(lock: &timer.it_lock); | 
|---|
| 1529 | } | 
|---|
| 1530 |  | 
|---|
| 1531 | /* | 
|---|
| 1532 | * We were interrupted by a signal. | 
|---|
| 1533 | */ | 
|---|
| 1534 | expires = cpu_timer_getexpires(ctmr: &timer.it.cpu); | 
|---|
| 1535 | error = posix_cpu_timer_set(timer: &timer, timer_flags: 0, new: &zero_it, old: &it); | 
|---|
| 1536 | if (!error) { | 
|---|
| 1537 | /* Timer is now unarmed, deletion can not fail. */ | 
|---|
| 1538 | posix_cpu_timer_del(timer: &timer); | 
|---|
| 1539 | } else { | 
|---|
| 1540 | while (error == TIMER_RETRY) { | 
|---|
| 1541 | posix_cpu_timer_wait_running_nsleep(timr: &timer); | 
|---|
| 1542 | error = posix_cpu_timer_del(timer: &timer); | 
|---|
| 1543 | } | 
|---|
| 1544 | } | 
|---|
| 1545 |  | 
|---|
| 1546 | spin_unlock_irq(lock: &timer.it_lock); | 
|---|
| 1547 |  | 
|---|
| 1548 | if ((it.it_value.tv_sec | it.it_value.tv_nsec) == 0) { | 
|---|
| 1549 | /* | 
|---|
| 1550 | * It actually did fire already. | 
|---|
| 1551 | */ | 
|---|
| 1552 | return 0; | 
|---|
| 1553 | } | 
|---|
| 1554 |  | 
|---|
| 1555 | error = -ERESTART_RESTARTBLOCK; | 
|---|
| 1556 | /* | 
|---|
| 1557 | * Report back to the user the time still remaining. | 
|---|
| 1558 | */ | 
|---|
| 1559 | restart = ¤t->restart_block; | 
|---|
| 1560 | restart->nanosleep.expires = expires; | 
|---|
| 1561 | if (restart->nanosleep.type != TT_NONE) | 
|---|
| 1562 | error = nanosleep_copyout(restart, &it.it_value); | 
|---|
| 1563 | } | 
|---|
| 1564 |  | 
|---|
| 1565 | return error; | 
|---|
| 1566 | } | 
|---|
| 1567 |  | 
|---|
| 1568 | static long posix_cpu_nsleep_restart(struct restart_block *restart_block); | 
|---|
| 1569 |  | 
|---|
| 1570 | static int posix_cpu_nsleep(const clockid_t which_clock, int flags, | 
|---|
| 1571 | const struct timespec64 *rqtp) | 
|---|
| 1572 | { | 
|---|
| 1573 | struct restart_block *restart_block = ¤t->restart_block; | 
|---|
| 1574 | int error; | 
|---|
| 1575 |  | 
|---|
| 1576 | /* | 
|---|
| 1577 | * Diagnose required errors first. | 
|---|
| 1578 | */ | 
|---|
| 1579 | if (CPUCLOCK_PERTHREAD(which_clock) && | 
|---|
| 1580 | (CPUCLOCK_PID(which_clock) == 0 || | 
|---|
| 1581 | CPUCLOCK_PID(which_clock) == task_pid_vnr(current))) | 
|---|
| 1582 | return -EINVAL; | 
|---|
| 1583 |  | 
|---|
| 1584 | error = do_cpu_nanosleep(which_clock, flags, rqtp); | 
|---|
| 1585 |  | 
|---|
| 1586 | if (error == -ERESTART_RESTARTBLOCK) { | 
|---|
| 1587 |  | 
|---|
| 1588 | if (flags & TIMER_ABSTIME) | 
|---|
| 1589 | return -ERESTARTNOHAND; | 
|---|
| 1590 |  | 
|---|
| 1591 | restart_block->nanosleep.clockid = which_clock; | 
|---|
| 1592 | set_restart_fn(restart: restart_block, fn: posix_cpu_nsleep_restart); | 
|---|
| 1593 | } | 
|---|
| 1594 | return error; | 
|---|
| 1595 | } | 
|---|
| 1596 |  | 
|---|
| 1597 | static long posix_cpu_nsleep_restart(struct restart_block *restart_block) | 
|---|
| 1598 | { | 
|---|
| 1599 | clockid_t which_clock = restart_block->nanosleep.clockid; | 
|---|
| 1600 | struct timespec64 t; | 
|---|
| 1601 |  | 
|---|
| 1602 | t = ns_to_timespec64(nsec: restart_block->nanosleep.expires); | 
|---|
| 1603 |  | 
|---|
| 1604 | return do_cpu_nanosleep(which_clock, TIMER_ABSTIME, rqtp: &t); | 
|---|
| 1605 | } | 
|---|
| 1606 |  | 
|---|
| 1607 | #define PROCESS_CLOCK	make_process_cpuclock(0, CPUCLOCK_SCHED) | 
|---|
| 1608 | #define THREAD_CLOCK	make_thread_cpuclock(0, CPUCLOCK_SCHED) | 
|---|
| 1609 |  | 
|---|
| 1610 | static int process_cpu_clock_getres(const clockid_t which_clock, | 
|---|
| 1611 | struct timespec64 *tp) | 
|---|
| 1612 | { | 
|---|
| 1613 | return posix_cpu_clock_getres(PROCESS_CLOCK, tp); | 
|---|
| 1614 | } | 
|---|
| 1615 | static int process_cpu_clock_get(const clockid_t which_clock, | 
|---|
| 1616 | struct timespec64 *tp) | 
|---|
| 1617 | { | 
|---|
| 1618 | return posix_cpu_clock_get(PROCESS_CLOCK, tp); | 
|---|
| 1619 | } | 
|---|
| 1620 | static int process_cpu_timer_create(struct k_itimer *timer) | 
|---|
| 1621 | { | 
|---|
| 1622 | timer->it_clock = PROCESS_CLOCK; | 
|---|
| 1623 | return posix_cpu_timer_create(new_timer: timer); | 
|---|
| 1624 | } | 
|---|
| 1625 | static int process_cpu_nsleep(const clockid_t which_clock, int flags, | 
|---|
| 1626 | const struct timespec64 *rqtp) | 
|---|
| 1627 | { | 
|---|
| 1628 | return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp); | 
|---|
| 1629 | } | 
|---|
| 1630 | static int thread_cpu_clock_getres(const clockid_t which_clock, | 
|---|
| 1631 | struct timespec64 *tp) | 
|---|
| 1632 | { | 
|---|
| 1633 | return posix_cpu_clock_getres(THREAD_CLOCK, tp); | 
|---|
| 1634 | } | 
|---|
| 1635 | static int thread_cpu_clock_get(const clockid_t which_clock, | 
|---|
| 1636 | struct timespec64 *tp) | 
|---|
| 1637 | { | 
|---|
| 1638 | return posix_cpu_clock_get(THREAD_CLOCK, tp); | 
|---|
| 1639 | } | 
|---|
| 1640 | static int thread_cpu_timer_create(struct k_itimer *timer) | 
|---|
| 1641 | { | 
|---|
| 1642 | timer->it_clock = THREAD_CLOCK; | 
|---|
| 1643 | return posix_cpu_timer_create(new_timer: timer); | 
|---|
| 1644 | } | 
|---|
| 1645 |  | 
|---|
| 1646 | const struct k_clock clock_posix_cpu = { | 
|---|
| 1647 | .clock_getres		= posix_cpu_clock_getres, | 
|---|
| 1648 | .clock_set		= posix_cpu_clock_set, | 
|---|
| 1649 | .clock_get_timespec	= posix_cpu_clock_get, | 
|---|
| 1650 | .timer_create		= posix_cpu_timer_create, | 
|---|
| 1651 | .nsleep			= posix_cpu_nsleep, | 
|---|
| 1652 | .timer_set		= posix_cpu_timer_set, | 
|---|
| 1653 | .timer_del		= posix_cpu_timer_del, | 
|---|
| 1654 | .timer_get		= posix_cpu_timer_get, | 
|---|
| 1655 | .timer_rearm		= posix_cpu_timer_rearm, | 
|---|
| 1656 | .timer_wait_running	= posix_cpu_timer_wait_running, | 
|---|
| 1657 | }; | 
|---|
| 1658 |  | 
|---|
| 1659 | const struct k_clock clock_process = { | 
|---|
| 1660 | .clock_getres		= process_cpu_clock_getres, | 
|---|
| 1661 | .clock_get_timespec	= process_cpu_clock_get, | 
|---|
| 1662 | .timer_create		= process_cpu_timer_create, | 
|---|
| 1663 | .nsleep			= process_cpu_nsleep, | 
|---|
| 1664 | }; | 
|---|
| 1665 |  | 
|---|
| 1666 | const struct k_clock clock_thread = { | 
|---|
| 1667 | .clock_getres		= thread_cpu_clock_getres, | 
|---|
| 1668 | .clock_get_timespec	= thread_cpu_clock_get, | 
|---|
| 1669 | .timer_create		= thread_cpu_timer_create, | 
|---|
| 1670 | }; | 
|---|
| 1671 |  | 
|---|