| 1 | // SPDX-License-Identifier: GPL-2.0 | 
|---|
| 2 | /* | 
|---|
| 3 | *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> | 
|---|
| 4 | *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar | 
|---|
| 5 | *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner | 
|---|
| 6 | * | 
|---|
| 7 | *  NOHZ implementation for low and high resolution timers | 
|---|
| 8 | * | 
|---|
| 9 | *  Started by: Thomas Gleixner and Ingo Molnar | 
|---|
| 10 | */ | 
|---|
| 11 | #include <linux/compiler.h> | 
|---|
| 12 | #include <linux/cpu.h> | 
|---|
| 13 | #include <linux/err.h> | 
|---|
| 14 | #include <linux/hrtimer.h> | 
|---|
| 15 | #include <linux/interrupt.h> | 
|---|
| 16 | #include <linux/kernel_stat.h> | 
|---|
| 17 | #include <linux/percpu.h> | 
|---|
| 18 | #include <linux/nmi.h> | 
|---|
| 19 | #include <linux/profile.h> | 
|---|
| 20 | #include <linux/sched/signal.h> | 
|---|
| 21 | #include <linux/sched/clock.h> | 
|---|
| 22 | #include <linux/sched/stat.h> | 
|---|
| 23 | #include <linux/sched/nohz.h> | 
|---|
| 24 | #include <linux/sched/loadavg.h> | 
|---|
| 25 | #include <linux/module.h> | 
|---|
| 26 | #include <linux/irq_work.h> | 
|---|
| 27 | #include <linux/posix-timers.h> | 
|---|
| 28 | #include <linux/context_tracking.h> | 
|---|
| 29 | #include <linux/mm.h> | 
|---|
| 30 |  | 
|---|
| 31 | #include <asm/irq_regs.h> | 
|---|
| 32 |  | 
|---|
| 33 | #include "tick-internal.h" | 
|---|
| 34 |  | 
|---|
| 35 | #include <trace/events/timer.h> | 
|---|
| 36 |  | 
|---|
| 37 | /* | 
|---|
| 38 | * Per-CPU nohz control structure | 
|---|
| 39 | */ | 
|---|
| 40 | static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched); | 
|---|
| 41 |  | 
|---|
| 42 | struct tick_sched *tick_get_tick_sched(int cpu) | 
|---|
| 43 | { | 
|---|
| 44 | return &per_cpu(tick_cpu_sched, cpu); | 
|---|
| 45 | } | 
|---|
| 46 |  | 
|---|
| 47 | /* | 
|---|
| 48 | * The time when the last jiffy update happened. Write access must hold | 
|---|
| 49 | * jiffies_lock and jiffies_seq. tick_nohz_next_event() needs to get a | 
|---|
| 50 | * consistent view of jiffies and last_jiffies_update. | 
|---|
| 51 | */ | 
|---|
| 52 | static ktime_t last_jiffies_update; | 
|---|
| 53 |  | 
|---|
| 54 | /* | 
|---|
| 55 | * Must be called with interrupts disabled ! | 
|---|
| 56 | */ | 
|---|
| 57 | static void tick_do_update_jiffies64(ktime_t now) | 
|---|
| 58 | { | 
|---|
| 59 | unsigned long ticks = 1; | 
|---|
| 60 | ktime_t delta, nextp; | 
|---|
| 61 |  | 
|---|
| 62 | /* | 
|---|
| 63 | * 64-bit can do a quick check without holding the jiffies lock and | 
|---|
| 64 | * without looking at the sequence count. The smp_load_acquire() | 
|---|
| 65 | * pairs with the update done later in this function. | 
|---|
| 66 | * | 
|---|
| 67 | * 32-bit cannot do that because the store of 'tick_next_period' | 
|---|
| 68 | * consists of two 32-bit stores, and the first store could be | 
|---|
| 69 | * moved by the CPU to a random point in the future. | 
|---|
| 70 | */ | 
|---|
| 71 | if (IS_ENABLED(CONFIG_64BIT)) { | 
|---|
| 72 | if (ktime_before(cmp1: now, smp_load_acquire(&tick_next_period))) | 
|---|
| 73 | return; | 
|---|
| 74 | } else { | 
|---|
| 75 | unsigned int seq; | 
|---|
| 76 |  | 
|---|
| 77 | /* | 
|---|
| 78 | * Avoid contention on 'jiffies_lock' and protect the quick | 
|---|
| 79 | * check with the sequence count. | 
|---|
| 80 | */ | 
|---|
| 81 | do { | 
|---|
| 82 | seq = read_seqcount_begin(&jiffies_seq); | 
|---|
| 83 | nextp = tick_next_period; | 
|---|
| 84 | } while (read_seqcount_retry(&jiffies_seq, seq)); | 
|---|
| 85 |  | 
|---|
| 86 | if (ktime_before(cmp1: now, cmp2: nextp)) | 
|---|
| 87 | return; | 
|---|
| 88 | } | 
|---|
| 89 |  | 
|---|
| 90 | /* Quick check failed, i.e. update is required. */ | 
|---|
| 91 | raw_spin_lock(&jiffies_lock); | 
|---|
| 92 | /* | 
|---|
| 93 | * Re-evaluate with the lock held. Another CPU might have done the | 
|---|
| 94 | * update already. | 
|---|
| 95 | */ | 
|---|
| 96 | if (ktime_before(cmp1: now, cmp2: tick_next_period)) { | 
|---|
| 97 | raw_spin_unlock(&jiffies_lock); | 
|---|
| 98 | return; | 
|---|
| 99 | } | 
|---|
| 100 |  | 
|---|
| 101 | write_seqcount_begin(&jiffies_seq); | 
|---|
| 102 |  | 
|---|
| 103 | delta = ktime_sub(now, tick_next_period); | 
|---|
| 104 | if (unlikely(delta >= TICK_NSEC)) { | 
|---|
| 105 | /* Slow path for long idle sleep times */ | 
|---|
| 106 | s64 incr = TICK_NSEC; | 
|---|
| 107 |  | 
|---|
| 108 | ticks += ktime_divns(kt: delta, div: incr); | 
|---|
| 109 |  | 
|---|
| 110 | last_jiffies_update = ktime_add_ns(last_jiffies_update, | 
|---|
| 111 | incr * ticks); | 
|---|
| 112 | } else { | 
|---|
| 113 | last_jiffies_update = ktime_add_ns(last_jiffies_update, | 
|---|
| 114 | TICK_NSEC); | 
|---|
| 115 | } | 
|---|
| 116 |  | 
|---|
| 117 | /* Advance jiffies to complete the 'jiffies_seq' protected job */ | 
|---|
| 118 | jiffies_64 += ticks; | 
|---|
| 119 |  | 
|---|
| 120 | /* Keep the tick_next_period variable up to date */ | 
|---|
| 121 | nextp = ktime_add_ns(last_jiffies_update, TICK_NSEC); | 
|---|
| 122 |  | 
|---|
| 123 | if (IS_ENABLED(CONFIG_64BIT)) { | 
|---|
| 124 | /* | 
|---|
| 125 | * Pairs with smp_load_acquire() in the lockless quick | 
|---|
| 126 | * check above, and ensures that the update to 'jiffies_64' is | 
|---|
| 127 | * not reordered vs. the store to 'tick_next_period', neither | 
|---|
| 128 | * by the compiler nor by the CPU. | 
|---|
| 129 | */ | 
|---|
| 130 | smp_store_release(&tick_next_period, nextp); | 
|---|
| 131 | } else { | 
|---|
| 132 | /* | 
|---|
| 133 | * A plain store is good enough on 32-bit, as the quick check | 
|---|
| 134 | * above is protected by the sequence count. | 
|---|
| 135 | */ | 
|---|
| 136 | tick_next_period = nextp; | 
|---|
| 137 | } | 
|---|
| 138 |  | 
|---|
| 139 | /* | 
|---|
| 140 | * Release the sequence count. calc_global_load() below is not | 
|---|
| 141 | * protected by it, but 'jiffies_lock' needs to be held to prevent | 
|---|
| 142 | * concurrent invocations. | 
|---|
| 143 | */ | 
|---|
| 144 | write_seqcount_end(&jiffies_seq); | 
|---|
| 145 |  | 
|---|
| 146 | calc_global_load(); | 
|---|
| 147 |  | 
|---|
| 148 | raw_spin_unlock(&jiffies_lock); | 
|---|
| 149 | update_wall_time(); | 
|---|
| 150 | } | 
|---|
| 151 |  | 
|---|
| 152 | /* | 
|---|
| 153 | * Initialize and return retrieve the jiffies update. | 
|---|
| 154 | */ | 
|---|
| 155 | static ktime_t tick_init_jiffy_update(void) | 
|---|
| 156 | { | 
|---|
| 157 | ktime_t period; | 
|---|
| 158 |  | 
|---|
| 159 | raw_spin_lock(&jiffies_lock); | 
|---|
| 160 | write_seqcount_begin(&jiffies_seq); | 
|---|
| 161 |  | 
|---|
| 162 | /* Have we started the jiffies update yet ? */ | 
|---|
| 163 | if (last_jiffies_update == 0) { | 
|---|
| 164 | u32 rem; | 
|---|
| 165 |  | 
|---|
| 166 | /* | 
|---|
| 167 | * Ensure that the tick is aligned to a multiple of | 
|---|
| 168 | * TICK_NSEC. | 
|---|
| 169 | */ | 
|---|
| 170 | div_u64_rem(dividend: tick_next_period, TICK_NSEC, remainder: &rem); | 
|---|
| 171 | if (rem) | 
|---|
| 172 | tick_next_period += TICK_NSEC - rem; | 
|---|
| 173 |  | 
|---|
| 174 | last_jiffies_update = tick_next_period; | 
|---|
| 175 | } | 
|---|
| 176 | period = last_jiffies_update; | 
|---|
| 177 |  | 
|---|
| 178 | write_seqcount_end(&jiffies_seq); | 
|---|
| 179 | raw_spin_unlock(&jiffies_lock); | 
|---|
| 180 |  | 
|---|
| 181 | return period; | 
|---|
| 182 | } | 
|---|
| 183 |  | 
|---|
| 184 | static inline int tick_sched_flag_test(struct tick_sched *ts, | 
|---|
| 185 | unsigned long flag) | 
|---|
| 186 | { | 
|---|
| 187 | return !!(ts->flags & flag); | 
|---|
| 188 | } | 
|---|
| 189 |  | 
|---|
| 190 | static inline void tick_sched_flag_set(struct tick_sched *ts, | 
|---|
| 191 | unsigned long flag) | 
|---|
| 192 | { | 
|---|
| 193 | lockdep_assert_irqs_disabled(); | 
|---|
| 194 | ts->flags |= flag; | 
|---|
| 195 | } | 
|---|
| 196 |  | 
|---|
| 197 | static inline void tick_sched_flag_clear(struct tick_sched *ts, | 
|---|
| 198 | unsigned long flag) | 
|---|
| 199 | { | 
|---|
| 200 | lockdep_assert_irqs_disabled(); | 
|---|
| 201 | ts->flags &= ~flag; | 
|---|
| 202 | } | 
|---|
| 203 |  | 
|---|
| 204 | #define MAX_STALLED_JIFFIES 5 | 
|---|
| 205 |  | 
|---|
| 206 | static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now) | 
|---|
| 207 | { | 
|---|
| 208 | int tick_cpu, cpu = smp_processor_id(); | 
|---|
| 209 |  | 
|---|
| 210 | /* | 
|---|
| 211 | * Check if the do_timer duty was dropped. We don't care about | 
|---|
| 212 | * concurrency: This happens only when the CPU in charge went | 
|---|
| 213 | * into a long sleep. If two CPUs happen to assign themselves to | 
|---|
| 214 | * this duty, then the jiffies update is still serialized by | 
|---|
| 215 | * 'jiffies_lock'. | 
|---|
| 216 | * | 
|---|
| 217 | * If nohz_full is enabled, this should not happen because the | 
|---|
| 218 | * 'tick_do_timer_cpu' CPU never relinquishes. | 
|---|
| 219 | */ | 
|---|
| 220 | tick_cpu = READ_ONCE(tick_do_timer_cpu); | 
|---|
| 221 |  | 
|---|
| 222 | if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && unlikely(tick_cpu == TICK_DO_TIMER_NONE)) { | 
|---|
| 223 | #ifdef CONFIG_NO_HZ_FULL | 
|---|
| 224 | WARN_ON_ONCE(tick_nohz_full_running); | 
|---|
| 225 | #endif | 
|---|
| 226 | WRITE_ONCE(tick_do_timer_cpu, cpu); | 
|---|
| 227 | tick_cpu = cpu; | 
|---|
| 228 | } | 
|---|
| 229 |  | 
|---|
| 230 | /* Check if jiffies need an update */ | 
|---|
| 231 | if (tick_cpu == cpu) | 
|---|
| 232 | tick_do_update_jiffies64(now); | 
|---|
| 233 |  | 
|---|
| 234 | /* | 
|---|
| 235 | * If the jiffies update stalled for too long (timekeeper in stop_machine() | 
|---|
| 236 | * or VMEXIT'ed for several msecs), force an update. | 
|---|
| 237 | */ | 
|---|
| 238 | if (ts->last_tick_jiffies != jiffies) { | 
|---|
| 239 | ts->stalled_jiffies = 0; | 
|---|
| 240 | ts->last_tick_jiffies = READ_ONCE(jiffies); | 
|---|
| 241 | } else { | 
|---|
| 242 | if (++ts->stalled_jiffies == MAX_STALLED_JIFFIES) { | 
|---|
| 243 | tick_do_update_jiffies64(now); | 
|---|
| 244 | ts->stalled_jiffies = 0; | 
|---|
| 245 | ts->last_tick_jiffies = READ_ONCE(jiffies); | 
|---|
| 246 | } | 
|---|
| 247 | } | 
|---|
| 248 |  | 
|---|
| 249 | if (tick_sched_flag_test(ts, TS_FLAG_INIDLE)) | 
|---|
| 250 | ts->got_idle_tick = 1; | 
|---|
| 251 | } | 
|---|
| 252 |  | 
|---|
| 253 | static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs) | 
|---|
| 254 | { | 
|---|
| 255 | /* | 
|---|
| 256 | * When we are idle and the tick is stopped, we have to touch | 
|---|
| 257 | * the watchdog as we might not schedule for a really long | 
|---|
| 258 | * time. This happens on completely idle SMP systems while | 
|---|
| 259 | * waiting on the login prompt. We also increment the "start of | 
|---|
| 260 | * idle" jiffy stamp so the idle accounting adjustment we do | 
|---|
| 261 | * when we go busy again does not account too many ticks. | 
|---|
| 262 | */ | 
|---|
| 263 | if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && | 
|---|
| 264 | tick_sched_flag_test(ts, TS_FLAG_STOPPED)) { | 
|---|
| 265 | touch_softlockup_watchdog_sched(); | 
|---|
| 266 | if (is_idle_task(current)) | 
|---|
| 267 | ts->idle_jiffies++; | 
|---|
| 268 | /* | 
|---|
| 269 | * In case the current tick fired too early past its expected | 
|---|
| 270 | * expiration, make sure we don't bypass the next clock reprogramming | 
|---|
| 271 | * to the same deadline. | 
|---|
| 272 | */ | 
|---|
| 273 | ts->next_tick = 0; | 
|---|
| 274 | } | 
|---|
| 275 |  | 
|---|
| 276 | update_process_times(user: user_mode(regs)); | 
|---|
| 277 | profile_tick(CPU_PROFILING); | 
|---|
| 278 | } | 
|---|
| 279 |  | 
|---|
| 280 | /* | 
|---|
| 281 | * We rearm the timer until we get disabled by the idle code. | 
|---|
| 282 | * Called with interrupts disabled. | 
|---|
| 283 | */ | 
|---|
| 284 | static enum hrtimer_restart tick_nohz_handler(struct hrtimer *timer) | 
|---|
| 285 | { | 
|---|
| 286 | struct tick_sched *ts =	container_of(timer, struct tick_sched, sched_timer); | 
|---|
| 287 | struct pt_regs *regs = get_irq_regs(); | 
|---|
| 288 | ktime_t now = ktime_get(); | 
|---|
| 289 |  | 
|---|
| 290 | tick_sched_do_timer(ts, now); | 
|---|
| 291 |  | 
|---|
| 292 | /* | 
|---|
| 293 | * Do not call when we are not in IRQ context and have | 
|---|
| 294 | * no valid 'regs' pointer | 
|---|
| 295 | */ | 
|---|
| 296 | if (regs) | 
|---|
| 297 | tick_sched_handle(ts, regs); | 
|---|
| 298 | else | 
|---|
| 299 | ts->next_tick = 0; | 
|---|
| 300 |  | 
|---|
| 301 | /* | 
|---|
| 302 | * In dynticks mode, tick reprogram is deferred: | 
|---|
| 303 | * - to the idle task if in dynticks-idle | 
|---|
| 304 | * - to IRQ exit if in full-dynticks. | 
|---|
| 305 | */ | 
|---|
| 306 | if (unlikely(tick_sched_flag_test(ts, TS_FLAG_STOPPED))) | 
|---|
| 307 | return HRTIMER_NORESTART; | 
|---|
| 308 |  | 
|---|
| 309 | hrtimer_forward(timer, now, TICK_NSEC); | 
|---|
| 310 |  | 
|---|
| 311 | return HRTIMER_RESTART; | 
|---|
| 312 | } | 
|---|
| 313 |  | 
|---|
| 314 | #ifdef CONFIG_NO_HZ_FULL | 
|---|
| 315 | cpumask_var_t tick_nohz_full_mask; | 
|---|
| 316 | EXPORT_SYMBOL_GPL(tick_nohz_full_mask); | 
|---|
| 317 | bool tick_nohz_full_running; | 
|---|
| 318 | EXPORT_SYMBOL_GPL(tick_nohz_full_running); | 
|---|
| 319 | static atomic_t tick_dep_mask; | 
|---|
| 320 |  | 
|---|
| 321 | static bool check_tick_dependency(atomic_t *dep) | 
|---|
| 322 | { | 
|---|
| 323 | int val = atomic_read(dep); | 
|---|
| 324 |  | 
|---|
| 325 | if (val & TICK_DEP_MASK_POSIX_TIMER) { | 
|---|
| 326 | trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER); | 
|---|
| 327 | return true; | 
|---|
| 328 | } | 
|---|
| 329 |  | 
|---|
| 330 | if (val & TICK_DEP_MASK_PERF_EVENTS) { | 
|---|
| 331 | trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS); | 
|---|
| 332 | return true; | 
|---|
| 333 | } | 
|---|
| 334 |  | 
|---|
| 335 | if (val & TICK_DEP_MASK_SCHED) { | 
|---|
| 336 | trace_tick_stop(0, TICK_DEP_MASK_SCHED); | 
|---|
| 337 | return true; | 
|---|
| 338 | } | 
|---|
| 339 |  | 
|---|
| 340 | if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) { | 
|---|
| 341 | trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE); | 
|---|
| 342 | return true; | 
|---|
| 343 | } | 
|---|
| 344 |  | 
|---|
| 345 | if (val & TICK_DEP_MASK_RCU) { | 
|---|
| 346 | trace_tick_stop(0, TICK_DEP_MASK_RCU); | 
|---|
| 347 | return true; | 
|---|
| 348 | } | 
|---|
| 349 |  | 
|---|
| 350 | if (val & TICK_DEP_MASK_RCU_EXP) { | 
|---|
| 351 | trace_tick_stop(0, TICK_DEP_MASK_RCU_EXP); | 
|---|
| 352 | return true; | 
|---|
| 353 | } | 
|---|
| 354 |  | 
|---|
| 355 | return false; | 
|---|
| 356 | } | 
|---|
| 357 |  | 
|---|
| 358 | static bool can_stop_full_tick(int cpu, struct tick_sched *ts) | 
|---|
| 359 | { | 
|---|
| 360 | lockdep_assert_irqs_disabled(); | 
|---|
| 361 |  | 
|---|
| 362 | if (unlikely(!cpu_online(cpu))) | 
|---|
| 363 | return false; | 
|---|
| 364 |  | 
|---|
| 365 | if (check_tick_dependency(&tick_dep_mask)) | 
|---|
| 366 | return false; | 
|---|
| 367 |  | 
|---|
| 368 | if (check_tick_dependency(&ts->tick_dep_mask)) | 
|---|
| 369 | return false; | 
|---|
| 370 |  | 
|---|
| 371 | if (check_tick_dependency(¤t->tick_dep_mask)) | 
|---|
| 372 | return false; | 
|---|
| 373 |  | 
|---|
| 374 | if (check_tick_dependency(¤t->signal->tick_dep_mask)) | 
|---|
| 375 | return false; | 
|---|
| 376 |  | 
|---|
| 377 | return true; | 
|---|
| 378 | } | 
|---|
| 379 |  | 
|---|
| 380 | static void nohz_full_kick_func(struct irq_work *work) | 
|---|
| 381 | { | 
|---|
| 382 | /* Empty, the tick restart happens on tick_nohz_irq_exit() */ | 
|---|
| 383 | } | 
|---|
| 384 |  | 
|---|
| 385 | static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = | 
|---|
| 386 | IRQ_WORK_INIT_HARD(nohz_full_kick_func); | 
|---|
| 387 |  | 
|---|
| 388 | /* | 
|---|
| 389 | * Kick this CPU if it's full dynticks in order to force it to | 
|---|
| 390 | * re-evaluate its dependency on the tick and restart it if necessary. | 
|---|
| 391 | * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(), | 
|---|
| 392 | * is NMI safe. | 
|---|
| 393 | */ | 
|---|
| 394 | static void tick_nohz_full_kick(void) | 
|---|
| 395 | { | 
|---|
| 396 | if (!tick_nohz_full_cpu(smp_processor_id())) | 
|---|
| 397 | return; | 
|---|
| 398 |  | 
|---|
| 399 | irq_work_queue(this_cpu_ptr(&nohz_full_kick_work)); | 
|---|
| 400 | } | 
|---|
| 401 |  | 
|---|
| 402 | /* | 
|---|
| 403 | * Kick the CPU if it's full dynticks in order to force it to | 
|---|
| 404 | * re-evaluate its dependency on the tick and restart it if necessary. | 
|---|
| 405 | */ | 
|---|
| 406 | void tick_nohz_full_kick_cpu(int cpu) | 
|---|
| 407 | { | 
|---|
| 408 | if (!tick_nohz_full_cpu(cpu)) | 
|---|
| 409 | return; | 
|---|
| 410 |  | 
|---|
| 411 | irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu); | 
|---|
| 412 | } | 
|---|
| 413 |  | 
|---|
| 414 | static void tick_nohz_kick_task(struct task_struct *tsk) | 
|---|
| 415 | { | 
|---|
| 416 | int cpu; | 
|---|
| 417 |  | 
|---|
| 418 | /* | 
|---|
| 419 | * If the task is not running, run_posix_cpu_timers() | 
|---|
| 420 | * has nothing to elapse, and an IPI can then be optimized out. | 
|---|
| 421 | * | 
|---|
| 422 | * activate_task()                      STORE p->tick_dep_mask | 
|---|
| 423 | *   STORE p->on_rq | 
|---|
| 424 | * __schedule() (switch to task 'p')    smp_mb() (atomic_fetch_or()) | 
|---|
| 425 | *   LOCK rq->lock                      LOAD p->on_rq | 
|---|
| 426 | *   smp_mb__after_spin_lock() | 
|---|
| 427 | *   tick_nohz_task_switch() | 
|---|
| 428 | *     LOAD p->tick_dep_mask | 
|---|
| 429 | * | 
|---|
| 430 | * XXX given a task picks up the dependency on schedule(), should we | 
|---|
| 431 | * only care about tasks that are currently on the CPU instead of all | 
|---|
| 432 | * that are on the runqueue? | 
|---|
| 433 | * | 
|---|
| 434 | * That is, does this want to be: task_on_cpu() / task_curr()? | 
|---|
| 435 | */ | 
|---|
| 436 | if (!sched_task_on_rq(tsk)) | 
|---|
| 437 | return; | 
|---|
| 438 |  | 
|---|
| 439 | /* | 
|---|
| 440 | * If the task concurrently migrates to another CPU, | 
|---|
| 441 | * we guarantee it sees the new tick dependency upon | 
|---|
| 442 | * schedule. | 
|---|
| 443 | * | 
|---|
| 444 | * set_task_cpu(p, cpu); | 
|---|
| 445 | *   STORE p->cpu = @cpu | 
|---|
| 446 | * __schedule() (switch to task 'p') | 
|---|
| 447 | *   LOCK rq->lock | 
|---|
| 448 | *   smp_mb__after_spin_lock()          STORE p->tick_dep_mask | 
|---|
| 449 | *   tick_nohz_task_switch()            smp_mb() (atomic_fetch_or()) | 
|---|
| 450 | *      LOAD p->tick_dep_mask           LOAD p->cpu | 
|---|
| 451 | */ | 
|---|
| 452 | cpu = task_cpu(tsk); | 
|---|
| 453 |  | 
|---|
| 454 | preempt_disable(); | 
|---|
| 455 | if (cpu_online(cpu)) | 
|---|
| 456 | tick_nohz_full_kick_cpu(cpu); | 
|---|
| 457 | preempt_enable(); | 
|---|
| 458 | } | 
|---|
| 459 |  | 
|---|
| 460 | /* | 
|---|
| 461 | * Kick all full dynticks CPUs in order to force these to re-evaluate | 
|---|
| 462 | * their dependency on the tick and restart it if necessary. | 
|---|
| 463 | */ | 
|---|
| 464 | static void tick_nohz_full_kick_all(void) | 
|---|
| 465 | { | 
|---|
| 466 | int cpu; | 
|---|
| 467 |  | 
|---|
| 468 | if (!tick_nohz_full_running) | 
|---|
| 469 | return; | 
|---|
| 470 |  | 
|---|
| 471 | preempt_disable(); | 
|---|
| 472 | for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask) | 
|---|
| 473 | tick_nohz_full_kick_cpu(cpu); | 
|---|
| 474 | preempt_enable(); | 
|---|
| 475 | } | 
|---|
| 476 |  | 
|---|
| 477 | static void tick_nohz_dep_set_all(atomic_t *dep, | 
|---|
| 478 | enum tick_dep_bits bit) | 
|---|
| 479 | { | 
|---|
| 480 | int prev; | 
|---|
| 481 |  | 
|---|
| 482 | prev = atomic_fetch_or(BIT(bit), dep); | 
|---|
| 483 | if (!prev) | 
|---|
| 484 | tick_nohz_full_kick_all(); | 
|---|
| 485 | } | 
|---|
| 486 |  | 
|---|
| 487 | /* | 
|---|
| 488 | * Set a global tick dependency. Used by perf events that rely on freq and | 
|---|
| 489 | * unstable clocks. | 
|---|
| 490 | */ | 
|---|
| 491 | void tick_nohz_dep_set(enum tick_dep_bits bit) | 
|---|
| 492 | { | 
|---|
| 493 | tick_nohz_dep_set_all(&tick_dep_mask, bit); | 
|---|
| 494 | } | 
|---|
| 495 |  | 
|---|
| 496 | void tick_nohz_dep_clear(enum tick_dep_bits bit) | 
|---|
| 497 | { | 
|---|
| 498 | atomic_andnot(BIT(bit), &tick_dep_mask); | 
|---|
| 499 | } | 
|---|
| 500 |  | 
|---|
| 501 | /* | 
|---|
| 502 | * Set per-CPU tick dependency. Used by scheduler and perf events in order to | 
|---|
| 503 | * manage event-throttling. | 
|---|
| 504 | */ | 
|---|
| 505 | void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit) | 
|---|
| 506 | { | 
|---|
| 507 | int prev; | 
|---|
| 508 | struct tick_sched *ts; | 
|---|
| 509 |  | 
|---|
| 510 | ts = per_cpu_ptr(&tick_cpu_sched, cpu); | 
|---|
| 511 |  | 
|---|
| 512 | prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask); | 
|---|
| 513 | if (!prev) { | 
|---|
| 514 | preempt_disable(); | 
|---|
| 515 | /* Perf needs local kick that is NMI safe */ | 
|---|
| 516 | if (cpu == smp_processor_id()) { | 
|---|
| 517 | tick_nohz_full_kick(); | 
|---|
| 518 | } else { | 
|---|
| 519 | /* Remote IRQ work not NMI-safe */ | 
|---|
| 520 | if (!WARN_ON_ONCE(in_nmi())) | 
|---|
| 521 | tick_nohz_full_kick_cpu(cpu); | 
|---|
| 522 | } | 
|---|
| 523 | preempt_enable(); | 
|---|
| 524 | } | 
|---|
| 525 | } | 
|---|
| 526 | EXPORT_SYMBOL_GPL(tick_nohz_dep_set_cpu); | 
|---|
| 527 |  | 
|---|
| 528 | void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit) | 
|---|
| 529 | { | 
|---|
| 530 | struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu); | 
|---|
| 531 |  | 
|---|
| 532 | atomic_andnot(BIT(bit), &ts->tick_dep_mask); | 
|---|
| 533 | } | 
|---|
| 534 | EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_cpu); | 
|---|
| 535 |  | 
|---|
| 536 | /* | 
|---|
| 537 | * Set a per-task tick dependency. RCU needs this. Also posix CPU timers | 
|---|
| 538 | * in order to elapse per task timers. | 
|---|
| 539 | */ | 
|---|
| 540 | void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit) | 
|---|
| 541 | { | 
|---|
| 542 | if (!atomic_fetch_or(BIT(bit), &tsk->tick_dep_mask)) | 
|---|
| 543 | tick_nohz_kick_task(tsk); | 
|---|
| 544 | } | 
|---|
| 545 | EXPORT_SYMBOL_GPL(tick_nohz_dep_set_task); | 
|---|
| 546 |  | 
|---|
| 547 | void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit) | 
|---|
| 548 | { | 
|---|
| 549 | atomic_andnot(BIT(bit), &tsk->tick_dep_mask); | 
|---|
| 550 | } | 
|---|
| 551 | EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_task); | 
|---|
| 552 |  | 
|---|
| 553 | /* | 
|---|
| 554 | * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse | 
|---|
| 555 | * per process timers. | 
|---|
| 556 | */ | 
|---|
| 557 | void tick_nohz_dep_set_signal(struct task_struct *tsk, | 
|---|
| 558 | enum tick_dep_bits bit) | 
|---|
| 559 | { | 
|---|
| 560 | int prev; | 
|---|
| 561 | struct signal_struct *sig = tsk->signal; | 
|---|
| 562 |  | 
|---|
| 563 | prev = atomic_fetch_or(BIT(bit), &sig->tick_dep_mask); | 
|---|
| 564 | if (!prev) { | 
|---|
| 565 | struct task_struct *t; | 
|---|
| 566 |  | 
|---|
| 567 | lockdep_assert_held(&tsk->sighand->siglock); | 
|---|
| 568 | __for_each_thread(sig, t) | 
|---|
| 569 | tick_nohz_kick_task(t); | 
|---|
| 570 | } | 
|---|
| 571 | } | 
|---|
| 572 |  | 
|---|
| 573 | void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit) | 
|---|
| 574 | { | 
|---|
| 575 | atomic_andnot(BIT(bit), &sig->tick_dep_mask); | 
|---|
| 576 | } | 
|---|
| 577 |  | 
|---|
| 578 | /* | 
|---|
| 579 | * Re-evaluate the need for the tick as we switch the current task. | 
|---|
| 580 | * It might need the tick due to per task/process properties: | 
|---|
| 581 | * perf events, posix CPU timers, ... | 
|---|
| 582 | */ | 
|---|
| 583 | void __tick_nohz_task_switch(void) | 
|---|
| 584 | { | 
|---|
| 585 | struct tick_sched *ts; | 
|---|
| 586 |  | 
|---|
| 587 | if (!tick_nohz_full_cpu(smp_processor_id())) | 
|---|
| 588 | return; | 
|---|
| 589 |  | 
|---|
| 590 | ts = this_cpu_ptr(&tick_cpu_sched); | 
|---|
| 591 |  | 
|---|
| 592 | if (tick_sched_flag_test(ts, TS_FLAG_STOPPED)) { | 
|---|
| 593 | if (atomic_read(¤t->tick_dep_mask) || | 
|---|
| 594 | atomic_read(¤t->signal->tick_dep_mask)) | 
|---|
| 595 | tick_nohz_full_kick(); | 
|---|
| 596 | } | 
|---|
| 597 | } | 
|---|
| 598 |  | 
|---|
| 599 | /* Get the boot-time nohz CPU list from the kernel parameters. */ | 
|---|
| 600 | void __init tick_nohz_full_setup(cpumask_var_t cpumask) | 
|---|
| 601 | { | 
|---|
| 602 | alloc_bootmem_cpumask_var(&tick_nohz_full_mask); | 
|---|
| 603 | cpumask_copy(tick_nohz_full_mask, cpumask); | 
|---|
| 604 | tick_nohz_full_running = true; | 
|---|
| 605 | } | 
|---|
| 606 |  | 
|---|
| 607 | bool tick_nohz_cpu_hotpluggable(unsigned int cpu) | 
|---|
| 608 | { | 
|---|
| 609 | /* | 
|---|
| 610 | * The 'tick_do_timer_cpu' CPU handles housekeeping duty (unbound | 
|---|
| 611 | * timers, workqueues, timekeeping, ...) on behalf of full dynticks | 
|---|
| 612 | * CPUs. It must remain online when nohz full is enabled. | 
|---|
| 613 | */ | 
|---|
| 614 | if (tick_nohz_full_running && READ_ONCE(tick_do_timer_cpu) == cpu) | 
|---|
| 615 | return false; | 
|---|
| 616 | return true; | 
|---|
| 617 | } | 
|---|
| 618 |  | 
|---|
| 619 | static int tick_nohz_cpu_down(unsigned int cpu) | 
|---|
| 620 | { | 
|---|
| 621 | return tick_nohz_cpu_hotpluggable(cpu) ? 0 : -EBUSY; | 
|---|
| 622 | } | 
|---|
| 623 |  | 
|---|
| 624 | void __init tick_nohz_init(void) | 
|---|
| 625 | { | 
|---|
| 626 | int cpu, ret; | 
|---|
| 627 |  | 
|---|
| 628 | if (!tick_nohz_full_running) | 
|---|
| 629 | return; | 
|---|
| 630 |  | 
|---|
| 631 | /* | 
|---|
| 632 | * Full dynticks uses IRQ work to drive the tick rescheduling on safe | 
|---|
| 633 | * locking contexts. But then we need IRQ work to raise its own | 
|---|
| 634 | * interrupts to avoid circular dependency on the tick. | 
|---|
| 635 | */ | 
|---|
| 636 | if (!arch_irq_work_has_interrupt()) { | 
|---|
| 637 | pr_warn( "NO_HZ: Can't run full dynticks because arch doesn't support IRQ work self-IPIs\n"); | 
|---|
| 638 | cpumask_clear(tick_nohz_full_mask); | 
|---|
| 639 | tick_nohz_full_running = false; | 
|---|
| 640 | return; | 
|---|
| 641 | } | 
|---|
| 642 |  | 
|---|
| 643 | if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) && | 
|---|
| 644 | !IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) { | 
|---|
| 645 | cpu = smp_processor_id(); | 
|---|
| 646 |  | 
|---|
| 647 | if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) { | 
|---|
| 648 | pr_warn( "NO_HZ: Clearing %d from nohz_full range " | 
|---|
| 649 | "for timekeeping\n", cpu); | 
|---|
| 650 | cpumask_clear_cpu(cpu, tick_nohz_full_mask); | 
|---|
| 651 | } | 
|---|
| 652 | } | 
|---|
| 653 |  | 
|---|
| 654 | for_each_cpu(cpu, tick_nohz_full_mask) | 
|---|
| 655 | ct_cpu_track_user(cpu); | 
|---|
| 656 |  | 
|---|
| 657 | ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, | 
|---|
| 658 | "kernel/nohz:predown", NULL, | 
|---|
| 659 | tick_nohz_cpu_down); | 
|---|
| 660 | WARN_ON(ret < 0); | 
|---|
| 661 | pr_info( "NO_HZ: Full dynticks CPUs: %*pbl.\n", | 
|---|
| 662 | cpumask_pr_args(tick_nohz_full_mask)); | 
|---|
| 663 | } | 
|---|
| 664 | #endif /* #ifdef CONFIG_NO_HZ_FULL */ | 
|---|
| 665 |  | 
|---|
| 666 | /* | 
|---|
| 667 | * NOHZ - aka dynamic tick functionality | 
|---|
| 668 | */ | 
|---|
| 669 | #ifdef CONFIG_NO_HZ_COMMON | 
|---|
| 670 | /* | 
|---|
| 671 | * NO HZ enabled ? | 
|---|
| 672 | */ | 
|---|
| 673 | bool tick_nohz_enabled __read_mostly  = true; | 
|---|
| 674 | unsigned long tick_nohz_active  __read_mostly; | 
|---|
| 675 | /* | 
|---|
| 676 | * Enable / Disable tickless mode | 
|---|
| 677 | */ | 
|---|
| 678 | static int __init setup_tick_nohz(char *str) | 
|---|
| 679 | { | 
|---|
| 680 | return (kstrtobool(s: str, res: &tick_nohz_enabled) == 0); | 
|---|
| 681 | } | 
|---|
| 682 |  | 
|---|
| 683 | __setup( "nohz=", setup_tick_nohz); | 
|---|
| 684 |  | 
|---|
| 685 | bool tick_nohz_tick_stopped(void) | 
|---|
| 686 | { | 
|---|
| 687 | struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); | 
|---|
| 688 |  | 
|---|
| 689 | return tick_sched_flag_test(ts, TS_FLAG_STOPPED); | 
|---|
| 690 | } | 
|---|
| 691 |  | 
|---|
| 692 | bool tick_nohz_tick_stopped_cpu(int cpu) | 
|---|
| 693 | { | 
|---|
| 694 | struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu); | 
|---|
| 695 |  | 
|---|
| 696 | return tick_sched_flag_test(ts, TS_FLAG_STOPPED); | 
|---|
| 697 | } | 
|---|
| 698 |  | 
|---|
| 699 | /** | 
|---|
| 700 | * tick_nohz_update_jiffies - update jiffies when idle was interrupted | 
|---|
| 701 | * @now: current ktime_t | 
|---|
| 702 | * | 
|---|
| 703 | * Called from interrupt entry when the CPU was idle | 
|---|
| 704 | * | 
|---|
| 705 | * In case the sched_tick was stopped on this CPU, we have to check if jiffies | 
|---|
| 706 | * must be updated. Otherwise an interrupt handler could use a stale jiffy | 
|---|
| 707 | * value. We do this unconditionally on any CPU, as we don't know whether the | 
|---|
| 708 | * CPU, which has the update task assigned, is in a long sleep. | 
|---|
| 709 | */ | 
|---|
| 710 | static void tick_nohz_update_jiffies(ktime_t now) | 
|---|
| 711 | { | 
|---|
| 712 | unsigned long flags; | 
|---|
| 713 |  | 
|---|
| 714 | __this_cpu_write(tick_cpu_sched.idle_waketime, now); | 
|---|
| 715 |  | 
|---|
| 716 | local_irq_save(flags); | 
|---|
| 717 | tick_do_update_jiffies64(now); | 
|---|
| 718 | local_irq_restore(flags); | 
|---|
| 719 |  | 
|---|
| 720 | touch_softlockup_watchdog_sched(); | 
|---|
| 721 | } | 
|---|
| 722 |  | 
|---|
| 723 | static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now) | 
|---|
| 724 | { | 
|---|
| 725 | ktime_t delta; | 
|---|
| 726 |  | 
|---|
| 727 | if (WARN_ON_ONCE(!tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE))) | 
|---|
| 728 | return; | 
|---|
| 729 |  | 
|---|
| 730 | delta = ktime_sub(now, ts->idle_entrytime); | 
|---|
| 731 |  | 
|---|
| 732 | write_seqcount_begin(&ts->idle_sleeptime_seq); | 
|---|
| 733 | if (nr_iowait_cpu(smp_processor_id()) > 0) | 
|---|
| 734 | ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta); | 
|---|
| 735 | else | 
|---|
| 736 | ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta); | 
|---|
| 737 |  | 
|---|
| 738 | ts->idle_entrytime = now; | 
|---|
| 739 | tick_sched_flag_clear(ts, TS_FLAG_IDLE_ACTIVE); | 
|---|
| 740 | write_seqcount_end(&ts->idle_sleeptime_seq); | 
|---|
| 741 |  | 
|---|
| 742 | sched_clock_idle_wakeup_event(); | 
|---|
| 743 | } | 
|---|
| 744 |  | 
|---|
| 745 | static void tick_nohz_start_idle(struct tick_sched *ts) | 
|---|
| 746 | { | 
|---|
| 747 | write_seqcount_begin(&ts->idle_sleeptime_seq); | 
|---|
| 748 | ts->idle_entrytime = ktime_get(); | 
|---|
| 749 | tick_sched_flag_set(ts, TS_FLAG_IDLE_ACTIVE); | 
|---|
| 750 | write_seqcount_end(&ts->idle_sleeptime_seq); | 
|---|
| 751 |  | 
|---|
| 752 | sched_clock_idle_sleep_event(); | 
|---|
| 753 | } | 
|---|
| 754 |  | 
|---|
| 755 | static u64 get_cpu_sleep_time_us(struct tick_sched *ts, ktime_t *sleeptime, | 
|---|
| 756 | bool compute_delta, u64 *last_update_time) | 
|---|
| 757 | { | 
|---|
| 758 | ktime_t now, idle; | 
|---|
| 759 | unsigned int seq; | 
|---|
| 760 |  | 
|---|
| 761 | if (!tick_nohz_active) | 
|---|
| 762 | return -1; | 
|---|
| 763 |  | 
|---|
| 764 | now = ktime_get(); | 
|---|
| 765 | if (last_update_time) | 
|---|
| 766 | *last_update_time = ktime_to_us(kt: now); | 
|---|
| 767 |  | 
|---|
| 768 | do { | 
|---|
| 769 | seq = read_seqcount_begin(&ts->idle_sleeptime_seq); | 
|---|
| 770 |  | 
|---|
| 771 | if (tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE) && compute_delta) { | 
|---|
| 772 | ktime_t delta = ktime_sub(now, ts->idle_entrytime); | 
|---|
| 773 |  | 
|---|
| 774 | idle = ktime_add(*sleeptime, delta); | 
|---|
| 775 | } else { | 
|---|
| 776 | idle = *sleeptime; | 
|---|
| 777 | } | 
|---|
| 778 | } while (read_seqcount_retry(&ts->idle_sleeptime_seq, seq)); | 
|---|
| 779 |  | 
|---|
| 780 | return ktime_to_us(kt: idle); | 
|---|
| 781 |  | 
|---|
| 782 | } | 
|---|
| 783 |  | 
|---|
| 784 | /** | 
|---|
| 785 | * get_cpu_idle_time_us - get the total idle time of a CPU | 
|---|
| 786 | * @cpu: CPU number to query | 
|---|
| 787 | * @last_update_time: variable to store update time in. Do not update | 
|---|
| 788 | * counters if NULL. | 
|---|
| 789 | * | 
|---|
| 790 | * Return the cumulative idle time (since boot) for a given | 
|---|
| 791 | * CPU, in microseconds. Note that this is partially broken due to | 
|---|
| 792 | * the counter of iowait tasks that can be remotely updated without | 
|---|
| 793 | * any synchronization. Therefore it is possible to observe backward | 
|---|
| 794 | * values within two consecutive reads. | 
|---|
| 795 | * | 
|---|
| 796 | * This time is measured via accounting rather than sampling, | 
|---|
| 797 | * and is as accurate as ktime_get() is. | 
|---|
| 798 | * | 
|---|
| 799 | * Return: -1 if NOHZ is not enabled, else total idle time of the @cpu | 
|---|
| 800 | */ | 
|---|
| 801 | u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time) | 
|---|
| 802 | { | 
|---|
| 803 | struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); | 
|---|
| 804 |  | 
|---|
| 805 | return get_cpu_sleep_time_us(ts, sleeptime: &ts->idle_sleeptime, | 
|---|
| 806 | compute_delta: !nr_iowait_cpu(cpu), last_update_time); | 
|---|
| 807 | } | 
|---|
| 808 | EXPORT_SYMBOL_GPL(get_cpu_idle_time_us); | 
|---|
| 809 |  | 
|---|
| 810 | /** | 
|---|
| 811 | * get_cpu_iowait_time_us - get the total iowait time of a CPU | 
|---|
| 812 | * @cpu: CPU number to query | 
|---|
| 813 | * @last_update_time: variable to store update time in. Do not update | 
|---|
| 814 | * counters if NULL. | 
|---|
| 815 | * | 
|---|
| 816 | * Return the cumulative iowait time (since boot) for a given | 
|---|
| 817 | * CPU, in microseconds. Note this is partially broken due to | 
|---|
| 818 | * the counter of iowait tasks that can be remotely updated without | 
|---|
| 819 | * any synchronization. Therefore it is possible to observe backward | 
|---|
| 820 | * values within two consecutive reads. | 
|---|
| 821 | * | 
|---|
| 822 | * This time is measured via accounting rather than sampling, | 
|---|
| 823 | * and is as accurate as ktime_get() is. | 
|---|
| 824 | * | 
|---|
| 825 | * Return: -1 if NOHZ is not enabled, else total iowait time of @cpu | 
|---|
| 826 | */ | 
|---|
| 827 | u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time) | 
|---|
| 828 | { | 
|---|
| 829 | struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); | 
|---|
| 830 |  | 
|---|
| 831 | return get_cpu_sleep_time_us(ts, sleeptime: &ts->iowait_sleeptime, | 
|---|
| 832 | compute_delta: nr_iowait_cpu(cpu), last_update_time); | 
|---|
| 833 | } | 
|---|
| 834 | EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us); | 
|---|
| 835 |  | 
|---|
| 836 | static void tick_nohz_restart(struct tick_sched *ts, ktime_t now) | 
|---|
| 837 | { | 
|---|
| 838 | hrtimer_cancel(timer: &ts->sched_timer); | 
|---|
| 839 | hrtimer_set_expires(timer: &ts->sched_timer, time: ts->last_tick); | 
|---|
| 840 |  | 
|---|
| 841 | /* Forward the time to expire in the future */ | 
|---|
| 842 | hrtimer_forward(timer: &ts->sched_timer, now, TICK_NSEC); | 
|---|
| 843 |  | 
|---|
| 844 | if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES)) { | 
|---|
| 845 | hrtimer_start_expires(timer: &ts->sched_timer, | 
|---|
| 846 | mode: HRTIMER_MODE_ABS_PINNED_HARD); | 
|---|
| 847 | } else { | 
|---|
| 848 | tick_program_event(expires: hrtimer_get_expires(timer: &ts->sched_timer), force: 1); | 
|---|
| 849 | } | 
|---|
| 850 |  | 
|---|
| 851 | /* | 
|---|
| 852 | * Reset to make sure the next tick stop doesn't get fooled by past | 
|---|
| 853 | * cached clock deadline. | 
|---|
| 854 | */ | 
|---|
| 855 | ts->next_tick = 0; | 
|---|
| 856 | } | 
|---|
| 857 |  | 
|---|
| 858 | static inline bool local_timer_softirq_pending(void) | 
|---|
| 859 | { | 
|---|
| 860 | return local_timers_pending() & BIT(TIMER_SOFTIRQ); | 
|---|
| 861 | } | 
|---|
| 862 |  | 
|---|
| 863 | /* | 
|---|
| 864 | * Read jiffies and the time when jiffies were updated last | 
|---|
| 865 | */ | 
|---|
| 866 | u64 get_jiffies_update(unsigned long *basej) | 
|---|
| 867 | { | 
|---|
| 868 | unsigned long basejiff; | 
|---|
| 869 | unsigned int seq; | 
|---|
| 870 | u64 basemono; | 
|---|
| 871 |  | 
|---|
| 872 | do { | 
|---|
| 873 | seq = read_seqcount_begin(&jiffies_seq); | 
|---|
| 874 | basemono = last_jiffies_update; | 
|---|
| 875 | basejiff = jiffies; | 
|---|
| 876 | } while (read_seqcount_retry(&jiffies_seq, seq)); | 
|---|
| 877 | *basej = basejiff; | 
|---|
| 878 | return basemono; | 
|---|
| 879 | } | 
|---|
| 880 |  | 
|---|
| 881 | /** | 
|---|
| 882 | * tick_nohz_next_event() - return the clock monotonic based next event | 
|---|
| 883 | * @ts:		pointer to tick_sched struct | 
|---|
| 884 | * @cpu:	CPU number | 
|---|
| 885 | * | 
|---|
| 886 | * Return: | 
|---|
| 887 | * *%0		- When the next event is a maximum of TICK_NSEC in the future | 
|---|
| 888 | *		  and the tick is not stopped yet | 
|---|
| 889 | * *%next_event	- Next event based on clock monotonic | 
|---|
| 890 | */ | 
|---|
| 891 | static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu) | 
|---|
| 892 | { | 
|---|
| 893 | u64 basemono, next_tick, delta, expires; | 
|---|
| 894 | unsigned long basejiff; | 
|---|
| 895 | int tick_cpu; | 
|---|
| 896 |  | 
|---|
| 897 | basemono = get_jiffies_update(basej: &basejiff); | 
|---|
| 898 | ts->last_jiffies = basejiff; | 
|---|
| 899 | ts->timer_expires_base = basemono; | 
|---|
| 900 |  | 
|---|
| 901 | /* | 
|---|
| 902 | * Keep the periodic tick, when RCU, architecture or irq_work | 
|---|
| 903 | * requests it. | 
|---|
| 904 | * Aside of that, check whether the local timer softirq is | 
|---|
| 905 | * pending. If so, its a bad idea to call get_next_timer_interrupt(), | 
|---|
| 906 | * because there is an already expired timer, so it will request | 
|---|
| 907 | * immediate expiry, which rearms the hardware timer with a | 
|---|
| 908 | * minimal delta, which brings us back to this place | 
|---|
| 909 | * immediately. Lather, rinse and repeat... | 
|---|
| 910 | */ | 
|---|
| 911 | if (rcu_needs_cpu() || arch_needs_cpu() || | 
|---|
| 912 | irq_work_needs_cpu() || local_timer_softirq_pending()) { | 
|---|
| 913 | next_tick = basemono + TICK_NSEC; | 
|---|
| 914 | } else { | 
|---|
| 915 | /* | 
|---|
| 916 | * Get the next pending timer. If high resolution | 
|---|
| 917 | * timers are enabled this only takes the timer wheel | 
|---|
| 918 | * timers into account. If high resolution timers are | 
|---|
| 919 | * disabled this also looks at the next expiring | 
|---|
| 920 | * hrtimer. | 
|---|
| 921 | */ | 
|---|
| 922 | next_tick = get_next_timer_interrupt(basej: basejiff, basem: basemono); | 
|---|
| 923 | ts->next_timer = next_tick; | 
|---|
| 924 | } | 
|---|
| 925 |  | 
|---|
| 926 | /* Make sure next_tick is never before basemono! */ | 
|---|
| 927 | if (WARN_ON_ONCE(basemono > next_tick)) | 
|---|
| 928 | next_tick = basemono; | 
|---|
| 929 |  | 
|---|
| 930 | /* | 
|---|
| 931 | * If the tick is due in the next period, keep it ticking or | 
|---|
| 932 | * force prod the timer. | 
|---|
| 933 | */ | 
|---|
| 934 | delta = next_tick - basemono; | 
|---|
| 935 | if (delta <= (u64)TICK_NSEC) { | 
|---|
| 936 | /* | 
|---|
| 937 | * We've not stopped the tick yet, and there's a timer in the | 
|---|
| 938 | * next period, so no point in stopping it either, bail. | 
|---|
| 939 | */ | 
|---|
| 940 | if (!tick_sched_flag_test(ts, TS_FLAG_STOPPED)) { | 
|---|
| 941 | ts->timer_expires = 0; | 
|---|
| 942 | goto out; | 
|---|
| 943 | } | 
|---|
| 944 | } | 
|---|
| 945 |  | 
|---|
| 946 | /* | 
|---|
| 947 | * If this CPU is the one which had the do_timer() duty last, we limit | 
|---|
| 948 | * the sleep time to the timekeeping 'max_deferment' value. | 
|---|
| 949 | * Otherwise we can sleep as long as we want. | 
|---|
| 950 | */ | 
|---|
| 951 | delta = timekeeping_max_deferment(); | 
|---|
| 952 | tick_cpu = READ_ONCE(tick_do_timer_cpu); | 
|---|
| 953 | if (tick_cpu != cpu && | 
|---|
| 954 | (tick_cpu != TICK_DO_TIMER_NONE || !tick_sched_flag_test(ts, TS_FLAG_DO_TIMER_LAST))) | 
|---|
| 955 | delta = KTIME_MAX; | 
|---|
| 956 |  | 
|---|
| 957 | /* Calculate the next expiry time */ | 
|---|
| 958 | if (delta < (KTIME_MAX - basemono)) | 
|---|
| 959 | expires = basemono + delta; | 
|---|
| 960 | else | 
|---|
| 961 | expires = KTIME_MAX; | 
|---|
| 962 |  | 
|---|
| 963 | ts->timer_expires = min_t(u64, expires, next_tick); | 
|---|
| 964 |  | 
|---|
| 965 | out: | 
|---|
| 966 | return ts->timer_expires; | 
|---|
| 967 | } | 
|---|
| 968 |  | 
|---|
| 969 | static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu) | 
|---|
| 970 | { | 
|---|
| 971 | struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev); | 
|---|
| 972 | unsigned long basejiff = ts->last_jiffies; | 
|---|
| 973 | u64 basemono = ts->timer_expires_base; | 
|---|
| 974 | bool timer_idle = tick_sched_flag_test(ts, TS_FLAG_STOPPED); | 
|---|
| 975 | int tick_cpu; | 
|---|
| 976 | u64 expires; | 
|---|
| 977 |  | 
|---|
| 978 | /* Make sure we won't be trying to stop it twice in a row. */ | 
|---|
| 979 | ts->timer_expires_base = 0; | 
|---|
| 980 |  | 
|---|
| 981 | /* | 
|---|
| 982 | * Now the tick should be stopped definitely - so the timer base needs | 
|---|
| 983 | * to be marked idle as well to not miss a newly queued timer. | 
|---|
| 984 | */ | 
|---|
| 985 | expires = timer_base_try_to_set_idle(basej: basejiff, basem: basemono, idle: &timer_idle); | 
|---|
| 986 | if (expires > ts->timer_expires) { | 
|---|
| 987 | /* | 
|---|
| 988 | * This path could only happen when the first timer was removed | 
|---|
| 989 | * between calculating the possible sleep length and now (when | 
|---|
| 990 | * high resolution mode is not active, timer could also be a | 
|---|
| 991 | * hrtimer). | 
|---|
| 992 | * | 
|---|
| 993 | * We have to stick to the original calculated expiry value to | 
|---|
| 994 | * not stop the tick for too long with a shallow C-state (which | 
|---|
| 995 | * was programmed by cpuidle because of an early next expiration | 
|---|
| 996 | * value). | 
|---|
| 997 | */ | 
|---|
| 998 | expires = ts->timer_expires; | 
|---|
| 999 | } | 
|---|
| 1000 |  | 
|---|
| 1001 | /* If the timer base is not idle, retain the not yet stopped tick. */ | 
|---|
| 1002 | if (!timer_idle) | 
|---|
| 1003 | return; | 
|---|
| 1004 |  | 
|---|
| 1005 | /* | 
|---|
| 1006 | * If this CPU is the one which updates jiffies, then give up | 
|---|
| 1007 | * the assignment and let it be taken by the CPU which runs | 
|---|
| 1008 | * the tick timer next, which might be this CPU as well. If we | 
|---|
| 1009 | * don't drop this here, the jiffies might be stale and | 
|---|
| 1010 | * do_timer() never gets invoked. Keep track of the fact that it | 
|---|
| 1011 | * was the one which had the do_timer() duty last. | 
|---|
| 1012 | */ | 
|---|
| 1013 | tick_cpu = READ_ONCE(tick_do_timer_cpu); | 
|---|
| 1014 | if (tick_cpu == cpu) { | 
|---|
| 1015 | WRITE_ONCE(tick_do_timer_cpu, TICK_DO_TIMER_NONE); | 
|---|
| 1016 | tick_sched_flag_set(ts, TS_FLAG_DO_TIMER_LAST); | 
|---|
| 1017 | } else if (tick_cpu != TICK_DO_TIMER_NONE) { | 
|---|
| 1018 | tick_sched_flag_clear(ts, TS_FLAG_DO_TIMER_LAST); | 
|---|
| 1019 | } | 
|---|
| 1020 |  | 
|---|
| 1021 | /* Skip reprogram of event if it's not changed */ | 
|---|
| 1022 | if (tick_sched_flag_test(ts, TS_FLAG_STOPPED) && (expires == ts->next_tick)) { | 
|---|
| 1023 | /* Sanity check: make sure clockevent is actually programmed */ | 
|---|
| 1024 | if (expires == KTIME_MAX || ts->next_tick == hrtimer_get_expires(timer: &ts->sched_timer)) | 
|---|
| 1025 | return; | 
|---|
| 1026 |  | 
|---|
| 1027 | WARN_ONCE(1, "basemono: %llu ts->next_tick: %llu dev->next_event: %llu " | 
|---|
| 1028 | "timer->active: %d timer->expires: %llu\n", basemono, ts->next_tick, | 
|---|
| 1029 | dev->next_event, hrtimer_active(&ts->sched_timer), | 
|---|
| 1030 | hrtimer_get_expires(&ts->sched_timer)); | 
|---|
| 1031 | } | 
|---|
| 1032 |  | 
|---|
| 1033 | /* | 
|---|
| 1034 | * tick_nohz_stop_tick() can be called several times before | 
|---|
| 1035 | * tick_nohz_restart_sched_tick() is called. This happens when | 
|---|
| 1036 | * interrupts arrive which do not cause a reschedule. In the first | 
|---|
| 1037 | * call we save the current tick time, so we can restart the | 
|---|
| 1038 | * scheduler tick in tick_nohz_restart_sched_tick(). | 
|---|
| 1039 | */ | 
|---|
| 1040 | if (!tick_sched_flag_test(ts, TS_FLAG_STOPPED)) { | 
|---|
| 1041 | calc_load_nohz_start(); | 
|---|
| 1042 | quiet_vmstat(); | 
|---|
| 1043 |  | 
|---|
| 1044 | ts->last_tick = hrtimer_get_expires(timer: &ts->sched_timer); | 
|---|
| 1045 | tick_sched_flag_set(ts, TS_FLAG_STOPPED); | 
|---|
| 1046 | trace_tick_stop(success: 1, TICK_DEP_MASK_NONE); | 
|---|
| 1047 | } | 
|---|
| 1048 |  | 
|---|
| 1049 | ts->next_tick = expires; | 
|---|
| 1050 |  | 
|---|
| 1051 | /* | 
|---|
| 1052 | * If the expiration time == KTIME_MAX, then we simply stop | 
|---|
| 1053 | * the tick timer. | 
|---|
| 1054 | */ | 
|---|
| 1055 | if (unlikely(expires == KTIME_MAX)) { | 
|---|
| 1056 | if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES)) | 
|---|
| 1057 | hrtimer_cancel(timer: &ts->sched_timer); | 
|---|
| 1058 | else | 
|---|
| 1059 | tick_program_event(KTIME_MAX, force: 1); | 
|---|
| 1060 | return; | 
|---|
| 1061 | } | 
|---|
| 1062 |  | 
|---|
| 1063 | if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES)) { | 
|---|
| 1064 | hrtimer_start(timer: &ts->sched_timer, tim: expires, | 
|---|
| 1065 | mode: HRTIMER_MODE_ABS_PINNED_HARD); | 
|---|
| 1066 | } else { | 
|---|
| 1067 | hrtimer_set_expires(timer: &ts->sched_timer, time: expires); | 
|---|
| 1068 | tick_program_event(expires, force: 1); | 
|---|
| 1069 | } | 
|---|
| 1070 | } | 
|---|
| 1071 |  | 
|---|
| 1072 | static void tick_nohz_retain_tick(struct tick_sched *ts) | 
|---|
| 1073 | { | 
|---|
| 1074 | ts->timer_expires_base = 0; | 
|---|
| 1075 | } | 
|---|
| 1076 |  | 
|---|
| 1077 | #ifdef CONFIG_NO_HZ_FULL | 
|---|
| 1078 | static void tick_nohz_full_stop_tick(struct tick_sched *ts, int cpu) | 
|---|
| 1079 | { | 
|---|
| 1080 | if (tick_nohz_next_event(ts, cpu)) | 
|---|
| 1081 | tick_nohz_stop_tick(ts, cpu); | 
|---|
| 1082 | else | 
|---|
| 1083 | tick_nohz_retain_tick(ts); | 
|---|
| 1084 | } | 
|---|
| 1085 | #endif /* CONFIG_NO_HZ_FULL */ | 
|---|
| 1086 |  | 
|---|
| 1087 | static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now) | 
|---|
| 1088 | { | 
|---|
| 1089 | /* Update jiffies first */ | 
|---|
| 1090 | tick_do_update_jiffies64(now); | 
|---|
| 1091 |  | 
|---|
| 1092 | /* | 
|---|
| 1093 | * Clear the timer idle flag, so we avoid IPIs on remote queueing and | 
|---|
| 1094 | * the clock forward checks in the enqueue path: | 
|---|
| 1095 | */ | 
|---|
| 1096 | timer_clear_idle(); | 
|---|
| 1097 |  | 
|---|
| 1098 | calc_load_nohz_stop(); | 
|---|
| 1099 | touch_softlockup_watchdog_sched(); | 
|---|
| 1100 |  | 
|---|
| 1101 | /* Cancel the scheduled timer and restore the tick: */ | 
|---|
| 1102 | tick_sched_flag_clear(ts, TS_FLAG_STOPPED); | 
|---|
| 1103 | tick_nohz_restart(ts, now); | 
|---|
| 1104 | } | 
|---|
| 1105 |  | 
|---|
| 1106 | static void __tick_nohz_full_update_tick(struct tick_sched *ts, | 
|---|
| 1107 | ktime_t now) | 
|---|
| 1108 | { | 
|---|
| 1109 | #ifdef CONFIG_NO_HZ_FULL | 
|---|
| 1110 | int cpu = smp_processor_id(); | 
|---|
| 1111 |  | 
|---|
| 1112 | if (can_stop_full_tick(cpu, ts)) | 
|---|
| 1113 | tick_nohz_full_stop_tick(ts, cpu); | 
|---|
| 1114 | else if (tick_sched_flag_test(ts, TS_FLAG_STOPPED)) | 
|---|
| 1115 | tick_nohz_restart_sched_tick(ts, now); | 
|---|
| 1116 | #endif | 
|---|
| 1117 | } | 
|---|
| 1118 |  | 
|---|
| 1119 | static void tick_nohz_full_update_tick(struct tick_sched *ts) | 
|---|
| 1120 | { | 
|---|
| 1121 | if (!tick_nohz_full_cpu(smp_processor_id())) | 
|---|
| 1122 | return; | 
|---|
| 1123 |  | 
|---|
| 1124 | if (!tick_sched_flag_test(ts, TS_FLAG_NOHZ)) | 
|---|
| 1125 | return; | 
|---|
| 1126 |  | 
|---|
| 1127 | __tick_nohz_full_update_tick(ts, now: ktime_get()); | 
|---|
| 1128 | } | 
|---|
| 1129 |  | 
|---|
| 1130 | /* | 
|---|
| 1131 | * A pending softirq outside an IRQ (or softirq disabled section) context | 
|---|
| 1132 | * should be waiting for ksoftirqd to handle it. Therefore we shouldn't | 
|---|
| 1133 | * reach this code due to the need_resched() early check in can_stop_idle_tick(). | 
|---|
| 1134 | * | 
|---|
| 1135 | * However if we are between CPUHP_AP_SMPBOOT_THREADS and CPU_TEARDOWN_CPU on the | 
|---|
| 1136 | * cpu_down() process, softirqs can still be raised while ksoftirqd is parked, | 
|---|
| 1137 | * triggering the code below, since wakep_softirqd() is ignored. | 
|---|
| 1138 | * | 
|---|
| 1139 | */ | 
|---|
| 1140 | static bool report_idle_softirq(void) | 
|---|
| 1141 | { | 
|---|
| 1142 | static int ratelimit; | 
|---|
| 1143 | unsigned int pending = local_softirq_pending(); | 
|---|
| 1144 |  | 
|---|
| 1145 | if (likely(!pending)) | 
|---|
| 1146 | return false; | 
|---|
| 1147 |  | 
|---|
| 1148 | /* Some softirqs claim to be safe against hotplug and ksoftirqd parking */ | 
|---|
| 1149 | if (!cpu_active(smp_processor_id())) { | 
|---|
| 1150 | pending &= ~SOFTIRQ_HOTPLUG_SAFE_MASK; | 
|---|
| 1151 | if (!pending) | 
|---|
| 1152 | return false; | 
|---|
| 1153 | } | 
|---|
| 1154 |  | 
|---|
| 1155 | if (ratelimit >= 10) | 
|---|
| 1156 | return false; | 
|---|
| 1157 |  | 
|---|
| 1158 | /* On RT, softirq handling may be waiting on some lock */ | 
|---|
| 1159 | if (local_bh_blocked()) | 
|---|
| 1160 | return false; | 
|---|
| 1161 |  | 
|---|
| 1162 | pr_warn( "NOHZ tick-stop error: local softirq work is pending, handler #%02x!!!\n", | 
|---|
| 1163 | pending); | 
|---|
| 1164 | ratelimit++; | 
|---|
| 1165 |  | 
|---|
| 1166 | return true; | 
|---|
| 1167 | } | 
|---|
| 1168 |  | 
|---|
| 1169 | static bool can_stop_idle_tick(int cpu, struct tick_sched *ts) | 
|---|
| 1170 | { | 
|---|
| 1171 | WARN_ON_ONCE(cpu_is_offline(cpu)); | 
|---|
| 1172 |  | 
|---|
| 1173 | if (unlikely(!tick_sched_flag_test(ts, TS_FLAG_NOHZ))) | 
|---|
| 1174 | return false; | 
|---|
| 1175 |  | 
|---|
| 1176 | if (need_resched()) | 
|---|
| 1177 | return false; | 
|---|
| 1178 |  | 
|---|
| 1179 | if (unlikely(report_idle_softirq())) | 
|---|
| 1180 | return false; | 
|---|
| 1181 |  | 
|---|
| 1182 | if (tick_nohz_full_enabled()) { | 
|---|
| 1183 | int tick_cpu = READ_ONCE(tick_do_timer_cpu); | 
|---|
| 1184 |  | 
|---|
| 1185 | /* | 
|---|
| 1186 | * Keep the tick alive to guarantee timekeeping progression | 
|---|
| 1187 | * if there are full dynticks CPUs around | 
|---|
| 1188 | */ | 
|---|
| 1189 | if (tick_cpu == cpu) | 
|---|
| 1190 | return false; | 
|---|
| 1191 |  | 
|---|
| 1192 | /* Should not happen for nohz-full */ | 
|---|
| 1193 | if (WARN_ON_ONCE(tick_cpu == TICK_DO_TIMER_NONE)) | 
|---|
| 1194 | return false; | 
|---|
| 1195 | } | 
|---|
| 1196 |  | 
|---|
| 1197 | return true; | 
|---|
| 1198 | } | 
|---|
| 1199 |  | 
|---|
| 1200 | /** | 
|---|
| 1201 | * tick_nohz_idle_stop_tick - stop the idle tick from the idle task | 
|---|
| 1202 | * | 
|---|
| 1203 | * When the next event is more than a tick into the future, stop the idle tick | 
|---|
| 1204 | */ | 
|---|
| 1205 | void tick_nohz_idle_stop_tick(void) | 
|---|
| 1206 | { | 
|---|
| 1207 | struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); | 
|---|
| 1208 | int cpu = smp_processor_id(); | 
|---|
| 1209 | ktime_t expires; | 
|---|
| 1210 |  | 
|---|
| 1211 | /* | 
|---|
| 1212 | * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the | 
|---|
| 1213 | * tick timer expiration time is known already. | 
|---|
| 1214 | */ | 
|---|
| 1215 | if (ts->timer_expires_base) | 
|---|
| 1216 | expires = ts->timer_expires; | 
|---|
| 1217 | else if (can_stop_idle_tick(cpu, ts)) | 
|---|
| 1218 | expires = tick_nohz_next_event(ts, cpu); | 
|---|
| 1219 | else | 
|---|
| 1220 | return; | 
|---|
| 1221 |  | 
|---|
| 1222 | ts->idle_calls++; | 
|---|
| 1223 |  | 
|---|
| 1224 | if (expires > 0LL) { | 
|---|
| 1225 | int was_stopped = tick_sched_flag_test(ts, TS_FLAG_STOPPED); | 
|---|
| 1226 |  | 
|---|
| 1227 | tick_nohz_stop_tick(ts, cpu); | 
|---|
| 1228 |  | 
|---|
| 1229 | ts->idle_sleeps++; | 
|---|
| 1230 | ts->idle_expires = expires; | 
|---|
| 1231 |  | 
|---|
| 1232 | if (!was_stopped && tick_sched_flag_test(ts, TS_FLAG_STOPPED)) { | 
|---|
| 1233 | ts->idle_jiffies = ts->last_jiffies; | 
|---|
| 1234 | nohz_balance_enter_idle(cpu); | 
|---|
| 1235 | } | 
|---|
| 1236 | } else { | 
|---|
| 1237 | tick_nohz_retain_tick(ts); | 
|---|
| 1238 | } | 
|---|
| 1239 | } | 
|---|
| 1240 |  | 
|---|
| 1241 | void tick_nohz_idle_retain_tick(void) | 
|---|
| 1242 | { | 
|---|
| 1243 | tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched)); | 
|---|
| 1244 | } | 
|---|
| 1245 |  | 
|---|
| 1246 | /** | 
|---|
| 1247 | * tick_nohz_idle_enter - prepare for entering idle on the current CPU | 
|---|
| 1248 | * | 
|---|
| 1249 | * Called when we start the idle loop. | 
|---|
| 1250 | */ | 
|---|
| 1251 | void tick_nohz_idle_enter(void) | 
|---|
| 1252 | { | 
|---|
| 1253 | struct tick_sched *ts; | 
|---|
| 1254 |  | 
|---|
| 1255 | lockdep_assert_irqs_enabled(); | 
|---|
| 1256 |  | 
|---|
| 1257 | local_irq_disable(); | 
|---|
| 1258 |  | 
|---|
| 1259 | ts = this_cpu_ptr(&tick_cpu_sched); | 
|---|
| 1260 |  | 
|---|
| 1261 | WARN_ON_ONCE(ts->timer_expires_base); | 
|---|
| 1262 |  | 
|---|
| 1263 | tick_sched_flag_set(ts, TS_FLAG_INIDLE); | 
|---|
| 1264 | tick_nohz_start_idle(ts); | 
|---|
| 1265 |  | 
|---|
| 1266 | local_irq_enable(); | 
|---|
| 1267 | } | 
|---|
| 1268 |  | 
|---|
| 1269 | /** | 
|---|
| 1270 | * tick_nohz_irq_exit - Notify the tick about IRQ exit | 
|---|
| 1271 | * | 
|---|
| 1272 | * A timer may have been added/modified/deleted either by the current IRQ, | 
|---|
| 1273 | * or by another place using this IRQ as a notification. This IRQ may have | 
|---|
| 1274 | * also updated the RCU callback list. These events may require a | 
|---|
| 1275 | * re-evaluation of the next tick. Depending on the context: | 
|---|
| 1276 | * | 
|---|
| 1277 | * 1) If the CPU is idle and no resched is pending, just proceed with idle | 
|---|
| 1278 | *    time accounting. The next tick will be re-evaluated on the next idle | 
|---|
| 1279 | *    loop iteration. | 
|---|
| 1280 | * | 
|---|
| 1281 | * 2) If the CPU is nohz_full: | 
|---|
| 1282 | * | 
|---|
| 1283 | *    2.1) If there is any tick dependency, restart the tick if stopped. | 
|---|
| 1284 | * | 
|---|
| 1285 | *    2.2) If there is no tick dependency, (re-)evaluate the next tick and | 
|---|
| 1286 | *         stop/update it accordingly. | 
|---|
| 1287 | */ | 
|---|
| 1288 | void tick_nohz_irq_exit(void) | 
|---|
| 1289 | { | 
|---|
| 1290 | struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); | 
|---|
| 1291 |  | 
|---|
| 1292 | if (tick_sched_flag_test(ts, TS_FLAG_INIDLE)) | 
|---|
| 1293 | tick_nohz_start_idle(ts); | 
|---|
| 1294 | else | 
|---|
| 1295 | tick_nohz_full_update_tick(ts); | 
|---|
| 1296 | } | 
|---|
| 1297 |  | 
|---|
| 1298 | /** | 
|---|
| 1299 | * tick_nohz_idle_got_tick - Check whether or not the tick handler has run | 
|---|
| 1300 | * | 
|---|
| 1301 | * Return: %true if the tick handler has run, otherwise %false | 
|---|
| 1302 | */ | 
|---|
| 1303 | bool tick_nohz_idle_got_tick(void) | 
|---|
| 1304 | { | 
|---|
| 1305 | struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); | 
|---|
| 1306 |  | 
|---|
| 1307 | if (ts->got_idle_tick) { | 
|---|
| 1308 | ts->got_idle_tick = 0; | 
|---|
| 1309 | return true; | 
|---|
| 1310 | } | 
|---|
| 1311 | return false; | 
|---|
| 1312 | } | 
|---|
| 1313 |  | 
|---|
| 1314 | /** | 
|---|
| 1315 | * tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer | 
|---|
| 1316 | * or the tick, whichever expires first. Note that, if the tick has been | 
|---|
| 1317 | * stopped, it returns the next hrtimer. | 
|---|
| 1318 | * | 
|---|
| 1319 | * Called from power state control code with interrupts disabled | 
|---|
| 1320 | * | 
|---|
| 1321 | * Return: the next expiration time | 
|---|
| 1322 | */ | 
|---|
| 1323 | ktime_t tick_nohz_get_next_hrtimer(void) | 
|---|
| 1324 | { | 
|---|
| 1325 | return __this_cpu_read(tick_cpu_device.evtdev)->next_event; | 
|---|
| 1326 | } | 
|---|
| 1327 |  | 
|---|
| 1328 | /** | 
|---|
| 1329 | * tick_nohz_get_sleep_length - return the expected length of the current sleep | 
|---|
| 1330 | * @delta_next: duration until the next event if the tick cannot be stopped | 
|---|
| 1331 | * | 
|---|
| 1332 | * Called from power state control code with interrupts disabled. | 
|---|
| 1333 | * | 
|---|
| 1334 | * The return value of this function and/or the value returned by it through the | 
|---|
| 1335 | * @delta_next pointer can be negative which must be taken into account by its | 
|---|
| 1336 | * callers. | 
|---|
| 1337 | * | 
|---|
| 1338 | * Return: the expected length of the current sleep | 
|---|
| 1339 | */ | 
|---|
| 1340 | ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next) | 
|---|
| 1341 | { | 
|---|
| 1342 | struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev); | 
|---|
| 1343 | struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); | 
|---|
| 1344 | int cpu = smp_processor_id(); | 
|---|
| 1345 | /* | 
|---|
| 1346 | * The idle entry time is expected to be a sufficient approximation of | 
|---|
| 1347 | * the current time at this point. | 
|---|
| 1348 | */ | 
|---|
| 1349 | ktime_t now = ts->idle_entrytime; | 
|---|
| 1350 | ktime_t next_event; | 
|---|
| 1351 |  | 
|---|
| 1352 | WARN_ON_ONCE(!tick_sched_flag_test(ts, TS_FLAG_INIDLE)); | 
|---|
| 1353 |  | 
|---|
| 1354 | *delta_next = ktime_sub(dev->next_event, now); | 
|---|
| 1355 |  | 
|---|
| 1356 | if (!can_stop_idle_tick(cpu, ts)) | 
|---|
| 1357 | return *delta_next; | 
|---|
| 1358 |  | 
|---|
| 1359 | next_event = tick_nohz_next_event(ts, cpu); | 
|---|
| 1360 | if (!next_event) | 
|---|
| 1361 | return *delta_next; | 
|---|
| 1362 |  | 
|---|
| 1363 | /* | 
|---|
| 1364 | * If the next highres timer to expire is earlier than 'next_event', the | 
|---|
| 1365 | * idle governor needs to know that. | 
|---|
| 1366 | */ | 
|---|
| 1367 | next_event = min_t(u64, next_event, | 
|---|
| 1368 | hrtimer_next_event_without(&ts->sched_timer)); | 
|---|
| 1369 |  | 
|---|
| 1370 | return ktime_sub(next_event, now); | 
|---|
| 1371 | } | 
|---|
| 1372 |  | 
|---|
| 1373 | /** | 
|---|
| 1374 | * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value | 
|---|
| 1375 | * for a particular CPU. | 
|---|
| 1376 | * @cpu: target CPU number | 
|---|
| 1377 | * | 
|---|
| 1378 | * Called from the schedutil frequency scaling governor in scheduler context. | 
|---|
| 1379 | * | 
|---|
| 1380 | * Return: the current idle calls counter value for @cpu | 
|---|
| 1381 | */ | 
|---|
| 1382 | unsigned long tick_nohz_get_idle_calls_cpu(int cpu) | 
|---|
| 1383 | { | 
|---|
| 1384 | struct tick_sched *ts = tick_get_tick_sched(cpu); | 
|---|
| 1385 |  | 
|---|
| 1386 | return ts->idle_calls; | 
|---|
| 1387 | } | 
|---|
| 1388 |  | 
|---|
| 1389 | static void tick_nohz_account_idle_time(struct tick_sched *ts, | 
|---|
| 1390 | ktime_t now) | 
|---|
| 1391 | { | 
|---|
| 1392 | unsigned long ticks; | 
|---|
| 1393 |  | 
|---|
| 1394 | ts->idle_exittime = now; | 
|---|
| 1395 |  | 
|---|
| 1396 | if (vtime_accounting_enabled_this_cpu()) | 
|---|
| 1397 | return; | 
|---|
| 1398 | /* | 
|---|
| 1399 | * We stopped the tick in idle. update_process_times() would miss the | 
|---|
| 1400 | * time we slept, as it does only a 1 tick accounting. | 
|---|
| 1401 | * Enforce that this is accounted to idle ! | 
|---|
| 1402 | */ | 
|---|
| 1403 | ticks = jiffies - ts->idle_jiffies; | 
|---|
| 1404 | /* | 
|---|
| 1405 | * We might be one off. Do not randomly account a huge number of ticks! | 
|---|
| 1406 | */ | 
|---|
| 1407 | if (ticks && ticks < LONG_MAX) | 
|---|
| 1408 | account_idle_ticks(ticks); | 
|---|
| 1409 | } | 
|---|
| 1410 |  | 
|---|
| 1411 | void tick_nohz_idle_restart_tick(void) | 
|---|
| 1412 | { | 
|---|
| 1413 | struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); | 
|---|
| 1414 |  | 
|---|
| 1415 | if (tick_sched_flag_test(ts, TS_FLAG_STOPPED)) { | 
|---|
| 1416 | ktime_t now = ktime_get(); | 
|---|
| 1417 | tick_nohz_restart_sched_tick(ts, now); | 
|---|
| 1418 | tick_nohz_account_idle_time(ts, now); | 
|---|
| 1419 | } | 
|---|
| 1420 | } | 
|---|
| 1421 |  | 
|---|
| 1422 | static void tick_nohz_idle_update_tick(struct tick_sched *ts, ktime_t now) | 
|---|
| 1423 | { | 
|---|
| 1424 | if (tick_nohz_full_cpu(smp_processor_id())) | 
|---|
| 1425 | __tick_nohz_full_update_tick(ts, now); | 
|---|
| 1426 | else | 
|---|
| 1427 | tick_nohz_restart_sched_tick(ts, now); | 
|---|
| 1428 |  | 
|---|
| 1429 | tick_nohz_account_idle_time(ts, now); | 
|---|
| 1430 | } | 
|---|
| 1431 |  | 
|---|
| 1432 | /** | 
|---|
| 1433 | * tick_nohz_idle_exit - Update the tick upon idle task exit | 
|---|
| 1434 | * | 
|---|
| 1435 | * When the idle task exits, update the tick depending on the | 
|---|
| 1436 | * following situations: | 
|---|
| 1437 | * | 
|---|
| 1438 | * 1) If the CPU is not in nohz_full mode (most cases), then | 
|---|
| 1439 | *    restart the tick. | 
|---|
| 1440 | * | 
|---|
| 1441 | * 2) If the CPU is in nohz_full mode (corner case): | 
|---|
| 1442 | *   2.1) If the tick can be kept stopped (no tick dependencies) | 
|---|
| 1443 | *        then re-evaluate the next tick and try to keep it stopped | 
|---|
| 1444 | *        as long as possible. | 
|---|
| 1445 | *   2.2) If the tick has dependencies, restart the tick. | 
|---|
| 1446 | * | 
|---|
| 1447 | */ | 
|---|
| 1448 | void tick_nohz_idle_exit(void) | 
|---|
| 1449 | { | 
|---|
| 1450 | struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); | 
|---|
| 1451 | bool idle_active, tick_stopped; | 
|---|
| 1452 | ktime_t now; | 
|---|
| 1453 |  | 
|---|
| 1454 | local_irq_disable(); | 
|---|
| 1455 |  | 
|---|
| 1456 | WARN_ON_ONCE(!tick_sched_flag_test(ts, TS_FLAG_INIDLE)); | 
|---|
| 1457 | WARN_ON_ONCE(ts->timer_expires_base); | 
|---|
| 1458 |  | 
|---|
| 1459 | tick_sched_flag_clear(ts, TS_FLAG_INIDLE); | 
|---|
| 1460 | idle_active = tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE); | 
|---|
| 1461 | tick_stopped = tick_sched_flag_test(ts, TS_FLAG_STOPPED); | 
|---|
| 1462 |  | 
|---|
| 1463 | if (idle_active || tick_stopped) | 
|---|
| 1464 | now = ktime_get(); | 
|---|
| 1465 |  | 
|---|
| 1466 | if (idle_active) | 
|---|
| 1467 | tick_nohz_stop_idle(ts, now); | 
|---|
| 1468 |  | 
|---|
| 1469 | if (tick_stopped) | 
|---|
| 1470 | tick_nohz_idle_update_tick(ts, now); | 
|---|
| 1471 |  | 
|---|
| 1472 | local_irq_enable(); | 
|---|
| 1473 | } | 
|---|
| 1474 |  | 
|---|
| 1475 | /* | 
|---|
| 1476 | * In low-resolution mode, the tick handler must be implemented directly | 
|---|
| 1477 | * at the clockevent level. hrtimer can't be used instead, because its | 
|---|
| 1478 | * infrastructure actually relies on the tick itself as a backend in | 
|---|
| 1479 | * low-resolution mode (see hrtimer_run_queues()). | 
|---|
| 1480 | */ | 
|---|
| 1481 | static void tick_nohz_lowres_handler(struct clock_event_device *dev) | 
|---|
| 1482 | { | 
|---|
| 1483 | struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); | 
|---|
| 1484 |  | 
|---|
| 1485 | dev->next_event = KTIME_MAX; | 
|---|
| 1486 |  | 
|---|
| 1487 | if (likely(tick_nohz_handler(&ts->sched_timer) == HRTIMER_RESTART)) | 
|---|
| 1488 | tick_program_event(expires: hrtimer_get_expires(timer: &ts->sched_timer), force: 1); | 
|---|
| 1489 | } | 
|---|
| 1490 |  | 
|---|
| 1491 | static inline void tick_nohz_activate(struct tick_sched *ts) | 
|---|
| 1492 | { | 
|---|
| 1493 | if (!tick_nohz_enabled) | 
|---|
| 1494 | return; | 
|---|
| 1495 | tick_sched_flag_set(ts, TS_FLAG_NOHZ); | 
|---|
| 1496 | /* One update is enough */ | 
|---|
| 1497 | if (!test_and_set_bit(nr: 0, addr: &tick_nohz_active)) | 
|---|
| 1498 | timers_update_nohz(); | 
|---|
| 1499 | } | 
|---|
| 1500 |  | 
|---|
| 1501 | /** | 
|---|
| 1502 | * tick_nohz_switch_to_nohz - switch to NOHZ mode | 
|---|
| 1503 | */ | 
|---|
| 1504 | static void tick_nohz_switch_to_nohz(void) | 
|---|
| 1505 | { | 
|---|
| 1506 | if (!tick_nohz_enabled) | 
|---|
| 1507 | return; | 
|---|
| 1508 |  | 
|---|
| 1509 | if (tick_switch_to_oneshot(handler: tick_nohz_lowres_handler)) | 
|---|
| 1510 | return; | 
|---|
| 1511 |  | 
|---|
| 1512 | /* | 
|---|
| 1513 | * Recycle the hrtimer in 'ts', so we can share the | 
|---|
| 1514 | * highres code. | 
|---|
| 1515 | */ | 
|---|
| 1516 | tick_setup_sched_timer(hrtimer: false); | 
|---|
| 1517 | } | 
|---|
| 1518 |  | 
|---|
| 1519 | static inline void tick_nohz_irq_enter(void) | 
|---|
| 1520 | { | 
|---|
| 1521 | struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); | 
|---|
| 1522 | ktime_t now; | 
|---|
| 1523 |  | 
|---|
| 1524 | if (!tick_sched_flag_test(ts, TS_FLAG_STOPPED | TS_FLAG_IDLE_ACTIVE)) | 
|---|
| 1525 | return; | 
|---|
| 1526 | now = ktime_get(); | 
|---|
| 1527 | if (tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE)) | 
|---|
| 1528 | tick_nohz_stop_idle(ts, now); | 
|---|
| 1529 | /* | 
|---|
| 1530 | * If all CPUs are idle we may need to update a stale jiffies value. | 
|---|
| 1531 | * Note nohz_full is a special case: a timekeeper is guaranteed to stay | 
|---|
| 1532 | * alive but it might be busy looping with interrupts disabled in some | 
|---|
| 1533 | * rare case (typically stop machine). So we must make sure we have a | 
|---|
| 1534 | * last resort. | 
|---|
| 1535 | */ | 
|---|
| 1536 | if (tick_sched_flag_test(ts, TS_FLAG_STOPPED)) | 
|---|
| 1537 | tick_nohz_update_jiffies(now); | 
|---|
| 1538 | } | 
|---|
| 1539 |  | 
|---|
| 1540 | #else | 
|---|
| 1541 |  | 
|---|
| 1542 | static inline void tick_nohz_switch_to_nohz(void) { } | 
|---|
| 1543 | static inline void tick_nohz_irq_enter(void) { } | 
|---|
| 1544 | static inline void tick_nohz_activate(struct tick_sched *ts) { } | 
|---|
| 1545 |  | 
|---|
| 1546 | #endif /* CONFIG_NO_HZ_COMMON */ | 
|---|
| 1547 |  | 
|---|
| 1548 | /* | 
|---|
| 1549 | * Called from irq_enter() to notify about the possible interruption of idle() | 
|---|
| 1550 | */ | 
|---|
| 1551 | void tick_irq_enter(void) | 
|---|
| 1552 | { | 
|---|
| 1553 | tick_check_oneshot_broadcast_this_cpu(); | 
|---|
| 1554 | tick_nohz_irq_enter(); | 
|---|
| 1555 | } | 
|---|
| 1556 |  | 
|---|
| 1557 | static int sched_skew_tick; | 
|---|
| 1558 |  | 
|---|
| 1559 | static int __init skew_tick(char *str) | 
|---|
| 1560 | { | 
|---|
| 1561 | get_option(str: &str, pint: &sched_skew_tick); | 
|---|
| 1562 |  | 
|---|
| 1563 | return 0; | 
|---|
| 1564 | } | 
|---|
| 1565 | early_param( "skew_tick", skew_tick); | 
|---|
| 1566 |  | 
|---|
| 1567 | /** | 
|---|
| 1568 | * tick_setup_sched_timer - setup the tick emulation timer | 
|---|
| 1569 | * @hrtimer: whether to use the hrtimer or not | 
|---|
| 1570 | */ | 
|---|
| 1571 | void tick_setup_sched_timer(bool hrtimer) | 
|---|
| 1572 | { | 
|---|
| 1573 | struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); | 
|---|
| 1574 |  | 
|---|
| 1575 | /* Emulate tick processing via per-CPU hrtimers: */ | 
|---|
| 1576 | hrtimer_setup(timer: &ts->sched_timer, function: tick_nohz_handler, CLOCK_MONOTONIC, mode: HRTIMER_MODE_ABS_HARD); | 
|---|
| 1577 |  | 
|---|
| 1578 | if (IS_ENABLED(CONFIG_HIGH_RES_TIMERS) && hrtimer) | 
|---|
| 1579 | tick_sched_flag_set(ts, TS_FLAG_HIGHRES); | 
|---|
| 1580 |  | 
|---|
| 1581 | /* Get the next period (per-CPU) */ | 
|---|
| 1582 | hrtimer_set_expires(timer: &ts->sched_timer, time: tick_init_jiffy_update()); | 
|---|
| 1583 |  | 
|---|
| 1584 | /* Offset the tick to avert 'jiffies_lock' contention. */ | 
|---|
| 1585 | if (sched_skew_tick) { | 
|---|
| 1586 | u64 offset = TICK_NSEC >> 1; | 
|---|
| 1587 | do_div(offset, num_possible_cpus()); | 
|---|
| 1588 | offset *= smp_processor_id(); | 
|---|
| 1589 | hrtimer_add_expires_ns(timer: &ts->sched_timer, ns: offset); | 
|---|
| 1590 | } | 
|---|
| 1591 |  | 
|---|
| 1592 | hrtimer_forward_now(timer: &ts->sched_timer, TICK_NSEC); | 
|---|
| 1593 | if (IS_ENABLED(CONFIG_HIGH_RES_TIMERS) && hrtimer) | 
|---|
| 1594 | hrtimer_start_expires(timer: &ts->sched_timer, mode: HRTIMER_MODE_ABS_PINNED_HARD); | 
|---|
| 1595 | else | 
|---|
| 1596 | tick_program_event(expires: hrtimer_get_expires(timer: &ts->sched_timer), force: 1); | 
|---|
| 1597 | tick_nohz_activate(ts); | 
|---|
| 1598 | } | 
|---|
| 1599 |  | 
|---|
| 1600 | /* | 
|---|
| 1601 | * Shut down the tick and make sure the CPU won't try to retake the timekeeping | 
|---|
| 1602 | * duty before disabling IRQs in idle for the last time. | 
|---|
| 1603 | */ | 
|---|
| 1604 | void tick_sched_timer_dying(int cpu) | 
|---|
| 1605 | { | 
|---|
| 1606 | struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); | 
|---|
| 1607 | ktime_t idle_sleeptime, iowait_sleeptime; | 
|---|
| 1608 | unsigned long idle_calls, idle_sleeps; | 
|---|
| 1609 |  | 
|---|
| 1610 | /* This must happen before hrtimers are migrated! */ | 
|---|
| 1611 | if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES)) | 
|---|
| 1612 | hrtimer_cancel(timer: &ts->sched_timer); | 
|---|
| 1613 |  | 
|---|
| 1614 | idle_sleeptime = ts->idle_sleeptime; | 
|---|
| 1615 | iowait_sleeptime = ts->iowait_sleeptime; | 
|---|
| 1616 | idle_calls = ts->idle_calls; | 
|---|
| 1617 | idle_sleeps = ts->idle_sleeps; | 
|---|
| 1618 | memset(s: ts, c: 0, n: sizeof(*ts)); | 
|---|
| 1619 | ts->idle_sleeptime = idle_sleeptime; | 
|---|
| 1620 | ts->iowait_sleeptime = iowait_sleeptime; | 
|---|
| 1621 | ts->idle_calls = idle_calls; | 
|---|
| 1622 | ts->idle_sleeps = idle_sleeps; | 
|---|
| 1623 | } | 
|---|
| 1624 |  | 
|---|
| 1625 | /* | 
|---|
| 1626 | * Async notification about clocksource changes | 
|---|
| 1627 | */ | 
|---|
| 1628 | void tick_clock_notify(void) | 
|---|
| 1629 | { | 
|---|
| 1630 | int cpu; | 
|---|
| 1631 |  | 
|---|
| 1632 | for_each_possible_cpu(cpu) | 
|---|
| 1633 | set_bit(nr: 0, addr: &per_cpu(tick_cpu_sched, cpu).check_clocks); | 
|---|
| 1634 | } | 
|---|
| 1635 |  | 
|---|
| 1636 | /* | 
|---|
| 1637 | * Async notification about clock event changes | 
|---|
| 1638 | */ | 
|---|
| 1639 | void tick_oneshot_notify(void) | 
|---|
| 1640 | { | 
|---|
| 1641 | struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); | 
|---|
| 1642 |  | 
|---|
| 1643 | set_bit(nr: 0, addr: &ts->check_clocks); | 
|---|
| 1644 | } | 
|---|
| 1645 |  | 
|---|
| 1646 | /* | 
|---|
| 1647 | * Check if a change happened, which makes oneshot possible. | 
|---|
| 1648 | * | 
|---|
| 1649 | * Called cyclically from the hrtimer softirq (driven by the timer | 
|---|
| 1650 | * softirq). 'allow_nohz' signals that we can switch into low-res NOHZ | 
|---|
| 1651 | * mode, because high resolution timers are disabled (either compile | 
|---|
| 1652 | * or runtime). Called with interrupts disabled. | 
|---|
| 1653 | */ | 
|---|
| 1654 | int tick_check_oneshot_change(int allow_nohz) | 
|---|
| 1655 | { | 
|---|
| 1656 | struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); | 
|---|
| 1657 |  | 
|---|
| 1658 | if (!test_and_clear_bit(nr: 0, addr: &ts->check_clocks)) | 
|---|
| 1659 | return 0; | 
|---|
| 1660 |  | 
|---|
| 1661 | if (tick_sched_flag_test(ts, TS_FLAG_NOHZ)) | 
|---|
| 1662 | return 0; | 
|---|
| 1663 |  | 
|---|
| 1664 | if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available()) | 
|---|
| 1665 | return 0; | 
|---|
| 1666 |  | 
|---|
| 1667 | if (!allow_nohz) | 
|---|
| 1668 | return 1; | 
|---|
| 1669 |  | 
|---|
| 1670 | tick_nohz_switch_to_nohz(); | 
|---|
| 1671 | return 0; | 
|---|
| 1672 | } | 
|---|
| 1673 |  | 
|---|