| 1 | // SPDX-License-Identifier: GPL-2.0-or-later | 
|---|
| 2 | /* mpihelp-div.c  -  MPI helper functions | 
|---|
| 3 | *	Copyright (C) 1994, 1996 Free Software Foundation, Inc. | 
|---|
| 4 | *	Copyright (C) 1998, 1999 Free Software Foundation, Inc. | 
|---|
| 5 | * | 
|---|
| 6 | * This file is part of GnuPG. | 
|---|
| 7 | * | 
|---|
| 8 | * Note: This code is heavily based on the GNU MP Library. | 
|---|
| 9 | *	 Actually it's the same code with only minor changes in the | 
|---|
| 10 | *	 way the data is stored; this is to support the abstraction | 
|---|
| 11 | *	 of an optional secure memory allocation which may be used | 
|---|
| 12 | *	 to avoid revealing of sensitive data due to paging etc. | 
|---|
| 13 | *	 The GNU MP Library itself is published under the LGPL; | 
|---|
| 14 | *	 however I decided to publish this code under the plain GPL. | 
|---|
| 15 | */ | 
|---|
| 16 |  | 
|---|
| 17 | #include "mpi-internal.h" | 
|---|
| 18 | #include "longlong.h" | 
|---|
| 19 |  | 
|---|
| 20 | #ifndef UMUL_TIME | 
|---|
| 21 | #define UMUL_TIME 1 | 
|---|
| 22 | #endif | 
|---|
| 23 | #ifndef UDIV_TIME | 
|---|
| 24 | #define UDIV_TIME UMUL_TIME | 
|---|
| 25 | #endif | 
|---|
| 26 |  | 
|---|
| 27 |  | 
|---|
| 28 | mpi_limb_t | 
|---|
| 29 | mpihelp_mod_1(mpi_ptr_t dividend_ptr, mpi_size_t dividend_size, | 
|---|
| 30 | mpi_limb_t divisor_limb) | 
|---|
| 31 | { | 
|---|
| 32 | mpi_size_t i; | 
|---|
| 33 | mpi_limb_t n1, n0, r; | 
|---|
| 34 | mpi_limb_t dummy __maybe_unused; | 
|---|
| 35 |  | 
|---|
| 36 | /* Botch: Should this be handled at all?  Rely on callers?	*/ | 
|---|
| 37 | if (!dividend_size) | 
|---|
| 38 | return 0; | 
|---|
| 39 |  | 
|---|
| 40 | /* If multiplication is much faster than division, and the | 
|---|
| 41 | * dividend is large, pre-invert the divisor, and use | 
|---|
| 42 | * only multiplications in the inner loop. | 
|---|
| 43 | * | 
|---|
| 44 | * This test should be read: | 
|---|
| 45 | *	 Does it ever help to use udiv_qrnnd_preinv? | 
|---|
| 46 | *	   && Does what we save compensate for the inversion overhead? | 
|---|
| 47 | */ | 
|---|
| 48 | if (UDIV_TIME > (2 * UMUL_TIME + 6) | 
|---|
| 49 | && (UDIV_TIME - (2 * UMUL_TIME + 6)) * dividend_size > UDIV_TIME) { | 
|---|
| 50 | int normalization_steps; | 
|---|
| 51 |  | 
|---|
| 52 | normalization_steps = count_leading_zeros(x: divisor_limb); | 
|---|
| 53 | if (normalization_steps) { | 
|---|
| 54 | mpi_limb_t divisor_limb_inverted; | 
|---|
| 55 |  | 
|---|
| 56 | divisor_limb <<= normalization_steps; | 
|---|
| 57 |  | 
|---|
| 58 | /* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB.  The | 
|---|
| 59 | * result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the | 
|---|
| 60 | * most significant bit (with weight 2**N) implicit. | 
|---|
| 61 | * | 
|---|
| 62 | * Special case for DIVISOR_LIMB == 100...000. | 
|---|
| 63 | */ | 
|---|
| 64 | if (!(divisor_limb << 1)) | 
|---|
| 65 | divisor_limb_inverted = ~(mpi_limb_t)0; | 
|---|
| 66 | else | 
|---|
| 67 | udiv_qrnnd(divisor_limb_inverted, dummy, | 
|---|
| 68 | -divisor_limb, 0, divisor_limb); | 
|---|
| 69 |  | 
|---|
| 70 | n1 = dividend_ptr[dividend_size - 1]; | 
|---|
| 71 | r = n1 >> (BITS_PER_MPI_LIMB - normalization_steps); | 
|---|
| 72 |  | 
|---|
| 73 | /* Possible optimization: | 
|---|
| 74 | * if (r == 0 | 
|---|
| 75 | * && divisor_limb > ((n1 << normalization_steps) | 
|---|
| 76 | *		       | (dividend_ptr[dividend_size - 2] >> ...))) | 
|---|
| 77 | * ...one division less... | 
|---|
| 78 | */ | 
|---|
| 79 | for (i = dividend_size - 2; i >= 0; i--) { | 
|---|
| 80 | n0 = dividend_ptr[i]; | 
|---|
| 81 | UDIV_QRNND_PREINV(dummy, r, r, | 
|---|
| 82 | ((n1 << normalization_steps) | 
|---|
| 83 | | (n0 >> (BITS_PER_MPI_LIMB - normalization_steps))), | 
|---|
| 84 | divisor_limb, divisor_limb_inverted); | 
|---|
| 85 | n1 = n0; | 
|---|
| 86 | } | 
|---|
| 87 | UDIV_QRNND_PREINV(dummy, r, r, | 
|---|
| 88 | n1 << normalization_steps, | 
|---|
| 89 | divisor_limb, divisor_limb_inverted); | 
|---|
| 90 | return r >> normalization_steps; | 
|---|
| 91 | } else { | 
|---|
| 92 | mpi_limb_t divisor_limb_inverted; | 
|---|
| 93 |  | 
|---|
| 94 | /* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB.  The | 
|---|
| 95 | * result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the | 
|---|
| 96 | * most significant bit (with weight 2**N) implicit. | 
|---|
| 97 | * | 
|---|
| 98 | * Special case for DIVISOR_LIMB == 100...000. | 
|---|
| 99 | */ | 
|---|
| 100 | if (!(divisor_limb << 1)) | 
|---|
| 101 | divisor_limb_inverted = ~(mpi_limb_t)0; | 
|---|
| 102 | else | 
|---|
| 103 | udiv_qrnnd(divisor_limb_inverted, dummy, | 
|---|
| 104 | -divisor_limb, 0, divisor_limb); | 
|---|
| 105 |  | 
|---|
| 106 | i = dividend_size - 1; | 
|---|
| 107 | r = dividend_ptr[i]; | 
|---|
| 108 |  | 
|---|
| 109 | if (r >= divisor_limb) | 
|---|
| 110 | r = 0; | 
|---|
| 111 | else | 
|---|
| 112 | i--; | 
|---|
| 113 |  | 
|---|
| 114 | for ( ; i >= 0; i--) { | 
|---|
| 115 | n0 = dividend_ptr[i]; | 
|---|
| 116 | UDIV_QRNND_PREINV(dummy, r, r, | 
|---|
| 117 | n0, divisor_limb, divisor_limb_inverted); | 
|---|
| 118 | } | 
|---|
| 119 | return r; | 
|---|
| 120 | } | 
|---|
| 121 | } else { | 
|---|
| 122 | if (UDIV_NEEDS_NORMALIZATION) { | 
|---|
| 123 | int normalization_steps; | 
|---|
| 124 |  | 
|---|
| 125 | normalization_steps = count_leading_zeros(x: divisor_limb); | 
|---|
| 126 | if (normalization_steps) { | 
|---|
| 127 | divisor_limb <<= normalization_steps; | 
|---|
| 128 |  | 
|---|
| 129 | n1 = dividend_ptr[dividend_size - 1]; | 
|---|
| 130 | r = n1 >> (BITS_PER_MPI_LIMB - normalization_steps); | 
|---|
| 131 |  | 
|---|
| 132 | /* Possible optimization: | 
|---|
| 133 | * if (r == 0 | 
|---|
| 134 | * && divisor_limb > ((n1 << normalization_steps) | 
|---|
| 135 | *		   | (dividend_ptr[dividend_size - 2] >> ...))) | 
|---|
| 136 | * ...one division less... | 
|---|
| 137 | */ | 
|---|
| 138 | for (i = dividend_size - 2; i >= 0; i--) { | 
|---|
| 139 | n0 = dividend_ptr[i]; | 
|---|
| 140 | udiv_qrnnd(dummy, r, r, | 
|---|
| 141 | ((n1 << normalization_steps) | 
|---|
| 142 | | (n0 >> (BITS_PER_MPI_LIMB - normalization_steps))), | 
|---|
| 143 | divisor_limb); | 
|---|
| 144 | n1 = n0; | 
|---|
| 145 | } | 
|---|
| 146 | udiv_qrnnd(dummy, r, r, | 
|---|
| 147 | n1 << normalization_steps, | 
|---|
| 148 | divisor_limb); | 
|---|
| 149 | return r >> normalization_steps; | 
|---|
| 150 | } | 
|---|
| 151 | } | 
|---|
| 152 | /* No normalization needed, either because udiv_qrnnd doesn't require | 
|---|
| 153 | * it, or because DIVISOR_LIMB is already normalized. | 
|---|
| 154 | */ | 
|---|
| 155 | i = dividend_size - 1; | 
|---|
| 156 | r = dividend_ptr[i]; | 
|---|
| 157 |  | 
|---|
| 158 | if (r >= divisor_limb) | 
|---|
| 159 | r = 0; | 
|---|
| 160 | else | 
|---|
| 161 | i--; | 
|---|
| 162 |  | 
|---|
| 163 | for (; i >= 0; i--) { | 
|---|
| 164 | n0 = dividend_ptr[i]; | 
|---|
| 165 | udiv_qrnnd(dummy, r, r, n0, divisor_limb); | 
|---|
| 166 | } | 
|---|
| 167 | return r; | 
|---|
| 168 | } | 
|---|
| 169 | } | 
|---|
| 170 |  | 
|---|
| 171 | /* Divide num (NP/NSIZE) by den (DP/DSIZE) and write | 
|---|
| 172 | * the NSIZE-DSIZE least significant quotient limbs at QP | 
|---|
| 173 | * and the DSIZE long remainder at NP.	If QEXTRA_LIMBS is | 
|---|
| 174 | * non-zero, generate that many fraction bits and append them after the | 
|---|
| 175 | * other quotient limbs. | 
|---|
| 176 | * Return the most significant limb of the quotient, this is always 0 or 1. | 
|---|
| 177 | * | 
|---|
| 178 | * Preconditions: | 
|---|
| 179 | * 0. NSIZE >= DSIZE. | 
|---|
| 180 | * 1. The most significant bit of the divisor must be set. | 
|---|
| 181 | * 2. QP must either not overlap with the input operands at all, or | 
|---|
| 182 | *    QP + DSIZE >= NP must hold true.	(This means that it's | 
|---|
| 183 | *    possible to put the quotient in the high part of NUM, right after the | 
|---|
| 184 | *    remainder in NUM. | 
|---|
| 185 | * 3. NSIZE >= DSIZE, even if QEXTRA_LIMBS is non-zero. | 
|---|
| 186 | */ | 
|---|
| 187 |  | 
|---|
| 188 | mpi_limb_t | 
|---|
| 189 | mpihelp_divrem(mpi_ptr_t qp, mpi_size_t , | 
|---|
| 190 | mpi_ptr_t np, mpi_size_t nsize, mpi_ptr_t dp, mpi_size_t dsize) | 
|---|
| 191 | { | 
|---|
| 192 | mpi_limb_t most_significant_q_limb = 0; | 
|---|
| 193 |  | 
|---|
| 194 | switch (dsize) { | 
|---|
| 195 | case 0: | 
|---|
| 196 | /* We are asked to divide by zero, so go ahead and do it!  (To make | 
|---|
| 197 | the compiler not remove this statement, return the value.)  */ | 
|---|
| 198 | /* | 
|---|
| 199 | * existing clients of this function have been modified | 
|---|
| 200 | * not to call it with dsize == 0, so this should not happen | 
|---|
| 201 | */ | 
|---|
| 202 | return 1 / dsize; | 
|---|
| 203 |  | 
|---|
| 204 | case 1: | 
|---|
| 205 | { | 
|---|
| 206 | mpi_size_t i; | 
|---|
| 207 | mpi_limb_t n1; | 
|---|
| 208 | mpi_limb_t d; | 
|---|
| 209 |  | 
|---|
| 210 | d = dp[0]; | 
|---|
| 211 | n1 = np[nsize - 1]; | 
|---|
| 212 |  | 
|---|
| 213 | if (n1 >= d) { | 
|---|
| 214 | n1 -= d; | 
|---|
| 215 | most_significant_q_limb = 1; | 
|---|
| 216 | } | 
|---|
| 217 |  | 
|---|
| 218 | qp += qextra_limbs; | 
|---|
| 219 | for (i = nsize - 2; i >= 0; i--) | 
|---|
| 220 | udiv_qrnnd(qp[i], n1, n1, np[i], d); | 
|---|
| 221 | qp -= qextra_limbs; | 
|---|
| 222 |  | 
|---|
| 223 | for (i = qextra_limbs - 1; i >= 0; i--) | 
|---|
| 224 | udiv_qrnnd(qp[i], n1, n1, 0, d); | 
|---|
| 225 |  | 
|---|
| 226 | np[0] = n1; | 
|---|
| 227 | } | 
|---|
| 228 | break; | 
|---|
| 229 |  | 
|---|
| 230 | case 2: | 
|---|
| 231 | { | 
|---|
| 232 | mpi_size_t i; | 
|---|
| 233 | mpi_limb_t n1, n0, n2; | 
|---|
| 234 | mpi_limb_t d1, d0; | 
|---|
| 235 |  | 
|---|
| 236 | np += nsize - 2; | 
|---|
| 237 | d1 = dp[1]; | 
|---|
| 238 | d0 = dp[0]; | 
|---|
| 239 | n1 = np[1]; | 
|---|
| 240 | n0 = np[0]; | 
|---|
| 241 |  | 
|---|
| 242 | if (n1 >= d1 && (n1 > d1 || n0 >= d0)) { | 
|---|
| 243 | sub_ddmmss(n1, n0, n1, n0, d1, d0); | 
|---|
| 244 | most_significant_q_limb = 1; | 
|---|
| 245 | } | 
|---|
| 246 |  | 
|---|
| 247 | for (i = qextra_limbs + nsize - 2 - 1; i >= 0; i--) { | 
|---|
| 248 | mpi_limb_t q; | 
|---|
| 249 | mpi_limb_t r; | 
|---|
| 250 |  | 
|---|
| 251 | if (i >= qextra_limbs) | 
|---|
| 252 | np--; | 
|---|
| 253 | else | 
|---|
| 254 | np[0] = 0; | 
|---|
| 255 |  | 
|---|
| 256 | if (n1 == d1) { | 
|---|
| 257 | /* Q should be either 111..111 or 111..110.  Need special | 
|---|
| 258 | * treatment of this rare case as normal division would | 
|---|
| 259 | * give overflow.  */ | 
|---|
| 260 | q = ~(mpi_limb_t) 0; | 
|---|
| 261 |  | 
|---|
| 262 | r = n0 + d1; | 
|---|
| 263 | if (r < d1) {	/* Carry in the addition? */ | 
|---|
| 264 | add_ssaaaa(n1, n0, r - d0, | 
|---|
| 265 | np[0], 0, d0); | 
|---|
| 266 | qp[i] = q; | 
|---|
| 267 | continue; | 
|---|
| 268 | } | 
|---|
| 269 | n1 = d0 - (d0 != 0 ? 1 : 0); | 
|---|
| 270 | n0 = -d0; | 
|---|
| 271 | } else { | 
|---|
| 272 | udiv_qrnnd(q, r, n1, n0, d1); | 
|---|
| 273 | umul_ppmm(n1, n0, d0, q); | 
|---|
| 274 | } | 
|---|
| 275 |  | 
|---|
| 276 | n2 = np[0]; | 
|---|
| 277 | q_test: | 
|---|
| 278 | if (n1 > r || (n1 == r && n0 > n2)) { | 
|---|
| 279 | /* The estimated Q was too large.  */ | 
|---|
| 280 | q--; | 
|---|
| 281 | sub_ddmmss(n1, n0, n1, n0, 0, d0); | 
|---|
| 282 | r += d1; | 
|---|
| 283 | if (r >= d1)	/* If not carry, test Q again.  */ | 
|---|
| 284 | goto q_test; | 
|---|
| 285 | } | 
|---|
| 286 |  | 
|---|
| 287 | qp[i] = q; | 
|---|
| 288 | sub_ddmmss(n1, n0, r, n2, n1, n0); | 
|---|
| 289 | } | 
|---|
| 290 | np[1] = n1; | 
|---|
| 291 | np[0] = n0; | 
|---|
| 292 | } | 
|---|
| 293 | break; | 
|---|
| 294 |  | 
|---|
| 295 | default: | 
|---|
| 296 | { | 
|---|
| 297 | mpi_size_t i; | 
|---|
| 298 | mpi_limb_t dX, d1, n0; | 
|---|
| 299 |  | 
|---|
| 300 | np += nsize - dsize; | 
|---|
| 301 | dX = dp[dsize - 1]; | 
|---|
| 302 | d1 = dp[dsize - 2]; | 
|---|
| 303 | n0 = np[dsize - 1]; | 
|---|
| 304 |  | 
|---|
| 305 | if (n0 >= dX) { | 
|---|
| 306 | if (n0 > dX | 
|---|
| 307 | || mpihelp_cmp(op1_ptr: np, op2_ptr: dp, size: dsize - 1) >= 0) { | 
|---|
| 308 | mpihelp_sub_n(res_ptr: np, s1_ptr: np, s2_ptr: dp, size: dsize); | 
|---|
| 309 | n0 = np[dsize - 1]; | 
|---|
| 310 | most_significant_q_limb = 1; | 
|---|
| 311 | } | 
|---|
| 312 | } | 
|---|
| 313 |  | 
|---|
| 314 | for (i = qextra_limbs + nsize - dsize - 1; i >= 0; i--) { | 
|---|
| 315 | mpi_limb_t q; | 
|---|
| 316 | mpi_limb_t n1, n2; | 
|---|
| 317 | mpi_limb_t cy_limb; | 
|---|
| 318 |  | 
|---|
| 319 | if (i >= qextra_limbs) { | 
|---|
| 320 | np--; | 
|---|
| 321 | n2 = np[dsize]; | 
|---|
| 322 | } else { | 
|---|
| 323 | n2 = np[dsize - 1]; | 
|---|
| 324 | MPN_COPY_DECR(np + 1, np, dsize - 1); | 
|---|
| 325 | np[0] = 0; | 
|---|
| 326 | } | 
|---|
| 327 |  | 
|---|
| 328 | if (n0 == dX) { | 
|---|
| 329 | /* This might over-estimate q, but it's probably not worth | 
|---|
| 330 | * the extra code here to find out.  */ | 
|---|
| 331 | q = ~(mpi_limb_t) 0; | 
|---|
| 332 | } else { | 
|---|
| 333 | mpi_limb_t r; | 
|---|
| 334 |  | 
|---|
| 335 | udiv_qrnnd(q, r, n0, np[dsize - 1], dX); | 
|---|
| 336 | umul_ppmm(n1, n0, d1, q); | 
|---|
| 337 |  | 
|---|
| 338 | while (n1 > r | 
|---|
| 339 | || (n1 == r | 
|---|
| 340 | && n0 > np[dsize - 2])) { | 
|---|
| 341 | q--; | 
|---|
| 342 | r += dX; | 
|---|
| 343 | if (r < dX)	/* I.e. "carry in previous addition?" */ | 
|---|
| 344 | break; | 
|---|
| 345 | n1 -= n0 < d1; | 
|---|
| 346 | n0 -= d1; | 
|---|
| 347 | } | 
|---|
| 348 | } | 
|---|
| 349 |  | 
|---|
| 350 | /* Possible optimization: We already have (q * n0) and (1 * n1) | 
|---|
| 351 | * after the calculation of q.  Taking advantage of that, we | 
|---|
| 352 | * could make this loop make two iterations less.  */ | 
|---|
| 353 | cy_limb = mpihelp_submul_1(res_ptr: np, s1_ptr: dp, s1_size: dsize, s2_limb: q); | 
|---|
| 354 |  | 
|---|
| 355 | if (n2 != cy_limb) { | 
|---|
| 356 | mpihelp_add_n(res_ptr: np, s1_ptr: np, s2_ptr: dp, size: dsize); | 
|---|
| 357 | q--; | 
|---|
| 358 | } | 
|---|
| 359 |  | 
|---|
| 360 | qp[i] = q; | 
|---|
| 361 | n0 = np[dsize - 1]; | 
|---|
| 362 | } | 
|---|
| 363 | } | 
|---|
| 364 | } | 
|---|
| 365 |  | 
|---|
| 366 | return most_significant_q_limb; | 
|---|
| 367 | } | 
|---|
| 368 |  | 
|---|
| 369 | /**************** | 
|---|
| 370 | * Divide (DIVIDEND_PTR,,DIVIDEND_SIZE) by DIVISOR_LIMB. | 
|---|
| 371 | * Write DIVIDEND_SIZE limbs of quotient at QUOT_PTR. | 
|---|
| 372 | * Return the single-limb remainder. | 
|---|
| 373 | * There are no constraints on the value of the divisor. | 
|---|
| 374 | * | 
|---|
| 375 | * QUOT_PTR and DIVIDEND_PTR might point to the same limb. | 
|---|
| 376 | */ | 
|---|
| 377 |  | 
|---|
| 378 | mpi_limb_t | 
|---|
| 379 | mpihelp_divmod_1(mpi_ptr_t quot_ptr, | 
|---|
| 380 | mpi_ptr_t dividend_ptr, mpi_size_t dividend_size, | 
|---|
| 381 | mpi_limb_t divisor_limb) | 
|---|
| 382 | { | 
|---|
| 383 | mpi_size_t i; | 
|---|
| 384 | mpi_limb_t n1, n0, r; | 
|---|
| 385 | mpi_limb_t dummy __maybe_unused; | 
|---|
| 386 |  | 
|---|
| 387 | if (!dividend_size) | 
|---|
| 388 | return 0; | 
|---|
| 389 |  | 
|---|
| 390 | /* If multiplication is much faster than division, and the | 
|---|
| 391 | * dividend is large, pre-invert the divisor, and use | 
|---|
| 392 | * only multiplications in the inner loop. | 
|---|
| 393 | * | 
|---|
| 394 | * This test should be read: | 
|---|
| 395 | * Does it ever help to use udiv_qrnnd_preinv? | 
|---|
| 396 | * && Does what we save compensate for the inversion overhead? | 
|---|
| 397 | */ | 
|---|
| 398 | if (UDIV_TIME > (2 * UMUL_TIME + 6) | 
|---|
| 399 | && (UDIV_TIME - (2 * UMUL_TIME + 6)) * dividend_size > UDIV_TIME) { | 
|---|
| 400 | int normalization_steps; | 
|---|
| 401 |  | 
|---|
| 402 | normalization_steps = count_leading_zeros(x: divisor_limb); | 
|---|
| 403 | if (normalization_steps) { | 
|---|
| 404 | mpi_limb_t divisor_limb_inverted; | 
|---|
| 405 |  | 
|---|
| 406 | divisor_limb <<= normalization_steps; | 
|---|
| 407 |  | 
|---|
| 408 | /* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB.  The | 
|---|
| 409 | * result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the | 
|---|
| 410 | * most significant bit (with weight 2**N) implicit. | 
|---|
| 411 | */ | 
|---|
| 412 | /* Special case for DIVISOR_LIMB == 100...000.  */ | 
|---|
| 413 | if (!(divisor_limb << 1)) | 
|---|
| 414 | divisor_limb_inverted = ~(mpi_limb_t)0; | 
|---|
| 415 | else | 
|---|
| 416 | udiv_qrnnd(divisor_limb_inverted, dummy, | 
|---|
| 417 | -divisor_limb, 0, divisor_limb); | 
|---|
| 418 |  | 
|---|
| 419 | n1 = dividend_ptr[dividend_size - 1]; | 
|---|
| 420 | r = n1 >> (BITS_PER_MPI_LIMB - normalization_steps); | 
|---|
| 421 |  | 
|---|
| 422 | /* Possible optimization: | 
|---|
| 423 | * if (r == 0 | 
|---|
| 424 | * && divisor_limb > ((n1 << normalization_steps) | 
|---|
| 425 | *		       | (dividend_ptr[dividend_size - 2] >> ...))) | 
|---|
| 426 | * ...one division less... | 
|---|
| 427 | */ | 
|---|
| 428 | for (i = dividend_size - 2; i >= 0; i--) { | 
|---|
| 429 | n0 = dividend_ptr[i]; | 
|---|
| 430 | UDIV_QRNND_PREINV(quot_ptr[i + 1], r, r, | 
|---|
| 431 | ((n1 << normalization_steps) | 
|---|
| 432 | | (n0 >> (BITS_PER_MPI_LIMB - normalization_steps))), | 
|---|
| 433 | divisor_limb, divisor_limb_inverted); | 
|---|
| 434 | n1 = n0; | 
|---|
| 435 | } | 
|---|
| 436 | UDIV_QRNND_PREINV(quot_ptr[0], r, r, | 
|---|
| 437 | n1 << normalization_steps, | 
|---|
| 438 | divisor_limb, divisor_limb_inverted); | 
|---|
| 439 | return r >> normalization_steps; | 
|---|
| 440 | } else { | 
|---|
| 441 | mpi_limb_t divisor_limb_inverted; | 
|---|
| 442 |  | 
|---|
| 443 | /* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB.  The | 
|---|
| 444 | * result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the | 
|---|
| 445 | * most significant bit (with weight 2**N) implicit. | 
|---|
| 446 | */ | 
|---|
| 447 | /* Special case for DIVISOR_LIMB == 100...000.  */ | 
|---|
| 448 | if (!(divisor_limb << 1)) | 
|---|
| 449 | divisor_limb_inverted = ~(mpi_limb_t) 0; | 
|---|
| 450 | else | 
|---|
| 451 | udiv_qrnnd(divisor_limb_inverted, dummy, | 
|---|
| 452 | -divisor_limb, 0, divisor_limb); | 
|---|
| 453 |  | 
|---|
| 454 | i = dividend_size - 1; | 
|---|
| 455 | r = dividend_ptr[i]; | 
|---|
| 456 |  | 
|---|
| 457 | if (r >= divisor_limb) | 
|---|
| 458 | r = 0; | 
|---|
| 459 | else | 
|---|
| 460 | quot_ptr[i--] = 0; | 
|---|
| 461 |  | 
|---|
| 462 | for ( ; i >= 0; i--) { | 
|---|
| 463 | n0 = dividend_ptr[i]; | 
|---|
| 464 | UDIV_QRNND_PREINV(quot_ptr[i], r, r, | 
|---|
| 465 | n0, divisor_limb, divisor_limb_inverted); | 
|---|
| 466 | } | 
|---|
| 467 | return r; | 
|---|
| 468 | } | 
|---|
| 469 | } else { | 
|---|
| 470 | if (UDIV_NEEDS_NORMALIZATION) { | 
|---|
| 471 | int normalization_steps; | 
|---|
| 472 |  | 
|---|
| 473 | normalization_steps = count_leading_zeros(x: divisor_limb); | 
|---|
| 474 | if (normalization_steps) { | 
|---|
| 475 | divisor_limb <<= normalization_steps; | 
|---|
| 476 |  | 
|---|
| 477 | n1 = dividend_ptr[dividend_size - 1]; | 
|---|
| 478 | r = n1 >> (BITS_PER_MPI_LIMB - normalization_steps); | 
|---|
| 479 |  | 
|---|
| 480 | /* Possible optimization: | 
|---|
| 481 | * if (r == 0 | 
|---|
| 482 | * && divisor_limb > ((n1 << normalization_steps) | 
|---|
| 483 | *		   | (dividend_ptr[dividend_size - 2] >> ...))) | 
|---|
| 484 | * ...one division less... | 
|---|
| 485 | */ | 
|---|
| 486 | for (i = dividend_size - 2; i >= 0; i--) { | 
|---|
| 487 | n0 = dividend_ptr[i]; | 
|---|
| 488 | udiv_qrnnd(quot_ptr[i + 1], r, r, | 
|---|
| 489 | ((n1 << normalization_steps) | 
|---|
| 490 | | (n0 >> (BITS_PER_MPI_LIMB - normalization_steps))), | 
|---|
| 491 | divisor_limb); | 
|---|
| 492 | n1 = n0; | 
|---|
| 493 | } | 
|---|
| 494 | udiv_qrnnd(quot_ptr[0], r, r, | 
|---|
| 495 | n1 << normalization_steps, | 
|---|
| 496 | divisor_limb); | 
|---|
| 497 | return r >> normalization_steps; | 
|---|
| 498 | } | 
|---|
| 499 | } | 
|---|
| 500 | /* No normalization needed, either because udiv_qrnnd doesn't require | 
|---|
| 501 | * it, or because DIVISOR_LIMB is already normalized. | 
|---|
| 502 | */ | 
|---|
| 503 | i = dividend_size - 1; | 
|---|
| 504 | r = dividend_ptr[i]; | 
|---|
| 505 |  | 
|---|
| 506 | if (r >= divisor_limb) | 
|---|
| 507 | r = 0; | 
|---|
| 508 | else | 
|---|
| 509 | quot_ptr[i--] = 0; | 
|---|
| 510 |  | 
|---|
| 511 | for (; i >= 0; i--) { | 
|---|
| 512 | n0 = dividend_ptr[i]; | 
|---|
| 513 | udiv_qrnnd(quot_ptr[i], r, r, n0, divisor_limb); | 
|---|
| 514 | } | 
|---|
| 515 | return r; | 
|---|
| 516 | } | 
|---|
| 517 | } | 
|---|
| 518 |  | 
|---|