| 1 | // SPDX-License-Identifier: GPL-2.0-or-later | 
|---|
| 2 | /* mpihelp-mul.c  -  MPI helper functions | 
|---|
| 3 | * Copyright (C) 1994, 1996, 1998, 1999, | 
|---|
| 4 | *               2000 Free Software Foundation, Inc. | 
|---|
| 5 | * | 
|---|
| 6 | * This file is part of GnuPG. | 
|---|
| 7 | * | 
|---|
| 8 | * Note: This code is heavily based on the GNU MP Library. | 
|---|
| 9 | *	 Actually it's the same code with only minor changes in the | 
|---|
| 10 | *	 way the data is stored; this is to support the abstraction | 
|---|
| 11 | *	 of an optional secure memory allocation which may be used | 
|---|
| 12 | *	 to avoid revealing of sensitive data due to paging etc. | 
|---|
| 13 | *	 The GNU MP Library itself is published under the LGPL; | 
|---|
| 14 | *	 however I decided to publish this code under the plain GPL. | 
|---|
| 15 | */ | 
|---|
| 16 |  | 
|---|
| 17 | #include <linux/string.h> | 
|---|
| 18 | #include "mpi-internal.h" | 
|---|
| 19 | #include "longlong.h" | 
|---|
| 20 |  | 
|---|
| 21 | #define MPN_MUL_N_RECURSE(prodp, up, vp, size, tspace)		\ | 
|---|
| 22 | do {							\ | 
|---|
| 23 | if ((size) < KARATSUBA_THRESHOLD)		\ | 
|---|
| 24 | mul_n_basecase(prodp, up, vp, size);	\ | 
|---|
| 25 | else						\ | 
|---|
| 26 | mul_n(prodp, up, vp, size, tspace);	\ | 
|---|
| 27 | } while (0); | 
|---|
| 28 |  | 
|---|
| 29 | #define MPN_SQR_N_RECURSE(prodp, up, size, tspace)		\ | 
|---|
| 30 | do {							\ | 
|---|
| 31 | if ((size) < KARATSUBA_THRESHOLD)		\ | 
|---|
| 32 | mpih_sqr_n_basecase(prodp, up, size);	\ | 
|---|
| 33 | else						\ | 
|---|
| 34 | mpih_sqr_n(prodp, up, size, tspace);	\ | 
|---|
| 35 | } while (0); | 
|---|
| 36 |  | 
|---|
| 37 | /* Multiply the natural numbers u (pointed to by UP) and v (pointed to by VP), | 
|---|
| 38 | * both with SIZE limbs, and store the result at PRODP.  2 * SIZE limbs are | 
|---|
| 39 | * always stored.  Return the most significant limb. | 
|---|
| 40 | * | 
|---|
| 41 | * Argument constraints: | 
|---|
| 42 | * 1. PRODP != UP and PRODP != VP, i.e. the destination | 
|---|
| 43 | *    must be distinct from the multiplier and the multiplicand. | 
|---|
| 44 | * | 
|---|
| 45 | * | 
|---|
| 46 | * Handle simple cases with traditional multiplication. | 
|---|
| 47 | * | 
|---|
| 48 | * This is the most critical code of multiplication.  All multiplies rely | 
|---|
| 49 | * on this, both small and huge.  Small ones arrive here immediately.  Huge | 
|---|
| 50 | * ones arrive here as this is the base case for Karatsuba's recursive | 
|---|
| 51 | * algorithm below. | 
|---|
| 52 | */ | 
|---|
| 53 |  | 
|---|
| 54 | static mpi_limb_t | 
|---|
| 55 | mul_n_basecase(mpi_ptr_t prodp, mpi_ptr_t up, mpi_ptr_t vp, mpi_size_t size) | 
|---|
| 56 | { | 
|---|
| 57 | mpi_size_t i; | 
|---|
| 58 | mpi_limb_t cy; | 
|---|
| 59 | mpi_limb_t v_limb; | 
|---|
| 60 |  | 
|---|
| 61 | /* Multiply by the first limb in V separately, as the result can be | 
|---|
| 62 | * stored (not added) to PROD.  We also avoid a loop for zeroing.  */ | 
|---|
| 63 | v_limb = vp[0]; | 
|---|
| 64 | if (v_limb <= 1) { | 
|---|
| 65 | if (v_limb == 1) | 
|---|
| 66 | MPN_COPY(prodp, up, size); | 
|---|
| 67 | else | 
|---|
| 68 | MPN_ZERO(prodp, size); | 
|---|
| 69 | cy = 0; | 
|---|
| 70 | } else | 
|---|
| 71 | cy = mpihelp_mul_1(res_ptr: prodp, s1_ptr: up, s1_size: size, s2_limb: v_limb); | 
|---|
| 72 |  | 
|---|
| 73 | prodp[size] = cy; | 
|---|
| 74 | prodp++; | 
|---|
| 75 |  | 
|---|
| 76 | /* For each iteration in the outer loop, multiply one limb from | 
|---|
| 77 | * U with one limb from V, and add it to PROD.  */ | 
|---|
| 78 | for (i = 1; i < size; i++) { | 
|---|
| 79 | v_limb = vp[i]; | 
|---|
| 80 | if (v_limb <= 1) { | 
|---|
| 81 | cy = 0; | 
|---|
| 82 | if (v_limb == 1) | 
|---|
| 83 | cy = mpihelp_add_n(res_ptr: prodp, s1_ptr: prodp, s2_ptr: up, size); | 
|---|
| 84 | } else | 
|---|
| 85 | cy = mpihelp_addmul_1(res_ptr: prodp, s1_ptr: up, s1_size: size, s2_limb: v_limb); | 
|---|
| 86 |  | 
|---|
| 87 | prodp[size] = cy; | 
|---|
| 88 | prodp++; | 
|---|
| 89 | } | 
|---|
| 90 |  | 
|---|
| 91 | return cy; | 
|---|
| 92 | } | 
|---|
| 93 |  | 
|---|
| 94 | static void | 
|---|
| 95 | mul_n(mpi_ptr_t prodp, mpi_ptr_t up, mpi_ptr_t vp, | 
|---|
| 96 | mpi_size_t size, mpi_ptr_t tspace) | 
|---|
| 97 | { | 
|---|
| 98 | if (size & 1) { | 
|---|
| 99 | /* The size is odd, and the code below doesn't handle that. | 
|---|
| 100 | * Multiply the least significant (size - 1) limbs with a recursive | 
|---|
| 101 | * call, and handle the most significant limb of S1 and S2 | 
|---|
| 102 | * separately. | 
|---|
| 103 | * A slightly faster way to do this would be to make the Karatsuba | 
|---|
| 104 | * code below behave as if the size were even, and let it check for | 
|---|
| 105 | * odd size in the end.  I.e., in essence move this code to the end. | 
|---|
| 106 | * Doing so would save us a recursive call, and potentially make the | 
|---|
| 107 | * stack grow a lot less. | 
|---|
| 108 | */ | 
|---|
| 109 | mpi_size_t esize = size - 1;	/* even size */ | 
|---|
| 110 | mpi_limb_t cy_limb; | 
|---|
| 111 |  | 
|---|
| 112 | MPN_MUL_N_RECURSE(prodp, up, vp, esize, tspace); | 
|---|
| 113 | cy_limb = mpihelp_addmul_1(res_ptr: prodp + esize, s1_ptr: up, s1_size: esize, s2_limb: vp[esize]); | 
|---|
| 114 | prodp[esize + esize] = cy_limb; | 
|---|
| 115 | cy_limb = mpihelp_addmul_1(res_ptr: prodp + esize, s1_ptr: vp, s1_size: size, s2_limb: up[esize]); | 
|---|
| 116 | prodp[esize + size] = cy_limb; | 
|---|
| 117 | } else { | 
|---|
| 118 | /* Anatolij Alekseevich Karatsuba's divide-and-conquer algorithm. | 
|---|
| 119 | * | 
|---|
| 120 | * Split U in two pieces, U1 and U0, such that | 
|---|
| 121 | * U = U0 + U1*(B**n), | 
|---|
| 122 | * and V in V1 and V0, such that | 
|---|
| 123 | * V = V0 + V1*(B**n). | 
|---|
| 124 | * | 
|---|
| 125 | * UV is then computed recursively using the identity | 
|---|
| 126 | * | 
|---|
| 127 | *        2n   n          n                     n | 
|---|
| 128 | * UV = (B  + B )U V  +  B (U -U )(V -V )  +  (B + 1)U V | 
|---|
| 129 | *                1 1        1  0   0  1              0 0 | 
|---|
| 130 | * | 
|---|
| 131 | * Where B = 2**BITS_PER_MP_LIMB. | 
|---|
| 132 | */ | 
|---|
| 133 | mpi_size_t hsize = size >> 1; | 
|---|
| 134 | mpi_limb_t cy; | 
|---|
| 135 | int negflg; | 
|---|
| 136 |  | 
|---|
| 137 | /* Product H.      ________________  ________________ | 
|---|
| 138 | *                |_____U1 x V1____||____U0 x V0_____| | 
|---|
| 139 | * Put result in upper part of PROD and pass low part of TSPACE | 
|---|
| 140 | * as new TSPACE. | 
|---|
| 141 | */ | 
|---|
| 142 | MPN_MUL_N_RECURSE(prodp + size, up + hsize, vp + hsize, hsize, | 
|---|
| 143 | tspace); | 
|---|
| 144 |  | 
|---|
| 145 | /* Product M.      ________________ | 
|---|
| 146 | *                |_(U1-U0)(V0-V1)_| | 
|---|
| 147 | */ | 
|---|
| 148 | if (mpihelp_cmp(op1_ptr: up + hsize, op2_ptr: up, size: hsize) >= 0) { | 
|---|
| 149 | mpihelp_sub_n(res_ptr: prodp, s1_ptr: up + hsize, s2_ptr: up, size: hsize); | 
|---|
| 150 | negflg = 0; | 
|---|
| 151 | } else { | 
|---|
| 152 | mpihelp_sub_n(res_ptr: prodp, s1_ptr: up, s2_ptr: up + hsize, size: hsize); | 
|---|
| 153 | negflg = 1; | 
|---|
| 154 | } | 
|---|
| 155 | if (mpihelp_cmp(op1_ptr: vp + hsize, op2_ptr: vp, size: hsize) >= 0) { | 
|---|
| 156 | mpihelp_sub_n(res_ptr: prodp + hsize, s1_ptr: vp + hsize, s2_ptr: vp, size: hsize); | 
|---|
| 157 | negflg ^= 1; | 
|---|
| 158 | } else { | 
|---|
| 159 | mpihelp_sub_n(res_ptr: prodp + hsize, s1_ptr: vp, s2_ptr: vp + hsize, size: hsize); | 
|---|
| 160 | /* No change of NEGFLG.  */ | 
|---|
| 161 | } | 
|---|
| 162 | /* Read temporary operands from low part of PROD. | 
|---|
| 163 | * Put result in low part of TSPACE using upper part of TSPACE | 
|---|
| 164 | * as new TSPACE. | 
|---|
| 165 | */ | 
|---|
| 166 | MPN_MUL_N_RECURSE(tspace, prodp, prodp + hsize, hsize, | 
|---|
| 167 | tspace + size); | 
|---|
| 168 |  | 
|---|
| 169 | /* Add/copy product H. */ | 
|---|
| 170 | MPN_COPY(prodp + hsize, prodp + size, hsize); | 
|---|
| 171 | cy = mpihelp_add_n(res_ptr: prodp + size, s1_ptr: prodp + size, | 
|---|
| 172 | s2_ptr: prodp + size + hsize, size: hsize); | 
|---|
| 173 |  | 
|---|
| 174 | /* Add product M (if NEGFLG M is a negative number) */ | 
|---|
| 175 | if (negflg) | 
|---|
| 176 | cy -= | 
|---|
| 177 | mpihelp_sub_n(res_ptr: prodp + hsize, s1_ptr: prodp + hsize, s2_ptr: tspace, | 
|---|
| 178 | size); | 
|---|
| 179 | else | 
|---|
| 180 | cy += | 
|---|
| 181 | mpihelp_add_n(res_ptr: prodp + hsize, s1_ptr: prodp + hsize, s2_ptr: tspace, | 
|---|
| 182 | size); | 
|---|
| 183 |  | 
|---|
| 184 | /* Product L.      ________________  ________________ | 
|---|
| 185 | *                |________________||____U0 x V0_____| | 
|---|
| 186 | * Read temporary operands from low part of PROD. | 
|---|
| 187 | * Put result in low part of TSPACE using upper part of TSPACE | 
|---|
| 188 | * as new TSPACE. | 
|---|
| 189 | */ | 
|---|
| 190 | MPN_MUL_N_RECURSE(tspace, up, vp, hsize, tspace + size); | 
|---|
| 191 |  | 
|---|
| 192 | /* Add/copy Product L (twice) */ | 
|---|
| 193 |  | 
|---|
| 194 | cy += mpihelp_add_n(res_ptr: prodp + hsize, s1_ptr: prodp + hsize, s2_ptr: tspace, size); | 
|---|
| 195 | if (cy) | 
|---|
| 196 | mpihelp_add_1(res_ptr: prodp + hsize + size, | 
|---|
| 197 | s1_ptr: prodp + hsize + size, s1_size: hsize, s2_limb: cy); | 
|---|
| 198 |  | 
|---|
| 199 | MPN_COPY(prodp, tspace, hsize); | 
|---|
| 200 | cy = mpihelp_add_n(res_ptr: prodp + hsize, s1_ptr: prodp + hsize, s2_ptr: tspace + hsize, | 
|---|
| 201 | size: hsize); | 
|---|
| 202 | if (cy) | 
|---|
| 203 | mpihelp_add_1(res_ptr: prodp + size, s1_ptr: prodp + size, s1_size: size, s2_limb: 1); | 
|---|
| 204 | } | 
|---|
| 205 | } | 
|---|
| 206 |  | 
|---|
| 207 | void mpih_sqr_n_basecase(mpi_ptr_t prodp, mpi_ptr_t up, mpi_size_t size) | 
|---|
| 208 | { | 
|---|
| 209 | mpi_size_t i; | 
|---|
| 210 | mpi_limb_t cy_limb; | 
|---|
| 211 | mpi_limb_t v_limb; | 
|---|
| 212 |  | 
|---|
| 213 | /* Multiply by the first limb in V separately, as the result can be | 
|---|
| 214 | * stored (not added) to PROD.  We also avoid a loop for zeroing.  */ | 
|---|
| 215 | v_limb = up[0]; | 
|---|
| 216 | if (v_limb <= 1) { | 
|---|
| 217 | if (v_limb == 1) | 
|---|
| 218 | MPN_COPY(prodp, up, size); | 
|---|
| 219 | else | 
|---|
| 220 | MPN_ZERO(prodp, size); | 
|---|
| 221 | cy_limb = 0; | 
|---|
| 222 | } else | 
|---|
| 223 | cy_limb = mpihelp_mul_1(res_ptr: prodp, s1_ptr: up, s1_size: size, s2_limb: v_limb); | 
|---|
| 224 |  | 
|---|
| 225 | prodp[size] = cy_limb; | 
|---|
| 226 | prodp++; | 
|---|
| 227 |  | 
|---|
| 228 | /* For each iteration in the outer loop, multiply one limb from | 
|---|
| 229 | * U with one limb from V, and add it to PROD.  */ | 
|---|
| 230 | for (i = 1; i < size; i++) { | 
|---|
| 231 | v_limb = up[i]; | 
|---|
| 232 | if (v_limb <= 1) { | 
|---|
| 233 | cy_limb = 0; | 
|---|
| 234 | if (v_limb == 1) | 
|---|
| 235 | cy_limb = mpihelp_add_n(res_ptr: prodp, s1_ptr: prodp, s2_ptr: up, size); | 
|---|
| 236 | } else | 
|---|
| 237 | cy_limb = mpihelp_addmul_1(res_ptr: prodp, s1_ptr: up, s1_size: size, s2_limb: v_limb); | 
|---|
| 238 |  | 
|---|
| 239 | prodp[size] = cy_limb; | 
|---|
| 240 | prodp++; | 
|---|
| 241 | } | 
|---|
| 242 | } | 
|---|
| 243 |  | 
|---|
| 244 | void | 
|---|
| 245 | mpih_sqr_n(mpi_ptr_t prodp, mpi_ptr_t up, mpi_size_t size, mpi_ptr_t tspace) | 
|---|
| 246 | { | 
|---|
| 247 | if (size & 1) { | 
|---|
| 248 | /* The size is odd, and the code below doesn't handle that. | 
|---|
| 249 | * Multiply the least significant (size - 1) limbs with a recursive | 
|---|
| 250 | * call, and handle the most significant limb of S1 and S2 | 
|---|
| 251 | * separately. | 
|---|
| 252 | * A slightly faster way to do this would be to make the Karatsuba | 
|---|
| 253 | * code below behave as if the size were even, and let it check for | 
|---|
| 254 | * odd size in the end.  I.e., in essence move this code to the end. | 
|---|
| 255 | * Doing so would save us a recursive call, and potentially make the | 
|---|
| 256 | * stack grow a lot less. | 
|---|
| 257 | */ | 
|---|
| 258 | mpi_size_t esize = size - 1;	/* even size */ | 
|---|
| 259 | mpi_limb_t cy_limb; | 
|---|
| 260 |  | 
|---|
| 261 | MPN_SQR_N_RECURSE(prodp, up, esize, tspace); | 
|---|
| 262 | cy_limb = mpihelp_addmul_1(res_ptr: prodp + esize, s1_ptr: up, s1_size: esize, s2_limb: up[esize]); | 
|---|
| 263 | prodp[esize + esize] = cy_limb; | 
|---|
| 264 | cy_limb = mpihelp_addmul_1(res_ptr: prodp + esize, s1_ptr: up, s1_size: size, s2_limb: up[esize]); | 
|---|
| 265 |  | 
|---|
| 266 | prodp[esize + size] = cy_limb; | 
|---|
| 267 | } else { | 
|---|
| 268 | mpi_size_t hsize = size >> 1; | 
|---|
| 269 | mpi_limb_t cy; | 
|---|
| 270 |  | 
|---|
| 271 | /* Product H.      ________________  ________________ | 
|---|
| 272 | *                |_____U1 x U1____||____U0 x U0_____| | 
|---|
| 273 | * Put result in upper part of PROD and pass low part of TSPACE | 
|---|
| 274 | * as new TSPACE. | 
|---|
| 275 | */ | 
|---|
| 276 | MPN_SQR_N_RECURSE(prodp + size, up + hsize, hsize, tspace); | 
|---|
| 277 |  | 
|---|
| 278 | /* Product M.      ________________ | 
|---|
| 279 | *                |_(U1-U0)(U0-U1)_| | 
|---|
| 280 | */ | 
|---|
| 281 | if (mpihelp_cmp(op1_ptr: up + hsize, op2_ptr: up, size: hsize) >= 0) | 
|---|
| 282 | mpihelp_sub_n(res_ptr: prodp, s1_ptr: up + hsize, s2_ptr: up, size: hsize); | 
|---|
| 283 | else | 
|---|
| 284 | mpihelp_sub_n(res_ptr: prodp, s1_ptr: up, s2_ptr: up + hsize, size: hsize); | 
|---|
| 285 |  | 
|---|
| 286 | /* Read temporary operands from low part of PROD. | 
|---|
| 287 | * Put result in low part of TSPACE using upper part of TSPACE | 
|---|
| 288 | * as new TSPACE.  */ | 
|---|
| 289 | MPN_SQR_N_RECURSE(tspace, prodp, hsize, tspace + size); | 
|---|
| 290 |  | 
|---|
| 291 | /* Add/copy product H  */ | 
|---|
| 292 | MPN_COPY(prodp + hsize, prodp + size, hsize); | 
|---|
| 293 | cy = mpihelp_add_n(res_ptr: prodp + size, s1_ptr: prodp + size, | 
|---|
| 294 | s2_ptr: prodp + size + hsize, size: hsize); | 
|---|
| 295 |  | 
|---|
| 296 | /* Add product M (if NEGFLG M is a negative number).  */ | 
|---|
| 297 | cy -= mpihelp_sub_n(res_ptr: prodp + hsize, s1_ptr: prodp + hsize, s2_ptr: tspace, size); | 
|---|
| 298 |  | 
|---|
| 299 | /* Product L.      ________________  ________________ | 
|---|
| 300 | *                |________________||____U0 x U0_____| | 
|---|
| 301 | * Read temporary operands from low part of PROD. | 
|---|
| 302 | * Put result in low part of TSPACE using upper part of TSPACE | 
|---|
| 303 | * as new TSPACE.  */ | 
|---|
| 304 | MPN_SQR_N_RECURSE(tspace, up, hsize, tspace + size); | 
|---|
| 305 |  | 
|---|
| 306 | /* Add/copy Product L (twice).  */ | 
|---|
| 307 | cy += mpihelp_add_n(res_ptr: prodp + hsize, s1_ptr: prodp + hsize, s2_ptr: tspace, size); | 
|---|
| 308 | if (cy) | 
|---|
| 309 | mpihelp_add_1(res_ptr: prodp + hsize + size, | 
|---|
| 310 | s1_ptr: prodp + hsize + size, s1_size: hsize, s2_limb: cy); | 
|---|
| 311 |  | 
|---|
| 312 | MPN_COPY(prodp, tspace, hsize); | 
|---|
| 313 | cy = mpihelp_add_n(res_ptr: prodp + hsize, s1_ptr: prodp + hsize, s2_ptr: tspace + hsize, | 
|---|
| 314 | size: hsize); | 
|---|
| 315 | if (cy) | 
|---|
| 316 | mpihelp_add_1(res_ptr: prodp + size, s1_ptr: prodp + size, s1_size: size, s2_limb: 1); | 
|---|
| 317 | } | 
|---|
| 318 | } | 
|---|
| 319 |  | 
|---|
| 320 | int | 
|---|
| 321 | mpihelp_mul_karatsuba_case(mpi_ptr_t prodp, | 
|---|
| 322 | mpi_ptr_t up, mpi_size_t usize, | 
|---|
| 323 | mpi_ptr_t vp, mpi_size_t vsize, | 
|---|
| 324 | struct karatsuba_ctx *ctx) | 
|---|
| 325 | { | 
|---|
| 326 | mpi_limb_t cy; | 
|---|
| 327 |  | 
|---|
| 328 | if (!ctx->tspace || ctx->tspace_size < vsize) { | 
|---|
| 329 | if (ctx->tspace) | 
|---|
| 330 | mpi_free_limb_space(a: ctx->tspace); | 
|---|
| 331 | ctx->tspace = mpi_alloc_limb_space(nlimbs: 2 * vsize); | 
|---|
| 332 | if (!ctx->tspace) | 
|---|
| 333 | return -ENOMEM; | 
|---|
| 334 | ctx->tspace_size = vsize; | 
|---|
| 335 | } | 
|---|
| 336 |  | 
|---|
| 337 | MPN_MUL_N_RECURSE(prodp, up, vp, vsize, ctx->tspace); | 
|---|
| 338 |  | 
|---|
| 339 | prodp += vsize; | 
|---|
| 340 | up += vsize; | 
|---|
| 341 | usize -= vsize; | 
|---|
| 342 | if (usize >= vsize) { | 
|---|
| 343 | if (!ctx->tp || ctx->tp_size < vsize) { | 
|---|
| 344 | if (ctx->tp) | 
|---|
| 345 | mpi_free_limb_space(a: ctx->tp); | 
|---|
| 346 | ctx->tp = mpi_alloc_limb_space(nlimbs: 2 * vsize); | 
|---|
| 347 | if (!ctx->tp) { | 
|---|
| 348 | if (ctx->tspace) | 
|---|
| 349 | mpi_free_limb_space(a: ctx->tspace); | 
|---|
| 350 | ctx->tspace = NULL; | 
|---|
| 351 | return -ENOMEM; | 
|---|
| 352 | } | 
|---|
| 353 | ctx->tp_size = vsize; | 
|---|
| 354 | } | 
|---|
| 355 |  | 
|---|
| 356 | do { | 
|---|
| 357 | MPN_MUL_N_RECURSE(ctx->tp, up, vp, vsize, ctx->tspace); | 
|---|
| 358 | cy = mpihelp_add_n(res_ptr: prodp, s1_ptr: prodp, s2_ptr: ctx->tp, size: vsize); | 
|---|
| 359 | mpihelp_add_1(res_ptr: prodp + vsize, s1_ptr: ctx->tp + vsize, s1_size: vsize, | 
|---|
| 360 | s2_limb: cy); | 
|---|
| 361 | prodp += vsize; | 
|---|
| 362 | up += vsize; | 
|---|
| 363 | usize -= vsize; | 
|---|
| 364 | } while (usize >= vsize); | 
|---|
| 365 | } | 
|---|
| 366 |  | 
|---|
| 367 | if (usize) { | 
|---|
| 368 | if (usize < KARATSUBA_THRESHOLD) { | 
|---|
| 369 | mpi_limb_t tmp; | 
|---|
| 370 | if (mpihelp_mul(prodp: ctx->tspace, up: vp, usize: vsize, vp: up, vsize: usize, result: &tmp) | 
|---|
| 371 | < 0) | 
|---|
| 372 | return -ENOMEM; | 
|---|
| 373 | } else { | 
|---|
| 374 | if (!ctx->next) { | 
|---|
| 375 | ctx->next = kzalloc(sizeof *ctx, GFP_KERNEL); | 
|---|
| 376 | if (!ctx->next) | 
|---|
| 377 | return -ENOMEM; | 
|---|
| 378 | } | 
|---|
| 379 | if (mpihelp_mul_karatsuba_case(prodp: ctx->tspace, | 
|---|
| 380 | up: vp, usize: vsize, | 
|---|
| 381 | vp: up, vsize: usize, | 
|---|
| 382 | ctx: ctx->next) < 0) | 
|---|
| 383 | return -ENOMEM; | 
|---|
| 384 | } | 
|---|
| 385 |  | 
|---|
| 386 | cy = mpihelp_add_n(res_ptr: prodp, s1_ptr: prodp, s2_ptr: ctx->tspace, size: vsize); | 
|---|
| 387 | mpihelp_add_1(res_ptr: prodp + vsize, s1_ptr: ctx->tspace + vsize, s1_size: usize, s2_limb: cy); | 
|---|
| 388 | } | 
|---|
| 389 |  | 
|---|
| 390 | return 0; | 
|---|
| 391 | } | 
|---|
| 392 |  | 
|---|
| 393 | void mpihelp_release_karatsuba_ctx(struct karatsuba_ctx *ctx) | 
|---|
| 394 | { | 
|---|
| 395 | struct karatsuba_ctx *ctx2; | 
|---|
| 396 |  | 
|---|
| 397 | if (ctx->tp) | 
|---|
| 398 | mpi_free_limb_space(a: ctx->tp); | 
|---|
| 399 | if (ctx->tspace) | 
|---|
| 400 | mpi_free_limb_space(a: ctx->tspace); | 
|---|
| 401 | for (ctx = ctx->next; ctx; ctx = ctx2) { | 
|---|
| 402 | ctx2 = ctx->next; | 
|---|
| 403 | if (ctx->tp) | 
|---|
| 404 | mpi_free_limb_space(a: ctx->tp); | 
|---|
| 405 | if (ctx->tspace) | 
|---|
| 406 | mpi_free_limb_space(a: ctx->tspace); | 
|---|
| 407 | kfree(objp: ctx); | 
|---|
| 408 | } | 
|---|
| 409 | } | 
|---|
| 410 |  | 
|---|
| 411 | /* Multiply the natural numbers u (pointed to by UP, with USIZE limbs) | 
|---|
| 412 | * and v (pointed to by VP, with VSIZE limbs), and store the result at | 
|---|
| 413 | * PRODP.  USIZE + VSIZE limbs are always stored, but if the input | 
|---|
| 414 | * operands are normalized.  Return the most significant limb of the | 
|---|
| 415 | * result. | 
|---|
| 416 | * | 
|---|
| 417 | * NOTE: The space pointed to by PRODP is overwritten before finished | 
|---|
| 418 | * with U and V, so overlap is an error. | 
|---|
| 419 | * | 
|---|
| 420 | * Argument constraints: | 
|---|
| 421 | * 1. USIZE >= VSIZE. | 
|---|
| 422 | * 2. PRODP != UP and PRODP != VP, i.e. the destination | 
|---|
| 423 | *    must be distinct from the multiplier and the multiplicand. | 
|---|
| 424 | */ | 
|---|
| 425 |  | 
|---|
| 426 | int | 
|---|
| 427 | mpihelp_mul(mpi_ptr_t prodp, mpi_ptr_t up, mpi_size_t usize, | 
|---|
| 428 | mpi_ptr_t vp, mpi_size_t vsize, mpi_limb_t *_result) | 
|---|
| 429 | { | 
|---|
| 430 | mpi_ptr_t prod_endp = prodp + usize + vsize - 1; | 
|---|
| 431 | mpi_limb_t cy; | 
|---|
| 432 | struct karatsuba_ctx ctx; | 
|---|
| 433 |  | 
|---|
| 434 | if (vsize < KARATSUBA_THRESHOLD) { | 
|---|
| 435 | mpi_size_t i; | 
|---|
| 436 | mpi_limb_t v_limb; | 
|---|
| 437 |  | 
|---|
| 438 | if (!vsize) { | 
|---|
| 439 | *_result = 0; | 
|---|
| 440 | return 0; | 
|---|
| 441 | } | 
|---|
| 442 |  | 
|---|
| 443 | /* Multiply by the first limb in V separately, as the result can be | 
|---|
| 444 | * stored (not added) to PROD.  We also avoid a loop for zeroing.  */ | 
|---|
| 445 | v_limb = vp[0]; | 
|---|
| 446 | if (v_limb <= 1) { | 
|---|
| 447 | if (v_limb == 1) | 
|---|
| 448 | MPN_COPY(prodp, up, usize); | 
|---|
| 449 | else | 
|---|
| 450 | MPN_ZERO(prodp, usize); | 
|---|
| 451 | cy = 0; | 
|---|
| 452 | } else | 
|---|
| 453 | cy = mpihelp_mul_1(res_ptr: prodp, s1_ptr: up, s1_size: usize, s2_limb: v_limb); | 
|---|
| 454 |  | 
|---|
| 455 | prodp[usize] = cy; | 
|---|
| 456 | prodp++; | 
|---|
| 457 |  | 
|---|
| 458 | /* For each iteration in the outer loop, multiply one limb from | 
|---|
| 459 | * U with one limb from V, and add it to PROD.  */ | 
|---|
| 460 | for (i = 1; i < vsize; i++) { | 
|---|
| 461 | v_limb = vp[i]; | 
|---|
| 462 | if (v_limb <= 1) { | 
|---|
| 463 | cy = 0; | 
|---|
| 464 | if (v_limb == 1) | 
|---|
| 465 | cy = mpihelp_add_n(res_ptr: prodp, s1_ptr: prodp, s2_ptr: up, | 
|---|
| 466 | size: usize); | 
|---|
| 467 | } else | 
|---|
| 468 | cy = mpihelp_addmul_1(res_ptr: prodp, s1_ptr: up, s1_size: usize, s2_limb: v_limb); | 
|---|
| 469 |  | 
|---|
| 470 | prodp[usize] = cy; | 
|---|
| 471 | prodp++; | 
|---|
| 472 | } | 
|---|
| 473 |  | 
|---|
| 474 | *_result = cy; | 
|---|
| 475 | return 0; | 
|---|
| 476 | } | 
|---|
| 477 |  | 
|---|
| 478 | memset(s: &ctx, c: 0, n: sizeof ctx); | 
|---|
| 479 | if (mpihelp_mul_karatsuba_case(prodp, up, usize, vp, vsize, ctx: &ctx) < 0) | 
|---|
| 480 | return -ENOMEM; | 
|---|
| 481 | mpihelp_release_karatsuba_ctx(ctx: &ctx); | 
|---|
| 482 | *_result = *prod_endp; | 
|---|
| 483 | return 0; | 
|---|
| 484 | } | 
|---|
| 485 |  | 
|---|