| 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * Floating proportions with flexible aging period |
| 4 | * |
| 5 | * Copyright (C) 2011, SUSE, Jan Kara <jack@suse.cz> |
| 6 | * |
| 7 | * The goal of this code is: Given different types of event, measure proportion |
| 8 | * of each type of event over time. The proportions are measured with |
| 9 | * exponentially decaying history to give smooth transitions. A formula |
| 10 | * expressing proportion of event of type 'j' is: |
| 11 | * |
| 12 | * p_{j} = (\Sum_{i>=0} x_{i,j}/2^{i+1})/(\Sum_{i>=0} x_i/2^{i+1}) |
| 13 | * |
| 14 | * Where x_{i,j} is j's number of events in i-th last time period and x_i is |
| 15 | * total number of events in i-th last time period. |
| 16 | * |
| 17 | * Note that p_{j}'s are normalised, i.e. |
| 18 | * |
| 19 | * \Sum_{j} p_{j} = 1, |
| 20 | * |
| 21 | * This formula can be straightforwardly computed by maintaining denominator |
| 22 | * (let's call it 'd') and for each event type its numerator (let's call it |
| 23 | * 'n_j'). When an event of type 'j' happens, we simply need to do: |
| 24 | * n_j++; d++; |
| 25 | * |
| 26 | * When a new period is declared, we could do: |
| 27 | * d /= 2 |
| 28 | * for each j |
| 29 | * n_j /= 2 |
| 30 | * |
| 31 | * To avoid iteration over all event types, we instead shift numerator of event |
| 32 | * j lazily when someone asks for a proportion of event j or when event j |
| 33 | * occurs. This can bit trivially implemented by remembering last period in |
| 34 | * which something happened with proportion of type j. |
| 35 | */ |
| 36 | #include <linux/flex_proportions.h> |
| 37 | |
| 38 | int fprop_global_init(struct fprop_global *p, gfp_t gfp) |
| 39 | { |
| 40 | int err; |
| 41 | |
| 42 | p->period = 0; |
| 43 | /* Use 1 to avoid dealing with periods with 0 events... */ |
| 44 | err = percpu_counter_init(&p->events, 1, gfp); |
| 45 | if (err) |
| 46 | return err; |
| 47 | seqcount_init(&p->sequence); |
| 48 | return 0; |
| 49 | } |
| 50 | |
| 51 | void fprop_global_destroy(struct fprop_global *p) |
| 52 | { |
| 53 | percpu_counter_destroy(fbc: &p->events); |
| 54 | } |
| 55 | |
| 56 | /* |
| 57 | * Declare @periods new periods. It is upto the caller to make sure period |
| 58 | * transitions cannot happen in parallel. |
| 59 | * |
| 60 | * The function returns true if the proportions are still defined and false |
| 61 | * if aging zeroed out all events. This can be used to detect whether declaring |
| 62 | * further periods has any effect. |
| 63 | */ |
| 64 | bool fprop_new_period(struct fprop_global *p, int periods) |
| 65 | { |
| 66 | s64 events = percpu_counter_sum(fbc: &p->events); |
| 67 | |
| 68 | /* |
| 69 | * Don't do anything if there are no events. |
| 70 | */ |
| 71 | if (events <= 1) |
| 72 | return false; |
| 73 | preempt_disable_nested(); |
| 74 | write_seqcount_begin(&p->sequence); |
| 75 | if (periods < 64) |
| 76 | events -= events >> periods; |
| 77 | /* Use addition to avoid losing events happening between sum and set */ |
| 78 | percpu_counter_add(fbc: &p->events, amount: -events); |
| 79 | p->period += periods; |
| 80 | write_seqcount_end(&p->sequence); |
| 81 | preempt_enable_nested(); |
| 82 | |
| 83 | return true; |
| 84 | } |
| 85 | |
| 86 | /* |
| 87 | * ---- PERCPU ---- |
| 88 | */ |
| 89 | #define PROP_BATCH (8*(1+ilog2(nr_cpu_ids))) |
| 90 | |
| 91 | int fprop_local_init_percpu(struct fprop_local_percpu *pl, gfp_t gfp) |
| 92 | { |
| 93 | int err; |
| 94 | |
| 95 | err = percpu_counter_init(&pl->events, 0, gfp); |
| 96 | if (err) |
| 97 | return err; |
| 98 | pl->period = 0; |
| 99 | raw_spin_lock_init(&pl->lock); |
| 100 | return 0; |
| 101 | } |
| 102 | |
| 103 | void fprop_local_destroy_percpu(struct fprop_local_percpu *pl) |
| 104 | { |
| 105 | percpu_counter_destroy(fbc: &pl->events); |
| 106 | } |
| 107 | |
| 108 | static void fprop_reflect_period_percpu(struct fprop_global *p, |
| 109 | struct fprop_local_percpu *pl) |
| 110 | { |
| 111 | unsigned int period = p->period; |
| 112 | unsigned long flags; |
| 113 | |
| 114 | /* Fast path - period didn't change */ |
| 115 | if (pl->period == period) |
| 116 | return; |
| 117 | raw_spin_lock_irqsave(&pl->lock, flags); |
| 118 | /* Someone updated pl->period while we were spinning? */ |
| 119 | if (pl->period >= period) { |
| 120 | raw_spin_unlock_irqrestore(&pl->lock, flags); |
| 121 | return; |
| 122 | } |
| 123 | /* Aging zeroed our fraction? */ |
| 124 | if (period - pl->period < BITS_PER_LONG) { |
| 125 | s64 val = percpu_counter_read(fbc: &pl->events); |
| 126 | |
| 127 | if (val < (nr_cpu_ids * PROP_BATCH)) |
| 128 | val = percpu_counter_sum(fbc: &pl->events); |
| 129 | |
| 130 | percpu_counter_add_batch(fbc: &pl->events, |
| 131 | amount: -val + (val >> (period-pl->period)), PROP_BATCH); |
| 132 | } else |
| 133 | percpu_counter_set(fbc: &pl->events, amount: 0); |
| 134 | pl->period = period; |
| 135 | raw_spin_unlock_irqrestore(&pl->lock, flags); |
| 136 | } |
| 137 | |
| 138 | /* Event of type pl happened */ |
| 139 | void __fprop_add_percpu(struct fprop_global *p, struct fprop_local_percpu *pl, |
| 140 | long nr) |
| 141 | { |
| 142 | fprop_reflect_period_percpu(p, pl); |
| 143 | percpu_counter_add_batch(fbc: &pl->events, amount: nr, PROP_BATCH); |
| 144 | percpu_counter_add(fbc: &p->events, amount: nr); |
| 145 | } |
| 146 | |
| 147 | void fprop_fraction_percpu(struct fprop_global *p, |
| 148 | struct fprop_local_percpu *pl, |
| 149 | unsigned long *numerator, unsigned long *denominator) |
| 150 | { |
| 151 | unsigned int seq; |
| 152 | s64 num, den; |
| 153 | |
| 154 | do { |
| 155 | seq = read_seqcount_begin(&p->sequence); |
| 156 | fprop_reflect_period_percpu(p, pl); |
| 157 | num = percpu_counter_read_positive(fbc: &pl->events); |
| 158 | den = percpu_counter_read_positive(fbc: &p->events); |
| 159 | } while (read_seqcount_retry(&p->sequence, seq)); |
| 160 | |
| 161 | /* |
| 162 | * Make fraction <= 1 and denominator > 0 even in presence of percpu |
| 163 | * counter errors |
| 164 | */ |
| 165 | if (den <= num) { |
| 166 | if (num) |
| 167 | den = num; |
| 168 | else |
| 169 | den = 1; |
| 170 | } |
| 171 | *denominator = den; |
| 172 | *numerator = num; |
| 173 | } |
| 174 | |
| 175 | /* |
| 176 | * Like __fprop_add_percpu() except that event is counted only if the given |
| 177 | * type has fraction smaller than @max_frac/FPROP_FRAC_BASE |
| 178 | */ |
| 179 | void __fprop_add_percpu_max(struct fprop_global *p, |
| 180 | struct fprop_local_percpu *pl, int max_frac, long nr) |
| 181 | { |
| 182 | if (unlikely(max_frac < FPROP_FRAC_BASE)) { |
| 183 | unsigned long numerator, denominator; |
| 184 | s64 tmp; |
| 185 | |
| 186 | fprop_fraction_percpu(p, pl, numerator: &numerator, denominator: &denominator); |
| 187 | /* Adding 'nr' to fraction exceeds max_frac/FPROP_FRAC_BASE? */ |
| 188 | tmp = (u64)denominator * max_frac - |
| 189 | ((u64)numerator << FPROP_FRAC_SHIFT); |
| 190 | if (tmp < 0) { |
| 191 | /* Maximum fraction already exceeded? */ |
| 192 | return; |
| 193 | } else if (tmp < nr * (FPROP_FRAC_BASE - max_frac)) { |
| 194 | /* Add just enough for the fraction to saturate */ |
| 195 | nr = div_u64(dividend: tmp + FPROP_FRAC_BASE - max_frac - 1, |
| 196 | FPROP_FRAC_BASE - max_frac); |
| 197 | } |
| 198 | } |
| 199 | |
| 200 | __fprop_add_percpu(p, pl, nr); |
| 201 | } |
| 202 | |