| 1 | // SPDX-License-Identifier: GPL-2.0+ |
| 2 | /* |
| 3 | * Maple Tree implementation |
| 4 | * Copyright (c) 2018-2022 Oracle Corporation |
| 5 | * Authors: Liam R. Howlett <Liam.Howlett@oracle.com> |
| 6 | * Matthew Wilcox <willy@infradead.org> |
| 7 | * Copyright (c) 2023 ByteDance |
| 8 | * Author: Peng Zhang <zhangpeng.00@bytedance.com> |
| 9 | */ |
| 10 | |
| 11 | /* |
| 12 | * DOC: Interesting implementation details of the Maple Tree |
| 13 | * |
| 14 | * Each node type has a number of slots for entries and a number of slots for |
| 15 | * pivots. In the case of dense nodes, the pivots are implied by the position |
| 16 | * and are simply the slot index + the minimum of the node. |
| 17 | * |
| 18 | * In regular B-Tree terms, pivots are called keys. The term pivot is used to |
| 19 | * indicate that the tree is specifying ranges. Pivots may appear in the |
| 20 | * subtree with an entry attached to the value whereas keys are unique to a |
| 21 | * specific position of a B-tree. Pivot values are inclusive of the slot with |
| 22 | * the same index. |
| 23 | * |
| 24 | * |
| 25 | * The following illustrates the layout of a range64 nodes slots and pivots. |
| 26 | * |
| 27 | * |
| 28 | * Slots -> | 0 | 1 | 2 | ... | 12 | 13 | 14 | 15 | |
| 29 | * ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬ |
| 30 | * │ │ │ │ │ │ │ │ └─ Implied maximum |
| 31 | * │ │ │ │ │ │ │ └─ Pivot 14 |
| 32 | * │ │ │ │ │ │ └─ Pivot 13 |
| 33 | * │ │ │ │ │ └─ Pivot 12 |
| 34 | * │ │ │ │ └─ Pivot 11 |
| 35 | * │ │ │ └─ Pivot 2 |
| 36 | * │ │ └─ Pivot 1 |
| 37 | * │ └─ Pivot 0 |
| 38 | * └─ Implied minimum |
| 39 | * |
| 40 | * Slot contents: |
| 41 | * Internal (non-leaf) nodes contain pointers to other nodes. |
| 42 | * Leaf nodes contain entries. |
| 43 | * |
| 44 | * The location of interest is often referred to as an offset. All offsets have |
| 45 | * a slot, but the last offset has an implied pivot from the node above (or |
| 46 | * UINT_MAX for the root node. |
| 47 | * |
| 48 | * Ranges complicate certain write activities. When modifying any of |
| 49 | * the B-tree variants, it is known that one entry will either be added or |
| 50 | * deleted. When modifying the Maple Tree, one store operation may overwrite |
| 51 | * the entire data set, or one half of the tree, or the middle half of the tree. |
| 52 | * |
| 53 | */ |
| 54 | |
| 55 | |
| 56 | #include <linux/maple_tree.h> |
| 57 | #include <linux/xarray.h> |
| 58 | #include <linux/types.h> |
| 59 | #include <linux/export.h> |
| 60 | #include <linux/slab.h> |
| 61 | #include <linux/limits.h> |
| 62 | #include <asm/barrier.h> |
| 63 | |
| 64 | #define CREATE_TRACE_POINTS |
| 65 | #include <trace/events/maple_tree.h> |
| 66 | |
| 67 | /* |
| 68 | * Kernel pointer hashing renders much of the maple tree dump useless as tagged |
| 69 | * pointers get hashed to arbitrary values. |
| 70 | * |
| 71 | * If CONFIG_DEBUG_VM_MAPLE_TREE is set we are in a debug mode where it is |
| 72 | * permissible to bypass this. Otherwise remain cautious and retain the hashing. |
| 73 | * |
| 74 | * Userland doesn't know about %px so also use %p there. |
| 75 | */ |
| 76 | #if defined(__KERNEL__) && defined(CONFIG_DEBUG_VM_MAPLE_TREE) |
| 77 | #define PTR_FMT "%px" |
| 78 | #else |
| 79 | #define PTR_FMT "%p" |
| 80 | #endif |
| 81 | |
| 82 | #define MA_ROOT_PARENT 1 |
| 83 | |
| 84 | /* |
| 85 | * Maple state flags |
| 86 | * * MA_STATE_PREALLOC - Preallocated nodes, WARN_ON allocation |
| 87 | */ |
| 88 | #define MA_STATE_PREALLOC 1 |
| 89 | |
| 90 | #define ma_parent_ptr(x) ((struct maple_pnode *)(x)) |
| 91 | #define mas_tree_parent(x) ((unsigned long)(x->tree) | MA_ROOT_PARENT) |
| 92 | #define ma_mnode_ptr(x) ((struct maple_node *)(x)) |
| 93 | #define ma_enode_ptr(x) ((struct maple_enode *)(x)) |
| 94 | static struct kmem_cache *maple_node_cache; |
| 95 | |
| 96 | #ifdef CONFIG_DEBUG_MAPLE_TREE |
| 97 | static const unsigned long mt_max[] = { |
| 98 | [maple_dense] = MAPLE_NODE_SLOTS, |
| 99 | [maple_leaf_64] = ULONG_MAX, |
| 100 | [maple_range_64] = ULONG_MAX, |
| 101 | [maple_arange_64] = ULONG_MAX, |
| 102 | }; |
| 103 | #define mt_node_max(x) mt_max[mte_node_type(x)] |
| 104 | #endif |
| 105 | |
| 106 | static const unsigned char mt_slots[] = { |
| 107 | [maple_dense] = MAPLE_NODE_SLOTS, |
| 108 | [maple_leaf_64] = MAPLE_RANGE64_SLOTS, |
| 109 | [maple_range_64] = MAPLE_RANGE64_SLOTS, |
| 110 | [maple_arange_64] = MAPLE_ARANGE64_SLOTS, |
| 111 | }; |
| 112 | #define mt_slot_count(x) mt_slots[mte_node_type(x)] |
| 113 | |
| 114 | static const unsigned char mt_pivots[] = { |
| 115 | [maple_dense] = 0, |
| 116 | [maple_leaf_64] = MAPLE_RANGE64_SLOTS - 1, |
| 117 | [maple_range_64] = MAPLE_RANGE64_SLOTS - 1, |
| 118 | [maple_arange_64] = MAPLE_ARANGE64_SLOTS - 1, |
| 119 | }; |
| 120 | #define mt_pivot_count(x) mt_pivots[mte_node_type(x)] |
| 121 | |
| 122 | static const unsigned char mt_min_slots[] = { |
| 123 | [maple_dense] = MAPLE_NODE_SLOTS / 2, |
| 124 | [maple_leaf_64] = (MAPLE_RANGE64_SLOTS / 2) - 2, |
| 125 | [maple_range_64] = (MAPLE_RANGE64_SLOTS / 2) - 2, |
| 126 | [maple_arange_64] = (MAPLE_ARANGE64_SLOTS / 2) - 1, |
| 127 | }; |
| 128 | #define mt_min_slot_count(x) mt_min_slots[mte_node_type(x)] |
| 129 | |
| 130 | #define MAPLE_BIG_NODE_SLOTS (MAPLE_RANGE64_SLOTS * 2 + 2) |
| 131 | #define MAPLE_BIG_NODE_GAPS (MAPLE_ARANGE64_SLOTS * 2 + 1) |
| 132 | |
| 133 | struct maple_big_node { |
| 134 | unsigned long pivot[MAPLE_BIG_NODE_SLOTS - 1]; |
| 135 | union { |
| 136 | struct maple_enode *slot[MAPLE_BIG_NODE_SLOTS]; |
| 137 | struct { |
| 138 | unsigned long padding[MAPLE_BIG_NODE_GAPS]; |
| 139 | unsigned long gap[MAPLE_BIG_NODE_GAPS]; |
| 140 | }; |
| 141 | }; |
| 142 | unsigned char b_end; |
| 143 | enum maple_type type; |
| 144 | }; |
| 145 | |
| 146 | /* |
| 147 | * The maple_subtree_state is used to build a tree to replace a segment of an |
| 148 | * existing tree in a more atomic way. Any walkers of the older tree will hit a |
| 149 | * dead node and restart on updates. |
| 150 | */ |
| 151 | struct maple_subtree_state { |
| 152 | struct ma_state *orig_l; /* Original left side of subtree */ |
| 153 | struct ma_state *orig_r; /* Original right side of subtree */ |
| 154 | struct ma_state *l; /* New left side of subtree */ |
| 155 | struct ma_state *m; /* New middle of subtree (rare) */ |
| 156 | struct ma_state *r; /* New right side of subtree */ |
| 157 | struct ma_topiary *free; /* nodes to be freed */ |
| 158 | struct ma_topiary *destroy; /* Nodes to be destroyed (walked and freed) */ |
| 159 | struct maple_big_node *bn; |
| 160 | }; |
| 161 | |
| 162 | #ifdef CONFIG_KASAN_STACK |
| 163 | /* Prevent mas_wr_bnode() from exceeding the stack frame limit */ |
| 164 | #define noinline_for_kasan noinline_for_stack |
| 165 | #else |
| 166 | #define noinline_for_kasan inline |
| 167 | #endif |
| 168 | |
| 169 | /* Functions */ |
| 170 | static inline struct maple_node *mt_alloc_one(gfp_t gfp) |
| 171 | { |
| 172 | return kmem_cache_alloc(maple_node_cache, gfp); |
| 173 | } |
| 174 | |
| 175 | static inline void mt_free_bulk(size_t size, void __rcu **nodes) |
| 176 | { |
| 177 | kmem_cache_free_bulk(s: maple_node_cache, size, p: (void **)nodes); |
| 178 | } |
| 179 | |
| 180 | static void mt_return_sheaf(struct slab_sheaf *sheaf) |
| 181 | { |
| 182 | kmem_cache_return_sheaf(s: maple_node_cache, GFP_NOWAIT, sheaf); |
| 183 | } |
| 184 | |
| 185 | static struct slab_sheaf *mt_get_sheaf(gfp_t gfp, int count) |
| 186 | { |
| 187 | return kmem_cache_prefill_sheaf(s: maple_node_cache, gfp, size: count); |
| 188 | } |
| 189 | |
| 190 | static int mt_refill_sheaf(gfp_t gfp, struct slab_sheaf **sheaf, |
| 191 | unsigned int size) |
| 192 | { |
| 193 | return kmem_cache_refill_sheaf(s: maple_node_cache, gfp, sheafp: sheaf, size); |
| 194 | } |
| 195 | |
| 196 | /* |
| 197 | * ma_free_rcu() - Use rcu callback to free a maple node |
| 198 | * @node: The node to free |
| 199 | * |
| 200 | * The maple tree uses the parent pointer to indicate this node is no longer in |
| 201 | * use and will be freed. |
| 202 | */ |
| 203 | static void ma_free_rcu(struct maple_node *node) |
| 204 | { |
| 205 | WARN_ON(node->parent != ma_parent_ptr(node)); |
| 206 | kfree_rcu(node, rcu); |
| 207 | } |
| 208 | |
| 209 | static void mt_set_height(struct maple_tree *mt, unsigned char height) |
| 210 | { |
| 211 | unsigned int new_flags = mt->ma_flags; |
| 212 | |
| 213 | new_flags &= ~MT_FLAGS_HEIGHT_MASK; |
| 214 | MT_BUG_ON(mt, height > MAPLE_HEIGHT_MAX); |
| 215 | new_flags |= height << MT_FLAGS_HEIGHT_OFFSET; |
| 216 | mt->ma_flags = new_flags; |
| 217 | } |
| 218 | |
| 219 | static unsigned int mas_mt_height(struct ma_state *mas) |
| 220 | { |
| 221 | return mt_height(mt: mas->tree); |
| 222 | } |
| 223 | |
| 224 | static inline unsigned int mt_attr(struct maple_tree *mt) |
| 225 | { |
| 226 | return mt->ma_flags & ~MT_FLAGS_HEIGHT_MASK; |
| 227 | } |
| 228 | |
| 229 | static __always_inline enum maple_type mte_node_type( |
| 230 | const struct maple_enode *entry) |
| 231 | { |
| 232 | return ((unsigned long)entry >> MAPLE_NODE_TYPE_SHIFT) & |
| 233 | MAPLE_NODE_TYPE_MASK; |
| 234 | } |
| 235 | |
| 236 | static __always_inline bool ma_is_dense(const enum maple_type type) |
| 237 | { |
| 238 | return type < maple_leaf_64; |
| 239 | } |
| 240 | |
| 241 | static __always_inline bool ma_is_leaf(const enum maple_type type) |
| 242 | { |
| 243 | return type < maple_range_64; |
| 244 | } |
| 245 | |
| 246 | static __always_inline bool mte_is_leaf(const struct maple_enode *entry) |
| 247 | { |
| 248 | return ma_is_leaf(type: mte_node_type(entry)); |
| 249 | } |
| 250 | |
| 251 | /* |
| 252 | * We also reserve values with the bottom two bits set to '10' which are |
| 253 | * below 4096 |
| 254 | */ |
| 255 | static __always_inline bool mt_is_reserved(const void *entry) |
| 256 | { |
| 257 | return ((unsigned long)entry < MAPLE_RESERVED_RANGE) && |
| 258 | xa_is_internal(entry); |
| 259 | } |
| 260 | |
| 261 | static __always_inline void mas_set_err(struct ma_state *mas, long err) |
| 262 | { |
| 263 | mas->node = MA_ERROR(err); |
| 264 | mas->status = ma_error; |
| 265 | } |
| 266 | |
| 267 | static __always_inline bool mas_is_ptr(const struct ma_state *mas) |
| 268 | { |
| 269 | return mas->status == ma_root; |
| 270 | } |
| 271 | |
| 272 | static __always_inline bool mas_is_start(const struct ma_state *mas) |
| 273 | { |
| 274 | return mas->status == ma_start; |
| 275 | } |
| 276 | |
| 277 | static __always_inline bool mas_is_none(const struct ma_state *mas) |
| 278 | { |
| 279 | return mas->status == ma_none; |
| 280 | } |
| 281 | |
| 282 | static __always_inline bool mas_is_paused(const struct ma_state *mas) |
| 283 | { |
| 284 | return mas->status == ma_pause; |
| 285 | } |
| 286 | |
| 287 | static __always_inline bool mas_is_overflow(struct ma_state *mas) |
| 288 | { |
| 289 | return mas->status == ma_overflow; |
| 290 | } |
| 291 | |
| 292 | static inline bool mas_is_underflow(struct ma_state *mas) |
| 293 | { |
| 294 | return mas->status == ma_underflow; |
| 295 | } |
| 296 | |
| 297 | static __always_inline struct maple_node *mte_to_node( |
| 298 | const struct maple_enode *entry) |
| 299 | { |
| 300 | return (struct maple_node *)((unsigned long)entry & ~MAPLE_NODE_MASK); |
| 301 | } |
| 302 | |
| 303 | /* |
| 304 | * mte_to_mat() - Convert a maple encoded node to a maple topiary node. |
| 305 | * @entry: The maple encoded node |
| 306 | * |
| 307 | * Return: a maple topiary pointer |
| 308 | */ |
| 309 | static inline struct maple_topiary *mte_to_mat(const struct maple_enode *entry) |
| 310 | { |
| 311 | return (struct maple_topiary *) |
| 312 | ((unsigned long)entry & ~MAPLE_NODE_MASK); |
| 313 | } |
| 314 | |
| 315 | /* |
| 316 | * mas_mn() - Get the maple state node. |
| 317 | * @mas: The maple state |
| 318 | * |
| 319 | * Return: the maple node (not encoded - bare pointer). |
| 320 | */ |
| 321 | static inline struct maple_node *mas_mn(const struct ma_state *mas) |
| 322 | { |
| 323 | return mte_to_node(entry: mas->node); |
| 324 | } |
| 325 | |
| 326 | /* |
| 327 | * mte_set_node_dead() - Set a maple encoded node as dead. |
| 328 | * @mn: The maple encoded node. |
| 329 | */ |
| 330 | static inline void mte_set_node_dead(struct maple_enode *mn) |
| 331 | { |
| 332 | mte_to_node(entry: mn)->parent = ma_parent_ptr(mte_to_node(mn)); |
| 333 | smp_wmb(); /* Needed for RCU */ |
| 334 | } |
| 335 | |
| 336 | /* Bit 1 indicates the root is a node */ |
| 337 | #define MAPLE_ROOT_NODE 0x02 |
| 338 | /* maple_type stored bit 3-6 */ |
| 339 | #define MAPLE_ENODE_TYPE_SHIFT 0x03 |
| 340 | /* Bit 2 means a NULL somewhere below */ |
| 341 | #define MAPLE_ENODE_NULL 0x04 |
| 342 | |
| 343 | static inline struct maple_enode *mt_mk_node(const struct maple_node *node, |
| 344 | enum maple_type type) |
| 345 | { |
| 346 | return (void *)((unsigned long)node | |
| 347 | (type << MAPLE_ENODE_TYPE_SHIFT) | MAPLE_ENODE_NULL); |
| 348 | } |
| 349 | |
| 350 | static inline void *mte_mk_root(const struct maple_enode *node) |
| 351 | { |
| 352 | return (void *)((unsigned long)node | MAPLE_ROOT_NODE); |
| 353 | } |
| 354 | |
| 355 | static inline void *mte_safe_root(const struct maple_enode *node) |
| 356 | { |
| 357 | return (void *)((unsigned long)node & ~MAPLE_ROOT_NODE); |
| 358 | } |
| 359 | |
| 360 | static inline void __maybe_unused *mte_set_full(const struct maple_enode *node) |
| 361 | { |
| 362 | return (void *)((unsigned long)node & ~MAPLE_ENODE_NULL); |
| 363 | } |
| 364 | |
| 365 | static inline void __maybe_unused *mte_clear_full(const struct maple_enode *node) |
| 366 | { |
| 367 | return (void *)((unsigned long)node | MAPLE_ENODE_NULL); |
| 368 | } |
| 369 | |
| 370 | static inline bool __maybe_unused mte_has_null(const struct maple_enode *node) |
| 371 | { |
| 372 | return (unsigned long)node & MAPLE_ENODE_NULL; |
| 373 | } |
| 374 | |
| 375 | static __always_inline bool ma_is_root(struct maple_node *node) |
| 376 | { |
| 377 | return ((unsigned long)node->parent & MA_ROOT_PARENT); |
| 378 | } |
| 379 | |
| 380 | static __always_inline bool mte_is_root(const struct maple_enode *node) |
| 381 | { |
| 382 | return ma_is_root(node: mte_to_node(entry: node)); |
| 383 | } |
| 384 | |
| 385 | static inline bool mas_is_root_limits(const struct ma_state *mas) |
| 386 | { |
| 387 | return !mas->min && mas->max == ULONG_MAX; |
| 388 | } |
| 389 | |
| 390 | static __always_inline bool mt_is_alloc(struct maple_tree *mt) |
| 391 | { |
| 392 | return (mt->ma_flags & MT_FLAGS_ALLOC_RANGE); |
| 393 | } |
| 394 | |
| 395 | /* |
| 396 | * The Parent Pointer |
| 397 | * Excluding root, the parent pointer is 256B aligned like all other tree nodes. |
| 398 | * When storing a 32 or 64 bit values, the offset can fit into 5 bits. The 16 |
| 399 | * bit values need an extra bit to store the offset. This extra bit comes from |
| 400 | * a reuse of the last bit in the node type. This is possible by using bit 1 to |
| 401 | * indicate if bit 2 is part of the type or the slot. |
| 402 | * |
| 403 | * Node types: |
| 404 | * 0b??1 = Root |
| 405 | * 0b?00 = 16 bit nodes |
| 406 | * 0b010 = 32 bit nodes |
| 407 | * 0b110 = 64 bit nodes |
| 408 | * |
| 409 | * Slot size and alignment |
| 410 | * 0b??1 : Root |
| 411 | * 0b?00 : 16 bit values, type in 0-1, slot in 2-7 |
| 412 | * 0b010 : 32 bit values, type in 0-2, slot in 3-7 |
| 413 | * 0b110 : 64 bit values, type in 0-2, slot in 3-7 |
| 414 | */ |
| 415 | |
| 416 | #define MAPLE_PARENT_ROOT 0x01 |
| 417 | |
| 418 | #define MAPLE_PARENT_SLOT_SHIFT 0x03 |
| 419 | #define MAPLE_PARENT_SLOT_MASK 0xF8 |
| 420 | |
| 421 | #define MAPLE_PARENT_16B_SLOT_SHIFT 0x02 |
| 422 | #define MAPLE_PARENT_16B_SLOT_MASK 0xFC |
| 423 | |
| 424 | #define MAPLE_PARENT_RANGE64 0x06 |
| 425 | #define MAPLE_PARENT_RANGE32 0x02 |
| 426 | #define MAPLE_PARENT_NOT_RANGE16 0x02 |
| 427 | |
| 428 | /* |
| 429 | * mte_parent_shift() - Get the parent shift for the slot storage. |
| 430 | * @parent: The parent pointer cast as an unsigned long |
| 431 | * Return: The shift into that pointer to the star to of the slot |
| 432 | */ |
| 433 | static inline unsigned long mte_parent_shift(unsigned long parent) |
| 434 | { |
| 435 | /* Note bit 1 == 0 means 16B */ |
| 436 | if (likely(parent & MAPLE_PARENT_NOT_RANGE16)) |
| 437 | return MAPLE_PARENT_SLOT_SHIFT; |
| 438 | |
| 439 | return MAPLE_PARENT_16B_SLOT_SHIFT; |
| 440 | } |
| 441 | |
| 442 | /* |
| 443 | * mte_parent_slot_mask() - Get the slot mask for the parent. |
| 444 | * @parent: The parent pointer cast as an unsigned long. |
| 445 | * Return: The slot mask for that parent. |
| 446 | */ |
| 447 | static inline unsigned long mte_parent_slot_mask(unsigned long parent) |
| 448 | { |
| 449 | /* Note bit 1 == 0 means 16B */ |
| 450 | if (likely(parent & MAPLE_PARENT_NOT_RANGE16)) |
| 451 | return MAPLE_PARENT_SLOT_MASK; |
| 452 | |
| 453 | return MAPLE_PARENT_16B_SLOT_MASK; |
| 454 | } |
| 455 | |
| 456 | /* |
| 457 | * mas_parent_type() - Return the maple_type of the parent from the stored |
| 458 | * parent type. |
| 459 | * @mas: The maple state |
| 460 | * @enode: The maple_enode to extract the parent's enum |
| 461 | * Return: The node->parent maple_type |
| 462 | */ |
| 463 | static inline |
| 464 | enum maple_type mas_parent_type(struct ma_state *mas, struct maple_enode *enode) |
| 465 | { |
| 466 | unsigned long p_type; |
| 467 | |
| 468 | p_type = (unsigned long)mte_to_node(entry: enode)->parent; |
| 469 | if (WARN_ON(p_type & MAPLE_PARENT_ROOT)) |
| 470 | return 0; |
| 471 | |
| 472 | p_type &= MAPLE_NODE_MASK; |
| 473 | p_type &= ~mte_parent_slot_mask(parent: p_type); |
| 474 | switch (p_type) { |
| 475 | case MAPLE_PARENT_RANGE64: /* or MAPLE_PARENT_ARANGE64 */ |
| 476 | if (mt_is_alloc(mt: mas->tree)) |
| 477 | return maple_arange_64; |
| 478 | return maple_range_64; |
| 479 | } |
| 480 | |
| 481 | return 0; |
| 482 | } |
| 483 | |
| 484 | /* |
| 485 | * mas_set_parent() - Set the parent node and encode the slot |
| 486 | * @mas: The maple state |
| 487 | * @enode: The encoded maple node. |
| 488 | * @parent: The encoded maple node that is the parent of @enode. |
| 489 | * @slot: The slot that @enode resides in @parent. |
| 490 | * |
| 491 | * Slot number is encoded in the enode->parent bit 3-6 or 2-6, depending on the |
| 492 | * parent type. |
| 493 | */ |
| 494 | static inline |
| 495 | void mas_set_parent(struct ma_state *mas, struct maple_enode *enode, |
| 496 | const struct maple_enode *parent, unsigned char slot) |
| 497 | { |
| 498 | unsigned long val = (unsigned long)parent; |
| 499 | unsigned long shift; |
| 500 | unsigned long type; |
| 501 | enum maple_type p_type = mte_node_type(entry: parent); |
| 502 | |
| 503 | MAS_BUG_ON(mas, p_type == maple_dense); |
| 504 | MAS_BUG_ON(mas, p_type == maple_leaf_64); |
| 505 | |
| 506 | switch (p_type) { |
| 507 | case maple_range_64: |
| 508 | case maple_arange_64: |
| 509 | shift = MAPLE_PARENT_SLOT_SHIFT; |
| 510 | type = MAPLE_PARENT_RANGE64; |
| 511 | break; |
| 512 | default: |
| 513 | case maple_dense: |
| 514 | case maple_leaf_64: |
| 515 | shift = type = 0; |
| 516 | break; |
| 517 | } |
| 518 | |
| 519 | val &= ~MAPLE_NODE_MASK; /* Clear all node metadata in parent */ |
| 520 | val |= (slot << shift) | type; |
| 521 | mte_to_node(entry: enode)->parent = ma_parent_ptr(val); |
| 522 | } |
| 523 | |
| 524 | /* |
| 525 | * mte_parent_slot() - get the parent slot of @enode. |
| 526 | * @enode: The encoded maple node. |
| 527 | * |
| 528 | * Return: The slot in the parent node where @enode resides. |
| 529 | */ |
| 530 | static __always_inline |
| 531 | unsigned int mte_parent_slot(const struct maple_enode *enode) |
| 532 | { |
| 533 | unsigned long val = (unsigned long)mte_to_node(entry: enode)->parent; |
| 534 | |
| 535 | if (unlikely(val & MA_ROOT_PARENT)) |
| 536 | return 0; |
| 537 | |
| 538 | /* |
| 539 | * Okay to use MAPLE_PARENT_16B_SLOT_MASK as the last bit will be lost |
| 540 | * by shift if the parent shift is MAPLE_PARENT_SLOT_SHIFT |
| 541 | */ |
| 542 | return (val & MAPLE_PARENT_16B_SLOT_MASK) >> mte_parent_shift(parent: val); |
| 543 | } |
| 544 | |
| 545 | /* |
| 546 | * mte_parent() - Get the parent of @node. |
| 547 | * @enode: The encoded maple node. |
| 548 | * |
| 549 | * Return: The parent maple node. |
| 550 | */ |
| 551 | static __always_inline |
| 552 | struct maple_node *mte_parent(const struct maple_enode *enode) |
| 553 | { |
| 554 | return (void *)((unsigned long) |
| 555 | (mte_to_node(entry: enode)->parent) & ~MAPLE_NODE_MASK); |
| 556 | } |
| 557 | |
| 558 | /* |
| 559 | * ma_dead_node() - check if the @enode is dead. |
| 560 | * @enode: The encoded maple node |
| 561 | * |
| 562 | * Return: true if dead, false otherwise. |
| 563 | */ |
| 564 | static __always_inline bool ma_dead_node(const struct maple_node *node) |
| 565 | { |
| 566 | struct maple_node *parent; |
| 567 | |
| 568 | /* Do not reorder reads from the node prior to the parent check */ |
| 569 | smp_rmb(); |
| 570 | parent = (void *)((unsigned long) node->parent & ~MAPLE_NODE_MASK); |
| 571 | return (parent == node); |
| 572 | } |
| 573 | |
| 574 | /* |
| 575 | * mte_dead_node() - check if the @enode is dead. |
| 576 | * @enode: The encoded maple node |
| 577 | * |
| 578 | * Return: true if dead, false otherwise. |
| 579 | */ |
| 580 | static __always_inline bool mte_dead_node(const struct maple_enode *enode) |
| 581 | { |
| 582 | struct maple_node *node; |
| 583 | |
| 584 | node = mte_to_node(entry: enode); |
| 585 | return ma_dead_node(node); |
| 586 | } |
| 587 | |
| 588 | /* |
| 589 | * ma_pivots() - Get a pointer to the maple node pivots. |
| 590 | * @node: the maple node |
| 591 | * @type: the node type |
| 592 | * |
| 593 | * In the event of a dead node, this array may be %NULL |
| 594 | * |
| 595 | * Return: A pointer to the maple node pivots |
| 596 | */ |
| 597 | static inline unsigned long *ma_pivots(struct maple_node *node, |
| 598 | enum maple_type type) |
| 599 | { |
| 600 | switch (type) { |
| 601 | case maple_arange_64: |
| 602 | return node->ma64.pivot; |
| 603 | case maple_range_64: |
| 604 | case maple_leaf_64: |
| 605 | return node->mr64.pivot; |
| 606 | case maple_dense: |
| 607 | return NULL; |
| 608 | } |
| 609 | return NULL; |
| 610 | } |
| 611 | |
| 612 | /* |
| 613 | * ma_gaps() - Get a pointer to the maple node gaps. |
| 614 | * @node: the maple node |
| 615 | * @type: the node type |
| 616 | * |
| 617 | * Return: A pointer to the maple node gaps |
| 618 | */ |
| 619 | static inline unsigned long *ma_gaps(struct maple_node *node, |
| 620 | enum maple_type type) |
| 621 | { |
| 622 | switch (type) { |
| 623 | case maple_arange_64: |
| 624 | return node->ma64.gap; |
| 625 | case maple_range_64: |
| 626 | case maple_leaf_64: |
| 627 | case maple_dense: |
| 628 | return NULL; |
| 629 | } |
| 630 | return NULL; |
| 631 | } |
| 632 | |
| 633 | /* |
| 634 | * mas_safe_pivot() - get the pivot at @piv or mas->max. |
| 635 | * @mas: The maple state |
| 636 | * @pivots: The pointer to the maple node pivots |
| 637 | * @piv: The pivot to fetch |
| 638 | * @type: The maple node type |
| 639 | * |
| 640 | * Return: The pivot at @piv within the limit of the @pivots array, @mas->max |
| 641 | * otherwise. |
| 642 | */ |
| 643 | static __always_inline unsigned long |
| 644 | mas_safe_pivot(const struct ma_state *mas, unsigned long *pivots, |
| 645 | unsigned char piv, enum maple_type type) |
| 646 | { |
| 647 | if (piv >= mt_pivots[type]) |
| 648 | return mas->max; |
| 649 | |
| 650 | return pivots[piv]; |
| 651 | } |
| 652 | |
| 653 | /* |
| 654 | * mas_safe_min() - Return the minimum for a given offset. |
| 655 | * @mas: The maple state |
| 656 | * @pivots: The pointer to the maple node pivots |
| 657 | * @offset: The offset into the pivot array |
| 658 | * |
| 659 | * Return: The minimum range value that is contained in @offset. |
| 660 | */ |
| 661 | static inline unsigned long |
| 662 | mas_safe_min(struct ma_state *mas, unsigned long *pivots, unsigned char offset) |
| 663 | { |
| 664 | if (likely(offset)) |
| 665 | return pivots[offset - 1] + 1; |
| 666 | |
| 667 | return mas->min; |
| 668 | } |
| 669 | |
| 670 | /* |
| 671 | * mte_set_pivot() - Set a pivot to a value in an encoded maple node. |
| 672 | * @mn: The encoded maple node |
| 673 | * @piv: The pivot offset |
| 674 | * @val: The value of the pivot |
| 675 | */ |
| 676 | static inline void mte_set_pivot(struct maple_enode *mn, unsigned char piv, |
| 677 | unsigned long val) |
| 678 | { |
| 679 | struct maple_node *node = mte_to_node(entry: mn); |
| 680 | enum maple_type type = mte_node_type(entry: mn); |
| 681 | |
| 682 | BUG_ON(piv >= mt_pivots[type]); |
| 683 | switch (type) { |
| 684 | case maple_range_64: |
| 685 | case maple_leaf_64: |
| 686 | node->mr64.pivot[piv] = val; |
| 687 | break; |
| 688 | case maple_arange_64: |
| 689 | node->ma64.pivot[piv] = val; |
| 690 | break; |
| 691 | case maple_dense: |
| 692 | break; |
| 693 | } |
| 694 | |
| 695 | } |
| 696 | |
| 697 | /* |
| 698 | * ma_slots() - Get a pointer to the maple node slots. |
| 699 | * @mn: The maple node |
| 700 | * @mt: The maple node type |
| 701 | * |
| 702 | * Return: A pointer to the maple node slots |
| 703 | */ |
| 704 | static inline void __rcu **ma_slots(struct maple_node *mn, enum maple_type mt) |
| 705 | { |
| 706 | switch (mt) { |
| 707 | case maple_arange_64: |
| 708 | return mn->ma64.slot; |
| 709 | case maple_range_64: |
| 710 | case maple_leaf_64: |
| 711 | return mn->mr64.slot; |
| 712 | case maple_dense: |
| 713 | return mn->slot; |
| 714 | } |
| 715 | |
| 716 | return NULL; |
| 717 | } |
| 718 | |
| 719 | static inline bool mt_write_locked(const struct maple_tree *mt) |
| 720 | { |
| 721 | return mt_external_lock(mt) ? mt_write_lock_is_held(mt) : |
| 722 | lockdep_is_held(&mt->ma_lock); |
| 723 | } |
| 724 | |
| 725 | static __always_inline bool mt_locked(const struct maple_tree *mt) |
| 726 | { |
| 727 | return mt_external_lock(mt) ? mt_lock_is_held(mt) : |
| 728 | lockdep_is_held(&mt->ma_lock); |
| 729 | } |
| 730 | |
| 731 | static __always_inline void *mt_slot(const struct maple_tree *mt, |
| 732 | void __rcu **slots, unsigned char offset) |
| 733 | { |
| 734 | return rcu_dereference_check(slots[offset], mt_locked(mt)); |
| 735 | } |
| 736 | |
| 737 | static __always_inline void *mt_slot_locked(struct maple_tree *mt, |
| 738 | void __rcu **slots, unsigned char offset) |
| 739 | { |
| 740 | return rcu_dereference_protected(slots[offset], mt_write_locked(mt)); |
| 741 | } |
| 742 | /* |
| 743 | * mas_slot_locked() - Get the slot value when holding the maple tree lock. |
| 744 | * @mas: The maple state |
| 745 | * @slots: The pointer to the slots |
| 746 | * @offset: The offset into the slots array to fetch |
| 747 | * |
| 748 | * Return: The entry stored in @slots at the @offset. |
| 749 | */ |
| 750 | static __always_inline void *mas_slot_locked(struct ma_state *mas, |
| 751 | void __rcu **slots, unsigned char offset) |
| 752 | { |
| 753 | return mt_slot_locked(mt: mas->tree, slots, offset); |
| 754 | } |
| 755 | |
| 756 | /* |
| 757 | * mas_slot() - Get the slot value when not holding the maple tree lock. |
| 758 | * @mas: The maple state |
| 759 | * @slots: The pointer to the slots |
| 760 | * @offset: The offset into the slots array to fetch |
| 761 | * |
| 762 | * Return: The entry stored in @slots at the @offset |
| 763 | */ |
| 764 | static __always_inline void *mas_slot(struct ma_state *mas, void __rcu **slots, |
| 765 | unsigned char offset) |
| 766 | { |
| 767 | return mt_slot(mt: mas->tree, slots, offset); |
| 768 | } |
| 769 | |
| 770 | /* |
| 771 | * mas_root() - Get the maple tree root. |
| 772 | * @mas: The maple state. |
| 773 | * |
| 774 | * Return: The pointer to the root of the tree |
| 775 | */ |
| 776 | static __always_inline void *mas_root(struct ma_state *mas) |
| 777 | { |
| 778 | return rcu_dereference_check(mas->tree->ma_root, mt_locked(mas->tree)); |
| 779 | } |
| 780 | |
| 781 | static inline void *mt_root_locked(struct maple_tree *mt) |
| 782 | { |
| 783 | return rcu_dereference_protected(mt->ma_root, mt_write_locked(mt)); |
| 784 | } |
| 785 | |
| 786 | /* |
| 787 | * mas_root_locked() - Get the maple tree root when holding the maple tree lock. |
| 788 | * @mas: The maple state. |
| 789 | * |
| 790 | * Return: The pointer to the root of the tree |
| 791 | */ |
| 792 | static inline void *mas_root_locked(struct ma_state *mas) |
| 793 | { |
| 794 | return mt_root_locked(mt: mas->tree); |
| 795 | } |
| 796 | |
| 797 | static inline struct maple_metadata *ma_meta(struct maple_node *mn, |
| 798 | enum maple_type mt) |
| 799 | { |
| 800 | switch (mt) { |
| 801 | case maple_arange_64: |
| 802 | return &mn->ma64.meta; |
| 803 | default: |
| 804 | return &mn->mr64.meta; |
| 805 | } |
| 806 | } |
| 807 | |
| 808 | /* |
| 809 | * ma_set_meta() - Set the metadata information of a node. |
| 810 | * @mn: The maple node |
| 811 | * @mt: The maple node type |
| 812 | * @offset: The offset of the highest sub-gap in this node. |
| 813 | * @end: The end of the data in this node. |
| 814 | */ |
| 815 | static inline void ma_set_meta(struct maple_node *mn, enum maple_type mt, |
| 816 | unsigned char offset, unsigned char end) |
| 817 | { |
| 818 | struct maple_metadata *meta = ma_meta(mn, mt); |
| 819 | |
| 820 | meta->gap = offset; |
| 821 | meta->end = end; |
| 822 | } |
| 823 | |
| 824 | /* |
| 825 | * mt_clear_meta() - clear the metadata information of a node, if it exists |
| 826 | * @mt: The maple tree |
| 827 | * @mn: The maple node |
| 828 | * @type: The maple node type |
| 829 | */ |
| 830 | static inline void mt_clear_meta(struct maple_tree *mt, struct maple_node *mn, |
| 831 | enum maple_type type) |
| 832 | { |
| 833 | struct maple_metadata *meta; |
| 834 | unsigned long *pivots; |
| 835 | void __rcu **slots; |
| 836 | void *next; |
| 837 | |
| 838 | switch (type) { |
| 839 | case maple_range_64: |
| 840 | pivots = mn->mr64.pivot; |
| 841 | if (unlikely(pivots[MAPLE_RANGE64_SLOTS - 2])) { |
| 842 | slots = mn->mr64.slot; |
| 843 | next = mt_slot_locked(mt, slots, |
| 844 | MAPLE_RANGE64_SLOTS - 1); |
| 845 | if (unlikely((mte_to_node(next) && |
| 846 | mte_node_type(next)))) |
| 847 | return; /* no metadata, could be node */ |
| 848 | } |
| 849 | fallthrough; |
| 850 | case maple_arange_64: |
| 851 | meta = ma_meta(mn, mt: type); |
| 852 | break; |
| 853 | default: |
| 854 | return; |
| 855 | } |
| 856 | |
| 857 | meta->gap = 0; |
| 858 | meta->end = 0; |
| 859 | } |
| 860 | |
| 861 | /* |
| 862 | * ma_meta_end() - Get the data end of a node from the metadata |
| 863 | * @mn: The maple node |
| 864 | * @mt: The maple node type |
| 865 | */ |
| 866 | static inline unsigned char ma_meta_end(struct maple_node *mn, |
| 867 | enum maple_type mt) |
| 868 | { |
| 869 | struct maple_metadata *meta = ma_meta(mn, mt); |
| 870 | |
| 871 | return meta->end; |
| 872 | } |
| 873 | |
| 874 | /* |
| 875 | * ma_meta_gap() - Get the largest gap location of a node from the metadata |
| 876 | * @mn: The maple node |
| 877 | */ |
| 878 | static inline unsigned char ma_meta_gap(struct maple_node *mn) |
| 879 | { |
| 880 | return mn->ma64.meta.gap; |
| 881 | } |
| 882 | |
| 883 | /* |
| 884 | * ma_set_meta_gap() - Set the largest gap location in a nodes metadata |
| 885 | * @mn: The maple node |
| 886 | * @mt: The maple node type |
| 887 | * @offset: The location of the largest gap. |
| 888 | */ |
| 889 | static inline void ma_set_meta_gap(struct maple_node *mn, enum maple_type mt, |
| 890 | unsigned char offset) |
| 891 | { |
| 892 | |
| 893 | struct maple_metadata *meta = ma_meta(mn, mt); |
| 894 | |
| 895 | meta->gap = offset; |
| 896 | } |
| 897 | |
| 898 | /* |
| 899 | * mat_add() - Add a @dead_enode to the ma_topiary of a list of dead nodes. |
| 900 | * @mat: the ma_topiary, a linked list of dead nodes. |
| 901 | * @dead_enode: the node to be marked as dead and added to the tail of the list |
| 902 | * |
| 903 | * Add the @dead_enode to the linked list in @mat. |
| 904 | */ |
| 905 | static inline void mat_add(struct ma_topiary *mat, |
| 906 | struct maple_enode *dead_enode) |
| 907 | { |
| 908 | mte_set_node_dead(mn: dead_enode); |
| 909 | mte_to_mat(entry: dead_enode)->next = NULL; |
| 910 | if (!mat->tail) { |
| 911 | mat->tail = mat->head = dead_enode; |
| 912 | return; |
| 913 | } |
| 914 | |
| 915 | mte_to_mat(entry: mat->tail)->next = dead_enode; |
| 916 | mat->tail = dead_enode; |
| 917 | } |
| 918 | |
| 919 | static void mt_free_walk(struct rcu_head *head); |
| 920 | static void mt_destroy_walk(struct maple_enode *enode, struct maple_tree *mt, |
| 921 | bool free); |
| 922 | /* |
| 923 | * mas_mat_destroy() - Free all nodes and subtrees in a dead list. |
| 924 | * @mas: the maple state |
| 925 | * @mat: the ma_topiary linked list of dead nodes to free. |
| 926 | * |
| 927 | * Destroy walk a dead list. |
| 928 | */ |
| 929 | static void mas_mat_destroy(struct ma_state *mas, struct ma_topiary *mat) |
| 930 | { |
| 931 | struct maple_enode *next; |
| 932 | struct maple_node *node; |
| 933 | bool in_rcu = mt_in_rcu(mt: mas->tree); |
| 934 | |
| 935 | while (mat->head) { |
| 936 | next = mte_to_mat(entry: mat->head)->next; |
| 937 | node = mte_to_node(entry: mat->head); |
| 938 | mt_destroy_walk(enode: mat->head, mt: mas->tree, free: !in_rcu); |
| 939 | if (in_rcu) |
| 940 | call_rcu(head: &node->rcu, func: mt_free_walk); |
| 941 | mat->head = next; |
| 942 | } |
| 943 | } |
| 944 | /* |
| 945 | * mas_descend() - Descend into the slot stored in the ma_state. |
| 946 | * @mas: the maple state. |
| 947 | * |
| 948 | * Note: Not RCU safe, only use in write side or debug code. |
| 949 | */ |
| 950 | static inline void mas_descend(struct ma_state *mas) |
| 951 | { |
| 952 | enum maple_type type; |
| 953 | unsigned long *pivots; |
| 954 | struct maple_node *node; |
| 955 | void __rcu **slots; |
| 956 | |
| 957 | node = mas_mn(mas); |
| 958 | type = mte_node_type(entry: mas->node); |
| 959 | pivots = ma_pivots(node, type); |
| 960 | slots = ma_slots(mn: node, mt: type); |
| 961 | |
| 962 | if (mas->offset) |
| 963 | mas->min = pivots[mas->offset - 1] + 1; |
| 964 | mas->max = mas_safe_pivot(mas, pivots, piv: mas->offset, type); |
| 965 | mas->node = mas_slot(mas, slots, offset: mas->offset); |
| 966 | } |
| 967 | |
| 968 | /* |
| 969 | * mas_ascend() - Walk up a level of the tree. |
| 970 | * @mas: The maple state |
| 971 | * |
| 972 | * Sets the @mas->max and @mas->min for the parent node of mas->node. This |
| 973 | * may cause several levels of walking up to find the correct min and max. |
| 974 | * May find a dead node which will cause a premature return. |
| 975 | * Return: 1 on dead node, 0 otherwise |
| 976 | */ |
| 977 | static int mas_ascend(struct ma_state *mas) |
| 978 | { |
| 979 | struct maple_enode *p_enode; /* parent enode. */ |
| 980 | struct maple_enode *a_enode; /* ancestor enode. */ |
| 981 | struct maple_node *a_node; /* ancestor node. */ |
| 982 | struct maple_node *p_node; /* parent node. */ |
| 983 | unsigned char a_slot; |
| 984 | enum maple_type a_type; |
| 985 | unsigned long min, max; |
| 986 | unsigned long *pivots; |
| 987 | bool set_max = false, set_min = false; |
| 988 | |
| 989 | a_node = mas_mn(mas); |
| 990 | if (ma_is_root(node: a_node)) { |
| 991 | mas->offset = 0; |
| 992 | return 0; |
| 993 | } |
| 994 | |
| 995 | p_node = mte_parent(enode: mas->node); |
| 996 | if (unlikely(a_node == p_node)) |
| 997 | return 1; |
| 998 | |
| 999 | a_type = mas_parent_type(mas, enode: mas->node); |
| 1000 | mas->offset = mte_parent_slot(enode: mas->node); |
| 1001 | a_enode = mt_mk_node(node: p_node, type: a_type); |
| 1002 | |
| 1003 | /* Check to make sure all parent information is still accurate */ |
| 1004 | if (p_node != mte_parent(enode: mas->node)) |
| 1005 | return 1; |
| 1006 | |
| 1007 | mas->node = a_enode; |
| 1008 | |
| 1009 | if (mte_is_root(node: a_enode)) { |
| 1010 | mas->max = ULONG_MAX; |
| 1011 | mas->min = 0; |
| 1012 | return 0; |
| 1013 | } |
| 1014 | |
| 1015 | min = 0; |
| 1016 | max = ULONG_MAX; |
| 1017 | |
| 1018 | /* |
| 1019 | * !mas->offset implies that parent node min == mas->min. |
| 1020 | * mas->offset > 0 implies that we need to walk up to find the |
| 1021 | * implied pivot min. |
| 1022 | */ |
| 1023 | if (!mas->offset) { |
| 1024 | min = mas->min; |
| 1025 | set_min = true; |
| 1026 | } |
| 1027 | |
| 1028 | if (mas->max == ULONG_MAX) |
| 1029 | set_max = true; |
| 1030 | |
| 1031 | do { |
| 1032 | p_enode = a_enode; |
| 1033 | a_type = mas_parent_type(mas, enode: p_enode); |
| 1034 | a_node = mte_parent(enode: p_enode); |
| 1035 | a_slot = mte_parent_slot(enode: p_enode); |
| 1036 | a_enode = mt_mk_node(node: a_node, type: a_type); |
| 1037 | pivots = ma_pivots(node: a_node, type: a_type); |
| 1038 | |
| 1039 | if (unlikely(ma_dead_node(a_node))) |
| 1040 | return 1; |
| 1041 | |
| 1042 | if (!set_min && a_slot) { |
| 1043 | set_min = true; |
| 1044 | min = pivots[a_slot - 1] + 1; |
| 1045 | } |
| 1046 | |
| 1047 | if (!set_max && a_slot < mt_pivots[a_type]) { |
| 1048 | set_max = true; |
| 1049 | max = pivots[a_slot]; |
| 1050 | } |
| 1051 | |
| 1052 | if (unlikely(ma_dead_node(a_node))) |
| 1053 | return 1; |
| 1054 | |
| 1055 | if (unlikely(ma_is_root(a_node))) |
| 1056 | break; |
| 1057 | |
| 1058 | } while (!set_min || !set_max); |
| 1059 | |
| 1060 | mas->max = max; |
| 1061 | mas->min = min; |
| 1062 | return 0; |
| 1063 | } |
| 1064 | |
| 1065 | /* |
| 1066 | * mas_pop_node() - Get a previously allocated maple node from the maple state. |
| 1067 | * @mas: The maple state |
| 1068 | * |
| 1069 | * Return: A pointer to a maple node. |
| 1070 | */ |
| 1071 | static __always_inline struct maple_node *mas_pop_node(struct ma_state *mas) |
| 1072 | { |
| 1073 | struct maple_node *ret; |
| 1074 | |
| 1075 | if (mas->alloc) { |
| 1076 | ret = mas->alloc; |
| 1077 | mas->alloc = NULL; |
| 1078 | goto out; |
| 1079 | } |
| 1080 | |
| 1081 | if (WARN_ON_ONCE(!mas->sheaf)) |
| 1082 | return NULL; |
| 1083 | |
| 1084 | ret = kmem_cache_alloc_from_sheaf(maple_node_cache, GFP_NOWAIT, mas->sheaf); |
| 1085 | |
| 1086 | out: |
| 1087 | memset(s: ret, c: 0, n: sizeof(*ret)); |
| 1088 | return ret; |
| 1089 | } |
| 1090 | |
| 1091 | /* |
| 1092 | * mas_alloc_nodes() - Allocate nodes into a maple state |
| 1093 | * @mas: The maple state |
| 1094 | * @gfp: The GFP Flags |
| 1095 | */ |
| 1096 | static inline void mas_alloc_nodes(struct ma_state *mas, gfp_t gfp) |
| 1097 | { |
| 1098 | if (!mas->node_request) |
| 1099 | return; |
| 1100 | |
| 1101 | if (mas->node_request == 1) { |
| 1102 | if (mas->sheaf) |
| 1103 | goto use_sheaf; |
| 1104 | |
| 1105 | if (mas->alloc) |
| 1106 | return; |
| 1107 | |
| 1108 | mas->alloc = mt_alloc_one(gfp); |
| 1109 | if (!mas->alloc) |
| 1110 | goto error; |
| 1111 | |
| 1112 | mas->node_request = 0; |
| 1113 | return; |
| 1114 | } |
| 1115 | |
| 1116 | use_sheaf: |
| 1117 | if (unlikely(mas->alloc)) { |
| 1118 | kfree(objp: mas->alloc); |
| 1119 | mas->alloc = NULL; |
| 1120 | } |
| 1121 | |
| 1122 | if (mas->sheaf) { |
| 1123 | unsigned long refill; |
| 1124 | |
| 1125 | refill = mas->node_request; |
| 1126 | if (kmem_cache_sheaf_size(sheaf: mas->sheaf) >= refill) { |
| 1127 | mas->node_request = 0; |
| 1128 | return; |
| 1129 | } |
| 1130 | |
| 1131 | if (mt_refill_sheaf(gfp, sheaf: &mas->sheaf, size: refill)) |
| 1132 | goto error; |
| 1133 | |
| 1134 | mas->node_request = 0; |
| 1135 | return; |
| 1136 | } |
| 1137 | |
| 1138 | mas->sheaf = mt_get_sheaf(gfp, count: mas->node_request); |
| 1139 | if (likely(mas->sheaf)) { |
| 1140 | mas->node_request = 0; |
| 1141 | return; |
| 1142 | } |
| 1143 | |
| 1144 | error: |
| 1145 | mas_set_err(mas, err: -ENOMEM); |
| 1146 | } |
| 1147 | |
| 1148 | static inline void mas_empty_nodes(struct ma_state *mas) |
| 1149 | { |
| 1150 | mas->node_request = 0; |
| 1151 | if (mas->sheaf) { |
| 1152 | mt_return_sheaf(sheaf: mas->sheaf); |
| 1153 | mas->sheaf = NULL; |
| 1154 | } |
| 1155 | |
| 1156 | if (mas->alloc) { |
| 1157 | kfree(objp: mas->alloc); |
| 1158 | mas->alloc = NULL; |
| 1159 | } |
| 1160 | } |
| 1161 | |
| 1162 | /* |
| 1163 | * mas_free() - Free an encoded maple node |
| 1164 | * @mas: The maple state |
| 1165 | * @used: The encoded maple node to free. |
| 1166 | * |
| 1167 | * Uses rcu free if necessary, pushes @used back on the maple state allocations |
| 1168 | * otherwise. |
| 1169 | */ |
| 1170 | static inline void mas_free(struct ma_state *mas, struct maple_enode *used) |
| 1171 | { |
| 1172 | ma_free_rcu(node: mte_to_node(entry: used)); |
| 1173 | } |
| 1174 | |
| 1175 | /* |
| 1176 | * mas_start() - Sets up maple state for operations. |
| 1177 | * @mas: The maple state. |
| 1178 | * |
| 1179 | * If mas->status == ma_start, then set the min, max and depth to |
| 1180 | * defaults. |
| 1181 | * |
| 1182 | * Return: |
| 1183 | * - If mas->node is an error or not mas_start, return NULL. |
| 1184 | * - If it's an empty tree: NULL & mas->status == ma_none |
| 1185 | * - If it's a single entry: The entry & mas->status == ma_root |
| 1186 | * - If it's a tree: NULL & mas->status == ma_active |
| 1187 | */ |
| 1188 | static inline struct maple_enode *mas_start(struct ma_state *mas) |
| 1189 | { |
| 1190 | if (likely(mas_is_start(mas))) { |
| 1191 | struct maple_enode *root; |
| 1192 | |
| 1193 | mas->min = 0; |
| 1194 | mas->max = ULONG_MAX; |
| 1195 | |
| 1196 | retry: |
| 1197 | mas->depth = 0; |
| 1198 | root = mas_root(mas); |
| 1199 | /* Tree with nodes */ |
| 1200 | if (likely(xa_is_node(root))) { |
| 1201 | mas->depth = 0; |
| 1202 | mas->status = ma_active; |
| 1203 | mas->node = mte_safe_root(node: root); |
| 1204 | mas->offset = 0; |
| 1205 | if (mte_dead_node(enode: mas->node)) |
| 1206 | goto retry; |
| 1207 | |
| 1208 | return NULL; |
| 1209 | } |
| 1210 | |
| 1211 | mas->node = NULL; |
| 1212 | /* empty tree */ |
| 1213 | if (unlikely(!root)) { |
| 1214 | mas->status = ma_none; |
| 1215 | mas->offset = MAPLE_NODE_SLOTS; |
| 1216 | return NULL; |
| 1217 | } |
| 1218 | |
| 1219 | /* Single entry tree */ |
| 1220 | mas->status = ma_root; |
| 1221 | mas->offset = MAPLE_NODE_SLOTS; |
| 1222 | |
| 1223 | /* Single entry tree. */ |
| 1224 | if (mas->index > 0) |
| 1225 | return NULL; |
| 1226 | |
| 1227 | return root; |
| 1228 | } |
| 1229 | |
| 1230 | return NULL; |
| 1231 | } |
| 1232 | |
| 1233 | /* |
| 1234 | * ma_data_end() - Find the end of the data in a node. |
| 1235 | * @node: The maple node |
| 1236 | * @type: The maple node type |
| 1237 | * @pivots: The array of pivots in the node |
| 1238 | * @max: The maximum value in the node |
| 1239 | * |
| 1240 | * Uses metadata to find the end of the data when possible. |
| 1241 | * Return: The zero indexed last slot with data (may be null). |
| 1242 | */ |
| 1243 | static __always_inline unsigned char ma_data_end(struct maple_node *node, |
| 1244 | enum maple_type type, unsigned long *pivots, unsigned long max) |
| 1245 | { |
| 1246 | unsigned char offset; |
| 1247 | |
| 1248 | if (!pivots) |
| 1249 | return 0; |
| 1250 | |
| 1251 | if (type == maple_arange_64) |
| 1252 | return ma_meta_end(mn: node, mt: type); |
| 1253 | |
| 1254 | offset = mt_pivots[type] - 1; |
| 1255 | if (likely(!pivots[offset])) |
| 1256 | return ma_meta_end(mn: node, mt: type); |
| 1257 | |
| 1258 | if (likely(pivots[offset] == max)) |
| 1259 | return offset; |
| 1260 | |
| 1261 | return mt_pivots[type]; |
| 1262 | } |
| 1263 | |
| 1264 | /* |
| 1265 | * mas_data_end() - Find the end of the data (slot). |
| 1266 | * @mas: the maple state |
| 1267 | * |
| 1268 | * This method is optimized to check the metadata of a node if the node type |
| 1269 | * supports data end metadata. |
| 1270 | * |
| 1271 | * Return: The zero indexed last slot with data (may be null). |
| 1272 | */ |
| 1273 | static inline unsigned char mas_data_end(struct ma_state *mas) |
| 1274 | { |
| 1275 | enum maple_type type; |
| 1276 | struct maple_node *node; |
| 1277 | unsigned char offset; |
| 1278 | unsigned long *pivots; |
| 1279 | |
| 1280 | type = mte_node_type(entry: mas->node); |
| 1281 | node = mas_mn(mas); |
| 1282 | if (type == maple_arange_64) |
| 1283 | return ma_meta_end(mn: node, mt: type); |
| 1284 | |
| 1285 | pivots = ma_pivots(node, type); |
| 1286 | if (unlikely(ma_dead_node(node))) |
| 1287 | return 0; |
| 1288 | |
| 1289 | offset = mt_pivots[type] - 1; |
| 1290 | if (likely(!pivots[offset])) |
| 1291 | return ma_meta_end(mn: node, mt: type); |
| 1292 | |
| 1293 | if (likely(pivots[offset] == mas->max)) |
| 1294 | return offset; |
| 1295 | |
| 1296 | return mt_pivots[type]; |
| 1297 | } |
| 1298 | |
| 1299 | /* |
| 1300 | * mas_leaf_max_gap() - Returns the largest gap in a leaf node |
| 1301 | * @mas: the maple state |
| 1302 | * |
| 1303 | * Return: The maximum gap in the leaf. |
| 1304 | */ |
| 1305 | static unsigned long mas_leaf_max_gap(struct ma_state *mas) |
| 1306 | { |
| 1307 | enum maple_type mt; |
| 1308 | unsigned long pstart, gap, max_gap; |
| 1309 | struct maple_node *mn; |
| 1310 | unsigned long *pivots; |
| 1311 | void __rcu **slots; |
| 1312 | unsigned char i; |
| 1313 | unsigned char max_piv; |
| 1314 | |
| 1315 | mt = mte_node_type(entry: mas->node); |
| 1316 | mn = mas_mn(mas); |
| 1317 | slots = ma_slots(mn, mt); |
| 1318 | max_gap = 0; |
| 1319 | if (unlikely(ma_is_dense(mt))) { |
| 1320 | gap = 0; |
| 1321 | for (i = 0; i < mt_slots[mt]; i++) { |
| 1322 | if (slots[i]) { |
| 1323 | if (gap > max_gap) |
| 1324 | max_gap = gap; |
| 1325 | gap = 0; |
| 1326 | } else { |
| 1327 | gap++; |
| 1328 | } |
| 1329 | } |
| 1330 | if (gap > max_gap) |
| 1331 | max_gap = gap; |
| 1332 | return max_gap; |
| 1333 | } |
| 1334 | |
| 1335 | /* |
| 1336 | * Check the first implied pivot optimizes the loop below and slot 1 may |
| 1337 | * be skipped if there is a gap in slot 0. |
| 1338 | */ |
| 1339 | pivots = ma_pivots(node: mn, type: mt); |
| 1340 | if (likely(!slots[0])) { |
| 1341 | max_gap = pivots[0] - mas->min + 1; |
| 1342 | i = 2; |
| 1343 | } else { |
| 1344 | i = 1; |
| 1345 | } |
| 1346 | |
| 1347 | /* reduce max_piv as the special case is checked before the loop */ |
| 1348 | max_piv = ma_data_end(node: mn, type: mt, pivots, max: mas->max) - 1; |
| 1349 | /* |
| 1350 | * Check end implied pivot which can only be a gap on the right most |
| 1351 | * node. |
| 1352 | */ |
| 1353 | if (unlikely(mas->max == ULONG_MAX) && !slots[max_piv + 1]) { |
| 1354 | gap = ULONG_MAX - pivots[max_piv]; |
| 1355 | if (gap > max_gap) |
| 1356 | max_gap = gap; |
| 1357 | |
| 1358 | if (max_gap > pivots[max_piv] - mas->min) |
| 1359 | return max_gap; |
| 1360 | } |
| 1361 | |
| 1362 | for (; i <= max_piv; i++) { |
| 1363 | /* data == no gap. */ |
| 1364 | if (likely(slots[i])) |
| 1365 | continue; |
| 1366 | |
| 1367 | pstart = pivots[i - 1]; |
| 1368 | gap = pivots[i] - pstart; |
| 1369 | if (gap > max_gap) |
| 1370 | max_gap = gap; |
| 1371 | |
| 1372 | /* There cannot be two gaps in a row. */ |
| 1373 | i++; |
| 1374 | } |
| 1375 | return max_gap; |
| 1376 | } |
| 1377 | |
| 1378 | /* |
| 1379 | * ma_max_gap() - Get the maximum gap in a maple node (non-leaf) |
| 1380 | * @node: The maple node |
| 1381 | * @gaps: The pointer to the gaps |
| 1382 | * @mt: The maple node type |
| 1383 | * @off: Pointer to store the offset location of the gap. |
| 1384 | * |
| 1385 | * Uses the metadata data end to scan backwards across set gaps. |
| 1386 | * |
| 1387 | * Return: The maximum gap value |
| 1388 | */ |
| 1389 | static inline unsigned long |
| 1390 | ma_max_gap(struct maple_node *node, unsigned long *gaps, enum maple_type mt, |
| 1391 | unsigned char *off) |
| 1392 | { |
| 1393 | unsigned char offset, i; |
| 1394 | unsigned long max_gap = 0; |
| 1395 | |
| 1396 | i = offset = ma_meta_end(mn: node, mt); |
| 1397 | do { |
| 1398 | if (gaps[i] > max_gap) { |
| 1399 | max_gap = gaps[i]; |
| 1400 | offset = i; |
| 1401 | } |
| 1402 | } while (i--); |
| 1403 | |
| 1404 | *off = offset; |
| 1405 | return max_gap; |
| 1406 | } |
| 1407 | |
| 1408 | /* |
| 1409 | * mas_max_gap() - find the largest gap in a non-leaf node and set the slot. |
| 1410 | * @mas: The maple state. |
| 1411 | * |
| 1412 | * Return: The gap value. |
| 1413 | */ |
| 1414 | static inline unsigned long mas_max_gap(struct ma_state *mas) |
| 1415 | { |
| 1416 | unsigned long *gaps; |
| 1417 | unsigned char offset; |
| 1418 | enum maple_type mt; |
| 1419 | struct maple_node *node; |
| 1420 | |
| 1421 | mt = mte_node_type(entry: mas->node); |
| 1422 | if (ma_is_leaf(type: mt)) |
| 1423 | return mas_leaf_max_gap(mas); |
| 1424 | |
| 1425 | node = mas_mn(mas); |
| 1426 | MAS_BUG_ON(mas, mt != maple_arange_64); |
| 1427 | offset = ma_meta_gap(mn: node); |
| 1428 | gaps = ma_gaps(node, type: mt); |
| 1429 | return gaps[offset]; |
| 1430 | } |
| 1431 | |
| 1432 | /* |
| 1433 | * mas_parent_gap() - Set the parent gap and any gaps above, as needed |
| 1434 | * @mas: The maple state |
| 1435 | * @offset: The gap offset in the parent to set |
| 1436 | * @new: The new gap value. |
| 1437 | * |
| 1438 | * Set the parent gap then continue to set the gap upwards, using the metadata |
| 1439 | * of the parent to see if it is necessary to check the node above. |
| 1440 | */ |
| 1441 | static inline void mas_parent_gap(struct ma_state *mas, unsigned char offset, |
| 1442 | unsigned long new) |
| 1443 | { |
| 1444 | unsigned long meta_gap = 0; |
| 1445 | struct maple_node *pnode; |
| 1446 | struct maple_enode *penode; |
| 1447 | unsigned long *pgaps; |
| 1448 | unsigned char meta_offset; |
| 1449 | enum maple_type pmt; |
| 1450 | |
| 1451 | pnode = mte_parent(enode: mas->node); |
| 1452 | pmt = mas_parent_type(mas, enode: mas->node); |
| 1453 | penode = mt_mk_node(node: pnode, type: pmt); |
| 1454 | pgaps = ma_gaps(node: pnode, type: pmt); |
| 1455 | |
| 1456 | ascend: |
| 1457 | MAS_BUG_ON(mas, pmt != maple_arange_64); |
| 1458 | meta_offset = ma_meta_gap(mn: pnode); |
| 1459 | meta_gap = pgaps[meta_offset]; |
| 1460 | |
| 1461 | pgaps[offset] = new; |
| 1462 | |
| 1463 | if (meta_gap == new) |
| 1464 | return; |
| 1465 | |
| 1466 | if (offset != meta_offset) { |
| 1467 | if (meta_gap > new) |
| 1468 | return; |
| 1469 | |
| 1470 | ma_set_meta_gap(mn: pnode, mt: pmt, offset); |
| 1471 | } else if (new < meta_gap) { |
| 1472 | new = ma_max_gap(node: pnode, gaps: pgaps, mt: pmt, off: &meta_offset); |
| 1473 | ma_set_meta_gap(mn: pnode, mt: pmt, offset: meta_offset); |
| 1474 | } |
| 1475 | |
| 1476 | if (ma_is_root(node: pnode)) |
| 1477 | return; |
| 1478 | |
| 1479 | /* Go to the parent node. */ |
| 1480 | pnode = mte_parent(enode: penode); |
| 1481 | pmt = mas_parent_type(mas, enode: penode); |
| 1482 | pgaps = ma_gaps(node: pnode, type: pmt); |
| 1483 | offset = mte_parent_slot(enode: penode); |
| 1484 | penode = mt_mk_node(node: pnode, type: pmt); |
| 1485 | goto ascend; |
| 1486 | } |
| 1487 | |
| 1488 | /* |
| 1489 | * mas_update_gap() - Update a nodes gaps and propagate up if necessary. |
| 1490 | * @mas: the maple state. |
| 1491 | */ |
| 1492 | static inline void mas_update_gap(struct ma_state *mas) |
| 1493 | { |
| 1494 | unsigned char pslot; |
| 1495 | unsigned long p_gap; |
| 1496 | unsigned long max_gap; |
| 1497 | |
| 1498 | if (!mt_is_alloc(mt: mas->tree)) |
| 1499 | return; |
| 1500 | |
| 1501 | if (mte_is_root(node: mas->node)) |
| 1502 | return; |
| 1503 | |
| 1504 | max_gap = mas_max_gap(mas); |
| 1505 | |
| 1506 | pslot = mte_parent_slot(enode: mas->node); |
| 1507 | p_gap = ma_gaps(node: mte_parent(enode: mas->node), |
| 1508 | type: mas_parent_type(mas, enode: mas->node))[pslot]; |
| 1509 | |
| 1510 | if (p_gap != max_gap) |
| 1511 | mas_parent_gap(mas, offset: pslot, new: max_gap); |
| 1512 | } |
| 1513 | |
| 1514 | /* |
| 1515 | * mas_adopt_children() - Set the parent pointer of all nodes in @parent to |
| 1516 | * @parent with the slot encoded. |
| 1517 | * @mas: the maple state (for the tree) |
| 1518 | * @parent: the maple encoded node containing the children. |
| 1519 | */ |
| 1520 | static inline void mas_adopt_children(struct ma_state *mas, |
| 1521 | struct maple_enode *parent) |
| 1522 | { |
| 1523 | enum maple_type type = mte_node_type(entry: parent); |
| 1524 | struct maple_node *node = mte_to_node(entry: parent); |
| 1525 | void __rcu **slots = ma_slots(mn: node, mt: type); |
| 1526 | unsigned long *pivots = ma_pivots(node, type); |
| 1527 | struct maple_enode *child; |
| 1528 | unsigned char offset; |
| 1529 | |
| 1530 | offset = ma_data_end(node, type, pivots, max: mas->max); |
| 1531 | do { |
| 1532 | child = mas_slot_locked(mas, slots, offset); |
| 1533 | mas_set_parent(mas, enode: child, parent, slot: offset); |
| 1534 | } while (offset--); |
| 1535 | } |
| 1536 | |
| 1537 | /* |
| 1538 | * mas_put_in_tree() - Put a new node in the tree, smp_wmb(), and mark the old |
| 1539 | * node as dead. |
| 1540 | * @mas: the maple state with the new node |
| 1541 | * @old_enode: The old maple encoded node to replace. |
| 1542 | * @new_height: if we are inserting a root node, update the height of the tree |
| 1543 | */ |
| 1544 | static inline void mas_put_in_tree(struct ma_state *mas, |
| 1545 | struct maple_enode *old_enode, char new_height) |
| 1546 | __must_hold(mas->tree->ma_lock) |
| 1547 | { |
| 1548 | unsigned char offset; |
| 1549 | void __rcu **slots; |
| 1550 | |
| 1551 | if (mte_is_root(node: mas->node)) { |
| 1552 | mas_mn(mas)->parent = ma_parent_ptr(mas_tree_parent(mas)); |
| 1553 | rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node)); |
| 1554 | mt_set_height(mt: mas->tree, height: new_height); |
| 1555 | } else { |
| 1556 | |
| 1557 | offset = mte_parent_slot(enode: mas->node); |
| 1558 | slots = ma_slots(mn: mte_parent(enode: mas->node), |
| 1559 | mt: mas_parent_type(mas, enode: mas->node)); |
| 1560 | rcu_assign_pointer(slots[offset], mas->node); |
| 1561 | } |
| 1562 | |
| 1563 | mte_set_node_dead(mn: old_enode); |
| 1564 | } |
| 1565 | |
| 1566 | /* |
| 1567 | * mas_replace_node() - Replace a node by putting it in the tree, marking it |
| 1568 | * dead, and freeing it. |
| 1569 | * the parent encoding to locate the maple node in the tree. |
| 1570 | * @mas: the ma_state with @mas->node pointing to the new node. |
| 1571 | * @old_enode: The old maple encoded node. |
| 1572 | * @new_height: The new height of the tree as a result of the operation |
| 1573 | */ |
| 1574 | static inline void mas_replace_node(struct ma_state *mas, |
| 1575 | struct maple_enode *old_enode, unsigned char new_height) |
| 1576 | __must_hold(mas->tree->ma_lock) |
| 1577 | { |
| 1578 | mas_put_in_tree(mas, old_enode, new_height); |
| 1579 | mas_free(mas, used: old_enode); |
| 1580 | } |
| 1581 | |
| 1582 | /* |
| 1583 | * mas_find_child() - Find a child who has the parent @mas->node. |
| 1584 | * @mas: the maple state with the parent. |
| 1585 | * @child: the maple state to store the child. |
| 1586 | */ |
| 1587 | static inline bool mas_find_child(struct ma_state *mas, struct ma_state *child) |
| 1588 | __must_hold(mas->tree->ma_lock) |
| 1589 | { |
| 1590 | enum maple_type mt; |
| 1591 | unsigned char offset; |
| 1592 | unsigned char end; |
| 1593 | unsigned long *pivots; |
| 1594 | struct maple_enode *entry; |
| 1595 | struct maple_node *node; |
| 1596 | void __rcu **slots; |
| 1597 | |
| 1598 | mt = mte_node_type(entry: mas->node); |
| 1599 | node = mas_mn(mas); |
| 1600 | slots = ma_slots(mn: node, mt); |
| 1601 | pivots = ma_pivots(node, type: mt); |
| 1602 | end = ma_data_end(node, type: mt, pivots, max: mas->max); |
| 1603 | for (offset = mas->offset; offset <= end; offset++) { |
| 1604 | entry = mas_slot_locked(mas, slots, offset); |
| 1605 | if (mte_parent(enode: entry) == node) { |
| 1606 | *child = *mas; |
| 1607 | mas->offset = offset + 1; |
| 1608 | child->offset = offset; |
| 1609 | mas_descend(mas: child); |
| 1610 | child->offset = 0; |
| 1611 | return true; |
| 1612 | } |
| 1613 | } |
| 1614 | return false; |
| 1615 | } |
| 1616 | |
| 1617 | /* |
| 1618 | * mab_shift_right() - Shift the data in mab right. Note, does not clean out the |
| 1619 | * old data or set b_node->b_end. |
| 1620 | * @b_node: the maple_big_node |
| 1621 | * @shift: the shift count |
| 1622 | */ |
| 1623 | static inline void mab_shift_right(struct maple_big_node *b_node, |
| 1624 | unsigned char shift) |
| 1625 | { |
| 1626 | unsigned long size = b_node->b_end * sizeof(unsigned long); |
| 1627 | |
| 1628 | memmove(dest: b_node->pivot + shift, src: b_node->pivot, count: size); |
| 1629 | memmove(dest: b_node->slot + shift, src: b_node->slot, count: size); |
| 1630 | if (b_node->type == maple_arange_64) |
| 1631 | memmove(dest: b_node->gap + shift, src: b_node->gap, count: size); |
| 1632 | } |
| 1633 | |
| 1634 | /* |
| 1635 | * mab_middle_node() - Check if a middle node is needed (unlikely) |
| 1636 | * @b_node: the maple_big_node that contains the data. |
| 1637 | * @split: the potential split location |
| 1638 | * @slot_count: the size that can be stored in a single node being considered. |
| 1639 | * |
| 1640 | * Return: true if a middle node is required. |
| 1641 | */ |
| 1642 | static inline bool mab_middle_node(struct maple_big_node *b_node, int split, |
| 1643 | unsigned char slot_count) |
| 1644 | { |
| 1645 | unsigned char size = b_node->b_end; |
| 1646 | |
| 1647 | if (size >= 2 * slot_count) |
| 1648 | return true; |
| 1649 | |
| 1650 | if (!b_node->slot[split] && (size >= 2 * slot_count - 1)) |
| 1651 | return true; |
| 1652 | |
| 1653 | return false; |
| 1654 | } |
| 1655 | |
| 1656 | /* |
| 1657 | * mab_no_null_split() - ensure the split doesn't fall on a NULL |
| 1658 | * @b_node: the maple_big_node with the data |
| 1659 | * @split: the suggested split location |
| 1660 | * @slot_count: the number of slots in the node being considered. |
| 1661 | * |
| 1662 | * Return: the split location. |
| 1663 | */ |
| 1664 | static inline int mab_no_null_split(struct maple_big_node *b_node, |
| 1665 | unsigned char split, unsigned char slot_count) |
| 1666 | { |
| 1667 | if (!b_node->slot[split]) { |
| 1668 | /* |
| 1669 | * If the split is less than the max slot && the right side will |
| 1670 | * still be sufficient, then increment the split on NULL. |
| 1671 | */ |
| 1672 | if ((split < slot_count - 1) && |
| 1673 | (b_node->b_end - split) > (mt_min_slots[b_node->type])) |
| 1674 | split++; |
| 1675 | else |
| 1676 | split--; |
| 1677 | } |
| 1678 | return split; |
| 1679 | } |
| 1680 | |
| 1681 | /* |
| 1682 | * mab_calc_split() - Calculate the split location and if there needs to be two |
| 1683 | * splits. |
| 1684 | * @mas: The maple state |
| 1685 | * @bn: The maple_big_node with the data |
| 1686 | * @mid_split: The second split, if required. 0 otherwise. |
| 1687 | * |
| 1688 | * Return: The first split location. The middle split is set in @mid_split. |
| 1689 | */ |
| 1690 | static inline int mab_calc_split(struct ma_state *mas, |
| 1691 | struct maple_big_node *bn, unsigned char *mid_split) |
| 1692 | { |
| 1693 | unsigned char b_end = bn->b_end; |
| 1694 | int split = b_end / 2; /* Assume equal split. */ |
| 1695 | unsigned char slot_count = mt_slots[bn->type]; |
| 1696 | |
| 1697 | /* |
| 1698 | * To support gap tracking, all NULL entries are kept together and a node cannot |
| 1699 | * end on a NULL entry, with the exception of the left-most leaf. The |
| 1700 | * limitation means that the split of a node must be checked for this condition |
| 1701 | * and be able to put more data in one direction or the other. |
| 1702 | * |
| 1703 | * Although extremely rare, it is possible to enter what is known as the 3-way |
| 1704 | * split scenario. The 3-way split comes about by means of a store of a range |
| 1705 | * that overwrites the end and beginning of two full nodes. The result is a set |
| 1706 | * of entries that cannot be stored in 2 nodes. Sometimes, these two nodes can |
| 1707 | * also be located in different parent nodes which are also full. This can |
| 1708 | * carry upwards all the way to the root in the worst case. |
| 1709 | */ |
| 1710 | if (unlikely(mab_middle_node(bn, split, slot_count))) { |
| 1711 | split = b_end / 3; |
| 1712 | *mid_split = split * 2; |
| 1713 | } else { |
| 1714 | *mid_split = 0; |
| 1715 | } |
| 1716 | |
| 1717 | /* Avoid ending a node on a NULL entry */ |
| 1718 | split = mab_no_null_split(b_node: bn, split, slot_count); |
| 1719 | |
| 1720 | if (unlikely(*mid_split)) |
| 1721 | *mid_split = mab_no_null_split(b_node: bn, split: *mid_split, slot_count); |
| 1722 | |
| 1723 | return split; |
| 1724 | } |
| 1725 | |
| 1726 | /* |
| 1727 | * mas_mab_cp() - Copy data from a maple state inclusively to a maple_big_node |
| 1728 | * and set @b_node->b_end to the next free slot. |
| 1729 | * @mas: The maple state |
| 1730 | * @mas_start: The starting slot to copy |
| 1731 | * @mas_end: The end slot to copy (inclusively) |
| 1732 | * @b_node: The maple_big_node to place the data |
| 1733 | * @mab_start: The starting location in maple_big_node to store the data. |
| 1734 | */ |
| 1735 | static inline void mas_mab_cp(struct ma_state *mas, unsigned char mas_start, |
| 1736 | unsigned char mas_end, struct maple_big_node *b_node, |
| 1737 | unsigned char mab_start) |
| 1738 | { |
| 1739 | enum maple_type mt; |
| 1740 | struct maple_node *node; |
| 1741 | void __rcu **slots; |
| 1742 | unsigned long *pivots, *gaps; |
| 1743 | int i = mas_start, j = mab_start; |
| 1744 | unsigned char piv_end; |
| 1745 | |
| 1746 | node = mas_mn(mas); |
| 1747 | mt = mte_node_type(entry: mas->node); |
| 1748 | pivots = ma_pivots(node, type: mt); |
| 1749 | if (!i) { |
| 1750 | b_node->pivot[j] = pivots[i++]; |
| 1751 | if (unlikely(i > mas_end)) |
| 1752 | goto complete; |
| 1753 | j++; |
| 1754 | } |
| 1755 | |
| 1756 | piv_end = min(mas_end, mt_pivots[mt]); |
| 1757 | for (; i < piv_end; i++, j++) { |
| 1758 | b_node->pivot[j] = pivots[i]; |
| 1759 | if (unlikely(!b_node->pivot[j])) |
| 1760 | goto complete; |
| 1761 | |
| 1762 | if (unlikely(mas->max == b_node->pivot[j])) |
| 1763 | goto complete; |
| 1764 | } |
| 1765 | |
| 1766 | b_node->pivot[j] = mas_safe_pivot(mas, pivots, piv: i, type: mt); |
| 1767 | |
| 1768 | complete: |
| 1769 | b_node->b_end = ++j; |
| 1770 | j -= mab_start; |
| 1771 | slots = ma_slots(mn: node, mt); |
| 1772 | memcpy(to: b_node->slot + mab_start, from: slots + mas_start, len: sizeof(void *) * j); |
| 1773 | if (!ma_is_leaf(type: mt) && mt_is_alloc(mt: mas->tree)) { |
| 1774 | gaps = ma_gaps(node, type: mt); |
| 1775 | memcpy(to: b_node->gap + mab_start, from: gaps + mas_start, |
| 1776 | len: sizeof(unsigned long) * j); |
| 1777 | } |
| 1778 | } |
| 1779 | |
| 1780 | /* |
| 1781 | * mas_leaf_set_meta() - Set the metadata of a leaf if possible. |
| 1782 | * @node: The maple node |
| 1783 | * @mt: The maple type |
| 1784 | * @end: The node end |
| 1785 | */ |
| 1786 | static inline void mas_leaf_set_meta(struct maple_node *node, |
| 1787 | enum maple_type mt, unsigned char end) |
| 1788 | { |
| 1789 | if (end < mt_slots[mt] - 1) |
| 1790 | ma_set_meta(mn: node, mt, offset: 0, end); |
| 1791 | } |
| 1792 | |
| 1793 | /* |
| 1794 | * mab_mas_cp() - Copy data from maple_big_node to a maple encoded node. |
| 1795 | * @b_node: the maple_big_node that has the data |
| 1796 | * @mab_start: the start location in @b_node. |
| 1797 | * @mab_end: The end location in @b_node (inclusively) |
| 1798 | * @mas: The maple state with the maple encoded node. |
| 1799 | */ |
| 1800 | static inline void mab_mas_cp(struct maple_big_node *b_node, |
| 1801 | unsigned char mab_start, unsigned char mab_end, |
| 1802 | struct ma_state *mas, bool new_max) |
| 1803 | { |
| 1804 | int i, j = 0; |
| 1805 | enum maple_type mt = mte_node_type(entry: mas->node); |
| 1806 | struct maple_node *node = mte_to_node(entry: mas->node); |
| 1807 | void __rcu **slots = ma_slots(mn: node, mt); |
| 1808 | unsigned long *pivots = ma_pivots(node, type: mt); |
| 1809 | unsigned long *gaps = NULL; |
| 1810 | unsigned char end; |
| 1811 | |
| 1812 | if (mab_end - mab_start > mt_pivots[mt]) |
| 1813 | mab_end--; |
| 1814 | |
| 1815 | if (!pivots[mt_pivots[mt] - 1]) |
| 1816 | slots[mt_pivots[mt]] = NULL; |
| 1817 | |
| 1818 | i = mab_start; |
| 1819 | do { |
| 1820 | pivots[j++] = b_node->pivot[i++]; |
| 1821 | } while (i <= mab_end && likely(b_node->pivot[i])); |
| 1822 | |
| 1823 | memcpy(to: slots, from: b_node->slot + mab_start, |
| 1824 | len: sizeof(void *) * (i - mab_start)); |
| 1825 | |
| 1826 | if (new_max) |
| 1827 | mas->max = b_node->pivot[i - 1]; |
| 1828 | |
| 1829 | end = j - 1; |
| 1830 | if (likely(!ma_is_leaf(mt) && mt_is_alloc(mas->tree))) { |
| 1831 | unsigned long max_gap = 0; |
| 1832 | unsigned char offset = 0; |
| 1833 | |
| 1834 | gaps = ma_gaps(node, type: mt); |
| 1835 | do { |
| 1836 | gaps[--j] = b_node->gap[--i]; |
| 1837 | if (gaps[j] > max_gap) { |
| 1838 | offset = j; |
| 1839 | max_gap = gaps[j]; |
| 1840 | } |
| 1841 | } while (j); |
| 1842 | |
| 1843 | ma_set_meta(mn: node, mt, offset, end); |
| 1844 | } else { |
| 1845 | mas_leaf_set_meta(node, mt, end); |
| 1846 | } |
| 1847 | } |
| 1848 | |
| 1849 | /* |
| 1850 | * mas_store_b_node() - Store an @entry into the b_node while also copying the |
| 1851 | * data from a maple encoded node. |
| 1852 | * @wr_mas: the maple write state |
| 1853 | * @b_node: the maple_big_node to fill with data |
| 1854 | * @offset_end: the offset to end copying |
| 1855 | * |
| 1856 | * Return: The actual end of the data stored in @b_node |
| 1857 | */ |
| 1858 | static noinline_for_kasan void mas_store_b_node(struct ma_wr_state *wr_mas, |
| 1859 | struct maple_big_node *b_node, unsigned char offset_end) |
| 1860 | { |
| 1861 | unsigned char slot; |
| 1862 | unsigned char b_end; |
| 1863 | /* Possible underflow of piv will wrap back to 0 before use. */ |
| 1864 | unsigned long piv; |
| 1865 | struct ma_state *mas = wr_mas->mas; |
| 1866 | |
| 1867 | b_node->type = wr_mas->type; |
| 1868 | b_end = 0; |
| 1869 | slot = mas->offset; |
| 1870 | if (slot) { |
| 1871 | /* Copy start data up to insert. */ |
| 1872 | mas_mab_cp(mas, mas_start: 0, mas_end: slot - 1, b_node, mab_start: 0); |
| 1873 | b_end = b_node->b_end; |
| 1874 | piv = b_node->pivot[b_end - 1]; |
| 1875 | } else |
| 1876 | piv = mas->min - 1; |
| 1877 | |
| 1878 | if (piv + 1 < mas->index) { |
| 1879 | /* Handle range starting after old range */ |
| 1880 | b_node->slot[b_end] = wr_mas->content; |
| 1881 | if (!wr_mas->content) |
| 1882 | b_node->gap[b_end] = mas->index - 1 - piv; |
| 1883 | b_node->pivot[b_end++] = mas->index - 1; |
| 1884 | } |
| 1885 | |
| 1886 | /* Store the new entry. */ |
| 1887 | mas->offset = b_end; |
| 1888 | b_node->slot[b_end] = wr_mas->entry; |
| 1889 | b_node->pivot[b_end] = mas->last; |
| 1890 | |
| 1891 | /* Appended. */ |
| 1892 | if (mas->last >= mas->max) |
| 1893 | goto b_end; |
| 1894 | |
| 1895 | /* Handle new range ending before old range ends */ |
| 1896 | piv = mas_safe_pivot(mas, pivots: wr_mas->pivots, piv: offset_end, type: wr_mas->type); |
| 1897 | if (piv > mas->last) { |
| 1898 | if (offset_end != slot) |
| 1899 | wr_mas->content = mas_slot_locked(mas, slots: wr_mas->slots, |
| 1900 | offset: offset_end); |
| 1901 | |
| 1902 | b_node->slot[++b_end] = wr_mas->content; |
| 1903 | if (!wr_mas->content) |
| 1904 | b_node->gap[b_end] = piv - mas->last + 1; |
| 1905 | b_node->pivot[b_end] = piv; |
| 1906 | } |
| 1907 | |
| 1908 | slot = offset_end + 1; |
| 1909 | if (slot > mas->end) |
| 1910 | goto b_end; |
| 1911 | |
| 1912 | /* Copy end data to the end of the node. */ |
| 1913 | mas_mab_cp(mas, mas_start: slot, mas_end: mas->end + 1, b_node, mab_start: ++b_end); |
| 1914 | b_node->b_end--; |
| 1915 | return; |
| 1916 | |
| 1917 | b_end: |
| 1918 | b_node->b_end = b_end; |
| 1919 | } |
| 1920 | |
| 1921 | /* |
| 1922 | * mas_prev_sibling() - Find the previous node with the same parent. |
| 1923 | * @mas: the maple state |
| 1924 | * |
| 1925 | * Return: True if there is a previous sibling, false otherwise. |
| 1926 | */ |
| 1927 | static inline bool mas_prev_sibling(struct ma_state *mas) |
| 1928 | { |
| 1929 | unsigned int p_slot = mte_parent_slot(enode: mas->node); |
| 1930 | |
| 1931 | /* For root node, p_slot is set to 0 by mte_parent_slot(). */ |
| 1932 | if (!p_slot) |
| 1933 | return false; |
| 1934 | |
| 1935 | mas_ascend(mas); |
| 1936 | mas->offset = p_slot - 1; |
| 1937 | mas_descend(mas); |
| 1938 | return true; |
| 1939 | } |
| 1940 | |
| 1941 | /* |
| 1942 | * mas_next_sibling() - Find the next node with the same parent. |
| 1943 | * @mas: the maple state |
| 1944 | * |
| 1945 | * Return: true if there is a next sibling, false otherwise. |
| 1946 | */ |
| 1947 | static inline bool mas_next_sibling(struct ma_state *mas) |
| 1948 | { |
| 1949 | MA_STATE(parent, mas->tree, mas->index, mas->last); |
| 1950 | |
| 1951 | if (mte_is_root(node: mas->node)) |
| 1952 | return false; |
| 1953 | |
| 1954 | parent = *mas; |
| 1955 | mas_ascend(mas: &parent); |
| 1956 | parent.offset = mte_parent_slot(enode: mas->node) + 1; |
| 1957 | if (parent.offset > mas_data_end(mas: &parent)) |
| 1958 | return false; |
| 1959 | |
| 1960 | *mas = parent; |
| 1961 | mas_descend(mas); |
| 1962 | return true; |
| 1963 | } |
| 1964 | |
| 1965 | /* |
| 1966 | * mas_node_or_none() - Set the enode and state. |
| 1967 | * @mas: the maple state |
| 1968 | * @enode: The encoded maple node. |
| 1969 | * |
| 1970 | * Set the node to the enode and the status. |
| 1971 | */ |
| 1972 | static inline void mas_node_or_none(struct ma_state *mas, |
| 1973 | struct maple_enode *enode) |
| 1974 | { |
| 1975 | if (enode) { |
| 1976 | mas->node = enode; |
| 1977 | mas->status = ma_active; |
| 1978 | } else { |
| 1979 | mas->node = NULL; |
| 1980 | mas->status = ma_none; |
| 1981 | } |
| 1982 | } |
| 1983 | |
| 1984 | /* |
| 1985 | * mas_wr_node_walk() - Find the correct offset for the index in the @mas. |
| 1986 | * If @mas->index cannot be found within the containing |
| 1987 | * node, we traverse to the last entry in the node. |
| 1988 | * @wr_mas: The maple write state |
| 1989 | * |
| 1990 | * Uses mas_slot_locked() and does not need to worry about dead nodes. |
| 1991 | */ |
| 1992 | static inline void mas_wr_node_walk(struct ma_wr_state *wr_mas) |
| 1993 | { |
| 1994 | struct ma_state *mas = wr_mas->mas; |
| 1995 | unsigned char count, offset; |
| 1996 | |
| 1997 | if (unlikely(ma_is_dense(wr_mas->type))) { |
| 1998 | wr_mas->r_max = wr_mas->r_min = mas->index; |
| 1999 | mas->offset = mas->index = mas->min; |
| 2000 | return; |
| 2001 | } |
| 2002 | |
| 2003 | wr_mas->node = mas_mn(mas: wr_mas->mas); |
| 2004 | wr_mas->pivots = ma_pivots(node: wr_mas->node, type: wr_mas->type); |
| 2005 | count = mas->end = ma_data_end(node: wr_mas->node, type: wr_mas->type, |
| 2006 | pivots: wr_mas->pivots, max: mas->max); |
| 2007 | offset = mas->offset; |
| 2008 | |
| 2009 | while (offset < count && mas->index > wr_mas->pivots[offset]) |
| 2010 | offset++; |
| 2011 | |
| 2012 | wr_mas->r_max = offset < count ? wr_mas->pivots[offset] : mas->max; |
| 2013 | wr_mas->r_min = mas_safe_min(mas, pivots: wr_mas->pivots, offset); |
| 2014 | wr_mas->offset_end = mas->offset = offset; |
| 2015 | } |
| 2016 | |
| 2017 | /* |
| 2018 | * mast_rebalance_next() - Rebalance against the next node |
| 2019 | * @mast: The maple subtree state |
| 2020 | */ |
| 2021 | static inline void mast_rebalance_next(struct maple_subtree_state *mast) |
| 2022 | { |
| 2023 | unsigned char b_end = mast->bn->b_end; |
| 2024 | |
| 2025 | mas_mab_cp(mas: mast->orig_r, mas_start: 0, mt_slot_count(mast->orig_r->node), |
| 2026 | b_node: mast->bn, mab_start: b_end); |
| 2027 | mast->orig_r->last = mast->orig_r->max; |
| 2028 | } |
| 2029 | |
| 2030 | /* |
| 2031 | * mast_rebalance_prev() - Rebalance against the previous node |
| 2032 | * @mast: The maple subtree state |
| 2033 | */ |
| 2034 | static inline void mast_rebalance_prev(struct maple_subtree_state *mast) |
| 2035 | { |
| 2036 | unsigned char end = mas_data_end(mas: mast->orig_l) + 1; |
| 2037 | unsigned char b_end = mast->bn->b_end; |
| 2038 | |
| 2039 | mab_shift_right(b_node: mast->bn, shift: end); |
| 2040 | mas_mab_cp(mas: mast->orig_l, mas_start: 0, mas_end: end - 1, b_node: mast->bn, mab_start: 0); |
| 2041 | mast->l->min = mast->orig_l->min; |
| 2042 | mast->orig_l->index = mast->orig_l->min; |
| 2043 | mast->bn->b_end = end + b_end; |
| 2044 | mast->l->offset += end; |
| 2045 | } |
| 2046 | |
| 2047 | /* |
| 2048 | * mast_spanning_rebalance() - Rebalance nodes with nearest neighbour favouring |
| 2049 | * the node to the right. Checking the nodes to the right then the left at each |
| 2050 | * level upwards until root is reached. |
| 2051 | * Data is copied into the @mast->bn. |
| 2052 | * @mast: The maple_subtree_state. |
| 2053 | */ |
| 2054 | static inline |
| 2055 | bool mast_spanning_rebalance(struct maple_subtree_state *mast) |
| 2056 | { |
| 2057 | struct ma_state r_tmp = *mast->orig_r; |
| 2058 | struct ma_state l_tmp = *mast->orig_l; |
| 2059 | unsigned char depth = 0; |
| 2060 | |
| 2061 | do { |
| 2062 | mas_ascend(mas: mast->orig_r); |
| 2063 | mas_ascend(mas: mast->orig_l); |
| 2064 | depth++; |
| 2065 | if (mast->orig_r->offset < mas_data_end(mas: mast->orig_r)) { |
| 2066 | mast->orig_r->offset++; |
| 2067 | do { |
| 2068 | mas_descend(mas: mast->orig_r); |
| 2069 | mast->orig_r->offset = 0; |
| 2070 | } while (--depth); |
| 2071 | |
| 2072 | mast_rebalance_next(mast); |
| 2073 | *mast->orig_l = l_tmp; |
| 2074 | return true; |
| 2075 | } else if (mast->orig_l->offset != 0) { |
| 2076 | mast->orig_l->offset--; |
| 2077 | do { |
| 2078 | mas_descend(mas: mast->orig_l); |
| 2079 | mast->orig_l->offset = |
| 2080 | mas_data_end(mas: mast->orig_l); |
| 2081 | } while (--depth); |
| 2082 | |
| 2083 | mast_rebalance_prev(mast); |
| 2084 | *mast->orig_r = r_tmp; |
| 2085 | return true; |
| 2086 | } |
| 2087 | } while (!mte_is_root(node: mast->orig_r->node)); |
| 2088 | |
| 2089 | *mast->orig_r = r_tmp; |
| 2090 | *mast->orig_l = l_tmp; |
| 2091 | return false; |
| 2092 | } |
| 2093 | |
| 2094 | /* |
| 2095 | * mast_ascend() - Ascend the original left and right maple states. |
| 2096 | * @mast: the maple subtree state. |
| 2097 | * |
| 2098 | * Ascend the original left and right sides. Set the offsets to point to the |
| 2099 | * data already in the new tree (@mast->l and @mast->r). |
| 2100 | */ |
| 2101 | static inline void mast_ascend(struct maple_subtree_state *mast) |
| 2102 | { |
| 2103 | MA_WR_STATE(wr_mas, mast->orig_r, NULL); |
| 2104 | mas_ascend(mas: mast->orig_l); |
| 2105 | mas_ascend(mas: mast->orig_r); |
| 2106 | |
| 2107 | mast->orig_r->offset = 0; |
| 2108 | mast->orig_r->index = mast->r->max; |
| 2109 | /* last should be larger than or equal to index */ |
| 2110 | if (mast->orig_r->last < mast->orig_r->index) |
| 2111 | mast->orig_r->last = mast->orig_r->index; |
| 2112 | |
| 2113 | wr_mas.type = mte_node_type(entry: mast->orig_r->node); |
| 2114 | mas_wr_node_walk(wr_mas: &wr_mas); |
| 2115 | /* Set up the left side of things */ |
| 2116 | mast->orig_l->offset = 0; |
| 2117 | mast->orig_l->index = mast->l->min; |
| 2118 | wr_mas.mas = mast->orig_l; |
| 2119 | wr_mas.type = mte_node_type(entry: mast->orig_l->node); |
| 2120 | mas_wr_node_walk(wr_mas: &wr_mas); |
| 2121 | |
| 2122 | mast->bn->type = wr_mas.type; |
| 2123 | } |
| 2124 | |
| 2125 | /* |
| 2126 | * mas_new_ma_node() - Create and return a new maple node. Helper function. |
| 2127 | * @mas: the maple state with the allocations. |
| 2128 | * @b_node: the maple_big_node with the type encoding. |
| 2129 | * |
| 2130 | * Use the node type from the maple_big_node to allocate a new node from the |
| 2131 | * ma_state. This function exists mainly for code readability. |
| 2132 | * |
| 2133 | * Return: A new maple encoded node |
| 2134 | */ |
| 2135 | static inline struct maple_enode |
| 2136 | *mas_new_ma_node(struct ma_state *mas, struct maple_big_node *b_node) |
| 2137 | { |
| 2138 | return mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)), type: b_node->type); |
| 2139 | } |
| 2140 | |
| 2141 | /* |
| 2142 | * mas_mab_to_node() - Set up right and middle nodes |
| 2143 | * |
| 2144 | * @mas: the maple state that contains the allocations. |
| 2145 | * @b_node: the node which contains the data. |
| 2146 | * @left: The pointer which will have the left node |
| 2147 | * @right: The pointer which may have the right node |
| 2148 | * @middle: the pointer which may have the middle node (rare) |
| 2149 | * @mid_split: the split location for the middle node |
| 2150 | * |
| 2151 | * Return: the split of left. |
| 2152 | */ |
| 2153 | static inline unsigned char mas_mab_to_node(struct ma_state *mas, |
| 2154 | struct maple_big_node *b_node, struct maple_enode **left, |
| 2155 | struct maple_enode **right, struct maple_enode **middle, |
| 2156 | unsigned char *mid_split) |
| 2157 | { |
| 2158 | unsigned char split = 0; |
| 2159 | unsigned char slot_count = mt_slots[b_node->type]; |
| 2160 | |
| 2161 | *left = mas_new_ma_node(mas, b_node); |
| 2162 | *right = NULL; |
| 2163 | *middle = NULL; |
| 2164 | *mid_split = 0; |
| 2165 | |
| 2166 | if (b_node->b_end < slot_count) { |
| 2167 | split = b_node->b_end; |
| 2168 | } else { |
| 2169 | split = mab_calc_split(mas, bn: b_node, mid_split); |
| 2170 | *right = mas_new_ma_node(mas, b_node); |
| 2171 | } |
| 2172 | |
| 2173 | if (*mid_split) |
| 2174 | *middle = mas_new_ma_node(mas, b_node); |
| 2175 | |
| 2176 | return split; |
| 2177 | |
| 2178 | } |
| 2179 | |
| 2180 | /* |
| 2181 | * mab_set_b_end() - Add entry to b_node at b_node->b_end and increment the end |
| 2182 | * pointer. |
| 2183 | * @b_node: the big node to add the entry |
| 2184 | * @mas: the maple state to get the pivot (mas->max) |
| 2185 | * @entry: the entry to add, if NULL nothing happens. |
| 2186 | */ |
| 2187 | static inline void mab_set_b_end(struct maple_big_node *b_node, |
| 2188 | struct ma_state *mas, |
| 2189 | void *entry) |
| 2190 | { |
| 2191 | if (!entry) |
| 2192 | return; |
| 2193 | |
| 2194 | b_node->slot[b_node->b_end] = entry; |
| 2195 | if (mt_is_alloc(mt: mas->tree)) |
| 2196 | b_node->gap[b_node->b_end] = mas_max_gap(mas); |
| 2197 | b_node->pivot[b_node->b_end++] = mas->max; |
| 2198 | } |
| 2199 | |
| 2200 | /* |
| 2201 | * mas_set_split_parent() - combine_then_separate helper function. Sets the parent |
| 2202 | * of @mas->node to either @left or @right, depending on @slot and @split |
| 2203 | * |
| 2204 | * @mas: the maple state with the node that needs a parent |
| 2205 | * @left: possible parent 1 |
| 2206 | * @right: possible parent 2 |
| 2207 | * @slot: the slot the mas->node was placed |
| 2208 | * @split: the split location between @left and @right |
| 2209 | */ |
| 2210 | static inline void mas_set_split_parent(struct ma_state *mas, |
| 2211 | struct maple_enode *left, |
| 2212 | struct maple_enode *right, |
| 2213 | unsigned char *slot, unsigned char split) |
| 2214 | { |
| 2215 | if (mas_is_none(mas)) |
| 2216 | return; |
| 2217 | |
| 2218 | if ((*slot) <= split) |
| 2219 | mas_set_parent(mas, enode: mas->node, parent: left, slot: *slot); |
| 2220 | else if (right) |
| 2221 | mas_set_parent(mas, enode: mas->node, parent: right, slot: (*slot) - split - 1); |
| 2222 | |
| 2223 | (*slot)++; |
| 2224 | } |
| 2225 | |
| 2226 | /* |
| 2227 | * mte_mid_split_check() - Check if the next node passes the mid-split |
| 2228 | * @l: Pointer to left encoded maple node. |
| 2229 | * @m: Pointer to middle encoded maple node. |
| 2230 | * @r: Pointer to right encoded maple node. |
| 2231 | * @slot: The offset |
| 2232 | * @split: The split location. |
| 2233 | * @mid_split: The middle split. |
| 2234 | */ |
| 2235 | static inline void mte_mid_split_check(struct maple_enode **l, |
| 2236 | struct maple_enode **r, |
| 2237 | struct maple_enode *right, |
| 2238 | unsigned char slot, |
| 2239 | unsigned char *split, |
| 2240 | unsigned char mid_split) |
| 2241 | { |
| 2242 | if (*r == right) |
| 2243 | return; |
| 2244 | |
| 2245 | if (slot < mid_split) |
| 2246 | return; |
| 2247 | |
| 2248 | *l = *r; |
| 2249 | *r = right; |
| 2250 | *split = mid_split; |
| 2251 | } |
| 2252 | |
| 2253 | /* |
| 2254 | * mast_set_split_parents() - Helper function to set three nodes parents. Slot |
| 2255 | * is taken from @mast->l. |
| 2256 | * @mast: the maple subtree state |
| 2257 | * @left: the left node |
| 2258 | * @right: the right node |
| 2259 | * @split: the split location. |
| 2260 | */ |
| 2261 | static inline void mast_set_split_parents(struct maple_subtree_state *mast, |
| 2262 | struct maple_enode *left, |
| 2263 | struct maple_enode *middle, |
| 2264 | struct maple_enode *right, |
| 2265 | unsigned char split, |
| 2266 | unsigned char mid_split) |
| 2267 | { |
| 2268 | unsigned char slot; |
| 2269 | struct maple_enode *l = left; |
| 2270 | struct maple_enode *r = right; |
| 2271 | |
| 2272 | if (mas_is_none(mas: mast->l)) |
| 2273 | return; |
| 2274 | |
| 2275 | if (middle) |
| 2276 | r = middle; |
| 2277 | |
| 2278 | slot = mast->l->offset; |
| 2279 | |
| 2280 | mte_mid_split_check(l: &l, r: &r, right, slot, split: &split, mid_split); |
| 2281 | mas_set_split_parent(mas: mast->l, left: l, right: r, slot: &slot, split); |
| 2282 | |
| 2283 | mte_mid_split_check(l: &l, r: &r, right, slot, split: &split, mid_split); |
| 2284 | mas_set_split_parent(mas: mast->m, left: l, right: r, slot: &slot, split); |
| 2285 | |
| 2286 | mte_mid_split_check(l: &l, r: &r, right, slot, split: &split, mid_split); |
| 2287 | mas_set_split_parent(mas: mast->r, left: l, right: r, slot: &slot, split); |
| 2288 | } |
| 2289 | |
| 2290 | /* |
| 2291 | * mas_topiary_node() - Dispose of a single node |
| 2292 | * @mas: The maple state for pushing nodes |
| 2293 | * @in_rcu: If the tree is in rcu mode |
| 2294 | * |
| 2295 | * The node will either be RCU freed or pushed back on the maple state. |
| 2296 | */ |
| 2297 | static inline void mas_topiary_node(struct ma_state *mas, |
| 2298 | struct ma_state *tmp_mas, bool in_rcu) |
| 2299 | { |
| 2300 | struct maple_node *tmp; |
| 2301 | struct maple_enode *enode; |
| 2302 | |
| 2303 | if (mas_is_none(mas: tmp_mas)) |
| 2304 | return; |
| 2305 | |
| 2306 | enode = tmp_mas->node; |
| 2307 | tmp = mte_to_node(entry: enode); |
| 2308 | mte_set_node_dead(mn: enode); |
| 2309 | ma_free_rcu(node: tmp); |
| 2310 | } |
| 2311 | |
| 2312 | /* |
| 2313 | * mas_topiary_replace() - Replace the data with new data, then repair the |
| 2314 | * parent links within the new tree. Iterate over the dead sub-tree and collect |
| 2315 | * the dead subtrees and topiary the nodes that are no longer of use. |
| 2316 | * |
| 2317 | * The new tree will have up to three children with the correct parent. Keep |
| 2318 | * track of the new entries as they need to be followed to find the next level |
| 2319 | * of new entries. |
| 2320 | * |
| 2321 | * The old tree will have up to three children with the old parent. Keep track |
| 2322 | * of the old entries as they may have more nodes below replaced. Nodes within |
| 2323 | * [index, last] are dead subtrees, others need to be freed and followed. |
| 2324 | * |
| 2325 | * @mas: The maple state pointing at the new data |
| 2326 | * @old_enode: The maple encoded node being replaced |
| 2327 | * @new_height: The new height of the tree as a result of the operation |
| 2328 | * |
| 2329 | */ |
| 2330 | static inline void mas_topiary_replace(struct ma_state *mas, |
| 2331 | struct maple_enode *old_enode, unsigned char new_height) |
| 2332 | { |
| 2333 | struct ma_state tmp[3], tmp_next[3]; |
| 2334 | MA_TOPIARY(subtrees, mas->tree); |
| 2335 | bool in_rcu; |
| 2336 | int i, n; |
| 2337 | |
| 2338 | /* Place data in tree & then mark node as old */ |
| 2339 | mas_put_in_tree(mas, old_enode, new_height); |
| 2340 | |
| 2341 | /* Update the parent pointers in the tree */ |
| 2342 | tmp[0] = *mas; |
| 2343 | tmp[0].offset = 0; |
| 2344 | tmp[1].status = ma_none; |
| 2345 | tmp[2].status = ma_none; |
| 2346 | while (!mte_is_leaf(entry: tmp[0].node)) { |
| 2347 | n = 0; |
| 2348 | for (i = 0; i < 3; i++) { |
| 2349 | if (mas_is_none(mas: &tmp[i])) |
| 2350 | continue; |
| 2351 | |
| 2352 | while (n < 3) { |
| 2353 | if (!mas_find_child(mas: &tmp[i], child: &tmp_next[n])) |
| 2354 | break; |
| 2355 | n++; |
| 2356 | } |
| 2357 | |
| 2358 | mas_adopt_children(mas: &tmp[i], parent: tmp[i].node); |
| 2359 | } |
| 2360 | |
| 2361 | if (MAS_WARN_ON(mas, n == 0)) |
| 2362 | break; |
| 2363 | |
| 2364 | while (n < 3) |
| 2365 | tmp_next[n++].status = ma_none; |
| 2366 | |
| 2367 | for (i = 0; i < 3; i++) |
| 2368 | tmp[i] = tmp_next[i]; |
| 2369 | } |
| 2370 | |
| 2371 | /* Collect the old nodes that need to be discarded */ |
| 2372 | if (mte_is_leaf(entry: old_enode)) |
| 2373 | return mas_free(mas, used: old_enode); |
| 2374 | |
| 2375 | tmp[0] = *mas; |
| 2376 | tmp[0].offset = 0; |
| 2377 | tmp[0].node = old_enode; |
| 2378 | tmp[1].status = ma_none; |
| 2379 | tmp[2].status = ma_none; |
| 2380 | in_rcu = mt_in_rcu(mt: mas->tree); |
| 2381 | do { |
| 2382 | n = 0; |
| 2383 | for (i = 0; i < 3; i++) { |
| 2384 | if (mas_is_none(mas: &tmp[i])) |
| 2385 | continue; |
| 2386 | |
| 2387 | while (n < 3) { |
| 2388 | if (!mas_find_child(mas: &tmp[i], child: &tmp_next[n])) |
| 2389 | break; |
| 2390 | |
| 2391 | if ((tmp_next[n].min >= tmp_next->index) && |
| 2392 | (tmp_next[n].max <= tmp_next->last)) { |
| 2393 | mat_add(mat: &subtrees, dead_enode: tmp_next[n].node); |
| 2394 | tmp_next[n].status = ma_none; |
| 2395 | } else { |
| 2396 | n++; |
| 2397 | } |
| 2398 | } |
| 2399 | } |
| 2400 | |
| 2401 | if (MAS_WARN_ON(mas, n == 0)) |
| 2402 | break; |
| 2403 | |
| 2404 | while (n < 3) |
| 2405 | tmp_next[n++].status = ma_none; |
| 2406 | |
| 2407 | for (i = 0; i < 3; i++) { |
| 2408 | mas_topiary_node(mas, tmp_mas: &tmp[i], in_rcu); |
| 2409 | tmp[i] = tmp_next[i]; |
| 2410 | } |
| 2411 | } while (!mte_is_leaf(entry: tmp[0].node)); |
| 2412 | |
| 2413 | for (i = 0; i < 3; i++) |
| 2414 | mas_topiary_node(mas, tmp_mas: &tmp[i], in_rcu); |
| 2415 | |
| 2416 | mas_mat_destroy(mas, mat: &subtrees); |
| 2417 | } |
| 2418 | |
| 2419 | /* |
| 2420 | * mas_wmb_replace() - Write memory barrier and replace |
| 2421 | * @mas: The maple state |
| 2422 | * @old_enode: The old maple encoded node that is being replaced. |
| 2423 | * @new_height: The new height of the tree as a result of the operation |
| 2424 | * |
| 2425 | * Updates gap as necessary. |
| 2426 | */ |
| 2427 | static inline void mas_wmb_replace(struct ma_state *mas, |
| 2428 | struct maple_enode *old_enode, unsigned char new_height) |
| 2429 | { |
| 2430 | /* Insert the new data in the tree */ |
| 2431 | mas_topiary_replace(mas, old_enode, new_height); |
| 2432 | |
| 2433 | if (mte_is_leaf(entry: mas->node)) |
| 2434 | return; |
| 2435 | |
| 2436 | mas_update_gap(mas); |
| 2437 | } |
| 2438 | |
| 2439 | /* |
| 2440 | * mast_cp_to_nodes() - Copy data out to nodes. |
| 2441 | * @mast: The maple subtree state |
| 2442 | * @left: The left encoded maple node |
| 2443 | * @middle: The middle encoded maple node |
| 2444 | * @right: The right encoded maple node |
| 2445 | * @split: The location to split between left and (middle ? middle : right) |
| 2446 | * @mid_split: The location to split between middle and right. |
| 2447 | */ |
| 2448 | static inline void mast_cp_to_nodes(struct maple_subtree_state *mast, |
| 2449 | struct maple_enode *left, struct maple_enode *middle, |
| 2450 | struct maple_enode *right, unsigned char split, unsigned char mid_split) |
| 2451 | { |
| 2452 | bool new_lmax = true; |
| 2453 | |
| 2454 | mas_node_or_none(mas: mast->l, enode: left); |
| 2455 | mas_node_or_none(mas: mast->m, enode: middle); |
| 2456 | mas_node_or_none(mas: mast->r, enode: right); |
| 2457 | |
| 2458 | mast->l->min = mast->orig_l->min; |
| 2459 | if (split == mast->bn->b_end) { |
| 2460 | mast->l->max = mast->orig_r->max; |
| 2461 | new_lmax = false; |
| 2462 | } |
| 2463 | |
| 2464 | mab_mas_cp(b_node: mast->bn, mab_start: 0, mab_end: split, mas: mast->l, new_max: new_lmax); |
| 2465 | |
| 2466 | if (middle) { |
| 2467 | mab_mas_cp(b_node: mast->bn, mab_start: 1 + split, mab_end: mid_split, mas: mast->m, new_max: true); |
| 2468 | mast->m->min = mast->bn->pivot[split] + 1; |
| 2469 | split = mid_split; |
| 2470 | } |
| 2471 | |
| 2472 | mast->r->max = mast->orig_r->max; |
| 2473 | if (right) { |
| 2474 | mab_mas_cp(b_node: mast->bn, mab_start: 1 + split, mab_end: mast->bn->b_end, mas: mast->r, new_max: false); |
| 2475 | mast->r->min = mast->bn->pivot[split] + 1; |
| 2476 | } |
| 2477 | } |
| 2478 | |
| 2479 | /* |
| 2480 | * mast_combine_cp_left - Copy in the original left side of the tree into the |
| 2481 | * combined data set in the maple subtree state big node. |
| 2482 | * @mast: The maple subtree state |
| 2483 | */ |
| 2484 | static inline void mast_combine_cp_left(struct maple_subtree_state *mast) |
| 2485 | { |
| 2486 | unsigned char l_slot = mast->orig_l->offset; |
| 2487 | |
| 2488 | if (!l_slot) |
| 2489 | return; |
| 2490 | |
| 2491 | mas_mab_cp(mas: mast->orig_l, mas_start: 0, mas_end: l_slot - 1, b_node: mast->bn, mab_start: 0); |
| 2492 | } |
| 2493 | |
| 2494 | /* |
| 2495 | * mast_combine_cp_right: Copy in the original right side of the tree into the |
| 2496 | * combined data set in the maple subtree state big node. |
| 2497 | * @mast: The maple subtree state |
| 2498 | */ |
| 2499 | static inline void mast_combine_cp_right(struct maple_subtree_state *mast) |
| 2500 | { |
| 2501 | if (mast->bn->pivot[mast->bn->b_end - 1] >= mast->orig_r->max) |
| 2502 | return; |
| 2503 | |
| 2504 | mas_mab_cp(mas: mast->orig_r, mas_start: mast->orig_r->offset + 1, |
| 2505 | mt_slot_count(mast->orig_r->node), b_node: mast->bn, |
| 2506 | mab_start: mast->bn->b_end); |
| 2507 | mast->orig_r->last = mast->orig_r->max; |
| 2508 | } |
| 2509 | |
| 2510 | /* |
| 2511 | * mast_sufficient: Check if the maple subtree state has enough data in the big |
| 2512 | * node to create at least one sufficient node |
| 2513 | * @mast: the maple subtree state |
| 2514 | */ |
| 2515 | static inline bool mast_sufficient(struct maple_subtree_state *mast) |
| 2516 | { |
| 2517 | if (mast->bn->b_end > mt_min_slot_count(mast->orig_l->node)) |
| 2518 | return true; |
| 2519 | |
| 2520 | return false; |
| 2521 | } |
| 2522 | |
| 2523 | /* |
| 2524 | * mast_overflow: Check if there is too much data in the subtree state for a |
| 2525 | * single node. |
| 2526 | * @mast: The maple subtree state |
| 2527 | */ |
| 2528 | static inline bool mast_overflow(struct maple_subtree_state *mast) |
| 2529 | { |
| 2530 | if (mast->bn->b_end > mt_slot_count(mast->orig_l->node)) |
| 2531 | return true; |
| 2532 | |
| 2533 | return false; |
| 2534 | } |
| 2535 | |
| 2536 | static inline void *mtree_range_walk(struct ma_state *mas) |
| 2537 | { |
| 2538 | unsigned long *pivots; |
| 2539 | unsigned char offset; |
| 2540 | struct maple_node *node; |
| 2541 | struct maple_enode *next, *last; |
| 2542 | enum maple_type type; |
| 2543 | void __rcu **slots; |
| 2544 | unsigned char end; |
| 2545 | unsigned long max, min; |
| 2546 | unsigned long prev_max, prev_min; |
| 2547 | |
| 2548 | next = mas->node; |
| 2549 | min = mas->min; |
| 2550 | max = mas->max; |
| 2551 | do { |
| 2552 | last = next; |
| 2553 | node = mte_to_node(entry: next); |
| 2554 | type = mte_node_type(entry: next); |
| 2555 | pivots = ma_pivots(node, type); |
| 2556 | end = ma_data_end(node, type, pivots, max); |
| 2557 | prev_min = min; |
| 2558 | prev_max = max; |
| 2559 | if (pivots[0] >= mas->index) { |
| 2560 | offset = 0; |
| 2561 | max = pivots[0]; |
| 2562 | goto next; |
| 2563 | } |
| 2564 | |
| 2565 | offset = 1; |
| 2566 | while (offset < end) { |
| 2567 | if (pivots[offset] >= mas->index) { |
| 2568 | max = pivots[offset]; |
| 2569 | break; |
| 2570 | } |
| 2571 | offset++; |
| 2572 | } |
| 2573 | |
| 2574 | min = pivots[offset - 1] + 1; |
| 2575 | next: |
| 2576 | slots = ma_slots(mn: node, mt: type); |
| 2577 | next = mt_slot(mt: mas->tree, slots, offset); |
| 2578 | if (unlikely(ma_dead_node(node))) |
| 2579 | goto dead_node; |
| 2580 | } while (!ma_is_leaf(type)); |
| 2581 | |
| 2582 | mas->end = end; |
| 2583 | mas->offset = offset; |
| 2584 | mas->index = min; |
| 2585 | mas->last = max; |
| 2586 | mas->min = prev_min; |
| 2587 | mas->max = prev_max; |
| 2588 | mas->node = last; |
| 2589 | return (void *)next; |
| 2590 | |
| 2591 | dead_node: |
| 2592 | mas_reset(mas); |
| 2593 | return NULL; |
| 2594 | } |
| 2595 | |
| 2596 | /* |
| 2597 | * mas_spanning_rebalance() - Rebalance across two nodes which may not be peers. |
| 2598 | * @mas: The starting maple state |
| 2599 | * @mast: The maple_subtree_state, keeps track of 4 maple states. |
| 2600 | * @count: The estimated count of iterations needed. |
| 2601 | * |
| 2602 | * Follow the tree upwards from @l_mas and @r_mas for @count, or until the root |
| 2603 | * is hit. First @b_node is split into two entries which are inserted into the |
| 2604 | * next iteration of the loop. @b_node is returned populated with the final |
| 2605 | * iteration. @mas is used to obtain allocations. orig_l_mas keeps track of the |
| 2606 | * nodes that will remain active by using orig_l_mas->index and orig_l_mas->last |
| 2607 | * to account of what has been copied into the new sub-tree. The update of |
| 2608 | * orig_l_mas->last is used in mas_consume to find the slots that will need to |
| 2609 | * be either freed or destroyed. orig_l_mas->depth keeps track of the height of |
| 2610 | * the new sub-tree in case the sub-tree becomes the full tree. |
| 2611 | */ |
| 2612 | static void mas_spanning_rebalance(struct ma_state *mas, |
| 2613 | struct maple_subtree_state *mast, unsigned char count) |
| 2614 | { |
| 2615 | unsigned char split, mid_split; |
| 2616 | unsigned char slot = 0; |
| 2617 | unsigned char new_height = 0; /* used if node is a new root */ |
| 2618 | struct maple_enode *left = NULL, *middle = NULL, *right = NULL; |
| 2619 | struct maple_enode *old_enode; |
| 2620 | |
| 2621 | MA_STATE(l_mas, mas->tree, mas->index, mas->index); |
| 2622 | MA_STATE(r_mas, mas->tree, mas->index, mas->last); |
| 2623 | MA_STATE(m_mas, mas->tree, mas->index, mas->index); |
| 2624 | |
| 2625 | /* |
| 2626 | * The tree needs to be rebalanced and leaves need to be kept at the same level. |
| 2627 | * Rebalancing is done by use of the ``struct maple_topiary``. |
| 2628 | */ |
| 2629 | mast->l = &l_mas; |
| 2630 | mast->m = &m_mas; |
| 2631 | mast->r = &r_mas; |
| 2632 | l_mas.status = r_mas.status = m_mas.status = ma_none; |
| 2633 | |
| 2634 | /* Check if this is not root and has sufficient data. */ |
| 2635 | if (((mast->orig_l->min != 0) || (mast->orig_r->max != ULONG_MAX)) && |
| 2636 | unlikely(mast->bn->b_end <= mt_min_slots[mast->bn->type])) |
| 2637 | mast_spanning_rebalance(mast); |
| 2638 | |
| 2639 | /* |
| 2640 | * Each level of the tree is examined and balanced, pushing data to the left or |
| 2641 | * right, or rebalancing against left or right nodes is employed to avoid |
| 2642 | * rippling up the tree to limit the amount of churn. Once a new sub-section of |
| 2643 | * the tree is created, there may be a mix of new and old nodes. The old nodes |
| 2644 | * will have the incorrect parent pointers and currently be in two trees: the |
| 2645 | * original tree and the partially new tree. To remedy the parent pointers in |
| 2646 | * the old tree, the new data is swapped into the active tree and a walk down |
| 2647 | * the tree is performed and the parent pointers are updated. |
| 2648 | * See mas_topiary_replace() for more information. |
| 2649 | */ |
| 2650 | while (count--) { |
| 2651 | mast->bn->b_end--; |
| 2652 | mast->bn->type = mte_node_type(entry: mast->orig_l->node); |
| 2653 | split = mas_mab_to_node(mas, b_node: mast->bn, left: &left, right: &right, middle: &middle, |
| 2654 | mid_split: &mid_split); |
| 2655 | mast_set_split_parents(mast, left, middle, right, split, |
| 2656 | mid_split); |
| 2657 | mast_cp_to_nodes(mast, left, middle, right, split, mid_split); |
| 2658 | new_height++; |
| 2659 | |
| 2660 | /* |
| 2661 | * Copy data from next level in the tree to mast->bn from next |
| 2662 | * iteration |
| 2663 | */ |
| 2664 | memset(s: mast->bn, c: 0, n: sizeof(struct maple_big_node)); |
| 2665 | mast->bn->type = mte_node_type(entry: left); |
| 2666 | |
| 2667 | /* Root already stored in l->node. */ |
| 2668 | if (mas_is_root_limits(mas: mast->l)) |
| 2669 | goto new_root; |
| 2670 | |
| 2671 | mast_ascend(mast); |
| 2672 | mast_combine_cp_left(mast); |
| 2673 | l_mas.offset = mast->bn->b_end; |
| 2674 | mab_set_b_end(b_node: mast->bn, mas: &l_mas, entry: left); |
| 2675 | mab_set_b_end(b_node: mast->bn, mas: &m_mas, entry: middle); |
| 2676 | mab_set_b_end(b_node: mast->bn, mas: &r_mas, entry: right); |
| 2677 | |
| 2678 | /* Copy anything necessary out of the right node. */ |
| 2679 | mast_combine_cp_right(mast); |
| 2680 | mast->orig_l->last = mast->orig_l->max; |
| 2681 | |
| 2682 | if (mast_sufficient(mast)) { |
| 2683 | if (mast_overflow(mast)) |
| 2684 | continue; |
| 2685 | |
| 2686 | if (mast->orig_l->node == mast->orig_r->node) { |
| 2687 | /* |
| 2688 | * The data in b_node should be stored in one |
| 2689 | * node and in the tree |
| 2690 | */ |
| 2691 | slot = mast->l->offset; |
| 2692 | break; |
| 2693 | } |
| 2694 | |
| 2695 | continue; |
| 2696 | } |
| 2697 | |
| 2698 | /* May be a new root stored in mast->bn */ |
| 2699 | if (mas_is_root_limits(mas: mast->orig_l)) |
| 2700 | break; |
| 2701 | |
| 2702 | mast_spanning_rebalance(mast); |
| 2703 | |
| 2704 | /* rebalancing from other nodes may require another loop. */ |
| 2705 | if (!count) |
| 2706 | count++; |
| 2707 | } |
| 2708 | |
| 2709 | l_mas.node = mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)), |
| 2710 | type: mte_node_type(entry: mast->orig_l->node)); |
| 2711 | |
| 2712 | mab_mas_cp(b_node: mast->bn, mab_start: 0, mab_end: mt_slots[mast->bn->type] - 1, mas: &l_mas, new_max: true); |
| 2713 | new_height++; |
| 2714 | mas_set_parent(mas, enode: left, parent: l_mas.node, slot); |
| 2715 | if (middle) |
| 2716 | mas_set_parent(mas, enode: middle, parent: l_mas.node, slot: ++slot); |
| 2717 | |
| 2718 | if (right) |
| 2719 | mas_set_parent(mas, enode: right, parent: l_mas.node, slot: ++slot); |
| 2720 | |
| 2721 | if (mas_is_root_limits(mas: mast->l)) { |
| 2722 | new_root: |
| 2723 | mas_mn(mas: mast->l)->parent = ma_parent_ptr(mas_tree_parent(mas)); |
| 2724 | while (!mte_is_root(node: mast->orig_l->node)) |
| 2725 | mast_ascend(mast); |
| 2726 | } else { |
| 2727 | mas_mn(mas: &l_mas)->parent = mas_mn(mas: mast->orig_l)->parent; |
| 2728 | } |
| 2729 | |
| 2730 | old_enode = mast->orig_l->node; |
| 2731 | mas->depth = l_mas.depth; |
| 2732 | mas->node = l_mas.node; |
| 2733 | mas->min = l_mas.min; |
| 2734 | mas->max = l_mas.max; |
| 2735 | mas->offset = l_mas.offset; |
| 2736 | mas_wmb_replace(mas, old_enode, new_height); |
| 2737 | mtree_range_walk(mas); |
| 2738 | return; |
| 2739 | } |
| 2740 | |
| 2741 | /* |
| 2742 | * mas_rebalance() - Rebalance a given node. |
| 2743 | * @mas: The maple state |
| 2744 | * @b_node: The big maple node. |
| 2745 | * |
| 2746 | * Rebalance two nodes into a single node or two new nodes that are sufficient. |
| 2747 | * Continue upwards until tree is sufficient. |
| 2748 | */ |
| 2749 | static inline void mas_rebalance(struct ma_state *mas, |
| 2750 | struct maple_big_node *b_node) |
| 2751 | { |
| 2752 | char empty_count = mas_mt_height(mas); |
| 2753 | struct maple_subtree_state mast; |
| 2754 | unsigned char shift, b_end = ++b_node->b_end; |
| 2755 | |
| 2756 | MA_STATE(l_mas, mas->tree, mas->index, mas->last); |
| 2757 | MA_STATE(r_mas, mas->tree, mas->index, mas->last); |
| 2758 | |
| 2759 | trace_ma_op(fn: __func__, mas); |
| 2760 | |
| 2761 | /* |
| 2762 | * Rebalancing occurs if a node is insufficient. Data is rebalanced |
| 2763 | * against the node to the right if it exists, otherwise the node to the |
| 2764 | * left of this node is rebalanced against this node. If rebalancing |
| 2765 | * causes just one node to be produced instead of two, then the parent |
| 2766 | * is also examined and rebalanced if it is insufficient. Every level |
| 2767 | * tries to combine the data in the same way. If one node contains the |
| 2768 | * entire range of the tree, then that node is used as a new root node. |
| 2769 | */ |
| 2770 | |
| 2771 | mast.orig_l = &l_mas; |
| 2772 | mast.orig_r = &r_mas; |
| 2773 | mast.bn = b_node; |
| 2774 | mast.bn->type = mte_node_type(entry: mas->node); |
| 2775 | |
| 2776 | l_mas = r_mas = *mas; |
| 2777 | |
| 2778 | if (mas_next_sibling(mas: &r_mas)) { |
| 2779 | mas_mab_cp(mas: &r_mas, mas_start: 0, mt_slot_count(r_mas.node), b_node, mab_start: b_end); |
| 2780 | r_mas.last = r_mas.index = r_mas.max; |
| 2781 | } else { |
| 2782 | mas_prev_sibling(mas: &l_mas); |
| 2783 | shift = mas_data_end(mas: &l_mas) + 1; |
| 2784 | mab_shift_right(b_node, shift); |
| 2785 | mas->offset += shift; |
| 2786 | mas_mab_cp(mas: &l_mas, mas_start: 0, mas_end: shift - 1, b_node, mab_start: 0); |
| 2787 | b_node->b_end = shift + b_end; |
| 2788 | l_mas.index = l_mas.last = l_mas.min; |
| 2789 | } |
| 2790 | |
| 2791 | return mas_spanning_rebalance(mas, mast: &mast, count: empty_count); |
| 2792 | } |
| 2793 | |
| 2794 | /* |
| 2795 | * mas_split_final_node() - Split the final node in a subtree operation. |
| 2796 | * @mast: the maple subtree state |
| 2797 | * @mas: The maple state |
| 2798 | */ |
| 2799 | static inline void mas_split_final_node(struct maple_subtree_state *mast, |
| 2800 | struct ma_state *mas) |
| 2801 | { |
| 2802 | struct maple_enode *ancestor; |
| 2803 | |
| 2804 | if (mte_is_root(node: mas->node)) { |
| 2805 | if (mt_is_alloc(mt: mas->tree)) |
| 2806 | mast->bn->type = maple_arange_64; |
| 2807 | else |
| 2808 | mast->bn->type = maple_range_64; |
| 2809 | } |
| 2810 | /* |
| 2811 | * Only a single node is used here, could be root. |
| 2812 | * The Big_node data should just fit in a single node. |
| 2813 | */ |
| 2814 | ancestor = mas_new_ma_node(mas, b_node: mast->bn); |
| 2815 | mas_set_parent(mas, enode: mast->l->node, parent: ancestor, slot: mast->l->offset); |
| 2816 | mas_set_parent(mas, enode: mast->r->node, parent: ancestor, slot: mast->r->offset); |
| 2817 | mte_to_node(entry: ancestor)->parent = mas_mn(mas)->parent; |
| 2818 | |
| 2819 | mast->l->node = ancestor; |
| 2820 | mab_mas_cp(b_node: mast->bn, mab_start: 0, mab_end: mt_slots[mast->bn->type] - 1, mas: mast->l, new_max: true); |
| 2821 | mas->offset = mast->bn->b_end - 1; |
| 2822 | } |
| 2823 | |
| 2824 | /* |
| 2825 | * mast_fill_bnode() - Copy data into the big node in the subtree state |
| 2826 | * @mast: The maple subtree state |
| 2827 | * @mas: the maple state |
| 2828 | * @skip: The number of entries to skip for new nodes insertion. |
| 2829 | */ |
| 2830 | static inline void mast_fill_bnode(struct maple_subtree_state *mast, |
| 2831 | struct ma_state *mas, |
| 2832 | unsigned char skip) |
| 2833 | { |
| 2834 | bool cp = true; |
| 2835 | unsigned char split; |
| 2836 | |
| 2837 | memset(s: mast->bn, c: 0, n: sizeof(struct maple_big_node)); |
| 2838 | |
| 2839 | if (mte_is_root(node: mas->node)) { |
| 2840 | cp = false; |
| 2841 | } else { |
| 2842 | mas_ascend(mas); |
| 2843 | mas->offset = mte_parent_slot(enode: mas->node); |
| 2844 | } |
| 2845 | |
| 2846 | if (cp && mast->l->offset) |
| 2847 | mas_mab_cp(mas, mas_start: 0, mas_end: mast->l->offset - 1, b_node: mast->bn, mab_start: 0); |
| 2848 | |
| 2849 | split = mast->bn->b_end; |
| 2850 | mab_set_b_end(b_node: mast->bn, mas: mast->l, entry: mast->l->node); |
| 2851 | mast->r->offset = mast->bn->b_end; |
| 2852 | mab_set_b_end(b_node: mast->bn, mas: mast->r, entry: mast->r->node); |
| 2853 | if (mast->bn->pivot[mast->bn->b_end - 1] == mas->max) |
| 2854 | cp = false; |
| 2855 | |
| 2856 | if (cp) |
| 2857 | mas_mab_cp(mas, mas_start: split + skip, mt_slot_count(mas->node) - 1, |
| 2858 | b_node: mast->bn, mab_start: mast->bn->b_end); |
| 2859 | |
| 2860 | mast->bn->b_end--; |
| 2861 | mast->bn->type = mte_node_type(entry: mas->node); |
| 2862 | } |
| 2863 | |
| 2864 | /* |
| 2865 | * mast_split_data() - Split the data in the subtree state big node into regular |
| 2866 | * nodes. |
| 2867 | * @mast: The maple subtree state |
| 2868 | * @mas: The maple state |
| 2869 | * @split: The location to split the big node |
| 2870 | */ |
| 2871 | static inline void mast_split_data(struct maple_subtree_state *mast, |
| 2872 | struct ma_state *mas, unsigned char split) |
| 2873 | { |
| 2874 | unsigned char p_slot; |
| 2875 | |
| 2876 | mab_mas_cp(b_node: mast->bn, mab_start: 0, mab_end: split, mas: mast->l, new_max: true); |
| 2877 | mte_set_pivot(mn: mast->r->node, piv: 0, val: mast->r->max); |
| 2878 | mab_mas_cp(b_node: mast->bn, mab_start: split + 1, mab_end: mast->bn->b_end, mas: mast->r, new_max: false); |
| 2879 | mast->l->offset = mte_parent_slot(enode: mas->node); |
| 2880 | mast->l->max = mast->bn->pivot[split]; |
| 2881 | mast->r->min = mast->l->max + 1; |
| 2882 | if (mte_is_leaf(entry: mas->node)) |
| 2883 | return; |
| 2884 | |
| 2885 | p_slot = mast->orig_l->offset; |
| 2886 | mas_set_split_parent(mas: mast->orig_l, left: mast->l->node, right: mast->r->node, |
| 2887 | slot: &p_slot, split); |
| 2888 | mas_set_split_parent(mas: mast->orig_r, left: mast->l->node, right: mast->r->node, |
| 2889 | slot: &p_slot, split); |
| 2890 | } |
| 2891 | |
| 2892 | /* |
| 2893 | * mas_push_data() - Instead of splitting a node, it is beneficial to push the |
| 2894 | * data to the right or left node if there is room. |
| 2895 | * @mas: The maple state |
| 2896 | * @mast: The maple subtree state |
| 2897 | * @left: Push left or not. |
| 2898 | * |
| 2899 | * Keeping the height of the tree low means faster lookups. |
| 2900 | * |
| 2901 | * Return: True if pushed, false otherwise. |
| 2902 | */ |
| 2903 | static inline bool mas_push_data(struct ma_state *mas, |
| 2904 | struct maple_subtree_state *mast, bool left) |
| 2905 | { |
| 2906 | unsigned char slot_total = mast->bn->b_end; |
| 2907 | unsigned char end, space, split; |
| 2908 | |
| 2909 | MA_STATE(tmp_mas, mas->tree, mas->index, mas->last); |
| 2910 | tmp_mas = *mas; |
| 2911 | tmp_mas.depth = mast->l->depth; |
| 2912 | |
| 2913 | if (left && !mas_prev_sibling(mas: &tmp_mas)) |
| 2914 | return false; |
| 2915 | else if (!left && !mas_next_sibling(mas: &tmp_mas)) |
| 2916 | return false; |
| 2917 | |
| 2918 | end = mas_data_end(mas: &tmp_mas); |
| 2919 | slot_total += end; |
| 2920 | space = 2 * mt_slot_count(mas->node) - 2; |
| 2921 | /* -2 instead of -1 to ensure there isn't a triple split */ |
| 2922 | if (ma_is_leaf(type: mast->bn->type)) |
| 2923 | space--; |
| 2924 | |
| 2925 | if (mas->max == ULONG_MAX) |
| 2926 | space--; |
| 2927 | |
| 2928 | if (slot_total >= space) |
| 2929 | return false; |
| 2930 | |
| 2931 | /* Get the data; Fill mast->bn */ |
| 2932 | mast->bn->b_end++; |
| 2933 | if (left) { |
| 2934 | mab_shift_right(b_node: mast->bn, shift: end + 1); |
| 2935 | mas_mab_cp(mas: &tmp_mas, mas_start: 0, mas_end: end, b_node: mast->bn, mab_start: 0); |
| 2936 | mast->bn->b_end = slot_total + 1; |
| 2937 | } else { |
| 2938 | mas_mab_cp(mas: &tmp_mas, mas_start: 0, mas_end: end, b_node: mast->bn, mab_start: mast->bn->b_end); |
| 2939 | } |
| 2940 | |
| 2941 | /* Configure mast for splitting of mast->bn */ |
| 2942 | split = mt_slots[mast->bn->type] - 2; |
| 2943 | if (left) { |
| 2944 | /* Switch mas to prev node */ |
| 2945 | *mas = tmp_mas; |
| 2946 | /* Start using mast->l for the left side. */ |
| 2947 | tmp_mas.node = mast->l->node; |
| 2948 | *mast->l = tmp_mas; |
| 2949 | } else { |
| 2950 | tmp_mas.node = mast->r->node; |
| 2951 | *mast->r = tmp_mas; |
| 2952 | split = slot_total - split; |
| 2953 | } |
| 2954 | split = mab_no_null_split(b_node: mast->bn, split, slot_count: mt_slots[mast->bn->type]); |
| 2955 | /* Update parent slot for split calculation. */ |
| 2956 | if (left) |
| 2957 | mast->orig_l->offset += end + 1; |
| 2958 | |
| 2959 | mast_split_data(mast, mas, split); |
| 2960 | mast_fill_bnode(mast, mas, skip: 2); |
| 2961 | mas_split_final_node(mast, mas); |
| 2962 | return true; |
| 2963 | } |
| 2964 | |
| 2965 | /* |
| 2966 | * mas_split() - Split data that is too big for one node into two. |
| 2967 | * @mas: The maple state |
| 2968 | * @b_node: The maple big node |
| 2969 | */ |
| 2970 | static void mas_split(struct ma_state *mas, struct maple_big_node *b_node) |
| 2971 | { |
| 2972 | struct maple_subtree_state mast; |
| 2973 | int height = 0; |
| 2974 | unsigned int orig_height = mas_mt_height(mas); |
| 2975 | unsigned char mid_split, split = 0; |
| 2976 | struct maple_enode *old; |
| 2977 | |
| 2978 | /* |
| 2979 | * Splitting is handled differently from any other B-tree; the Maple |
| 2980 | * Tree splits upwards. Splitting up means that the split operation |
| 2981 | * occurs when the walk of the tree hits the leaves and not on the way |
| 2982 | * down. The reason for splitting up is that it is impossible to know |
| 2983 | * how much space will be needed until the leaf is (or leaves are) |
| 2984 | * reached. Since overwriting data is allowed and a range could |
| 2985 | * overwrite more than one range or result in changing one entry into 3 |
| 2986 | * entries, it is impossible to know if a split is required until the |
| 2987 | * data is examined. |
| 2988 | * |
| 2989 | * Splitting is a balancing act between keeping allocations to a minimum |
| 2990 | * and avoiding a 'jitter' event where a tree is expanded to make room |
| 2991 | * for an entry followed by a contraction when the entry is removed. To |
| 2992 | * accomplish the balance, there are empty slots remaining in both left |
| 2993 | * and right nodes after a split. |
| 2994 | */ |
| 2995 | MA_STATE(l_mas, mas->tree, mas->index, mas->last); |
| 2996 | MA_STATE(r_mas, mas->tree, mas->index, mas->last); |
| 2997 | MA_STATE(prev_l_mas, mas->tree, mas->index, mas->last); |
| 2998 | MA_STATE(prev_r_mas, mas->tree, mas->index, mas->last); |
| 2999 | |
| 3000 | trace_ma_op(fn: __func__, mas); |
| 3001 | |
| 3002 | mast.l = &l_mas; |
| 3003 | mast.r = &r_mas; |
| 3004 | mast.orig_l = &prev_l_mas; |
| 3005 | mast.orig_r = &prev_r_mas; |
| 3006 | mast.bn = b_node; |
| 3007 | |
| 3008 | while (height++ <= orig_height) { |
| 3009 | if (mt_slots[b_node->type] > b_node->b_end) { |
| 3010 | mas_split_final_node(mast: &mast, mas); |
| 3011 | break; |
| 3012 | } |
| 3013 | |
| 3014 | l_mas = r_mas = *mas; |
| 3015 | l_mas.node = mas_new_ma_node(mas, b_node); |
| 3016 | r_mas.node = mas_new_ma_node(mas, b_node); |
| 3017 | /* |
| 3018 | * Another way that 'jitter' is avoided is to terminate a split up early if the |
| 3019 | * left or right node has space to spare. This is referred to as "pushing left" |
| 3020 | * or "pushing right" and is similar to the B* tree, except the nodes left or |
| 3021 | * right can rarely be reused due to RCU, but the ripple upwards is halted which |
| 3022 | * is a significant savings. |
| 3023 | */ |
| 3024 | /* Try to push left. */ |
| 3025 | if (mas_push_data(mas, mast: &mast, left: true)) { |
| 3026 | height++; |
| 3027 | break; |
| 3028 | } |
| 3029 | /* Try to push right. */ |
| 3030 | if (mas_push_data(mas, mast: &mast, left: false)) { |
| 3031 | height++; |
| 3032 | break; |
| 3033 | } |
| 3034 | |
| 3035 | split = mab_calc_split(mas, bn: b_node, mid_split: &mid_split); |
| 3036 | mast_split_data(mast: &mast, mas, split); |
| 3037 | /* |
| 3038 | * Usually correct, mab_mas_cp in the above call overwrites |
| 3039 | * r->max. |
| 3040 | */ |
| 3041 | mast.r->max = mas->max; |
| 3042 | mast_fill_bnode(mast: &mast, mas, skip: 1); |
| 3043 | prev_l_mas = *mast.l; |
| 3044 | prev_r_mas = *mast.r; |
| 3045 | } |
| 3046 | |
| 3047 | /* Set the original node as dead */ |
| 3048 | old = mas->node; |
| 3049 | mas->node = l_mas.node; |
| 3050 | mas_wmb_replace(mas, old_enode: old, new_height: height); |
| 3051 | mtree_range_walk(mas); |
| 3052 | return; |
| 3053 | } |
| 3054 | |
| 3055 | /* |
| 3056 | * mas_commit_b_node() - Commit the big node into the tree. |
| 3057 | * @wr_mas: The maple write state |
| 3058 | * @b_node: The maple big node |
| 3059 | */ |
| 3060 | static noinline_for_kasan void mas_commit_b_node(struct ma_wr_state *wr_mas, |
| 3061 | struct maple_big_node *b_node) |
| 3062 | { |
| 3063 | enum store_type type = wr_mas->mas->store_type; |
| 3064 | |
| 3065 | WARN_ON_ONCE(type != wr_rebalance && type != wr_split_store); |
| 3066 | |
| 3067 | if (type == wr_rebalance) |
| 3068 | return mas_rebalance(mas: wr_mas->mas, b_node); |
| 3069 | |
| 3070 | return mas_split(mas: wr_mas->mas, b_node); |
| 3071 | } |
| 3072 | |
| 3073 | /* |
| 3074 | * mas_root_expand() - Expand a root to a node |
| 3075 | * @mas: The maple state |
| 3076 | * @entry: The entry to store into the tree |
| 3077 | */ |
| 3078 | static inline void mas_root_expand(struct ma_state *mas, void *entry) |
| 3079 | { |
| 3080 | void *contents = mas_root_locked(mas); |
| 3081 | enum maple_type type = maple_leaf_64; |
| 3082 | struct maple_node *node; |
| 3083 | void __rcu **slots; |
| 3084 | unsigned long *pivots; |
| 3085 | int slot = 0; |
| 3086 | |
| 3087 | node = mas_pop_node(mas); |
| 3088 | pivots = ma_pivots(node, type); |
| 3089 | slots = ma_slots(mn: node, mt: type); |
| 3090 | node->parent = ma_parent_ptr(mas_tree_parent(mas)); |
| 3091 | mas->node = mt_mk_node(node, type); |
| 3092 | mas->status = ma_active; |
| 3093 | |
| 3094 | if (mas->index) { |
| 3095 | if (contents) { |
| 3096 | rcu_assign_pointer(slots[slot], contents); |
| 3097 | if (likely(mas->index > 1)) |
| 3098 | slot++; |
| 3099 | } |
| 3100 | pivots[slot++] = mas->index - 1; |
| 3101 | } |
| 3102 | |
| 3103 | rcu_assign_pointer(slots[slot], entry); |
| 3104 | mas->offset = slot; |
| 3105 | pivots[slot] = mas->last; |
| 3106 | if (mas->last != ULONG_MAX) |
| 3107 | pivots[++slot] = ULONG_MAX; |
| 3108 | |
| 3109 | mt_set_height(mt: mas->tree, height: 1); |
| 3110 | ma_set_meta(mn: node, mt: maple_leaf_64, offset: 0, end: slot); |
| 3111 | /* swap the new root into the tree */ |
| 3112 | rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node)); |
| 3113 | return; |
| 3114 | } |
| 3115 | |
| 3116 | /* |
| 3117 | * mas_store_root() - Storing value into root. |
| 3118 | * @mas: The maple state |
| 3119 | * @entry: The entry to store. |
| 3120 | * |
| 3121 | * There is no root node now and we are storing a value into the root - this |
| 3122 | * function either assigns the pointer or expands into a node. |
| 3123 | */ |
| 3124 | static inline void mas_store_root(struct ma_state *mas, void *entry) |
| 3125 | { |
| 3126 | if (!entry) { |
| 3127 | if (!mas->index) |
| 3128 | rcu_assign_pointer(mas->tree->ma_root, NULL); |
| 3129 | } else if (likely((mas->last != 0) || (mas->index != 0))) |
| 3130 | mas_root_expand(mas, entry); |
| 3131 | else if (((unsigned long) (entry) & 3) == 2) |
| 3132 | mas_root_expand(mas, entry); |
| 3133 | else { |
| 3134 | rcu_assign_pointer(mas->tree->ma_root, entry); |
| 3135 | mas->status = ma_start; |
| 3136 | } |
| 3137 | } |
| 3138 | |
| 3139 | /* |
| 3140 | * mas_is_span_wr() - Check if the write needs to be treated as a write that |
| 3141 | * spans the node. |
| 3142 | * @wr_mas: The maple write state |
| 3143 | * |
| 3144 | * Spanning writes are writes that start in one node and end in another OR if |
| 3145 | * the write of a %NULL will cause the node to end with a %NULL. |
| 3146 | * |
| 3147 | * Return: True if this is a spanning write, false otherwise. |
| 3148 | */ |
| 3149 | static bool mas_is_span_wr(struct ma_wr_state *wr_mas) |
| 3150 | { |
| 3151 | unsigned long max = wr_mas->r_max; |
| 3152 | unsigned long last = wr_mas->mas->last; |
| 3153 | enum maple_type type = wr_mas->type; |
| 3154 | void *entry = wr_mas->entry; |
| 3155 | |
| 3156 | /* Contained in this pivot, fast path */ |
| 3157 | if (last < max) |
| 3158 | return false; |
| 3159 | |
| 3160 | if (ma_is_leaf(type)) { |
| 3161 | max = wr_mas->mas->max; |
| 3162 | if (last < max) |
| 3163 | return false; |
| 3164 | } |
| 3165 | |
| 3166 | if (last == max) { |
| 3167 | /* |
| 3168 | * The last entry of leaf node cannot be NULL unless it is the |
| 3169 | * rightmost node (writing ULONG_MAX), otherwise it spans slots. |
| 3170 | */ |
| 3171 | if (entry || last == ULONG_MAX) |
| 3172 | return false; |
| 3173 | } |
| 3174 | |
| 3175 | trace_ma_write(fn: __func__, mas: wr_mas->mas, piv: wr_mas->r_max, val: entry); |
| 3176 | return true; |
| 3177 | } |
| 3178 | |
| 3179 | static inline void mas_wr_walk_descend(struct ma_wr_state *wr_mas) |
| 3180 | { |
| 3181 | wr_mas->type = mte_node_type(entry: wr_mas->mas->node); |
| 3182 | mas_wr_node_walk(wr_mas); |
| 3183 | wr_mas->slots = ma_slots(mn: wr_mas->node, mt: wr_mas->type); |
| 3184 | } |
| 3185 | |
| 3186 | static inline void mas_wr_walk_traverse(struct ma_wr_state *wr_mas) |
| 3187 | { |
| 3188 | wr_mas->mas->max = wr_mas->r_max; |
| 3189 | wr_mas->mas->min = wr_mas->r_min; |
| 3190 | wr_mas->mas->node = wr_mas->content; |
| 3191 | wr_mas->mas->offset = 0; |
| 3192 | wr_mas->mas->depth++; |
| 3193 | } |
| 3194 | /* |
| 3195 | * mas_wr_walk() - Walk the tree for a write. |
| 3196 | * @wr_mas: The maple write state |
| 3197 | * |
| 3198 | * Uses mas_slot_locked() and does not need to worry about dead nodes. |
| 3199 | * |
| 3200 | * Return: True if it's contained in a node, false on spanning write. |
| 3201 | */ |
| 3202 | static bool mas_wr_walk(struct ma_wr_state *wr_mas) |
| 3203 | { |
| 3204 | struct ma_state *mas = wr_mas->mas; |
| 3205 | |
| 3206 | while (true) { |
| 3207 | mas_wr_walk_descend(wr_mas); |
| 3208 | if (unlikely(mas_is_span_wr(wr_mas))) |
| 3209 | return false; |
| 3210 | |
| 3211 | wr_mas->content = mas_slot_locked(mas, slots: wr_mas->slots, |
| 3212 | offset: mas->offset); |
| 3213 | if (ma_is_leaf(type: wr_mas->type)) |
| 3214 | return true; |
| 3215 | |
| 3216 | if (mas->end < mt_slots[wr_mas->type] - 1) |
| 3217 | wr_mas->vacant_height = mas->depth + 1; |
| 3218 | |
| 3219 | if (ma_is_root(node: mas_mn(mas))) { |
| 3220 | /* root needs more than 2 entries to be sufficient + 1 */ |
| 3221 | if (mas->end > 2) |
| 3222 | wr_mas->sufficient_height = 1; |
| 3223 | } else if (mas->end > mt_min_slots[wr_mas->type] + 1) |
| 3224 | wr_mas->sufficient_height = mas->depth + 1; |
| 3225 | |
| 3226 | mas_wr_walk_traverse(wr_mas); |
| 3227 | } |
| 3228 | |
| 3229 | return true; |
| 3230 | } |
| 3231 | |
| 3232 | static void mas_wr_walk_index(struct ma_wr_state *wr_mas) |
| 3233 | { |
| 3234 | struct ma_state *mas = wr_mas->mas; |
| 3235 | |
| 3236 | while (true) { |
| 3237 | mas_wr_walk_descend(wr_mas); |
| 3238 | wr_mas->content = mas_slot_locked(mas, slots: wr_mas->slots, |
| 3239 | offset: mas->offset); |
| 3240 | if (ma_is_leaf(type: wr_mas->type)) |
| 3241 | return; |
| 3242 | mas_wr_walk_traverse(wr_mas); |
| 3243 | } |
| 3244 | } |
| 3245 | /* |
| 3246 | * mas_extend_spanning_null() - Extend a store of a %NULL to include surrounding %NULLs. |
| 3247 | * @l_wr_mas: The left maple write state |
| 3248 | * @r_wr_mas: The right maple write state |
| 3249 | */ |
| 3250 | static inline void mas_extend_spanning_null(struct ma_wr_state *l_wr_mas, |
| 3251 | struct ma_wr_state *r_wr_mas) |
| 3252 | { |
| 3253 | struct ma_state *r_mas = r_wr_mas->mas; |
| 3254 | struct ma_state *l_mas = l_wr_mas->mas; |
| 3255 | unsigned char l_slot; |
| 3256 | |
| 3257 | l_slot = l_mas->offset; |
| 3258 | if (!l_wr_mas->content) |
| 3259 | l_mas->index = l_wr_mas->r_min; |
| 3260 | |
| 3261 | if ((l_mas->index == l_wr_mas->r_min) && |
| 3262 | (l_slot && |
| 3263 | !mas_slot_locked(mas: l_mas, slots: l_wr_mas->slots, offset: l_slot - 1))) { |
| 3264 | if (l_slot > 1) |
| 3265 | l_mas->index = l_wr_mas->pivots[l_slot - 2] + 1; |
| 3266 | else |
| 3267 | l_mas->index = l_mas->min; |
| 3268 | |
| 3269 | l_mas->offset = l_slot - 1; |
| 3270 | } |
| 3271 | |
| 3272 | if (!r_wr_mas->content) { |
| 3273 | if (r_mas->last < r_wr_mas->r_max) |
| 3274 | r_mas->last = r_wr_mas->r_max; |
| 3275 | r_mas->offset++; |
| 3276 | } else if ((r_mas->last == r_wr_mas->r_max) && |
| 3277 | (r_mas->last < r_mas->max) && |
| 3278 | !mas_slot_locked(mas: r_mas, slots: r_wr_mas->slots, offset: r_mas->offset + 1)) { |
| 3279 | r_mas->last = mas_safe_pivot(mas: r_mas, pivots: r_wr_mas->pivots, |
| 3280 | piv: r_wr_mas->type, type: r_mas->offset + 1); |
| 3281 | r_mas->offset++; |
| 3282 | } |
| 3283 | } |
| 3284 | |
| 3285 | static inline void *mas_state_walk(struct ma_state *mas) |
| 3286 | { |
| 3287 | void *entry; |
| 3288 | |
| 3289 | entry = mas_start(mas); |
| 3290 | if (mas_is_none(mas)) |
| 3291 | return NULL; |
| 3292 | |
| 3293 | if (mas_is_ptr(mas)) |
| 3294 | return entry; |
| 3295 | |
| 3296 | return mtree_range_walk(mas); |
| 3297 | } |
| 3298 | |
| 3299 | /* |
| 3300 | * mtree_lookup_walk() - Internal quick lookup that does not keep maple state up |
| 3301 | * to date. |
| 3302 | * |
| 3303 | * @mas: The maple state. |
| 3304 | * |
| 3305 | * Note: Leaves mas in undesirable state. |
| 3306 | * Return: The entry for @mas->index or %NULL on dead node. |
| 3307 | */ |
| 3308 | static inline void *mtree_lookup_walk(struct ma_state *mas) |
| 3309 | { |
| 3310 | unsigned long *pivots; |
| 3311 | unsigned char offset; |
| 3312 | struct maple_node *node; |
| 3313 | struct maple_enode *next; |
| 3314 | enum maple_type type; |
| 3315 | void __rcu **slots; |
| 3316 | unsigned char end; |
| 3317 | |
| 3318 | next = mas->node; |
| 3319 | do { |
| 3320 | node = mte_to_node(entry: next); |
| 3321 | type = mte_node_type(entry: next); |
| 3322 | pivots = ma_pivots(node, type); |
| 3323 | end = mt_pivots[type]; |
| 3324 | offset = 0; |
| 3325 | do { |
| 3326 | if (pivots[offset] >= mas->index) |
| 3327 | break; |
| 3328 | } while (++offset < end); |
| 3329 | |
| 3330 | slots = ma_slots(mn: node, mt: type); |
| 3331 | next = mt_slot(mt: mas->tree, slots, offset); |
| 3332 | if (unlikely(ma_dead_node(node))) |
| 3333 | goto dead_node; |
| 3334 | } while (!ma_is_leaf(type)); |
| 3335 | |
| 3336 | return (void *)next; |
| 3337 | |
| 3338 | dead_node: |
| 3339 | mas_reset(mas); |
| 3340 | return NULL; |
| 3341 | } |
| 3342 | |
| 3343 | static void mte_destroy_walk(struct maple_enode *, struct maple_tree *); |
| 3344 | /* |
| 3345 | * mas_new_root() - Create a new root node that only contains the entry passed |
| 3346 | * in. |
| 3347 | * @mas: The maple state |
| 3348 | * @entry: The entry to store. |
| 3349 | * |
| 3350 | * Only valid when the index == 0 and the last == ULONG_MAX |
| 3351 | */ |
| 3352 | static inline void mas_new_root(struct ma_state *mas, void *entry) |
| 3353 | { |
| 3354 | struct maple_enode *root = mas_root_locked(mas); |
| 3355 | enum maple_type type = maple_leaf_64; |
| 3356 | struct maple_node *node; |
| 3357 | void __rcu **slots; |
| 3358 | unsigned long *pivots; |
| 3359 | |
| 3360 | WARN_ON_ONCE(mas->index || mas->last != ULONG_MAX); |
| 3361 | |
| 3362 | if (!entry) { |
| 3363 | mt_set_height(mt: mas->tree, height: 0); |
| 3364 | rcu_assign_pointer(mas->tree->ma_root, entry); |
| 3365 | mas->status = ma_start; |
| 3366 | goto done; |
| 3367 | } |
| 3368 | |
| 3369 | node = mas_pop_node(mas); |
| 3370 | pivots = ma_pivots(node, type); |
| 3371 | slots = ma_slots(mn: node, mt: type); |
| 3372 | node->parent = ma_parent_ptr(mas_tree_parent(mas)); |
| 3373 | mas->node = mt_mk_node(node, type); |
| 3374 | mas->status = ma_active; |
| 3375 | rcu_assign_pointer(slots[0], entry); |
| 3376 | pivots[0] = mas->last; |
| 3377 | mt_set_height(mt: mas->tree, height: 1); |
| 3378 | rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node)); |
| 3379 | |
| 3380 | done: |
| 3381 | if (xa_is_node(entry: root)) |
| 3382 | mte_destroy_walk(root, mas->tree); |
| 3383 | |
| 3384 | return; |
| 3385 | } |
| 3386 | /* |
| 3387 | * mas_wr_spanning_store() - Create a subtree with the store operation completed |
| 3388 | * and new nodes where necessary, then place the sub-tree in the actual tree. |
| 3389 | * Note that mas is expected to point to the node which caused the store to |
| 3390 | * span. |
| 3391 | * @wr_mas: The maple write state |
| 3392 | */ |
| 3393 | static noinline void mas_wr_spanning_store(struct ma_wr_state *wr_mas) |
| 3394 | { |
| 3395 | struct maple_subtree_state mast; |
| 3396 | struct maple_big_node b_node; |
| 3397 | struct ma_state *mas; |
| 3398 | unsigned char height; |
| 3399 | |
| 3400 | /* Left and Right side of spanning store */ |
| 3401 | MA_STATE(l_mas, NULL, 0, 0); |
| 3402 | MA_STATE(r_mas, NULL, 0, 0); |
| 3403 | MA_WR_STATE(r_wr_mas, &r_mas, wr_mas->entry); |
| 3404 | MA_WR_STATE(l_wr_mas, &l_mas, wr_mas->entry); |
| 3405 | |
| 3406 | /* |
| 3407 | * A store operation that spans multiple nodes is called a spanning |
| 3408 | * store and is handled early in the store call stack by the function |
| 3409 | * mas_is_span_wr(). When a spanning store is identified, the maple |
| 3410 | * state is duplicated. The first maple state walks the left tree path |
| 3411 | * to ``index``, the duplicate walks the right tree path to ``last``. |
| 3412 | * The data in the two nodes are combined into a single node, two nodes, |
| 3413 | * or possibly three nodes (see the 3-way split above). A ``NULL`` |
| 3414 | * written to the last entry of a node is considered a spanning store as |
| 3415 | * a rebalance is required for the operation to complete and an overflow |
| 3416 | * of data may happen. |
| 3417 | */ |
| 3418 | mas = wr_mas->mas; |
| 3419 | trace_ma_op(fn: __func__, mas); |
| 3420 | |
| 3421 | if (unlikely(!mas->index && mas->last == ULONG_MAX)) |
| 3422 | return mas_new_root(mas, entry: wr_mas->entry); |
| 3423 | /* |
| 3424 | * Node rebalancing may occur due to this store, so there may be three new |
| 3425 | * entries per level plus a new root. |
| 3426 | */ |
| 3427 | height = mas_mt_height(mas); |
| 3428 | |
| 3429 | /* |
| 3430 | * Set up right side. Need to get to the next offset after the spanning |
| 3431 | * store to ensure it's not NULL and to combine both the next node and |
| 3432 | * the node with the start together. |
| 3433 | */ |
| 3434 | r_mas = *mas; |
| 3435 | /* Avoid overflow, walk to next slot in the tree. */ |
| 3436 | if (r_mas.last + 1) |
| 3437 | r_mas.last++; |
| 3438 | |
| 3439 | r_mas.index = r_mas.last; |
| 3440 | mas_wr_walk_index(wr_mas: &r_wr_mas); |
| 3441 | r_mas.last = r_mas.index = mas->last; |
| 3442 | |
| 3443 | /* Set up left side. */ |
| 3444 | l_mas = *mas; |
| 3445 | mas_wr_walk_index(wr_mas: &l_wr_mas); |
| 3446 | |
| 3447 | if (!wr_mas->entry) { |
| 3448 | mas_extend_spanning_null(l_wr_mas: &l_wr_mas, r_wr_mas: &r_wr_mas); |
| 3449 | mas->offset = l_mas.offset; |
| 3450 | mas->index = l_mas.index; |
| 3451 | mas->last = l_mas.last = r_mas.last; |
| 3452 | } |
| 3453 | |
| 3454 | /* expanding NULLs may make this cover the entire range */ |
| 3455 | if (!l_mas.index && r_mas.last == ULONG_MAX) { |
| 3456 | mas_set_range(mas, start: 0, ULONG_MAX); |
| 3457 | return mas_new_root(mas, entry: wr_mas->entry); |
| 3458 | } |
| 3459 | |
| 3460 | memset(s: &b_node, c: 0, n: sizeof(struct maple_big_node)); |
| 3461 | /* Copy l_mas and store the value in b_node. */ |
| 3462 | mas_store_b_node(wr_mas: &l_wr_mas, b_node: &b_node, offset_end: l_mas.end); |
| 3463 | /* Copy r_mas into b_node if there is anything to copy. */ |
| 3464 | if (r_mas.max > r_mas.last) |
| 3465 | mas_mab_cp(mas: &r_mas, mas_start: r_mas.offset, mas_end: r_mas.end, |
| 3466 | b_node: &b_node, mab_start: b_node.b_end + 1); |
| 3467 | else |
| 3468 | b_node.b_end++; |
| 3469 | |
| 3470 | /* Stop spanning searches by searching for just index. */ |
| 3471 | l_mas.index = l_mas.last = mas->index; |
| 3472 | |
| 3473 | mast.bn = &b_node; |
| 3474 | mast.orig_l = &l_mas; |
| 3475 | mast.orig_r = &r_mas; |
| 3476 | /* Combine l_mas and r_mas and split them up evenly again. */ |
| 3477 | return mas_spanning_rebalance(mas, mast: &mast, count: height + 1); |
| 3478 | } |
| 3479 | |
| 3480 | /* |
| 3481 | * mas_wr_node_store() - Attempt to store the value in a node |
| 3482 | * @wr_mas: The maple write state |
| 3483 | * |
| 3484 | * Attempts to reuse the node, but may allocate. |
| 3485 | */ |
| 3486 | static inline void mas_wr_node_store(struct ma_wr_state *wr_mas, |
| 3487 | unsigned char new_end) |
| 3488 | { |
| 3489 | struct ma_state *mas = wr_mas->mas; |
| 3490 | void __rcu **dst_slots; |
| 3491 | unsigned long *dst_pivots; |
| 3492 | unsigned char dst_offset, offset_end = wr_mas->offset_end; |
| 3493 | struct maple_node reuse, *newnode; |
| 3494 | unsigned char copy_size, node_pivots = mt_pivots[wr_mas->type]; |
| 3495 | bool in_rcu = mt_in_rcu(mt: mas->tree); |
| 3496 | unsigned char height = mas_mt_height(mas); |
| 3497 | |
| 3498 | if (mas->last == wr_mas->end_piv) |
| 3499 | offset_end++; /* don't copy this offset */ |
| 3500 | |
| 3501 | /* set up node. */ |
| 3502 | if (in_rcu) { |
| 3503 | newnode = mas_pop_node(mas); |
| 3504 | } else { |
| 3505 | memset(s: &reuse, c: 0, n: sizeof(struct maple_node)); |
| 3506 | newnode = &reuse; |
| 3507 | } |
| 3508 | |
| 3509 | newnode->parent = mas_mn(mas)->parent; |
| 3510 | dst_pivots = ma_pivots(node: newnode, type: wr_mas->type); |
| 3511 | dst_slots = ma_slots(mn: newnode, mt: wr_mas->type); |
| 3512 | /* Copy from start to insert point */ |
| 3513 | memcpy(to: dst_pivots, from: wr_mas->pivots, len: sizeof(unsigned long) * mas->offset); |
| 3514 | memcpy(to: dst_slots, from: wr_mas->slots, len: sizeof(void *) * mas->offset); |
| 3515 | |
| 3516 | /* Handle insert of new range starting after old range */ |
| 3517 | if (wr_mas->r_min < mas->index) { |
| 3518 | rcu_assign_pointer(dst_slots[mas->offset], wr_mas->content); |
| 3519 | dst_pivots[mas->offset++] = mas->index - 1; |
| 3520 | } |
| 3521 | |
| 3522 | /* Store the new entry and range end. */ |
| 3523 | if (mas->offset < node_pivots) |
| 3524 | dst_pivots[mas->offset] = mas->last; |
| 3525 | rcu_assign_pointer(dst_slots[mas->offset], wr_mas->entry); |
| 3526 | |
| 3527 | /* |
| 3528 | * this range wrote to the end of the node or it overwrote the rest of |
| 3529 | * the data |
| 3530 | */ |
| 3531 | if (offset_end > mas->end) |
| 3532 | goto done; |
| 3533 | |
| 3534 | dst_offset = mas->offset + 1; |
| 3535 | /* Copy to the end of node if necessary. */ |
| 3536 | copy_size = mas->end - offset_end + 1; |
| 3537 | memcpy(to: dst_slots + dst_offset, from: wr_mas->slots + offset_end, |
| 3538 | len: sizeof(void *) * copy_size); |
| 3539 | memcpy(to: dst_pivots + dst_offset, from: wr_mas->pivots + offset_end, |
| 3540 | len: sizeof(unsigned long) * (copy_size - 1)); |
| 3541 | |
| 3542 | if (new_end < node_pivots) |
| 3543 | dst_pivots[new_end] = mas->max; |
| 3544 | |
| 3545 | done: |
| 3546 | mas_leaf_set_meta(node: newnode, mt: maple_leaf_64, end: new_end); |
| 3547 | if (in_rcu) { |
| 3548 | struct maple_enode *old_enode = mas->node; |
| 3549 | |
| 3550 | mas->node = mt_mk_node(node: newnode, type: wr_mas->type); |
| 3551 | mas_replace_node(mas, old_enode, new_height: height); |
| 3552 | } else { |
| 3553 | memcpy(to: wr_mas->node, from: newnode, len: sizeof(struct maple_node)); |
| 3554 | } |
| 3555 | trace_ma_write(fn: __func__, mas, piv: 0, val: wr_mas->entry); |
| 3556 | mas_update_gap(mas); |
| 3557 | mas->end = new_end; |
| 3558 | return; |
| 3559 | } |
| 3560 | |
| 3561 | /* |
| 3562 | * mas_wr_slot_store: Attempt to store a value in a slot. |
| 3563 | * @wr_mas: the maple write state |
| 3564 | */ |
| 3565 | static inline void mas_wr_slot_store(struct ma_wr_state *wr_mas) |
| 3566 | { |
| 3567 | struct ma_state *mas = wr_mas->mas; |
| 3568 | unsigned char offset = mas->offset; |
| 3569 | void __rcu **slots = wr_mas->slots; |
| 3570 | bool gap = false; |
| 3571 | |
| 3572 | gap |= !mt_slot_locked(mt: mas->tree, slots, offset); |
| 3573 | gap |= !mt_slot_locked(mt: mas->tree, slots, offset: offset + 1); |
| 3574 | |
| 3575 | if (wr_mas->offset_end - offset == 1) { |
| 3576 | if (mas->index == wr_mas->r_min) { |
| 3577 | /* Overwriting the range and a part of the next one */ |
| 3578 | rcu_assign_pointer(slots[offset], wr_mas->entry); |
| 3579 | wr_mas->pivots[offset] = mas->last; |
| 3580 | } else { |
| 3581 | /* Overwriting a part of the range and the next one */ |
| 3582 | rcu_assign_pointer(slots[offset + 1], wr_mas->entry); |
| 3583 | wr_mas->pivots[offset] = mas->index - 1; |
| 3584 | mas->offset++; /* Keep mas accurate. */ |
| 3585 | } |
| 3586 | } else { |
| 3587 | WARN_ON_ONCE(mt_in_rcu(mas->tree)); |
| 3588 | /* |
| 3589 | * Expand the range, only partially overwriting the previous and |
| 3590 | * next ranges |
| 3591 | */ |
| 3592 | gap |= !mt_slot_locked(mt: mas->tree, slots, offset: offset + 2); |
| 3593 | rcu_assign_pointer(slots[offset + 1], wr_mas->entry); |
| 3594 | wr_mas->pivots[offset] = mas->index - 1; |
| 3595 | wr_mas->pivots[offset + 1] = mas->last; |
| 3596 | mas->offset++; /* Keep mas accurate. */ |
| 3597 | } |
| 3598 | |
| 3599 | trace_ma_write(fn: __func__, mas, piv: 0, val: wr_mas->entry); |
| 3600 | /* |
| 3601 | * Only update gap when the new entry is empty or there is an empty |
| 3602 | * entry in the original two ranges. |
| 3603 | */ |
| 3604 | if (!wr_mas->entry || gap) |
| 3605 | mas_update_gap(mas); |
| 3606 | |
| 3607 | return; |
| 3608 | } |
| 3609 | |
| 3610 | static inline void mas_wr_extend_null(struct ma_wr_state *wr_mas) |
| 3611 | { |
| 3612 | struct ma_state *mas = wr_mas->mas; |
| 3613 | |
| 3614 | if (!wr_mas->slots[wr_mas->offset_end]) { |
| 3615 | /* If this one is null, the next and prev are not */ |
| 3616 | mas->last = wr_mas->end_piv; |
| 3617 | } else { |
| 3618 | /* Check next slot(s) if we are overwriting the end */ |
| 3619 | if ((mas->last == wr_mas->end_piv) && |
| 3620 | (mas->end != wr_mas->offset_end) && |
| 3621 | !wr_mas->slots[wr_mas->offset_end + 1]) { |
| 3622 | wr_mas->offset_end++; |
| 3623 | if (wr_mas->offset_end == mas->end) |
| 3624 | mas->last = mas->max; |
| 3625 | else |
| 3626 | mas->last = wr_mas->pivots[wr_mas->offset_end]; |
| 3627 | wr_mas->end_piv = mas->last; |
| 3628 | } |
| 3629 | } |
| 3630 | |
| 3631 | if (!wr_mas->content) { |
| 3632 | /* If this one is null, the next and prev are not */ |
| 3633 | mas->index = wr_mas->r_min; |
| 3634 | } else { |
| 3635 | /* Check prev slot if we are overwriting the start */ |
| 3636 | if (mas->index == wr_mas->r_min && mas->offset && |
| 3637 | !wr_mas->slots[mas->offset - 1]) { |
| 3638 | mas->offset--; |
| 3639 | wr_mas->r_min = mas->index = |
| 3640 | mas_safe_min(mas, pivots: wr_mas->pivots, offset: mas->offset); |
| 3641 | wr_mas->r_max = wr_mas->pivots[mas->offset]; |
| 3642 | } |
| 3643 | } |
| 3644 | } |
| 3645 | |
| 3646 | static inline void mas_wr_end_piv(struct ma_wr_state *wr_mas) |
| 3647 | { |
| 3648 | while ((wr_mas->offset_end < wr_mas->mas->end) && |
| 3649 | (wr_mas->mas->last > wr_mas->pivots[wr_mas->offset_end])) |
| 3650 | wr_mas->offset_end++; |
| 3651 | |
| 3652 | if (wr_mas->offset_end < wr_mas->mas->end) |
| 3653 | wr_mas->end_piv = wr_mas->pivots[wr_mas->offset_end]; |
| 3654 | else |
| 3655 | wr_mas->end_piv = wr_mas->mas->max; |
| 3656 | } |
| 3657 | |
| 3658 | static inline unsigned char mas_wr_new_end(struct ma_wr_state *wr_mas) |
| 3659 | { |
| 3660 | struct ma_state *mas = wr_mas->mas; |
| 3661 | unsigned char new_end = mas->end + 2; |
| 3662 | |
| 3663 | new_end -= wr_mas->offset_end - mas->offset; |
| 3664 | if (wr_mas->r_min == mas->index) |
| 3665 | new_end--; |
| 3666 | |
| 3667 | if (wr_mas->end_piv == mas->last) |
| 3668 | new_end--; |
| 3669 | |
| 3670 | return new_end; |
| 3671 | } |
| 3672 | |
| 3673 | /* |
| 3674 | * mas_wr_append: Attempt to append |
| 3675 | * @wr_mas: the maple write state |
| 3676 | * @new_end: The end of the node after the modification |
| 3677 | * |
| 3678 | * This is currently unsafe in rcu mode since the end of the node may be cached |
| 3679 | * by readers while the node contents may be updated which could result in |
| 3680 | * inaccurate information. |
| 3681 | */ |
| 3682 | static inline void mas_wr_append(struct ma_wr_state *wr_mas, |
| 3683 | unsigned char new_end) |
| 3684 | { |
| 3685 | struct ma_state *mas = wr_mas->mas; |
| 3686 | void __rcu **slots; |
| 3687 | unsigned char end = mas->end; |
| 3688 | |
| 3689 | if (new_end < mt_pivots[wr_mas->type]) { |
| 3690 | wr_mas->pivots[new_end] = wr_mas->pivots[end]; |
| 3691 | ma_set_meta(mn: wr_mas->node, mt: wr_mas->type, offset: 0, end: new_end); |
| 3692 | } |
| 3693 | |
| 3694 | slots = wr_mas->slots; |
| 3695 | if (new_end == end + 1) { |
| 3696 | if (mas->last == wr_mas->r_max) { |
| 3697 | /* Append to end of range */ |
| 3698 | rcu_assign_pointer(slots[new_end], wr_mas->entry); |
| 3699 | wr_mas->pivots[end] = mas->index - 1; |
| 3700 | mas->offset = new_end; |
| 3701 | } else { |
| 3702 | /* Append to start of range */ |
| 3703 | rcu_assign_pointer(slots[new_end], wr_mas->content); |
| 3704 | wr_mas->pivots[end] = mas->last; |
| 3705 | rcu_assign_pointer(slots[end], wr_mas->entry); |
| 3706 | } |
| 3707 | } else { |
| 3708 | /* Append to the range without touching any boundaries. */ |
| 3709 | rcu_assign_pointer(slots[new_end], wr_mas->content); |
| 3710 | wr_mas->pivots[end + 1] = mas->last; |
| 3711 | rcu_assign_pointer(slots[end + 1], wr_mas->entry); |
| 3712 | wr_mas->pivots[end] = mas->index - 1; |
| 3713 | mas->offset = end + 1; |
| 3714 | } |
| 3715 | |
| 3716 | if (!wr_mas->content || !wr_mas->entry) |
| 3717 | mas_update_gap(mas); |
| 3718 | |
| 3719 | mas->end = new_end; |
| 3720 | trace_ma_write(fn: __func__, mas, piv: new_end, val: wr_mas->entry); |
| 3721 | return; |
| 3722 | } |
| 3723 | |
| 3724 | /* |
| 3725 | * mas_wr_bnode() - Slow path for a modification. |
| 3726 | * @wr_mas: The write maple state |
| 3727 | * |
| 3728 | * This is where split, rebalance end up. |
| 3729 | */ |
| 3730 | static void mas_wr_bnode(struct ma_wr_state *wr_mas) |
| 3731 | { |
| 3732 | struct maple_big_node b_node; |
| 3733 | |
| 3734 | trace_ma_write(fn: __func__, mas: wr_mas->mas, piv: 0, val: wr_mas->entry); |
| 3735 | memset(s: &b_node, c: 0, n: sizeof(struct maple_big_node)); |
| 3736 | mas_store_b_node(wr_mas, b_node: &b_node, offset_end: wr_mas->offset_end); |
| 3737 | mas_commit_b_node(wr_mas, b_node: &b_node); |
| 3738 | } |
| 3739 | |
| 3740 | /* |
| 3741 | * mas_wr_store_entry() - Internal call to store a value |
| 3742 | * @wr_mas: The maple write state |
| 3743 | */ |
| 3744 | static inline void mas_wr_store_entry(struct ma_wr_state *wr_mas) |
| 3745 | { |
| 3746 | struct ma_state *mas = wr_mas->mas; |
| 3747 | unsigned char new_end = mas_wr_new_end(wr_mas); |
| 3748 | |
| 3749 | switch (mas->store_type) { |
| 3750 | case wr_exact_fit: |
| 3751 | rcu_assign_pointer(wr_mas->slots[mas->offset], wr_mas->entry); |
| 3752 | if (!!wr_mas->entry ^ !!wr_mas->content) |
| 3753 | mas_update_gap(mas); |
| 3754 | break; |
| 3755 | case wr_append: |
| 3756 | mas_wr_append(wr_mas, new_end); |
| 3757 | break; |
| 3758 | case wr_slot_store: |
| 3759 | mas_wr_slot_store(wr_mas); |
| 3760 | break; |
| 3761 | case wr_node_store: |
| 3762 | mas_wr_node_store(wr_mas, new_end); |
| 3763 | break; |
| 3764 | case wr_spanning_store: |
| 3765 | mas_wr_spanning_store(wr_mas); |
| 3766 | break; |
| 3767 | case wr_split_store: |
| 3768 | case wr_rebalance: |
| 3769 | mas_wr_bnode(wr_mas); |
| 3770 | break; |
| 3771 | case wr_new_root: |
| 3772 | mas_new_root(mas, entry: wr_mas->entry); |
| 3773 | break; |
| 3774 | case wr_store_root: |
| 3775 | mas_store_root(mas, entry: wr_mas->entry); |
| 3776 | break; |
| 3777 | case wr_invalid: |
| 3778 | MT_BUG_ON(mas->tree, 1); |
| 3779 | } |
| 3780 | |
| 3781 | return; |
| 3782 | } |
| 3783 | |
| 3784 | static inline void mas_wr_prealloc_setup(struct ma_wr_state *wr_mas) |
| 3785 | { |
| 3786 | struct ma_state *mas = wr_mas->mas; |
| 3787 | |
| 3788 | if (!mas_is_active(mas)) { |
| 3789 | if (mas_is_start(mas)) |
| 3790 | goto set_content; |
| 3791 | |
| 3792 | if (unlikely(mas_is_paused(mas))) |
| 3793 | goto reset; |
| 3794 | |
| 3795 | if (unlikely(mas_is_none(mas))) |
| 3796 | goto reset; |
| 3797 | |
| 3798 | if (unlikely(mas_is_overflow(mas))) |
| 3799 | goto reset; |
| 3800 | |
| 3801 | if (unlikely(mas_is_underflow(mas))) |
| 3802 | goto reset; |
| 3803 | } |
| 3804 | |
| 3805 | /* |
| 3806 | * A less strict version of mas_is_span_wr() where we allow spanning |
| 3807 | * writes within this node. This is to stop partial walks in |
| 3808 | * mas_prealloc() from being reset. |
| 3809 | */ |
| 3810 | if (mas->last > mas->max) |
| 3811 | goto reset; |
| 3812 | |
| 3813 | if (wr_mas->entry) |
| 3814 | goto set_content; |
| 3815 | |
| 3816 | if (mte_is_leaf(entry: mas->node) && mas->last == mas->max) |
| 3817 | goto reset; |
| 3818 | |
| 3819 | goto set_content; |
| 3820 | |
| 3821 | reset: |
| 3822 | mas_reset(mas); |
| 3823 | set_content: |
| 3824 | wr_mas->content = mas_start(mas); |
| 3825 | } |
| 3826 | |
| 3827 | /** |
| 3828 | * mas_prealloc_calc() - Calculate number of nodes needed for a |
| 3829 | * given store oepration |
| 3830 | * @wr_mas: The maple write state |
| 3831 | * @entry: The entry to store into the tree |
| 3832 | * |
| 3833 | * Return: Number of nodes required for preallocation. |
| 3834 | */ |
| 3835 | static inline void mas_prealloc_calc(struct ma_wr_state *wr_mas, void *entry) |
| 3836 | { |
| 3837 | struct ma_state *mas = wr_mas->mas; |
| 3838 | unsigned char height = mas_mt_height(mas); |
| 3839 | int ret = height * 3 + 1; |
| 3840 | unsigned char delta = height - wr_mas->vacant_height; |
| 3841 | |
| 3842 | switch (mas->store_type) { |
| 3843 | case wr_exact_fit: |
| 3844 | case wr_append: |
| 3845 | case wr_slot_store: |
| 3846 | ret = 0; |
| 3847 | break; |
| 3848 | case wr_spanning_store: |
| 3849 | if (wr_mas->sufficient_height < wr_mas->vacant_height) |
| 3850 | ret = (height - wr_mas->sufficient_height) * 3 + 1; |
| 3851 | else |
| 3852 | ret = delta * 3 + 1; |
| 3853 | break; |
| 3854 | case wr_split_store: |
| 3855 | ret = delta * 2 + 1; |
| 3856 | break; |
| 3857 | case wr_rebalance: |
| 3858 | if (wr_mas->sufficient_height < wr_mas->vacant_height) |
| 3859 | ret = (height - wr_mas->sufficient_height) * 2 + 1; |
| 3860 | else |
| 3861 | ret = delta * 2 + 1; |
| 3862 | break; |
| 3863 | case wr_node_store: |
| 3864 | ret = mt_in_rcu(mt: mas->tree) ? 1 : 0; |
| 3865 | break; |
| 3866 | case wr_new_root: |
| 3867 | ret = 1; |
| 3868 | break; |
| 3869 | case wr_store_root: |
| 3870 | if (likely((mas->last != 0) || (mas->index != 0))) |
| 3871 | ret = 1; |
| 3872 | else if (((unsigned long) (entry) & 3) == 2) |
| 3873 | ret = 1; |
| 3874 | else |
| 3875 | ret = 0; |
| 3876 | break; |
| 3877 | case wr_invalid: |
| 3878 | WARN_ON_ONCE(1); |
| 3879 | } |
| 3880 | |
| 3881 | mas->node_request = ret; |
| 3882 | } |
| 3883 | |
| 3884 | /* |
| 3885 | * mas_wr_store_type() - Determine the store type for a given |
| 3886 | * store operation. |
| 3887 | * @wr_mas: The maple write state |
| 3888 | * |
| 3889 | * Return: the type of store needed for the operation |
| 3890 | */ |
| 3891 | static inline enum store_type mas_wr_store_type(struct ma_wr_state *wr_mas) |
| 3892 | { |
| 3893 | struct ma_state *mas = wr_mas->mas; |
| 3894 | unsigned char new_end; |
| 3895 | |
| 3896 | if (unlikely(mas_is_none(mas) || mas_is_ptr(mas))) |
| 3897 | return wr_store_root; |
| 3898 | |
| 3899 | if (unlikely(!mas_wr_walk(wr_mas))) |
| 3900 | return wr_spanning_store; |
| 3901 | |
| 3902 | /* At this point, we are at the leaf node that needs to be altered. */ |
| 3903 | mas_wr_end_piv(wr_mas); |
| 3904 | if (!wr_mas->entry) |
| 3905 | mas_wr_extend_null(wr_mas); |
| 3906 | |
| 3907 | if ((wr_mas->r_min == mas->index) && (wr_mas->r_max == mas->last)) |
| 3908 | return wr_exact_fit; |
| 3909 | |
| 3910 | if (unlikely(!mas->index && mas->last == ULONG_MAX)) |
| 3911 | return wr_new_root; |
| 3912 | |
| 3913 | new_end = mas_wr_new_end(wr_mas); |
| 3914 | /* Potential spanning rebalance collapsing a node */ |
| 3915 | if (new_end < mt_min_slots[wr_mas->type]) { |
| 3916 | if (!mte_is_root(node: mas->node)) |
| 3917 | return wr_rebalance; |
| 3918 | return wr_node_store; |
| 3919 | } |
| 3920 | |
| 3921 | if (new_end >= mt_slots[wr_mas->type]) |
| 3922 | return wr_split_store; |
| 3923 | |
| 3924 | if (!mt_in_rcu(mt: mas->tree) && (mas->offset == mas->end)) |
| 3925 | return wr_append; |
| 3926 | |
| 3927 | if ((new_end == mas->end) && (!mt_in_rcu(mt: mas->tree) || |
| 3928 | (wr_mas->offset_end - mas->offset == 1))) |
| 3929 | return wr_slot_store; |
| 3930 | |
| 3931 | return wr_node_store; |
| 3932 | } |
| 3933 | |
| 3934 | /** |
| 3935 | * mas_wr_preallocate() - Preallocate enough nodes for a store operation |
| 3936 | * @wr_mas: The maple write state |
| 3937 | * @entry: The entry that will be stored |
| 3938 | * |
| 3939 | */ |
| 3940 | static inline void mas_wr_preallocate(struct ma_wr_state *wr_mas, void *entry) |
| 3941 | { |
| 3942 | struct ma_state *mas = wr_mas->mas; |
| 3943 | |
| 3944 | mas_wr_prealloc_setup(wr_mas); |
| 3945 | mas->store_type = mas_wr_store_type(wr_mas); |
| 3946 | mas_prealloc_calc(wr_mas, entry); |
| 3947 | if (!mas->node_request) |
| 3948 | return; |
| 3949 | |
| 3950 | mas_alloc_nodes(mas, GFP_NOWAIT); |
| 3951 | } |
| 3952 | |
| 3953 | /** |
| 3954 | * mas_insert() - Internal call to insert a value |
| 3955 | * @mas: The maple state |
| 3956 | * @entry: The entry to store |
| 3957 | * |
| 3958 | * Return: %NULL or the contents that already exists at the requested index |
| 3959 | * otherwise. The maple state needs to be checked for error conditions. |
| 3960 | */ |
| 3961 | static inline void *mas_insert(struct ma_state *mas, void *entry) |
| 3962 | { |
| 3963 | MA_WR_STATE(wr_mas, mas, entry); |
| 3964 | |
| 3965 | /* |
| 3966 | * Inserting a new range inserts either 0, 1, or 2 pivots within the |
| 3967 | * tree. If the insert fits exactly into an existing gap with a value |
| 3968 | * of NULL, then the slot only needs to be written with the new value. |
| 3969 | * If the range being inserted is adjacent to another range, then only a |
| 3970 | * single pivot needs to be inserted (as well as writing the entry). If |
| 3971 | * the new range is within a gap but does not touch any other ranges, |
| 3972 | * then two pivots need to be inserted: the start - 1, and the end. As |
| 3973 | * usual, the entry must be written. Most operations require a new node |
| 3974 | * to be allocated and replace an existing node to ensure RCU safety, |
| 3975 | * when in RCU mode. The exception to requiring a newly allocated node |
| 3976 | * is when inserting at the end of a node (appending). When done |
| 3977 | * carefully, appending can reuse the node in place. |
| 3978 | */ |
| 3979 | wr_mas.content = mas_start(mas); |
| 3980 | if (wr_mas.content) |
| 3981 | goto exists; |
| 3982 | |
| 3983 | mas_wr_preallocate(wr_mas: &wr_mas, entry); |
| 3984 | if (mas_is_err(mas)) |
| 3985 | return NULL; |
| 3986 | |
| 3987 | /* spanning writes always overwrite something */ |
| 3988 | if (mas->store_type == wr_spanning_store) |
| 3989 | goto exists; |
| 3990 | |
| 3991 | /* At this point, we are at the leaf node that needs to be altered. */ |
| 3992 | if (mas->store_type != wr_new_root && mas->store_type != wr_store_root) { |
| 3993 | wr_mas.offset_end = mas->offset; |
| 3994 | wr_mas.end_piv = wr_mas.r_max; |
| 3995 | |
| 3996 | if (wr_mas.content || (mas->last > wr_mas.r_max)) |
| 3997 | goto exists; |
| 3998 | } |
| 3999 | |
| 4000 | mas_wr_store_entry(wr_mas: &wr_mas); |
| 4001 | return wr_mas.content; |
| 4002 | |
| 4003 | exists: |
| 4004 | mas_set_err(mas, err: -EEXIST); |
| 4005 | return wr_mas.content; |
| 4006 | |
| 4007 | } |
| 4008 | |
| 4009 | /** |
| 4010 | * mas_alloc_cyclic() - Internal call to find somewhere to store an entry |
| 4011 | * @mas: The maple state. |
| 4012 | * @startp: Pointer to ID. |
| 4013 | * @range_lo: Lower bound of range to search. |
| 4014 | * @range_hi: Upper bound of range to search. |
| 4015 | * @entry: The entry to store. |
| 4016 | * @next: Pointer to next ID to allocate. |
| 4017 | * @gfp: The GFP_FLAGS to use for allocations. |
| 4018 | * |
| 4019 | * Return: 0 if the allocation succeeded without wrapping, 1 if the |
| 4020 | * allocation succeeded after wrapping, or -EBUSY if there are no |
| 4021 | * free entries. |
| 4022 | */ |
| 4023 | int mas_alloc_cyclic(struct ma_state *mas, unsigned long *startp, |
| 4024 | void *entry, unsigned long range_lo, unsigned long range_hi, |
| 4025 | unsigned long *next, gfp_t gfp) |
| 4026 | { |
| 4027 | unsigned long min = range_lo; |
| 4028 | int ret = 0; |
| 4029 | |
| 4030 | range_lo = max(min, *next); |
| 4031 | ret = mas_empty_area(mas, min: range_lo, max: range_hi, size: 1); |
| 4032 | if ((mas->tree->ma_flags & MT_FLAGS_ALLOC_WRAPPED) && ret == 0) { |
| 4033 | mas->tree->ma_flags &= ~MT_FLAGS_ALLOC_WRAPPED; |
| 4034 | ret = 1; |
| 4035 | } |
| 4036 | if (ret < 0 && range_lo > min) { |
| 4037 | mas_reset(mas); |
| 4038 | ret = mas_empty_area(mas, min, max: range_hi, size: 1); |
| 4039 | if (ret == 0) |
| 4040 | ret = 1; |
| 4041 | } |
| 4042 | if (ret < 0) |
| 4043 | return ret; |
| 4044 | |
| 4045 | do { |
| 4046 | mas_insert(mas, entry); |
| 4047 | } while (mas_nomem(mas, gfp)); |
| 4048 | if (mas_is_err(mas)) |
| 4049 | return xa_err(entry: mas->node); |
| 4050 | |
| 4051 | *startp = mas->index; |
| 4052 | *next = *startp + 1; |
| 4053 | if (*next == 0) |
| 4054 | mas->tree->ma_flags |= MT_FLAGS_ALLOC_WRAPPED; |
| 4055 | |
| 4056 | mas_destroy(mas); |
| 4057 | return ret; |
| 4058 | } |
| 4059 | EXPORT_SYMBOL(mas_alloc_cyclic); |
| 4060 | |
| 4061 | static __always_inline void mas_rewalk(struct ma_state *mas, unsigned long index) |
| 4062 | { |
| 4063 | retry: |
| 4064 | mas_set(mas, index); |
| 4065 | mas_state_walk(mas); |
| 4066 | if (mas_is_start(mas)) |
| 4067 | goto retry; |
| 4068 | } |
| 4069 | |
| 4070 | static __always_inline bool mas_rewalk_if_dead(struct ma_state *mas, |
| 4071 | struct maple_node *node, const unsigned long index) |
| 4072 | { |
| 4073 | if (unlikely(ma_dead_node(node))) { |
| 4074 | mas_rewalk(mas, index); |
| 4075 | return true; |
| 4076 | } |
| 4077 | return false; |
| 4078 | } |
| 4079 | |
| 4080 | /* |
| 4081 | * mas_prev_node() - Find the prev non-null entry at the same level in the |
| 4082 | * tree. The prev value will be mas->node[mas->offset] or the status will be |
| 4083 | * ma_none. |
| 4084 | * @mas: The maple state |
| 4085 | * @min: The lower limit to search |
| 4086 | * |
| 4087 | * The prev node value will be mas->node[mas->offset] or the status will be |
| 4088 | * ma_none. |
| 4089 | * Return: 1 if the node is dead, 0 otherwise. |
| 4090 | */ |
| 4091 | static int mas_prev_node(struct ma_state *mas, unsigned long min) |
| 4092 | { |
| 4093 | enum maple_type mt; |
| 4094 | int offset, level; |
| 4095 | void __rcu **slots; |
| 4096 | struct maple_node *node; |
| 4097 | unsigned long *pivots; |
| 4098 | unsigned long max; |
| 4099 | |
| 4100 | node = mas_mn(mas); |
| 4101 | if (!mas->min) |
| 4102 | goto no_entry; |
| 4103 | |
| 4104 | max = mas->min - 1; |
| 4105 | if (max < min) |
| 4106 | goto no_entry; |
| 4107 | |
| 4108 | level = 0; |
| 4109 | do { |
| 4110 | if (ma_is_root(node)) |
| 4111 | goto no_entry; |
| 4112 | |
| 4113 | /* Walk up. */ |
| 4114 | if (unlikely(mas_ascend(mas))) |
| 4115 | return 1; |
| 4116 | offset = mas->offset; |
| 4117 | level++; |
| 4118 | node = mas_mn(mas); |
| 4119 | } while (!offset); |
| 4120 | |
| 4121 | offset--; |
| 4122 | mt = mte_node_type(entry: mas->node); |
| 4123 | while (level > 1) { |
| 4124 | level--; |
| 4125 | slots = ma_slots(mn: node, mt); |
| 4126 | mas->node = mas_slot(mas, slots, offset); |
| 4127 | if (unlikely(ma_dead_node(node))) |
| 4128 | return 1; |
| 4129 | |
| 4130 | mt = mte_node_type(entry: mas->node); |
| 4131 | node = mas_mn(mas); |
| 4132 | pivots = ma_pivots(node, type: mt); |
| 4133 | offset = ma_data_end(node, type: mt, pivots, max); |
| 4134 | if (unlikely(ma_dead_node(node))) |
| 4135 | return 1; |
| 4136 | } |
| 4137 | |
| 4138 | slots = ma_slots(mn: node, mt); |
| 4139 | mas->node = mas_slot(mas, slots, offset); |
| 4140 | pivots = ma_pivots(node, type: mt); |
| 4141 | if (unlikely(ma_dead_node(node))) |
| 4142 | return 1; |
| 4143 | |
| 4144 | if (likely(offset)) |
| 4145 | mas->min = pivots[offset - 1] + 1; |
| 4146 | mas->max = max; |
| 4147 | mas->offset = mas_data_end(mas); |
| 4148 | if (unlikely(mte_dead_node(mas->node))) |
| 4149 | return 1; |
| 4150 | |
| 4151 | mas->end = mas->offset; |
| 4152 | return 0; |
| 4153 | |
| 4154 | no_entry: |
| 4155 | if (unlikely(ma_dead_node(node))) |
| 4156 | return 1; |
| 4157 | |
| 4158 | mas->status = ma_underflow; |
| 4159 | return 0; |
| 4160 | } |
| 4161 | |
| 4162 | /* |
| 4163 | * mas_prev_slot() - Get the entry in the previous slot |
| 4164 | * |
| 4165 | * @mas: The maple state |
| 4166 | * @min: The minimum starting range |
| 4167 | * @empty: Can be empty |
| 4168 | * |
| 4169 | * Return: The entry in the previous slot which is possibly NULL |
| 4170 | */ |
| 4171 | static void *mas_prev_slot(struct ma_state *mas, unsigned long min, bool empty) |
| 4172 | { |
| 4173 | void *entry; |
| 4174 | void __rcu **slots; |
| 4175 | unsigned long pivot; |
| 4176 | enum maple_type type; |
| 4177 | unsigned long *pivots; |
| 4178 | struct maple_node *node; |
| 4179 | unsigned long save_point = mas->index; |
| 4180 | |
| 4181 | retry: |
| 4182 | node = mas_mn(mas); |
| 4183 | type = mte_node_type(entry: mas->node); |
| 4184 | pivots = ma_pivots(node, type); |
| 4185 | if (unlikely(mas_rewalk_if_dead(mas, node, save_point))) |
| 4186 | goto retry; |
| 4187 | |
| 4188 | if (mas->min <= min) { |
| 4189 | pivot = mas_safe_min(mas, pivots, offset: mas->offset); |
| 4190 | |
| 4191 | if (unlikely(mas_rewalk_if_dead(mas, node, save_point))) |
| 4192 | goto retry; |
| 4193 | |
| 4194 | if (pivot <= min) |
| 4195 | goto underflow; |
| 4196 | } |
| 4197 | |
| 4198 | again: |
| 4199 | if (likely(mas->offset)) { |
| 4200 | mas->offset--; |
| 4201 | mas->last = mas->index - 1; |
| 4202 | mas->index = mas_safe_min(mas, pivots, offset: mas->offset); |
| 4203 | } else { |
| 4204 | if (mas->index <= min) |
| 4205 | goto underflow; |
| 4206 | |
| 4207 | if (mas_prev_node(mas, min)) { |
| 4208 | mas_rewalk(mas, index: save_point); |
| 4209 | goto retry; |
| 4210 | } |
| 4211 | |
| 4212 | if (WARN_ON_ONCE(mas_is_underflow(mas))) |
| 4213 | return NULL; |
| 4214 | |
| 4215 | mas->last = mas->max; |
| 4216 | node = mas_mn(mas); |
| 4217 | type = mte_node_type(entry: mas->node); |
| 4218 | pivots = ma_pivots(node, type); |
| 4219 | mas->index = pivots[mas->offset - 1] + 1; |
| 4220 | } |
| 4221 | |
| 4222 | slots = ma_slots(mn: node, mt: type); |
| 4223 | entry = mas_slot(mas, slots, offset: mas->offset); |
| 4224 | if (unlikely(mas_rewalk_if_dead(mas, node, save_point))) |
| 4225 | goto retry; |
| 4226 | |
| 4227 | if (likely(entry)) |
| 4228 | return entry; |
| 4229 | |
| 4230 | if (!empty) { |
| 4231 | if (mas->index <= min) |
| 4232 | goto underflow; |
| 4233 | |
| 4234 | goto again; |
| 4235 | } |
| 4236 | |
| 4237 | return entry; |
| 4238 | |
| 4239 | underflow: |
| 4240 | mas->status = ma_underflow; |
| 4241 | return NULL; |
| 4242 | } |
| 4243 | |
| 4244 | /* |
| 4245 | * mas_next_node() - Get the next node at the same level in the tree. |
| 4246 | * @mas: The maple state |
| 4247 | * @node: The maple node |
| 4248 | * @max: The maximum pivot value to check. |
| 4249 | * |
| 4250 | * The next value will be mas->node[mas->offset] or the status will have |
| 4251 | * overflowed. |
| 4252 | * Return: 1 on dead node, 0 otherwise. |
| 4253 | */ |
| 4254 | static int mas_next_node(struct ma_state *mas, struct maple_node *node, |
| 4255 | unsigned long max) |
| 4256 | { |
| 4257 | unsigned long min; |
| 4258 | unsigned long *pivots; |
| 4259 | struct maple_enode *enode; |
| 4260 | struct maple_node *tmp; |
| 4261 | int level = 0; |
| 4262 | unsigned char node_end; |
| 4263 | enum maple_type mt; |
| 4264 | void __rcu **slots; |
| 4265 | |
| 4266 | if (mas->max >= max) |
| 4267 | goto overflow; |
| 4268 | |
| 4269 | min = mas->max + 1; |
| 4270 | level = 0; |
| 4271 | do { |
| 4272 | if (ma_is_root(node)) |
| 4273 | goto overflow; |
| 4274 | |
| 4275 | /* Walk up. */ |
| 4276 | if (unlikely(mas_ascend(mas))) |
| 4277 | return 1; |
| 4278 | |
| 4279 | level++; |
| 4280 | node = mas_mn(mas); |
| 4281 | mt = mte_node_type(entry: mas->node); |
| 4282 | pivots = ma_pivots(node, type: mt); |
| 4283 | node_end = ma_data_end(node, type: mt, pivots, max: mas->max); |
| 4284 | if (unlikely(ma_dead_node(node))) |
| 4285 | return 1; |
| 4286 | |
| 4287 | } while (unlikely(mas->offset == node_end)); |
| 4288 | |
| 4289 | slots = ma_slots(mn: node, mt); |
| 4290 | mas->offset++; |
| 4291 | enode = mas_slot(mas, slots, offset: mas->offset); |
| 4292 | if (unlikely(ma_dead_node(node))) |
| 4293 | return 1; |
| 4294 | |
| 4295 | if (level > 1) |
| 4296 | mas->offset = 0; |
| 4297 | |
| 4298 | while (unlikely(level > 1)) { |
| 4299 | level--; |
| 4300 | mas->node = enode; |
| 4301 | node = mas_mn(mas); |
| 4302 | mt = mte_node_type(entry: mas->node); |
| 4303 | slots = ma_slots(mn: node, mt); |
| 4304 | enode = mas_slot(mas, slots, offset: 0); |
| 4305 | if (unlikely(ma_dead_node(node))) |
| 4306 | return 1; |
| 4307 | } |
| 4308 | |
| 4309 | if (!mas->offset) |
| 4310 | pivots = ma_pivots(node, type: mt); |
| 4311 | |
| 4312 | mas->max = mas_safe_pivot(mas, pivots, piv: mas->offset, type: mt); |
| 4313 | tmp = mte_to_node(entry: enode); |
| 4314 | mt = mte_node_type(entry: enode); |
| 4315 | pivots = ma_pivots(node: tmp, type: mt); |
| 4316 | mas->end = ma_data_end(node: tmp, type: mt, pivots, max: mas->max); |
| 4317 | if (unlikely(ma_dead_node(node))) |
| 4318 | return 1; |
| 4319 | |
| 4320 | mas->node = enode; |
| 4321 | mas->min = min; |
| 4322 | return 0; |
| 4323 | |
| 4324 | overflow: |
| 4325 | if (unlikely(ma_dead_node(node))) |
| 4326 | return 1; |
| 4327 | |
| 4328 | mas->status = ma_overflow; |
| 4329 | return 0; |
| 4330 | } |
| 4331 | |
| 4332 | /* |
| 4333 | * mas_next_slot() - Get the entry in the next slot |
| 4334 | * |
| 4335 | * @mas: The maple state |
| 4336 | * @max: The maximum starting range |
| 4337 | * @empty: Can be empty |
| 4338 | * |
| 4339 | * Return: The entry in the next slot which is possibly NULL |
| 4340 | */ |
| 4341 | static void *mas_next_slot(struct ma_state *mas, unsigned long max, bool empty) |
| 4342 | { |
| 4343 | void __rcu **slots; |
| 4344 | unsigned long *pivots; |
| 4345 | unsigned long pivot; |
| 4346 | enum maple_type type; |
| 4347 | struct maple_node *node; |
| 4348 | unsigned long save_point = mas->last; |
| 4349 | void *entry; |
| 4350 | |
| 4351 | retry: |
| 4352 | node = mas_mn(mas); |
| 4353 | type = mte_node_type(entry: mas->node); |
| 4354 | pivots = ma_pivots(node, type); |
| 4355 | if (unlikely(mas_rewalk_if_dead(mas, node, save_point))) |
| 4356 | goto retry; |
| 4357 | |
| 4358 | if (mas->max >= max) { |
| 4359 | if (likely(mas->offset < mas->end)) |
| 4360 | pivot = pivots[mas->offset]; |
| 4361 | else |
| 4362 | pivot = mas->max; |
| 4363 | |
| 4364 | if (unlikely(mas_rewalk_if_dead(mas, node, save_point))) |
| 4365 | goto retry; |
| 4366 | |
| 4367 | if (pivot >= max) { /* Was at the limit, next will extend beyond */ |
| 4368 | mas->status = ma_overflow; |
| 4369 | return NULL; |
| 4370 | } |
| 4371 | } |
| 4372 | |
| 4373 | if (likely(mas->offset < mas->end)) { |
| 4374 | mas->index = pivots[mas->offset] + 1; |
| 4375 | again: |
| 4376 | mas->offset++; |
| 4377 | if (likely(mas->offset < mas->end)) |
| 4378 | mas->last = pivots[mas->offset]; |
| 4379 | else |
| 4380 | mas->last = mas->max; |
| 4381 | } else { |
| 4382 | if (mas->last >= max) { |
| 4383 | mas->status = ma_overflow; |
| 4384 | return NULL; |
| 4385 | } |
| 4386 | |
| 4387 | if (mas_next_node(mas, node, max)) { |
| 4388 | mas_rewalk(mas, index: save_point); |
| 4389 | goto retry; |
| 4390 | } |
| 4391 | |
| 4392 | if (WARN_ON_ONCE(mas_is_overflow(mas))) |
| 4393 | return NULL; |
| 4394 | |
| 4395 | mas->offset = 0; |
| 4396 | mas->index = mas->min; |
| 4397 | node = mas_mn(mas); |
| 4398 | type = mte_node_type(entry: mas->node); |
| 4399 | pivots = ma_pivots(node, type); |
| 4400 | mas->last = pivots[0]; |
| 4401 | } |
| 4402 | |
| 4403 | slots = ma_slots(mn: node, mt: type); |
| 4404 | entry = mt_slot(mt: mas->tree, slots, offset: mas->offset); |
| 4405 | if (unlikely(mas_rewalk_if_dead(mas, node, save_point))) |
| 4406 | goto retry; |
| 4407 | |
| 4408 | if (entry) |
| 4409 | return entry; |
| 4410 | |
| 4411 | |
| 4412 | if (!empty) { |
| 4413 | if (mas->last >= max) { |
| 4414 | mas->status = ma_overflow; |
| 4415 | return NULL; |
| 4416 | } |
| 4417 | |
| 4418 | mas->index = mas->last + 1; |
| 4419 | goto again; |
| 4420 | } |
| 4421 | |
| 4422 | return entry; |
| 4423 | } |
| 4424 | |
| 4425 | /* |
| 4426 | * mas_rev_awalk() - Internal function. Reverse allocation walk. Find the |
| 4427 | * highest gap address of a given size in a given node and descend. |
| 4428 | * @mas: The maple state |
| 4429 | * @size: The needed size. |
| 4430 | * |
| 4431 | * Return: True if found in a leaf, false otherwise. |
| 4432 | * |
| 4433 | */ |
| 4434 | static bool mas_rev_awalk(struct ma_state *mas, unsigned long size, |
| 4435 | unsigned long *gap_min, unsigned long *gap_max) |
| 4436 | { |
| 4437 | enum maple_type type = mte_node_type(entry: mas->node); |
| 4438 | struct maple_node *node = mas_mn(mas); |
| 4439 | unsigned long *pivots, *gaps; |
| 4440 | void __rcu **slots; |
| 4441 | unsigned long gap = 0; |
| 4442 | unsigned long max, min; |
| 4443 | unsigned char offset; |
| 4444 | |
| 4445 | if (unlikely(mas_is_err(mas))) |
| 4446 | return true; |
| 4447 | |
| 4448 | if (ma_is_dense(type)) { |
| 4449 | /* dense nodes. */ |
| 4450 | mas->offset = (unsigned char)(mas->index - mas->min); |
| 4451 | return true; |
| 4452 | } |
| 4453 | |
| 4454 | pivots = ma_pivots(node, type); |
| 4455 | slots = ma_slots(mn: node, mt: type); |
| 4456 | gaps = ma_gaps(node, type); |
| 4457 | offset = mas->offset; |
| 4458 | min = mas_safe_min(mas, pivots, offset); |
| 4459 | /* Skip out of bounds. */ |
| 4460 | while (mas->last < min) |
| 4461 | min = mas_safe_min(mas, pivots, offset: --offset); |
| 4462 | |
| 4463 | max = mas_safe_pivot(mas, pivots, piv: offset, type); |
| 4464 | while (mas->index <= max) { |
| 4465 | gap = 0; |
| 4466 | if (gaps) |
| 4467 | gap = gaps[offset]; |
| 4468 | else if (!mas_slot(mas, slots, offset)) |
| 4469 | gap = max - min + 1; |
| 4470 | |
| 4471 | if (gap) { |
| 4472 | if ((size <= gap) && (size <= mas->last - min + 1)) |
| 4473 | break; |
| 4474 | |
| 4475 | if (!gaps) { |
| 4476 | /* Skip the next slot, it cannot be a gap. */ |
| 4477 | if (offset < 2) |
| 4478 | goto ascend; |
| 4479 | |
| 4480 | offset -= 2; |
| 4481 | max = pivots[offset]; |
| 4482 | min = mas_safe_min(mas, pivots, offset); |
| 4483 | continue; |
| 4484 | } |
| 4485 | } |
| 4486 | |
| 4487 | if (!offset) |
| 4488 | goto ascend; |
| 4489 | |
| 4490 | offset--; |
| 4491 | max = min - 1; |
| 4492 | min = mas_safe_min(mas, pivots, offset); |
| 4493 | } |
| 4494 | |
| 4495 | if (unlikely((mas->index > max) || (size - 1 > max - mas->index))) |
| 4496 | goto no_space; |
| 4497 | |
| 4498 | if (unlikely(ma_is_leaf(type))) { |
| 4499 | mas->offset = offset; |
| 4500 | *gap_min = min; |
| 4501 | *gap_max = min + gap - 1; |
| 4502 | return true; |
| 4503 | } |
| 4504 | |
| 4505 | /* descend, only happens under lock. */ |
| 4506 | mas->node = mas_slot(mas, slots, offset); |
| 4507 | mas->min = min; |
| 4508 | mas->max = max; |
| 4509 | mas->offset = mas_data_end(mas); |
| 4510 | return false; |
| 4511 | |
| 4512 | ascend: |
| 4513 | if (!mte_is_root(node: mas->node)) |
| 4514 | return false; |
| 4515 | |
| 4516 | no_space: |
| 4517 | mas_set_err(mas, err: -EBUSY); |
| 4518 | return false; |
| 4519 | } |
| 4520 | |
| 4521 | static inline bool mas_anode_descend(struct ma_state *mas, unsigned long size) |
| 4522 | { |
| 4523 | enum maple_type type = mte_node_type(entry: mas->node); |
| 4524 | unsigned long pivot, min, gap = 0; |
| 4525 | unsigned char offset, data_end; |
| 4526 | unsigned long *gaps, *pivots; |
| 4527 | void __rcu **slots; |
| 4528 | struct maple_node *node; |
| 4529 | bool found = false; |
| 4530 | |
| 4531 | if (ma_is_dense(type)) { |
| 4532 | mas->offset = (unsigned char)(mas->index - mas->min); |
| 4533 | return true; |
| 4534 | } |
| 4535 | |
| 4536 | node = mas_mn(mas); |
| 4537 | pivots = ma_pivots(node, type); |
| 4538 | slots = ma_slots(mn: node, mt: type); |
| 4539 | gaps = ma_gaps(node, type); |
| 4540 | offset = mas->offset; |
| 4541 | min = mas_safe_min(mas, pivots, offset); |
| 4542 | data_end = ma_data_end(node, type, pivots, max: mas->max); |
| 4543 | for (; offset <= data_end; offset++) { |
| 4544 | pivot = mas_safe_pivot(mas, pivots, piv: offset, type); |
| 4545 | |
| 4546 | /* Not within lower bounds */ |
| 4547 | if (mas->index > pivot) |
| 4548 | goto next_slot; |
| 4549 | |
| 4550 | if (gaps) |
| 4551 | gap = gaps[offset]; |
| 4552 | else if (!mas_slot(mas, slots, offset)) |
| 4553 | gap = min(pivot, mas->last) - max(mas->index, min) + 1; |
| 4554 | else |
| 4555 | goto next_slot; |
| 4556 | |
| 4557 | if (gap >= size) { |
| 4558 | if (ma_is_leaf(type)) { |
| 4559 | found = true; |
| 4560 | break; |
| 4561 | } |
| 4562 | |
| 4563 | mas->node = mas_slot(mas, slots, offset); |
| 4564 | mas->min = min; |
| 4565 | mas->max = pivot; |
| 4566 | offset = 0; |
| 4567 | break; |
| 4568 | } |
| 4569 | next_slot: |
| 4570 | min = pivot + 1; |
| 4571 | if (mas->last <= pivot) { |
| 4572 | mas_set_err(mas, err: -EBUSY); |
| 4573 | return true; |
| 4574 | } |
| 4575 | } |
| 4576 | |
| 4577 | mas->offset = offset; |
| 4578 | return found; |
| 4579 | } |
| 4580 | |
| 4581 | /** |
| 4582 | * mas_walk() - Search for @mas->index in the tree. |
| 4583 | * @mas: The maple state. |
| 4584 | * |
| 4585 | * mas->index and mas->last will be set to the range if there is a value. If |
| 4586 | * mas->status is ma_none, reset to ma_start |
| 4587 | * |
| 4588 | * Return: the entry at the location or %NULL. |
| 4589 | */ |
| 4590 | void *mas_walk(struct ma_state *mas) |
| 4591 | { |
| 4592 | void *entry; |
| 4593 | |
| 4594 | if (!mas_is_active(mas) && !mas_is_start(mas)) |
| 4595 | mas->status = ma_start; |
| 4596 | retry: |
| 4597 | entry = mas_state_walk(mas); |
| 4598 | if (mas_is_start(mas)) { |
| 4599 | goto retry; |
| 4600 | } else if (mas_is_none(mas)) { |
| 4601 | mas->index = 0; |
| 4602 | mas->last = ULONG_MAX; |
| 4603 | } else if (mas_is_ptr(mas)) { |
| 4604 | if (!mas->index) { |
| 4605 | mas->last = 0; |
| 4606 | return entry; |
| 4607 | } |
| 4608 | |
| 4609 | mas->index = 1; |
| 4610 | mas->last = ULONG_MAX; |
| 4611 | mas->status = ma_none; |
| 4612 | return NULL; |
| 4613 | } |
| 4614 | |
| 4615 | return entry; |
| 4616 | } |
| 4617 | EXPORT_SYMBOL_GPL(mas_walk); |
| 4618 | |
| 4619 | static inline bool mas_rewind_node(struct ma_state *mas) |
| 4620 | { |
| 4621 | unsigned char slot; |
| 4622 | |
| 4623 | do { |
| 4624 | if (mte_is_root(node: mas->node)) { |
| 4625 | slot = mas->offset; |
| 4626 | if (!slot) |
| 4627 | return false; |
| 4628 | } else { |
| 4629 | mas_ascend(mas); |
| 4630 | slot = mas->offset; |
| 4631 | } |
| 4632 | } while (!slot); |
| 4633 | |
| 4634 | mas->offset = --slot; |
| 4635 | return true; |
| 4636 | } |
| 4637 | |
| 4638 | /* |
| 4639 | * mas_skip_node() - Internal function. Skip over a node. |
| 4640 | * @mas: The maple state. |
| 4641 | * |
| 4642 | * Return: true if there is another node, false otherwise. |
| 4643 | */ |
| 4644 | static inline bool mas_skip_node(struct ma_state *mas) |
| 4645 | { |
| 4646 | if (mas_is_err(mas)) |
| 4647 | return false; |
| 4648 | |
| 4649 | do { |
| 4650 | if (mte_is_root(node: mas->node)) { |
| 4651 | if (mas->offset >= mas_data_end(mas)) { |
| 4652 | mas_set_err(mas, err: -EBUSY); |
| 4653 | return false; |
| 4654 | } |
| 4655 | } else { |
| 4656 | mas_ascend(mas); |
| 4657 | } |
| 4658 | } while (mas->offset >= mas_data_end(mas)); |
| 4659 | |
| 4660 | mas->offset++; |
| 4661 | return true; |
| 4662 | } |
| 4663 | |
| 4664 | /* |
| 4665 | * mas_awalk() - Allocation walk. Search from low address to high, for a gap of |
| 4666 | * @size |
| 4667 | * @mas: The maple state |
| 4668 | * @size: The size of the gap required |
| 4669 | * |
| 4670 | * Search between @mas->index and @mas->last for a gap of @size. |
| 4671 | */ |
| 4672 | static inline void mas_awalk(struct ma_state *mas, unsigned long size) |
| 4673 | { |
| 4674 | struct maple_enode *last = NULL; |
| 4675 | |
| 4676 | /* |
| 4677 | * There are 4 options: |
| 4678 | * go to child (descend) |
| 4679 | * go back to parent (ascend) |
| 4680 | * no gap found. (return, error == -EBUSY) |
| 4681 | * found the gap. (return) |
| 4682 | */ |
| 4683 | while (!mas_is_err(mas) && !mas_anode_descend(mas, size)) { |
| 4684 | if (last == mas->node) |
| 4685 | mas_skip_node(mas); |
| 4686 | else |
| 4687 | last = mas->node; |
| 4688 | } |
| 4689 | } |
| 4690 | |
| 4691 | /* |
| 4692 | * mas_sparse_area() - Internal function. Return upper or lower limit when |
| 4693 | * searching for a gap in an empty tree. |
| 4694 | * @mas: The maple state |
| 4695 | * @min: the minimum range |
| 4696 | * @max: The maximum range |
| 4697 | * @size: The size of the gap |
| 4698 | * @fwd: Searching forward or back |
| 4699 | */ |
| 4700 | static inline int mas_sparse_area(struct ma_state *mas, unsigned long min, |
| 4701 | unsigned long max, unsigned long size, bool fwd) |
| 4702 | { |
| 4703 | if (!unlikely(mas_is_none(mas)) && min == 0) { |
| 4704 | min++; |
| 4705 | /* |
| 4706 | * At this time, min is increased, we need to recheck whether |
| 4707 | * the size is satisfied. |
| 4708 | */ |
| 4709 | if (min > max || max - min + 1 < size) |
| 4710 | return -EBUSY; |
| 4711 | } |
| 4712 | /* mas_is_ptr */ |
| 4713 | |
| 4714 | if (fwd) { |
| 4715 | mas->index = min; |
| 4716 | mas->last = min + size - 1; |
| 4717 | } else { |
| 4718 | mas->last = max; |
| 4719 | mas->index = max - size + 1; |
| 4720 | } |
| 4721 | return 0; |
| 4722 | } |
| 4723 | |
| 4724 | /* |
| 4725 | * mas_empty_area() - Get the lowest address within the range that is |
| 4726 | * sufficient for the size requested. |
| 4727 | * @mas: The maple state |
| 4728 | * @min: The lowest value of the range |
| 4729 | * @max: The highest value of the range |
| 4730 | * @size: The size needed |
| 4731 | */ |
| 4732 | int mas_empty_area(struct ma_state *mas, unsigned long min, |
| 4733 | unsigned long max, unsigned long size) |
| 4734 | { |
| 4735 | unsigned char offset; |
| 4736 | unsigned long *pivots; |
| 4737 | enum maple_type mt; |
| 4738 | struct maple_node *node; |
| 4739 | |
| 4740 | if (min > max) |
| 4741 | return -EINVAL; |
| 4742 | |
| 4743 | if (size == 0 || max - min < size - 1) |
| 4744 | return -EINVAL; |
| 4745 | |
| 4746 | if (mas_is_start(mas)) |
| 4747 | mas_start(mas); |
| 4748 | else if (mas->offset >= 2) |
| 4749 | mas->offset -= 2; |
| 4750 | else if (!mas_skip_node(mas)) |
| 4751 | return -EBUSY; |
| 4752 | |
| 4753 | /* Empty set */ |
| 4754 | if (mas_is_none(mas) || mas_is_ptr(mas)) |
| 4755 | return mas_sparse_area(mas, min, max, size, fwd: true); |
| 4756 | |
| 4757 | /* The start of the window can only be within these values */ |
| 4758 | mas->index = min; |
| 4759 | mas->last = max; |
| 4760 | mas_awalk(mas, size); |
| 4761 | |
| 4762 | if (unlikely(mas_is_err(mas))) |
| 4763 | return xa_err(entry: mas->node); |
| 4764 | |
| 4765 | offset = mas->offset; |
| 4766 | node = mas_mn(mas); |
| 4767 | mt = mte_node_type(entry: mas->node); |
| 4768 | pivots = ma_pivots(node, type: mt); |
| 4769 | min = mas_safe_min(mas, pivots, offset); |
| 4770 | if (mas->index < min) |
| 4771 | mas->index = min; |
| 4772 | mas->last = mas->index + size - 1; |
| 4773 | mas->end = ma_data_end(node, type: mt, pivots, max: mas->max); |
| 4774 | return 0; |
| 4775 | } |
| 4776 | EXPORT_SYMBOL_GPL(mas_empty_area); |
| 4777 | |
| 4778 | /* |
| 4779 | * mas_empty_area_rev() - Get the highest address within the range that is |
| 4780 | * sufficient for the size requested. |
| 4781 | * @mas: The maple state |
| 4782 | * @min: The lowest value of the range |
| 4783 | * @max: The highest value of the range |
| 4784 | * @size: The size needed |
| 4785 | */ |
| 4786 | int mas_empty_area_rev(struct ma_state *mas, unsigned long min, |
| 4787 | unsigned long max, unsigned long size) |
| 4788 | { |
| 4789 | struct maple_enode *last = mas->node; |
| 4790 | |
| 4791 | if (min > max) |
| 4792 | return -EINVAL; |
| 4793 | |
| 4794 | if (size == 0 || max - min < size - 1) |
| 4795 | return -EINVAL; |
| 4796 | |
| 4797 | if (mas_is_start(mas)) |
| 4798 | mas_start(mas); |
| 4799 | else if ((mas->offset < 2) && (!mas_rewind_node(mas))) |
| 4800 | return -EBUSY; |
| 4801 | |
| 4802 | if (unlikely(mas_is_none(mas) || mas_is_ptr(mas))) |
| 4803 | return mas_sparse_area(mas, min, max, size, fwd: false); |
| 4804 | else if (mas->offset >= 2) |
| 4805 | mas->offset -= 2; |
| 4806 | else |
| 4807 | mas->offset = mas_data_end(mas); |
| 4808 | |
| 4809 | |
| 4810 | /* The start of the window can only be within these values. */ |
| 4811 | mas->index = min; |
| 4812 | mas->last = max; |
| 4813 | |
| 4814 | while (!mas_rev_awalk(mas, size, gap_min: &min, gap_max: &max)) { |
| 4815 | if (last == mas->node) { |
| 4816 | if (!mas_rewind_node(mas)) |
| 4817 | return -EBUSY; |
| 4818 | } else { |
| 4819 | last = mas->node; |
| 4820 | } |
| 4821 | } |
| 4822 | |
| 4823 | if (mas_is_err(mas)) |
| 4824 | return xa_err(entry: mas->node); |
| 4825 | |
| 4826 | if (unlikely(mas->offset == MAPLE_NODE_SLOTS)) |
| 4827 | return -EBUSY; |
| 4828 | |
| 4829 | /* Trim the upper limit to the max. */ |
| 4830 | if (max < mas->last) |
| 4831 | mas->last = max; |
| 4832 | |
| 4833 | mas->index = mas->last - size + 1; |
| 4834 | mas->end = mas_data_end(mas); |
| 4835 | return 0; |
| 4836 | } |
| 4837 | EXPORT_SYMBOL_GPL(mas_empty_area_rev); |
| 4838 | |
| 4839 | /* |
| 4840 | * mte_dead_leaves() - Mark all leaves of a node as dead. |
| 4841 | * @enode: the encoded node |
| 4842 | * @mt: the maple tree |
| 4843 | * @slots: Pointer to the slot array |
| 4844 | * |
| 4845 | * Must hold the write lock. |
| 4846 | * |
| 4847 | * Return: The number of leaves marked as dead. |
| 4848 | */ |
| 4849 | static inline |
| 4850 | unsigned char mte_dead_leaves(struct maple_enode *enode, struct maple_tree *mt, |
| 4851 | void __rcu **slots) |
| 4852 | { |
| 4853 | struct maple_node *node; |
| 4854 | enum maple_type type; |
| 4855 | void *entry; |
| 4856 | int offset; |
| 4857 | |
| 4858 | for (offset = 0; offset < mt_slot_count(enode); offset++) { |
| 4859 | entry = mt_slot(mt, slots, offset); |
| 4860 | type = mte_node_type(entry); |
| 4861 | node = mte_to_node(entry); |
| 4862 | /* Use both node and type to catch LE & BE metadata */ |
| 4863 | if (!node || !type) |
| 4864 | break; |
| 4865 | |
| 4866 | mte_set_node_dead(mn: entry); |
| 4867 | node->type = type; |
| 4868 | rcu_assign_pointer(slots[offset], node); |
| 4869 | } |
| 4870 | |
| 4871 | return offset; |
| 4872 | } |
| 4873 | |
| 4874 | /** |
| 4875 | * mte_dead_walk() - Walk down a dead tree to just before the leaves |
| 4876 | * @enode: The maple encoded node |
| 4877 | * @offset: The starting offset |
| 4878 | * |
| 4879 | * Note: This can only be used from the RCU callback context. |
| 4880 | */ |
| 4881 | static void __rcu **mte_dead_walk(struct maple_enode **enode, unsigned char offset) |
| 4882 | { |
| 4883 | struct maple_node *node, *next; |
| 4884 | void __rcu **slots = NULL; |
| 4885 | |
| 4886 | next = mte_to_node(entry: *enode); |
| 4887 | do { |
| 4888 | *enode = ma_enode_ptr(next); |
| 4889 | node = mte_to_node(entry: *enode); |
| 4890 | slots = ma_slots(mn: node, mt: node->type); |
| 4891 | next = rcu_dereference_protected(slots[offset], |
| 4892 | lock_is_held(&rcu_callback_map)); |
| 4893 | offset = 0; |
| 4894 | } while (!ma_is_leaf(type: next->type)); |
| 4895 | |
| 4896 | return slots; |
| 4897 | } |
| 4898 | |
| 4899 | /** |
| 4900 | * mt_free_walk() - Walk & free a tree in the RCU callback context |
| 4901 | * @head: The RCU head that's within the node. |
| 4902 | * |
| 4903 | * Note: This can only be used from the RCU callback context. |
| 4904 | */ |
| 4905 | static void mt_free_walk(struct rcu_head *head) |
| 4906 | { |
| 4907 | void __rcu **slots; |
| 4908 | struct maple_node *node, *start; |
| 4909 | struct maple_enode *enode; |
| 4910 | unsigned char offset; |
| 4911 | enum maple_type type; |
| 4912 | |
| 4913 | node = container_of(head, struct maple_node, rcu); |
| 4914 | |
| 4915 | if (ma_is_leaf(type: node->type)) |
| 4916 | goto free_leaf; |
| 4917 | |
| 4918 | start = node; |
| 4919 | enode = mt_mk_node(node, type: node->type); |
| 4920 | slots = mte_dead_walk(enode: &enode, offset: 0); |
| 4921 | node = mte_to_node(entry: enode); |
| 4922 | do { |
| 4923 | mt_free_bulk(size: node->slot_len, nodes: slots); |
| 4924 | offset = node->parent_slot + 1; |
| 4925 | enode = node->piv_parent; |
| 4926 | if (mte_to_node(entry: enode) == node) |
| 4927 | goto free_leaf; |
| 4928 | |
| 4929 | type = mte_node_type(entry: enode); |
| 4930 | slots = ma_slots(mn: mte_to_node(entry: enode), mt: type); |
| 4931 | if ((offset < mt_slots[type]) && |
| 4932 | rcu_dereference_protected(slots[offset], |
| 4933 | lock_is_held(&rcu_callback_map))) |
| 4934 | slots = mte_dead_walk(enode: &enode, offset); |
| 4935 | node = mte_to_node(entry: enode); |
| 4936 | } while ((node != start) || (node->slot_len < offset)); |
| 4937 | |
| 4938 | slots = ma_slots(mn: node, mt: node->type); |
| 4939 | mt_free_bulk(size: node->slot_len, nodes: slots); |
| 4940 | |
| 4941 | free_leaf: |
| 4942 | kfree(objp: node); |
| 4943 | } |
| 4944 | |
| 4945 | static inline void __rcu **mte_destroy_descend(struct maple_enode **enode, |
| 4946 | struct maple_tree *mt, struct maple_enode *prev, unsigned char offset) |
| 4947 | { |
| 4948 | struct maple_node *node; |
| 4949 | struct maple_enode *next = *enode; |
| 4950 | void __rcu **slots = NULL; |
| 4951 | enum maple_type type; |
| 4952 | unsigned char next_offset = 0; |
| 4953 | |
| 4954 | do { |
| 4955 | *enode = next; |
| 4956 | node = mte_to_node(entry: *enode); |
| 4957 | type = mte_node_type(entry: *enode); |
| 4958 | slots = ma_slots(mn: node, mt: type); |
| 4959 | next = mt_slot_locked(mt, slots, offset: next_offset); |
| 4960 | if ((mte_dead_node(enode: next))) |
| 4961 | next = mt_slot_locked(mt, slots, offset: ++next_offset); |
| 4962 | |
| 4963 | mte_set_node_dead(mn: *enode); |
| 4964 | node->type = type; |
| 4965 | node->piv_parent = prev; |
| 4966 | node->parent_slot = offset; |
| 4967 | offset = next_offset; |
| 4968 | next_offset = 0; |
| 4969 | prev = *enode; |
| 4970 | } while (!mte_is_leaf(entry: next)); |
| 4971 | |
| 4972 | return slots; |
| 4973 | } |
| 4974 | |
| 4975 | static void mt_destroy_walk(struct maple_enode *enode, struct maple_tree *mt, |
| 4976 | bool free) |
| 4977 | { |
| 4978 | void __rcu **slots; |
| 4979 | struct maple_node *node = mte_to_node(entry: enode); |
| 4980 | struct maple_enode *start; |
| 4981 | |
| 4982 | if (mte_is_leaf(entry: enode)) { |
| 4983 | mte_set_node_dead(mn: enode); |
| 4984 | node->type = mte_node_type(entry: enode); |
| 4985 | goto free_leaf; |
| 4986 | } |
| 4987 | |
| 4988 | start = enode; |
| 4989 | slots = mte_destroy_descend(enode: &enode, mt, prev: start, offset: 0); |
| 4990 | node = mte_to_node(entry: enode); // Updated in the above call. |
| 4991 | do { |
| 4992 | enum maple_type type; |
| 4993 | unsigned char offset; |
| 4994 | struct maple_enode *parent, *tmp; |
| 4995 | |
| 4996 | node->slot_len = mte_dead_leaves(enode, mt, slots); |
| 4997 | if (free) |
| 4998 | mt_free_bulk(size: node->slot_len, nodes: slots); |
| 4999 | offset = node->parent_slot + 1; |
| 5000 | enode = node->piv_parent; |
| 5001 | if (mte_to_node(entry: enode) == node) |
| 5002 | goto free_leaf; |
| 5003 | |
| 5004 | type = mte_node_type(entry: enode); |
| 5005 | slots = ma_slots(mn: mte_to_node(entry: enode), mt: type); |
| 5006 | if (offset >= mt_slots[type]) |
| 5007 | goto next; |
| 5008 | |
| 5009 | tmp = mt_slot_locked(mt, slots, offset); |
| 5010 | if (mte_node_type(entry: tmp) && mte_to_node(entry: tmp)) { |
| 5011 | parent = enode; |
| 5012 | enode = tmp; |
| 5013 | slots = mte_destroy_descend(enode: &enode, mt, prev: parent, offset); |
| 5014 | } |
| 5015 | next: |
| 5016 | node = mte_to_node(entry: enode); |
| 5017 | } while (start != enode); |
| 5018 | |
| 5019 | node = mte_to_node(entry: enode); |
| 5020 | node->slot_len = mte_dead_leaves(enode, mt, slots); |
| 5021 | if (free) |
| 5022 | mt_free_bulk(size: node->slot_len, nodes: slots); |
| 5023 | |
| 5024 | free_leaf: |
| 5025 | if (free) |
| 5026 | kfree(objp: node); |
| 5027 | else |
| 5028 | mt_clear_meta(mt, mn: node, type: node->type); |
| 5029 | } |
| 5030 | |
| 5031 | /* |
| 5032 | * mte_destroy_walk() - Free a tree or sub-tree. |
| 5033 | * @enode: the encoded maple node (maple_enode) to start |
| 5034 | * @mt: the tree to free - needed for node types. |
| 5035 | * |
| 5036 | * Must hold the write lock. |
| 5037 | */ |
| 5038 | static inline void mte_destroy_walk(struct maple_enode *enode, |
| 5039 | struct maple_tree *mt) |
| 5040 | { |
| 5041 | struct maple_node *node = mte_to_node(entry: enode); |
| 5042 | |
| 5043 | if (mt_in_rcu(mt)) { |
| 5044 | mt_destroy_walk(enode, mt, free: false); |
| 5045 | call_rcu(head: &node->rcu, func: mt_free_walk); |
| 5046 | } else { |
| 5047 | mt_destroy_walk(enode, mt, free: true); |
| 5048 | } |
| 5049 | } |
| 5050 | /* Interface */ |
| 5051 | |
| 5052 | /** |
| 5053 | * mas_store() - Store an @entry. |
| 5054 | * @mas: The maple state. |
| 5055 | * @entry: The entry to store. |
| 5056 | * |
| 5057 | * The @mas->index and @mas->last is used to set the range for the @entry. |
| 5058 | * |
| 5059 | * Return: the first entry between mas->index and mas->last or %NULL. |
| 5060 | */ |
| 5061 | void *mas_store(struct ma_state *mas, void *entry) |
| 5062 | { |
| 5063 | MA_WR_STATE(wr_mas, mas, entry); |
| 5064 | |
| 5065 | trace_ma_write(fn: __func__, mas, piv: 0, val: entry); |
| 5066 | #ifdef CONFIG_DEBUG_MAPLE_TREE |
| 5067 | if (MAS_WARN_ON(mas, mas->index > mas->last)) |
| 5068 | pr_err("Error %lX > %lX " PTR_FMT "\n" , mas->index, mas->last, |
| 5069 | entry); |
| 5070 | |
| 5071 | if (mas->index > mas->last) { |
| 5072 | mas_set_err(mas, -EINVAL); |
| 5073 | return NULL; |
| 5074 | } |
| 5075 | |
| 5076 | #endif |
| 5077 | |
| 5078 | /* |
| 5079 | * Storing is the same operation as insert with the added caveat that it |
| 5080 | * can overwrite entries. Although this seems simple enough, one may |
| 5081 | * want to examine what happens if a single store operation was to |
| 5082 | * overwrite multiple entries within a self-balancing B-Tree. |
| 5083 | */ |
| 5084 | mas_wr_prealloc_setup(wr_mas: &wr_mas); |
| 5085 | mas->store_type = mas_wr_store_type(wr_mas: &wr_mas); |
| 5086 | if (mas->mas_flags & MA_STATE_PREALLOC) { |
| 5087 | mas_wr_store_entry(wr_mas: &wr_mas); |
| 5088 | MAS_WR_BUG_ON(&wr_mas, mas_is_err(mas)); |
| 5089 | return wr_mas.content; |
| 5090 | } |
| 5091 | |
| 5092 | mas_prealloc_calc(wr_mas: &wr_mas, entry); |
| 5093 | if (!mas->node_request) |
| 5094 | goto store; |
| 5095 | |
| 5096 | mas_alloc_nodes(mas, GFP_NOWAIT); |
| 5097 | if (mas_is_err(mas)) |
| 5098 | return NULL; |
| 5099 | |
| 5100 | store: |
| 5101 | mas_wr_store_entry(wr_mas: &wr_mas); |
| 5102 | mas_destroy(mas); |
| 5103 | return wr_mas.content; |
| 5104 | } |
| 5105 | EXPORT_SYMBOL_GPL(mas_store); |
| 5106 | |
| 5107 | /** |
| 5108 | * mas_store_gfp() - Store a value into the tree. |
| 5109 | * @mas: The maple state |
| 5110 | * @entry: The entry to store |
| 5111 | * @gfp: The GFP_FLAGS to use for allocations if necessary. |
| 5112 | * |
| 5113 | * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not |
| 5114 | * be allocated. |
| 5115 | */ |
| 5116 | int mas_store_gfp(struct ma_state *mas, void *entry, gfp_t gfp) |
| 5117 | { |
| 5118 | unsigned long index = mas->index; |
| 5119 | unsigned long last = mas->last; |
| 5120 | MA_WR_STATE(wr_mas, mas, entry); |
| 5121 | int ret = 0; |
| 5122 | |
| 5123 | retry: |
| 5124 | mas_wr_preallocate(wr_mas: &wr_mas, entry); |
| 5125 | if (unlikely(mas_nomem(mas, gfp))) { |
| 5126 | if (!entry) |
| 5127 | __mas_set_range(mas, start: index, last); |
| 5128 | goto retry; |
| 5129 | } |
| 5130 | |
| 5131 | if (mas_is_err(mas)) { |
| 5132 | ret = xa_err(entry: mas->node); |
| 5133 | goto out; |
| 5134 | } |
| 5135 | |
| 5136 | mas_wr_store_entry(wr_mas: &wr_mas); |
| 5137 | out: |
| 5138 | mas_destroy(mas); |
| 5139 | return ret; |
| 5140 | } |
| 5141 | EXPORT_SYMBOL_GPL(mas_store_gfp); |
| 5142 | |
| 5143 | /** |
| 5144 | * mas_store_prealloc() - Store a value into the tree using memory |
| 5145 | * preallocated in the maple state. |
| 5146 | * @mas: The maple state |
| 5147 | * @entry: The entry to store. |
| 5148 | */ |
| 5149 | void mas_store_prealloc(struct ma_state *mas, void *entry) |
| 5150 | { |
| 5151 | MA_WR_STATE(wr_mas, mas, entry); |
| 5152 | |
| 5153 | if (mas->store_type == wr_store_root) { |
| 5154 | mas_wr_prealloc_setup(wr_mas: &wr_mas); |
| 5155 | goto store; |
| 5156 | } |
| 5157 | |
| 5158 | mas_wr_walk_descend(wr_mas: &wr_mas); |
| 5159 | if (mas->store_type != wr_spanning_store) { |
| 5160 | /* set wr_mas->content to current slot */ |
| 5161 | wr_mas.content = mas_slot_locked(mas, slots: wr_mas.slots, offset: mas->offset); |
| 5162 | mas_wr_end_piv(wr_mas: &wr_mas); |
| 5163 | } |
| 5164 | |
| 5165 | store: |
| 5166 | trace_ma_write(fn: __func__, mas, piv: 0, val: entry); |
| 5167 | mas_wr_store_entry(wr_mas: &wr_mas); |
| 5168 | MAS_WR_BUG_ON(&wr_mas, mas_is_err(mas)); |
| 5169 | mas_destroy(mas); |
| 5170 | } |
| 5171 | EXPORT_SYMBOL_GPL(mas_store_prealloc); |
| 5172 | |
| 5173 | /** |
| 5174 | * mas_preallocate() - Preallocate enough nodes for a store operation |
| 5175 | * @mas: The maple state |
| 5176 | * @entry: The entry that will be stored |
| 5177 | * @gfp: The GFP_FLAGS to use for allocations. |
| 5178 | * |
| 5179 | * Return: 0 on success, -ENOMEM if memory could not be allocated. |
| 5180 | */ |
| 5181 | int mas_preallocate(struct ma_state *mas, void *entry, gfp_t gfp) |
| 5182 | { |
| 5183 | MA_WR_STATE(wr_mas, mas, entry); |
| 5184 | |
| 5185 | mas_wr_prealloc_setup(wr_mas: &wr_mas); |
| 5186 | mas->store_type = mas_wr_store_type(wr_mas: &wr_mas); |
| 5187 | mas_prealloc_calc(wr_mas: &wr_mas, entry); |
| 5188 | if (!mas->node_request) |
| 5189 | goto set_flag; |
| 5190 | |
| 5191 | mas->mas_flags &= ~MA_STATE_PREALLOC; |
| 5192 | mas_alloc_nodes(mas, gfp); |
| 5193 | if (mas_is_err(mas)) { |
| 5194 | int ret = xa_err(entry: mas->node); |
| 5195 | |
| 5196 | mas->node_request = 0; |
| 5197 | mas_destroy(mas); |
| 5198 | mas_reset(mas); |
| 5199 | return ret; |
| 5200 | } |
| 5201 | |
| 5202 | set_flag: |
| 5203 | mas->mas_flags |= MA_STATE_PREALLOC; |
| 5204 | return 0; |
| 5205 | } |
| 5206 | EXPORT_SYMBOL_GPL(mas_preallocate); |
| 5207 | |
| 5208 | /* |
| 5209 | * mas_destroy() - destroy a maple state. |
| 5210 | * @mas: The maple state |
| 5211 | * |
| 5212 | * Upon completion, check the left-most node and rebalance against the node to |
| 5213 | * the right if necessary. Frees any allocated nodes associated with this maple |
| 5214 | * state. |
| 5215 | */ |
| 5216 | void mas_destroy(struct ma_state *mas) |
| 5217 | { |
| 5218 | mas->mas_flags &= ~MA_STATE_PREALLOC; |
| 5219 | mas_empty_nodes(mas); |
| 5220 | } |
| 5221 | EXPORT_SYMBOL_GPL(mas_destroy); |
| 5222 | |
| 5223 | static void mas_may_activate(struct ma_state *mas) |
| 5224 | { |
| 5225 | if (!mas->node) { |
| 5226 | mas->status = ma_start; |
| 5227 | } else if (mas->index > mas->max || mas->index < mas->min) { |
| 5228 | mas->status = ma_start; |
| 5229 | } else { |
| 5230 | mas->status = ma_active; |
| 5231 | } |
| 5232 | } |
| 5233 | |
| 5234 | static bool mas_next_setup(struct ma_state *mas, unsigned long max, |
| 5235 | void **entry) |
| 5236 | { |
| 5237 | bool was_none = mas_is_none(mas); |
| 5238 | |
| 5239 | if (unlikely(mas->last >= max)) { |
| 5240 | mas->status = ma_overflow; |
| 5241 | return true; |
| 5242 | } |
| 5243 | |
| 5244 | switch (mas->status) { |
| 5245 | case ma_active: |
| 5246 | return false; |
| 5247 | case ma_none: |
| 5248 | fallthrough; |
| 5249 | case ma_pause: |
| 5250 | mas->status = ma_start; |
| 5251 | fallthrough; |
| 5252 | case ma_start: |
| 5253 | mas_walk(mas); /* Retries on dead nodes handled by mas_walk */ |
| 5254 | break; |
| 5255 | case ma_overflow: |
| 5256 | /* Overflowed before, but the max changed */ |
| 5257 | mas_may_activate(mas); |
| 5258 | break; |
| 5259 | case ma_underflow: |
| 5260 | /* The user expects the mas to be one before where it is */ |
| 5261 | mas_may_activate(mas); |
| 5262 | *entry = mas_walk(mas); |
| 5263 | if (*entry) |
| 5264 | return true; |
| 5265 | break; |
| 5266 | case ma_root: |
| 5267 | break; |
| 5268 | case ma_error: |
| 5269 | return true; |
| 5270 | } |
| 5271 | |
| 5272 | if (likely(mas_is_active(mas))) /* Fast path */ |
| 5273 | return false; |
| 5274 | |
| 5275 | if (mas_is_ptr(mas)) { |
| 5276 | *entry = NULL; |
| 5277 | if (was_none && mas->index == 0) { |
| 5278 | mas->index = mas->last = 0; |
| 5279 | return true; |
| 5280 | } |
| 5281 | mas->index = 1; |
| 5282 | mas->last = ULONG_MAX; |
| 5283 | mas->status = ma_none; |
| 5284 | return true; |
| 5285 | } |
| 5286 | |
| 5287 | if (mas_is_none(mas)) |
| 5288 | return true; |
| 5289 | |
| 5290 | return false; |
| 5291 | } |
| 5292 | |
| 5293 | /** |
| 5294 | * mas_next() - Get the next entry. |
| 5295 | * @mas: The maple state |
| 5296 | * @max: The maximum index to check. |
| 5297 | * |
| 5298 | * Returns the next entry after @mas->index. |
| 5299 | * Must hold rcu_read_lock or the write lock. |
| 5300 | * Can return the zero entry. |
| 5301 | * |
| 5302 | * Return: The next entry or %NULL |
| 5303 | */ |
| 5304 | void *mas_next(struct ma_state *mas, unsigned long max) |
| 5305 | { |
| 5306 | void *entry = NULL; |
| 5307 | |
| 5308 | if (mas_next_setup(mas, max, entry: &entry)) |
| 5309 | return entry; |
| 5310 | |
| 5311 | /* Retries on dead nodes handled by mas_next_slot */ |
| 5312 | return mas_next_slot(mas, max, empty: false); |
| 5313 | } |
| 5314 | EXPORT_SYMBOL_GPL(mas_next); |
| 5315 | |
| 5316 | /** |
| 5317 | * mas_next_range() - Advance the maple state to the next range |
| 5318 | * @mas: The maple state |
| 5319 | * @max: The maximum index to check. |
| 5320 | * |
| 5321 | * Sets @mas->index and @mas->last to the range. |
| 5322 | * Must hold rcu_read_lock or the write lock. |
| 5323 | * Can return the zero entry. |
| 5324 | * |
| 5325 | * Return: The next entry or %NULL |
| 5326 | */ |
| 5327 | void *mas_next_range(struct ma_state *mas, unsigned long max) |
| 5328 | { |
| 5329 | void *entry = NULL; |
| 5330 | |
| 5331 | if (mas_next_setup(mas, max, entry: &entry)) |
| 5332 | return entry; |
| 5333 | |
| 5334 | /* Retries on dead nodes handled by mas_next_slot */ |
| 5335 | return mas_next_slot(mas, max, empty: true); |
| 5336 | } |
| 5337 | EXPORT_SYMBOL_GPL(mas_next_range); |
| 5338 | |
| 5339 | /** |
| 5340 | * mt_next() - get the next value in the maple tree |
| 5341 | * @mt: The maple tree |
| 5342 | * @index: The start index |
| 5343 | * @max: The maximum index to check |
| 5344 | * |
| 5345 | * Takes RCU read lock internally to protect the search, which does not |
| 5346 | * protect the returned pointer after dropping RCU read lock. |
| 5347 | * See also: Documentation/core-api/maple_tree.rst |
| 5348 | * |
| 5349 | * Return: The entry higher than @index or %NULL if nothing is found. |
| 5350 | */ |
| 5351 | void *mt_next(struct maple_tree *mt, unsigned long index, unsigned long max) |
| 5352 | { |
| 5353 | void *entry = NULL; |
| 5354 | MA_STATE(mas, mt, index, index); |
| 5355 | |
| 5356 | rcu_read_lock(); |
| 5357 | entry = mas_next(&mas, max); |
| 5358 | rcu_read_unlock(); |
| 5359 | return entry; |
| 5360 | } |
| 5361 | EXPORT_SYMBOL_GPL(mt_next); |
| 5362 | |
| 5363 | static bool mas_prev_setup(struct ma_state *mas, unsigned long min, void **entry) |
| 5364 | { |
| 5365 | if (unlikely(mas->index <= min)) { |
| 5366 | mas->status = ma_underflow; |
| 5367 | return true; |
| 5368 | } |
| 5369 | |
| 5370 | switch (mas->status) { |
| 5371 | case ma_active: |
| 5372 | return false; |
| 5373 | case ma_start: |
| 5374 | break; |
| 5375 | case ma_none: |
| 5376 | fallthrough; |
| 5377 | case ma_pause: |
| 5378 | mas->status = ma_start; |
| 5379 | break; |
| 5380 | case ma_underflow: |
| 5381 | /* underflowed before but the min changed */ |
| 5382 | mas_may_activate(mas); |
| 5383 | break; |
| 5384 | case ma_overflow: |
| 5385 | /* User expects mas to be one after where it is */ |
| 5386 | mas_may_activate(mas); |
| 5387 | *entry = mas_walk(mas); |
| 5388 | if (*entry) |
| 5389 | return true; |
| 5390 | break; |
| 5391 | case ma_root: |
| 5392 | break; |
| 5393 | case ma_error: |
| 5394 | return true; |
| 5395 | } |
| 5396 | |
| 5397 | if (mas_is_start(mas)) |
| 5398 | mas_walk(mas); |
| 5399 | |
| 5400 | if (unlikely(mas_is_ptr(mas))) { |
| 5401 | if (!mas->index) { |
| 5402 | mas->status = ma_none; |
| 5403 | return true; |
| 5404 | } |
| 5405 | mas->index = mas->last = 0; |
| 5406 | *entry = mas_root(mas); |
| 5407 | return true; |
| 5408 | } |
| 5409 | |
| 5410 | if (mas_is_none(mas)) { |
| 5411 | if (mas->index) { |
| 5412 | /* Walked to out-of-range pointer? */ |
| 5413 | mas->index = mas->last = 0; |
| 5414 | mas->status = ma_root; |
| 5415 | *entry = mas_root(mas); |
| 5416 | return true; |
| 5417 | } |
| 5418 | return true; |
| 5419 | } |
| 5420 | |
| 5421 | return false; |
| 5422 | } |
| 5423 | |
| 5424 | /** |
| 5425 | * mas_prev() - Get the previous entry |
| 5426 | * @mas: The maple state |
| 5427 | * @min: The minimum value to check. |
| 5428 | * |
| 5429 | * Must hold rcu_read_lock or the write lock. |
| 5430 | * Will reset mas to ma_start if the status is ma_none. Will stop on not |
| 5431 | * searchable nodes. |
| 5432 | * |
| 5433 | * Return: the previous value or %NULL. |
| 5434 | */ |
| 5435 | void *mas_prev(struct ma_state *mas, unsigned long min) |
| 5436 | { |
| 5437 | void *entry = NULL; |
| 5438 | |
| 5439 | if (mas_prev_setup(mas, min, entry: &entry)) |
| 5440 | return entry; |
| 5441 | |
| 5442 | return mas_prev_slot(mas, min, empty: false); |
| 5443 | } |
| 5444 | EXPORT_SYMBOL_GPL(mas_prev); |
| 5445 | |
| 5446 | /** |
| 5447 | * mas_prev_range() - Advance to the previous range |
| 5448 | * @mas: The maple state |
| 5449 | * @min: The minimum value to check. |
| 5450 | * |
| 5451 | * Sets @mas->index and @mas->last to the range. |
| 5452 | * Must hold rcu_read_lock or the write lock. |
| 5453 | * Will reset mas to ma_start if the node is ma_none. Will stop on not |
| 5454 | * searchable nodes. |
| 5455 | * |
| 5456 | * Return: the previous value or %NULL. |
| 5457 | */ |
| 5458 | void *mas_prev_range(struct ma_state *mas, unsigned long min) |
| 5459 | { |
| 5460 | void *entry = NULL; |
| 5461 | |
| 5462 | if (mas_prev_setup(mas, min, entry: &entry)) |
| 5463 | return entry; |
| 5464 | |
| 5465 | return mas_prev_slot(mas, min, empty: true); |
| 5466 | } |
| 5467 | EXPORT_SYMBOL_GPL(mas_prev_range); |
| 5468 | |
| 5469 | /** |
| 5470 | * mt_prev() - get the previous value in the maple tree |
| 5471 | * @mt: The maple tree |
| 5472 | * @index: The start index |
| 5473 | * @min: The minimum index to check |
| 5474 | * |
| 5475 | * Takes RCU read lock internally to protect the search, which does not |
| 5476 | * protect the returned pointer after dropping RCU read lock. |
| 5477 | * See also: Documentation/core-api/maple_tree.rst |
| 5478 | * |
| 5479 | * Return: The entry before @index or %NULL if nothing is found. |
| 5480 | */ |
| 5481 | void *mt_prev(struct maple_tree *mt, unsigned long index, unsigned long min) |
| 5482 | { |
| 5483 | void *entry = NULL; |
| 5484 | MA_STATE(mas, mt, index, index); |
| 5485 | |
| 5486 | rcu_read_lock(); |
| 5487 | entry = mas_prev(&mas, min); |
| 5488 | rcu_read_unlock(); |
| 5489 | return entry; |
| 5490 | } |
| 5491 | EXPORT_SYMBOL_GPL(mt_prev); |
| 5492 | |
| 5493 | /** |
| 5494 | * mas_pause() - Pause a mas_find/mas_for_each to drop the lock. |
| 5495 | * @mas: The maple state to pause |
| 5496 | * |
| 5497 | * Some users need to pause a walk and drop the lock they're holding in |
| 5498 | * order to yield to a higher priority thread or carry out an operation |
| 5499 | * on an entry. Those users should call this function before they drop |
| 5500 | * the lock. It resets the @mas to be suitable for the next iteration |
| 5501 | * of the loop after the user has reacquired the lock. If most entries |
| 5502 | * found during a walk require you to call mas_pause(), the mt_for_each() |
| 5503 | * iterator may be more appropriate. |
| 5504 | * |
| 5505 | */ |
| 5506 | void mas_pause(struct ma_state *mas) |
| 5507 | { |
| 5508 | mas->status = ma_pause; |
| 5509 | mas->node = NULL; |
| 5510 | } |
| 5511 | EXPORT_SYMBOL_GPL(mas_pause); |
| 5512 | |
| 5513 | /** |
| 5514 | * mas_find_setup() - Internal function to set up mas_find*(). |
| 5515 | * @mas: The maple state |
| 5516 | * @max: The maximum index |
| 5517 | * @entry: Pointer to the entry |
| 5518 | * |
| 5519 | * Returns: True if entry is the answer, false otherwise. |
| 5520 | */ |
| 5521 | static __always_inline bool mas_find_setup(struct ma_state *mas, unsigned long max, void **entry) |
| 5522 | { |
| 5523 | switch (mas->status) { |
| 5524 | case ma_active: |
| 5525 | if (mas->last < max) |
| 5526 | return false; |
| 5527 | return true; |
| 5528 | case ma_start: |
| 5529 | break; |
| 5530 | case ma_pause: |
| 5531 | if (unlikely(mas->last >= max)) |
| 5532 | return true; |
| 5533 | |
| 5534 | mas->index = ++mas->last; |
| 5535 | mas->status = ma_start; |
| 5536 | break; |
| 5537 | case ma_none: |
| 5538 | if (unlikely(mas->last >= max)) |
| 5539 | return true; |
| 5540 | |
| 5541 | mas->index = mas->last; |
| 5542 | mas->status = ma_start; |
| 5543 | break; |
| 5544 | case ma_underflow: |
| 5545 | /* mas is pointing at entry before unable to go lower */ |
| 5546 | if (unlikely(mas->index >= max)) { |
| 5547 | mas->status = ma_overflow; |
| 5548 | return true; |
| 5549 | } |
| 5550 | |
| 5551 | mas_may_activate(mas); |
| 5552 | *entry = mas_walk(mas); |
| 5553 | if (*entry) |
| 5554 | return true; |
| 5555 | break; |
| 5556 | case ma_overflow: |
| 5557 | if (unlikely(mas->last >= max)) |
| 5558 | return true; |
| 5559 | |
| 5560 | mas_may_activate(mas); |
| 5561 | *entry = mas_walk(mas); |
| 5562 | if (*entry) |
| 5563 | return true; |
| 5564 | break; |
| 5565 | case ma_root: |
| 5566 | break; |
| 5567 | case ma_error: |
| 5568 | return true; |
| 5569 | } |
| 5570 | |
| 5571 | if (mas_is_start(mas)) { |
| 5572 | /* First run or continue */ |
| 5573 | if (mas->index > max) |
| 5574 | return true; |
| 5575 | |
| 5576 | *entry = mas_walk(mas); |
| 5577 | if (*entry) |
| 5578 | return true; |
| 5579 | |
| 5580 | } |
| 5581 | |
| 5582 | if (unlikely(mas_is_ptr(mas))) |
| 5583 | goto ptr_out_of_range; |
| 5584 | |
| 5585 | if (unlikely(mas_is_none(mas))) |
| 5586 | return true; |
| 5587 | |
| 5588 | if (mas->index == max) |
| 5589 | return true; |
| 5590 | |
| 5591 | return false; |
| 5592 | |
| 5593 | ptr_out_of_range: |
| 5594 | mas->status = ma_none; |
| 5595 | mas->index = 1; |
| 5596 | mas->last = ULONG_MAX; |
| 5597 | return true; |
| 5598 | } |
| 5599 | |
| 5600 | /** |
| 5601 | * mas_find() - On the first call, find the entry at or after mas->index up to |
| 5602 | * %max. Otherwise, find the entry after mas->index. |
| 5603 | * @mas: The maple state |
| 5604 | * @max: The maximum value to check. |
| 5605 | * |
| 5606 | * Must hold rcu_read_lock or the write lock. |
| 5607 | * If an entry exists, last and index are updated accordingly. |
| 5608 | * May set @mas->status to ma_overflow. |
| 5609 | * |
| 5610 | * Return: The entry or %NULL. |
| 5611 | */ |
| 5612 | void *mas_find(struct ma_state *mas, unsigned long max) |
| 5613 | { |
| 5614 | void *entry = NULL; |
| 5615 | |
| 5616 | if (mas_find_setup(mas, max, entry: &entry)) |
| 5617 | return entry; |
| 5618 | |
| 5619 | /* Retries on dead nodes handled by mas_next_slot */ |
| 5620 | entry = mas_next_slot(mas, max, empty: false); |
| 5621 | /* Ignore overflow */ |
| 5622 | mas->status = ma_active; |
| 5623 | return entry; |
| 5624 | } |
| 5625 | EXPORT_SYMBOL_GPL(mas_find); |
| 5626 | |
| 5627 | /** |
| 5628 | * mas_find_range() - On the first call, find the entry at or after |
| 5629 | * mas->index up to %max. Otherwise, advance to the next slot mas->index. |
| 5630 | * @mas: The maple state |
| 5631 | * @max: The maximum value to check. |
| 5632 | * |
| 5633 | * Must hold rcu_read_lock or the write lock. |
| 5634 | * If an entry exists, last and index are updated accordingly. |
| 5635 | * May set @mas->status to ma_overflow. |
| 5636 | * |
| 5637 | * Return: The entry or %NULL. |
| 5638 | */ |
| 5639 | void *mas_find_range(struct ma_state *mas, unsigned long max) |
| 5640 | { |
| 5641 | void *entry = NULL; |
| 5642 | |
| 5643 | if (mas_find_setup(mas, max, entry: &entry)) |
| 5644 | return entry; |
| 5645 | |
| 5646 | /* Retries on dead nodes handled by mas_next_slot */ |
| 5647 | return mas_next_slot(mas, max, empty: true); |
| 5648 | } |
| 5649 | EXPORT_SYMBOL_GPL(mas_find_range); |
| 5650 | |
| 5651 | /** |
| 5652 | * mas_find_rev_setup() - Internal function to set up mas_find_*_rev() |
| 5653 | * @mas: The maple state |
| 5654 | * @min: The minimum index |
| 5655 | * @entry: Pointer to the entry |
| 5656 | * |
| 5657 | * Returns: True if entry is the answer, false otherwise. |
| 5658 | */ |
| 5659 | static bool mas_find_rev_setup(struct ma_state *mas, unsigned long min, |
| 5660 | void **entry) |
| 5661 | { |
| 5662 | |
| 5663 | switch (mas->status) { |
| 5664 | case ma_active: |
| 5665 | goto active; |
| 5666 | case ma_start: |
| 5667 | break; |
| 5668 | case ma_pause: |
| 5669 | if (unlikely(mas->index <= min)) { |
| 5670 | mas->status = ma_underflow; |
| 5671 | return true; |
| 5672 | } |
| 5673 | mas->last = --mas->index; |
| 5674 | mas->status = ma_start; |
| 5675 | break; |
| 5676 | case ma_none: |
| 5677 | if (mas->index <= min) |
| 5678 | goto none; |
| 5679 | |
| 5680 | mas->last = mas->index; |
| 5681 | mas->status = ma_start; |
| 5682 | break; |
| 5683 | case ma_overflow: /* user expects the mas to be one after where it is */ |
| 5684 | if (unlikely(mas->index <= min)) { |
| 5685 | mas->status = ma_underflow; |
| 5686 | return true; |
| 5687 | } |
| 5688 | |
| 5689 | mas->status = ma_active; |
| 5690 | break; |
| 5691 | case ma_underflow: /* user expects the mas to be one before where it is */ |
| 5692 | if (unlikely(mas->index <= min)) |
| 5693 | return true; |
| 5694 | |
| 5695 | mas->status = ma_active; |
| 5696 | break; |
| 5697 | case ma_root: |
| 5698 | break; |
| 5699 | case ma_error: |
| 5700 | return true; |
| 5701 | } |
| 5702 | |
| 5703 | if (mas_is_start(mas)) { |
| 5704 | /* First run or continue */ |
| 5705 | if (mas->index < min) |
| 5706 | return true; |
| 5707 | |
| 5708 | *entry = mas_walk(mas); |
| 5709 | if (*entry) |
| 5710 | return true; |
| 5711 | } |
| 5712 | |
| 5713 | if (unlikely(mas_is_ptr(mas))) |
| 5714 | goto none; |
| 5715 | |
| 5716 | if (unlikely(mas_is_none(mas))) { |
| 5717 | /* |
| 5718 | * Walked to the location, and there was nothing so the previous |
| 5719 | * location is 0. |
| 5720 | */ |
| 5721 | mas->last = mas->index = 0; |
| 5722 | mas->status = ma_root; |
| 5723 | *entry = mas_root(mas); |
| 5724 | return true; |
| 5725 | } |
| 5726 | |
| 5727 | active: |
| 5728 | if (mas->index < min) |
| 5729 | return true; |
| 5730 | |
| 5731 | return false; |
| 5732 | |
| 5733 | none: |
| 5734 | mas->status = ma_none; |
| 5735 | return true; |
| 5736 | } |
| 5737 | |
| 5738 | /** |
| 5739 | * mas_find_rev: On the first call, find the first non-null entry at or below |
| 5740 | * mas->index down to %min. Otherwise find the first non-null entry below |
| 5741 | * mas->index down to %min. |
| 5742 | * @mas: The maple state |
| 5743 | * @min: The minimum value to check. |
| 5744 | * |
| 5745 | * Must hold rcu_read_lock or the write lock. |
| 5746 | * If an entry exists, last and index are updated accordingly. |
| 5747 | * May set @mas->status to ma_underflow. |
| 5748 | * |
| 5749 | * Return: The entry or %NULL. |
| 5750 | */ |
| 5751 | void *mas_find_rev(struct ma_state *mas, unsigned long min) |
| 5752 | { |
| 5753 | void *entry = NULL; |
| 5754 | |
| 5755 | if (mas_find_rev_setup(mas, min, entry: &entry)) |
| 5756 | return entry; |
| 5757 | |
| 5758 | /* Retries on dead nodes handled by mas_prev_slot */ |
| 5759 | return mas_prev_slot(mas, min, empty: false); |
| 5760 | |
| 5761 | } |
| 5762 | EXPORT_SYMBOL_GPL(mas_find_rev); |
| 5763 | |
| 5764 | /** |
| 5765 | * mas_find_range_rev: On the first call, find the first non-null entry at or |
| 5766 | * below mas->index down to %min. Otherwise advance to the previous slot after |
| 5767 | * mas->index down to %min. |
| 5768 | * @mas: The maple state |
| 5769 | * @min: The minimum value to check. |
| 5770 | * |
| 5771 | * Must hold rcu_read_lock or the write lock. |
| 5772 | * If an entry exists, last and index are updated accordingly. |
| 5773 | * May set @mas->status to ma_underflow. |
| 5774 | * |
| 5775 | * Return: The entry or %NULL. |
| 5776 | */ |
| 5777 | void *mas_find_range_rev(struct ma_state *mas, unsigned long min) |
| 5778 | { |
| 5779 | void *entry = NULL; |
| 5780 | |
| 5781 | if (mas_find_rev_setup(mas, min, entry: &entry)) |
| 5782 | return entry; |
| 5783 | |
| 5784 | /* Retries on dead nodes handled by mas_prev_slot */ |
| 5785 | return mas_prev_slot(mas, min, empty: true); |
| 5786 | } |
| 5787 | EXPORT_SYMBOL_GPL(mas_find_range_rev); |
| 5788 | |
| 5789 | /** |
| 5790 | * mas_erase() - Find the range in which index resides and erase the entire |
| 5791 | * range. |
| 5792 | * @mas: The maple state |
| 5793 | * |
| 5794 | * Must hold the write lock. |
| 5795 | * Searches for @mas->index, sets @mas->index and @mas->last to the range and |
| 5796 | * erases that range. |
| 5797 | * |
| 5798 | * Return: the entry that was erased or %NULL, @mas->index and @mas->last are updated. |
| 5799 | */ |
| 5800 | void *mas_erase(struct ma_state *mas) |
| 5801 | { |
| 5802 | void *entry; |
| 5803 | unsigned long index = mas->index; |
| 5804 | MA_WR_STATE(wr_mas, mas, NULL); |
| 5805 | |
| 5806 | if (!mas_is_active(mas) || !mas_is_start(mas)) |
| 5807 | mas->status = ma_start; |
| 5808 | |
| 5809 | write_retry: |
| 5810 | entry = mas_state_walk(mas); |
| 5811 | if (!entry) |
| 5812 | return NULL; |
| 5813 | |
| 5814 | /* Must reset to ensure spanning writes of last slot are detected */ |
| 5815 | mas_reset(mas); |
| 5816 | mas_wr_preallocate(wr_mas: &wr_mas, NULL); |
| 5817 | if (mas_nomem(mas, GFP_KERNEL)) { |
| 5818 | /* in case the range of entry changed when unlocked */ |
| 5819 | mas->index = mas->last = index; |
| 5820 | goto write_retry; |
| 5821 | } |
| 5822 | |
| 5823 | if (mas_is_err(mas)) |
| 5824 | goto out; |
| 5825 | |
| 5826 | mas_wr_store_entry(wr_mas: &wr_mas); |
| 5827 | out: |
| 5828 | mas_destroy(mas); |
| 5829 | return entry; |
| 5830 | } |
| 5831 | EXPORT_SYMBOL_GPL(mas_erase); |
| 5832 | |
| 5833 | /** |
| 5834 | * mas_nomem() - Check if there was an error allocating and do the allocation |
| 5835 | * if necessary If there are allocations, then free them. |
| 5836 | * @mas: The maple state |
| 5837 | * @gfp: The GFP_FLAGS to use for allocations |
| 5838 | * Return: true on allocation, false otherwise. |
| 5839 | */ |
| 5840 | bool mas_nomem(struct ma_state *mas, gfp_t gfp) |
| 5841 | __must_hold(mas->tree->ma_lock) |
| 5842 | { |
| 5843 | if (likely(mas->node != MA_ERROR(-ENOMEM))) |
| 5844 | return false; |
| 5845 | |
| 5846 | if (gfpflags_allow_blocking(gfp_flags: gfp) && !mt_external_lock(mt: mas->tree)) { |
| 5847 | mtree_unlock(mas->tree); |
| 5848 | mas_alloc_nodes(mas, gfp); |
| 5849 | mtree_lock(mas->tree); |
| 5850 | } else { |
| 5851 | mas_alloc_nodes(mas, gfp); |
| 5852 | } |
| 5853 | |
| 5854 | if (!mas->sheaf && !mas->alloc) |
| 5855 | return false; |
| 5856 | |
| 5857 | mas->status = ma_start; |
| 5858 | return true; |
| 5859 | } |
| 5860 | |
| 5861 | void __init maple_tree_init(void) |
| 5862 | { |
| 5863 | struct kmem_cache_args args = { |
| 5864 | .align = sizeof(struct maple_node), |
| 5865 | .sheaf_capacity = 32, |
| 5866 | }; |
| 5867 | |
| 5868 | maple_node_cache = kmem_cache_create("maple_node" , |
| 5869 | sizeof(struct maple_node), &args, |
| 5870 | SLAB_PANIC); |
| 5871 | } |
| 5872 | |
| 5873 | /** |
| 5874 | * mtree_load() - Load a value stored in a maple tree |
| 5875 | * @mt: The maple tree |
| 5876 | * @index: The index to load |
| 5877 | * |
| 5878 | * Return: the entry or %NULL |
| 5879 | */ |
| 5880 | void *mtree_load(struct maple_tree *mt, unsigned long index) |
| 5881 | { |
| 5882 | MA_STATE(mas, mt, index, index); |
| 5883 | void *entry; |
| 5884 | |
| 5885 | trace_ma_read(fn: __func__, mas: &mas); |
| 5886 | rcu_read_lock(); |
| 5887 | retry: |
| 5888 | entry = mas_start(mas: &mas); |
| 5889 | if (unlikely(mas_is_none(&mas))) |
| 5890 | goto unlock; |
| 5891 | |
| 5892 | if (unlikely(mas_is_ptr(&mas))) { |
| 5893 | if (index) |
| 5894 | entry = NULL; |
| 5895 | |
| 5896 | goto unlock; |
| 5897 | } |
| 5898 | |
| 5899 | entry = mtree_lookup_walk(mas: &mas); |
| 5900 | if (!entry && unlikely(mas_is_start(&mas))) |
| 5901 | goto retry; |
| 5902 | unlock: |
| 5903 | rcu_read_unlock(); |
| 5904 | if (xa_is_zero(entry)) |
| 5905 | return NULL; |
| 5906 | |
| 5907 | return entry; |
| 5908 | } |
| 5909 | EXPORT_SYMBOL(mtree_load); |
| 5910 | |
| 5911 | /** |
| 5912 | * mtree_store_range() - Store an entry at a given range. |
| 5913 | * @mt: The maple tree |
| 5914 | * @index: The start of the range |
| 5915 | * @last: The end of the range |
| 5916 | * @entry: The entry to store |
| 5917 | * @gfp: The GFP_FLAGS to use for allocations |
| 5918 | * |
| 5919 | * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not |
| 5920 | * be allocated. |
| 5921 | */ |
| 5922 | int mtree_store_range(struct maple_tree *mt, unsigned long index, |
| 5923 | unsigned long last, void *entry, gfp_t gfp) |
| 5924 | { |
| 5925 | MA_STATE(mas, mt, index, last); |
| 5926 | int ret = 0; |
| 5927 | |
| 5928 | trace_ma_write(fn: __func__, mas: &mas, piv: 0, val: entry); |
| 5929 | if (WARN_ON_ONCE(xa_is_advanced(entry))) |
| 5930 | return -EINVAL; |
| 5931 | |
| 5932 | if (index > last) |
| 5933 | return -EINVAL; |
| 5934 | |
| 5935 | mtree_lock(mt); |
| 5936 | ret = mas_store_gfp(&mas, entry, gfp); |
| 5937 | mtree_unlock(mt); |
| 5938 | |
| 5939 | return ret; |
| 5940 | } |
| 5941 | EXPORT_SYMBOL(mtree_store_range); |
| 5942 | |
| 5943 | /** |
| 5944 | * mtree_store() - Store an entry at a given index. |
| 5945 | * @mt: The maple tree |
| 5946 | * @index: The index to store the value |
| 5947 | * @entry: The entry to store |
| 5948 | * @gfp: The GFP_FLAGS to use for allocations |
| 5949 | * |
| 5950 | * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not |
| 5951 | * be allocated. |
| 5952 | */ |
| 5953 | int mtree_store(struct maple_tree *mt, unsigned long index, void *entry, |
| 5954 | gfp_t gfp) |
| 5955 | { |
| 5956 | return mtree_store_range(mt, index, index, entry, gfp); |
| 5957 | } |
| 5958 | EXPORT_SYMBOL(mtree_store); |
| 5959 | |
| 5960 | /** |
| 5961 | * mtree_insert_range() - Insert an entry at a given range if there is no value. |
| 5962 | * @mt: The maple tree |
| 5963 | * @first: The start of the range |
| 5964 | * @last: The end of the range |
| 5965 | * @entry: The entry to store |
| 5966 | * @gfp: The GFP_FLAGS to use for allocations. |
| 5967 | * |
| 5968 | * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid |
| 5969 | * request, -ENOMEM if memory could not be allocated. |
| 5970 | */ |
| 5971 | int mtree_insert_range(struct maple_tree *mt, unsigned long first, |
| 5972 | unsigned long last, void *entry, gfp_t gfp) |
| 5973 | { |
| 5974 | MA_STATE(ms, mt, first, last); |
| 5975 | int ret = 0; |
| 5976 | |
| 5977 | if (WARN_ON_ONCE(xa_is_advanced(entry))) |
| 5978 | return -EINVAL; |
| 5979 | |
| 5980 | if (first > last) |
| 5981 | return -EINVAL; |
| 5982 | |
| 5983 | mtree_lock(mt); |
| 5984 | retry: |
| 5985 | mas_insert(mas: &ms, entry); |
| 5986 | if (mas_nomem(mas: &ms, gfp)) |
| 5987 | goto retry; |
| 5988 | |
| 5989 | mtree_unlock(mt); |
| 5990 | if (mas_is_err(mas: &ms)) |
| 5991 | ret = xa_err(entry: ms.node); |
| 5992 | |
| 5993 | mas_destroy(&ms); |
| 5994 | return ret; |
| 5995 | } |
| 5996 | EXPORT_SYMBOL(mtree_insert_range); |
| 5997 | |
| 5998 | /** |
| 5999 | * mtree_insert() - Insert an entry at a given index if there is no value. |
| 6000 | * @mt: The maple tree |
| 6001 | * @index : The index to store the value |
| 6002 | * @entry: The entry to store |
| 6003 | * @gfp: The GFP_FLAGS to use for allocations. |
| 6004 | * |
| 6005 | * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid |
| 6006 | * request, -ENOMEM if memory could not be allocated. |
| 6007 | */ |
| 6008 | int mtree_insert(struct maple_tree *mt, unsigned long index, void *entry, |
| 6009 | gfp_t gfp) |
| 6010 | { |
| 6011 | return mtree_insert_range(mt, index, index, entry, gfp); |
| 6012 | } |
| 6013 | EXPORT_SYMBOL(mtree_insert); |
| 6014 | |
| 6015 | int mtree_alloc_range(struct maple_tree *mt, unsigned long *startp, |
| 6016 | void *entry, unsigned long size, unsigned long min, |
| 6017 | unsigned long max, gfp_t gfp) |
| 6018 | { |
| 6019 | int ret = 0; |
| 6020 | |
| 6021 | MA_STATE(mas, mt, 0, 0); |
| 6022 | if (!mt_is_alloc(mt)) |
| 6023 | return -EINVAL; |
| 6024 | |
| 6025 | if (WARN_ON_ONCE(mt_is_reserved(entry))) |
| 6026 | return -EINVAL; |
| 6027 | |
| 6028 | mtree_lock(mt); |
| 6029 | retry: |
| 6030 | ret = mas_empty_area(&mas, min, max, size); |
| 6031 | if (ret) |
| 6032 | goto unlock; |
| 6033 | |
| 6034 | mas_insert(mas: &mas, entry); |
| 6035 | /* |
| 6036 | * mas_nomem() may release the lock, causing the allocated area |
| 6037 | * to be unavailable, so try to allocate a free area again. |
| 6038 | */ |
| 6039 | if (mas_nomem(mas: &mas, gfp)) |
| 6040 | goto retry; |
| 6041 | |
| 6042 | if (mas_is_err(mas: &mas)) |
| 6043 | ret = xa_err(entry: mas.node); |
| 6044 | else |
| 6045 | *startp = mas.index; |
| 6046 | |
| 6047 | unlock: |
| 6048 | mtree_unlock(mt); |
| 6049 | mas_destroy(&mas); |
| 6050 | return ret; |
| 6051 | } |
| 6052 | EXPORT_SYMBOL(mtree_alloc_range); |
| 6053 | |
| 6054 | /** |
| 6055 | * mtree_alloc_cyclic() - Find somewhere to store this entry in the tree. |
| 6056 | * @mt: The maple tree. |
| 6057 | * @startp: Pointer to ID. |
| 6058 | * @range_lo: Lower bound of range to search. |
| 6059 | * @range_hi: Upper bound of range to search. |
| 6060 | * @entry: The entry to store. |
| 6061 | * @next: Pointer to next ID to allocate. |
| 6062 | * @gfp: The GFP_FLAGS to use for allocations. |
| 6063 | * |
| 6064 | * Finds an empty entry in @mt after @next, stores the new index into |
| 6065 | * the @id pointer, stores the entry at that index, then updates @next. |
| 6066 | * |
| 6067 | * @mt must be initialized with the MT_FLAGS_ALLOC_RANGE flag. |
| 6068 | * |
| 6069 | * Context: Any context. Takes and releases the mt.lock. May sleep if |
| 6070 | * the @gfp flags permit. |
| 6071 | * |
| 6072 | * Return: 0 if the allocation succeeded without wrapping, 1 if the |
| 6073 | * allocation succeeded after wrapping, -ENOMEM if memory could not be |
| 6074 | * allocated, -EINVAL if @mt cannot be used, or -EBUSY if there are no |
| 6075 | * free entries. |
| 6076 | */ |
| 6077 | int mtree_alloc_cyclic(struct maple_tree *mt, unsigned long *startp, |
| 6078 | void *entry, unsigned long range_lo, unsigned long range_hi, |
| 6079 | unsigned long *next, gfp_t gfp) |
| 6080 | { |
| 6081 | int ret; |
| 6082 | |
| 6083 | MA_STATE(mas, mt, 0, 0); |
| 6084 | |
| 6085 | if (!mt_is_alloc(mt)) |
| 6086 | return -EINVAL; |
| 6087 | if (WARN_ON_ONCE(mt_is_reserved(entry))) |
| 6088 | return -EINVAL; |
| 6089 | mtree_lock(mt); |
| 6090 | ret = mas_alloc_cyclic(&mas, startp, entry, range_lo, range_hi, |
| 6091 | next, gfp); |
| 6092 | mtree_unlock(mt); |
| 6093 | return ret; |
| 6094 | } |
| 6095 | EXPORT_SYMBOL(mtree_alloc_cyclic); |
| 6096 | |
| 6097 | int mtree_alloc_rrange(struct maple_tree *mt, unsigned long *startp, |
| 6098 | void *entry, unsigned long size, unsigned long min, |
| 6099 | unsigned long max, gfp_t gfp) |
| 6100 | { |
| 6101 | int ret = 0; |
| 6102 | |
| 6103 | MA_STATE(mas, mt, 0, 0); |
| 6104 | if (!mt_is_alloc(mt)) |
| 6105 | return -EINVAL; |
| 6106 | |
| 6107 | if (WARN_ON_ONCE(mt_is_reserved(entry))) |
| 6108 | return -EINVAL; |
| 6109 | |
| 6110 | mtree_lock(mt); |
| 6111 | retry: |
| 6112 | ret = mas_empty_area_rev(&mas, min, max, size); |
| 6113 | if (ret) |
| 6114 | goto unlock; |
| 6115 | |
| 6116 | mas_insert(mas: &mas, entry); |
| 6117 | /* |
| 6118 | * mas_nomem() may release the lock, causing the allocated area |
| 6119 | * to be unavailable, so try to allocate a free area again. |
| 6120 | */ |
| 6121 | if (mas_nomem(mas: &mas, gfp)) |
| 6122 | goto retry; |
| 6123 | |
| 6124 | if (mas_is_err(mas: &mas)) |
| 6125 | ret = xa_err(entry: mas.node); |
| 6126 | else |
| 6127 | *startp = mas.index; |
| 6128 | |
| 6129 | unlock: |
| 6130 | mtree_unlock(mt); |
| 6131 | mas_destroy(&mas); |
| 6132 | return ret; |
| 6133 | } |
| 6134 | EXPORT_SYMBOL(mtree_alloc_rrange); |
| 6135 | |
| 6136 | /** |
| 6137 | * mtree_erase() - Find an index and erase the entire range. |
| 6138 | * @mt: The maple tree |
| 6139 | * @index: The index to erase |
| 6140 | * |
| 6141 | * Erasing is the same as a walk to an entry then a store of a NULL to that |
| 6142 | * ENTIRE range. In fact, it is implemented as such using the advanced API. |
| 6143 | * |
| 6144 | * Return: The entry stored at the @index or %NULL |
| 6145 | */ |
| 6146 | void *mtree_erase(struct maple_tree *mt, unsigned long index) |
| 6147 | { |
| 6148 | void *entry = NULL; |
| 6149 | |
| 6150 | MA_STATE(mas, mt, index, index); |
| 6151 | trace_ma_op(fn: __func__, mas: &mas); |
| 6152 | |
| 6153 | mtree_lock(mt); |
| 6154 | entry = mas_erase(&mas); |
| 6155 | mtree_unlock(mt); |
| 6156 | |
| 6157 | return entry; |
| 6158 | } |
| 6159 | EXPORT_SYMBOL(mtree_erase); |
| 6160 | |
| 6161 | /* |
| 6162 | * mas_dup_free() - Free an incomplete duplication of a tree. |
| 6163 | * @mas: The maple state of a incomplete tree. |
| 6164 | * |
| 6165 | * The parameter @mas->node passed in indicates that the allocation failed on |
| 6166 | * this node. This function frees all nodes starting from @mas->node in the |
| 6167 | * reverse order of mas_dup_build(). There is no need to hold the source tree |
| 6168 | * lock at this time. |
| 6169 | */ |
| 6170 | static void mas_dup_free(struct ma_state *mas) |
| 6171 | { |
| 6172 | struct maple_node *node; |
| 6173 | enum maple_type type; |
| 6174 | void __rcu **slots; |
| 6175 | unsigned char count, i; |
| 6176 | |
| 6177 | /* Maybe the first node allocation failed. */ |
| 6178 | if (mas_is_none(mas)) |
| 6179 | return; |
| 6180 | |
| 6181 | while (!mte_is_root(node: mas->node)) { |
| 6182 | mas_ascend(mas); |
| 6183 | if (mas->offset) { |
| 6184 | mas->offset--; |
| 6185 | do { |
| 6186 | mas_descend(mas); |
| 6187 | mas->offset = mas_data_end(mas); |
| 6188 | } while (!mte_is_leaf(entry: mas->node)); |
| 6189 | |
| 6190 | mas_ascend(mas); |
| 6191 | } |
| 6192 | |
| 6193 | node = mte_to_node(entry: mas->node); |
| 6194 | type = mte_node_type(entry: mas->node); |
| 6195 | slots = ma_slots(mn: node, mt: type); |
| 6196 | count = mas_data_end(mas) + 1; |
| 6197 | for (i = 0; i < count; i++) |
| 6198 | ((unsigned long *)slots)[i] &= ~MAPLE_NODE_MASK; |
| 6199 | mt_free_bulk(size: count, nodes: slots); |
| 6200 | } |
| 6201 | |
| 6202 | node = mte_to_node(entry: mas->node); |
| 6203 | kfree(objp: node); |
| 6204 | } |
| 6205 | |
| 6206 | /* |
| 6207 | * mas_copy_node() - Copy a maple node and replace the parent. |
| 6208 | * @mas: The maple state of source tree. |
| 6209 | * @new_mas: The maple state of new tree. |
| 6210 | * @parent: The parent of the new node. |
| 6211 | * |
| 6212 | * Copy @mas->node to @new_mas->node, set @parent to be the parent of |
| 6213 | * @new_mas->node. If memory allocation fails, @mas is set to -ENOMEM. |
| 6214 | */ |
| 6215 | static inline void mas_copy_node(struct ma_state *mas, struct ma_state *new_mas, |
| 6216 | struct maple_pnode *parent) |
| 6217 | { |
| 6218 | struct maple_node *node = mte_to_node(entry: mas->node); |
| 6219 | struct maple_node *new_node = mte_to_node(entry: new_mas->node); |
| 6220 | unsigned long val; |
| 6221 | |
| 6222 | /* Copy the node completely. */ |
| 6223 | memcpy(to: new_node, from: node, len: sizeof(struct maple_node)); |
| 6224 | /* Update the parent node pointer. */ |
| 6225 | val = (unsigned long)node->parent & MAPLE_NODE_MASK; |
| 6226 | new_node->parent = ma_parent_ptr(val | (unsigned long)parent); |
| 6227 | } |
| 6228 | |
| 6229 | /* |
| 6230 | * mas_dup_alloc() - Allocate child nodes for a maple node. |
| 6231 | * @mas: The maple state of source tree. |
| 6232 | * @new_mas: The maple state of new tree. |
| 6233 | * @gfp: The GFP_FLAGS to use for allocations. |
| 6234 | * |
| 6235 | * This function allocates child nodes for @new_mas->node during the duplication |
| 6236 | * process. If memory allocation fails, @mas is set to -ENOMEM. |
| 6237 | */ |
| 6238 | static inline void mas_dup_alloc(struct ma_state *mas, struct ma_state *new_mas, |
| 6239 | gfp_t gfp) |
| 6240 | { |
| 6241 | struct maple_node *node = mte_to_node(entry: mas->node); |
| 6242 | struct maple_node *new_node = mte_to_node(entry: new_mas->node); |
| 6243 | enum maple_type type; |
| 6244 | unsigned char count, i; |
| 6245 | void __rcu **slots; |
| 6246 | void __rcu **new_slots; |
| 6247 | unsigned long val; |
| 6248 | |
| 6249 | /* Allocate memory for child nodes. */ |
| 6250 | type = mte_node_type(entry: mas->node); |
| 6251 | new_slots = ma_slots(mn: new_node, mt: type); |
| 6252 | count = mas->node_request = mas_data_end(mas) + 1; |
| 6253 | mas_alloc_nodes(mas, gfp); |
| 6254 | if (unlikely(mas_is_err(mas))) |
| 6255 | return; |
| 6256 | |
| 6257 | slots = ma_slots(mn: node, mt: type); |
| 6258 | for (i = 0; i < count; i++) { |
| 6259 | val = (unsigned long)mt_slot_locked(mt: mas->tree, slots, offset: i); |
| 6260 | val &= MAPLE_NODE_MASK; |
| 6261 | new_slots[i] = ma_mnode_ptr((unsigned long)mas_pop_node(mas) | |
| 6262 | val); |
| 6263 | } |
| 6264 | } |
| 6265 | |
| 6266 | /* |
| 6267 | * mas_dup_build() - Build a new maple tree from a source tree |
| 6268 | * @mas: The maple state of source tree, need to be in MAS_START state. |
| 6269 | * @new_mas: The maple state of new tree, need to be in MAS_START state. |
| 6270 | * @gfp: The GFP_FLAGS to use for allocations. |
| 6271 | * |
| 6272 | * This function builds a new tree in DFS preorder. If the memory allocation |
| 6273 | * fails, the error code -ENOMEM will be set in @mas, and @new_mas points to the |
| 6274 | * last node. mas_dup_free() will free the incomplete duplication of a tree. |
| 6275 | * |
| 6276 | * Note that the attributes of the two trees need to be exactly the same, and the |
| 6277 | * new tree needs to be empty, otherwise -EINVAL will be set in @mas. |
| 6278 | */ |
| 6279 | static inline void mas_dup_build(struct ma_state *mas, struct ma_state *new_mas, |
| 6280 | gfp_t gfp) |
| 6281 | { |
| 6282 | struct maple_node *node; |
| 6283 | struct maple_pnode *parent = NULL; |
| 6284 | struct maple_enode *root; |
| 6285 | enum maple_type type; |
| 6286 | |
| 6287 | if (unlikely(mt_attr(mas->tree) != mt_attr(new_mas->tree)) || |
| 6288 | unlikely(!mtree_empty(new_mas->tree))) { |
| 6289 | mas_set_err(mas, err: -EINVAL); |
| 6290 | return; |
| 6291 | } |
| 6292 | |
| 6293 | root = mas_start(mas); |
| 6294 | if (mas_is_ptr(mas) || mas_is_none(mas)) |
| 6295 | goto set_new_tree; |
| 6296 | |
| 6297 | node = mt_alloc_one(gfp); |
| 6298 | if (!node) { |
| 6299 | new_mas->status = ma_none; |
| 6300 | mas_set_err(mas, err: -ENOMEM); |
| 6301 | return; |
| 6302 | } |
| 6303 | |
| 6304 | type = mte_node_type(entry: mas->node); |
| 6305 | root = mt_mk_node(node, type); |
| 6306 | new_mas->node = root; |
| 6307 | new_mas->min = 0; |
| 6308 | new_mas->max = ULONG_MAX; |
| 6309 | root = mte_mk_root(node: root); |
| 6310 | while (1) { |
| 6311 | mas_copy_node(mas, new_mas, parent); |
| 6312 | if (!mte_is_leaf(entry: mas->node)) { |
| 6313 | /* Only allocate child nodes for non-leaf nodes. */ |
| 6314 | mas_dup_alloc(mas, new_mas, gfp); |
| 6315 | if (unlikely(mas_is_err(mas))) |
| 6316 | goto empty_mas; |
| 6317 | } else { |
| 6318 | /* |
| 6319 | * This is the last leaf node and duplication is |
| 6320 | * completed. |
| 6321 | */ |
| 6322 | if (mas->max == ULONG_MAX) |
| 6323 | goto done; |
| 6324 | |
| 6325 | /* This is not the last leaf node and needs to go up. */ |
| 6326 | do { |
| 6327 | mas_ascend(mas); |
| 6328 | mas_ascend(mas: new_mas); |
| 6329 | } while (mas->offset == mas_data_end(mas)); |
| 6330 | |
| 6331 | /* Move to the next subtree. */ |
| 6332 | mas->offset++; |
| 6333 | new_mas->offset++; |
| 6334 | } |
| 6335 | |
| 6336 | mas_descend(mas); |
| 6337 | parent = ma_parent_ptr(mte_to_node(new_mas->node)); |
| 6338 | mas_descend(mas: new_mas); |
| 6339 | mas->offset = 0; |
| 6340 | new_mas->offset = 0; |
| 6341 | } |
| 6342 | done: |
| 6343 | /* Specially handle the parent of the root node. */ |
| 6344 | mte_to_node(entry: root)->parent = ma_parent_ptr(mas_tree_parent(new_mas)); |
| 6345 | set_new_tree: |
| 6346 | /* Make them the same height */ |
| 6347 | new_mas->tree->ma_flags = mas->tree->ma_flags; |
| 6348 | rcu_assign_pointer(new_mas->tree->ma_root, root); |
| 6349 | empty_mas: |
| 6350 | mas_empty_nodes(mas); |
| 6351 | } |
| 6352 | |
| 6353 | /** |
| 6354 | * __mt_dup(): Duplicate an entire maple tree |
| 6355 | * @mt: The source maple tree |
| 6356 | * @new: The new maple tree |
| 6357 | * @gfp: The GFP_FLAGS to use for allocations |
| 6358 | * |
| 6359 | * This function duplicates a maple tree in Depth-First Search (DFS) pre-order |
| 6360 | * traversal. It uses memcpy() to copy nodes in the source tree and allocate |
| 6361 | * new child nodes in non-leaf nodes. The new node is exactly the same as the |
| 6362 | * source node except for all the addresses stored in it. It will be faster than |
| 6363 | * traversing all elements in the source tree and inserting them one by one into |
| 6364 | * the new tree. |
| 6365 | * The user needs to ensure that the attributes of the source tree and the new |
| 6366 | * tree are the same, and the new tree needs to be an empty tree, otherwise |
| 6367 | * -EINVAL will be returned. |
| 6368 | * Note that the user needs to manually lock the source tree and the new tree. |
| 6369 | * |
| 6370 | * Return: 0 on success, -ENOMEM if memory could not be allocated, -EINVAL If |
| 6371 | * the attributes of the two trees are different or the new tree is not an empty |
| 6372 | * tree. |
| 6373 | */ |
| 6374 | int __mt_dup(struct maple_tree *mt, struct maple_tree *new, gfp_t gfp) |
| 6375 | { |
| 6376 | int ret = 0; |
| 6377 | MA_STATE(mas, mt, 0, 0); |
| 6378 | MA_STATE(new_mas, new, 0, 0); |
| 6379 | |
| 6380 | mas_dup_build(mas: &mas, new_mas: &new_mas, gfp); |
| 6381 | if (unlikely(mas_is_err(&mas))) { |
| 6382 | ret = xa_err(entry: mas.node); |
| 6383 | if (ret == -ENOMEM) |
| 6384 | mas_dup_free(mas: &new_mas); |
| 6385 | } |
| 6386 | |
| 6387 | return ret; |
| 6388 | } |
| 6389 | EXPORT_SYMBOL(__mt_dup); |
| 6390 | |
| 6391 | /** |
| 6392 | * mtree_dup(): Duplicate an entire maple tree |
| 6393 | * @mt: The source maple tree |
| 6394 | * @new: The new maple tree |
| 6395 | * @gfp: The GFP_FLAGS to use for allocations |
| 6396 | * |
| 6397 | * This function duplicates a maple tree in Depth-First Search (DFS) pre-order |
| 6398 | * traversal. It uses memcpy() to copy nodes in the source tree and allocate |
| 6399 | * new child nodes in non-leaf nodes. The new node is exactly the same as the |
| 6400 | * source node except for all the addresses stored in it. It will be faster than |
| 6401 | * traversing all elements in the source tree and inserting them one by one into |
| 6402 | * the new tree. |
| 6403 | * The user needs to ensure that the attributes of the source tree and the new |
| 6404 | * tree are the same, and the new tree needs to be an empty tree, otherwise |
| 6405 | * -EINVAL will be returned. |
| 6406 | * |
| 6407 | * Return: 0 on success, -ENOMEM if memory could not be allocated, -EINVAL If |
| 6408 | * the attributes of the two trees are different or the new tree is not an empty |
| 6409 | * tree. |
| 6410 | */ |
| 6411 | int mtree_dup(struct maple_tree *mt, struct maple_tree *new, gfp_t gfp) |
| 6412 | { |
| 6413 | int ret = 0; |
| 6414 | MA_STATE(mas, mt, 0, 0); |
| 6415 | MA_STATE(new_mas, new, 0, 0); |
| 6416 | |
| 6417 | mas_lock(&new_mas); |
| 6418 | mas_lock_nested(&mas, SINGLE_DEPTH_NESTING); |
| 6419 | mas_dup_build(mas: &mas, new_mas: &new_mas, gfp); |
| 6420 | mas_unlock(&mas); |
| 6421 | if (unlikely(mas_is_err(&mas))) { |
| 6422 | ret = xa_err(entry: mas.node); |
| 6423 | if (ret == -ENOMEM) |
| 6424 | mas_dup_free(mas: &new_mas); |
| 6425 | } |
| 6426 | |
| 6427 | mas_unlock(&new_mas); |
| 6428 | return ret; |
| 6429 | } |
| 6430 | EXPORT_SYMBOL(mtree_dup); |
| 6431 | |
| 6432 | /** |
| 6433 | * __mt_destroy() - Walk and free all nodes of a locked maple tree. |
| 6434 | * @mt: The maple tree |
| 6435 | * |
| 6436 | * Note: Does not handle locking. |
| 6437 | */ |
| 6438 | void __mt_destroy(struct maple_tree *mt) |
| 6439 | { |
| 6440 | void *root = mt_root_locked(mt); |
| 6441 | |
| 6442 | rcu_assign_pointer(mt->ma_root, NULL); |
| 6443 | if (xa_is_node(entry: root)) |
| 6444 | mte_destroy_walk(enode: root, mt); |
| 6445 | |
| 6446 | mt->ma_flags = mt_attr(mt); |
| 6447 | } |
| 6448 | EXPORT_SYMBOL_GPL(__mt_destroy); |
| 6449 | |
| 6450 | /** |
| 6451 | * mtree_destroy() - Destroy a maple tree |
| 6452 | * @mt: The maple tree |
| 6453 | * |
| 6454 | * Frees all resources used by the tree. Handles locking. |
| 6455 | */ |
| 6456 | void mtree_destroy(struct maple_tree *mt) |
| 6457 | { |
| 6458 | mtree_lock(mt); |
| 6459 | __mt_destroy(mt); |
| 6460 | mtree_unlock(mt); |
| 6461 | } |
| 6462 | EXPORT_SYMBOL(mtree_destroy); |
| 6463 | |
| 6464 | /** |
| 6465 | * mt_find() - Search from the start up until an entry is found. |
| 6466 | * @mt: The maple tree |
| 6467 | * @index: Pointer which contains the start location of the search |
| 6468 | * @max: The maximum value of the search range |
| 6469 | * |
| 6470 | * Takes RCU read lock internally to protect the search, which does not |
| 6471 | * protect the returned pointer after dropping RCU read lock. |
| 6472 | * See also: Documentation/core-api/maple_tree.rst |
| 6473 | * |
| 6474 | * In case that an entry is found @index is updated to point to the next |
| 6475 | * possible entry independent whether the found entry is occupying a |
| 6476 | * single index or a range if indices. |
| 6477 | * |
| 6478 | * Return: The entry at or after the @index or %NULL |
| 6479 | */ |
| 6480 | void *mt_find(struct maple_tree *mt, unsigned long *index, unsigned long max) |
| 6481 | { |
| 6482 | MA_STATE(mas, mt, *index, *index); |
| 6483 | void *entry; |
| 6484 | #ifdef CONFIG_DEBUG_MAPLE_TREE |
| 6485 | unsigned long copy = *index; |
| 6486 | #endif |
| 6487 | |
| 6488 | trace_ma_read(fn: __func__, mas: &mas); |
| 6489 | |
| 6490 | if ((*index) > max) |
| 6491 | return NULL; |
| 6492 | |
| 6493 | rcu_read_lock(); |
| 6494 | retry: |
| 6495 | entry = mas_state_walk(mas: &mas); |
| 6496 | if (mas_is_start(mas: &mas)) |
| 6497 | goto retry; |
| 6498 | |
| 6499 | if (unlikely(xa_is_zero(entry))) |
| 6500 | entry = NULL; |
| 6501 | |
| 6502 | if (entry) |
| 6503 | goto unlock; |
| 6504 | |
| 6505 | while (mas_is_active(mas: &mas) && (mas.last < max)) { |
| 6506 | entry = mas_next_slot(mas: &mas, max, empty: false); |
| 6507 | if (likely(entry && !xa_is_zero(entry))) |
| 6508 | break; |
| 6509 | } |
| 6510 | |
| 6511 | if (unlikely(xa_is_zero(entry))) |
| 6512 | entry = NULL; |
| 6513 | unlock: |
| 6514 | rcu_read_unlock(); |
| 6515 | if (likely(entry)) { |
| 6516 | *index = mas.last + 1; |
| 6517 | #ifdef CONFIG_DEBUG_MAPLE_TREE |
| 6518 | if (MT_WARN_ON(mt, (*index) && ((*index) <= copy))) |
| 6519 | pr_err("index not increased! %lx <= %lx\n" , |
| 6520 | *index, copy); |
| 6521 | #endif |
| 6522 | } |
| 6523 | |
| 6524 | return entry; |
| 6525 | } |
| 6526 | EXPORT_SYMBOL(mt_find); |
| 6527 | |
| 6528 | /** |
| 6529 | * mt_find_after() - Search from the start up until an entry is found. |
| 6530 | * @mt: The maple tree |
| 6531 | * @index: Pointer which contains the start location of the search |
| 6532 | * @max: The maximum value to check |
| 6533 | * |
| 6534 | * Same as mt_find() except that it checks @index for 0 before |
| 6535 | * searching. If @index == 0, the search is aborted. This covers a wrap |
| 6536 | * around of @index to 0 in an iterator loop. |
| 6537 | * |
| 6538 | * Return: The entry at or after the @index or %NULL |
| 6539 | */ |
| 6540 | void *mt_find_after(struct maple_tree *mt, unsigned long *index, |
| 6541 | unsigned long max) |
| 6542 | { |
| 6543 | if (!(*index)) |
| 6544 | return NULL; |
| 6545 | |
| 6546 | return mt_find(mt, index, max); |
| 6547 | } |
| 6548 | EXPORT_SYMBOL(mt_find_after); |
| 6549 | |
| 6550 | #ifdef CONFIG_DEBUG_MAPLE_TREE |
| 6551 | atomic_t maple_tree_tests_run; |
| 6552 | EXPORT_SYMBOL_GPL(maple_tree_tests_run); |
| 6553 | atomic_t maple_tree_tests_passed; |
| 6554 | EXPORT_SYMBOL_GPL(maple_tree_tests_passed); |
| 6555 | |
| 6556 | #ifndef __KERNEL__ |
| 6557 | extern void kmem_cache_set_non_kernel(struct kmem_cache *, unsigned int); |
| 6558 | void mt_set_non_kernel(unsigned int val) |
| 6559 | { |
| 6560 | kmem_cache_set_non_kernel(maple_node_cache, val); |
| 6561 | } |
| 6562 | |
| 6563 | extern void kmem_cache_set_callback(struct kmem_cache *cachep, |
| 6564 | void (*callback)(void *)); |
| 6565 | void mt_set_callback(void (*callback)(void *)) |
| 6566 | { |
| 6567 | kmem_cache_set_callback(maple_node_cache, callback); |
| 6568 | } |
| 6569 | |
| 6570 | extern void kmem_cache_set_private(struct kmem_cache *cachep, void *private); |
| 6571 | void mt_set_private(void *private) |
| 6572 | { |
| 6573 | kmem_cache_set_private(maple_node_cache, private); |
| 6574 | } |
| 6575 | |
| 6576 | extern unsigned long kmem_cache_get_alloc(struct kmem_cache *); |
| 6577 | unsigned long mt_get_alloc_size(void) |
| 6578 | { |
| 6579 | return kmem_cache_get_alloc(maple_node_cache); |
| 6580 | } |
| 6581 | |
| 6582 | extern void kmem_cache_zero_nr_tallocated(struct kmem_cache *); |
| 6583 | void mt_zero_nr_tallocated(void) |
| 6584 | { |
| 6585 | kmem_cache_zero_nr_tallocated(maple_node_cache); |
| 6586 | } |
| 6587 | |
| 6588 | extern unsigned int kmem_cache_nr_tallocated(struct kmem_cache *); |
| 6589 | unsigned int mt_nr_tallocated(void) |
| 6590 | { |
| 6591 | return kmem_cache_nr_tallocated(maple_node_cache); |
| 6592 | } |
| 6593 | |
| 6594 | extern unsigned int kmem_cache_nr_allocated(struct kmem_cache *); |
| 6595 | unsigned int mt_nr_allocated(void) |
| 6596 | { |
| 6597 | return kmem_cache_nr_allocated(maple_node_cache); |
| 6598 | } |
| 6599 | |
| 6600 | void mt_cache_shrink(void) |
| 6601 | { |
| 6602 | } |
| 6603 | #else |
| 6604 | /* |
| 6605 | * mt_cache_shrink() - For testing, don't use this. |
| 6606 | * |
| 6607 | * Certain testcases can trigger an OOM when combined with other memory |
| 6608 | * debugging configuration options. This function is used to reduce the |
| 6609 | * possibility of an out of memory even due to kmem_cache objects remaining |
| 6610 | * around for longer than usual. |
| 6611 | */ |
| 6612 | void mt_cache_shrink(void) |
| 6613 | { |
| 6614 | kmem_cache_shrink(maple_node_cache); |
| 6615 | |
| 6616 | } |
| 6617 | EXPORT_SYMBOL_GPL(mt_cache_shrink); |
| 6618 | |
| 6619 | #endif /* not defined __KERNEL__ */ |
| 6620 | /* |
| 6621 | * mas_get_slot() - Get the entry in the maple state node stored at @offset. |
| 6622 | * @mas: The maple state |
| 6623 | * @offset: The offset into the slot array to fetch. |
| 6624 | * |
| 6625 | * Return: The entry stored at @offset. |
| 6626 | */ |
| 6627 | static inline struct maple_enode *mas_get_slot(struct ma_state *mas, |
| 6628 | unsigned char offset) |
| 6629 | { |
| 6630 | return mas_slot(mas, ma_slots(mas_mn(mas), mte_node_type(mas->node)), |
| 6631 | offset); |
| 6632 | } |
| 6633 | |
| 6634 | /* Depth first search, post-order */ |
| 6635 | static void mas_dfs_postorder(struct ma_state *mas, unsigned long max) |
| 6636 | { |
| 6637 | |
| 6638 | struct maple_enode *p, *mn = mas->node; |
| 6639 | unsigned long p_min, p_max; |
| 6640 | |
| 6641 | mas_next_node(mas, mas_mn(mas), max); |
| 6642 | if (!mas_is_overflow(mas)) |
| 6643 | return; |
| 6644 | |
| 6645 | if (mte_is_root(mn)) |
| 6646 | return; |
| 6647 | |
| 6648 | mas->node = mn; |
| 6649 | mas_ascend(mas); |
| 6650 | do { |
| 6651 | p = mas->node; |
| 6652 | p_min = mas->min; |
| 6653 | p_max = mas->max; |
| 6654 | mas_prev_node(mas, 0); |
| 6655 | } while (!mas_is_underflow(mas)); |
| 6656 | |
| 6657 | mas->node = p; |
| 6658 | mas->max = p_max; |
| 6659 | mas->min = p_min; |
| 6660 | } |
| 6661 | |
| 6662 | /* Tree validations */ |
| 6663 | static void mt_dump_node(const struct maple_tree *mt, void *entry, |
| 6664 | unsigned long min, unsigned long max, unsigned int depth, |
| 6665 | enum mt_dump_format format); |
| 6666 | static void mt_dump_range(unsigned long min, unsigned long max, |
| 6667 | unsigned int depth, enum mt_dump_format format) |
| 6668 | { |
| 6669 | static const char spaces[] = " " ; |
| 6670 | |
| 6671 | switch(format) { |
| 6672 | case mt_dump_hex: |
| 6673 | if (min == max) |
| 6674 | pr_info("%.*s%lx: " , depth * 2, spaces, min); |
| 6675 | else |
| 6676 | pr_info("%.*s%lx-%lx: " , depth * 2, spaces, min, max); |
| 6677 | break; |
| 6678 | case mt_dump_dec: |
| 6679 | if (min == max) |
| 6680 | pr_info("%.*s%lu: " , depth * 2, spaces, min); |
| 6681 | else |
| 6682 | pr_info("%.*s%lu-%lu: " , depth * 2, spaces, min, max); |
| 6683 | } |
| 6684 | } |
| 6685 | |
| 6686 | static void mt_dump_entry(void *entry, unsigned long min, unsigned long max, |
| 6687 | unsigned int depth, enum mt_dump_format format) |
| 6688 | { |
| 6689 | mt_dump_range(min, max, depth, format); |
| 6690 | |
| 6691 | if (xa_is_value(entry)) |
| 6692 | pr_cont("value %ld (0x%lx) [" PTR_FMT "]\n" , xa_to_value(entry), |
| 6693 | xa_to_value(entry), entry); |
| 6694 | else if (xa_is_zero(entry)) |
| 6695 | pr_cont("zero (%ld)\n" , xa_to_internal(entry)); |
| 6696 | else if (mt_is_reserved(entry)) |
| 6697 | pr_cont("UNKNOWN ENTRY (" PTR_FMT ")\n" , entry); |
| 6698 | else |
| 6699 | pr_cont(PTR_FMT "\n" , entry); |
| 6700 | } |
| 6701 | |
| 6702 | static void mt_dump_range64(const struct maple_tree *mt, void *entry, |
| 6703 | unsigned long min, unsigned long max, unsigned int depth, |
| 6704 | enum mt_dump_format format) |
| 6705 | { |
| 6706 | struct maple_range_64 *node = &mte_to_node(entry)->mr64; |
| 6707 | bool leaf = mte_is_leaf(entry); |
| 6708 | unsigned long first = min; |
| 6709 | int i; |
| 6710 | |
| 6711 | pr_cont(" contents: " ); |
| 6712 | for (i = 0; i < MAPLE_RANGE64_SLOTS - 1; i++) { |
| 6713 | switch(format) { |
| 6714 | case mt_dump_hex: |
| 6715 | pr_cont(PTR_FMT " %lX " , node->slot[i], node->pivot[i]); |
| 6716 | break; |
| 6717 | case mt_dump_dec: |
| 6718 | pr_cont(PTR_FMT " %lu " , node->slot[i], node->pivot[i]); |
| 6719 | } |
| 6720 | } |
| 6721 | pr_cont(PTR_FMT "\n" , node->slot[i]); |
| 6722 | for (i = 0; i < MAPLE_RANGE64_SLOTS; i++) { |
| 6723 | unsigned long last = max; |
| 6724 | |
| 6725 | if (i < (MAPLE_RANGE64_SLOTS - 1)) |
| 6726 | last = node->pivot[i]; |
| 6727 | else if (!node->slot[i] && max != mt_node_max(entry)) |
| 6728 | break; |
| 6729 | if (last == 0 && i > 0) |
| 6730 | break; |
| 6731 | if (leaf) |
| 6732 | mt_dump_entry(mt_slot(mt, node->slot, i), |
| 6733 | first, last, depth + 1, format); |
| 6734 | else if (node->slot[i]) |
| 6735 | mt_dump_node(mt, mt_slot(mt, node->slot, i), |
| 6736 | first, last, depth + 1, format); |
| 6737 | |
| 6738 | if (last == max) |
| 6739 | break; |
| 6740 | if (last > max) { |
| 6741 | switch(format) { |
| 6742 | case mt_dump_hex: |
| 6743 | pr_err("node " PTR_FMT " last (%lx) > max (%lx) at pivot %d!\n" , |
| 6744 | node, last, max, i); |
| 6745 | break; |
| 6746 | case mt_dump_dec: |
| 6747 | pr_err("node " PTR_FMT " last (%lu) > max (%lu) at pivot %d!\n" , |
| 6748 | node, last, max, i); |
| 6749 | } |
| 6750 | } |
| 6751 | first = last + 1; |
| 6752 | } |
| 6753 | } |
| 6754 | |
| 6755 | static void mt_dump_arange64(const struct maple_tree *mt, void *entry, |
| 6756 | unsigned long min, unsigned long max, unsigned int depth, |
| 6757 | enum mt_dump_format format) |
| 6758 | { |
| 6759 | struct maple_arange_64 *node = &mte_to_node(entry)->ma64; |
| 6760 | unsigned long first = min; |
| 6761 | int i; |
| 6762 | |
| 6763 | pr_cont(" contents: " ); |
| 6764 | for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) { |
| 6765 | switch (format) { |
| 6766 | case mt_dump_hex: |
| 6767 | pr_cont("%lx " , node->gap[i]); |
| 6768 | break; |
| 6769 | case mt_dump_dec: |
| 6770 | pr_cont("%lu " , node->gap[i]); |
| 6771 | } |
| 6772 | } |
| 6773 | pr_cont("| %02X %02X| " , node->meta.end, node->meta.gap); |
| 6774 | for (i = 0; i < MAPLE_ARANGE64_SLOTS - 1; i++) { |
| 6775 | switch (format) { |
| 6776 | case mt_dump_hex: |
| 6777 | pr_cont(PTR_FMT " %lX " , node->slot[i], node->pivot[i]); |
| 6778 | break; |
| 6779 | case mt_dump_dec: |
| 6780 | pr_cont(PTR_FMT " %lu " , node->slot[i], node->pivot[i]); |
| 6781 | } |
| 6782 | } |
| 6783 | pr_cont(PTR_FMT "\n" , node->slot[i]); |
| 6784 | for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) { |
| 6785 | unsigned long last = max; |
| 6786 | |
| 6787 | if (i < (MAPLE_ARANGE64_SLOTS - 1)) |
| 6788 | last = node->pivot[i]; |
| 6789 | else if (!node->slot[i]) |
| 6790 | break; |
| 6791 | if (last == 0 && i > 0) |
| 6792 | break; |
| 6793 | if (node->slot[i]) |
| 6794 | mt_dump_node(mt, mt_slot(mt, node->slot, i), |
| 6795 | first, last, depth + 1, format); |
| 6796 | |
| 6797 | if (last == max) |
| 6798 | break; |
| 6799 | if (last > max) { |
| 6800 | switch(format) { |
| 6801 | case mt_dump_hex: |
| 6802 | pr_err("node " PTR_FMT " last (%lx) > max (%lx) at pivot %d!\n" , |
| 6803 | node, last, max, i); |
| 6804 | break; |
| 6805 | case mt_dump_dec: |
| 6806 | pr_err("node " PTR_FMT " last (%lu) > max (%lu) at pivot %d!\n" , |
| 6807 | node, last, max, i); |
| 6808 | } |
| 6809 | } |
| 6810 | first = last + 1; |
| 6811 | } |
| 6812 | } |
| 6813 | |
| 6814 | static void mt_dump_node(const struct maple_tree *mt, void *entry, |
| 6815 | unsigned long min, unsigned long max, unsigned int depth, |
| 6816 | enum mt_dump_format format) |
| 6817 | { |
| 6818 | struct maple_node *node = mte_to_node(entry); |
| 6819 | unsigned int type = mte_node_type(entry); |
| 6820 | unsigned int i; |
| 6821 | |
| 6822 | mt_dump_range(min, max, depth, format); |
| 6823 | |
| 6824 | pr_cont("node " PTR_FMT " depth %d type %d parent " PTR_FMT, node, |
| 6825 | depth, type, node ? node->parent : NULL); |
| 6826 | switch (type) { |
| 6827 | case maple_dense: |
| 6828 | pr_cont("\n" ); |
| 6829 | for (i = 0; i < MAPLE_NODE_SLOTS; i++) { |
| 6830 | if (min + i > max) |
| 6831 | pr_cont("OUT OF RANGE: " ); |
| 6832 | mt_dump_entry(mt_slot(mt, node->slot, i), |
| 6833 | min + i, min + i, depth, format); |
| 6834 | } |
| 6835 | break; |
| 6836 | case maple_leaf_64: |
| 6837 | case maple_range_64: |
| 6838 | mt_dump_range64(mt, entry, min, max, depth, format); |
| 6839 | break; |
| 6840 | case maple_arange_64: |
| 6841 | mt_dump_arange64(mt, entry, min, max, depth, format); |
| 6842 | break; |
| 6843 | |
| 6844 | default: |
| 6845 | pr_cont(" UNKNOWN TYPE\n" ); |
| 6846 | } |
| 6847 | } |
| 6848 | |
| 6849 | void mt_dump(const struct maple_tree *mt, enum mt_dump_format format) |
| 6850 | { |
| 6851 | void *entry = rcu_dereference_check(mt->ma_root, mt_locked(mt)); |
| 6852 | |
| 6853 | pr_info("maple_tree(" PTR_FMT ") flags %X, height %u root " PTR_FMT "\n" , |
| 6854 | mt, mt->ma_flags, mt_height(mt), entry); |
| 6855 | if (xa_is_node(entry)) |
| 6856 | mt_dump_node(mt, entry, 0, mt_node_max(entry), 0, format); |
| 6857 | else if (entry) |
| 6858 | mt_dump_entry(entry, 0, 0, 0, format); |
| 6859 | else |
| 6860 | pr_info("(empty)\n" ); |
| 6861 | } |
| 6862 | EXPORT_SYMBOL_GPL(mt_dump); |
| 6863 | |
| 6864 | /* |
| 6865 | * Calculate the maximum gap in a node and check if that's what is reported in |
| 6866 | * the parent (unless root). |
| 6867 | */ |
| 6868 | static void mas_validate_gaps(struct ma_state *mas) |
| 6869 | { |
| 6870 | struct maple_enode *mte = mas->node; |
| 6871 | struct maple_node *p_mn, *node = mte_to_node(mte); |
| 6872 | enum maple_type mt = mte_node_type(mas->node); |
| 6873 | unsigned long gap = 0, max_gap = 0; |
| 6874 | unsigned long p_end, p_start = mas->min; |
| 6875 | unsigned char p_slot, offset; |
| 6876 | unsigned long *gaps = NULL; |
| 6877 | unsigned long *pivots = ma_pivots(node, mt); |
| 6878 | unsigned int i; |
| 6879 | |
| 6880 | if (ma_is_dense(mt)) { |
| 6881 | for (i = 0; i < mt_slot_count(mte); i++) { |
| 6882 | if (mas_get_slot(mas, i)) { |
| 6883 | if (gap > max_gap) |
| 6884 | max_gap = gap; |
| 6885 | gap = 0; |
| 6886 | continue; |
| 6887 | } |
| 6888 | gap++; |
| 6889 | } |
| 6890 | goto counted; |
| 6891 | } |
| 6892 | |
| 6893 | gaps = ma_gaps(node, mt); |
| 6894 | for (i = 0; i < mt_slot_count(mte); i++) { |
| 6895 | p_end = mas_safe_pivot(mas, pivots, i, mt); |
| 6896 | |
| 6897 | if (!gaps) { |
| 6898 | if (!mas_get_slot(mas, i)) |
| 6899 | gap = p_end - p_start + 1; |
| 6900 | } else { |
| 6901 | void *entry = mas_get_slot(mas, i); |
| 6902 | |
| 6903 | gap = gaps[i]; |
| 6904 | MT_BUG_ON(mas->tree, !entry); |
| 6905 | |
| 6906 | if (gap > p_end - p_start + 1) { |
| 6907 | pr_err(PTR_FMT "[%u] %lu >= %lu - %lu + 1 (%lu)\n" , |
| 6908 | mas_mn(mas), i, gap, p_end, p_start, |
| 6909 | p_end - p_start + 1); |
| 6910 | MT_BUG_ON(mas->tree, gap > p_end - p_start + 1); |
| 6911 | } |
| 6912 | } |
| 6913 | |
| 6914 | if (gap > max_gap) |
| 6915 | max_gap = gap; |
| 6916 | |
| 6917 | p_start = p_end + 1; |
| 6918 | if (p_end >= mas->max) |
| 6919 | break; |
| 6920 | } |
| 6921 | |
| 6922 | counted: |
| 6923 | if (mt == maple_arange_64) { |
| 6924 | MT_BUG_ON(mas->tree, !gaps); |
| 6925 | offset = ma_meta_gap(node); |
| 6926 | if (offset > i) { |
| 6927 | pr_err("gap offset " PTR_FMT "[%u] is invalid\n" , node, offset); |
| 6928 | MT_BUG_ON(mas->tree, 1); |
| 6929 | } |
| 6930 | |
| 6931 | if (gaps[offset] != max_gap) { |
| 6932 | pr_err("gap " PTR_FMT "[%u] is not the largest gap %lu\n" , |
| 6933 | node, offset, max_gap); |
| 6934 | MT_BUG_ON(mas->tree, 1); |
| 6935 | } |
| 6936 | |
| 6937 | for (i++ ; i < mt_slot_count(mte); i++) { |
| 6938 | if (gaps[i] != 0) { |
| 6939 | pr_err("gap " PTR_FMT "[%u] beyond node limit != 0\n" , |
| 6940 | node, i); |
| 6941 | MT_BUG_ON(mas->tree, 1); |
| 6942 | } |
| 6943 | } |
| 6944 | } |
| 6945 | |
| 6946 | if (mte_is_root(mte)) |
| 6947 | return; |
| 6948 | |
| 6949 | p_slot = mte_parent_slot(mas->node); |
| 6950 | p_mn = mte_parent(mte); |
| 6951 | MT_BUG_ON(mas->tree, max_gap > mas->max); |
| 6952 | if (ma_gaps(p_mn, mas_parent_type(mas, mte))[p_slot] != max_gap) { |
| 6953 | pr_err("gap " PTR_FMT "[%u] != %lu\n" , p_mn, p_slot, max_gap); |
| 6954 | mt_dump(mas->tree, mt_dump_hex); |
| 6955 | MT_BUG_ON(mas->tree, 1); |
| 6956 | } |
| 6957 | } |
| 6958 | |
| 6959 | static void mas_validate_parent_slot(struct ma_state *mas) |
| 6960 | { |
| 6961 | struct maple_node *parent; |
| 6962 | struct maple_enode *node; |
| 6963 | enum maple_type p_type; |
| 6964 | unsigned char p_slot; |
| 6965 | void __rcu **slots; |
| 6966 | int i; |
| 6967 | |
| 6968 | if (mte_is_root(mas->node)) |
| 6969 | return; |
| 6970 | |
| 6971 | p_slot = mte_parent_slot(mas->node); |
| 6972 | p_type = mas_parent_type(mas, mas->node); |
| 6973 | parent = mte_parent(mas->node); |
| 6974 | slots = ma_slots(parent, p_type); |
| 6975 | MT_BUG_ON(mas->tree, mas_mn(mas) == parent); |
| 6976 | |
| 6977 | /* Check prev/next parent slot for duplicate node entry */ |
| 6978 | |
| 6979 | for (i = 0; i < mt_slots[p_type]; i++) { |
| 6980 | node = mas_slot(mas, slots, i); |
| 6981 | if (i == p_slot) { |
| 6982 | if (node != mas->node) |
| 6983 | pr_err("parent " PTR_FMT "[%u] does not have " PTR_FMT "\n" , |
| 6984 | parent, i, mas_mn(mas)); |
| 6985 | MT_BUG_ON(mas->tree, node != mas->node); |
| 6986 | } else if (node == mas->node) { |
| 6987 | pr_err("Invalid child " PTR_FMT " at parent " PTR_FMT "[%u] p_slot %u\n" , |
| 6988 | mas_mn(mas), parent, i, p_slot); |
| 6989 | MT_BUG_ON(mas->tree, node == mas->node); |
| 6990 | } |
| 6991 | } |
| 6992 | } |
| 6993 | |
| 6994 | static void mas_validate_child_slot(struct ma_state *mas) |
| 6995 | { |
| 6996 | enum maple_type type = mte_node_type(mas->node); |
| 6997 | void __rcu **slots = ma_slots(mte_to_node(mas->node), type); |
| 6998 | unsigned long *pivots = ma_pivots(mte_to_node(mas->node), type); |
| 6999 | struct maple_enode *child; |
| 7000 | unsigned char i; |
| 7001 | |
| 7002 | if (mte_is_leaf(mas->node)) |
| 7003 | return; |
| 7004 | |
| 7005 | for (i = 0; i < mt_slots[type]; i++) { |
| 7006 | child = mas_slot(mas, slots, i); |
| 7007 | |
| 7008 | if (!child) { |
| 7009 | pr_err("Non-leaf node lacks child at " PTR_FMT "[%u]\n" , |
| 7010 | mas_mn(mas), i); |
| 7011 | MT_BUG_ON(mas->tree, 1); |
| 7012 | } |
| 7013 | |
| 7014 | if (mte_parent_slot(child) != i) { |
| 7015 | pr_err("Slot error at " PTR_FMT "[%u]: child " PTR_FMT " has pslot %u\n" , |
| 7016 | mas_mn(mas), i, mte_to_node(child), |
| 7017 | mte_parent_slot(child)); |
| 7018 | MT_BUG_ON(mas->tree, 1); |
| 7019 | } |
| 7020 | |
| 7021 | if (mte_parent(child) != mte_to_node(mas->node)) { |
| 7022 | pr_err("child " PTR_FMT " has parent " PTR_FMT " not " PTR_FMT "\n" , |
| 7023 | mte_to_node(child), mte_parent(child), |
| 7024 | mte_to_node(mas->node)); |
| 7025 | MT_BUG_ON(mas->tree, 1); |
| 7026 | } |
| 7027 | |
| 7028 | if (i < mt_pivots[type] && pivots[i] == mas->max) |
| 7029 | break; |
| 7030 | } |
| 7031 | } |
| 7032 | |
| 7033 | /* |
| 7034 | * Validate all pivots are within mas->min and mas->max, check metadata ends |
| 7035 | * where the maximum ends and ensure there is no slots or pivots set outside of |
| 7036 | * the end of the data. |
| 7037 | */ |
| 7038 | static void mas_validate_limits(struct ma_state *mas) |
| 7039 | { |
| 7040 | int i; |
| 7041 | unsigned long prev_piv = 0; |
| 7042 | enum maple_type type = mte_node_type(mas->node); |
| 7043 | void __rcu **slots = ma_slots(mte_to_node(mas->node), type); |
| 7044 | unsigned long *pivots = ma_pivots(mas_mn(mas), type); |
| 7045 | |
| 7046 | for (i = 0; i < mt_slots[type]; i++) { |
| 7047 | unsigned long piv; |
| 7048 | |
| 7049 | piv = mas_safe_pivot(mas, pivots, i, type); |
| 7050 | |
| 7051 | if (!piv && (i != 0)) { |
| 7052 | pr_err("Missing node limit pivot at " PTR_FMT "[%u]" , |
| 7053 | mas_mn(mas), i); |
| 7054 | MAS_WARN_ON(mas, 1); |
| 7055 | } |
| 7056 | |
| 7057 | if (prev_piv > piv) { |
| 7058 | pr_err(PTR_FMT "[%u] piv %lu < prev_piv %lu\n" , |
| 7059 | mas_mn(mas), i, piv, prev_piv); |
| 7060 | MAS_WARN_ON(mas, piv < prev_piv); |
| 7061 | } |
| 7062 | |
| 7063 | if (piv < mas->min) { |
| 7064 | pr_err(PTR_FMT "[%u] %lu < %lu\n" , mas_mn(mas), i, |
| 7065 | piv, mas->min); |
| 7066 | MAS_WARN_ON(mas, piv < mas->min); |
| 7067 | } |
| 7068 | if (piv > mas->max) { |
| 7069 | pr_err(PTR_FMT "[%u] %lu > %lu\n" , mas_mn(mas), i, |
| 7070 | piv, mas->max); |
| 7071 | MAS_WARN_ON(mas, piv > mas->max); |
| 7072 | } |
| 7073 | prev_piv = piv; |
| 7074 | if (piv == mas->max) |
| 7075 | break; |
| 7076 | } |
| 7077 | |
| 7078 | if (mas_data_end(mas) != i) { |
| 7079 | pr_err("node" PTR_FMT ": data_end %u != the last slot offset %u\n" , |
| 7080 | mas_mn(mas), mas_data_end(mas), i); |
| 7081 | MT_BUG_ON(mas->tree, 1); |
| 7082 | } |
| 7083 | |
| 7084 | for (i += 1; i < mt_slots[type]; i++) { |
| 7085 | void *entry = mas_slot(mas, slots, i); |
| 7086 | |
| 7087 | if (entry && (i != mt_slots[type] - 1)) { |
| 7088 | pr_err(PTR_FMT "[%u] should not have entry " PTR_FMT "\n" , |
| 7089 | mas_mn(mas), i, entry); |
| 7090 | MT_BUG_ON(mas->tree, entry != NULL); |
| 7091 | } |
| 7092 | |
| 7093 | if (i < mt_pivots[type]) { |
| 7094 | unsigned long piv = pivots[i]; |
| 7095 | |
| 7096 | if (!piv) |
| 7097 | continue; |
| 7098 | |
| 7099 | pr_err(PTR_FMT "[%u] should not have piv %lu\n" , |
| 7100 | mas_mn(mas), i, piv); |
| 7101 | MAS_WARN_ON(mas, i < mt_pivots[type] - 1); |
| 7102 | } |
| 7103 | } |
| 7104 | } |
| 7105 | |
| 7106 | static void mt_validate_nulls(struct maple_tree *mt) |
| 7107 | { |
| 7108 | void *entry, *last = (void *)1; |
| 7109 | unsigned char offset = 0; |
| 7110 | void __rcu **slots; |
| 7111 | MA_STATE(mas, mt, 0, 0); |
| 7112 | |
| 7113 | mas_start(&mas); |
| 7114 | if (mas_is_none(&mas) || (mas_is_ptr(&mas))) |
| 7115 | return; |
| 7116 | |
| 7117 | while (!mte_is_leaf(mas.node)) |
| 7118 | mas_descend(&mas); |
| 7119 | |
| 7120 | slots = ma_slots(mte_to_node(mas.node), mte_node_type(mas.node)); |
| 7121 | do { |
| 7122 | entry = mas_slot(&mas, slots, offset); |
| 7123 | if (!last && !entry) { |
| 7124 | pr_err("Sequential nulls end at " PTR_FMT "[%u]\n" , |
| 7125 | mas_mn(&mas), offset); |
| 7126 | } |
| 7127 | MT_BUG_ON(mt, !last && !entry); |
| 7128 | last = entry; |
| 7129 | if (offset == mas_data_end(&mas)) { |
| 7130 | mas_next_node(&mas, mas_mn(&mas), ULONG_MAX); |
| 7131 | if (mas_is_overflow(&mas)) |
| 7132 | return; |
| 7133 | offset = 0; |
| 7134 | slots = ma_slots(mte_to_node(mas.node), |
| 7135 | mte_node_type(mas.node)); |
| 7136 | } else { |
| 7137 | offset++; |
| 7138 | } |
| 7139 | |
| 7140 | } while (!mas_is_overflow(&mas)); |
| 7141 | } |
| 7142 | |
| 7143 | /* |
| 7144 | * validate a maple tree by checking: |
| 7145 | * 1. The limits (pivots are within mas->min to mas->max) |
| 7146 | * 2. The gap is correctly set in the parents |
| 7147 | */ |
| 7148 | void mt_validate(struct maple_tree *mt) |
| 7149 | __must_hold(mas->tree->ma_lock) |
| 7150 | { |
| 7151 | unsigned char end; |
| 7152 | |
| 7153 | MA_STATE(mas, mt, 0, 0); |
| 7154 | mas_start(&mas); |
| 7155 | if (!mas_is_active(&mas)) |
| 7156 | return; |
| 7157 | |
| 7158 | while (!mte_is_leaf(mas.node)) |
| 7159 | mas_descend(&mas); |
| 7160 | |
| 7161 | while (!mas_is_overflow(&mas)) { |
| 7162 | MAS_WARN_ON(&mas, mte_dead_node(mas.node)); |
| 7163 | end = mas_data_end(&mas); |
| 7164 | if (MAS_WARN_ON(&mas, (end < mt_min_slot_count(mas.node)) && |
| 7165 | (!mte_is_root(mas.node)))) { |
| 7166 | pr_err("Invalid size %u of " PTR_FMT "\n" , |
| 7167 | end, mas_mn(&mas)); |
| 7168 | } |
| 7169 | |
| 7170 | mas_validate_parent_slot(&mas); |
| 7171 | mas_validate_limits(&mas); |
| 7172 | mas_validate_child_slot(&mas); |
| 7173 | if (mt_is_alloc(mt)) |
| 7174 | mas_validate_gaps(&mas); |
| 7175 | mas_dfs_postorder(&mas, ULONG_MAX); |
| 7176 | } |
| 7177 | mt_validate_nulls(mt); |
| 7178 | } |
| 7179 | EXPORT_SYMBOL_GPL(mt_validate); |
| 7180 | |
| 7181 | void mas_dump(const struct ma_state *mas) |
| 7182 | { |
| 7183 | pr_err("MAS: tree=" PTR_FMT " enode=" PTR_FMT " " , |
| 7184 | mas->tree, mas->node); |
| 7185 | switch (mas->status) { |
| 7186 | case ma_active: |
| 7187 | pr_err("(ma_active)" ); |
| 7188 | break; |
| 7189 | case ma_none: |
| 7190 | pr_err("(ma_none)" ); |
| 7191 | break; |
| 7192 | case ma_root: |
| 7193 | pr_err("(ma_root)" ); |
| 7194 | break; |
| 7195 | case ma_start: |
| 7196 | pr_err("(ma_start) " ); |
| 7197 | break; |
| 7198 | case ma_pause: |
| 7199 | pr_err("(ma_pause) " ); |
| 7200 | break; |
| 7201 | case ma_overflow: |
| 7202 | pr_err("(ma_overflow) " ); |
| 7203 | break; |
| 7204 | case ma_underflow: |
| 7205 | pr_err("(ma_underflow) " ); |
| 7206 | break; |
| 7207 | case ma_error: |
| 7208 | pr_err("(ma_error) " ); |
| 7209 | break; |
| 7210 | } |
| 7211 | |
| 7212 | pr_err("Store Type: " ); |
| 7213 | switch (mas->store_type) { |
| 7214 | case wr_invalid: |
| 7215 | pr_err("invalid store type\n" ); |
| 7216 | break; |
| 7217 | case wr_new_root: |
| 7218 | pr_err("new_root\n" ); |
| 7219 | break; |
| 7220 | case wr_store_root: |
| 7221 | pr_err("store_root\n" ); |
| 7222 | break; |
| 7223 | case wr_exact_fit: |
| 7224 | pr_err("exact_fit\n" ); |
| 7225 | break; |
| 7226 | case wr_split_store: |
| 7227 | pr_err("split_store\n" ); |
| 7228 | break; |
| 7229 | case wr_slot_store: |
| 7230 | pr_err("slot_store\n" ); |
| 7231 | break; |
| 7232 | case wr_append: |
| 7233 | pr_err("append\n" ); |
| 7234 | break; |
| 7235 | case wr_node_store: |
| 7236 | pr_err("node_store\n" ); |
| 7237 | break; |
| 7238 | case wr_spanning_store: |
| 7239 | pr_err("spanning_store\n" ); |
| 7240 | break; |
| 7241 | case wr_rebalance: |
| 7242 | pr_err("rebalance\n" ); |
| 7243 | break; |
| 7244 | } |
| 7245 | |
| 7246 | pr_err("[%u/%u] index=%lx last=%lx\n" , mas->offset, mas->end, |
| 7247 | mas->index, mas->last); |
| 7248 | pr_err(" min=%lx max=%lx sheaf=" PTR_FMT ", request %lu depth=%u, flags=%x\n" , |
| 7249 | mas->min, mas->max, mas->sheaf, mas->node_request, mas->depth, |
| 7250 | mas->mas_flags); |
| 7251 | if (mas->index > mas->last) |
| 7252 | pr_err("Check index & last\n" ); |
| 7253 | } |
| 7254 | EXPORT_SYMBOL_GPL(mas_dump); |
| 7255 | |
| 7256 | void mas_wr_dump(const struct ma_wr_state *wr_mas) |
| 7257 | { |
| 7258 | pr_err("WR_MAS: node=" PTR_FMT " r_min=%lx r_max=%lx\n" , |
| 7259 | wr_mas->node, wr_mas->r_min, wr_mas->r_max); |
| 7260 | pr_err(" type=%u off_end=%u, node_end=%u, end_piv=%lx\n" , |
| 7261 | wr_mas->type, wr_mas->offset_end, wr_mas->mas->end, |
| 7262 | wr_mas->end_piv); |
| 7263 | } |
| 7264 | EXPORT_SYMBOL_GPL(mas_wr_dump); |
| 7265 | |
| 7266 | #endif /* CONFIG_DEBUG_MAPLE_TREE */ |
| 7267 | |