| 1 | // SPDX-License-Identifier: GPL-2.0 | 
|---|
| 2 | /* | 
|---|
| 3 | * rational fractions | 
|---|
| 4 | * | 
|---|
| 5 | * Copyright (C) 2009 emlix GmbH, Oskar Schirmer <oskar@scara.com> | 
|---|
| 6 | * Copyright (C) 2019 Trent Piepho <tpiepho@gmail.com> | 
|---|
| 7 | * | 
|---|
| 8 | * helper functions when coping with rational numbers | 
|---|
| 9 | */ | 
|---|
| 10 |  | 
|---|
| 11 | #include <linux/rational.h> | 
|---|
| 12 | #include <linux/compiler.h> | 
|---|
| 13 | #include <linux/export.h> | 
|---|
| 14 | #include <linux/minmax.h> | 
|---|
| 15 | #include <linux/limits.h> | 
|---|
| 16 | #include <linux/module.h> | 
|---|
| 17 |  | 
|---|
| 18 | /* | 
|---|
| 19 | * calculate best rational approximation for a given fraction | 
|---|
| 20 | * taking into account restricted register size, e.g. to find | 
|---|
| 21 | * appropriate values for a pll with 5 bit denominator and | 
|---|
| 22 | * 8 bit numerator register fields, trying to set up with a | 
|---|
| 23 | * frequency ratio of 3.1415, one would say: | 
|---|
| 24 | * | 
|---|
| 25 | * rational_best_approximation(31415, 10000, | 
|---|
| 26 | *		(1 << 8) - 1, (1 << 5) - 1, &n, &d); | 
|---|
| 27 | * | 
|---|
| 28 | * you may look at given_numerator as a fixed point number, | 
|---|
| 29 | * with the fractional part size described in given_denominator. | 
|---|
| 30 | * | 
|---|
| 31 | * for theoretical background, see: | 
|---|
| 32 | * https://en.wikipedia.org/wiki/Continued_fraction | 
|---|
| 33 | */ | 
|---|
| 34 |  | 
|---|
| 35 | void rational_best_approximation( | 
|---|
| 36 | unsigned long given_numerator, unsigned long given_denominator, | 
|---|
| 37 | unsigned long max_numerator, unsigned long max_denominator, | 
|---|
| 38 | unsigned long *best_numerator, unsigned long *best_denominator) | 
|---|
| 39 | { | 
|---|
| 40 | /* n/d is the starting rational, which is continually | 
|---|
| 41 | * decreased each iteration using the Euclidean algorithm. | 
|---|
| 42 | * | 
|---|
| 43 | * dp is the value of d from the prior iteration. | 
|---|
| 44 | * | 
|---|
| 45 | * n2/d2, n1/d1, and n0/d0 are our successively more accurate | 
|---|
| 46 | * approximations of the rational.  They are, respectively, | 
|---|
| 47 | * the current, previous, and two prior iterations of it. | 
|---|
| 48 | * | 
|---|
| 49 | * a is current term of the continued fraction. | 
|---|
| 50 | */ | 
|---|
| 51 | unsigned long n, d, n0, d0, n1, d1, n2, d2; | 
|---|
| 52 | n = given_numerator; | 
|---|
| 53 | d = given_denominator; | 
|---|
| 54 | n0 = d1 = 0; | 
|---|
| 55 | n1 = d0 = 1; | 
|---|
| 56 |  | 
|---|
| 57 | for (;;) { | 
|---|
| 58 | unsigned long dp, a; | 
|---|
| 59 |  | 
|---|
| 60 | if (d == 0) | 
|---|
| 61 | break; | 
|---|
| 62 | /* Find next term in continued fraction, 'a', via | 
|---|
| 63 | * Euclidean algorithm. | 
|---|
| 64 | */ | 
|---|
| 65 | dp = d; | 
|---|
| 66 | a = n / d; | 
|---|
| 67 | d = n % d; | 
|---|
| 68 | n = dp; | 
|---|
| 69 |  | 
|---|
| 70 | /* Calculate the current rational approximation (aka | 
|---|
| 71 | * convergent), n2/d2, using the term just found and | 
|---|
| 72 | * the two prior approximations. | 
|---|
| 73 | */ | 
|---|
| 74 | n2 = n0 + a * n1; | 
|---|
| 75 | d2 = d0 + a * d1; | 
|---|
| 76 |  | 
|---|
| 77 | /* If the current convergent exceeds the maxes, then | 
|---|
| 78 | * return either the previous convergent or the | 
|---|
| 79 | * largest semi-convergent, the final term of which is | 
|---|
| 80 | * found below as 't'. | 
|---|
| 81 | */ | 
|---|
| 82 | if ((n2 > max_numerator) || (d2 > max_denominator)) { | 
|---|
| 83 | unsigned long t = ULONG_MAX; | 
|---|
| 84 |  | 
|---|
| 85 | if (d1) | 
|---|
| 86 | t = (max_denominator - d0) / d1; | 
|---|
| 87 | if (n1) | 
|---|
| 88 | t = min(t, (max_numerator - n0) / n1); | 
|---|
| 89 |  | 
|---|
| 90 | /* This tests if the semi-convergent is closer than the previous | 
|---|
| 91 | * convergent.  If d1 is zero there is no previous convergent as this | 
|---|
| 92 | * is the 1st iteration, so always choose the semi-convergent. | 
|---|
| 93 | */ | 
|---|
| 94 | if (!d1 || 2u * t > a || (2u * t == a && d0 * dp > d1 * d)) { | 
|---|
| 95 | n1 = n0 + t * n1; | 
|---|
| 96 | d1 = d0 + t * d1; | 
|---|
| 97 | } | 
|---|
| 98 | break; | 
|---|
| 99 | } | 
|---|
| 100 | n0 = n1; | 
|---|
| 101 | n1 = n2; | 
|---|
| 102 | d0 = d1; | 
|---|
| 103 | d1 = d2; | 
|---|
| 104 | } | 
|---|
| 105 | *best_numerator = n1; | 
|---|
| 106 | *best_denominator = d1; | 
|---|
| 107 | } | 
|---|
| 108 |  | 
|---|
| 109 | EXPORT_SYMBOL(rational_best_approximation); | 
|---|
| 110 |  | 
|---|
| 111 | MODULE_DESCRIPTION( "Rational fraction support library"); | 
|---|
| 112 | MODULE_LICENSE( "GPL v2"); | 
|---|
| 113 |  | 
|---|