| 1 | /* +++ trees.c */ | 
|---|
| 2 | /* trees.c -- output deflated data using Huffman coding | 
|---|
| 3 | * Copyright (C) 1995-1996 Jean-loup Gailly | 
|---|
| 4 | * For conditions of distribution and use, see copyright notice in zlib.h | 
|---|
| 5 | */ | 
|---|
| 6 |  | 
|---|
| 7 | /* | 
|---|
| 8 | *  ALGORITHM | 
|---|
| 9 | * | 
|---|
| 10 | *      The "deflation" process uses several Huffman trees. The more | 
|---|
| 11 | *      common source values are represented by shorter bit sequences. | 
|---|
| 12 | * | 
|---|
| 13 | *      Each code tree is stored in a compressed form which is itself | 
|---|
| 14 | * a Huffman encoding of the lengths of all the code strings (in | 
|---|
| 15 | * ascending order by source values).  The actual code strings are | 
|---|
| 16 | * reconstructed from the lengths in the inflate process, as described | 
|---|
| 17 | * in the deflate specification. | 
|---|
| 18 | * | 
|---|
| 19 | *  REFERENCES | 
|---|
| 20 | * | 
|---|
| 21 | *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification". | 
|---|
| 22 | *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc | 
|---|
| 23 | * | 
|---|
| 24 | *      Storer, James A. | 
|---|
| 25 | *          Data Compression:  Methods and Theory, pp. 49-50. | 
|---|
| 26 | *          Computer Science Press, 1988.  ISBN 0-7167-8156-5. | 
|---|
| 27 | * | 
|---|
| 28 | *      Sedgewick, R. | 
|---|
| 29 | *          Algorithms, p290. | 
|---|
| 30 | *          Addison-Wesley, 1983. ISBN 0-201-06672-6. | 
|---|
| 31 | */ | 
|---|
| 32 |  | 
|---|
| 33 | /* From: trees.c,v 1.11 1996/07/24 13:41:06 me Exp $ */ | 
|---|
| 34 |  | 
|---|
| 35 | /* #include "deflate.h" */ | 
|---|
| 36 |  | 
|---|
| 37 | #include <linux/zutil.h> | 
|---|
| 38 | #include <linux/bitrev.h> | 
|---|
| 39 | #include "defutil.h" | 
|---|
| 40 |  | 
|---|
| 41 | #ifdef DEBUG_ZLIB | 
|---|
| 42 | #  include <ctype.h> | 
|---|
| 43 | #endif | 
|---|
| 44 |  | 
|---|
| 45 | /* =========================================================================== | 
|---|
| 46 | * Constants | 
|---|
| 47 | */ | 
|---|
| 48 |  | 
|---|
| 49 | #define MAX_BL_BITS 7 | 
|---|
| 50 | /* Bit length codes must not exceed MAX_BL_BITS bits */ | 
|---|
| 51 |  | 
|---|
| 52 | #define END_BLOCK 256 | 
|---|
| 53 | /* end of block literal code */ | 
|---|
| 54 |  | 
|---|
| 55 | #define REP_3_6      16 | 
|---|
| 56 | /* repeat previous bit length 3-6 times (2 bits of repeat count) */ | 
|---|
| 57 |  | 
|---|
| 58 | #define REPZ_3_10    17 | 
|---|
| 59 | /* repeat a zero length 3-10 times  (3 bits of repeat count) */ | 
|---|
| 60 |  | 
|---|
| 61 | #define REPZ_11_138  18 | 
|---|
| 62 | /* repeat a zero length 11-138 times  (7 bits of repeat count) */ | 
|---|
| 63 |  | 
|---|
| 64 | static const int [LENGTH_CODES] /* extra bits for each length code */ | 
|---|
| 65 | = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0}; | 
|---|
| 66 |  | 
|---|
| 67 | static const int [D_CODES] /* extra bits for each distance code */ | 
|---|
| 68 | = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13}; | 
|---|
| 69 |  | 
|---|
| 70 | static const int [BL_CODES]/* extra bits for each bit length code */ | 
|---|
| 71 | = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7}; | 
|---|
| 72 |  | 
|---|
| 73 | static const uch bl_order[BL_CODES] | 
|---|
| 74 | = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15}; | 
|---|
| 75 | /* The lengths of the bit length codes are sent in order of decreasing | 
|---|
| 76 | * probability, to avoid transmitting the lengths for unused bit length codes. | 
|---|
| 77 | */ | 
|---|
| 78 |  | 
|---|
| 79 | /* =========================================================================== | 
|---|
| 80 | * Local data. These are initialized only once. | 
|---|
| 81 | */ | 
|---|
| 82 |  | 
|---|
| 83 | static ct_data static_ltree[L_CODES+2]; | 
|---|
| 84 | /* The static literal tree. Since the bit lengths are imposed, there is no | 
|---|
| 85 | * need for the L_CODES extra codes used during heap construction. However | 
|---|
| 86 | * The codes 286 and 287 are needed to build a canonical tree (see zlib_tr_init | 
|---|
| 87 | * below). | 
|---|
| 88 | */ | 
|---|
| 89 |  | 
|---|
| 90 | static ct_data static_dtree[D_CODES]; | 
|---|
| 91 | /* The static distance tree. (Actually a trivial tree since all codes use | 
|---|
| 92 | * 5 bits.) | 
|---|
| 93 | */ | 
|---|
| 94 |  | 
|---|
| 95 | static uch dist_code[512]; | 
|---|
| 96 | /* distance codes. The first 256 values correspond to the distances | 
|---|
| 97 | * 3 .. 258, the last 256 values correspond to the top 8 bits of | 
|---|
| 98 | * the 15 bit distances. | 
|---|
| 99 | */ | 
|---|
| 100 |  | 
|---|
| 101 | static uch length_code[MAX_MATCH-MIN_MATCH+1]; | 
|---|
| 102 | /* length code for each normalized match length (0 == MIN_MATCH) */ | 
|---|
| 103 |  | 
|---|
| 104 | static int base_length[LENGTH_CODES]; | 
|---|
| 105 | /* First normalized length for each code (0 = MIN_MATCH) */ | 
|---|
| 106 |  | 
|---|
| 107 | static int base_dist[D_CODES]; | 
|---|
| 108 | /* First normalized distance for each code (0 = distance of 1) */ | 
|---|
| 109 |  | 
|---|
| 110 | struct static_tree_desc_s { | 
|---|
| 111 | const ct_data *static_tree;  /* static tree or NULL */ | 
|---|
| 112 | const int *;       /* extra bits for each code or NULL */ | 
|---|
| 113 | int     ;          /* base index for extra_bits */ | 
|---|
| 114 | int     elems;               /* max number of elements in the tree */ | 
|---|
| 115 | int     max_length;          /* max bit length for the codes */ | 
|---|
| 116 | }; | 
|---|
| 117 |  | 
|---|
| 118 | static static_tree_desc  static_l_desc = | 
|---|
| 119 | {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS}; | 
|---|
| 120 |  | 
|---|
| 121 | static static_tree_desc  static_d_desc = | 
|---|
| 122 | {static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS}; | 
|---|
| 123 |  | 
|---|
| 124 | static static_tree_desc  static_bl_desc = | 
|---|
| 125 | {(const ct_data *)0, extra_blbits, 0,   BL_CODES, MAX_BL_BITS}; | 
|---|
| 126 |  | 
|---|
| 127 | /* =========================================================================== | 
|---|
| 128 | * Local (static) routines in this file. | 
|---|
| 129 | */ | 
|---|
| 130 |  | 
|---|
| 131 | static void tr_static_init (void); | 
|---|
| 132 | static void init_block     (deflate_state *s); | 
|---|
| 133 | static void pqdownheap     (deflate_state *s, ct_data *tree, int k); | 
|---|
| 134 | static void gen_bitlen     (deflate_state *s, tree_desc *desc); | 
|---|
| 135 | static void gen_codes      (ct_data *tree, int max_code, ush *bl_count); | 
|---|
| 136 | static void build_tree     (deflate_state *s, tree_desc *desc); | 
|---|
| 137 | static void scan_tree      (deflate_state *s, ct_data *tree, int max_code); | 
|---|
| 138 | static void send_tree      (deflate_state *s, ct_data *tree, int max_code); | 
|---|
| 139 | static int  build_bl_tree  (deflate_state *s); | 
|---|
| 140 | static void send_all_trees (deflate_state *s, int lcodes, int dcodes, | 
|---|
| 141 | int blcodes); | 
|---|
| 142 | static void compress_block (deflate_state *s, ct_data *ltree, | 
|---|
| 143 | ct_data *dtree); | 
|---|
| 144 | static void set_data_type  (deflate_state *s); | 
|---|
| 145 | static void bi_flush       (deflate_state *s); | 
|---|
| 146 | static void copy_block     (deflate_state *s, char *buf, unsigned len, | 
|---|
| 147 | int ); | 
|---|
| 148 |  | 
|---|
| 149 | #ifndef DEBUG_ZLIB | 
|---|
| 150 | #  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len) | 
|---|
| 151 | /* Send a code of the given tree. c and tree must not have side effects */ | 
|---|
| 152 |  | 
|---|
| 153 | #else /* DEBUG_ZLIB */ | 
|---|
| 154 | #  define send_code(s, c, tree) \ | 
|---|
| 155 | { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \ | 
|---|
| 156 | send_bits(s, tree[c].Code, tree[c].Len); } | 
|---|
| 157 | #endif | 
|---|
| 158 |  | 
|---|
| 159 | #define d_code(dist) \ | 
|---|
| 160 | ((dist) < 256 ? dist_code[dist] : dist_code[256+((dist)>>7)]) | 
|---|
| 161 | /* Mapping from a distance to a distance code. dist is the distance - 1 and | 
|---|
| 162 | * must not have side effects. dist_code[256] and dist_code[257] are never | 
|---|
| 163 | * used. | 
|---|
| 164 | */ | 
|---|
| 165 |  | 
|---|
| 166 | /* =========================================================================== | 
|---|
| 167 | * Initialize the various 'constant' tables. In a multi-threaded environment, | 
|---|
| 168 | * this function may be called by two threads concurrently, but this is | 
|---|
| 169 | * harmless since both invocations do exactly the same thing. | 
|---|
| 170 | */ | 
|---|
| 171 | static void tr_static_init(void) | 
|---|
| 172 | { | 
|---|
| 173 | static int static_init_done; | 
|---|
| 174 | int n;        /* iterates over tree elements */ | 
|---|
| 175 | int bits;     /* bit counter */ | 
|---|
| 176 | int length;   /* length value */ | 
|---|
| 177 | int code;     /* code value */ | 
|---|
| 178 | int dist;     /* distance index */ | 
|---|
| 179 | ush bl_count[MAX_BITS+1]; | 
|---|
| 180 | /* number of codes at each bit length for an optimal tree */ | 
|---|
| 181 |  | 
|---|
| 182 | if (static_init_done) return; | 
|---|
| 183 |  | 
|---|
| 184 | /* Initialize the mapping length (0..255) -> length code (0..28) */ | 
|---|
| 185 | length = 0; | 
|---|
| 186 | for (code = 0; code < LENGTH_CODES-1; code++) { | 
|---|
| 187 | base_length[code] = length; | 
|---|
| 188 | for (n = 0; n < (1<<extra_lbits[code]); n++) { | 
|---|
| 189 | length_code[length++] = (uch)code; | 
|---|
| 190 | } | 
|---|
| 191 | } | 
|---|
| 192 | Assert (length == 256, "tr_static_init: length != 256"); | 
|---|
| 193 | /* Note that the length 255 (match length 258) can be represented | 
|---|
| 194 | * in two different ways: code 284 + 5 bits or code 285, so we | 
|---|
| 195 | * overwrite length_code[255] to use the best encoding: | 
|---|
| 196 | */ | 
|---|
| 197 | length_code[length-1] = (uch)code; | 
|---|
| 198 |  | 
|---|
| 199 | /* Initialize the mapping dist (0..32K) -> dist code (0..29) */ | 
|---|
| 200 | dist = 0; | 
|---|
| 201 | for (code = 0 ; code < 16; code++) { | 
|---|
| 202 | base_dist[code] = dist; | 
|---|
| 203 | for (n = 0; n < (1<<extra_dbits[code]); n++) { | 
|---|
| 204 | dist_code[dist++] = (uch)code; | 
|---|
| 205 | } | 
|---|
| 206 | } | 
|---|
| 207 | Assert (dist == 256, "tr_static_init: dist != 256"); | 
|---|
| 208 | dist >>= 7; /* from now on, all distances are divided by 128 */ | 
|---|
| 209 | for ( ; code < D_CODES; code++) { | 
|---|
| 210 | base_dist[code] = dist << 7; | 
|---|
| 211 | for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) { | 
|---|
| 212 | dist_code[256 + dist++] = (uch)code; | 
|---|
| 213 | } | 
|---|
| 214 | } | 
|---|
| 215 | Assert (dist == 256, "tr_static_init: 256+dist != 512"); | 
|---|
| 216 |  | 
|---|
| 217 | /* Construct the codes of the static literal tree */ | 
|---|
| 218 | for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0; | 
|---|
| 219 | n = 0; | 
|---|
| 220 | while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++; | 
|---|
| 221 | while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++; | 
|---|
| 222 | while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++; | 
|---|
| 223 | while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++; | 
|---|
| 224 | /* Codes 286 and 287 do not exist, but we must include them in the | 
|---|
| 225 | * tree construction to get a canonical Huffman tree (longest code | 
|---|
| 226 | * all ones) | 
|---|
| 227 | */ | 
|---|
| 228 | gen_codes(tree: (ct_data *)static_ltree, L_CODES+1, bl_count); | 
|---|
| 229 |  | 
|---|
| 230 | /* The static distance tree is trivial: */ | 
|---|
| 231 | for (n = 0; n < D_CODES; n++) { | 
|---|
| 232 | static_dtree[n].Len = 5; | 
|---|
| 233 | static_dtree[n].Code = bitrev32((u32)n) >> (32 - 5); | 
|---|
| 234 | } | 
|---|
| 235 | static_init_done = 1; | 
|---|
| 236 | } | 
|---|
| 237 |  | 
|---|
| 238 | /* =========================================================================== | 
|---|
| 239 | * Initialize the tree data structures for a new zlib stream. | 
|---|
| 240 | */ | 
|---|
| 241 | void zlib_tr_init( | 
|---|
| 242 | deflate_state *s | 
|---|
| 243 | ) | 
|---|
| 244 | { | 
|---|
| 245 | tr_static_init(); | 
|---|
| 246 |  | 
|---|
| 247 | s->compressed_len = 0L; | 
|---|
| 248 |  | 
|---|
| 249 | s->l_desc.dyn_tree = s->dyn_ltree; | 
|---|
| 250 | s->l_desc.stat_desc = &static_l_desc; | 
|---|
| 251 |  | 
|---|
| 252 | s->d_desc.dyn_tree = s->dyn_dtree; | 
|---|
| 253 | s->d_desc.stat_desc = &static_d_desc; | 
|---|
| 254 |  | 
|---|
| 255 | s->bl_desc.dyn_tree = s->bl_tree; | 
|---|
| 256 | s->bl_desc.stat_desc = &static_bl_desc; | 
|---|
| 257 |  | 
|---|
| 258 | s->bi_buf = 0; | 
|---|
| 259 | s->bi_valid = 0; | 
|---|
| 260 | s->last_eob_len = 8; /* enough lookahead for inflate */ | 
|---|
| 261 | #ifdef DEBUG_ZLIB | 
|---|
| 262 | s->bits_sent = 0L; | 
|---|
| 263 | #endif | 
|---|
| 264 |  | 
|---|
| 265 | /* Initialize the first block of the first file: */ | 
|---|
| 266 | init_block(s); | 
|---|
| 267 | } | 
|---|
| 268 |  | 
|---|
| 269 | /* =========================================================================== | 
|---|
| 270 | * Initialize a new block. | 
|---|
| 271 | */ | 
|---|
| 272 | static void init_block( | 
|---|
| 273 | deflate_state *s | 
|---|
| 274 | ) | 
|---|
| 275 | { | 
|---|
| 276 | int n; /* iterates over tree elements */ | 
|---|
| 277 |  | 
|---|
| 278 | /* Initialize the trees. */ | 
|---|
| 279 | for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0; | 
|---|
| 280 | for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0; | 
|---|
| 281 | for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0; | 
|---|
| 282 |  | 
|---|
| 283 | s->dyn_ltree[END_BLOCK].Freq = 1; | 
|---|
| 284 | s->opt_len = s->static_len = 0L; | 
|---|
| 285 | s->last_lit = s->matches = 0; | 
|---|
| 286 | } | 
|---|
| 287 |  | 
|---|
| 288 | #define SMALLEST 1 | 
|---|
| 289 | /* Index within the heap array of least frequent node in the Huffman tree */ | 
|---|
| 290 |  | 
|---|
| 291 |  | 
|---|
| 292 | /* =========================================================================== | 
|---|
| 293 | * Remove the smallest element from the heap and recreate the heap with | 
|---|
| 294 | * one less element. Updates heap and heap_len. | 
|---|
| 295 | */ | 
|---|
| 296 | #define pqremove(s, tree, top) \ | 
|---|
| 297 | {\ | 
|---|
| 298 | top = s->heap[SMALLEST]; \ | 
|---|
| 299 | s->heap[SMALLEST] = s->heap[s->heap_len--]; \ | 
|---|
| 300 | pqdownheap(s, tree, SMALLEST); \ | 
|---|
| 301 | } | 
|---|
| 302 |  | 
|---|
| 303 | /* =========================================================================== | 
|---|
| 304 | * Compares to subtrees, using the tree depth as tie breaker when | 
|---|
| 305 | * the subtrees have equal frequency. This minimizes the worst case length. | 
|---|
| 306 | */ | 
|---|
| 307 | #define smaller(tree, n, m, depth) \ | 
|---|
| 308 | (tree[n].Freq < tree[m].Freq || \ | 
|---|
| 309 | (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m])) | 
|---|
| 310 |  | 
|---|
| 311 | /* =========================================================================== | 
|---|
| 312 | * Restore the heap property by moving down the tree starting at node k, | 
|---|
| 313 | * exchanging a node with the smallest of its two sons if necessary, stopping | 
|---|
| 314 | * when the heap property is re-established (each father smaller than its | 
|---|
| 315 | * two sons). | 
|---|
| 316 | */ | 
|---|
| 317 | static void pqdownheap( | 
|---|
| 318 | deflate_state *s, | 
|---|
| 319 | ct_data *tree,  /* the tree to restore */ | 
|---|
| 320 | int k		/* node to move down */ | 
|---|
| 321 | ) | 
|---|
| 322 | { | 
|---|
| 323 | int v = s->heap[k]; | 
|---|
| 324 | int j = k << 1;  /* left son of k */ | 
|---|
| 325 | while (j <= s->heap_len) { | 
|---|
| 326 | /* Set j to the smallest of the two sons: */ | 
|---|
| 327 | if (j < s->heap_len && | 
|---|
| 328 | smaller(tree, s->heap[j+1], s->heap[j], s->depth)) { | 
|---|
| 329 | j++; | 
|---|
| 330 | } | 
|---|
| 331 | /* Exit if v is smaller than both sons */ | 
|---|
| 332 | if (smaller(tree, v, s->heap[j], s->depth)) break; | 
|---|
| 333 |  | 
|---|
| 334 | /* Exchange v with the smallest son */ | 
|---|
| 335 | s->heap[k] = s->heap[j];  k = j; | 
|---|
| 336 |  | 
|---|
| 337 | /* And continue down the tree, setting j to the left son of k */ | 
|---|
| 338 | j <<= 1; | 
|---|
| 339 | } | 
|---|
| 340 | s->heap[k] = v; | 
|---|
| 341 | } | 
|---|
| 342 |  | 
|---|
| 343 | /* =========================================================================== | 
|---|
| 344 | * Compute the optimal bit lengths for a tree and update the total bit length | 
|---|
| 345 | * for the current block. | 
|---|
| 346 | * IN assertion: the fields freq and dad are set, heap[heap_max] and | 
|---|
| 347 | *    above are the tree nodes sorted by increasing frequency. | 
|---|
| 348 | * OUT assertions: the field len is set to the optimal bit length, the | 
|---|
| 349 | *     array bl_count contains the frequencies for each bit length. | 
|---|
| 350 | *     The length opt_len is updated; static_len is also updated if stree is | 
|---|
| 351 | *     not null. | 
|---|
| 352 | */ | 
|---|
| 353 | static void gen_bitlen( | 
|---|
| 354 | deflate_state *s, | 
|---|
| 355 | tree_desc *desc    /* the tree descriptor */ | 
|---|
| 356 | ) | 
|---|
| 357 | { | 
|---|
| 358 | ct_data *tree        = desc->dyn_tree; | 
|---|
| 359 | int max_code         = desc->max_code; | 
|---|
| 360 | const ct_data *stree = desc->stat_desc->static_tree; | 
|---|
| 361 | const int *     = desc->stat_desc->extra_bits; | 
|---|
| 362 | int base             = desc->stat_desc->extra_base; | 
|---|
| 363 | int max_length       = desc->stat_desc->max_length; | 
|---|
| 364 | int h;              /* heap index */ | 
|---|
| 365 | int n, m;           /* iterate over the tree elements */ | 
|---|
| 366 | int bits;           /* bit length */ | 
|---|
| 367 | int xbits;          /* extra bits */ | 
|---|
| 368 | ush f;              /* frequency */ | 
|---|
| 369 | int overflow = 0;   /* number of elements with bit length too large */ | 
|---|
| 370 |  | 
|---|
| 371 | for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0; | 
|---|
| 372 |  | 
|---|
| 373 | /* In a first pass, compute the optimal bit lengths (which may | 
|---|
| 374 | * overflow in the case of the bit length tree). | 
|---|
| 375 | */ | 
|---|
| 376 | tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */ | 
|---|
| 377 |  | 
|---|
| 378 | for (h = s->heap_max+1; h < HEAP_SIZE; h++) { | 
|---|
| 379 | n = s->heap[h]; | 
|---|
| 380 | bits = tree[tree[n].Dad].Len + 1; | 
|---|
| 381 | if (bits > max_length) bits = max_length, overflow++; | 
|---|
| 382 | tree[n].Len = (ush)bits; | 
|---|
| 383 | /* We overwrite tree[n].Dad which is no longer needed */ | 
|---|
| 384 |  | 
|---|
| 385 | if (n > max_code) continue; /* not a leaf node */ | 
|---|
| 386 |  | 
|---|
| 387 | s->bl_count[bits]++; | 
|---|
| 388 | xbits = 0; | 
|---|
| 389 | if (n >= base) xbits = extra[n-base]; | 
|---|
| 390 | f = tree[n].Freq; | 
|---|
| 391 | s->opt_len += (ulg)f * (bits + xbits); | 
|---|
| 392 | if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits); | 
|---|
| 393 | } | 
|---|
| 394 | if (overflow == 0) return; | 
|---|
| 395 |  | 
|---|
| 396 | Trace((stderr, "\nbit length overflow\n")); | 
|---|
| 397 | /* This happens for example on obj2 and pic of the Calgary corpus */ | 
|---|
| 398 |  | 
|---|
| 399 | /* Find the first bit length which could increase: */ | 
|---|
| 400 | do { | 
|---|
| 401 | bits = max_length-1; | 
|---|
| 402 | while (s->bl_count[bits] == 0) bits--; | 
|---|
| 403 | s->bl_count[bits]--;      /* move one leaf down the tree */ | 
|---|
| 404 | s->bl_count[bits+1] += 2; /* move one overflow item as its brother */ | 
|---|
| 405 | s->bl_count[max_length]--; | 
|---|
| 406 | /* The brother of the overflow item also moves one step up, | 
|---|
| 407 | * but this does not affect bl_count[max_length] | 
|---|
| 408 | */ | 
|---|
| 409 | overflow -= 2; | 
|---|
| 410 | } while (overflow > 0); | 
|---|
| 411 |  | 
|---|
| 412 | /* Now recompute all bit lengths, scanning in increasing frequency. | 
|---|
| 413 | * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all | 
|---|
| 414 | * lengths instead of fixing only the wrong ones. This idea is taken | 
|---|
| 415 | * from 'ar' written by Haruhiko Okumura.) | 
|---|
| 416 | */ | 
|---|
| 417 | for (bits = max_length; bits != 0; bits--) { | 
|---|
| 418 | n = s->bl_count[bits]; | 
|---|
| 419 | while (n != 0) { | 
|---|
| 420 | m = s->heap[--h]; | 
|---|
| 421 | if (m > max_code) continue; | 
|---|
| 422 | if (tree[m].Len != (unsigned) bits) { | 
|---|
| 423 | Trace((stderr, "code %d bits %d->%d\n", m, tree[m].Len, bits)); | 
|---|
| 424 | s->opt_len += ((long)bits - (long)tree[m].Len) | 
|---|
| 425 | *(long)tree[m].Freq; | 
|---|
| 426 | tree[m].Len = (ush)bits; | 
|---|
| 427 | } | 
|---|
| 428 | n--; | 
|---|
| 429 | } | 
|---|
| 430 | } | 
|---|
| 431 | } | 
|---|
| 432 |  | 
|---|
| 433 | /* =========================================================================== | 
|---|
| 434 | * Generate the codes for a given tree and bit counts (which need not be | 
|---|
| 435 | * optimal). | 
|---|
| 436 | * IN assertion: the array bl_count contains the bit length statistics for | 
|---|
| 437 | * the given tree and the field len is set for all tree elements. | 
|---|
| 438 | * OUT assertion: the field code is set for all tree elements of non | 
|---|
| 439 | *     zero code length. | 
|---|
| 440 | */ | 
|---|
| 441 | static void gen_codes( | 
|---|
| 442 | ct_data *tree,             /* the tree to decorate */ | 
|---|
| 443 | int max_code,              /* largest code with non zero frequency */ | 
|---|
| 444 | ush *bl_count             /* number of codes at each bit length */ | 
|---|
| 445 | ) | 
|---|
| 446 | { | 
|---|
| 447 | ush next_code[MAX_BITS+1]; /* next code value for each bit length */ | 
|---|
| 448 | ush code = 0;              /* running code value */ | 
|---|
| 449 | int bits;                  /* bit index */ | 
|---|
| 450 | int n;                     /* code index */ | 
|---|
| 451 |  | 
|---|
| 452 | /* The distribution counts are first used to generate the code values | 
|---|
| 453 | * without bit reversal. | 
|---|
| 454 | */ | 
|---|
| 455 | for (bits = 1; bits <= MAX_BITS; bits++) { | 
|---|
| 456 | next_code[bits] = code = (code + bl_count[bits-1]) << 1; | 
|---|
| 457 | } | 
|---|
| 458 | /* Check that the bit counts in bl_count are consistent. The last code | 
|---|
| 459 | * must be all ones. | 
|---|
| 460 | */ | 
|---|
| 461 | Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1, | 
|---|
| 462 | "inconsistent bit counts"); | 
|---|
| 463 | Tracev((stderr, "\ngen_codes: max_code %d ", max_code)); | 
|---|
| 464 |  | 
|---|
| 465 | for (n = 0;  n <= max_code; n++) { | 
|---|
| 466 | int len = tree[n].Len; | 
|---|
| 467 | if (len == 0) continue; | 
|---|
| 468 | /* Now reverse the bits */ | 
|---|
| 469 | tree[n].Code = bitrev32((u32)(next_code[len]++)) >> (32 - len); | 
|---|
| 470 |  | 
|---|
| 471 | Tracecv(tree != static_ltree, (stderr, "\nn %3d %c l %2d c %4x (%x) ", | 
|---|
| 472 | n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1)); | 
|---|
| 473 | } | 
|---|
| 474 | } | 
|---|
| 475 |  | 
|---|
| 476 | /* =========================================================================== | 
|---|
| 477 | * Construct one Huffman tree and assigns the code bit strings and lengths. | 
|---|
| 478 | * Update the total bit length for the current block. | 
|---|
| 479 | * IN assertion: the field freq is set for all tree elements. | 
|---|
| 480 | * OUT assertions: the fields len and code are set to the optimal bit length | 
|---|
| 481 | *     and corresponding code. The length opt_len is updated; static_len is | 
|---|
| 482 | *     also updated if stree is not null. The field max_code is set. | 
|---|
| 483 | */ | 
|---|
| 484 | static void build_tree( | 
|---|
| 485 | deflate_state *s, | 
|---|
| 486 | tree_desc *desc	 /* the tree descriptor */ | 
|---|
| 487 | ) | 
|---|
| 488 | { | 
|---|
| 489 | ct_data *tree         = desc->dyn_tree; | 
|---|
| 490 | const ct_data *stree  = desc->stat_desc->static_tree; | 
|---|
| 491 | int elems             = desc->stat_desc->elems; | 
|---|
| 492 | int n, m;          /* iterate over heap elements */ | 
|---|
| 493 | int max_code = -1; /* largest code with non zero frequency */ | 
|---|
| 494 | int node;          /* new node being created */ | 
|---|
| 495 |  | 
|---|
| 496 | /* Construct the initial heap, with least frequent element in | 
|---|
| 497 | * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1]. | 
|---|
| 498 | * heap[0] is not used. | 
|---|
| 499 | */ | 
|---|
| 500 | s->heap_len = 0, s->heap_max = HEAP_SIZE; | 
|---|
| 501 |  | 
|---|
| 502 | for (n = 0; n < elems; n++) { | 
|---|
| 503 | if (tree[n].Freq != 0) { | 
|---|
| 504 | s->heap[++(s->heap_len)] = max_code = n; | 
|---|
| 505 | s->depth[n] = 0; | 
|---|
| 506 | } else { | 
|---|
| 507 | tree[n].Len = 0; | 
|---|
| 508 | } | 
|---|
| 509 | } | 
|---|
| 510 |  | 
|---|
| 511 | /* The pkzip format requires that at least one distance code exists, | 
|---|
| 512 | * and that at least one bit should be sent even if there is only one | 
|---|
| 513 | * possible code. So to avoid special checks later on we force at least | 
|---|
| 514 | * two codes of non zero frequency. | 
|---|
| 515 | */ | 
|---|
| 516 | while (s->heap_len < 2) { | 
|---|
| 517 | node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0); | 
|---|
| 518 | tree[node].Freq = 1; | 
|---|
| 519 | s->depth[node] = 0; | 
|---|
| 520 | s->opt_len--; if (stree) s->static_len -= stree[node].Len; | 
|---|
| 521 | /* node is 0 or 1 so it does not have extra bits */ | 
|---|
| 522 | } | 
|---|
| 523 | desc->max_code = max_code; | 
|---|
| 524 |  | 
|---|
| 525 | /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree, | 
|---|
| 526 | * establish sub-heaps of increasing lengths: | 
|---|
| 527 | */ | 
|---|
| 528 | for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, k: n); | 
|---|
| 529 |  | 
|---|
| 530 | /* Construct the Huffman tree by repeatedly combining the least two | 
|---|
| 531 | * frequent nodes. | 
|---|
| 532 | */ | 
|---|
| 533 | node = elems;              /* next internal node of the tree */ | 
|---|
| 534 | do { | 
|---|
| 535 | pqremove(s, tree, n);  /* n = node of least frequency */ | 
|---|
| 536 | m = s->heap[SMALLEST]; /* m = node of next least frequency */ | 
|---|
| 537 |  | 
|---|
| 538 | s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */ | 
|---|
| 539 | s->heap[--(s->heap_max)] = m; | 
|---|
| 540 |  | 
|---|
| 541 | /* Create a new node father of n and m */ | 
|---|
| 542 | tree[node].Freq = tree[n].Freq + tree[m].Freq; | 
|---|
| 543 | s->depth[node] = (uch) (max(s->depth[n], s->depth[m]) + 1); | 
|---|
| 544 | tree[n].Dad = tree[m].Dad = (ush)node; | 
|---|
| 545 | #ifdef DUMP_BL_TREE | 
|---|
| 546 | if (tree == s->bl_tree) { | 
|---|
| 547 | fprintf(stderr, "\nnode %d(%d), sons %d(%d) %d(%d)", | 
|---|
| 548 | node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq); | 
|---|
| 549 | } | 
|---|
| 550 | #endif | 
|---|
| 551 | /* and insert the new node in the heap */ | 
|---|
| 552 | s->heap[SMALLEST] = node++; | 
|---|
| 553 | pqdownheap(s, tree, SMALLEST); | 
|---|
| 554 |  | 
|---|
| 555 | } while (s->heap_len >= 2); | 
|---|
| 556 |  | 
|---|
| 557 | s->heap[--(s->heap_max)] = s->heap[SMALLEST]; | 
|---|
| 558 |  | 
|---|
| 559 | /* At this point, the fields freq and dad are set. We can now | 
|---|
| 560 | * generate the bit lengths. | 
|---|
| 561 | */ | 
|---|
| 562 | gen_bitlen(s, desc: (tree_desc *)desc); | 
|---|
| 563 |  | 
|---|
| 564 | /* The field len is now set, we can generate the bit codes */ | 
|---|
| 565 | gen_codes (tree: (ct_data *)tree, max_code, bl_count: s->bl_count); | 
|---|
| 566 | } | 
|---|
| 567 |  | 
|---|
| 568 | /* =========================================================================== | 
|---|
| 569 | * Scan a literal or distance tree to determine the frequencies of the codes | 
|---|
| 570 | * in the bit length tree. | 
|---|
| 571 | */ | 
|---|
| 572 | static void scan_tree( | 
|---|
| 573 | deflate_state *s, | 
|---|
| 574 | ct_data *tree,   /* the tree to be scanned */ | 
|---|
| 575 | int max_code     /* and its largest code of non zero frequency */ | 
|---|
| 576 | ) | 
|---|
| 577 | { | 
|---|
| 578 | int n;                     /* iterates over all tree elements */ | 
|---|
| 579 | int prevlen = -1;          /* last emitted length */ | 
|---|
| 580 | int curlen;                /* length of current code */ | 
|---|
| 581 | int nextlen = tree[0].Len; /* length of next code */ | 
|---|
| 582 | int count = 0;             /* repeat count of the current code */ | 
|---|
| 583 | int max_count = 7;         /* max repeat count */ | 
|---|
| 584 | int min_count = 4;         /* min repeat count */ | 
|---|
| 585 |  | 
|---|
| 586 | if (nextlen == 0) max_count = 138, min_count = 3; | 
|---|
| 587 | tree[max_code+1].Len = (ush)0xffff; /* guard */ | 
|---|
| 588 |  | 
|---|
| 589 | for (n = 0; n <= max_code; n++) { | 
|---|
| 590 | curlen = nextlen; nextlen = tree[n+1].Len; | 
|---|
| 591 | if (++count < max_count && curlen == nextlen) { | 
|---|
| 592 | continue; | 
|---|
| 593 | } else if (count < min_count) { | 
|---|
| 594 | s->bl_tree[curlen].Freq += count; | 
|---|
| 595 | } else if (curlen != 0) { | 
|---|
| 596 | if (curlen != prevlen) s->bl_tree[curlen].Freq++; | 
|---|
| 597 | s->bl_tree[REP_3_6].Freq++; | 
|---|
| 598 | } else if (count <= 10) { | 
|---|
| 599 | s->bl_tree[REPZ_3_10].Freq++; | 
|---|
| 600 | } else { | 
|---|
| 601 | s->bl_tree[REPZ_11_138].Freq++; | 
|---|
| 602 | } | 
|---|
| 603 | count = 0; prevlen = curlen; | 
|---|
| 604 | if (nextlen == 0) { | 
|---|
| 605 | max_count = 138, min_count = 3; | 
|---|
| 606 | } else if (curlen == nextlen) { | 
|---|
| 607 | max_count = 6, min_count = 3; | 
|---|
| 608 | } else { | 
|---|
| 609 | max_count = 7, min_count = 4; | 
|---|
| 610 | } | 
|---|
| 611 | } | 
|---|
| 612 | } | 
|---|
| 613 |  | 
|---|
| 614 | /* =========================================================================== | 
|---|
| 615 | * Send a literal or distance tree in compressed form, using the codes in | 
|---|
| 616 | * bl_tree. | 
|---|
| 617 | */ | 
|---|
| 618 | static void send_tree( | 
|---|
| 619 | deflate_state *s, | 
|---|
| 620 | ct_data *tree, /* the tree to be scanned */ | 
|---|
| 621 | int max_code   /* and its largest code of non zero frequency */ | 
|---|
| 622 | ) | 
|---|
| 623 | { | 
|---|
| 624 | int n;                     /* iterates over all tree elements */ | 
|---|
| 625 | int prevlen = -1;          /* last emitted length */ | 
|---|
| 626 | int curlen;                /* length of current code */ | 
|---|
| 627 | int nextlen = tree[0].Len; /* length of next code */ | 
|---|
| 628 | int count = 0;             /* repeat count of the current code */ | 
|---|
| 629 | int max_count = 7;         /* max repeat count */ | 
|---|
| 630 | int min_count = 4;         /* min repeat count */ | 
|---|
| 631 |  | 
|---|
| 632 | /* tree[max_code+1].Len = -1; */  /* guard already set */ | 
|---|
| 633 | if (nextlen == 0) max_count = 138, min_count = 3; | 
|---|
| 634 |  | 
|---|
| 635 | for (n = 0; n <= max_code; n++) { | 
|---|
| 636 | curlen = nextlen; nextlen = tree[n+1].Len; | 
|---|
| 637 | if (++count < max_count && curlen == nextlen) { | 
|---|
| 638 | continue; | 
|---|
| 639 | } else if (count < min_count) { | 
|---|
| 640 | do { send_code(s, curlen, s->bl_tree); } while (--count != 0); | 
|---|
| 641 |  | 
|---|
| 642 | } else if (curlen != 0) { | 
|---|
| 643 | if (curlen != prevlen) { | 
|---|
| 644 | send_code(s, curlen, s->bl_tree); count--; | 
|---|
| 645 | } | 
|---|
| 646 | Assert(count >= 3 && count <= 6, " 3_6?"); | 
|---|
| 647 | send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2); | 
|---|
| 648 |  | 
|---|
| 649 | } else if (count <= 10) { | 
|---|
| 650 | send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3); | 
|---|
| 651 |  | 
|---|
| 652 | } else { | 
|---|
| 653 | send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7); | 
|---|
| 654 | } | 
|---|
| 655 | count = 0; prevlen = curlen; | 
|---|
| 656 | if (nextlen == 0) { | 
|---|
| 657 | max_count = 138, min_count = 3; | 
|---|
| 658 | } else if (curlen == nextlen) { | 
|---|
| 659 | max_count = 6, min_count = 3; | 
|---|
| 660 | } else { | 
|---|
| 661 | max_count = 7, min_count = 4; | 
|---|
| 662 | } | 
|---|
| 663 | } | 
|---|
| 664 | } | 
|---|
| 665 |  | 
|---|
| 666 | /* =========================================================================== | 
|---|
| 667 | * Construct the Huffman tree for the bit lengths and return the index in | 
|---|
| 668 | * bl_order of the last bit length code to send. | 
|---|
| 669 | */ | 
|---|
| 670 | static int build_bl_tree( | 
|---|
| 671 | deflate_state *s | 
|---|
| 672 | ) | 
|---|
| 673 | { | 
|---|
| 674 | int max_blindex;  /* index of last bit length code of non zero freq */ | 
|---|
| 675 |  | 
|---|
| 676 | /* Determine the bit length frequencies for literal and distance trees */ | 
|---|
| 677 | scan_tree(s, tree: (ct_data *)s->dyn_ltree, max_code: s->l_desc.max_code); | 
|---|
| 678 | scan_tree(s, tree: (ct_data *)s->dyn_dtree, max_code: s->d_desc.max_code); | 
|---|
| 679 |  | 
|---|
| 680 | /* Build the bit length tree: */ | 
|---|
| 681 | build_tree(s, desc: (tree_desc *)(&(s->bl_desc))); | 
|---|
| 682 | /* opt_len now includes the length of the tree representations, except | 
|---|
| 683 | * the lengths of the bit lengths codes and the 5+5+4 bits for the counts. | 
|---|
| 684 | */ | 
|---|
| 685 |  | 
|---|
| 686 | /* Determine the number of bit length codes to send. The pkzip format | 
|---|
| 687 | * requires that at least 4 bit length codes be sent. (appnote.txt says | 
|---|
| 688 | * 3 but the actual value used is 4.) | 
|---|
| 689 | */ | 
|---|
| 690 | for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) { | 
|---|
| 691 | if (s->bl_tree[bl_order[max_blindex]].Len != 0) break; | 
|---|
| 692 | } | 
|---|
| 693 | /* Update opt_len to include the bit length tree and counts */ | 
|---|
| 694 | s->opt_len += 3*(max_blindex+1) + 5+5+4; | 
|---|
| 695 | Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld", | 
|---|
| 696 | s->opt_len, s->static_len)); | 
|---|
| 697 |  | 
|---|
| 698 | return max_blindex; | 
|---|
| 699 | } | 
|---|
| 700 |  | 
|---|
| 701 | /* =========================================================================== | 
|---|
| 702 | * Send the header for a block using dynamic Huffman trees: the counts, the | 
|---|
| 703 | * lengths of the bit length codes, the literal tree and the distance tree. | 
|---|
| 704 | * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4. | 
|---|
| 705 | */ | 
|---|
| 706 | static void send_all_trees( | 
|---|
| 707 | deflate_state *s, | 
|---|
| 708 | int lcodes,  /* number of codes for each tree */ | 
|---|
| 709 | int dcodes,  /* number of codes for each tree */ | 
|---|
| 710 | int blcodes  /* number of codes for each tree */ | 
|---|
| 711 | ) | 
|---|
| 712 | { | 
|---|
| 713 | int rank;                    /* index in bl_order */ | 
|---|
| 714 |  | 
|---|
| 715 | Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes"); | 
|---|
| 716 | Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES, | 
|---|
| 717 | "too many codes"); | 
|---|
| 718 | Tracev((stderr, "\nbl counts: ")); | 
|---|
| 719 | send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */ | 
|---|
| 720 | send_bits(s, dcodes-1,   5); | 
|---|
| 721 | send_bits(s, blcodes-4,  4); /* not -3 as stated in appnote.txt */ | 
|---|
| 722 | for (rank = 0; rank < blcodes; rank++) { | 
|---|
| 723 | Tracev((stderr, "\nbl code %2d ", bl_order[rank])); | 
|---|
| 724 | send_bits(s, s->bl_tree[bl_order[rank]].Len, 3); | 
|---|
| 725 | } | 
|---|
| 726 | Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent)); | 
|---|
| 727 |  | 
|---|
| 728 | send_tree(s, tree: (ct_data *)s->dyn_ltree, max_code: lcodes-1); /* literal tree */ | 
|---|
| 729 | Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent)); | 
|---|
| 730 |  | 
|---|
| 731 | send_tree(s, tree: (ct_data *)s->dyn_dtree, max_code: dcodes-1); /* distance tree */ | 
|---|
| 732 | Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent)); | 
|---|
| 733 | } | 
|---|
| 734 |  | 
|---|
| 735 | /* =========================================================================== | 
|---|
| 736 | * Send a stored block | 
|---|
| 737 | */ | 
|---|
| 738 | void zlib_tr_stored_block( | 
|---|
| 739 | deflate_state *s, | 
|---|
| 740 | char *buf,        /* input block */ | 
|---|
| 741 | ulg stored_len,   /* length of input block */ | 
|---|
| 742 | int eof           /* true if this is the last block for a file */ | 
|---|
| 743 | ) | 
|---|
| 744 | { | 
|---|
| 745 | send_bits(s, (STORED_BLOCK<<1)+eof, 3);  /* send block type */ | 
|---|
| 746 | s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L; | 
|---|
| 747 | s->compressed_len += (stored_len + 4) << 3; | 
|---|
| 748 |  | 
|---|
| 749 | copy_block(s, buf, len: (unsigned)stored_len, header: 1); /* with header */ | 
|---|
| 750 | } | 
|---|
| 751 |  | 
|---|
| 752 | /* Send just the `stored block' type code without any length bytes or data. | 
|---|
| 753 | */ | 
|---|
| 754 | void zlib_tr_stored_type_only( | 
|---|
| 755 | deflate_state *s | 
|---|
| 756 | ) | 
|---|
| 757 | { | 
|---|
| 758 | send_bits(s, (STORED_BLOCK << 1), 3); | 
|---|
| 759 | bi_windup(s); | 
|---|
| 760 | s->compressed_len = (s->compressed_len + 3) & ~7L; | 
|---|
| 761 | } | 
|---|
| 762 |  | 
|---|
| 763 |  | 
|---|
| 764 | /* =========================================================================== | 
|---|
| 765 | * Send one empty static block to give enough lookahead for inflate. | 
|---|
| 766 | * This takes 10 bits, of which 7 may remain in the bit buffer. | 
|---|
| 767 | * The current inflate code requires 9 bits of lookahead. If the | 
|---|
| 768 | * last two codes for the previous block (real code plus EOB) were coded | 
|---|
| 769 | * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode | 
|---|
| 770 | * the last real code. In this case we send two empty static blocks instead | 
|---|
| 771 | * of one. (There are no problems if the previous block is stored or fixed.) | 
|---|
| 772 | * To simplify the code, we assume the worst case of last real code encoded | 
|---|
| 773 | * on one bit only. | 
|---|
| 774 | */ | 
|---|
| 775 | void zlib_tr_align( | 
|---|
| 776 | deflate_state *s | 
|---|
| 777 | ) | 
|---|
| 778 | { | 
|---|
| 779 | send_bits(s, STATIC_TREES<<1, 3); | 
|---|
| 780 | send_code(s, END_BLOCK, static_ltree); | 
|---|
| 781 | s->compressed_len += 10L; /* 3 for block type, 7 for EOB */ | 
|---|
| 782 | bi_flush(s); | 
|---|
| 783 | /* Of the 10 bits for the empty block, we have already sent | 
|---|
| 784 | * (10 - bi_valid) bits. The lookahead for the last real code (before | 
|---|
| 785 | * the EOB of the previous block) was thus at least one plus the length | 
|---|
| 786 | * of the EOB plus what we have just sent of the empty static block. | 
|---|
| 787 | */ | 
|---|
| 788 | if (1 + s->last_eob_len + 10 - s->bi_valid < 9) { | 
|---|
| 789 | send_bits(s, STATIC_TREES<<1, 3); | 
|---|
| 790 | send_code(s, END_BLOCK, static_ltree); | 
|---|
| 791 | s->compressed_len += 10L; | 
|---|
| 792 | bi_flush(s); | 
|---|
| 793 | } | 
|---|
| 794 | s->last_eob_len = 7; | 
|---|
| 795 | } | 
|---|
| 796 |  | 
|---|
| 797 | /* =========================================================================== | 
|---|
| 798 | * Determine the best encoding for the current block: dynamic trees, static | 
|---|
| 799 | * trees or store, and output the encoded block to the zip file. This function | 
|---|
| 800 | * returns the total compressed length for the file so far. | 
|---|
| 801 | */ | 
|---|
| 802 | ulg zlib_tr_flush_block( | 
|---|
| 803 | deflate_state *s, | 
|---|
| 804 | char *buf,        /* input block, or NULL if too old */ | 
|---|
| 805 | ulg stored_len,   /* length of input block */ | 
|---|
| 806 | int eof           /* true if this is the last block for a file */ | 
|---|
| 807 | ) | 
|---|
| 808 | { | 
|---|
| 809 | ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */ | 
|---|
| 810 | int max_blindex = 0;  /* index of last bit length code of non zero freq */ | 
|---|
| 811 |  | 
|---|
| 812 | /* Build the Huffman trees unless a stored block is forced */ | 
|---|
| 813 | if (s->level > 0) { | 
|---|
| 814 |  | 
|---|
| 815 | /* Check if the file is ascii or binary */ | 
|---|
| 816 | if (s->data_type == Z_UNKNOWN) set_data_type(s); | 
|---|
| 817 |  | 
|---|
| 818 | /* Construct the literal and distance trees */ | 
|---|
| 819 | build_tree(s, desc: (tree_desc *)(&(s->l_desc))); | 
|---|
| 820 | Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len, | 
|---|
| 821 | s->static_len)); | 
|---|
| 822 |  | 
|---|
| 823 | build_tree(s, desc: (tree_desc *)(&(s->d_desc))); | 
|---|
| 824 | Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len, | 
|---|
| 825 | s->static_len)); | 
|---|
| 826 | /* At this point, opt_len and static_len are the total bit lengths of | 
|---|
| 827 | * the compressed block data, excluding the tree representations. | 
|---|
| 828 | */ | 
|---|
| 829 |  | 
|---|
| 830 | /* Build the bit length tree for the above two trees, and get the index | 
|---|
| 831 | * in bl_order of the last bit length code to send. | 
|---|
| 832 | */ | 
|---|
| 833 | max_blindex = build_bl_tree(s); | 
|---|
| 834 |  | 
|---|
| 835 | /* Determine the best encoding. Compute first the block length in bytes*/ | 
|---|
| 836 | opt_lenb = (s->opt_len+3+7)>>3; | 
|---|
| 837 | static_lenb = (s->static_len+3+7)>>3; | 
|---|
| 838 |  | 
|---|
| 839 | Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ", | 
|---|
| 840 | opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len, | 
|---|
| 841 | s->last_lit)); | 
|---|
| 842 |  | 
|---|
| 843 | if (static_lenb <= opt_lenb) opt_lenb = static_lenb; | 
|---|
| 844 |  | 
|---|
| 845 | } else { | 
|---|
| 846 | Assert(buf != (char*)0, "lost buf"); | 
|---|
| 847 | opt_lenb = static_lenb = stored_len + 5; /* force a stored block */ | 
|---|
| 848 | } | 
|---|
| 849 |  | 
|---|
| 850 | /* If compression failed and this is the first and last block, | 
|---|
| 851 | * and if the .zip file can be seeked (to rewrite the local header), | 
|---|
| 852 | * the whole file is transformed into a stored file: | 
|---|
| 853 | */ | 
|---|
| 854 | #ifdef STORED_FILE_OK | 
|---|
| 855 | #  ifdef FORCE_STORED_FILE | 
|---|
| 856 | if (eof && s->compressed_len == 0L) { /* force stored file */ | 
|---|
| 857 | #  else | 
|---|
| 858 | if (stored_len <= opt_lenb && eof && s->compressed_len==0L && seekable()) { | 
|---|
| 859 | #  endif | 
|---|
| 860 | /* Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: */ | 
|---|
| 861 | if (buf == (char*)0) error ( "block vanished"); | 
|---|
| 862 |  | 
|---|
| 863 | copy_block(s, buf, (unsigned)stored_len, 0); /* without header */ | 
|---|
| 864 | s->compressed_len = stored_len << 3; | 
|---|
| 865 | s->method = STORED; | 
|---|
| 866 | } else | 
|---|
| 867 | #endif /* STORED_FILE_OK */ | 
|---|
| 868 |  | 
|---|
| 869 | #ifdef FORCE_STORED | 
|---|
| 870 | if (buf != (char*)0) { /* force stored block */ | 
|---|
| 871 | #else | 
|---|
| 872 | if (stored_len+4 <= opt_lenb && buf != (char*)0) { | 
|---|
| 873 | /* 4: two words for the lengths */ | 
|---|
| 874 | #endif | 
|---|
| 875 | /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE. | 
|---|
| 876 | * Otherwise we can't have processed more than WSIZE input bytes since | 
|---|
| 877 | * the last block flush, because compression would have been | 
|---|
| 878 | * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to | 
|---|
| 879 | * transform a block into a stored block. | 
|---|
| 880 | */ | 
|---|
| 881 | zlib_tr_stored_block(s, buf, stored_len, eof); | 
|---|
| 882 |  | 
|---|
| 883 | #ifdef FORCE_STATIC | 
|---|
| 884 | } else if (static_lenb >= 0) { /* force static trees */ | 
|---|
| 885 | #else | 
|---|
| 886 | } else if (static_lenb == opt_lenb) { | 
|---|
| 887 | #endif | 
|---|
| 888 | send_bits(s, (STATIC_TREES<<1)+eof, 3); | 
|---|
| 889 | compress_block(s, ltree: (ct_data *)static_ltree, dtree: (ct_data *)static_dtree); | 
|---|
| 890 | s->compressed_len += 3 + s->static_len; | 
|---|
| 891 | } else { | 
|---|
| 892 | send_bits(s, (DYN_TREES<<1)+eof, 3); | 
|---|
| 893 | send_all_trees(s, lcodes: s->l_desc.max_code+1, dcodes: s->d_desc.max_code+1, | 
|---|
| 894 | blcodes: max_blindex+1); | 
|---|
| 895 | compress_block(s, ltree: (ct_data *)s->dyn_ltree, dtree: (ct_data *)s->dyn_dtree); | 
|---|
| 896 | s->compressed_len += 3 + s->opt_len; | 
|---|
| 897 | } | 
|---|
| 898 | Assert (s->compressed_len == s->bits_sent, "bad compressed size"); | 
|---|
| 899 | init_block(s); | 
|---|
| 900 |  | 
|---|
| 901 | if (eof) { | 
|---|
| 902 | bi_windup(s); | 
|---|
| 903 | s->compressed_len += 7;  /* align on byte boundary */ | 
|---|
| 904 | } | 
|---|
| 905 | Tracev((stderr, "\ncomprlen %lu(%lu) ", s->compressed_len>>3, | 
|---|
| 906 | s->compressed_len-7*eof)); | 
|---|
| 907 |  | 
|---|
| 908 | return s->compressed_len >> 3; | 
|---|
| 909 | } | 
|---|
| 910 |  | 
|---|
| 911 | /* =========================================================================== | 
|---|
| 912 | * Save the match info and tally the frequency counts. Return true if | 
|---|
| 913 | * the current block must be flushed. | 
|---|
| 914 | */ | 
|---|
| 915 | int zlib_tr_tally( | 
|---|
| 916 | deflate_state *s, | 
|---|
| 917 | unsigned dist,  /* distance of matched string */ | 
|---|
| 918 | unsigned lc     /* match length-MIN_MATCH or unmatched char (if dist==0) */ | 
|---|
| 919 | ) | 
|---|
| 920 | { | 
|---|
| 921 | s->d_buf[s->last_lit] = (ush)dist; | 
|---|
| 922 | s->l_buf[s->last_lit++] = (uch)lc; | 
|---|
| 923 | if (dist == 0) { | 
|---|
| 924 | /* lc is the unmatched char */ | 
|---|
| 925 | s->dyn_ltree[lc].Freq++; | 
|---|
| 926 | } else { | 
|---|
| 927 | s->matches++; | 
|---|
| 928 | /* Here, lc is the match length - MIN_MATCH */ | 
|---|
| 929 | dist--;             /* dist = match distance - 1 */ | 
|---|
| 930 | Assert((ush)dist < (ush)MAX_DIST(s) && | 
|---|
| 931 | (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) && | 
|---|
| 932 | (ush)d_code(dist) < (ush)D_CODES, "zlib_tr_tally: bad match"); | 
|---|
| 933 |  | 
|---|
| 934 | s->dyn_ltree[length_code[lc]+LITERALS+1].Freq++; | 
|---|
| 935 | s->dyn_dtree[d_code(dist)].Freq++; | 
|---|
| 936 | } | 
|---|
| 937 |  | 
|---|
| 938 | /* Try to guess if it is profitable to stop the current block here */ | 
|---|
| 939 | if ((s->last_lit & 0xfff) == 0 && s->level > 2) { | 
|---|
| 940 | /* Compute an upper bound for the compressed length */ | 
|---|
| 941 | ulg out_length = (ulg)s->last_lit*8L; | 
|---|
| 942 | ulg in_length = (ulg)((long)s->strstart - s->block_start); | 
|---|
| 943 | int dcode; | 
|---|
| 944 | for (dcode = 0; dcode < D_CODES; dcode++) { | 
|---|
| 945 | out_length += (ulg)s->dyn_dtree[dcode].Freq * | 
|---|
| 946 | (5L+extra_dbits[dcode]); | 
|---|
| 947 | } | 
|---|
| 948 | out_length >>= 3; | 
|---|
| 949 | Tracev((stderr, "\nlast_lit %u, in %ld, out ~%ld(%ld%%) ", | 
|---|
| 950 | s->last_lit, in_length, out_length, | 
|---|
| 951 | 100L - out_length*100L/in_length)); | 
|---|
| 952 | if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1; | 
|---|
| 953 | } | 
|---|
| 954 | return (s->last_lit == s->lit_bufsize-1); | 
|---|
| 955 | /* We avoid equality with lit_bufsize because of wraparound at 64K | 
|---|
| 956 | * on 16 bit machines and because stored blocks are restricted to | 
|---|
| 957 | * 64K-1 bytes. | 
|---|
| 958 | */ | 
|---|
| 959 | } | 
|---|
| 960 |  | 
|---|
| 961 | /* =========================================================================== | 
|---|
| 962 | * Send the block data compressed using the given Huffman trees | 
|---|
| 963 | */ | 
|---|
| 964 | static void compress_block( | 
|---|
| 965 | deflate_state *s, | 
|---|
| 966 | ct_data *ltree, /* literal tree */ | 
|---|
| 967 | ct_data *dtree  /* distance tree */ | 
|---|
| 968 | ) | 
|---|
| 969 | { | 
|---|
| 970 | unsigned dist;      /* distance of matched string */ | 
|---|
| 971 | int lc;             /* match length or unmatched char (if dist == 0) */ | 
|---|
| 972 | unsigned lx = 0;    /* running index in l_buf */ | 
|---|
| 973 | unsigned code;      /* the code to send */ | 
|---|
| 974 | int ;          /* number of extra bits to send */ | 
|---|
| 975 |  | 
|---|
| 976 | if (s->last_lit != 0) do { | 
|---|
| 977 | dist = s->d_buf[lx]; | 
|---|
| 978 | lc = s->l_buf[lx++]; | 
|---|
| 979 | if (dist == 0) { | 
|---|
| 980 | send_code(s, lc, ltree); /* send a literal byte */ | 
|---|
| 981 | Tracecv(isgraph(lc), (stderr, " '%c' ", lc)); | 
|---|
| 982 | } else { | 
|---|
| 983 | /* Here, lc is the match length - MIN_MATCH */ | 
|---|
| 984 | code = length_code[lc]; | 
|---|
| 985 | send_code(s, code+LITERALS+1, ltree); /* send the length code */ | 
|---|
| 986 | extra = extra_lbits[code]; | 
|---|
| 987 | if (extra != 0) { | 
|---|
| 988 | lc -= base_length[code]; | 
|---|
| 989 | send_bits(s, lc, extra);       /* send the extra length bits */ | 
|---|
| 990 | } | 
|---|
| 991 | dist--; /* dist is now the match distance - 1 */ | 
|---|
| 992 | code = d_code(dist); | 
|---|
| 993 | Assert (code < D_CODES, "bad d_code"); | 
|---|
| 994 |  | 
|---|
| 995 | send_code(s, code, dtree);       /* send the distance code */ | 
|---|
| 996 | extra = extra_dbits[code]; | 
|---|
| 997 | if (extra != 0) { | 
|---|
| 998 | dist -= base_dist[code]; | 
|---|
| 999 | send_bits(s, dist, extra);   /* send the extra distance bits */ | 
|---|
| 1000 | } | 
|---|
| 1001 | } /* literal or match pair ? */ | 
|---|
| 1002 |  | 
|---|
| 1003 | /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */ | 
|---|
| 1004 | Assert(s->pending < s->lit_bufsize + 2*lx, "pendingBuf overflow"); | 
|---|
| 1005 |  | 
|---|
| 1006 | } while (lx < s->last_lit); | 
|---|
| 1007 |  | 
|---|
| 1008 | send_code(s, END_BLOCK, ltree); | 
|---|
| 1009 | s->last_eob_len = ltree[END_BLOCK].Len; | 
|---|
| 1010 | } | 
|---|
| 1011 |  | 
|---|
| 1012 | /* =========================================================================== | 
|---|
| 1013 | * Set the data type to ASCII or BINARY, using a crude approximation: | 
|---|
| 1014 | * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise. | 
|---|
| 1015 | * IN assertion: the fields freq of dyn_ltree are set and the total of all | 
|---|
| 1016 | * frequencies does not exceed 64K (to fit in an int on 16 bit machines). | 
|---|
| 1017 | */ | 
|---|
| 1018 | static void set_data_type( | 
|---|
| 1019 | deflate_state *s | 
|---|
| 1020 | ) | 
|---|
| 1021 | { | 
|---|
| 1022 | int n = 0; | 
|---|
| 1023 | unsigned ascii_freq = 0; | 
|---|
| 1024 | unsigned bin_freq = 0; | 
|---|
| 1025 | while (n < 7)        bin_freq += s->dyn_ltree[n++].Freq; | 
|---|
| 1026 | while (n < 128)    ascii_freq += s->dyn_ltree[n++].Freq; | 
|---|
| 1027 | while (n < LITERALS) bin_freq += s->dyn_ltree[n++].Freq; | 
|---|
| 1028 | s->data_type = (Byte)(bin_freq > (ascii_freq >> 2) ? Z_BINARY : Z_ASCII); | 
|---|
| 1029 | } | 
|---|
| 1030 |  | 
|---|
| 1031 | /* =========================================================================== | 
|---|
| 1032 | * Copy a stored block, storing first the length and its | 
|---|
| 1033 | * one's complement if requested. | 
|---|
| 1034 | */ | 
|---|
| 1035 | static void copy_block( | 
|---|
| 1036 | deflate_state *s, | 
|---|
| 1037 | char    *buf,     /* the input data */ | 
|---|
| 1038 | unsigned len,     /* its length */ | 
|---|
| 1039 | int         /* true if block header must be written */ | 
|---|
| 1040 | ) | 
|---|
| 1041 | { | 
|---|
| 1042 | bi_windup(s);        /* align on byte boundary */ | 
|---|
| 1043 | s->last_eob_len = 8; /* enough lookahead for inflate */ | 
|---|
| 1044 |  | 
|---|
| 1045 | if (header) { | 
|---|
| 1046 | put_short(s, (ush)len); | 
|---|
| 1047 | put_short(s, (ush)~len); | 
|---|
| 1048 | #ifdef DEBUG_ZLIB | 
|---|
| 1049 | s->bits_sent += 2*16; | 
|---|
| 1050 | #endif | 
|---|
| 1051 | } | 
|---|
| 1052 | #ifdef DEBUG_ZLIB | 
|---|
| 1053 | s->bits_sent += (ulg)len<<3; | 
|---|
| 1054 | #endif | 
|---|
| 1055 | /* bundle up the put_byte(s, *buf++) calls */ | 
|---|
| 1056 | memcpy(to: &s->pending_buf[s->pending], from: buf, len); | 
|---|
| 1057 | s->pending += len; | 
|---|
| 1058 | } | 
|---|
| 1059 |  | 
|---|
| 1060 |  | 
|---|