| 1 | /* |
| 2 | * memfd_create system call and file sealing support |
| 3 | * |
| 4 | * Code was originally included in shmem.c, and broken out to facilitate |
| 5 | * use by hugetlbfs as well as tmpfs. |
| 6 | * |
| 7 | * This file is released under the GPL. |
| 8 | */ |
| 9 | |
| 10 | #include <linux/fs.h> |
| 11 | #include <linux/vfs.h> |
| 12 | #include <linux/pagemap.h> |
| 13 | #include <linux/file.h> |
| 14 | #include <linux/mm.h> |
| 15 | #include <linux/sched/signal.h> |
| 16 | #include <linux/khugepaged.h> |
| 17 | #include <linux/syscalls.h> |
| 18 | #include <linux/hugetlb.h> |
| 19 | #include <linux/shmem_fs.h> |
| 20 | #include <linux/memfd.h> |
| 21 | #include <linux/pid_namespace.h> |
| 22 | #include <uapi/linux/memfd.h> |
| 23 | #include "swap.h" |
| 24 | |
| 25 | /* |
| 26 | * We need a tag: a new tag would expand every xa_node by 8 bytes, |
| 27 | * so reuse a tag which we firmly believe is never set or cleared on tmpfs |
| 28 | * or hugetlbfs because they are memory only filesystems. |
| 29 | */ |
| 30 | #define MEMFD_TAG_PINNED PAGECACHE_TAG_TOWRITE |
| 31 | #define LAST_SCAN 4 /* about 150ms max */ |
| 32 | |
| 33 | static bool (struct folio *folio) |
| 34 | { |
| 35 | return folio_ref_count(folio) != folio_expected_ref_count(folio); |
| 36 | } |
| 37 | |
| 38 | static void memfd_tag_pins(struct xa_state *xas) |
| 39 | { |
| 40 | struct folio *folio; |
| 41 | int latency = 0; |
| 42 | |
| 43 | lru_add_drain(); |
| 44 | |
| 45 | xas_lock_irq(xas); |
| 46 | xas_for_each(xas, folio, ULONG_MAX) { |
| 47 | if (!xa_is_value(entry: folio) && memfd_folio_has_extra_refs(folio)) |
| 48 | xas_set_mark(xas, MEMFD_TAG_PINNED); |
| 49 | |
| 50 | if (++latency < XA_CHECK_SCHED) |
| 51 | continue; |
| 52 | latency = 0; |
| 53 | |
| 54 | xas_pause(xas); |
| 55 | xas_unlock_irq(xas); |
| 56 | cond_resched(); |
| 57 | xas_lock_irq(xas); |
| 58 | } |
| 59 | xas_unlock_irq(xas); |
| 60 | } |
| 61 | |
| 62 | /* |
| 63 | * This is a helper function used by memfd_pin_user_pages() in GUP (gup.c). |
| 64 | * It is mainly called to allocate a folio in a memfd when the caller |
| 65 | * (memfd_pin_folios()) cannot find a folio in the page cache at a given |
| 66 | * index in the mapping. |
| 67 | */ |
| 68 | struct folio *memfd_alloc_folio(struct file *memfd, pgoff_t idx) |
| 69 | { |
| 70 | #ifdef CONFIG_HUGETLB_PAGE |
| 71 | struct folio *folio; |
| 72 | gfp_t gfp_mask; |
| 73 | |
| 74 | if (is_file_hugepages(file: memfd)) { |
| 75 | /* |
| 76 | * The folio would most likely be accessed by a DMA driver, |
| 77 | * therefore, we have zone memory constraints where we can |
| 78 | * alloc from. Also, the folio will be pinned for an indefinite |
| 79 | * amount of time, so it is not expected to be migrated away. |
| 80 | */ |
| 81 | struct inode *inode = file_inode(f: memfd); |
| 82 | struct hstate *h = hstate_file(f: memfd); |
| 83 | int err = -ENOMEM; |
| 84 | long nr_resv; |
| 85 | |
| 86 | gfp_mask = htlb_alloc_mask(h); |
| 87 | gfp_mask &= ~(__GFP_HIGHMEM | __GFP_MOVABLE); |
| 88 | idx >>= huge_page_order(h); |
| 89 | |
| 90 | nr_resv = hugetlb_reserve_pages(inode, from: idx, to: idx + 1, NULL, vm_flags: 0); |
| 91 | if (nr_resv < 0) |
| 92 | return ERR_PTR(error: nr_resv); |
| 93 | |
| 94 | folio = alloc_hugetlb_folio_reserve(h, |
| 95 | preferred_nid: numa_node_id(), |
| 96 | NULL, |
| 97 | gfp_mask); |
| 98 | if (folio) { |
| 99 | err = hugetlb_add_to_page_cache(folio, |
| 100 | mapping: memfd->f_mapping, |
| 101 | idx); |
| 102 | if (err) { |
| 103 | folio_put(folio); |
| 104 | goto err_unresv; |
| 105 | } |
| 106 | |
| 107 | hugetlb_set_folio_subpool(folio, subpool: subpool_inode(inode)); |
| 108 | folio_unlock(folio); |
| 109 | return folio; |
| 110 | } |
| 111 | err_unresv: |
| 112 | if (nr_resv > 0) |
| 113 | hugetlb_unreserve_pages(inode, start: idx, end: idx + 1, freed: 0); |
| 114 | return ERR_PTR(error: err); |
| 115 | } |
| 116 | #endif |
| 117 | return shmem_read_folio(mapping: memfd->f_mapping, index: idx); |
| 118 | } |
| 119 | |
| 120 | /* |
| 121 | * Setting SEAL_WRITE requires us to verify there's no pending writer. However, |
| 122 | * via get_user_pages(), drivers might have some pending I/O without any active |
| 123 | * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all folios |
| 124 | * and see whether it has an elevated ref-count. If so, we tag them and wait for |
| 125 | * them to be dropped. |
| 126 | * The caller must guarantee that no new user will acquire writable references |
| 127 | * to those folios to avoid races. |
| 128 | */ |
| 129 | static int memfd_wait_for_pins(struct address_space *mapping) |
| 130 | { |
| 131 | XA_STATE(xas, &mapping->i_pages, 0); |
| 132 | struct folio *folio; |
| 133 | int error, scan; |
| 134 | |
| 135 | memfd_tag_pins(xas: &xas); |
| 136 | |
| 137 | error = 0; |
| 138 | for (scan = 0; scan <= LAST_SCAN; scan++) { |
| 139 | int latency = 0; |
| 140 | |
| 141 | if (!xas_marked(&xas, MEMFD_TAG_PINNED)) |
| 142 | break; |
| 143 | |
| 144 | if (!scan) |
| 145 | lru_add_drain_all(); |
| 146 | else if (schedule_timeout_killable(timeout: (HZ << scan) / 200)) |
| 147 | scan = LAST_SCAN; |
| 148 | |
| 149 | xas_set(xas: &xas, index: 0); |
| 150 | xas_lock_irq(&xas); |
| 151 | xas_for_each_marked(&xas, folio, ULONG_MAX, MEMFD_TAG_PINNED) { |
| 152 | bool clear = true; |
| 153 | |
| 154 | if (!xa_is_value(entry: folio) && |
| 155 | memfd_folio_has_extra_refs(folio)) { |
| 156 | /* |
| 157 | * On the last scan, we clean up all those tags |
| 158 | * we inserted; but make a note that we still |
| 159 | * found folios pinned. |
| 160 | */ |
| 161 | if (scan == LAST_SCAN) |
| 162 | error = -EBUSY; |
| 163 | else |
| 164 | clear = false; |
| 165 | } |
| 166 | if (clear) |
| 167 | xas_clear_mark(&xas, MEMFD_TAG_PINNED); |
| 168 | |
| 169 | if (++latency < XA_CHECK_SCHED) |
| 170 | continue; |
| 171 | latency = 0; |
| 172 | |
| 173 | xas_pause(&xas); |
| 174 | xas_unlock_irq(&xas); |
| 175 | cond_resched(); |
| 176 | xas_lock_irq(&xas); |
| 177 | } |
| 178 | xas_unlock_irq(&xas); |
| 179 | } |
| 180 | |
| 181 | return error; |
| 182 | } |
| 183 | |
| 184 | static unsigned int *memfd_file_seals_ptr(struct file *file) |
| 185 | { |
| 186 | if (shmem_file(file)) |
| 187 | return &SHMEM_I(inode: file_inode(f: file))->seals; |
| 188 | |
| 189 | #ifdef CONFIG_HUGETLBFS |
| 190 | if (is_file_hugepages(file)) |
| 191 | return &HUGETLBFS_I(inode: file_inode(f: file))->seals; |
| 192 | #endif |
| 193 | |
| 194 | return NULL; |
| 195 | } |
| 196 | |
| 197 | #define F_ALL_SEALS (F_SEAL_SEAL | \ |
| 198 | F_SEAL_EXEC | \ |
| 199 | F_SEAL_SHRINK | \ |
| 200 | F_SEAL_GROW | \ |
| 201 | F_SEAL_WRITE | \ |
| 202 | F_SEAL_FUTURE_WRITE) |
| 203 | |
| 204 | static int memfd_add_seals(struct file *file, unsigned int seals) |
| 205 | { |
| 206 | struct inode *inode = file_inode(f: file); |
| 207 | unsigned int *file_seals; |
| 208 | int error; |
| 209 | |
| 210 | /* |
| 211 | * SEALING |
| 212 | * Sealing allows multiple parties to share a tmpfs or hugetlbfs file |
| 213 | * but restrict access to a specific subset of file operations. Seals |
| 214 | * can only be added, but never removed. This way, mutually untrusted |
| 215 | * parties can share common memory regions with a well-defined policy. |
| 216 | * A malicious peer can thus never perform unwanted operations on a |
| 217 | * shared object. |
| 218 | * |
| 219 | * Seals are only supported on special tmpfs or hugetlbfs files and |
| 220 | * always affect the whole underlying inode. Once a seal is set, it |
| 221 | * may prevent some kinds of access to the file. Currently, the |
| 222 | * following seals are defined: |
| 223 | * SEAL_SEAL: Prevent further seals from being set on this file |
| 224 | * SEAL_SHRINK: Prevent the file from shrinking |
| 225 | * SEAL_GROW: Prevent the file from growing |
| 226 | * SEAL_WRITE: Prevent write access to the file |
| 227 | * SEAL_EXEC: Prevent modification of the exec bits in the file mode |
| 228 | * |
| 229 | * As we don't require any trust relationship between two parties, we |
| 230 | * must prevent seals from being removed. Therefore, sealing a file |
| 231 | * only adds a given set of seals to the file, it never touches |
| 232 | * existing seals. Furthermore, the "setting seals"-operation can be |
| 233 | * sealed itself, which basically prevents any further seal from being |
| 234 | * added. |
| 235 | * |
| 236 | * Semantics of sealing are only defined on volatile files. Only |
| 237 | * anonymous tmpfs and hugetlbfs files support sealing. More |
| 238 | * importantly, seals are never written to disk. Therefore, there's |
| 239 | * no plan to support it on other file types. |
| 240 | */ |
| 241 | |
| 242 | if (!(file->f_mode & FMODE_WRITE)) |
| 243 | return -EPERM; |
| 244 | if (seals & ~(unsigned int)F_ALL_SEALS) |
| 245 | return -EINVAL; |
| 246 | |
| 247 | inode_lock(inode); |
| 248 | |
| 249 | file_seals = memfd_file_seals_ptr(file); |
| 250 | if (!file_seals) { |
| 251 | error = -EINVAL; |
| 252 | goto unlock; |
| 253 | } |
| 254 | |
| 255 | if (*file_seals & F_SEAL_SEAL) { |
| 256 | error = -EPERM; |
| 257 | goto unlock; |
| 258 | } |
| 259 | |
| 260 | if ((seals & F_SEAL_WRITE) && !(*file_seals & F_SEAL_WRITE)) { |
| 261 | error = mapping_deny_writable(mapping: file->f_mapping); |
| 262 | if (error) |
| 263 | goto unlock; |
| 264 | |
| 265 | error = memfd_wait_for_pins(mapping: file->f_mapping); |
| 266 | if (error) { |
| 267 | mapping_allow_writable(mapping: file->f_mapping); |
| 268 | goto unlock; |
| 269 | } |
| 270 | } |
| 271 | |
| 272 | /* |
| 273 | * SEAL_EXEC implies SEAL_WRITE, making W^X from the start. |
| 274 | */ |
| 275 | if (seals & F_SEAL_EXEC && inode->i_mode & 0111) |
| 276 | seals |= F_SEAL_SHRINK|F_SEAL_GROW|F_SEAL_WRITE|F_SEAL_FUTURE_WRITE; |
| 277 | |
| 278 | *file_seals |= seals; |
| 279 | error = 0; |
| 280 | |
| 281 | unlock: |
| 282 | inode_unlock(inode); |
| 283 | return error; |
| 284 | } |
| 285 | |
| 286 | static int memfd_get_seals(struct file *file) |
| 287 | { |
| 288 | unsigned int *seals = memfd_file_seals_ptr(file); |
| 289 | |
| 290 | return seals ? *seals : -EINVAL; |
| 291 | } |
| 292 | |
| 293 | long memfd_fcntl(struct file *file, unsigned int cmd, unsigned int arg) |
| 294 | { |
| 295 | long error; |
| 296 | |
| 297 | switch (cmd) { |
| 298 | case F_ADD_SEALS: |
| 299 | error = memfd_add_seals(file, seals: arg); |
| 300 | break; |
| 301 | case F_GET_SEALS: |
| 302 | error = memfd_get_seals(file); |
| 303 | break; |
| 304 | default: |
| 305 | error = -EINVAL; |
| 306 | break; |
| 307 | } |
| 308 | |
| 309 | return error; |
| 310 | } |
| 311 | |
| 312 | #define MFD_NAME_PREFIX "memfd:" |
| 313 | #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1) |
| 314 | #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN) |
| 315 | |
| 316 | #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING | MFD_HUGETLB | MFD_NOEXEC_SEAL | MFD_EXEC) |
| 317 | |
| 318 | static int check_sysctl_memfd_noexec(unsigned int *flags) |
| 319 | { |
| 320 | #ifdef CONFIG_SYSCTL |
| 321 | struct pid_namespace *ns = task_active_pid_ns(current); |
| 322 | int sysctl = pidns_memfd_noexec_scope(ns); |
| 323 | |
| 324 | if (!(*flags & (MFD_EXEC | MFD_NOEXEC_SEAL))) { |
| 325 | if (sysctl >= MEMFD_NOEXEC_SCOPE_NOEXEC_SEAL) |
| 326 | *flags |= MFD_NOEXEC_SEAL; |
| 327 | else |
| 328 | *flags |= MFD_EXEC; |
| 329 | } |
| 330 | |
| 331 | if (!(*flags & MFD_NOEXEC_SEAL) && sysctl >= MEMFD_NOEXEC_SCOPE_NOEXEC_ENFORCED) { |
| 332 | pr_err_ratelimited( |
| 333 | "%s[%d]: memfd_create() requires MFD_NOEXEC_SEAL with vm.memfd_noexec=%d\n" , |
| 334 | current->comm, task_pid_nr(current), sysctl); |
| 335 | return -EACCES; |
| 336 | } |
| 337 | #endif |
| 338 | return 0; |
| 339 | } |
| 340 | |
| 341 | static inline bool is_write_sealed(unsigned int seals) |
| 342 | { |
| 343 | return seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE); |
| 344 | } |
| 345 | |
| 346 | static int check_write_seal(vm_flags_t *vm_flags_ptr) |
| 347 | { |
| 348 | vm_flags_t vm_flags = *vm_flags_ptr; |
| 349 | vm_flags_t mask = vm_flags & (VM_SHARED | VM_WRITE); |
| 350 | |
| 351 | /* If a private mapping then writability is irrelevant. */ |
| 352 | if (!(mask & VM_SHARED)) |
| 353 | return 0; |
| 354 | |
| 355 | /* |
| 356 | * New PROT_WRITE and MAP_SHARED mmaps are not allowed when |
| 357 | * write seals are active. |
| 358 | */ |
| 359 | if (mask & VM_WRITE) |
| 360 | return -EPERM; |
| 361 | |
| 362 | /* |
| 363 | * This is a read-only mapping, disallow mprotect() from making a |
| 364 | * write-sealed mapping writable in future. |
| 365 | */ |
| 366 | *vm_flags_ptr &= ~VM_MAYWRITE; |
| 367 | |
| 368 | return 0; |
| 369 | } |
| 370 | |
| 371 | int memfd_check_seals_mmap(struct file *file, vm_flags_t *vm_flags_ptr) |
| 372 | { |
| 373 | int err = 0; |
| 374 | unsigned int *seals_ptr = memfd_file_seals_ptr(file); |
| 375 | unsigned int seals = seals_ptr ? *seals_ptr : 0; |
| 376 | |
| 377 | if (is_write_sealed(seals)) |
| 378 | err = check_write_seal(vm_flags_ptr); |
| 379 | |
| 380 | return err; |
| 381 | } |
| 382 | |
| 383 | static int sanitize_flags(unsigned int *flags_ptr) |
| 384 | { |
| 385 | unsigned int flags = *flags_ptr; |
| 386 | |
| 387 | if (!(flags & MFD_HUGETLB)) { |
| 388 | if (flags & ~MFD_ALL_FLAGS) |
| 389 | return -EINVAL; |
| 390 | } else { |
| 391 | /* Allow huge page size encoding in flags. */ |
| 392 | if (flags & ~(MFD_ALL_FLAGS | |
| 393 | (MFD_HUGE_MASK << MFD_HUGE_SHIFT))) |
| 394 | return -EINVAL; |
| 395 | } |
| 396 | |
| 397 | /* Invalid if both EXEC and NOEXEC_SEAL are set.*/ |
| 398 | if ((flags & MFD_EXEC) && (flags & MFD_NOEXEC_SEAL)) |
| 399 | return -EINVAL; |
| 400 | |
| 401 | return check_sysctl_memfd_noexec(flags: flags_ptr); |
| 402 | } |
| 403 | |
| 404 | static char *alloc_name(const char __user *uname) |
| 405 | { |
| 406 | int error; |
| 407 | char *name; |
| 408 | long len; |
| 409 | |
| 410 | name = kmalloc(NAME_MAX + 1, GFP_KERNEL); |
| 411 | if (!name) |
| 412 | return ERR_PTR(error: -ENOMEM); |
| 413 | |
| 414 | memcpy(to: name, MFD_NAME_PREFIX, MFD_NAME_PREFIX_LEN); |
| 415 | /* returned length does not include terminating zero */ |
| 416 | len = strncpy_from_user(dst: &name[MFD_NAME_PREFIX_LEN], src: uname, MFD_NAME_MAX_LEN + 1); |
| 417 | if (len < 0) { |
| 418 | error = -EFAULT; |
| 419 | goto err_name; |
| 420 | } else if (len > MFD_NAME_MAX_LEN) { |
| 421 | error = -EINVAL; |
| 422 | goto err_name; |
| 423 | } |
| 424 | |
| 425 | return name; |
| 426 | |
| 427 | err_name: |
| 428 | kfree(objp: name); |
| 429 | return ERR_PTR(error); |
| 430 | } |
| 431 | |
| 432 | static struct file *alloc_file(const char *name, unsigned int flags) |
| 433 | { |
| 434 | unsigned int *file_seals; |
| 435 | struct file *file; |
| 436 | |
| 437 | if (flags & MFD_HUGETLB) { |
| 438 | file = hugetlb_file_setup(name, size: 0, VM_NORESERVE, |
| 439 | creat_flags: HUGETLB_ANONHUGE_INODE, |
| 440 | page_size_log: (flags >> MFD_HUGE_SHIFT) & |
| 441 | MFD_HUGE_MASK); |
| 442 | } else { |
| 443 | file = shmem_file_setup(name, size: 0, VM_NORESERVE); |
| 444 | } |
| 445 | if (IS_ERR(ptr: file)) |
| 446 | return file; |
| 447 | file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE; |
| 448 | file->f_flags |= O_LARGEFILE; |
| 449 | |
| 450 | if (flags & MFD_NOEXEC_SEAL) { |
| 451 | struct inode *inode = file_inode(f: file); |
| 452 | |
| 453 | inode->i_mode &= ~0111; |
| 454 | file_seals = memfd_file_seals_ptr(file); |
| 455 | if (file_seals) { |
| 456 | *file_seals &= ~F_SEAL_SEAL; |
| 457 | *file_seals |= F_SEAL_EXEC; |
| 458 | } |
| 459 | } else if (flags & MFD_ALLOW_SEALING) { |
| 460 | /* MFD_EXEC and MFD_ALLOW_SEALING are set */ |
| 461 | file_seals = memfd_file_seals_ptr(file); |
| 462 | if (file_seals) |
| 463 | *file_seals &= ~F_SEAL_SEAL; |
| 464 | } |
| 465 | |
| 466 | return file; |
| 467 | } |
| 468 | |
| 469 | SYSCALL_DEFINE2(memfd_create, |
| 470 | const char __user *, uname, |
| 471 | unsigned int, flags) |
| 472 | { |
| 473 | struct file *file; |
| 474 | int fd, error; |
| 475 | char *name; |
| 476 | |
| 477 | error = sanitize_flags(flags_ptr: &flags); |
| 478 | if (error < 0) |
| 479 | return error; |
| 480 | |
| 481 | name = alloc_name(uname); |
| 482 | if (IS_ERR(ptr: name)) |
| 483 | return PTR_ERR(ptr: name); |
| 484 | |
| 485 | fd = get_unused_fd_flags(flags: (flags & MFD_CLOEXEC) ? O_CLOEXEC : 0); |
| 486 | if (fd < 0) { |
| 487 | error = fd; |
| 488 | goto err_free_name; |
| 489 | } |
| 490 | |
| 491 | file = alloc_file(name, flags); |
| 492 | if (IS_ERR(ptr: file)) { |
| 493 | error = PTR_ERR(ptr: file); |
| 494 | goto err_free_fd; |
| 495 | } |
| 496 | |
| 497 | fd_install(fd, file); |
| 498 | kfree(objp: name); |
| 499 | return fd; |
| 500 | |
| 501 | err_free_fd: |
| 502 | put_unused_fd(fd); |
| 503 | err_free_name: |
| 504 | kfree(objp: name); |
| 505 | return error; |
| 506 | } |
| 507 | |