| 1 | // SPDX-License-Identifier: GPL-2.0-only |
| 2 | #include <linux/mm.h> |
| 3 | #include <linux/slab.h> |
| 4 | #include <linux/string.h> |
| 5 | #include <linux/compiler.h> |
| 6 | #include <linux/export.h> |
| 7 | #include <linux/err.h> |
| 8 | #include <linux/sched.h> |
| 9 | #include <linux/sched/mm.h> |
| 10 | #include <linux/sched/signal.h> |
| 11 | #include <linux/sched/task_stack.h> |
| 12 | #include <linux/security.h> |
| 13 | #include <linux/swap.h> |
| 14 | #include <linux/swapops.h> |
| 15 | #include <linux/sysctl.h> |
| 16 | #include <linux/mman.h> |
| 17 | #include <linux/hugetlb.h> |
| 18 | #include <linux/vmalloc.h> |
| 19 | #include <linux/userfaultfd_k.h> |
| 20 | #include <linux/elf.h> |
| 21 | #include <linux/elf-randomize.h> |
| 22 | #include <linux/personality.h> |
| 23 | #include <linux/random.h> |
| 24 | #include <linux/processor.h> |
| 25 | #include <linux/sizes.h> |
| 26 | #include <linux/compat.h> |
| 27 | #include <linux/fsnotify.h> |
| 28 | #include <linux/page_idle.h> |
| 29 | |
| 30 | #include <linux/uaccess.h> |
| 31 | |
| 32 | #include <kunit/visibility.h> |
| 33 | |
| 34 | #include "internal.h" |
| 35 | #include "swap.h" |
| 36 | |
| 37 | /** |
| 38 | * kfree_const - conditionally free memory |
| 39 | * @x: pointer to the memory |
| 40 | * |
| 41 | * Function calls kfree only if @x is not in .rodata section. |
| 42 | */ |
| 43 | void kfree_const(const void *x) |
| 44 | { |
| 45 | if (!is_kernel_rodata(addr: (unsigned long)x)) |
| 46 | kfree(objp: x); |
| 47 | } |
| 48 | EXPORT_SYMBOL(kfree_const); |
| 49 | |
| 50 | /** |
| 51 | * __kmemdup_nul - Create a NUL-terminated string from @s, which might be unterminated. |
| 52 | * @s: The data to copy |
| 53 | * @len: The size of the data, not including the NUL terminator |
| 54 | * @gfp: the GFP mask used in the kmalloc() call when allocating memory |
| 55 | * |
| 56 | * Return: newly allocated copy of @s with NUL-termination or %NULL in |
| 57 | * case of error |
| 58 | */ |
| 59 | static __always_inline char *__kmemdup_nul(const char *s, size_t len, gfp_t gfp) |
| 60 | { |
| 61 | char *buf; |
| 62 | |
| 63 | /* '+1' for the NUL terminator */ |
| 64 | buf = kmalloc_track_caller(len + 1, gfp); |
| 65 | if (!buf) |
| 66 | return NULL; |
| 67 | |
| 68 | memcpy(to: buf, from: s, len); |
| 69 | /* Ensure the buf is always NUL-terminated, regardless of @s. */ |
| 70 | buf[len] = '\0'; |
| 71 | return buf; |
| 72 | } |
| 73 | |
| 74 | /** |
| 75 | * kstrdup - allocate space for and copy an existing string |
| 76 | * @s: the string to duplicate |
| 77 | * @gfp: the GFP mask used in the kmalloc() call when allocating memory |
| 78 | * |
| 79 | * Return: newly allocated copy of @s or %NULL in case of error |
| 80 | */ |
| 81 | noinline |
| 82 | char *kstrdup(const char *s, gfp_t gfp) |
| 83 | { |
| 84 | return s ? __kmemdup_nul(s, len: strlen(s), gfp) : NULL; |
| 85 | } |
| 86 | EXPORT_SYMBOL(kstrdup); |
| 87 | |
| 88 | /** |
| 89 | * kstrdup_const - conditionally duplicate an existing const string |
| 90 | * @s: the string to duplicate |
| 91 | * @gfp: the GFP mask used in the kmalloc() call when allocating memory |
| 92 | * |
| 93 | * Note: Strings allocated by kstrdup_const should be freed by kfree_const and |
| 94 | * must not be passed to krealloc(). |
| 95 | * |
| 96 | * Return: source string if it is in .rodata section otherwise |
| 97 | * fallback to kstrdup. |
| 98 | */ |
| 99 | const char *kstrdup_const(const char *s, gfp_t gfp) |
| 100 | { |
| 101 | if (is_kernel_rodata(addr: (unsigned long)s)) |
| 102 | return s; |
| 103 | |
| 104 | return kstrdup(s, gfp); |
| 105 | } |
| 106 | EXPORT_SYMBOL(kstrdup_const); |
| 107 | |
| 108 | /** |
| 109 | * kstrndup - allocate space for and copy an existing string |
| 110 | * @s: the string to duplicate |
| 111 | * @max: read at most @max chars from @s |
| 112 | * @gfp: the GFP mask used in the kmalloc() call when allocating memory |
| 113 | * |
| 114 | * Note: Use kmemdup_nul() instead if the size is known exactly. |
| 115 | * |
| 116 | * Return: newly allocated copy of @s or %NULL in case of error |
| 117 | */ |
| 118 | char *kstrndup(const char *s, size_t max, gfp_t gfp) |
| 119 | { |
| 120 | return s ? __kmemdup_nul(s, len: strnlen(s, max), gfp) : NULL; |
| 121 | } |
| 122 | EXPORT_SYMBOL(kstrndup); |
| 123 | |
| 124 | /** |
| 125 | * kmemdup - duplicate region of memory |
| 126 | * |
| 127 | * @src: memory region to duplicate |
| 128 | * @len: memory region length |
| 129 | * @gfp: GFP mask to use |
| 130 | * |
| 131 | * Return: newly allocated copy of @src or %NULL in case of error, |
| 132 | * result is physically contiguous. Use kfree() to free. |
| 133 | */ |
| 134 | void *kmemdup_noprof(const void *src, size_t len, gfp_t gfp) |
| 135 | { |
| 136 | void *p; |
| 137 | |
| 138 | p = kmalloc_node_track_caller_noprof(len, gfp, NUMA_NO_NODE, _RET_IP_); |
| 139 | if (p) |
| 140 | memcpy(to: p, from: src, len); |
| 141 | return p; |
| 142 | } |
| 143 | EXPORT_SYMBOL(kmemdup_noprof); |
| 144 | |
| 145 | /** |
| 146 | * kmemdup_array - duplicate a given array. |
| 147 | * |
| 148 | * @src: array to duplicate. |
| 149 | * @count: number of elements to duplicate from array. |
| 150 | * @element_size: size of each element of array. |
| 151 | * @gfp: GFP mask to use. |
| 152 | * |
| 153 | * Return: duplicated array of @src or %NULL in case of error, |
| 154 | * result is physically contiguous. Use kfree() to free. |
| 155 | */ |
| 156 | void *kmemdup_array(const void *src, size_t count, size_t element_size, gfp_t gfp) |
| 157 | { |
| 158 | return kmemdup(src, size_mul(element_size, count), gfp); |
| 159 | } |
| 160 | EXPORT_SYMBOL(kmemdup_array); |
| 161 | |
| 162 | /** |
| 163 | * kvmemdup - duplicate region of memory |
| 164 | * |
| 165 | * @src: memory region to duplicate |
| 166 | * @len: memory region length |
| 167 | * @gfp: GFP mask to use |
| 168 | * |
| 169 | * Return: newly allocated copy of @src or %NULL in case of error, |
| 170 | * result may be not physically contiguous. Use kvfree() to free. |
| 171 | */ |
| 172 | void *kvmemdup(const void *src, size_t len, gfp_t gfp) |
| 173 | { |
| 174 | void *p; |
| 175 | |
| 176 | p = kvmalloc(len, gfp); |
| 177 | if (p) |
| 178 | memcpy(to: p, from: src, len); |
| 179 | return p; |
| 180 | } |
| 181 | EXPORT_SYMBOL(kvmemdup); |
| 182 | |
| 183 | /** |
| 184 | * kmemdup_nul - Create a NUL-terminated string from unterminated data |
| 185 | * @s: The data to stringify |
| 186 | * @len: The size of the data |
| 187 | * @gfp: the GFP mask used in the kmalloc() call when allocating memory |
| 188 | * |
| 189 | * Return: newly allocated copy of @s with NUL-termination or %NULL in |
| 190 | * case of error |
| 191 | */ |
| 192 | char *kmemdup_nul(const char *s, size_t len, gfp_t gfp) |
| 193 | { |
| 194 | return s ? __kmemdup_nul(s, len, gfp) : NULL; |
| 195 | } |
| 196 | EXPORT_SYMBOL(kmemdup_nul); |
| 197 | |
| 198 | static kmem_buckets *user_buckets __ro_after_init; |
| 199 | |
| 200 | static int __init init_user_buckets(void) |
| 201 | { |
| 202 | user_buckets = kmem_buckets_create(name: "memdup_user" , flags: 0, useroffset: 0, INT_MAX, NULL); |
| 203 | |
| 204 | return 0; |
| 205 | } |
| 206 | subsys_initcall(init_user_buckets); |
| 207 | |
| 208 | /** |
| 209 | * memdup_user - duplicate memory region from user space |
| 210 | * |
| 211 | * @src: source address in user space |
| 212 | * @len: number of bytes to copy |
| 213 | * |
| 214 | * Return: an ERR_PTR() on failure. Result is physically |
| 215 | * contiguous, to be freed by kfree(). |
| 216 | */ |
| 217 | void *memdup_user(const void __user *src, size_t len) |
| 218 | { |
| 219 | void *p; |
| 220 | |
| 221 | p = kmem_buckets_alloc_track_caller(user_buckets, len, GFP_USER | __GFP_NOWARN); |
| 222 | if (!p) |
| 223 | return ERR_PTR(error: -ENOMEM); |
| 224 | |
| 225 | if (copy_from_user(to: p, from: src, n: len)) { |
| 226 | kfree(objp: p); |
| 227 | return ERR_PTR(error: -EFAULT); |
| 228 | } |
| 229 | |
| 230 | return p; |
| 231 | } |
| 232 | EXPORT_SYMBOL(memdup_user); |
| 233 | |
| 234 | /** |
| 235 | * vmemdup_user - duplicate memory region from user space |
| 236 | * |
| 237 | * @src: source address in user space |
| 238 | * @len: number of bytes to copy |
| 239 | * |
| 240 | * Return: an ERR_PTR() on failure. Result may be not |
| 241 | * physically contiguous. Use kvfree() to free. |
| 242 | */ |
| 243 | void *vmemdup_user(const void __user *src, size_t len) |
| 244 | { |
| 245 | void *p; |
| 246 | |
| 247 | p = kmem_buckets_valloc(user_buckets, len, GFP_USER); |
| 248 | if (!p) |
| 249 | return ERR_PTR(error: -ENOMEM); |
| 250 | |
| 251 | if (copy_from_user(to: p, from: src, n: len)) { |
| 252 | kvfree(addr: p); |
| 253 | return ERR_PTR(error: -EFAULT); |
| 254 | } |
| 255 | |
| 256 | return p; |
| 257 | } |
| 258 | EXPORT_SYMBOL(vmemdup_user); |
| 259 | |
| 260 | /** |
| 261 | * strndup_user - duplicate an existing string from user space |
| 262 | * @s: The string to duplicate |
| 263 | * @n: Maximum number of bytes to copy, including the trailing NUL. |
| 264 | * |
| 265 | * Return: newly allocated copy of @s or an ERR_PTR() in case of error |
| 266 | */ |
| 267 | char *strndup_user(const char __user *s, long n) |
| 268 | { |
| 269 | char *p; |
| 270 | long length; |
| 271 | |
| 272 | length = strnlen_user(str: s, n); |
| 273 | |
| 274 | if (!length) |
| 275 | return ERR_PTR(error: -EFAULT); |
| 276 | |
| 277 | if (length > n) |
| 278 | return ERR_PTR(error: -EINVAL); |
| 279 | |
| 280 | p = memdup_user(s, length); |
| 281 | |
| 282 | if (IS_ERR(ptr: p)) |
| 283 | return p; |
| 284 | |
| 285 | p[length - 1] = '\0'; |
| 286 | |
| 287 | return p; |
| 288 | } |
| 289 | EXPORT_SYMBOL(strndup_user); |
| 290 | |
| 291 | /** |
| 292 | * memdup_user_nul - duplicate memory region from user space and NUL-terminate |
| 293 | * |
| 294 | * @src: source address in user space |
| 295 | * @len: number of bytes to copy |
| 296 | * |
| 297 | * Return: an ERR_PTR() on failure. |
| 298 | */ |
| 299 | void *memdup_user_nul(const void __user *src, size_t len) |
| 300 | { |
| 301 | char *p; |
| 302 | |
| 303 | p = kmem_buckets_alloc_track_caller(user_buckets, len + 1, GFP_USER | __GFP_NOWARN); |
| 304 | if (!p) |
| 305 | return ERR_PTR(error: -ENOMEM); |
| 306 | |
| 307 | if (copy_from_user(to: p, from: src, n: len)) { |
| 308 | kfree(objp: p); |
| 309 | return ERR_PTR(error: -EFAULT); |
| 310 | } |
| 311 | p[len] = '\0'; |
| 312 | |
| 313 | return p; |
| 314 | } |
| 315 | EXPORT_SYMBOL(memdup_user_nul); |
| 316 | |
| 317 | /* Check if the vma is being used as a stack by this task */ |
| 318 | int vma_is_stack_for_current(const struct vm_area_struct *vma) |
| 319 | { |
| 320 | struct task_struct * __maybe_unused t = current; |
| 321 | |
| 322 | return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t)); |
| 323 | } |
| 324 | |
| 325 | /* |
| 326 | * Change backing file, only valid to use during initial VMA setup. |
| 327 | */ |
| 328 | void vma_set_file(struct vm_area_struct *vma, struct file *file) |
| 329 | { |
| 330 | /* Changing an anonymous vma with this is illegal */ |
| 331 | get_file(f: file); |
| 332 | swap(vma->vm_file, file); |
| 333 | fput(file); |
| 334 | } |
| 335 | EXPORT_SYMBOL(vma_set_file); |
| 336 | |
| 337 | #ifndef STACK_RND_MASK |
| 338 | #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */ |
| 339 | #endif |
| 340 | |
| 341 | unsigned long randomize_stack_top(unsigned long stack_top) |
| 342 | { |
| 343 | unsigned long random_variable = 0; |
| 344 | |
| 345 | if (current->flags & PF_RANDOMIZE) { |
| 346 | random_variable = get_random_long(); |
| 347 | random_variable &= STACK_RND_MASK; |
| 348 | random_variable <<= PAGE_SHIFT; |
| 349 | } |
| 350 | #ifdef CONFIG_STACK_GROWSUP |
| 351 | return PAGE_ALIGN(stack_top) + random_variable; |
| 352 | #else |
| 353 | return PAGE_ALIGN(stack_top) - random_variable; |
| 354 | #endif |
| 355 | } |
| 356 | |
| 357 | /** |
| 358 | * randomize_page - Generate a random, page aligned address |
| 359 | * @start: The smallest acceptable address the caller will take. |
| 360 | * @range: The size of the area, starting at @start, within which the |
| 361 | * random address must fall. |
| 362 | * |
| 363 | * If @start + @range would overflow, @range is capped. |
| 364 | * |
| 365 | * NOTE: Historical use of randomize_range, which this replaces, presumed that |
| 366 | * @start was already page aligned. We now align it regardless. |
| 367 | * |
| 368 | * Return: A page aligned address within [start, start + range). On error, |
| 369 | * @start is returned. |
| 370 | */ |
| 371 | unsigned long randomize_page(unsigned long start, unsigned long range) |
| 372 | { |
| 373 | if (!PAGE_ALIGNED(start)) { |
| 374 | range -= PAGE_ALIGN(start) - start; |
| 375 | start = PAGE_ALIGN(start); |
| 376 | } |
| 377 | |
| 378 | if (start > ULONG_MAX - range) |
| 379 | range = ULONG_MAX - start; |
| 380 | |
| 381 | range >>= PAGE_SHIFT; |
| 382 | |
| 383 | if (range == 0) |
| 384 | return start; |
| 385 | |
| 386 | return start + (get_random_long() % range << PAGE_SHIFT); |
| 387 | } |
| 388 | |
| 389 | #ifdef CONFIG_ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT |
| 390 | unsigned long __weak arch_randomize_brk(struct mm_struct *mm) |
| 391 | { |
| 392 | /* Is the current task 32bit ? */ |
| 393 | if (!IS_ENABLED(CONFIG_64BIT) || is_compat_task()) |
| 394 | return randomize_page(mm->brk, SZ_32M); |
| 395 | |
| 396 | return randomize_page(mm->brk, SZ_1G); |
| 397 | } |
| 398 | |
| 399 | unsigned long arch_mmap_rnd(void) |
| 400 | { |
| 401 | unsigned long rnd; |
| 402 | |
| 403 | #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS |
| 404 | if (is_compat_task()) |
| 405 | rnd = get_random_long() & ((1UL << mmap_rnd_compat_bits) - 1); |
| 406 | else |
| 407 | #endif /* CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS */ |
| 408 | rnd = get_random_long() & ((1UL << mmap_rnd_bits) - 1); |
| 409 | |
| 410 | return rnd << PAGE_SHIFT; |
| 411 | } |
| 412 | |
| 413 | static int mmap_is_legacy(const struct rlimit *rlim_stack) |
| 414 | { |
| 415 | if (current->personality & ADDR_COMPAT_LAYOUT) |
| 416 | return 1; |
| 417 | |
| 418 | /* On parisc the stack always grows up - so a unlimited stack should |
| 419 | * not be an indicator to use the legacy memory layout. */ |
| 420 | if (rlim_stack->rlim_cur == RLIM_INFINITY && |
| 421 | !IS_ENABLED(CONFIG_STACK_GROWSUP)) |
| 422 | return 1; |
| 423 | |
| 424 | return sysctl_legacy_va_layout; |
| 425 | } |
| 426 | |
| 427 | /* |
| 428 | * Leave enough space between the mmap area and the stack to honour ulimit in |
| 429 | * the face of randomisation. |
| 430 | */ |
| 431 | #define MIN_GAP (SZ_128M) |
| 432 | #define MAX_GAP (STACK_TOP / 6 * 5) |
| 433 | |
| 434 | static unsigned long mmap_base(const unsigned long rnd, const struct rlimit *rlim_stack) |
| 435 | { |
| 436 | #ifdef CONFIG_STACK_GROWSUP |
| 437 | /* |
| 438 | * For an upwards growing stack the calculation is much simpler. |
| 439 | * Memory for the maximum stack size is reserved at the top of the |
| 440 | * task. mmap_base starts directly below the stack and grows |
| 441 | * downwards. |
| 442 | */ |
| 443 | return PAGE_ALIGN_DOWN(mmap_upper_limit(rlim_stack) - rnd); |
| 444 | #else |
| 445 | unsigned long gap = rlim_stack->rlim_cur; |
| 446 | unsigned long pad = stack_guard_gap; |
| 447 | |
| 448 | /* Account for stack randomization if necessary */ |
| 449 | if (current->flags & PF_RANDOMIZE) |
| 450 | pad += (STACK_RND_MASK << PAGE_SHIFT); |
| 451 | |
| 452 | /* Values close to RLIM_INFINITY can overflow. */ |
| 453 | if (gap + pad > gap) |
| 454 | gap += pad; |
| 455 | |
| 456 | if (gap < MIN_GAP && MIN_GAP < MAX_GAP) |
| 457 | gap = MIN_GAP; |
| 458 | else if (gap > MAX_GAP) |
| 459 | gap = MAX_GAP; |
| 460 | |
| 461 | return PAGE_ALIGN(STACK_TOP - gap - rnd); |
| 462 | #endif |
| 463 | } |
| 464 | |
| 465 | void arch_pick_mmap_layout(struct mm_struct *mm, const struct rlimit *rlim_stack) |
| 466 | { |
| 467 | unsigned long random_factor = 0UL; |
| 468 | |
| 469 | if (current->flags & PF_RANDOMIZE) |
| 470 | random_factor = arch_mmap_rnd(); |
| 471 | |
| 472 | if (mmap_is_legacy(rlim_stack)) { |
| 473 | mm->mmap_base = TASK_UNMAPPED_BASE + random_factor; |
| 474 | mm_flags_clear(MMF_TOPDOWN, mm); |
| 475 | } else { |
| 476 | mm->mmap_base = mmap_base(random_factor, rlim_stack); |
| 477 | mm_flags_set(MMF_TOPDOWN, mm); |
| 478 | } |
| 479 | } |
| 480 | #elif defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT) |
| 481 | void arch_pick_mmap_layout(struct mm_struct *mm, const struct rlimit *rlim_stack) |
| 482 | { |
| 483 | mm->mmap_base = TASK_UNMAPPED_BASE; |
| 484 | mm_flags_clear(MMF_TOPDOWN, mm); |
| 485 | } |
| 486 | #endif |
| 487 | #ifdef CONFIG_MMU |
| 488 | EXPORT_SYMBOL_IF_KUNIT(arch_pick_mmap_layout); |
| 489 | #endif |
| 490 | |
| 491 | /** |
| 492 | * __account_locked_vm - account locked pages to an mm's locked_vm |
| 493 | * @mm: mm to account against |
| 494 | * @pages: number of pages to account |
| 495 | * @inc: %true if @pages should be considered positive, %false if not |
| 496 | * @task: task used to check RLIMIT_MEMLOCK |
| 497 | * @bypass_rlim: %true if checking RLIMIT_MEMLOCK should be skipped |
| 498 | * |
| 499 | * Assumes @task and @mm are valid (i.e. at least one reference on each), and |
| 500 | * that mmap_lock is held as writer. |
| 501 | * |
| 502 | * Return: |
| 503 | * * 0 on success |
| 504 | * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded. |
| 505 | */ |
| 506 | int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, |
| 507 | const struct task_struct *task, bool bypass_rlim) |
| 508 | { |
| 509 | unsigned long locked_vm, limit; |
| 510 | int ret = 0; |
| 511 | |
| 512 | mmap_assert_write_locked(mm); |
| 513 | |
| 514 | locked_vm = mm->locked_vm; |
| 515 | if (inc) { |
| 516 | if (!bypass_rlim) { |
| 517 | limit = task_rlimit(task, RLIMIT_MEMLOCK) >> PAGE_SHIFT; |
| 518 | if (locked_vm + pages > limit) |
| 519 | ret = -ENOMEM; |
| 520 | } |
| 521 | if (!ret) |
| 522 | mm->locked_vm = locked_vm + pages; |
| 523 | } else { |
| 524 | WARN_ON_ONCE(pages > locked_vm); |
| 525 | mm->locked_vm = locked_vm - pages; |
| 526 | } |
| 527 | |
| 528 | pr_debug("%s: [%d] caller %ps %c%lu %lu/%lu%s\n" , __func__, task->pid, |
| 529 | (void *)_RET_IP_, (inc) ? '+' : '-', pages << PAGE_SHIFT, |
| 530 | locked_vm << PAGE_SHIFT, task_rlimit(task, RLIMIT_MEMLOCK), |
| 531 | ret ? " - exceeded" : "" ); |
| 532 | |
| 533 | return ret; |
| 534 | } |
| 535 | EXPORT_SYMBOL_GPL(__account_locked_vm); |
| 536 | |
| 537 | /** |
| 538 | * account_locked_vm - account locked pages to an mm's locked_vm |
| 539 | * @mm: mm to account against, may be NULL |
| 540 | * @pages: number of pages to account |
| 541 | * @inc: %true if @pages should be considered positive, %false if not |
| 542 | * |
| 543 | * Assumes a non-NULL @mm is valid (i.e. at least one reference on it). |
| 544 | * |
| 545 | * Return: |
| 546 | * * 0 on success, or if mm is NULL |
| 547 | * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded. |
| 548 | */ |
| 549 | int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc) |
| 550 | { |
| 551 | int ret; |
| 552 | |
| 553 | if (pages == 0 || !mm) |
| 554 | return 0; |
| 555 | |
| 556 | mmap_write_lock(mm); |
| 557 | ret = __account_locked_vm(mm, pages, inc, current, |
| 558 | capable(CAP_IPC_LOCK)); |
| 559 | mmap_write_unlock(mm); |
| 560 | |
| 561 | return ret; |
| 562 | } |
| 563 | EXPORT_SYMBOL_GPL(account_locked_vm); |
| 564 | |
| 565 | unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr, |
| 566 | unsigned long len, unsigned long prot, |
| 567 | unsigned long flag, unsigned long pgoff) |
| 568 | { |
| 569 | loff_t off = (loff_t)pgoff << PAGE_SHIFT; |
| 570 | unsigned long ret; |
| 571 | struct mm_struct *mm = current->mm; |
| 572 | unsigned long populate; |
| 573 | LIST_HEAD(uf); |
| 574 | |
| 575 | ret = security_mmap_file(file, prot, flags: flag); |
| 576 | if (!ret) |
| 577 | ret = fsnotify_mmap_perm(file, prot, off, len); |
| 578 | if (!ret) { |
| 579 | if (mmap_write_lock_killable(mm)) |
| 580 | return -EINTR; |
| 581 | ret = do_mmap(file, addr, len, prot, flags: flag, vm_flags: 0, pgoff, populate: &populate, |
| 582 | uf: &uf); |
| 583 | mmap_write_unlock(mm); |
| 584 | userfaultfd_unmap_complete(mm, uf: &uf); |
| 585 | if (populate) |
| 586 | mm_populate(addr: ret, len: populate); |
| 587 | } |
| 588 | return ret; |
| 589 | } |
| 590 | |
| 591 | /* |
| 592 | * Perform a userland memory mapping into the current process address space. See |
| 593 | * the comment for do_mmap() for more details on this operation in general. |
| 594 | * |
| 595 | * This differs from do_mmap() in that: |
| 596 | * |
| 597 | * a. An offset parameter is provided rather than pgoff, which is both checked |
| 598 | * for overflow and page alignment. |
| 599 | * b. mmap locking is performed on the caller's behalf. |
| 600 | * c. Userfaultfd unmap events and memory population are handled. |
| 601 | * |
| 602 | * This means that this function performs essentially the same work as if |
| 603 | * userland were invoking mmap (2). |
| 604 | * |
| 605 | * Returns either an error, or the address at which the requested mapping has |
| 606 | * been performed. |
| 607 | */ |
| 608 | unsigned long vm_mmap(struct file *file, unsigned long addr, |
| 609 | unsigned long len, unsigned long prot, |
| 610 | unsigned long flag, unsigned long offset) |
| 611 | { |
| 612 | if (unlikely(offset + PAGE_ALIGN(len) < offset)) |
| 613 | return -EINVAL; |
| 614 | if (unlikely(offset_in_page(offset))) |
| 615 | return -EINVAL; |
| 616 | |
| 617 | return vm_mmap_pgoff(file, addr, len, prot, flag, pgoff: offset >> PAGE_SHIFT); |
| 618 | } |
| 619 | EXPORT_SYMBOL(vm_mmap); |
| 620 | |
| 621 | /** |
| 622 | * __vmalloc_array - allocate memory for a virtually contiguous array. |
| 623 | * @n: number of elements. |
| 624 | * @size: element size. |
| 625 | * @flags: the type of memory to allocate (see kmalloc). |
| 626 | */ |
| 627 | void *__vmalloc_array_noprof(size_t n, size_t size, gfp_t flags) |
| 628 | { |
| 629 | size_t bytes; |
| 630 | |
| 631 | if (unlikely(check_mul_overflow(n, size, &bytes))) |
| 632 | return NULL; |
| 633 | return __vmalloc_noprof(size: bytes, gfp_mask: flags); |
| 634 | } |
| 635 | EXPORT_SYMBOL(__vmalloc_array_noprof); |
| 636 | |
| 637 | /** |
| 638 | * vmalloc_array - allocate memory for a virtually contiguous array. |
| 639 | * @n: number of elements. |
| 640 | * @size: element size. |
| 641 | */ |
| 642 | void *vmalloc_array_noprof(size_t n, size_t size) |
| 643 | { |
| 644 | return __vmalloc_array_noprof(n, size, GFP_KERNEL); |
| 645 | } |
| 646 | EXPORT_SYMBOL(vmalloc_array_noprof); |
| 647 | |
| 648 | /** |
| 649 | * __vcalloc - allocate and zero memory for a virtually contiguous array. |
| 650 | * @n: number of elements. |
| 651 | * @size: element size. |
| 652 | * @flags: the type of memory to allocate (see kmalloc). |
| 653 | */ |
| 654 | void *__vcalloc_noprof(size_t n, size_t size, gfp_t flags) |
| 655 | { |
| 656 | return __vmalloc_array_noprof(n, size, flags | __GFP_ZERO); |
| 657 | } |
| 658 | EXPORT_SYMBOL(__vcalloc_noprof); |
| 659 | |
| 660 | /** |
| 661 | * vcalloc - allocate and zero memory for a virtually contiguous array. |
| 662 | * @n: number of elements. |
| 663 | * @size: element size. |
| 664 | */ |
| 665 | void *vcalloc_noprof(size_t n, size_t size) |
| 666 | { |
| 667 | return __vmalloc_array_noprof(n, size, GFP_KERNEL | __GFP_ZERO); |
| 668 | } |
| 669 | EXPORT_SYMBOL(vcalloc_noprof); |
| 670 | |
| 671 | struct anon_vma *folio_anon_vma(const struct folio *folio) |
| 672 | { |
| 673 | unsigned long mapping = (unsigned long)folio->mapping; |
| 674 | |
| 675 | if ((mapping & FOLIO_MAPPING_FLAGS) != FOLIO_MAPPING_ANON) |
| 676 | return NULL; |
| 677 | return (void *)(mapping - FOLIO_MAPPING_ANON); |
| 678 | } |
| 679 | |
| 680 | /** |
| 681 | * folio_mapping - Find the mapping where this folio is stored. |
| 682 | * @folio: The folio. |
| 683 | * |
| 684 | * For folios which are in the page cache, return the mapping that this |
| 685 | * page belongs to. Folios in the swap cache return the swap mapping |
| 686 | * this page is stored in (which is different from the mapping for the |
| 687 | * swap file or swap device where the data is stored). |
| 688 | * |
| 689 | * You can call this for folios which aren't in the swap cache or page |
| 690 | * cache and it will return NULL. |
| 691 | */ |
| 692 | struct address_space *folio_mapping(const struct folio *folio) |
| 693 | { |
| 694 | struct address_space *mapping; |
| 695 | |
| 696 | /* This happens if someone calls flush_dcache_page on slab page */ |
| 697 | if (unlikely(folio_test_slab(folio))) |
| 698 | return NULL; |
| 699 | |
| 700 | if (unlikely(folio_test_swapcache(folio))) |
| 701 | return swap_address_space(entry: folio->swap); |
| 702 | |
| 703 | mapping = folio->mapping; |
| 704 | if ((unsigned long)mapping & FOLIO_MAPPING_FLAGS) |
| 705 | return NULL; |
| 706 | |
| 707 | return mapping; |
| 708 | } |
| 709 | EXPORT_SYMBOL(folio_mapping); |
| 710 | |
| 711 | /** |
| 712 | * folio_copy - Copy the contents of one folio to another. |
| 713 | * @dst: Folio to copy to. |
| 714 | * @src: Folio to copy from. |
| 715 | * |
| 716 | * The bytes in the folio represented by @src are copied to @dst. |
| 717 | * Assumes the caller has validated that @dst is at least as large as @src. |
| 718 | * Can be called in atomic context for order-0 folios, but if the folio is |
| 719 | * larger, it may sleep. |
| 720 | */ |
| 721 | void folio_copy(struct folio *dst, struct folio *src) |
| 722 | { |
| 723 | long i = 0; |
| 724 | long nr = folio_nr_pages(folio: src); |
| 725 | |
| 726 | for (;;) { |
| 727 | copy_highpage(folio_page(dst, i), folio_page(src, i)); |
| 728 | if (++i == nr) |
| 729 | break; |
| 730 | cond_resched(); |
| 731 | } |
| 732 | } |
| 733 | EXPORT_SYMBOL(folio_copy); |
| 734 | |
| 735 | int folio_mc_copy(struct folio *dst, struct folio *src) |
| 736 | { |
| 737 | long nr = folio_nr_pages(folio: src); |
| 738 | long i = 0; |
| 739 | |
| 740 | for (;;) { |
| 741 | if (copy_mc_highpage(folio_page(dst, i), folio_page(src, i))) |
| 742 | return -EHWPOISON; |
| 743 | if (++i == nr) |
| 744 | break; |
| 745 | cond_resched(); |
| 746 | } |
| 747 | |
| 748 | return 0; |
| 749 | } |
| 750 | EXPORT_SYMBOL(folio_mc_copy); |
| 751 | |
| 752 | int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; |
| 753 | static int sysctl_overcommit_ratio __read_mostly = 50; |
| 754 | static unsigned long sysctl_overcommit_kbytes __read_mostly; |
| 755 | int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT; |
| 756 | unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */ |
| 757 | unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */ |
| 758 | |
| 759 | #ifdef CONFIG_SYSCTL |
| 760 | |
| 761 | static int overcommit_ratio_handler(const struct ctl_table *table, int write, |
| 762 | void *buffer, size_t *lenp, loff_t *ppos) |
| 763 | { |
| 764 | int ret; |
| 765 | |
| 766 | ret = proc_dointvec(table, write, buffer, lenp, ppos); |
| 767 | if (ret == 0 && write) |
| 768 | sysctl_overcommit_kbytes = 0; |
| 769 | return ret; |
| 770 | } |
| 771 | |
| 772 | static void sync_overcommit_as(struct work_struct *dummy) |
| 773 | { |
| 774 | percpu_counter_sync(fbc: &vm_committed_as); |
| 775 | } |
| 776 | |
| 777 | static int overcommit_policy_handler(const struct ctl_table *table, int write, |
| 778 | void *buffer, size_t *lenp, loff_t *ppos) |
| 779 | { |
| 780 | struct ctl_table t; |
| 781 | int new_policy = -1; |
| 782 | int ret; |
| 783 | |
| 784 | /* |
| 785 | * The deviation of sync_overcommit_as could be big with loose policy |
| 786 | * like OVERCOMMIT_ALWAYS/OVERCOMMIT_GUESS. When changing policy to |
| 787 | * strict OVERCOMMIT_NEVER, we need to reduce the deviation to comply |
| 788 | * with the strict "NEVER", and to avoid possible race condition (even |
| 789 | * though user usually won't too frequently do the switching to policy |
| 790 | * OVERCOMMIT_NEVER), the switch is done in the following order: |
| 791 | * 1. changing the batch |
| 792 | * 2. sync percpu count on each CPU |
| 793 | * 3. switch the policy |
| 794 | */ |
| 795 | if (write) { |
| 796 | t = *table; |
| 797 | t.data = &new_policy; |
| 798 | ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); |
| 799 | if (ret || new_policy == -1) |
| 800 | return ret; |
| 801 | |
| 802 | mm_compute_batch(overcommit_policy: new_policy); |
| 803 | if (new_policy == OVERCOMMIT_NEVER) |
| 804 | schedule_on_each_cpu(func: sync_overcommit_as); |
| 805 | sysctl_overcommit_memory = new_policy; |
| 806 | } else { |
| 807 | ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); |
| 808 | } |
| 809 | |
| 810 | return ret; |
| 811 | } |
| 812 | |
| 813 | static int overcommit_kbytes_handler(const struct ctl_table *table, int write, |
| 814 | void *buffer, size_t *lenp, loff_t *ppos) |
| 815 | { |
| 816 | int ret; |
| 817 | |
| 818 | ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); |
| 819 | if (ret == 0 && write) |
| 820 | sysctl_overcommit_ratio = 0; |
| 821 | return ret; |
| 822 | } |
| 823 | |
| 824 | static const struct ctl_table util_sysctl_table[] = { |
| 825 | { |
| 826 | .procname = "overcommit_memory" , |
| 827 | .data = &sysctl_overcommit_memory, |
| 828 | .maxlen = sizeof(sysctl_overcommit_memory), |
| 829 | .mode = 0644, |
| 830 | .proc_handler = overcommit_policy_handler, |
| 831 | .extra1 = SYSCTL_ZERO, |
| 832 | .extra2 = SYSCTL_TWO, |
| 833 | }, |
| 834 | { |
| 835 | .procname = "overcommit_ratio" , |
| 836 | .data = &sysctl_overcommit_ratio, |
| 837 | .maxlen = sizeof(sysctl_overcommit_ratio), |
| 838 | .mode = 0644, |
| 839 | .proc_handler = overcommit_ratio_handler, |
| 840 | }, |
| 841 | { |
| 842 | .procname = "overcommit_kbytes" , |
| 843 | .data = &sysctl_overcommit_kbytes, |
| 844 | .maxlen = sizeof(sysctl_overcommit_kbytes), |
| 845 | .mode = 0644, |
| 846 | .proc_handler = overcommit_kbytes_handler, |
| 847 | }, |
| 848 | { |
| 849 | .procname = "user_reserve_kbytes" , |
| 850 | .data = &sysctl_user_reserve_kbytes, |
| 851 | .maxlen = sizeof(sysctl_user_reserve_kbytes), |
| 852 | .mode = 0644, |
| 853 | .proc_handler = proc_doulongvec_minmax, |
| 854 | }, |
| 855 | { |
| 856 | .procname = "admin_reserve_kbytes" , |
| 857 | .data = &sysctl_admin_reserve_kbytes, |
| 858 | .maxlen = sizeof(sysctl_admin_reserve_kbytes), |
| 859 | .mode = 0644, |
| 860 | .proc_handler = proc_doulongvec_minmax, |
| 861 | }, |
| 862 | }; |
| 863 | |
| 864 | static int __init init_vm_util_sysctls(void) |
| 865 | { |
| 866 | register_sysctl_init("vm" , util_sysctl_table); |
| 867 | return 0; |
| 868 | } |
| 869 | subsys_initcall(init_vm_util_sysctls); |
| 870 | #endif /* CONFIG_SYSCTL */ |
| 871 | |
| 872 | /* |
| 873 | * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used |
| 874 | */ |
| 875 | unsigned long vm_commit_limit(void) |
| 876 | { |
| 877 | unsigned long allowed; |
| 878 | |
| 879 | if (sysctl_overcommit_kbytes) |
| 880 | allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10); |
| 881 | else |
| 882 | allowed = ((totalram_pages() - hugetlb_total_pages()) |
| 883 | * sysctl_overcommit_ratio / 100); |
| 884 | allowed += total_swap_pages; |
| 885 | |
| 886 | return allowed; |
| 887 | } |
| 888 | |
| 889 | /* |
| 890 | * Make sure vm_committed_as in one cacheline and not cacheline shared with |
| 891 | * other variables. It can be updated by several CPUs frequently. |
| 892 | */ |
| 893 | struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp; |
| 894 | |
| 895 | /* |
| 896 | * The global memory commitment made in the system can be a metric |
| 897 | * that can be used to drive ballooning decisions when Linux is hosted |
| 898 | * as a guest. On Hyper-V, the host implements a policy engine for dynamically |
| 899 | * balancing memory across competing virtual machines that are hosted. |
| 900 | * Several metrics drive this policy engine including the guest reported |
| 901 | * memory commitment. |
| 902 | * |
| 903 | * The time cost of this is very low for small platforms, and for big |
| 904 | * platform like a 2S/36C/72T Skylake server, in worst case where |
| 905 | * vm_committed_as's spinlock is under severe contention, the time cost |
| 906 | * could be about 30~40 microseconds. |
| 907 | */ |
| 908 | unsigned long vm_memory_committed(void) |
| 909 | { |
| 910 | return percpu_counter_sum_positive(fbc: &vm_committed_as); |
| 911 | } |
| 912 | EXPORT_SYMBOL_GPL(vm_memory_committed); |
| 913 | |
| 914 | /* |
| 915 | * Check that a process has enough memory to allocate a new virtual |
| 916 | * mapping. 0 means there is enough memory for the allocation to |
| 917 | * succeed and -ENOMEM implies there is not. |
| 918 | * |
| 919 | * We currently support three overcommit policies, which are set via the |
| 920 | * vm.overcommit_memory sysctl. See Documentation/mm/overcommit-accounting.rst |
| 921 | * |
| 922 | * Strict overcommit modes added 2002 Feb 26 by Alan Cox. |
| 923 | * Additional code 2002 Jul 20 by Robert Love. |
| 924 | * |
| 925 | * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. |
| 926 | * |
| 927 | * Note this is a helper function intended to be used by LSMs which |
| 928 | * wish to use this logic. |
| 929 | */ |
| 930 | int __vm_enough_memory(const struct mm_struct *mm, long pages, int cap_sys_admin) |
| 931 | { |
| 932 | long allowed; |
| 933 | unsigned long bytes_failed; |
| 934 | |
| 935 | vm_acct_memory(pages); |
| 936 | |
| 937 | /* |
| 938 | * Sometimes we want to use more memory than we have |
| 939 | */ |
| 940 | if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) |
| 941 | return 0; |
| 942 | |
| 943 | if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { |
| 944 | if (pages > totalram_pages() + total_swap_pages) |
| 945 | goto error; |
| 946 | return 0; |
| 947 | } |
| 948 | |
| 949 | allowed = vm_commit_limit(); |
| 950 | /* |
| 951 | * Reserve some for root |
| 952 | */ |
| 953 | if (!cap_sys_admin) |
| 954 | allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10); |
| 955 | |
| 956 | /* |
| 957 | * Don't let a single process grow so big a user can't recover |
| 958 | */ |
| 959 | if (mm) { |
| 960 | long reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10); |
| 961 | |
| 962 | allowed -= min_t(long, mm->total_vm / 32, reserve); |
| 963 | } |
| 964 | |
| 965 | if (percpu_counter_read_positive(fbc: &vm_committed_as) < allowed) |
| 966 | return 0; |
| 967 | error: |
| 968 | bytes_failed = pages << PAGE_SHIFT; |
| 969 | pr_warn_ratelimited("%s: pid: %d, comm: %s, bytes: %lu not enough memory for the allocation\n" , |
| 970 | __func__, current->pid, current->comm, bytes_failed); |
| 971 | vm_unacct_memory(pages); |
| 972 | |
| 973 | return -ENOMEM; |
| 974 | } |
| 975 | |
| 976 | /** |
| 977 | * get_cmdline() - copy the cmdline value to a buffer. |
| 978 | * @task: the task whose cmdline value to copy. |
| 979 | * @buffer: the buffer to copy to. |
| 980 | * @buflen: the length of the buffer. Larger cmdline values are truncated |
| 981 | * to this length. |
| 982 | * |
| 983 | * Return: the size of the cmdline field copied. Note that the copy does |
| 984 | * not guarantee an ending NULL byte. |
| 985 | */ |
| 986 | int get_cmdline(struct task_struct *task, char *buffer, int buflen) |
| 987 | { |
| 988 | int res = 0; |
| 989 | unsigned int len; |
| 990 | struct mm_struct *mm = get_task_mm(task); |
| 991 | unsigned long arg_start, arg_end, env_start, env_end; |
| 992 | if (!mm) |
| 993 | goto out; |
| 994 | if (!mm->arg_end) |
| 995 | goto out_mm; /* Shh! No looking before we're done */ |
| 996 | |
| 997 | spin_lock(lock: &mm->arg_lock); |
| 998 | arg_start = mm->arg_start; |
| 999 | arg_end = mm->arg_end; |
| 1000 | env_start = mm->env_start; |
| 1001 | env_end = mm->env_end; |
| 1002 | spin_unlock(lock: &mm->arg_lock); |
| 1003 | |
| 1004 | len = arg_end - arg_start; |
| 1005 | |
| 1006 | if (len > buflen) |
| 1007 | len = buflen; |
| 1008 | |
| 1009 | res = access_process_vm(tsk: task, addr: arg_start, buf: buffer, len, gup_flags: FOLL_FORCE); |
| 1010 | |
| 1011 | /* |
| 1012 | * If the nul at the end of args has been overwritten, then |
| 1013 | * assume application is using setproctitle(3). |
| 1014 | */ |
| 1015 | if (res > 0 && buffer[res-1] != '\0' && len < buflen) { |
| 1016 | len = strnlen(buffer, res); |
| 1017 | if (len < res) { |
| 1018 | res = len; |
| 1019 | } else { |
| 1020 | len = env_end - env_start; |
| 1021 | if (len > buflen - res) |
| 1022 | len = buflen - res; |
| 1023 | res += access_process_vm(tsk: task, addr: env_start, |
| 1024 | buf: buffer+res, len, |
| 1025 | gup_flags: FOLL_FORCE); |
| 1026 | res = strnlen(buffer, res); |
| 1027 | } |
| 1028 | } |
| 1029 | out_mm: |
| 1030 | mmput(mm); |
| 1031 | out: |
| 1032 | return res; |
| 1033 | } |
| 1034 | |
| 1035 | int __weak memcmp_pages(struct page *page1, struct page *page2) |
| 1036 | { |
| 1037 | char *addr1, *addr2; |
| 1038 | int ret; |
| 1039 | |
| 1040 | addr1 = kmap_local_page(page: page1); |
| 1041 | addr2 = kmap_local_page(page: page2); |
| 1042 | ret = memcmp(addr1, addr2, PAGE_SIZE); |
| 1043 | kunmap_local(addr2); |
| 1044 | kunmap_local(addr1); |
| 1045 | return ret; |
| 1046 | } |
| 1047 | |
| 1048 | #ifdef CONFIG_PRINTK |
| 1049 | /** |
| 1050 | * mem_dump_obj - Print available provenance information |
| 1051 | * @object: object for which to find provenance information. |
| 1052 | * |
| 1053 | * This function uses pr_cont(), so that the caller is expected to have |
| 1054 | * printed out whatever preamble is appropriate. The provenance information |
| 1055 | * depends on the type of object and on how much debugging is enabled. |
| 1056 | * For example, for a slab-cache object, the slab name is printed, and, |
| 1057 | * if available, the return address and stack trace from the allocation |
| 1058 | * and last free path of that object. |
| 1059 | */ |
| 1060 | void mem_dump_obj(void *object) |
| 1061 | { |
| 1062 | const char *type; |
| 1063 | |
| 1064 | if (kmem_dump_obj(object)) |
| 1065 | return; |
| 1066 | |
| 1067 | if (vmalloc_dump_obj(object)) |
| 1068 | return; |
| 1069 | |
| 1070 | if (is_vmalloc_addr(x: object)) |
| 1071 | type = "vmalloc memory" ; |
| 1072 | else if (virt_addr_valid(object)) |
| 1073 | type = "non-slab/vmalloc memory" ; |
| 1074 | else if (object == NULL) |
| 1075 | type = "NULL pointer" ; |
| 1076 | else if (object == ZERO_SIZE_PTR) |
| 1077 | type = "zero-size pointer" ; |
| 1078 | else |
| 1079 | type = "non-paged memory" ; |
| 1080 | |
| 1081 | pr_cont(" %s\n" , type); |
| 1082 | } |
| 1083 | EXPORT_SYMBOL_GPL(mem_dump_obj); |
| 1084 | #endif |
| 1085 | |
| 1086 | /* |
| 1087 | * A driver might set a page logically offline -- PageOffline() -- and |
| 1088 | * turn the page inaccessible in the hypervisor; after that, access to page |
| 1089 | * content can be fatal. |
| 1090 | * |
| 1091 | * Some special PFN walkers -- i.e., /proc/kcore -- read content of random |
| 1092 | * pages after checking PageOffline(); however, these PFN walkers can race |
| 1093 | * with drivers that set PageOffline(). |
| 1094 | * |
| 1095 | * page_offline_freeze()/page_offline_thaw() allows for a subsystem to |
| 1096 | * synchronize with such drivers, achieving that a page cannot be set |
| 1097 | * PageOffline() while frozen. |
| 1098 | * |
| 1099 | * page_offline_begin()/page_offline_end() is used by drivers that care about |
| 1100 | * such races when setting a page PageOffline(). |
| 1101 | */ |
| 1102 | static DECLARE_RWSEM(page_offline_rwsem); |
| 1103 | |
| 1104 | void page_offline_freeze(void) |
| 1105 | { |
| 1106 | down_read(sem: &page_offline_rwsem); |
| 1107 | } |
| 1108 | |
| 1109 | void page_offline_thaw(void) |
| 1110 | { |
| 1111 | up_read(sem: &page_offline_rwsem); |
| 1112 | } |
| 1113 | |
| 1114 | void page_offline_begin(void) |
| 1115 | { |
| 1116 | down_write(sem: &page_offline_rwsem); |
| 1117 | } |
| 1118 | EXPORT_SYMBOL(page_offline_begin); |
| 1119 | |
| 1120 | void page_offline_end(void) |
| 1121 | { |
| 1122 | up_write(sem: &page_offline_rwsem); |
| 1123 | } |
| 1124 | EXPORT_SYMBOL(page_offline_end); |
| 1125 | |
| 1126 | #ifndef flush_dcache_folio |
| 1127 | void flush_dcache_folio(struct folio *folio) |
| 1128 | { |
| 1129 | long i, nr = folio_nr_pages(folio); |
| 1130 | |
| 1131 | for (i = 0; i < nr; i++) |
| 1132 | flush_dcache_page(folio_page(folio, i)); |
| 1133 | } |
| 1134 | EXPORT_SYMBOL(flush_dcache_folio); |
| 1135 | #endif |
| 1136 | |
| 1137 | /** |
| 1138 | * __compat_vma_mmap_prepare() - See description for compat_vma_mmap_prepare() |
| 1139 | * for details. This is the same operation, only with a specific file operations |
| 1140 | * struct which may or may not be the same as vma->vm_file->f_op. |
| 1141 | * @f_op: The file operations whose .mmap_prepare() hook is specified. |
| 1142 | * @file: The file which backs or will back the mapping. |
| 1143 | * @vma: The VMA to apply the .mmap_prepare() hook to. |
| 1144 | * Returns: 0 on success or error. |
| 1145 | */ |
| 1146 | int __compat_vma_mmap_prepare(const struct file_operations *f_op, |
| 1147 | struct file *file, struct vm_area_struct *vma) |
| 1148 | { |
| 1149 | struct vm_area_desc desc = { |
| 1150 | .mm = vma->vm_mm, |
| 1151 | .file = file, |
| 1152 | .start = vma->vm_start, |
| 1153 | .end = vma->vm_end, |
| 1154 | |
| 1155 | .pgoff = vma->vm_pgoff, |
| 1156 | .vm_file = vma->vm_file, |
| 1157 | .vm_flags = vma->vm_flags, |
| 1158 | .page_prot = vma->vm_page_prot, |
| 1159 | }; |
| 1160 | int err; |
| 1161 | |
| 1162 | err = f_op->mmap_prepare(&desc); |
| 1163 | if (err) |
| 1164 | return err; |
| 1165 | set_vma_from_desc(vma, desc: &desc); |
| 1166 | |
| 1167 | return 0; |
| 1168 | } |
| 1169 | EXPORT_SYMBOL(__compat_vma_mmap_prepare); |
| 1170 | |
| 1171 | /** |
| 1172 | * compat_vma_mmap_prepare() - Apply the file's .mmap_prepare() hook to an |
| 1173 | * existing VMA. |
| 1174 | * @file: The file which possesss an f_op->mmap_prepare() hook. |
| 1175 | * @vma: The VMA to apply the .mmap_prepare() hook to. |
| 1176 | * |
| 1177 | * Ordinarily, .mmap_prepare() is invoked directly upon mmap(). However, certain |
| 1178 | * stacked filesystems invoke a nested mmap hook of an underlying file. |
| 1179 | * |
| 1180 | * Until all filesystems are converted to use .mmap_prepare(), we must be |
| 1181 | * conservative and continue to invoke these stacked filesystems using the |
| 1182 | * deprecated .mmap() hook. |
| 1183 | * |
| 1184 | * However we have a problem if the underlying file system possesses an |
| 1185 | * .mmap_prepare() hook, as we are in a different context when we invoke the |
| 1186 | * .mmap() hook, already having a VMA to deal with. |
| 1187 | * |
| 1188 | * compat_vma_mmap_prepare() is a compatibility function that takes VMA state, |
| 1189 | * establishes a struct vm_area_desc descriptor, passes to the underlying |
| 1190 | * .mmap_prepare() hook and applies any changes performed by it. |
| 1191 | * |
| 1192 | * Once the conversion of filesystems is complete this function will no longer |
| 1193 | * be required and will be removed. |
| 1194 | * |
| 1195 | * Returns: 0 on success or error. |
| 1196 | */ |
| 1197 | int compat_vma_mmap_prepare(struct file *file, struct vm_area_struct *vma) |
| 1198 | { |
| 1199 | return __compat_vma_mmap_prepare(file->f_op, file, vma); |
| 1200 | } |
| 1201 | EXPORT_SYMBOL(compat_vma_mmap_prepare); |
| 1202 | |
| 1203 | static void set_ps_flags(struct page_snapshot *ps, const struct folio *folio, |
| 1204 | const struct page *page) |
| 1205 | { |
| 1206 | /* |
| 1207 | * Only the first page of a high-order buddy page has PageBuddy() set. |
| 1208 | * So we have to check manually whether this page is part of a high- |
| 1209 | * order buddy page. |
| 1210 | */ |
| 1211 | if (PageBuddy(page)) |
| 1212 | ps->flags |= PAGE_SNAPSHOT_PG_BUDDY; |
| 1213 | else if (page_count(page) == 0 && is_free_buddy_page(page)) |
| 1214 | ps->flags |= PAGE_SNAPSHOT_PG_BUDDY; |
| 1215 | |
| 1216 | if (folio_test_idle(folio)) |
| 1217 | ps->flags |= PAGE_SNAPSHOT_PG_IDLE; |
| 1218 | } |
| 1219 | |
| 1220 | /** |
| 1221 | * snapshot_page() - Create a snapshot of a struct page |
| 1222 | * @ps: Pointer to a struct page_snapshot to store the page snapshot |
| 1223 | * @page: The page to snapshot |
| 1224 | * |
| 1225 | * Create a snapshot of the page and store both its struct page and struct |
| 1226 | * folio representations in @ps. |
| 1227 | * |
| 1228 | * A snapshot is marked as "faithful" if the compound state of @page was |
| 1229 | * stable and allowed safe reconstruction of the folio representation. In |
| 1230 | * rare cases where this is not possible (e.g. due to folio splitting), |
| 1231 | * snapshot_page() falls back to treating @page as a single page and the |
| 1232 | * snapshot is marked as "unfaithful". The snapshot_page_is_faithful() |
| 1233 | * helper can be used to check for this condition. |
| 1234 | */ |
| 1235 | void snapshot_page(struct page_snapshot *ps, const struct page *page) |
| 1236 | { |
| 1237 | unsigned long head, nr_pages = 1; |
| 1238 | struct folio *foliop; |
| 1239 | int loops = 5; |
| 1240 | |
| 1241 | ps->pfn = page_to_pfn(page); |
| 1242 | ps->flags = PAGE_SNAPSHOT_FAITHFUL; |
| 1243 | |
| 1244 | again: |
| 1245 | memset(s: &ps->folio_snapshot, c: 0, n: sizeof(struct folio)); |
| 1246 | memcpy(to: &ps->page_snapshot, from: page, len: sizeof(*page)); |
| 1247 | head = ps->page_snapshot.compound_head; |
| 1248 | if ((head & 1) == 0) { |
| 1249 | ps->idx = 0; |
| 1250 | foliop = (struct folio *)&ps->page_snapshot; |
| 1251 | if (!folio_test_large(folio: foliop)) { |
| 1252 | set_ps_flags(ps, page_folio(page), page); |
| 1253 | memcpy(to: &ps->folio_snapshot, from: foliop, |
| 1254 | len: sizeof(struct page)); |
| 1255 | return; |
| 1256 | } |
| 1257 | foliop = (struct folio *)page; |
| 1258 | } else { |
| 1259 | foliop = (struct folio *)(head - 1); |
| 1260 | ps->idx = folio_page_idx(folio: foliop, page); |
| 1261 | } |
| 1262 | |
| 1263 | if (ps->idx < MAX_FOLIO_NR_PAGES) { |
| 1264 | memcpy(to: &ps->folio_snapshot, from: foliop, len: 2 * sizeof(struct page)); |
| 1265 | nr_pages = folio_nr_pages(folio: &ps->folio_snapshot); |
| 1266 | if (nr_pages > 1) |
| 1267 | memcpy(to: &ps->folio_snapshot.__page_2, from: &foliop->__page_2, |
| 1268 | len: sizeof(struct page)); |
| 1269 | set_ps_flags(ps, folio: foliop, page); |
| 1270 | } |
| 1271 | |
| 1272 | if (ps->idx > nr_pages) { |
| 1273 | if (loops-- > 0) |
| 1274 | goto again; |
| 1275 | clear_compound_head(page: &ps->page_snapshot); |
| 1276 | foliop = (struct folio *)&ps->page_snapshot; |
| 1277 | memcpy(to: &ps->folio_snapshot, from: foliop, len: sizeof(struct page)); |
| 1278 | ps->flags = 0; |
| 1279 | ps->idx = 0; |
| 1280 | } |
| 1281 | } |
| 1282 | |
| 1283 | #ifdef CONFIG_MMU |
| 1284 | /** |
| 1285 | * folio_pte_batch - detect a PTE batch for a large folio |
| 1286 | * @folio: The large folio to detect a PTE batch for. |
| 1287 | * @ptep: Page table pointer for the first entry. |
| 1288 | * @pte: Page table entry for the first page. |
| 1289 | * @max_nr: The maximum number of table entries to consider. |
| 1290 | * |
| 1291 | * This is a simplified variant of folio_pte_batch_flags(). |
| 1292 | * |
| 1293 | * Detect a PTE batch: consecutive (present) PTEs that map consecutive |
| 1294 | * pages of the same large folio in a single VMA and a single page table. |
| 1295 | * |
| 1296 | * All PTEs inside a PTE batch have the same PTE bits set, excluding the PFN, |
| 1297 | * the accessed bit, writable bit, dirt-bit and soft-dirty bit. |
| 1298 | * |
| 1299 | * ptep must map any page of the folio. max_nr must be at least one and |
| 1300 | * must be limited by the caller so scanning cannot exceed a single VMA and |
| 1301 | * a single page table. |
| 1302 | * |
| 1303 | * Return: the number of table entries in the batch. |
| 1304 | */ |
| 1305 | unsigned int folio_pte_batch(struct folio *folio, pte_t *ptep, pte_t pte, |
| 1306 | unsigned int max_nr) |
| 1307 | { |
| 1308 | return folio_pte_batch_flags(folio, NULL, ptep, ptentp: &pte, max_nr, flags: 0); |
| 1309 | } |
| 1310 | #endif /* CONFIG_MMU */ |
| 1311 | |
| 1312 | #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) |
| 1313 | /** |
| 1314 | * page_range_contiguous - test whether the page range is contiguous |
| 1315 | * @page: the start of the page range. |
| 1316 | * @nr_pages: the number of pages in the range. |
| 1317 | * |
| 1318 | * Test whether the page range is contiguous, such that they can be iterated |
| 1319 | * naively, corresponding to iterating a contiguous PFN range. |
| 1320 | * |
| 1321 | * This function should primarily only be used for debug checks, or when |
| 1322 | * working with page ranges that are not naturally contiguous (e.g., pages |
| 1323 | * within a folio are). |
| 1324 | * |
| 1325 | * Returns true if contiguous, otherwise false. |
| 1326 | */ |
| 1327 | bool page_range_contiguous(const struct page *page, unsigned long nr_pages) |
| 1328 | { |
| 1329 | const unsigned long start_pfn = page_to_pfn(page); |
| 1330 | const unsigned long end_pfn = start_pfn + nr_pages; |
| 1331 | unsigned long pfn; |
| 1332 | |
| 1333 | /* |
| 1334 | * The memmap is allocated per memory section, so no need to check |
| 1335 | * within the first section. However, we need to check each other |
| 1336 | * spanned memory section once, making sure the first page in a |
| 1337 | * section could similarly be reached by just iterating pages. |
| 1338 | */ |
| 1339 | for (pfn = ALIGN(start_pfn, PAGES_PER_SECTION); |
| 1340 | pfn < end_pfn; pfn += PAGES_PER_SECTION) |
| 1341 | if (unlikely(page + (pfn - start_pfn) != pfn_to_page(pfn))) |
| 1342 | return false; |
| 1343 | return true; |
| 1344 | } |
| 1345 | EXPORT_SYMBOL(page_range_contiguous); |
| 1346 | #endif |
| 1347 | |