| 1 | // SPDX-License-Identifier: GPL-2.0-or-later |
| 2 | |
| 3 | /* |
| 4 | * VMA-specific functions. |
| 5 | */ |
| 6 | |
| 7 | #include "vma_internal.h" |
| 8 | #include "vma.h" |
| 9 | |
| 10 | struct mmap_state { |
| 11 | struct mm_struct *mm; |
| 12 | struct vma_iterator *vmi; |
| 13 | |
| 14 | unsigned long addr; |
| 15 | unsigned long end; |
| 16 | pgoff_t pgoff; |
| 17 | unsigned long pglen; |
| 18 | vm_flags_t vm_flags; |
| 19 | struct file *file; |
| 20 | pgprot_t page_prot; |
| 21 | |
| 22 | /* User-defined fields, perhaps updated by .mmap_prepare(). */ |
| 23 | const struct vm_operations_struct *vm_ops; |
| 24 | void *vm_private_data; |
| 25 | |
| 26 | unsigned long charged; |
| 27 | |
| 28 | struct vm_area_struct *prev; |
| 29 | struct vm_area_struct *next; |
| 30 | |
| 31 | /* Unmapping state. */ |
| 32 | struct vma_munmap_struct vms; |
| 33 | struct ma_state mas_detach; |
| 34 | struct maple_tree mt_detach; |
| 35 | |
| 36 | /* Determine if we can check KSM flags early in mmap() logic. */ |
| 37 | bool check_ksm_early; |
| 38 | }; |
| 39 | |
| 40 | #define MMAP_STATE(name, mm_, vmi_, addr_, len_, pgoff_, vm_flags_, file_) \ |
| 41 | struct mmap_state name = { \ |
| 42 | .mm = mm_, \ |
| 43 | .vmi = vmi_, \ |
| 44 | .addr = addr_, \ |
| 45 | .end = (addr_) + (len_), \ |
| 46 | .pgoff = pgoff_, \ |
| 47 | .pglen = PHYS_PFN(len_), \ |
| 48 | .vm_flags = vm_flags_, \ |
| 49 | .file = file_, \ |
| 50 | .page_prot = vm_get_page_prot(vm_flags_), \ |
| 51 | } |
| 52 | |
| 53 | #define VMG_MMAP_STATE(name, map_, vma_) \ |
| 54 | struct vma_merge_struct name = { \ |
| 55 | .mm = (map_)->mm, \ |
| 56 | .vmi = (map_)->vmi, \ |
| 57 | .start = (map_)->addr, \ |
| 58 | .end = (map_)->end, \ |
| 59 | .vm_flags = (map_)->vm_flags, \ |
| 60 | .pgoff = (map_)->pgoff, \ |
| 61 | .file = (map_)->file, \ |
| 62 | .prev = (map_)->prev, \ |
| 63 | .middle = vma_, \ |
| 64 | .next = (vma_) ? NULL : (map_)->next, \ |
| 65 | .state = VMA_MERGE_START, \ |
| 66 | } |
| 67 | |
| 68 | /* |
| 69 | * If, at any point, the VMA had unCoW'd mappings from parents, it will maintain |
| 70 | * more than one anon_vma_chain connecting it to more than one anon_vma. A merge |
| 71 | * would mean a wider range of folios sharing the root anon_vma lock, and thus |
| 72 | * potential lock contention, we do not wish to encourage merging such that this |
| 73 | * scales to a problem. |
| 74 | */ |
| 75 | static bool vma_had_uncowed_parents(struct vm_area_struct *vma) |
| 76 | { |
| 77 | /* |
| 78 | * The list_is_singular() test is to avoid merging VMA cloned from |
| 79 | * parents. This can improve scalability caused by anon_vma lock. |
| 80 | */ |
| 81 | return vma && vma->anon_vma && !list_is_singular(head: &vma->anon_vma_chain); |
| 82 | } |
| 83 | |
| 84 | static inline bool is_mergeable_vma(struct vma_merge_struct *vmg, bool merge_next) |
| 85 | { |
| 86 | struct vm_area_struct *vma = merge_next ? vmg->next : vmg->prev; |
| 87 | |
| 88 | if (!mpol_equal(a: vmg->policy, vma_policy(vma))) |
| 89 | return false; |
| 90 | /* |
| 91 | * VM_SOFTDIRTY should not prevent from VMA merging, if we |
| 92 | * match the flags but dirty bit -- the caller should mark |
| 93 | * merged VMA as dirty. If dirty bit won't be excluded from |
| 94 | * comparison, we increase pressure on the memory system forcing |
| 95 | * the kernel to generate new VMAs when old one could be |
| 96 | * extended instead. |
| 97 | */ |
| 98 | if ((vma->vm_flags ^ vmg->vm_flags) & ~VM_SOFTDIRTY) |
| 99 | return false; |
| 100 | if (vma->vm_file != vmg->file) |
| 101 | return false; |
| 102 | if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_ctx: vmg->uffd_ctx)) |
| 103 | return false; |
| 104 | if (!anon_vma_name_eq(anon_name1: anon_vma_name(vma), anon_name2: vmg->anon_name)) |
| 105 | return false; |
| 106 | return true; |
| 107 | } |
| 108 | |
| 109 | static bool is_mergeable_anon_vma(struct vma_merge_struct *vmg, bool merge_next) |
| 110 | { |
| 111 | struct vm_area_struct *tgt = merge_next ? vmg->next : vmg->prev; |
| 112 | struct vm_area_struct *src = vmg->middle; /* exisitng merge case. */ |
| 113 | struct anon_vma *tgt_anon = tgt->anon_vma; |
| 114 | struct anon_vma *src_anon = vmg->anon_vma; |
| 115 | |
| 116 | /* |
| 117 | * We _can_ have !src, vmg->anon_vma via copy_vma(). In this instance we |
| 118 | * will remove the existing VMA's anon_vma's so there's no scalability |
| 119 | * concerns. |
| 120 | */ |
| 121 | VM_WARN_ON(src && src_anon != src->anon_vma); |
| 122 | |
| 123 | /* Case 1 - we will dup_anon_vma() from src into tgt. */ |
| 124 | if (!tgt_anon && src_anon) |
| 125 | return !vma_had_uncowed_parents(vma: src); |
| 126 | /* Case 2 - we will simply use tgt's anon_vma. */ |
| 127 | if (tgt_anon && !src_anon) |
| 128 | return !vma_had_uncowed_parents(vma: tgt); |
| 129 | /* Case 3 - the anon_vma's are already shared. */ |
| 130 | return src_anon == tgt_anon; |
| 131 | } |
| 132 | |
| 133 | /* |
| 134 | * init_multi_vma_prep() - Initializer for struct vma_prepare |
| 135 | * @vp: The vma_prepare struct |
| 136 | * @vma: The vma that will be altered once locked |
| 137 | * @vmg: The merge state that will be used to determine adjustment and VMA |
| 138 | * removal. |
| 139 | */ |
| 140 | static void init_multi_vma_prep(struct vma_prepare *vp, |
| 141 | struct vm_area_struct *vma, |
| 142 | struct vma_merge_struct *vmg) |
| 143 | { |
| 144 | struct vm_area_struct *adjust; |
| 145 | struct vm_area_struct **remove = &vp->remove; |
| 146 | |
| 147 | memset(s: vp, c: 0, n: sizeof(struct vma_prepare)); |
| 148 | vp->vma = vma; |
| 149 | vp->anon_vma = vma->anon_vma; |
| 150 | |
| 151 | if (vmg && vmg->__remove_middle) { |
| 152 | *remove = vmg->middle; |
| 153 | remove = &vp->remove2; |
| 154 | } |
| 155 | if (vmg && vmg->__remove_next) |
| 156 | *remove = vmg->next; |
| 157 | |
| 158 | if (vmg && vmg->__adjust_middle_start) |
| 159 | adjust = vmg->middle; |
| 160 | else if (vmg && vmg->__adjust_next_start) |
| 161 | adjust = vmg->next; |
| 162 | else |
| 163 | adjust = NULL; |
| 164 | |
| 165 | vp->adj_next = adjust; |
| 166 | if (!vp->anon_vma && adjust) |
| 167 | vp->anon_vma = adjust->anon_vma; |
| 168 | |
| 169 | VM_WARN_ON(vp->anon_vma && adjust && adjust->anon_vma && |
| 170 | vp->anon_vma != adjust->anon_vma); |
| 171 | |
| 172 | vp->file = vma->vm_file; |
| 173 | if (vp->file) |
| 174 | vp->mapping = vma->vm_file->f_mapping; |
| 175 | |
| 176 | if (vmg && vmg->skip_vma_uprobe) |
| 177 | vp->skip_vma_uprobe = true; |
| 178 | } |
| 179 | |
| 180 | /* |
| 181 | * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) |
| 182 | * in front of (at a lower virtual address and file offset than) the vma. |
| 183 | * |
| 184 | * We cannot merge two vmas if they have differently assigned (non-NULL) |
| 185 | * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. |
| 186 | * |
| 187 | * We don't check here for the merged mmap wrapping around the end of pagecache |
| 188 | * indices (16TB on ia32) because do_mmap() does not permit mmap's which |
| 189 | * wrap, nor mmaps which cover the final page at index -1UL. |
| 190 | * |
| 191 | * We assume the vma may be removed as part of the merge. |
| 192 | */ |
| 193 | static bool can_vma_merge_before(struct vma_merge_struct *vmg) |
| 194 | { |
| 195 | pgoff_t pglen = PHYS_PFN(vmg->end - vmg->start); |
| 196 | |
| 197 | if (is_mergeable_vma(vmg, /* merge_next = */ true) && |
| 198 | is_mergeable_anon_vma(vmg, /* merge_next = */ true)) { |
| 199 | if (vmg->next->vm_pgoff == vmg->pgoff + pglen) |
| 200 | return true; |
| 201 | } |
| 202 | |
| 203 | return false; |
| 204 | } |
| 205 | |
| 206 | /* |
| 207 | * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) |
| 208 | * beyond (at a higher virtual address and file offset than) the vma. |
| 209 | * |
| 210 | * We cannot merge two vmas if they have differently assigned (non-NULL) |
| 211 | * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. |
| 212 | * |
| 213 | * We assume that vma is not removed as part of the merge. |
| 214 | */ |
| 215 | static bool can_vma_merge_after(struct vma_merge_struct *vmg) |
| 216 | { |
| 217 | if (is_mergeable_vma(vmg, /* merge_next = */ false) && |
| 218 | is_mergeable_anon_vma(vmg, /* merge_next = */ false)) { |
| 219 | if (vmg->prev->vm_pgoff + vma_pages(vma: vmg->prev) == vmg->pgoff) |
| 220 | return true; |
| 221 | } |
| 222 | return false; |
| 223 | } |
| 224 | |
| 225 | static void __vma_link_file(struct vm_area_struct *vma, |
| 226 | struct address_space *mapping) |
| 227 | { |
| 228 | if (vma_is_shared_maywrite(vma)) |
| 229 | mapping_allow_writable(mapping); |
| 230 | |
| 231 | flush_dcache_mmap_lock(mapping); |
| 232 | vma_interval_tree_insert(node: vma, root: &mapping->i_mmap); |
| 233 | flush_dcache_mmap_unlock(mapping); |
| 234 | } |
| 235 | |
| 236 | /* |
| 237 | * Requires inode->i_mapping->i_mmap_rwsem |
| 238 | */ |
| 239 | static void __remove_shared_vm_struct(struct vm_area_struct *vma, |
| 240 | struct address_space *mapping) |
| 241 | { |
| 242 | if (vma_is_shared_maywrite(vma)) |
| 243 | mapping_unmap_writable(mapping); |
| 244 | |
| 245 | flush_dcache_mmap_lock(mapping); |
| 246 | vma_interval_tree_remove(node: vma, root: &mapping->i_mmap); |
| 247 | flush_dcache_mmap_unlock(mapping); |
| 248 | } |
| 249 | |
| 250 | /* |
| 251 | * vma has some anon_vma assigned, and is already inserted on that |
| 252 | * anon_vma's interval trees. |
| 253 | * |
| 254 | * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the |
| 255 | * vma must be removed from the anon_vma's interval trees using |
| 256 | * anon_vma_interval_tree_pre_update_vma(). |
| 257 | * |
| 258 | * After the update, the vma will be reinserted using |
| 259 | * anon_vma_interval_tree_post_update_vma(). |
| 260 | * |
| 261 | * The entire update must be protected by exclusive mmap_lock and by |
| 262 | * the root anon_vma's mutex. |
| 263 | */ |
| 264 | static void |
| 265 | anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma) |
| 266 | { |
| 267 | struct anon_vma_chain *avc; |
| 268 | |
| 269 | list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) |
| 270 | anon_vma_interval_tree_remove(node: avc, root: &avc->anon_vma->rb_root); |
| 271 | } |
| 272 | |
| 273 | static void |
| 274 | anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma) |
| 275 | { |
| 276 | struct anon_vma_chain *avc; |
| 277 | |
| 278 | list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) |
| 279 | anon_vma_interval_tree_insert(node: avc, root: &avc->anon_vma->rb_root); |
| 280 | } |
| 281 | |
| 282 | /* |
| 283 | * vma_prepare() - Helper function for handling locking VMAs prior to altering |
| 284 | * @vp: The initialized vma_prepare struct |
| 285 | */ |
| 286 | static void vma_prepare(struct vma_prepare *vp) |
| 287 | { |
| 288 | if (vp->file) { |
| 289 | uprobe_munmap(vma: vp->vma, start: vp->vma->vm_start, end: vp->vma->vm_end); |
| 290 | |
| 291 | if (vp->adj_next) |
| 292 | uprobe_munmap(vma: vp->adj_next, start: vp->adj_next->vm_start, |
| 293 | end: vp->adj_next->vm_end); |
| 294 | |
| 295 | i_mmap_lock_write(mapping: vp->mapping); |
| 296 | if (vp->insert && vp->insert->vm_file) { |
| 297 | /* |
| 298 | * Put into interval tree now, so instantiated pages |
| 299 | * are visible to arm/parisc __flush_dcache_page |
| 300 | * throughout; but we cannot insert into address |
| 301 | * space until vma start or end is updated. |
| 302 | */ |
| 303 | __vma_link_file(vma: vp->insert, |
| 304 | mapping: vp->insert->vm_file->f_mapping); |
| 305 | } |
| 306 | } |
| 307 | |
| 308 | if (vp->anon_vma) { |
| 309 | anon_vma_lock_write(anon_vma: vp->anon_vma); |
| 310 | anon_vma_interval_tree_pre_update_vma(vma: vp->vma); |
| 311 | if (vp->adj_next) |
| 312 | anon_vma_interval_tree_pre_update_vma(vma: vp->adj_next); |
| 313 | } |
| 314 | |
| 315 | if (vp->file) { |
| 316 | flush_dcache_mmap_lock(mapping: vp->mapping); |
| 317 | vma_interval_tree_remove(node: vp->vma, root: &vp->mapping->i_mmap); |
| 318 | if (vp->adj_next) |
| 319 | vma_interval_tree_remove(node: vp->adj_next, |
| 320 | root: &vp->mapping->i_mmap); |
| 321 | } |
| 322 | |
| 323 | } |
| 324 | |
| 325 | /* |
| 326 | * vma_complete- Helper function for handling the unlocking after altering VMAs, |
| 327 | * or for inserting a VMA. |
| 328 | * |
| 329 | * @vp: The vma_prepare struct |
| 330 | * @vmi: The vma iterator |
| 331 | * @mm: The mm_struct |
| 332 | */ |
| 333 | static void vma_complete(struct vma_prepare *vp, struct vma_iterator *vmi, |
| 334 | struct mm_struct *mm) |
| 335 | { |
| 336 | if (vp->file) { |
| 337 | if (vp->adj_next) |
| 338 | vma_interval_tree_insert(node: vp->adj_next, |
| 339 | root: &vp->mapping->i_mmap); |
| 340 | vma_interval_tree_insert(node: vp->vma, root: &vp->mapping->i_mmap); |
| 341 | flush_dcache_mmap_unlock(mapping: vp->mapping); |
| 342 | } |
| 343 | |
| 344 | if (vp->remove && vp->file) { |
| 345 | __remove_shared_vm_struct(vma: vp->remove, mapping: vp->mapping); |
| 346 | if (vp->remove2) |
| 347 | __remove_shared_vm_struct(vma: vp->remove2, mapping: vp->mapping); |
| 348 | } else if (vp->insert) { |
| 349 | /* |
| 350 | * split_vma has split insert from vma, and needs |
| 351 | * us to insert it before dropping the locks |
| 352 | * (it may either follow vma or precede it). |
| 353 | */ |
| 354 | vma_iter_store_new(vmi, vma: vp->insert); |
| 355 | mm->map_count++; |
| 356 | } |
| 357 | |
| 358 | if (vp->anon_vma) { |
| 359 | anon_vma_interval_tree_post_update_vma(vma: vp->vma); |
| 360 | if (vp->adj_next) |
| 361 | anon_vma_interval_tree_post_update_vma(vma: vp->adj_next); |
| 362 | anon_vma_unlock_write(anon_vma: vp->anon_vma); |
| 363 | } |
| 364 | |
| 365 | if (vp->file) { |
| 366 | i_mmap_unlock_write(mapping: vp->mapping); |
| 367 | |
| 368 | if (!vp->skip_vma_uprobe) { |
| 369 | uprobe_mmap(vma: vp->vma); |
| 370 | |
| 371 | if (vp->adj_next) |
| 372 | uprobe_mmap(vma: vp->adj_next); |
| 373 | } |
| 374 | } |
| 375 | |
| 376 | if (vp->remove) { |
| 377 | again: |
| 378 | vma_mark_detached(vma: vp->remove); |
| 379 | if (vp->file) { |
| 380 | uprobe_munmap(vma: vp->remove, start: vp->remove->vm_start, |
| 381 | end: vp->remove->vm_end); |
| 382 | fput(vp->file); |
| 383 | } |
| 384 | if (vp->remove->anon_vma) |
| 385 | anon_vma_merge(vma: vp->vma, next: vp->remove); |
| 386 | mm->map_count--; |
| 387 | mpol_put(vma_policy(vp->remove)); |
| 388 | if (!vp->remove2) |
| 389 | WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end); |
| 390 | vm_area_free(vma: vp->remove); |
| 391 | |
| 392 | /* |
| 393 | * In mprotect's case 6 (see comments on vma_merge), |
| 394 | * we are removing both mid and next vmas |
| 395 | */ |
| 396 | if (vp->remove2) { |
| 397 | vp->remove = vp->remove2; |
| 398 | vp->remove2 = NULL; |
| 399 | goto again; |
| 400 | } |
| 401 | } |
| 402 | if (vp->insert && vp->file) |
| 403 | uprobe_mmap(vma: vp->insert); |
| 404 | } |
| 405 | |
| 406 | /* |
| 407 | * init_vma_prep() - Initializer wrapper for vma_prepare struct |
| 408 | * @vp: The vma_prepare struct |
| 409 | * @vma: The vma that will be altered once locked |
| 410 | */ |
| 411 | static void init_vma_prep(struct vma_prepare *vp, struct vm_area_struct *vma) |
| 412 | { |
| 413 | init_multi_vma_prep(vp, vma, NULL); |
| 414 | } |
| 415 | |
| 416 | /* |
| 417 | * Can the proposed VMA be merged with the left (previous) VMA taking into |
| 418 | * account the start position of the proposed range. |
| 419 | */ |
| 420 | static bool can_vma_merge_left(struct vma_merge_struct *vmg) |
| 421 | |
| 422 | { |
| 423 | return vmg->prev && vmg->prev->vm_end == vmg->start && |
| 424 | can_vma_merge_after(vmg); |
| 425 | } |
| 426 | |
| 427 | /* |
| 428 | * Can the proposed VMA be merged with the right (next) VMA taking into |
| 429 | * account the end position of the proposed range. |
| 430 | * |
| 431 | * In addition, if we can merge with the left VMA, ensure that left and right |
| 432 | * anon_vma's are also compatible. |
| 433 | */ |
| 434 | static bool can_vma_merge_right(struct vma_merge_struct *vmg, |
| 435 | bool can_merge_left) |
| 436 | { |
| 437 | struct vm_area_struct *next = vmg->next; |
| 438 | struct vm_area_struct *prev; |
| 439 | |
| 440 | if (!next || vmg->end != next->vm_start || !can_vma_merge_before(vmg)) |
| 441 | return false; |
| 442 | |
| 443 | if (!can_merge_left) |
| 444 | return true; |
| 445 | |
| 446 | /* |
| 447 | * If we can merge with prev (left) and next (right), indicating that |
| 448 | * each VMA's anon_vma is compatible with the proposed anon_vma, this |
| 449 | * does not mean prev and next are compatible with EACH OTHER. |
| 450 | * |
| 451 | * We therefore check this in addition to mergeability to either side. |
| 452 | */ |
| 453 | prev = vmg->prev; |
| 454 | return !prev->anon_vma || !next->anon_vma || |
| 455 | prev->anon_vma == next->anon_vma; |
| 456 | } |
| 457 | |
| 458 | /* |
| 459 | * Close a vm structure and free it. |
| 460 | */ |
| 461 | void remove_vma(struct vm_area_struct *vma) |
| 462 | { |
| 463 | might_sleep(); |
| 464 | vma_close(vma); |
| 465 | if (vma->vm_file) |
| 466 | fput(vma->vm_file); |
| 467 | mpol_put(vma_policy(vma)); |
| 468 | vm_area_free(vma); |
| 469 | } |
| 470 | |
| 471 | /* |
| 472 | * Get rid of page table information in the indicated region. |
| 473 | * |
| 474 | * Called with the mm semaphore held. |
| 475 | */ |
| 476 | void unmap_region(struct ma_state *mas, struct vm_area_struct *vma, |
| 477 | struct vm_area_struct *prev, struct vm_area_struct *next) |
| 478 | { |
| 479 | struct mm_struct *mm = vma->vm_mm; |
| 480 | struct mmu_gather tlb; |
| 481 | |
| 482 | tlb_gather_mmu(tlb: &tlb, mm); |
| 483 | update_hiwater_rss(mm); |
| 484 | unmap_vmas(tlb: &tlb, mas, start_vma: vma, start: vma->vm_start, end: vma->vm_end, tree_end: vma->vm_end, |
| 485 | /* mm_wr_locked = */ true); |
| 486 | mas_set(mas, index: vma->vm_end); |
| 487 | free_pgtables(tlb: &tlb, mas, start_vma: vma, floor: prev ? prev->vm_end : FIRST_USER_ADDRESS, |
| 488 | ceiling: next ? next->vm_start : USER_PGTABLES_CEILING, |
| 489 | /* mm_wr_locked = */ true); |
| 490 | tlb_finish_mmu(tlb: &tlb); |
| 491 | } |
| 492 | |
| 493 | /* |
| 494 | * __split_vma() bypasses sysctl_max_map_count checking. We use this where it |
| 495 | * has already been checked or doesn't make sense to fail. |
| 496 | * VMA Iterator will point to the original VMA. |
| 497 | */ |
| 498 | static __must_check int |
| 499 | __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma, |
| 500 | unsigned long addr, int new_below) |
| 501 | { |
| 502 | struct vma_prepare vp; |
| 503 | struct vm_area_struct *new; |
| 504 | int err; |
| 505 | |
| 506 | WARN_ON(vma->vm_start >= addr); |
| 507 | WARN_ON(vma->vm_end <= addr); |
| 508 | |
| 509 | if (vma->vm_ops && vma->vm_ops->may_split) { |
| 510 | err = vma->vm_ops->may_split(vma, addr); |
| 511 | if (err) |
| 512 | return err; |
| 513 | } |
| 514 | |
| 515 | new = vm_area_dup(orig: vma); |
| 516 | if (!new) |
| 517 | return -ENOMEM; |
| 518 | |
| 519 | if (new_below) { |
| 520 | new->vm_end = addr; |
| 521 | } else { |
| 522 | new->vm_start = addr; |
| 523 | new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); |
| 524 | } |
| 525 | |
| 526 | err = -ENOMEM; |
| 527 | vma_iter_config(vmi, index: new->vm_start, last: new->vm_end); |
| 528 | if (vma_iter_prealloc(vmi, vma: new)) |
| 529 | goto out_free_vma; |
| 530 | |
| 531 | err = vma_dup_policy(src: vma, dst: new); |
| 532 | if (err) |
| 533 | goto out_free_vmi; |
| 534 | |
| 535 | err = anon_vma_clone(new, vma); |
| 536 | if (err) |
| 537 | goto out_free_mpol; |
| 538 | |
| 539 | if (new->vm_file) |
| 540 | get_file(f: new->vm_file); |
| 541 | |
| 542 | if (new->vm_ops && new->vm_ops->open) |
| 543 | new->vm_ops->open(new); |
| 544 | |
| 545 | vma_start_write(vma); |
| 546 | vma_start_write(vma: new); |
| 547 | |
| 548 | init_vma_prep(vp: &vp, vma); |
| 549 | vp.insert = new; |
| 550 | vma_prepare(vp: &vp); |
| 551 | |
| 552 | /* |
| 553 | * Get rid of huge pages and shared page tables straddling the split |
| 554 | * boundary. |
| 555 | */ |
| 556 | vma_adjust_trans_huge(vma, start: vma->vm_start, end: addr, NULL); |
| 557 | if (is_vm_hugetlb_page(vma)) |
| 558 | hugetlb_split(vma, addr); |
| 559 | |
| 560 | if (new_below) { |
| 561 | vma->vm_start = addr; |
| 562 | vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT; |
| 563 | } else { |
| 564 | vma->vm_end = addr; |
| 565 | } |
| 566 | |
| 567 | /* vma_complete stores the new vma */ |
| 568 | vma_complete(vp: &vp, vmi, mm: vma->vm_mm); |
| 569 | validate_mm(vma->vm_mm); |
| 570 | |
| 571 | /* Success. */ |
| 572 | if (new_below) |
| 573 | vma_next(vmi); |
| 574 | else |
| 575 | vma_prev(vmi); |
| 576 | |
| 577 | return 0; |
| 578 | |
| 579 | out_free_mpol: |
| 580 | mpol_put(vma_policy(new)); |
| 581 | out_free_vmi: |
| 582 | vma_iter_free(vmi); |
| 583 | out_free_vma: |
| 584 | vm_area_free(vma: new); |
| 585 | return err; |
| 586 | } |
| 587 | |
| 588 | /* |
| 589 | * Split a vma into two pieces at address 'addr', a new vma is allocated |
| 590 | * either for the first part or the tail. |
| 591 | */ |
| 592 | static int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma, |
| 593 | unsigned long addr, int new_below) |
| 594 | { |
| 595 | if (vma->vm_mm->map_count >= sysctl_max_map_count) |
| 596 | return -ENOMEM; |
| 597 | |
| 598 | return __split_vma(vmi, vma, addr, new_below); |
| 599 | } |
| 600 | |
| 601 | /* |
| 602 | * dup_anon_vma() - Helper function to duplicate anon_vma on VMA merge in the |
| 603 | * instance that the destination VMA has no anon_vma but the source does. |
| 604 | * |
| 605 | * @dst: The destination VMA |
| 606 | * @src: The source VMA |
| 607 | * @dup: Pointer to the destination VMA when successful. |
| 608 | * |
| 609 | * Returns: 0 on success. |
| 610 | */ |
| 611 | static int dup_anon_vma(struct vm_area_struct *dst, |
| 612 | struct vm_area_struct *src, struct vm_area_struct **dup) |
| 613 | { |
| 614 | /* |
| 615 | * There are three cases to consider for correctly propagating |
| 616 | * anon_vma's on merge. |
| 617 | * |
| 618 | * The first is trivial - neither VMA has anon_vma, we need not do |
| 619 | * anything. |
| 620 | * |
| 621 | * The second where both have anon_vma is also a no-op, as they must |
| 622 | * then be the same, so there is simply nothing to copy. |
| 623 | * |
| 624 | * Here we cover the third - if the destination VMA has no anon_vma, |
| 625 | * that is it is unfaulted, we need to ensure that the newly merged |
| 626 | * range is referenced by the anon_vma's of the source. |
| 627 | */ |
| 628 | if (src->anon_vma && !dst->anon_vma) { |
| 629 | int ret; |
| 630 | |
| 631 | vma_assert_write_locked(vma: dst); |
| 632 | dst->anon_vma = src->anon_vma; |
| 633 | ret = anon_vma_clone(dst, src); |
| 634 | if (ret) |
| 635 | return ret; |
| 636 | |
| 637 | *dup = dst; |
| 638 | } |
| 639 | |
| 640 | return 0; |
| 641 | } |
| 642 | |
| 643 | #ifdef CONFIG_DEBUG_VM_MAPLE_TREE |
| 644 | void validate_mm(struct mm_struct *mm) |
| 645 | { |
| 646 | int bug = 0; |
| 647 | int i = 0; |
| 648 | struct vm_area_struct *vma; |
| 649 | VMA_ITERATOR(vmi, mm, 0); |
| 650 | |
| 651 | mt_validate(&mm->mm_mt); |
| 652 | for_each_vma(vmi, vma) { |
| 653 | #ifdef CONFIG_DEBUG_VM_RB |
| 654 | struct anon_vma *anon_vma = vma->anon_vma; |
| 655 | struct anon_vma_chain *avc; |
| 656 | #endif |
| 657 | unsigned long vmi_start, vmi_end; |
| 658 | bool warn = 0; |
| 659 | |
| 660 | vmi_start = vma_iter_addr(&vmi); |
| 661 | vmi_end = vma_iter_end(&vmi); |
| 662 | if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm)) |
| 663 | warn = 1; |
| 664 | |
| 665 | if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm)) |
| 666 | warn = 1; |
| 667 | |
| 668 | if (warn) { |
| 669 | pr_emerg("issue in %s\n" , current->comm); |
| 670 | dump_stack(); |
| 671 | dump_vma(vma); |
| 672 | pr_emerg("tree range: %px start %lx end %lx\n" , vma, |
| 673 | vmi_start, vmi_end - 1); |
| 674 | vma_iter_dump_tree(&vmi); |
| 675 | } |
| 676 | |
| 677 | #ifdef CONFIG_DEBUG_VM_RB |
| 678 | if (anon_vma) { |
| 679 | anon_vma_lock_read(anon_vma); |
| 680 | list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) |
| 681 | anon_vma_interval_tree_verify(avc); |
| 682 | anon_vma_unlock_read(anon_vma); |
| 683 | } |
| 684 | #endif |
| 685 | /* Check for a infinite loop */ |
| 686 | if (++i > mm->map_count + 10) { |
| 687 | i = -1; |
| 688 | break; |
| 689 | } |
| 690 | } |
| 691 | if (i != mm->map_count) { |
| 692 | pr_emerg("map_count %d vma iterator %d\n" , mm->map_count, i); |
| 693 | bug = 1; |
| 694 | } |
| 695 | VM_BUG_ON_MM(bug, mm); |
| 696 | } |
| 697 | #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */ |
| 698 | |
| 699 | /* |
| 700 | * Based on the vmg flag indicating whether we need to adjust the vm_start field |
| 701 | * for the middle or next VMA, we calculate what the range of the newly adjusted |
| 702 | * VMA ought to be, and set the VMA's range accordingly. |
| 703 | */ |
| 704 | static void vmg_adjust_set_range(struct vma_merge_struct *vmg) |
| 705 | { |
| 706 | struct vm_area_struct *adjust; |
| 707 | pgoff_t pgoff; |
| 708 | |
| 709 | if (vmg->__adjust_middle_start) { |
| 710 | adjust = vmg->middle; |
| 711 | pgoff = adjust->vm_pgoff + PHYS_PFN(vmg->end - adjust->vm_start); |
| 712 | } else if (vmg->__adjust_next_start) { |
| 713 | adjust = vmg->next; |
| 714 | pgoff = adjust->vm_pgoff - PHYS_PFN(adjust->vm_start - vmg->end); |
| 715 | } else { |
| 716 | return; |
| 717 | } |
| 718 | |
| 719 | vma_set_range(vma: adjust, start: vmg->end, end: adjust->vm_end, pgoff); |
| 720 | } |
| 721 | |
| 722 | /* |
| 723 | * Actually perform the VMA merge operation. |
| 724 | * |
| 725 | * IMPORTANT: We guarantee that, should vmg->give_up_on_oom is set, to not |
| 726 | * modify any VMAs or cause inconsistent state should an OOM condition arise. |
| 727 | * |
| 728 | * Returns 0 on success, or an error value on failure. |
| 729 | */ |
| 730 | static int commit_merge(struct vma_merge_struct *vmg) |
| 731 | { |
| 732 | struct vm_area_struct *vma; |
| 733 | struct vma_prepare vp; |
| 734 | |
| 735 | if (vmg->__adjust_next_start) { |
| 736 | /* We manipulate middle and adjust next, which is the target. */ |
| 737 | vma = vmg->middle; |
| 738 | vma_iter_config(vmi: vmg->vmi, index: vmg->end, last: vmg->next->vm_end); |
| 739 | } else { |
| 740 | vma = vmg->target; |
| 741 | /* Note: vma iterator must be pointing to 'start'. */ |
| 742 | vma_iter_config(vmi: vmg->vmi, index: vmg->start, last: vmg->end); |
| 743 | } |
| 744 | |
| 745 | init_multi_vma_prep(vp: &vp, vma, vmg); |
| 746 | |
| 747 | /* |
| 748 | * If vmg->give_up_on_oom is set, we're safe, because we don't actually |
| 749 | * manipulate any VMAs until we succeed at preallocation. |
| 750 | * |
| 751 | * Past this point, we will not return an error. |
| 752 | */ |
| 753 | if (vma_iter_prealloc(vmi: vmg->vmi, vma)) |
| 754 | return -ENOMEM; |
| 755 | |
| 756 | vma_prepare(vp: &vp); |
| 757 | /* |
| 758 | * THP pages may need to do additional splits if we increase |
| 759 | * middle->vm_start. |
| 760 | */ |
| 761 | vma_adjust_trans_huge(vma, start: vmg->start, end: vmg->end, |
| 762 | next: vmg->__adjust_middle_start ? vmg->middle : NULL); |
| 763 | vma_set_range(vma, start: vmg->start, end: vmg->end, pgoff: vmg->pgoff); |
| 764 | vmg_adjust_set_range(vmg); |
| 765 | vma_iter_store_overwrite(vmi: vmg->vmi, vma: vmg->target); |
| 766 | |
| 767 | vma_complete(vp: &vp, vmi: vmg->vmi, mm: vma->vm_mm); |
| 768 | |
| 769 | return 0; |
| 770 | } |
| 771 | |
| 772 | /* We can only remove VMAs when merging if they do not have a close hook. */ |
| 773 | static bool can_merge_remove_vma(struct vm_area_struct *vma) |
| 774 | { |
| 775 | return !vma->vm_ops || !vma->vm_ops->close; |
| 776 | } |
| 777 | |
| 778 | /* |
| 779 | * vma_merge_existing_range - Attempt to merge VMAs based on a VMA having its |
| 780 | * attributes modified. |
| 781 | * |
| 782 | * @vmg: Describes the modifications being made to a VMA and associated |
| 783 | * metadata. |
| 784 | * |
| 785 | * When the attributes of a range within a VMA change, then it might be possible |
| 786 | * for immediately adjacent VMAs to be merged into that VMA due to having |
| 787 | * identical properties. |
| 788 | * |
| 789 | * This function checks for the existence of any such mergeable VMAs and updates |
| 790 | * the maple tree describing the @vmg->middle->vm_mm address space to account |
| 791 | * for this, as well as any VMAs shrunk/expanded/deleted as a result of this |
| 792 | * merge. |
| 793 | * |
| 794 | * As part of this operation, if a merge occurs, the @vmg object will have its |
| 795 | * vma, start, end, and pgoff fields modified to execute the merge. Subsequent |
| 796 | * calls to this function should reset these fields. |
| 797 | * |
| 798 | * Returns: The merged VMA if merge succeeds, or NULL otherwise. |
| 799 | * |
| 800 | * ASSUMPTIONS: |
| 801 | * - The caller must assign the VMA to be modifed to @vmg->middle. |
| 802 | * - The caller must have set @vmg->prev to the previous VMA, if there is one. |
| 803 | * - The caller must not set @vmg->next, as we determine this. |
| 804 | * - The caller must hold a WRITE lock on the mm_struct->mmap_lock. |
| 805 | * - vmi must be positioned within [@vmg->middle->vm_start, @vmg->middle->vm_end). |
| 806 | */ |
| 807 | static __must_check struct vm_area_struct *vma_merge_existing_range( |
| 808 | struct vma_merge_struct *vmg) |
| 809 | { |
| 810 | struct vm_area_struct *middle = vmg->middle; |
| 811 | struct vm_area_struct *prev = vmg->prev; |
| 812 | struct vm_area_struct *next; |
| 813 | struct vm_area_struct *anon_dup = NULL; |
| 814 | unsigned long start = vmg->start; |
| 815 | unsigned long end = vmg->end; |
| 816 | bool left_side = middle && start == middle->vm_start; |
| 817 | bool right_side = middle && end == middle->vm_end; |
| 818 | int err = 0; |
| 819 | bool merge_left, merge_right, merge_both; |
| 820 | |
| 821 | mmap_assert_write_locked(mm: vmg->mm); |
| 822 | VM_WARN_ON_VMG(!middle, vmg); /* We are modifying a VMA, so caller must specify. */ |
| 823 | VM_WARN_ON_VMG(vmg->next, vmg); /* We set this. */ |
| 824 | VM_WARN_ON_VMG(prev && start <= prev->vm_start, vmg); |
| 825 | VM_WARN_ON_VMG(start >= end, vmg); |
| 826 | |
| 827 | /* |
| 828 | * If middle == prev, then we are offset into a VMA. Otherwise, if we are |
| 829 | * not, we must span a portion of the VMA. |
| 830 | */ |
| 831 | VM_WARN_ON_VMG(middle && |
| 832 | ((middle != prev && vmg->start != middle->vm_start) || |
| 833 | vmg->end > middle->vm_end), vmg); |
| 834 | /* The vmi must be positioned within vmg->middle. */ |
| 835 | VM_WARN_ON_VMG(middle && |
| 836 | !(vma_iter_addr(vmg->vmi) >= middle->vm_start && |
| 837 | vma_iter_addr(vmg->vmi) < middle->vm_end), vmg); |
| 838 | |
| 839 | vmg->state = VMA_MERGE_NOMERGE; |
| 840 | |
| 841 | /* |
| 842 | * If a special mapping or if the range being modified is neither at the |
| 843 | * furthermost left or right side of the VMA, then we have no chance of |
| 844 | * merging and should abort. |
| 845 | */ |
| 846 | if (vmg->vm_flags & VM_SPECIAL || (!left_side && !right_side)) |
| 847 | return NULL; |
| 848 | |
| 849 | if (left_side) |
| 850 | merge_left = can_vma_merge_left(vmg); |
| 851 | else |
| 852 | merge_left = false; |
| 853 | |
| 854 | if (right_side) { |
| 855 | next = vmg->next = vma_iter_next_range(vmi: vmg->vmi); |
| 856 | vma_iter_prev_range(vmi: vmg->vmi); |
| 857 | |
| 858 | merge_right = can_vma_merge_right(vmg, can_merge_left: merge_left); |
| 859 | } else { |
| 860 | merge_right = false; |
| 861 | next = NULL; |
| 862 | } |
| 863 | |
| 864 | if (merge_left) /* If merging prev, position iterator there. */ |
| 865 | vma_prev(vmi: vmg->vmi); |
| 866 | else if (!merge_right) /* If we have nothing to merge, abort. */ |
| 867 | return NULL; |
| 868 | |
| 869 | merge_both = merge_left && merge_right; |
| 870 | /* If we span the entire VMA, a merge implies it will be deleted. */ |
| 871 | vmg->__remove_middle = left_side && right_side; |
| 872 | |
| 873 | /* |
| 874 | * If we need to remove middle in its entirety but are unable to do so, |
| 875 | * we have no sensible recourse but to abort the merge. |
| 876 | */ |
| 877 | if (vmg->__remove_middle && !can_merge_remove_vma(vma: middle)) |
| 878 | return NULL; |
| 879 | |
| 880 | /* |
| 881 | * If we merge both VMAs, then next is also deleted. This implies |
| 882 | * merge_will_delete_vma also. |
| 883 | */ |
| 884 | vmg->__remove_next = merge_both; |
| 885 | |
| 886 | /* |
| 887 | * If we cannot delete next, then we can reduce the operation to merging |
| 888 | * prev and middle (thereby deleting middle). |
| 889 | */ |
| 890 | if (vmg->__remove_next && !can_merge_remove_vma(vma: next)) { |
| 891 | vmg->__remove_next = false; |
| 892 | merge_right = false; |
| 893 | merge_both = false; |
| 894 | } |
| 895 | |
| 896 | /* No matter what happens, we will be adjusting middle. */ |
| 897 | vma_start_write(vma: middle); |
| 898 | |
| 899 | if (merge_right) { |
| 900 | vma_start_write(vma: next); |
| 901 | vmg->target = next; |
| 902 | } |
| 903 | |
| 904 | if (merge_left) { |
| 905 | vma_start_write(vma: prev); |
| 906 | vmg->target = prev; |
| 907 | } |
| 908 | |
| 909 | if (merge_both) { |
| 910 | /* |
| 911 | * |<-------------------->| |
| 912 | * |-------********-------| |
| 913 | * prev middle next |
| 914 | * extend delete delete |
| 915 | */ |
| 916 | |
| 917 | vmg->start = prev->vm_start; |
| 918 | vmg->end = next->vm_end; |
| 919 | vmg->pgoff = prev->vm_pgoff; |
| 920 | |
| 921 | /* |
| 922 | * We already ensured anon_vma compatibility above, so now it's |
| 923 | * simply a case of, if prev has no anon_vma object, which of |
| 924 | * next or middle contains the anon_vma we must duplicate. |
| 925 | */ |
| 926 | err = dup_anon_vma(dst: prev, src: next->anon_vma ? next : middle, |
| 927 | dup: &anon_dup); |
| 928 | } else if (merge_left) { |
| 929 | /* |
| 930 | * |<------------>| OR |
| 931 | * |<----------------->| |
| 932 | * |-------************* |
| 933 | * prev middle |
| 934 | * extend shrink/delete |
| 935 | */ |
| 936 | |
| 937 | vmg->start = prev->vm_start; |
| 938 | vmg->pgoff = prev->vm_pgoff; |
| 939 | |
| 940 | if (!vmg->__remove_middle) |
| 941 | vmg->__adjust_middle_start = true; |
| 942 | |
| 943 | err = dup_anon_vma(dst: prev, src: middle, dup: &anon_dup); |
| 944 | } else { /* merge_right */ |
| 945 | /* |
| 946 | * |<------------->| OR |
| 947 | * |<----------------->| |
| 948 | * *************-------| |
| 949 | * middle next |
| 950 | * shrink/delete extend |
| 951 | */ |
| 952 | |
| 953 | pgoff_t pglen = PHYS_PFN(vmg->end - vmg->start); |
| 954 | |
| 955 | VM_WARN_ON_VMG(!merge_right, vmg); |
| 956 | /* If we are offset into a VMA, then prev must be middle. */ |
| 957 | VM_WARN_ON_VMG(vmg->start > middle->vm_start && prev && middle != prev, vmg); |
| 958 | |
| 959 | if (vmg->__remove_middle) { |
| 960 | vmg->end = next->vm_end; |
| 961 | vmg->pgoff = next->vm_pgoff - pglen; |
| 962 | } else { |
| 963 | /* We shrink middle and expand next. */ |
| 964 | vmg->__adjust_next_start = true; |
| 965 | vmg->start = middle->vm_start; |
| 966 | vmg->end = start; |
| 967 | vmg->pgoff = middle->vm_pgoff; |
| 968 | } |
| 969 | |
| 970 | err = dup_anon_vma(dst: next, src: middle, dup: &anon_dup); |
| 971 | } |
| 972 | |
| 973 | if (err || commit_merge(vmg)) |
| 974 | goto abort; |
| 975 | |
| 976 | khugepaged_enter_vma(vma: vmg->target, vm_flags: vmg->vm_flags); |
| 977 | vmg->state = VMA_MERGE_SUCCESS; |
| 978 | return vmg->target; |
| 979 | |
| 980 | abort: |
| 981 | vma_iter_set(vmi: vmg->vmi, addr: start); |
| 982 | vma_iter_load(vmi: vmg->vmi); |
| 983 | |
| 984 | if (anon_dup) |
| 985 | unlink_anon_vmas(anon_dup); |
| 986 | |
| 987 | /* |
| 988 | * This means we have failed to clone anon_vma's correctly, but no |
| 989 | * actual changes to VMAs have occurred, so no harm no foul - if the |
| 990 | * user doesn't want this reported and instead just wants to give up on |
| 991 | * the merge, allow it. |
| 992 | */ |
| 993 | if (!vmg->give_up_on_oom) |
| 994 | vmg->state = VMA_MERGE_ERROR_NOMEM; |
| 995 | return NULL; |
| 996 | } |
| 997 | |
| 998 | /* |
| 999 | * vma_merge_new_range - Attempt to merge a new VMA into address space |
| 1000 | * |
| 1001 | * @vmg: Describes the VMA we are adding, in the range @vmg->start to @vmg->end |
| 1002 | * (exclusive), which we try to merge with any adjacent VMAs if possible. |
| 1003 | * |
| 1004 | * We are about to add a VMA to the address space starting at @vmg->start and |
| 1005 | * ending at @vmg->end. There are three different possible scenarios: |
| 1006 | * |
| 1007 | * 1. There is a VMA with identical properties immediately adjacent to the |
| 1008 | * proposed new VMA [@vmg->start, @vmg->end) either before or after it - |
| 1009 | * EXPAND that VMA: |
| 1010 | * |
| 1011 | * Proposed: |-----| or |-----| |
| 1012 | * Existing: |----| |----| |
| 1013 | * |
| 1014 | * 2. There are VMAs with identical properties immediately adjacent to the |
| 1015 | * proposed new VMA [@vmg->start, @vmg->end) both before AND after it - |
| 1016 | * EXPAND the former and REMOVE the latter: |
| 1017 | * |
| 1018 | * Proposed: |-----| |
| 1019 | * Existing: |----| |----| |
| 1020 | * |
| 1021 | * 3. There are no VMAs immediately adjacent to the proposed new VMA or those |
| 1022 | * VMAs do not have identical attributes - NO MERGE POSSIBLE. |
| 1023 | * |
| 1024 | * In instances where we can merge, this function returns the expanded VMA which |
| 1025 | * will have its range adjusted accordingly and the underlying maple tree also |
| 1026 | * adjusted. |
| 1027 | * |
| 1028 | * Returns: In instances where no merge was possible, NULL. Otherwise, a pointer |
| 1029 | * to the VMA we expanded. |
| 1030 | * |
| 1031 | * This function adjusts @vmg to provide @vmg->next if not already specified, |
| 1032 | * and adjusts [@vmg->start, @vmg->end) to span the expanded range. |
| 1033 | * |
| 1034 | * ASSUMPTIONS: |
| 1035 | * - The caller must hold a WRITE lock on the mm_struct->mmap_lock. |
| 1036 | * - The caller must have determined that [@vmg->start, @vmg->end) is empty, |
| 1037 | other than VMAs that will be unmapped should the operation succeed. |
| 1038 | * - The caller must have specified the previous vma in @vmg->prev. |
| 1039 | * - The caller must have specified the next vma in @vmg->next. |
| 1040 | * - The caller must have positioned the vmi at or before the gap. |
| 1041 | */ |
| 1042 | struct vm_area_struct *vma_merge_new_range(struct vma_merge_struct *vmg) |
| 1043 | { |
| 1044 | struct vm_area_struct *prev = vmg->prev; |
| 1045 | struct vm_area_struct *next = vmg->next; |
| 1046 | unsigned long end = vmg->end; |
| 1047 | bool can_merge_left, can_merge_right; |
| 1048 | |
| 1049 | mmap_assert_write_locked(mm: vmg->mm); |
| 1050 | VM_WARN_ON_VMG(vmg->middle, vmg); |
| 1051 | VM_WARN_ON_VMG(vmg->target, vmg); |
| 1052 | /* vmi must point at or before the gap. */ |
| 1053 | VM_WARN_ON_VMG(vma_iter_addr(vmg->vmi) > end, vmg); |
| 1054 | |
| 1055 | vmg->state = VMA_MERGE_NOMERGE; |
| 1056 | |
| 1057 | /* Special VMAs are unmergeable, also if no prev/next. */ |
| 1058 | if ((vmg->vm_flags & VM_SPECIAL) || (!prev && !next)) |
| 1059 | return NULL; |
| 1060 | |
| 1061 | can_merge_left = can_vma_merge_left(vmg); |
| 1062 | can_merge_right = !vmg->just_expand && can_vma_merge_right(vmg, can_merge_left); |
| 1063 | |
| 1064 | /* If we can merge with the next VMA, adjust vmg accordingly. */ |
| 1065 | if (can_merge_right) { |
| 1066 | vmg->end = next->vm_end; |
| 1067 | vmg->target = next; |
| 1068 | } |
| 1069 | |
| 1070 | /* If we can merge with the previous VMA, adjust vmg accordingly. */ |
| 1071 | if (can_merge_left) { |
| 1072 | vmg->start = prev->vm_start; |
| 1073 | vmg->target = prev; |
| 1074 | vmg->pgoff = prev->vm_pgoff; |
| 1075 | |
| 1076 | /* |
| 1077 | * If this merge would result in removal of the next VMA but we |
| 1078 | * are not permitted to do so, reduce the operation to merging |
| 1079 | * prev and vma. |
| 1080 | */ |
| 1081 | if (can_merge_right && !can_merge_remove_vma(vma: next)) |
| 1082 | vmg->end = end; |
| 1083 | |
| 1084 | /* In expand-only case we are already positioned at prev. */ |
| 1085 | if (!vmg->just_expand) { |
| 1086 | /* Equivalent to going to the previous range. */ |
| 1087 | vma_prev(vmi: vmg->vmi); |
| 1088 | } |
| 1089 | } |
| 1090 | |
| 1091 | /* |
| 1092 | * Now try to expand adjacent VMA(s). This takes care of removing the |
| 1093 | * following VMA if we have VMAs on both sides. |
| 1094 | */ |
| 1095 | if (vmg->target && !vma_expand(vmg)) { |
| 1096 | khugepaged_enter_vma(vma: vmg->target, vm_flags: vmg->vm_flags); |
| 1097 | vmg->state = VMA_MERGE_SUCCESS; |
| 1098 | return vmg->target; |
| 1099 | } |
| 1100 | |
| 1101 | return NULL; |
| 1102 | } |
| 1103 | |
| 1104 | /* |
| 1105 | * vma_expand - Expand an existing VMA |
| 1106 | * |
| 1107 | * @vmg: Describes a VMA expansion operation. |
| 1108 | * |
| 1109 | * Expand @vma to vmg->start and vmg->end. Can expand off the start and end. |
| 1110 | * Will expand over vmg->next if it's different from vmg->target and vmg->end == |
| 1111 | * vmg->next->vm_end. Checking if the vmg->target can expand and merge with |
| 1112 | * vmg->next needs to be handled by the caller. |
| 1113 | * |
| 1114 | * Returns: 0 on success. |
| 1115 | * |
| 1116 | * ASSUMPTIONS: |
| 1117 | * - The caller must hold a WRITE lock on the mm_struct->mmap_lock. |
| 1118 | * - The caller must have set @vmg->target and @vmg->next. |
| 1119 | */ |
| 1120 | int vma_expand(struct vma_merge_struct *vmg) |
| 1121 | { |
| 1122 | struct vm_area_struct *anon_dup = NULL; |
| 1123 | bool remove_next = false; |
| 1124 | struct vm_area_struct *target = vmg->target; |
| 1125 | struct vm_area_struct *next = vmg->next; |
| 1126 | |
| 1127 | VM_WARN_ON_VMG(!target, vmg); |
| 1128 | |
| 1129 | mmap_assert_write_locked(mm: vmg->mm); |
| 1130 | |
| 1131 | vma_start_write(vma: target); |
| 1132 | if (next && (target != next) && (vmg->end == next->vm_end)) { |
| 1133 | int ret; |
| 1134 | |
| 1135 | remove_next = true; |
| 1136 | /* This should already have been checked by this point. */ |
| 1137 | VM_WARN_ON_VMG(!can_merge_remove_vma(next), vmg); |
| 1138 | vma_start_write(vma: next); |
| 1139 | /* |
| 1140 | * In this case we don't report OOM, so vmg->give_up_on_mm is |
| 1141 | * safe. |
| 1142 | */ |
| 1143 | ret = dup_anon_vma(dst: target, src: next, dup: &anon_dup); |
| 1144 | if (ret) |
| 1145 | return ret; |
| 1146 | } |
| 1147 | |
| 1148 | /* Not merging but overwriting any part of next is not handled. */ |
| 1149 | VM_WARN_ON_VMG(next && !remove_next && |
| 1150 | next != target && vmg->end > next->vm_start, vmg); |
| 1151 | /* Only handles expanding */ |
| 1152 | VM_WARN_ON_VMG(target->vm_start < vmg->start || |
| 1153 | target->vm_end > vmg->end, vmg); |
| 1154 | |
| 1155 | if (remove_next) |
| 1156 | vmg->__remove_next = true; |
| 1157 | |
| 1158 | if (commit_merge(vmg)) |
| 1159 | goto nomem; |
| 1160 | |
| 1161 | return 0; |
| 1162 | |
| 1163 | nomem: |
| 1164 | if (anon_dup) |
| 1165 | unlink_anon_vmas(anon_dup); |
| 1166 | /* |
| 1167 | * If the user requests that we just give upon OOM, we are safe to do so |
| 1168 | * here, as commit merge provides this contract to us. Nothing has been |
| 1169 | * changed - no harm no foul, just don't report it. |
| 1170 | */ |
| 1171 | if (!vmg->give_up_on_oom) |
| 1172 | vmg->state = VMA_MERGE_ERROR_NOMEM; |
| 1173 | return -ENOMEM; |
| 1174 | } |
| 1175 | |
| 1176 | /* |
| 1177 | * vma_shrink() - Reduce an existing VMAs memory area |
| 1178 | * @vmi: The vma iterator |
| 1179 | * @vma: The VMA to modify |
| 1180 | * @start: The new start |
| 1181 | * @end: The new end |
| 1182 | * |
| 1183 | * Returns: 0 on success, -ENOMEM otherwise |
| 1184 | */ |
| 1185 | int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma, |
| 1186 | unsigned long start, unsigned long end, pgoff_t pgoff) |
| 1187 | { |
| 1188 | struct vma_prepare vp; |
| 1189 | |
| 1190 | WARN_ON((vma->vm_start != start) && (vma->vm_end != end)); |
| 1191 | |
| 1192 | if (vma->vm_start < start) |
| 1193 | vma_iter_config(vmi, index: vma->vm_start, last: start); |
| 1194 | else |
| 1195 | vma_iter_config(vmi, index: end, last: vma->vm_end); |
| 1196 | |
| 1197 | if (vma_iter_prealloc(vmi, NULL)) |
| 1198 | return -ENOMEM; |
| 1199 | |
| 1200 | vma_start_write(vma); |
| 1201 | |
| 1202 | init_vma_prep(vp: &vp, vma); |
| 1203 | vma_prepare(vp: &vp); |
| 1204 | vma_adjust_trans_huge(vma, start, end, NULL); |
| 1205 | |
| 1206 | vma_iter_clear(vmi); |
| 1207 | vma_set_range(vma, start, end, pgoff); |
| 1208 | vma_complete(vp: &vp, vmi, mm: vma->vm_mm); |
| 1209 | validate_mm(vma->vm_mm); |
| 1210 | return 0; |
| 1211 | } |
| 1212 | |
| 1213 | static inline void vms_clear_ptes(struct vma_munmap_struct *vms, |
| 1214 | struct ma_state *mas_detach, bool mm_wr_locked) |
| 1215 | { |
| 1216 | struct mmu_gather tlb; |
| 1217 | |
| 1218 | if (!vms->clear_ptes) /* Nothing to do */ |
| 1219 | return; |
| 1220 | |
| 1221 | /* |
| 1222 | * We can free page tables without write-locking mmap_lock because VMAs |
| 1223 | * were isolated before we downgraded mmap_lock. |
| 1224 | */ |
| 1225 | mas_set(mas: mas_detach, index: 1); |
| 1226 | tlb_gather_mmu(tlb: &tlb, mm: vms->vma->vm_mm); |
| 1227 | update_hiwater_rss(mm: vms->vma->vm_mm); |
| 1228 | unmap_vmas(tlb: &tlb, mas: mas_detach, start_vma: vms->vma, start: vms->start, end: vms->end, |
| 1229 | tree_end: vms->vma_count, mm_wr_locked); |
| 1230 | |
| 1231 | mas_set(mas: mas_detach, index: 1); |
| 1232 | /* start and end may be different if there is no prev or next vma. */ |
| 1233 | free_pgtables(tlb: &tlb, mas: mas_detach, start_vma: vms->vma, floor: vms->unmap_start, |
| 1234 | ceiling: vms->unmap_end, mm_wr_locked); |
| 1235 | tlb_finish_mmu(tlb: &tlb); |
| 1236 | vms->clear_ptes = false; |
| 1237 | } |
| 1238 | |
| 1239 | static void vms_clean_up_area(struct vma_munmap_struct *vms, |
| 1240 | struct ma_state *mas_detach) |
| 1241 | { |
| 1242 | struct vm_area_struct *vma; |
| 1243 | |
| 1244 | if (!vms->nr_pages) |
| 1245 | return; |
| 1246 | |
| 1247 | vms_clear_ptes(vms, mas_detach, mm_wr_locked: true); |
| 1248 | mas_set(mas: mas_detach, index: 0); |
| 1249 | mas_for_each(mas_detach, vma, ULONG_MAX) |
| 1250 | vma_close(vma); |
| 1251 | } |
| 1252 | |
| 1253 | /* |
| 1254 | * vms_complete_munmap_vmas() - Finish the munmap() operation |
| 1255 | * @vms: The vma munmap struct |
| 1256 | * @mas_detach: The maple state of the detached vmas |
| 1257 | * |
| 1258 | * This updates the mm_struct, unmaps the region, frees the resources |
| 1259 | * used for the munmap() and may downgrade the lock - if requested. Everything |
| 1260 | * needed to be done once the vma maple tree is updated. |
| 1261 | */ |
| 1262 | static void vms_complete_munmap_vmas(struct vma_munmap_struct *vms, |
| 1263 | struct ma_state *mas_detach) |
| 1264 | { |
| 1265 | struct vm_area_struct *vma; |
| 1266 | struct mm_struct *mm; |
| 1267 | |
| 1268 | mm = current->mm; |
| 1269 | mm->map_count -= vms->vma_count; |
| 1270 | mm->locked_vm -= vms->locked_vm; |
| 1271 | if (vms->unlock) |
| 1272 | mmap_write_downgrade(mm); |
| 1273 | |
| 1274 | if (!vms->nr_pages) |
| 1275 | return; |
| 1276 | |
| 1277 | vms_clear_ptes(vms, mas_detach, mm_wr_locked: !vms->unlock); |
| 1278 | /* Update high watermark before we lower total_vm */ |
| 1279 | update_hiwater_vm(mm); |
| 1280 | /* Stat accounting */ |
| 1281 | WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm) - vms->nr_pages); |
| 1282 | /* Paranoid bookkeeping */ |
| 1283 | VM_WARN_ON(vms->exec_vm > mm->exec_vm); |
| 1284 | VM_WARN_ON(vms->stack_vm > mm->stack_vm); |
| 1285 | VM_WARN_ON(vms->data_vm > mm->data_vm); |
| 1286 | mm->exec_vm -= vms->exec_vm; |
| 1287 | mm->stack_vm -= vms->stack_vm; |
| 1288 | mm->data_vm -= vms->data_vm; |
| 1289 | |
| 1290 | /* Remove and clean up vmas */ |
| 1291 | mas_set(mas: mas_detach, index: 0); |
| 1292 | mas_for_each(mas_detach, vma, ULONG_MAX) |
| 1293 | remove_vma(vma); |
| 1294 | |
| 1295 | vm_unacct_memory(pages: vms->nr_accounted); |
| 1296 | validate_mm(mm); |
| 1297 | if (vms->unlock) |
| 1298 | mmap_read_unlock(mm); |
| 1299 | |
| 1300 | __mt_destroy(mt: mas_detach->tree); |
| 1301 | } |
| 1302 | |
| 1303 | /* |
| 1304 | * reattach_vmas() - Undo any munmap work and free resources |
| 1305 | * @mas_detach: The maple state with the detached maple tree |
| 1306 | * |
| 1307 | * Reattach any detached vmas and free up the maple tree used to track the vmas. |
| 1308 | */ |
| 1309 | static void reattach_vmas(struct ma_state *mas_detach) |
| 1310 | { |
| 1311 | struct vm_area_struct *vma; |
| 1312 | |
| 1313 | mas_set(mas: mas_detach, index: 0); |
| 1314 | mas_for_each(mas_detach, vma, ULONG_MAX) |
| 1315 | vma_mark_attached(vma); |
| 1316 | |
| 1317 | __mt_destroy(mt: mas_detach->tree); |
| 1318 | } |
| 1319 | |
| 1320 | /* |
| 1321 | * vms_gather_munmap_vmas() - Put all VMAs within a range into a maple tree |
| 1322 | * for removal at a later date. Handles splitting first and last if necessary |
| 1323 | * and marking the vmas as isolated. |
| 1324 | * |
| 1325 | * @vms: The vma munmap struct |
| 1326 | * @mas_detach: The maple state tracking the detached tree |
| 1327 | * |
| 1328 | * Return: 0 on success, error otherwise |
| 1329 | */ |
| 1330 | static int vms_gather_munmap_vmas(struct vma_munmap_struct *vms, |
| 1331 | struct ma_state *mas_detach) |
| 1332 | { |
| 1333 | struct vm_area_struct *next = NULL; |
| 1334 | int error; |
| 1335 | |
| 1336 | /* |
| 1337 | * If we need to split any vma, do it now to save pain later. |
| 1338 | * Does it split the first one? |
| 1339 | */ |
| 1340 | if (vms->start > vms->vma->vm_start) { |
| 1341 | |
| 1342 | /* |
| 1343 | * Make sure that map_count on return from munmap() will |
| 1344 | * not exceed its limit; but let map_count go just above |
| 1345 | * its limit temporarily, to help free resources as expected. |
| 1346 | */ |
| 1347 | if (vms->end < vms->vma->vm_end && |
| 1348 | vms->vma->vm_mm->map_count >= sysctl_max_map_count) { |
| 1349 | error = -ENOMEM; |
| 1350 | goto map_count_exceeded; |
| 1351 | } |
| 1352 | |
| 1353 | /* Don't bother splitting the VMA if we can't unmap it anyway */ |
| 1354 | if (vma_is_sealed(vma: vms->vma)) { |
| 1355 | error = -EPERM; |
| 1356 | goto start_split_failed; |
| 1357 | } |
| 1358 | |
| 1359 | error = __split_vma(vmi: vms->vmi, vma: vms->vma, addr: vms->start, new_below: 1); |
| 1360 | if (error) |
| 1361 | goto start_split_failed; |
| 1362 | } |
| 1363 | vms->prev = vma_prev(vmi: vms->vmi); |
| 1364 | if (vms->prev) |
| 1365 | vms->unmap_start = vms->prev->vm_end; |
| 1366 | |
| 1367 | /* |
| 1368 | * Detach a range of VMAs from the mm. Using next as a temp variable as |
| 1369 | * it is always overwritten. |
| 1370 | */ |
| 1371 | for_each_vma_range(*(vms->vmi), next, vms->end) { |
| 1372 | long nrpages; |
| 1373 | |
| 1374 | if (vma_is_sealed(vma: next)) { |
| 1375 | error = -EPERM; |
| 1376 | goto modify_vma_failed; |
| 1377 | } |
| 1378 | /* Does it split the end? */ |
| 1379 | if (next->vm_end > vms->end) { |
| 1380 | error = __split_vma(vmi: vms->vmi, vma: next, addr: vms->end, new_below: 0); |
| 1381 | if (error) |
| 1382 | goto end_split_failed; |
| 1383 | } |
| 1384 | vma_start_write(vma: next); |
| 1385 | mas_set(mas: mas_detach, index: vms->vma_count++); |
| 1386 | error = mas_store_gfp(mas: mas_detach, entry: next, GFP_KERNEL); |
| 1387 | if (error) |
| 1388 | goto munmap_gather_failed; |
| 1389 | |
| 1390 | vma_mark_detached(vma: next); |
| 1391 | nrpages = vma_pages(vma: next); |
| 1392 | |
| 1393 | vms->nr_pages += nrpages; |
| 1394 | if (next->vm_flags & VM_LOCKED) |
| 1395 | vms->locked_vm += nrpages; |
| 1396 | |
| 1397 | if (next->vm_flags & VM_ACCOUNT) |
| 1398 | vms->nr_accounted += nrpages; |
| 1399 | |
| 1400 | if (is_exec_mapping(flags: next->vm_flags)) |
| 1401 | vms->exec_vm += nrpages; |
| 1402 | else if (is_stack_mapping(flags: next->vm_flags)) |
| 1403 | vms->stack_vm += nrpages; |
| 1404 | else if (is_data_mapping(flags: next->vm_flags)) |
| 1405 | vms->data_vm += nrpages; |
| 1406 | |
| 1407 | if (vms->uf) { |
| 1408 | /* |
| 1409 | * If userfaultfd_unmap_prep returns an error the vmas |
| 1410 | * will remain split, but userland will get a |
| 1411 | * highly unexpected error anyway. This is no |
| 1412 | * different than the case where the first of the two |
| 1413 | * __split_vma fails, but we don't undo the first |
| 1414 | * split, despite we could. This is unlikely enough |
| 1415 | * failure that it's not worth optimizing it for. |
| 1416 | */ |
| 1417 | error = userfaultfd_unmap_prep(vma: next, start: vms->start, |
| 1418 | end: vms->end, uf: vms->uf); |
| 1419 | if (error) |
| 1420 | goto userfaultfd_error; |
| 1421 | } |
| 1422 | #ifdef CONFIG_DEBUG_VM_MAPLE_TREE |
| 1423 | BUG_ON(next->vm_start < vms->start); |
| 1424 | BUG_ON(next->vm_start > vms->end); |
| 1425 | #endif |
| 1426 | } |
| 1427 | |
| 1428 | vms->next = vma_next(vmi: vms->vmi); |
| 1429 | if (vms->next) |
| 1430 | vms->unmap_end = vms->next->vm_start; |
| 1431 | |
| 1432 | #if defined(CONFIG_DEBUG_VM_MAPLE_TREE) |
| 1433 | /* Make sure no VMAs are about to be lost. */ |
| 1434 | { |
| 1435 | MA_STATE(test, mas_detach->tree, 0, 0); |
| 1436 | struct vm_area_struct *vma_mas, *vma_test; |
| 1437 | int test_count = 0; |
| 1438 | |
| 1439 | vma_iter_set(vms->vmi, vms->start); |
| 1440 | rcu_read_lock(); |
| 1441 | vma_test = mas_find(&test, vms->vma_count - 1); |
| 1442 | for_each_vma_range(*(vms->vmi), vma_mas, vms->end) { |
| 1443 | BUG_ON(vma_mas != vma_test); |
| 1444 | test_count++; |
| 1445 | vma_test = mas_next(&test, vms->vma_count - 1); |
| 1446 | } |
| 1447 | rcu_read_unlock(); |
| 1448 | BUG_ON(vms->vma_count != test_count); |
| 1449 | } |
| 1450 | #endif |
| 1451 | |
| 1452 | while (vma_iter_addr(vmi: vms->vmi) > vms->start) |
| 1453 | vma_iter_prev_range(vmi: vms->vmi); |
| 1454 | |
| 1455 | vms->clear_ptes = true; |
| 1456 | return 0; |
| 1457 | |
| 1458 | userfaultfd_error: |
| 1459 | munmap_gather_failed: |
| 1460 | end_split_failed: |
| 1461 | modify_vma_failed: |
| 1462 | reattach_vmas(mas_detach); |
| 1463 | start_split_failed: |
| 1464 | map_count_exceeded: |
| 1465 | return error; |
| 1466 | } |
| 1467 | |
| 1468 | /* |
| 1469 | * init_vma_munmap() - Initializer wrapper for vma_munmap_struct |
| 1470 | * @vms: The vma munmap struct |
| 1471 | * @vmi: The vma iterator |
| 1472 | * @vma: The first vm_area_struct to munmap |
| 1473 | * @start: The aligned start address to munmap |
| 1474 | * @end: The aligned end address to munmap |
| 1475 | * @uf: The userfaultfd list_head |
| 1476 | * @unlock: Unlock after the operation. Only unlocked on success |
| 1477 | */ |
| 1478 | static void init_vma_munmap(struct vma_munmap_struct *vms, |
| 1479 | struct vma_iterator *vmi, struct vm_area_struct *vma, |
| 1480 | unsigned long start, unsigned long end, struct list_head *uf, |
| 1481 | bool unlock) |
| 1482 | { |
| 1483 | vms->vmi = vmi; |
| 1484 | vms->vma = vma; |
| 1485 | if (vma) { |
| 1486 | vms->start = start; |
| 1487 | vms->end = end; |
| 1488 | } else { |
| 1489 | vms->start = vms->end = 0; |
| 1490 | } |
| 1491 | vms->unlock = unlock; |
| 1492 | vms->uf = uf; |
| 1493 | vms->vma_count = 0; |
| 1494 | vms->nr_pages = vms->locked_vm = vms->nr_accounted = 0; |
| 1495 | vms->exec_vm = vms->stack_vm = vms->data_vm = 0; |
| 1496 | vms->unmap_start = FIRST_USER_ADDRESS; |
| 1497 | vms->unmap_end = USER_PGTABLES_CEILING; |
| 1498 | vms->clear_ptes = false; |
| 1499 | } |
| 1500 | |
| 1501 | /* |
| 1502 | * do_vmi_align_munmap() - munmap the aligned region from @start to @end. |
| 1503 | * @vmi: The vma iterator |
| 1504 | * @vma: The starting vm_area_struct |
| 1505 | * @mm: The mm_struct |
| 1506 | * @start: The aligned start address to munmap. |
| 1507 | * @end: The aligned end address to munmap. |
| 1508 | * @uf: The userfaultfd list_head |
| 1509 | * @unlock: Set to true to drop the mmap_lock. unlocking only happens on |
| 1510 | * success. |
| 1511 | * |
| 1512 | * Return: 0 on success and drops the lock if so directed, error and leaves the |
| 1513 | * lock held otherwise. |
| 1514 | */ |
| 1515 | int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, |
| 1516 | struct mm_struct *mm, unsigned long start, unsigned long end, |
| 1517 | struct list_head *uf, bool unlock) |
| 1518 | { |
| 1519 | struct maple_tree mt_detach; |
| 1520 | MA_STATE(mas_detach, &mt_detach, 0, 0); |
| 1521 | mt_init_flags(mt: &mt_detach, flags: vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK); |
| 1522 | mt_on_stack(mt_detach); |
| 1523 | struct vma_munmap_struct vms; |
| 1524 | int error; |
| 1525 | |
| 1526 | init_vma_munmap(vms: &vms, vmi, vma, start, end, uf, unlock); |
| 1527 | error = vms_gather_munmap_vmas(vms: &vms, mas_detach: &mas_detach); |
| 1528 | if (error) |
| 1529 | goto gather_failed; |
| 1530 | |
| 1531 | error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL); |
| 1532 | if (error) |
| 1533 | goto clear_tree_failed; |
| 1534 | |
| 1535 | /* Point of no return */ |
| 1536 | vms_complete_munmap_vmas(vms: &vms, mas_detach: &mas_detach); |
| 1537 | return 0; |
| 1538 | |
| 1539 | clear_tree_failed: |
| 1540 | reattach_vmas(mas_detach: &mas_detach); |
| 1541 | gather_failed: |
| 1542 | validate_mm(mm); |
| 1543 | return error; |
| 1544 | } |
| 1545 | |
| 1546 | /* |
| 1547 | * do_vmi_munmap() - munmap a given range. |
| 1548 | * @vmi: The vma iterator |
| 1549 | * @mm: The mm_struct |
| 1550 | * @start: The start address to munmap |
| 1551 | * @len: The length of the range to munmap |
| 1552 | * @uf: The userfaultfd list_head |
| 1553 | * @unlock: set to true if the user wants to drop the mmap_lock on success |
| 1554 | * |
| 1555 | * This function takes a @mas that is either pointing to the previous VMA or set |
| 1556 | * to MA_START and sets it up to remove the mapping(s). The @len will be |
| 1557 | * aligned. |
| 1558 | * |
| 1559 | * Return: 0 on success and drops the lock if so directed, error and leaves the |
| 1560 | * lock held otherwise. |
| 1561 | */ |
| 1562 | int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm, |
| 1563 | unsigned long start, size_t len, struct list_head *uf, |
| 1564 | bool unlock) |
| 1565 | { |
| 1566 | unsigned long end; |
| 1567 | struct vm_area_struct *vma; |
| 1568 | |
| 1569 | if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start) |
| 1570 | return -EINVAL; |
| 1571 | |
| 1572 | end = start + PAGE_ALIGN(len); |
| 1573 | if (end == start) |
| 1574 | return -EINVAL; |
| 1575 | |
| 1576 | /* Find the first overlapping VMA */ |
| 1577 | vma = vma_find(vmi, max: end); |
| 1578 | if (!vma) { |
| 1579 | if (unlock) |
| 1580 | mmap_write_unlock(mm); |
| 1581 | return 0; |
| 1582 | } |
| 1583 | |
| 1584 | return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock); |
| 1585 | } |
| 1586 | |
| 1587 | /* |
| 1588 | * We are about to modify one or multiple of a VMA's flags, policy, userfaultfd |
| 1589 | * context and anonymous VMA name within the range [start, end). |
| 1590 | * |
| 1591 | * As a result, we might be able to merge the newly modified VMA range with an |
| 1592 | * adjacent VMA with identical properties. |
| 1593 | * |
| 1594 | * If no merge is possible and the range does not span the entirety of the VMA, |
| 1595 | * we then need to split the VMA to accommodate the change. |
| 1596 | * |
| 1597 | * The function returns either the merged VMA, the original VMA if a split was |
| 1598 | * required instead, or an error if the split failed. |
| 1599 | */ |
| 1600 | static struct vm_area_struct *vma_modify(struct vma_merge_struct *vmg) |
| 1601 | { |
| 1602 | struct vm_area_struct *vma = vmg->middle; |
| 1603 | unsigned long start = vmg->start; |
| 1604 | unsigned long end = vmg->end; |
| 1605 | struct vm_area_struct *merged; |
| 1606 | |
| 1607 | /* First, try to merge. */ |
| 1608 | merged = vma_merge_existing_range(vmg); |
| 1609 | if (merged) |
| 1610 | return merged; |
| 1611 | if (vmg_nomem(vmg)) |
| 1612 | return ERR_PTR(error: -ENOMEM); |
| 1613 | |
| 1614 | /* |
| 1615 | * Split can fail for reasons other than OOM, so if the user requests |
| 1616 | * this it's probably a mistake. |
| 1617 | */ |
| 1618 | VM_WARN_ON(vmg->give_up_on_oom && |
| 1619 | (vma->vm_start != start || vma->vm_end != end)); |
| 1620 | |
| 1621 | /* Split any preceding portion of the VMA. */ |
| 1622 | if (vma->vm_start < start) { |
| 1623 | int err = split_vma(vmi: vmg->vmi, vma, addr: start, new_below: 1); |
| 1624 | |
| 1625 | if (err) |
| 1626 | return ERR_PTR(error: err); |
| 1627 | } |
| 1628 | |
| 1629 | /* Split any trailing portion of the VMA. */ |
| 1630 | if (vma->vm_end > end) { |
| 1631 | int err = split_vma(vmi: vmg->vmi, vma, addr: end, new_below: 0); |
| 1632 | |
| 1633 | if (err) |
| 1634 | return ERR_PTR(error: err); |
| 1635 | } |
| 1636 | |
| 1637 | return vma; |
| 1638 | } |
| 1639 | |
| 1640 | struct vm_area_struct *vma_modify_flags( |
| 1641 | struct vma_iterator *vmi, struct vm_area_struct *prev, |
| 1642 | struct vm_area_struct *vma, unsigned long start, unsigned long end, |
| 1643 | vm_flags_t vm_flags) |
| 1644 | { |
| 1645 | VMG_VMA_STATE(vmg, vmi, prev, vma, start, end); |
| 1646 | |
| 1647 | vmg.vm_flags = vm_flags; |
| 1648 | |
| 1649 | return vma_modify(vmg: &vmg); |
| 1650 | } |
| 1651 | |
| 1652 | struct vm_area_struct |
| 1653 | *vma_modify_name(struct vma_iterator *vmi, |
| 1654 | struct vm_area_struct *prev, |
| 1655 | struct vm_area_struct *vma, |
| 1656 | unsigned long start, |
| 1657 | unsigned long end, |
| 1658 | struct anon_vma_name *new_name) |
| 1659 | { |
| 1660 | VMG_VMA_STATE(vmg, vmi, prev, vma, start, end); |
| 1661 | |
| 1662 | vmg.anon_name = new_name; |
| 1663 | |
| 1664 | return vma_modify(vmg: &vmg); |
| 1665 | } |
| 1666 | |
| 1667 | struct vm_area_struct |
| 1668 | *vma_modify_policy(struct vma_iterator *vmi, |
| 1669 | struct vm_area_struct *prev, |
| 1670 | struct vm_area_struct *vma, |
| 1671 | unsigned long start, unsigned long end, |
| 1672 | struct mempolicy *new_pol) |
| 1673 | { |
| 1674 | VMG_VMA_STATE(vmg, vmi, prev, vma, start, end); |
| 1675 | |
| 1676 | vmg.policy = new_pol; |
| 1677 | |
| 1678 | return vma_modify(vmg: &vmg); |
| 1679 | } |
| 1680 | |
| 1681 | struct vm_area_struct |
| 1682 | *vma_modify_flags_uffd(struct vma_iterator *vmi, |
| 1683 | struct vm_area_struct *prev, |
| 1684 | struct vm_area_struct *vma, |
| 1685 | unsigned long start, unsigned long end, |
| 1686 | vm_flags_t vm_flags, |
| 1687 | struct vm_userfaultfd_ctx new_ctx, |
| 1688 | bool give_up_on_oom) |
| 1689 | { |
| 1690 | VMG_VMA_STATE(vmg, vmi, prev, vma, start, end); |
| 1691 | |
| 1692 | vmg.vm_flags = vm_flags; |
| 1693 | vmg.uffd_ctx = new_ctx; |
| 1694 | if (give_up_on_oom) |
| 1695 | vmg.give_up_on_oom = true; |
| 1696 | |
| 1697 | return vma_modify(vmg: &vmg); |
| 1698 | } |
| 1699 | |
| 1700 | /* |
| 1701 | * Expand vma by delta bytes, potentially merging with an immediately adjacent |
| 1702 | * VMA with identical properties. |
| 1703 | */ |
| 1704 | struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi, |
| 1705 | struct vm_area_struct *vma, |
| 1706 | unsigned long delta) |
| 1707 | { |
| 1708 | VMG_VMA_STATE(vmg, vmi, vma, vma, vma->vm_end, vma->vm_end + delta); |
| 1709 | |
| 1710 | vmg.next = vma_iter_next_rewind(vmi, NULL); |
| 1711 | vmg.middle = NULL; /* We use the VMA to populate VMG fields only. */ |
| 1712 | |
| 1713 | return vma_merge_new_range(vmg: &vmg); |
| 1714 | } |
| 1715 | |
| 1716 | void unlink_file_vma_batch_init(struct unlink_vma_file_batch *vb) |
| 1717 | { |
| 1718 | vb->count = 0; |
| 1719 | } |
| 1720 | |
| 1721 | static void unlink_file_vma_batch_process(struct unlink_vma_file_batch *vb) |
| 1722 | { |
| 1723 | struct address_space *mapping; |
| 1724 | int i; |
| 1725 | |
| 1726 | mapping = vb->vmas[0]->vm_file->f_mapping; |
| 1727 | i_mmap_lock_write(mapping); |
| 1728 | for (i = 0; i < vb->count; i++) { |
| 1729 | VM_WARN_ON_ONCE(vb->vmas[i]->vm_file->f_mapping != mapping); |
| 1730 | __remove_shared_vm_struct(vma: vb->vmas[i], mapping); |
| 1731 | } |
| 1732 | i_mmap_unlock_write(mapping); |
| 1733 | |
| 1734 | unlink_file_vma_batch_init(vb); |
| 1735 | } |
| 1736 | |
| 1737 | void unlink_file_vma_batch_add(struct unlink_vma_file_batch *vb, |
| 1738 | struct vm_area_struct *vma) |
| 1739 | { |
| 1740 | if (vma->vm_file == NULL) |
| 1741 | return; |
| 1742 | |
| 1743 | if ((vb->count > 0 && vb->vmas[0]->vm_file != vma->vm_file) || |
| 1744 | vb->count == ARRAY_SIZE(vb->vmas)) |
| 1745 | unlink_file_vma_batch_process(vb); |
| 1746 | |
| 1747 | vb->vmas[vb->count] = vma; |
| 1748 | vb->count++; |
| 1749 | } |
| 1750 | |
| 1751 | void unlink_file_vma_batch_final(struct unlink_vma_file_batch *vb) |
| 1752 | { |
| 1753 | if (vb->count > 0) |
| 1754 | unlink_file_vma_batch_process(vb); |
| 1755 | } |
| 1756 | |
| 1757 | /* |
| 1758 | * Unlink a file-based vm structure from its interval tree, to hide |
| 1759 | * vma from rmap and vmtruncate before freeing its page tables. |
| 1760 | */ |
| 1761 | void unlink_file_vma(struct vm_area_struct *vma) |
| 1762 | { |
| 1763 | struct file *file = vma->vm_file; |
| 1764 | |
| 1765 | if (file) { |
| 1766 | struct address_space *mapping = file->f_mapping; |
| 1767 | |
| 1768 | i_mmap_lock_write(mapping); |
| 1769 | __remove_shared_vm_struct(vma, mapping); |
| 1770 | i_mmap_unlock_write(mapping); |
| 1771 | } |
| 1772 | } |
| 1773 | |
| 1774 | void vma_link_file(struct vm_area_struct *vma) |
| 1775 | { |
| 1776 | struct file *file = vma->vm_file; |
| 1777 | struct address_space *mapping; |
| 1778 | |
| 1779 | if (file) { |
| 1780 | mapping = file->f_mapping; |
| 1781 | i_mmap_lock_write(mapping); |
| 1782 | __vma_link_file(vma, mapping); |
| 1783 | i_mmap_unlock_write(mapping); |
| 1784 | } |
| 1785 | } |
| 1786 | |
| 1787 | int vma_link(struct mm_struct *mm, struct vm_area_struct *vma) |
| 1788 | { |
| 1789 | VMA_ITERATOR(vmi, mm, 0); |
| 1790 | |
| 1791 | vma_iter_config(vmi: &vmi, index: vma->vm_start, last: vma->vm_end); |
| 1792 | if (vma_iter_prealloc(vmi: &vmi, vma)) |
| 1793 | return -ENOMEM; |
| 1794 | |
| 1795 | vma_start_write(vma); |
| 1796 | vma_iter_store_new(vmi: &vmi, vma); |
| 1797 | vma_link_file(vma); |
| 1798 | mm->map_count++; |
| 1799 | validate_mm(mm); |
| 1800 | return 0; |
| 1801 | } |
| 1802 | |
| 1803 | /* |
| 1804 | * Copy the vma structure to a new location in the same mm, |
| 1805 | * prior to moving page table entries, to effect an mremap move. |
| 1806 | */ |
| 1807 | struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, |
| 1808 | unsigned long addr, unsigned long len, pgoff_t pgoff, |
| 1809 | bool *need_rmap_locks) |
| 1810 | { |
| 1811 | struct vm_area_struct *vma = *vmap; |
| 1812 | unsigned long vma_start = vma->vm_start; |
| 1813 | struct mm_struct *mm = vma->vm_mm; |
| 1814 | struct vm_area_struct *new_vma; |
| 1815 | bool faulted_in_anon_vma = true; |
| 1816 | VMA_ITERATOR(vmi, mm, addr); |
| 1817 | VMG_VMA_STATE(vmg, &vmi, NULL, vma, addr, addr + len); |
| 1818 | |
| 1819 | /* |
| 1820 | * If anonymous vma has not yet been faulted, update new pgoff |
| 1821 | * to match new location, to increase its chance of merging. |
| 1822 | */ |
| 1823 | if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) { |
| 1824 | pgoff = addr >> PAGE_SHIFT; |
| 1825 | faulted_in_anon_vma = false; |
| 1826 | } |
| 1827 | |
| 1828 | /* |
| 1829 | * If the VMA we are copying might contain a uprobe PTE, ensure |
| 1830 | * that we do not establish one upon merge. Otherwise, when mremap() |
| 1831 | * moves page tables, it will orphan the newly created PTE. |
| 1832 | */ |
| 1833 | if (vma->vm_file) |
| 1834 | vmg.skip_vma_uprobe = true; |
| 1835 | |
| 1836 | new_vma = find_vma_prev(mm, addr, pprev: &vmg.prev); |
| 1837 | if (new_vma && new_vma->vm_start < addr + len) |
| 1838 | return NULL; /* should never get here */ |
| 1839 | |
| 1840 | vmg.middle = NULL; /* New VMA range. */ |
| 1841 | vmg.pgoff = pgoff; |
| 1842 | vmg.next = vma_iter_next_rewind(vmi: &vmi, NULL); |
| 1843 | new_vma = vma_merge_new_range(vmg: &vmg); |
| 1844 | |
| 1845 | if (new_vma) { |
| 1846 | /* |
| 1847 | * Source vma may have been merged into new_vma |
| 1848 | */ |
| 1849 | if (unlikely(vma_start >= new_vma->vm_start && |
| 1850 | vma_start < new_vma->vm_end)) { |
| 1851 | /* |
| 1852 | * The only way we can get a vma_merge with |
| 1853 | * self during an mremap is if the vma hasn't |
| 1854 | * been faulted in yet and we were allowed to |
| 1855 | * reset the dst vma->vm_pgoff to the |
| 1856 | * destination address of the mremap to allow |
| 1857 | * the merge to happen. mremap must change the |
| 1858 | * vm_pgoff linearity between src and dst vmas |
| 1859 | * (in turn preventing a vma_merge) to be |
| 1860 | * safe. It is only safe to keep the vm_pgoff |
| 1861 | * linear if there are no pages mapped yet. |
| 1862 | */ |
| 1863 | VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma); |
| 1864 | *vmap = vma = new_vma; |
| 1865 | } |
| 1866 | *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff); |
| 1867 | } else { |
| 1868 | new_vma = vm_area_dup(orig: vma); |
| 1869 | if (!new_vma) |
| 1870 | goto out; |
| 1871 | vma_set_range(vma: new_vma, start: addr, end: addr + len, pgoff); |
| 1872 | if (vma_dup_policy(src: vma, dst: new_vma)) |
| 1873 | goto out_free_vma; |
| 1874 | if (anon_vma_clone(new_vma, vma)) |
| 1875 | goto out_free_mempol; |
| 1876 | if (new_vma->vm_file) |
| 1877 | get_file(f: new_vma->vm_file); |
| 1878 | if (new_vma->vm_ops && new_vma->vm_ops->open) |
| 1879 | new_vma->vm_ops->open(new_vma); |
| 1880 | if (vma_link(mm, vma: new_vma)) |
| 1881 | goto out_vma_link; |
| 1882 | *need_rmap_locks = false; |
| 1883 | } |
| 1884 | return new_vma; |
| 1885 | |
| 1886 | out_vma_link: |
| 1887 | fixup_hugetlb_reservations(vma: new_vma); |
| 1888 | vma_close(vma: new_vma); |
| 1889 | |
| 1890 | if (new_vma->vm_file) |
| 1891 | fput(new_vma->vm_file); |
| 1892 | |
| 1893 | unlink_anon_vmas(new_vma); |
| 1894 | out_free_mempol: |
| 1895 | mpol_put(vma_policy(new_vma)); |
| 1896 | out_free_vma: |
| 1897 | vm_area_free(vma: new_vma); |
| 1898 | out: |
| 1899 | return NULL; |
| 1900 | } |
| 1901 | |
| 1902 | /* |
| 1903 | * Rough compatibility check to quickly see if it's even worth looking |
| 1904 | * at sharing an anon_vma. |
| 1905 | * |
| 1906 | * They need to have the same vm_file, and the flags can only differ |
| 1907 | * in things that mprotect may change. |
| 1908 | * |
| 1909 | * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that |
| 1910 | * we can merge the two vma's. For example, we refuse to merge a vma if |
| 1911 | * there is a vm_ops->close() function, because that indicates that the |
| 1912 | * driver is doing some kind of reference counting. But that doesn't |
| 1913 | * really matter for the anon_vma sharing case. |
| 1914 | */ |
| 1915 | static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) |
| 1916 | { |
| 1917 | return a->vm_end == b->vm_start && |
| 1918 | mpol_equal(vma_policy(a), vma_policy(b)) && |
| 1919 | a->vm_file == b->vm_file && |
| 1920 | !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) && |
| 1921 | b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); |
| 1922 | } |
| 1923 | |
| 1924 | /* |
| 1925 | * Do some basic sanity checking to see if we can re-use the anon_vma |
| 1926 | * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be |
| 1927 | * the same as 'old', the other will be the new one that is trying |
| 1928 | * to share the anon_vma. |
| 1929 | * |
| 1930 | * NOTE! This runs with mmap_lock held for reading, so it is possible that |
| 1931 | * the anon_vma of 'old' is concurrently in the process of being set up |
| 1932 | * by another page fault trying to merge _that_. But that's ok: if it |
| 1933 | * is being set up, that automatically means that it will be a singleton |
| 1934 | * acceptable for merging, so we can do all of this optimistically. But |
| 1935 | * we do that READ_ONCE() to make sure that we never re-load the pointer. |
| 1936 | * |
| 1937 | * IOW: that the "list_is_singular()" test on the anon_vma_chain only |
| 1938 | * matters for the 'stable anon_vma' case (ie the thing we want to avoid |
| 1939 | * is to return an anon_vma that is "complex" due to having gone through |
| 1940 | * a fork). |
| 1941 | * |
| 1942 | * We also make sure that the two vma's are compatible (adjacent, |
| 1943 | * and with the same memory policies). That's all stable, even with just |
| 1944 | * a read lock on the mmap_lock. |
| 1945 | */ |
| 1946 | static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, |
| 1947 | struct vm_area_struct *a, |
| 1948 | struct vm_area_struct *b) |
| 1949 | { |
| 1950 | if (anon_vma_compatible(a, b)) { |
| 1951 | struct anon_vma *anon_vma = READ_ONCE(old->anon_vma); |
| 1952 | |
| 1953 | if (anon_vma && list_is_singular(head: &old->anon_vma_chain)) |
| 1954 | return anon_vma; |
| 1955 | } |
| 1956 | return NULL; |
| 1957 | } |
| 1958 | |
| 1959 | /* |
| 1960 | * find_mergeable_anon_vma is used by anon_vma_prepare, to check |
| 1961 | * neighbouring vmas for a suitable anon_vma, before it goes off |
| 1962 | * to allocate a new anon_vma. It checks because a repetitive |
| 1963 | * sequence of mprotects and faults may otherwise lead to distinct |
| 1964 | * anon_vmas being allocated, preventing vma merge in subsequent |
| 1965 | * mprotect. |
| 1966 | */ |
| 1967 | struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) |
| 1968 | { |
| 1969 | struct anon_vma *anon_vma = NULL; |
| 1970 | struct vm_area_struct *prev, *next; |
| 1971 | VMA_ITERATOR(vmi, vma->vm_mm, vma->vm_end); |
| 1972 | |
| 1973 | /* Try next first. */ |
| 1974 | next = vma_iter_load(vmi: &vmi); |
| 1975 | if (next) { |
| 1976 | anon_vma = reusable_anon_vma(old: next, a: vma, b: next); |
| 1977 | if (anon_vma) |
| 1978 | return anon_vma; |
| 1979 | } |
| 1980 | |
| 1981 | prev = vma_prev(vmi: &vmi); |
| 1982 | VM_BUG_ON_VMA(prev != vma, vma); |
| 1983 | prev = vma_prev(vmi: &vmi); |
| 1984 | /* Try prev next. */ |
| 1985 | if (prev) |
| 1986 | anon_vma = reusable_anon_vma(old: prev, a: prev, b: vma); |
| 1987 | |
| 1988 | /* |
| 1989 | * We might reach here with anon_vma == NULL if we can't find |
| 1990 | * any reusable anon_vma. |
| 1991 | * There's no absolute need to look only at touching neighbours: |
| 1992 | * we could search further afield for "compatible" anon_vmas. |
| 1993 | * But it would probably just be a waste of time searching, |
| 1994 | * or lead to too many vmas hanging off the same anon_vma. |
| 1995 | * We're trying to allow mprotect remerging later on, |
| 1996 | * not trying to minimize memory used for anon_vmas. |
| 1997 | */ |
| 1998 | return anon_vma; |
| 1999 | } |
| 2000 | |
| 2001 | static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops) |
| 2002 | { |
| 2003 | return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite); |
| 2004 | } |
| 2005 | |
| 2006 | static bool vma_is_shared_writable(struct vm_area_struct *vma) |
| 2007 | { |
| 2008 | return (vma->vm_flags & (VM_WRITE | VM_SHARED)) == |
| 2009 | (VM_WRITE | VM_SHARED); |
| 2010 | } |
| 2011 | |
| 2012 | static bool vma_fs_can_writeback(struct vm_area_struct *vma) |
| 2013 | { |
| 2014 | /* No managed pages to writeback. */ |
| 2015 | if (vma->vm_flags & VM_PFNMAP) |
| 2016 | return false; |
| 2017 | |
| 2018 | return vma->vm_file && vma->vm_file->f_mapping && |
| 2019 | mapping_can_writeback(mapping: vma->vm_file->f_mapping); |
| 2020 | } |
| 2021 | |
| 2022 | /* |
| 2023 | * Does this VMA require the underlying folios to have their dirty state |
| 2024 | * tracked? |
| 2025 | */ |
| 2026 | bool vma_needs_dirty_tracking(struct vm_area_struct *vma) |
| 2027 | { |
| 2028 | /* Only shared, writable VMAs require dirty tracking. */ |
| 2029 | if (!vma_is_shared_writable(vma)) |
| 2030 | return false; |
| 2031 | |
| 2032 | /* Does the filesystem need to be notified? */ |
| 2033 | if (vm_ops_needs_writenotify(vm_ops: vma->vm_ops)) |
| 2034 | return true; |
| 2035 | |
| 2036 | /* |
| 2037 | * Even if the filesystem doesn't indicate a need for writenotify, if it |
| 2038 | * can writeback, dirty tracking is still required. |
| 2039 | */ |
| 2040 | return vma_fs_can_writeback(vma); |
| 2041 | } |
| 2042 | |
| 2043 | /* |
| 2044 | * Some shared mappings will want the pages marked read-only |
| 2045 | * to track write events. If so, we'll downgrade vm_page_prot |
| 2046 | * to the private version (using protection_map[] without the |
| 2047 | * VM_SHARED bit). |
| 2048 | */ |
| 2049 | bool vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot) |
| 2050 | { |
| 2051 | /* If it was private or non-writable, the write bit is already clear */ |
| 2052 | if (!vma_is_shared_writable(vma)) |
| 2053 | return false; |
| 2054 | |
| 2055 | /* The backer wishes to know when pages are first written to? */ |
| 2056 | if (vm_ops_needs_writenotify(vm_ops: vma->vm_ops)) |
| 2057 | return true; |
| 2058 | |
| 2059 | /* The open routine did something to the protections that pgprot_modify |
| 2060 | * won't preserve? */ |
| 2061 | if (pgprot_val(vm_page_prot) != |
| 2062 | pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags))) |
| 2063 | return false; |
| 2064 | |
| 2065 | /* |
| 2066 | * Do we need to track softdirty? hugetlb does not support softdirty |
| 2067 | * tracking yet. |
| 2068 | */ |
| 2069 | if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma)) |
| 2070 | return true; |
| 2071 | |
| 2072 | /* Do we need write faults for uffd-wp tracking? */ |
| 2073 | if (userfaultfd_wp(vma)) |
| 2074 | return true; |
| 2075 | |
| 2076 | /* Can the mapping track the dirty pages? */ |
| 2077 | return vma_fs_can_writeback(vma); |
| 2078 | } |
| 2079 | |
| 2080 | static DEFINE_MUTEX(mm_all_locks_mutex); |
| 2081 | |
| 2082 | static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) |
| 2083 | { |
| 2084 | if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { |
| 2085 | /* |
| 2086 | * The LSB of head.next can't change from under us |
| 2087 | * because we hold the mm_all_locks_mutex. |
| 2088 | */ |
| 2089 | down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock); |
| 2090 | /* |
| 2091 | * We can safely modify head.next after taking the |
| 2092 | * anon_vma->root->rwsem. If some other vma in this mm shares |
| 2093 | * the same anon_vma we won't take it again. |
| 2094 | * |
| 2095 | * No need of atomic instructions here, head.next |
| 2096 | * can't change from under us thanks to the |
| 2097 | * anon_vma->root->rwsem. |
| 2098 | */ |
| 2099 | if (__test_and_set_bit(0, (unsigned long *) |
| 2100 | &anon_vma->root->rb_root.rb_root.rb_node)) |
| 2101 | BUG(); |
| 2102 | } |
| 2103 | } |
| 2104 | |
| 2105 | static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) |
| 2106 | { |
| 2107 | if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { |
| 2108 | /* |
| 2109 | * AS_MM_ALL_LOCKS can't change from under us because |
| 2110 | * we hold the mm_all_locks_mutex. |
| 2111 | * |
| 2112 | * Operations on ->flags have to be atomic because |
| 2113 | * even if AS_MM_ALL_LOCKS is stable thanks to the |
| 2114 | * mm_all_locks_mutex, there may be other cpus |
| 2115 | * changing other bitflags in parallel to us. |
| 2116 | */ |
| 2117 | if (test_and_set_bit(nr: AS_MM_ALL_LOCKS, addr: &mapping->flags)) |
| 2118 | BUG(); |
| 2119 | down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock); |
| 2120 | } |
| 2121 | } |
| 2122 | |
| 2123 | /* |
| 2124 | * This operation locks against the VM for all pte/vma/mm related |
| 2125 | * operations that could ever happen on a certain mm. This includes |
| 2126 | * vmtruncate, try_to_unmap, and all page faults. |
| 2127 | * |
| 2128 | * The caller must take the mmap_lock in write mode before calling |
| 2129 | * mm_take_all_locks(). The caller isn't allowed to release the |
| 2130 | * mmap_lock until mm_drop_all_locks() returns. |
| 2131 | * |
| 2132 | * mmap_lock in write mode is required in order to block all operations |
| 2133 | * that could modify pagetables and free pages without need of |
| 2134 | * altering the vma layout. It's also needed in write mode to avoid new |
| 2135 | * anon_vmas to be associated with existing vmas. |
| 2136 | * |
| 2137 | * A single task can't take more than one mm_take_all_locks() in a row |
| 2138 | * or it would deadlock. |
| 2139 | * |
| 2140 | * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in |
| 2141 | * mapping->flags avoid to take the same lock twice, if more than one |
| 2142 | * vma in this mm is backed by the same anon_vma or address_space. |
| 2143 | * |
| 2144 | * We take locks in following order, accordingly to comment at beginning |
| 2145 | * of mm/rmap.c: |
| 2146 | * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for |
| 2147 | * hugetlb mapping); |
| 2148 | * - all vmas marked locked |
| 2149 | * - all i_mmap_rwsem locks; |
| 2150 | * - all anon_vma->rwseml |
| 2151 | * |
| 2152 | * We can take all locks within these types randomly because the VM code |
| 2153 | * doesn't nest them and we protected from parallel mm_take_all_locks() by |
| 2154 | * mm_all_locks_mutex. |
| 2155 | * |
| 2156 | * mm_take_all_locks() and mm_drop_all_locks are expensive operations |
| 2157 | * that may have to take thousand of locks. |
| 2158 | * |
| 2159 | * mm_take_all_locks() can fail if it's interrupted by signals. |
| 2160 | */ |
| 2161 | int mm_take_all_locks(struct mm_struct *mm) |
| 2162 | { |
| 2163 | struct vm_area_struct *vma; |
| 2164 | struct anon_vma_chain *avc; |
| 2165 | VMA_ITERATOR(vmi, mm, 0); |
| 2166 | |
| 2167 | mmap_assert_write_locked(mm); |
| 2168 | |
| 2169 | mutex_lock(lock: &mm_all_locks_mutex); |
| 2170 | |
| 2171 | /* |
| 2172 | * vma_start_write() does not have a complement in mm_drop_all_locks() |
| 2173 | * because vma_start_write() is always asymmetrical; it marks a VMA as |
| 2174 | * being written to until mmap_write_unlock() or mmap_write_downgrade() |
| 2175 | * is reached. |
| 2176 | */ |
| 2177 | for_each_vma(vmi, vma) { |
| 2178 | if (signal_pending(current)) |
| 2179 | goto out_unlock; |
| 2180 | vma_start_write(vma); |
| 2181 | } |
| 2182 | |
| 2183 | vma_iter_init(vmi: &vmi, mm, addr: 0); |
| 2184 | for_each_vma(vmi, vma) { |
| 2185 | if (signal_pending(current)) |
| 2186 | goto out_unlock; |
| 2187 | if (vma->vm_file && vma->vm_file->f_mapping && |
| 2188 | is_vm_hugetlb_page(vma)) |
| 2189 | vm_lock_mapping(mm, mapping: vma->vm_file->f_mapping); |
| 2190 | } |
| 2191 | |
| 2192 | vma_iter_init(vmi: &vmi, mm, addr: 0); |
| 2193 | for_each_vma(vmi, vma) { |
| 2194 | if (signal_pending(current)) |
| 2195 | goto out_unlock; |
| 2196 | if (vma->vm_file && vma->vm_file->f_mapping && |
| 2197 | !is_vm_hugetlb_page(vma)) |
| 2198 | vm_lock_mapping(mm, mapping: vma->vm_file->f_mapping); |
| 2199 | } |
| 2200 | |
| 2201 | vma_iter_init(vmi: &vmi, mm, addr: 0); |
| 2202 | for_each_vma(vmi, vma) { |
| 2203 | if (signal_pending(current)) |
| 2204 | goto out_unlock; |
| 2205 | if (vma->anon_vma) |
| 2206 | list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) |
| 2207 | vm_lock_anon_vma(mm, anon_vma: avc->anon_vma); |
| 2208 | } |
| 2209 | |
| 2210 | return 0; |
| 2211 | |
| 2212 | out_unlock: |
| 2213 | mm_drop_all_locks(mm); |
| 2214 | return -EINTR; |
| 2215 | } |
| 2216 | |
| 2217 | static void vm_unlock_anon_vma(struct anon_vma *anon_vma) |
| 2218 | { |
| 2219 | if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { |
| 2220 | /* |
| 2221 | * The LSB of head.next can't change to 0 from under |
| 2222 | * us because we hold the mm_all_locks_mutex. |
| 2223 | * |
| 2224 | * We must however clear the bitflag before unlocking |
| 2225 | * the vma so the users using the anon_vma->rb_root will |
| 2226 | * never see our bitflag. |
| 2227 | * |
| 2228 | * No need of atomic instructions here, head.next |
| 2229 | * can't change from under us until we release the |
| 2230 | * anon_vma->root->rwsem. |
| 2231 | */ |
| 2232 | if (!__test_and_clear_bit(0, (unsigned long *) |
| 2233 | &anon_vma->root->rb_root.rb_root.rb_node)) |
| 2234 | BUG(); |
| 2235 | anon_vma_unlock_write(anon_vma); |
| 2236 | } |
| 2237 | } |
| 2238 | |
| 2239 | static void vm_unlock_mapping(struct address_space *mapping) |
| 2240 | { |
| 2241 | if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { |
| 2242 | /* |
| 2243 | * AS_MM_ALL_LOCKS can't change to 0 from under us |
| 2244 | * because we hold the mm_all_locks_mutex. |
| 2245 | */ |
| 2246 | i_mmap_unlock_write(mapping); |
| 2247 | if (!test_and_clear_bit(nr: AS_MM_ALL_LOCKS, |
| 2248 | addr: &mapping->flags)) |
| 2249 | BUG(); |
| 2250 | } |
| 2251 | } |
| 2252 | |
| 2253 | /* |
| 2254 | * The mmap_lock cannot be released by the caller until |
| 2255 | * mm_drop_all_locks() returns. |
| 2256 | */ |
| 2257 | void mm_drop_all_locks(struct mm_struct *mm) |
| 2258 | { |
| 2259 | struct vm_area_struct *vma; |
| 2260 | struct anon_vma_chain *avc; |
| 2261 | VMA_ITERATOR(vmi, mm, 0); |
| 2262 | |
| 2263 | mmap_assert_write_locked(mm); |
| 2264 | BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); |
| 2265 | |
| 2266 | for_each_vma(vmi, vma) { |
| 2267 | if (vma->anon_vma) |
| 2268 | list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) |
| 2269 | vm_unlock_anon_vma(anon_vma: avc->anon_vma); |
| 2270 | if (vma->vm_file && vma->vm_file->f_mapping) |
| 2271 | vm_unlock_mapping(mapping: vma->vm_file->f_mapping); |
| 2272 | } |
| 2273 | |
| 2274 | mutex_unlock(lock: &mm_all_locks_mutex); |
| 2275 | } |
| 2276 | |
| 2277 | /* |
| 2278 | * We account for memory if it's a private writeable mapping, |
| 2279 | * not hugepages and VM_NORESERVE wasn't set. |
| 2280 | */ |
| 2281 | static bool accountable_mapping(struct file *file, vm_flags_t vm_flags) |
| 2282 | { |
| 2283 | /* |
| 2284 | * hugetlb has its own accounting separate from the core VM |
| 2285 | * VM_HUGETLB may not be set yet so we cannot check for that flag. |
| 2286 | */ |
| 2287 | if (file && is_file_hugepages(file)) |
| 2288 | return false; |
| 2289 | |
| 2290 | return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; |
| 2291 | } |
| 2292 | |
| 2293 | /* |
| 2294 | * vms_abort_munmap_vmas() - Undo as much as possible from an aborted munmap() |
| 2295 | * operation. |
| 2296 | * @vms: The vma unmap structure |
| 2297 | * @mas_detach: The maple state with the detached maple tree |
| 2298 | * |
| 2299 | * Reattach any detached vmas, free up the maple tree used to track the vmas. |
| 2300 | * If that's not possible because the ptes are cleared (and vm_ops->closed() may |
| 2301 | * have been called), then a NULL is written over the vmas and the vmas are |
| 2302 | * removed (munmap() completed). |
| 2303 | */ |
| 2304 | static void vms_abort_munmap_vmas(struct vma_munmap_struct *vms, |
| 2305 | struct ma_state *mas_detach) |
| 2306 | { |
| 2307 | struct ma_state *mas = &vms->vmi->mas; |
| 2308 | |
| 2309 | if (!vms->nr_pages) |
| 2310 | return; |
| 2311 | |
| 2312 | if (vms->clear_ptes) |
| 2313 | return reattach_vmas(mas_detach); |
| 2314 | |
| 2315 | /* |
| 2316 | * Aborting cannot just call the vm_ops open() because they are often |
| 2317 | * not symmetrical and state data has been lost. Resort to the old |
| 2318 | * failure method of leaving a gap where the MAP_FIXED mapping failed. |
| 2319 | */ |
| 2320 | mas_set_range(mas, start: vms->start, last: vms->end - 1); |
| 2321 | mas_store_gfp(mas, NULL, GFP_KERNEL|__GFP_NOFAIL); |
| 2322 | /* Clean up the insertion of the unfortunate gap */ |
| 2323 | vms_complete_munmap_vmas(vms, mas_detach); |
| 2324 | } |
| 2325 | |
| 2326 | static void update_ksm_flags(struct mmap_state *map) |
| 2327 | { |
| 2328 | map->vm_flags = ksm_vma_flags(mm: map->mm, file: map->file, vm_flags: map->vm_flags); |
| 2329 | } |
| 2330 | |
| 2331 | /* |
| 2332 | * __mmap_prepare() - Prepare to gather any overlapping VMAs that need to be |
| 2333 | * unmapped once the map operation is completed, check limits, account mapping |
| 2334 | * and clean up any pre-existing VMAs. |
| 2335 | * |
| 2336 | * @map: Mapping state. |
| 2337 | * @uf: Userfaultfd context list. |
| 2338 | * |
| 2339 | * Returns: 0 on success, error code otherwise. |
| 2340 | */ |
| 2341 | static int __mmap_prepare(struct mmap_state *map, struct list_head *uf) |
| 2342 | { |
| 2343 | int error; |
| 2344 | struct vma_iterator *vmi = map->vmi; |
| 2345 | struct vma_munmap_struct *vms = &map->vms; |
| 2346 | |
| 2347 | /* Find the first overlapping VMA and initialise unmap state. */ |
| 2348 | vms->vma = vma_find(vmi, max: map->end); |
| 2349 | init_vma_munmap(vms, vmi, vma: vms->vma, start: map->addr, end: map->end, uf, |
| 2350 | /* unlock = */ false); |
| 2351 | |
| 2352 | /* OK, we have overlapping VMAs - prepare to unmap them. */ |
| 2353 | if (vms->vma) { |
| 2354 | mt_init_flags(mt: &map->mt_detach, |
| 2355 | flags: vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK); |
| 2356 | mt_on_stack(map->mt_detach); |
| 2357 | mas_init(mas: &map->mas_detach, tree: &map->mt_detach, /* addr = */ 0); |
| 2358 | /* Prepare to unmap any existing mapping in the area */ |
| 2359 | error = vms_gather_munmap_vmas(vms, mas_detach: &map->mas_detach); |
| 2360 | if (error) { |
| 2361 | /* On error VMAs will already have been reattached. */ |
| 2362 | vms->nr_pages = 0; |
| 2363 | return error; |
| 2364 | } |
| 2365 | |
| 2366 | map->next = vms->next; |
| 2367 | map->prev = vms->prev; |
| 2368 | } else { |
| 2369 | map->next = vma_iter_next_rewind(vmi, pprev: &map->prev); |
| 2370 | } |
| 2371 | |
| 2372 | /* Check against address space limit. */ |
| 2373 | if (!may_expand_vm(map->mm, map->vm_flags, npages: map->pglen - vms->nr_pages)) |
| 2374 | return -ENOMEM; |
| 2375 | |
| 2376 | /* Private writable mapping: check memory availability. */ |
| 2377 | if (accountable_mapping(file: map->file, vm_flags: map->vm_flags)) { |
| 2378 | map->charged = map->pglen; |
| 2379 | map->charged -= vms->nr_accounted; |
| 2380 | if (map->charged) { |
| 2381 | error = security_vm_enough_memory_mm(mm: map->mm, pages: map->charged); |
| 2382 | if (error) |
| 2383 | return error; |
| 2384 | } |
| 2385 | |
| 2386 | vms->nr_accounted = 0; |
| 2387 | map->vm_flags |= VM_ACCOUNT; |
| 2388 | } |
| 2389 | |
| 2390 | /* |
| 2391 | * Clear PTEs while the vma is still in the tree so that rmap |
| 2392 | * cannot race with the freeing later in the truncate scenario. |
| 2393 | * This is also needed for mmap_file(), which is why vm_ops |
| 2394 | * close function is called. |
| 2395 | */ |
| 2396 | vms_clean_up_area(vms, mas_detach: &map->mas_detach); |
| 2397 | |
| 2398 | return 0; |
| 2399 | } |
| 2400 | |
| 2401 | |
| 2402 | static int __mmap_new_file_vma(struct mmap_state *map, |
| 2403 | struct vm_area_struct *vma) |
| 2404 | { |
| 2405 | struct vma_iterator *vmi = map->vmi; |
| 2406 | int error; |
| 2407 | |
| 2408 | vma->vm_file = get_file(f: map->file); |
| 2409 | |
| 2410 | if (!map->file->f_op->mmap) |
| 2411 | return 0; |
| 2412 | |
| 2413 | error = mmap_file(file: vma->vm_file, vma); |
| 2414 | if (error) { |
| 2415 | fput(vma->vm_file); |
| 2416 | vma->vm_file = NULL; |
| 2417 | |
| 2418 | vma_iter_set(vmi, addr: vma->vm_end); |
| 2419 | /* Undo any partial mapping done by a device driver. */ |
| 2420 | unmap_region(mas: &vmi->mas, vma, prev: map->prev, next: map->next); |
| 2421 | |
| 2422 | return error; |
| 2423 | } |
| 2424 | |
| 2425 | /* Drivers cannot alter the address of the VMA. */ |
| 2426 | WARN_ON_ONCE(map->addr != vma->vm_start); |
| 2427 | /* |
| 2428 | * Drivers should not permit writability when previously it was |
| 2429 | * disallowed. |
| 2430 | */ |
| 2431 | VM_WARN_ON_ONCE(map->vm_flags != vma->vm_flags && |
| 2432 | !(map->vm_flags & VM_MAYWRITE) && |
| 2433 | (vma->vm_flags & VM_MAYWRITE)); |
| 2434 | |
| 2435 | map->file = vma->vm_file; |
| 2436 | map->vm_flags = vma->vm_flags; |
| 2437 | |
| 2438 | return 0; |
| 2439 | } |
| 2440 | |
| 2441 | /* |
| 2442 | * __mmap_new_vma() - Allocate a new VMA for the region, as merging was not |
| 2443 | * possible. |
| 2444 | * |
| 2445 | * @map: Mapping state. |
| 2446 | * @vmap: Output pointer for the new VMA. |
| 2447 | * |
| 2448 | * Returns: Zero on success, or an error. |
| 2449 | */ |
| 2450 | static int __mmap_new_vma(struct mmap_state *map, struct vm_area_struct **vmap) |
| 2451 | { |
| 2452 | struct vma_iterator *vmi = map->vmi; |
| 2453 | int error = 0; |
| 2454 | struct vm_area_struct *vma; |
| 2455 | |
| 2456 | /* |
| 2457 | * Determine the object being mapped and call the appropriate |
| 2458 | * specific mapper. the address has already been validated, but |
| 2459 | * not unmapped, but the maps are removed from the list. |
| 2460 | */ |
| 2461 | vma = vm_area_alloc(mm: map->mm); |
| 2462 | if (!vma) |
| 2463 | return -ENOMEM; |
| 2464 | |
| 2465 | vma_iter_config(vmi, index: map->addr, last: map->end); |
| 2466 | vma_set_range(vma, start: map->addr, end: map->end, pgoff: map->pgoff); |
| 2467 | vm_flags_init(vma, flags: map->vm_flags); |
| 2468 | vma->vm_page_prot = map->page_prot; |
| 2469 | |
| 2470 | if (vma_iter_prealloc(vmi, vma)) { |
| 2471 | error = -ENOMEM; |
| 2472 | goto free_vma; |
| 2473 | } |
| 2474 | |
| 2475 | if (map->file) |
| 2476 | error = __mmap_new_file_vma(map, vma); |
| 2477 | else if (map->vm_flags & VM_SHARED) |
| 2478 | error = shmem_zero_setup(vma); |
| 2479 | else |
| 2480 | vma_set_anonymous(vma); |
| 2481 | |
| 2482 | if (error) |
| 2483 | goto free_iter_vma; |
| 2484 | |
| 2485 | if (!map->check_ksm_early) { |
| 2486 | update_ksm_flags(map); |
| 2487 | vm_flags_init(vma, flags: map->vm_flags); |
| 2488 | } |
| 2489 | |
| 2490 | #ifdef CONFIG_SPARC64 |
| 2491 | /* TODO: Fix SPARC ADI! */ |
| 2492 | WARN_ON_ONCE(!arch_validate_flags(map->vm_flags)); |
| 2493 | #endif |
| 2494 | |
| 2495 | /* Lock the VMA since it is modified after insertion into VMA tree */ |
| 2496 | vma_start_write(vma); |
| 2497 | vma_iter_store_new(vmi, vma); |
| 2498 | map->mm->map_count++; |
| 2499 | vma_link_file(vma); |
| 2500 | |
| 2501 | /* |
| 2502 | * vma_merge_new_range() calls khugepaged_enter_vma() too, the below |
| 2503 | * call covers the non-merge case. |
| 2504 | */ |
| 2505 | if (!vma_is_anonymous(vma)) |
| 2506 | khugepaged_enter_vma(vma, vm_flags: map->vm_flags); |
| 2507 | *vmap = vma; |
| 2508 | return 0; |
| 2509 | |
| 2510 | free_iter_vma: |
| 2511 | vma_iter_free(vmi); |
| 2512 | free_vma: |
| 2513 | vm_area_free(vma); |
| 2514 | return error; |
| 2515 | } |
| 2516 | |
| 2517 | /* |
| 2518 | * __mmap_complete() - Unmap any VMAs we overlap, account memory mapping |
| 2519 | * statistics, handle locking and finalise the VMA. |
| 2520 | * |
| 2521 | * @map: Mapping state. |
| 2522 | * @vma: Merged or newly allocated VMA for the mmap()'d region. |
| 2523 | */ |
| 2524 | static void __mmap_complete(struct mmap_state *map, struct vm_area_struct *vma) |
| 2525 | { |
| 2526 | struct mm_struct *mm = map->mm; |
| 2527 | vm_flags_t vm_flags = vma->vm_flags; |
| 2528 | |
| 2529 | perf_event_mmap(vma); |
| 2530 | |
| 2531 | /* Unmap any existing mapping in the area. */ |
| 2532 | vms_complete_munmap_vmas(vms: &map->vms, mas_detach: &map->mas_detach); |
| 2533 | |
| 2534 | vm_stat_account(mm, vma->vm_flags, npages: map->pglen); |
| 2535 | if (vm_flags & VM_LOCKED) { |
| 2536 | if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) || |
| 2537 | is_vm_hugetlb_page(vma) || |
| 2538 | vma == get_gate_vma(mm)) |
| 2539 | vm_flags_clear(vma, VM_LOCKED_MASK); |
| 2540 | else |
| 2541 | mm->locked_vm += map->pglen; |
| 2542 | } |
| 2543 | |
| 2544 | if (vma->vm_file) |
| 2545 | uprobe_mmap(vma); |
| 2546 | |
| 2547 | /* |
| 2548 | * New (or expanded) vma always get soft dirty status. |
| 2549 | * Otherwise user-space soft-dirty page tracker won't |
| 2550 | * be able to distinguish situation when vma area unmapped, |
| 2551 | * then new mapped in-place (which must be aimed as |
| 2552 | * a completely new data area). |
| 2553 | */ |
| 2554 | vm_flags_set(vma, VM_SOFTDIRTY); |
| 2555 | |
| 2556 | vma_set_page_prot(vma); |
| 2557 | } |
| 2558 | |
| 2559 | /* |
| 2560 | * Invoke the f_op->mmap_prepare() callback for a file-backed mapping that |
| 2561 | * specifies it. |
| 2562 | * |
| 2563 | * This is called prior to any merge attempt, and updates whitelisted fields |
| 2564 | * that are permitted to be updated by the caller. |
| 2565 | * |
| 2566 | * All but user-defined fields will be pre-populated with original values. |
| 2567 | * |
| 2568 | * Returns 0 on success, or an error code otherwise. |
| 2569 | */ |
| 2570 | static int call_mmap_prepare(struct mmap_state *map) |
| 2571 | { |
| 2572 | int err; |
| 2573 | struct vm_area_desc desc = { |
| 2574 | .mm = map->mm, |
| 2575 | .file = map->file, |
| 2576 | .start = map->addr, |
| 2577 | .end = map->end, |
| 2578 | |
| 2579 | .pgoff = map->pgoff, |
| 2580 | .vm_file = map->file, |
| 2581 | .vm_flags = map->vm_flags, |
| 2582 | .page_prot = map->page_prot, |
| 2583 | }; |
| 2584 | |
| 2585 | /* Invoke the hook. */ |
| 2586 | err = vfs_mmap_prepare(file: map->file, desc: &desc); |
| 2587 | if (err) |
| 2588 | return err; |
| 2589 | |
| 2590 | /* Update fields permitted to be changed. */ |
| 2591 | map->pgoff = desc.pgoff; |
| 2592 | map->file = desc.vm_file; |
| 2593 | map->vm_flags = desc.vm_flags; |
| 2594 | map->page_prot = desc.page_prot; |
| 2595 | /* User-defined fields. */ |
| 2596 | map->vm_ops = desc.vm_ops; |
| 2597 | map->vm_private_data = desc.private_data; |
| 2598 | |
| 2599 | return 0; |
| 2600 | } |
| 2601 | |
| 2602 | static void set_vma_user_defined_fields(struct vm_area_struct *vma, |
| 2603 | struct mmap_state *map) |
| 2604 | { |
| 2605 | if (map->vm_ops) |
| 2606 | vma->vm_ops = map->vm_ops; |
| 2607 | vma->vm_private_data = map->vm_private_data; |
| 2608 | } |
| 2609 | |
| 2610 | /* |
| 2611 | * Are we guaranteed no driver can change state such as to preclude KSM merging? |
| 2612 | * If so, let's set the KSM mergeable flag early so we don't break VMA merging. |
| 2613 | */ |
| 2614 | static bool can_set_ksm_flags_early(struct mmap_state *map) |
| 2615 | { |
| 2616 | struct file *file = map->file; |
| 2617 | |
| 2618 | /* Anonymous mappings have no driver which can change them. */ |
| 2619 | if (!file) |
| 2620 | return true; |
| 2621 | |
| 2622 | /* |
| 2623 | * If .mmap_prepare() is specified, then the driver will have already |
| 2624 | * manipulated state prior to updating KSM flags. So no need to worry |
| 2625 | * about mmap callbacks modifying VMA flags after the KSM flag has been |
| 2626 | * updated here, which could otherwise affect KSM eligibility. |
| 2627 | */ |
| 2628 | if (file->f_op->mmap_prepare) |
| 2629 | return true; |
| 2630 | |
| 2631 | /* shmem is safe. */ |
| 2632 | if (shmem_file(file)) |
| 2633 | return true; |
| 2634 | |
| 2635 | /* Any other .mmap callback is not safe. */ |
| 2636 | return false; |
| 2637 | } |
| 2638 | |
| 2639 | static unsigned long __mmap_region(struct file *file, unsigned long addr, |
| 2640 | unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, |
| 2641 | struct list_head *uf) |
| 2642 | { |
| 2643 | struct mm_struct *mm = current->mm; |
| 2644 | struct vm_area_struct *vma = NULL; |
| 2645 | int error; |
| 2646 | bool have_mmap_prepare = file && file->f_op->mmap_prepare; |
| 2647 | VMA_ITERATOR(vmi, mm, addr); |
| 2648 | MMAP_STATE(map, mm, &vmi, addr, len, pgoff, vm_flags, file); |
| 2649 | |
| 2650 | map.check_ksm_early = can_set_ksm_flags_early(map: &map); |
| 2651 | |
| 2652 | error = __mmap_prepare(map: &map, uf); |
| 2653 | if (!error && have_mmap_prepare) |
| 2654 | error = call_mmap_prepare(map: &map); |
| 2655 | if (error) |
| 2656 | goto abort_munmap; |
| 2657 | |
| 2658 | if (map.check_ksm_early) |
| 2659 | update_ksm_flags(map: &map); |
| 2660 | |
| 2661 | /* Attempt to merge with adjacent VMAs... */ |
| 2662 | if (map.prev || map.next) { |
| 2663 | VMG_MMAP_STATE(vmg, &map, /* vma = */ NULL); |
| 2664 | |
| 2665 | vma = vma_merge_new_range(vmg: &vmg); |
| 2666 | } |
| 2667 | |
| 2668 | /* ...but if we can't, allocate a new VMA. */ |
| 2669 | if (!vma) { |
| 2670 | error = __mmap_new_vma(map: &map, vmap: &vma); |
| 2671 | if (error) |
| 2672 | goto unacct_error; |
| 2673 | } |
| 2674 | |
| 2675 | if (have_mmap_prepare) |
| 2676 | set_vma_user_defined_fields(vma, map: &map); |
| 2677 | |
| 2678 | __mmap_complete(map: &map, vma); |
| 2679 | |
| 2680 | return addr; |
| 2681 | |
| 2682 | /* Accounting was done by __mmap_prepare(). */ |
| 2683 | unacct_error: |
| 2684 | if (map.charged) |
| 2685 | vm_unacct_memory(pages: map.charged); |
| 2686 | abort_munmap: |
| 2687 | vms_abort_munmap_vmas(vms: &map.vms, mas_detach: &map.mas_detach); |
| 2688 | return error; |
| 2689 | } |
| 2690 | |
| 2691 | /** |
| 2692 | * mmap_region() - Actually perform the userland mapping of a VMA into |
| 2693 | * current->mm with known, aligned and overflow-checked @addr and @len, and |
| 2694 | * correctly determined VMA flags @vm_flags and page offset @pgoff. |
| 2695 | * |
| 2696 | * This is an internal memory management function, and should not be used |
| 2697 | * directly. |
| 2698 | * |
| 2699 | * The caller must write-lock current->mm->mmap_lock. |
| 2700 | * |
| 2701 | * @file: If a file-backed mapping, a pointer to the struct file describing the |
| 2702 | * file to be mapped, otherwise NULL. |
| 2703 | * @addr: The page-aligned address at which to perform the mapping. |
| 2704 | * @len: The page-aligned, non-zero, length of the mapping. |
| 2705 | * @vm_flags: The VMA flags which should be applied to the mapping. |
| 2706 | * @pgoff: If @file is specified, the page offset into the file, if not then |
| 2707 | * the virtual page offset in memory of the anonymous mapping. |
| 2708 | * @uf: Optionally, a pointer to a list head used for tracking userfaultfd unmap |
| 2709 | * events. |
| 2710 | * |
| 2711 | * Returns: Either an error, or the address at which the requested mapping has |
| 2712 | * been performed. |
| 2713 | */ |
| 2714 | unsigned long mmap_region(struct file *file, unsigned long addr, |
| 2715 | unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, |
| 2716 | struct list_head *uf) |
| 2717 | { |
| 2718 | unsigned long ret; |
| 2719 | bool writable_file_mapping = false; |
| 2720 | |
| 2721 | mmap_assert_write_locked(current->mm); |
| 2722 | |
| 2723 | /* Check to see if MDWE is applicable. */ |
| 2724 | if (map_deny_write_exec(old: vm_flags, new: vm_flags)) |
| 2725 | return -EACCES; |
| 2726 | |
| 2727 | /* Allow architectures to sanity-check the vm_flags. */ |
| 2728 | if (!arch_validate_flags(flags: vm_flags)) |
| 2729 | return -EINVAL; |
| 2730 | |
| 2731 | /* Map writable and ensure this isn't a sealed memfd. */ |
| 2732 | if (file && is_shared_maywrite(vm_flags)) { |
| 2733 | int error = mapping_map_writable(mapping: file->f_mapping); |
| 2734 | |
| 2735 | if (error) |
| 2736 | return error; |
| 2737 | writable_file_mapping = true; |
| 2738 | } |
| 2739 | |
| 2740 | ret = __mmap_region(file, addr, len, vm_flags, pgoff, uf); |
| 2741 | |
| 2742 | /* Clear our write mapping regardless of error. */ |
| 2743 | if (writable_file_mapping) |
| 2744 | mapping_unmap_writable(mapping: file->f_mapping); |
| 2745 | |
| 2746 | validate_mm(current->mm); |
| 2747 | return ret; |
| 2748 | } |
| 2749 | |
| 2750 | /* |
| 2751 | * do_brk_flags() - Increase the brk vma if the flags match. |
| 2752 | * @vmi: The vma iterator |
| 2753 | * @addr: The start address |
| 2754 | * @len: The length of the increase |
| 2755 | * @vma: The vma, |
| 2756 | * @vm_flags: The VMA Flags |
| 2757 | * |
| 2758 | * Extend the brk VMA from addr to addr + len. If the VMA is NULL or the flags |
| 2759 | * do not match then create a new anonymous VMA. Eventually we may be able to |
| 2760 | * do some brk-specific accounting here. |
| 2761 | */ |
| 2762 | int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma, |
| 2763 | unsigned long addr, unsigned long len, vm_flags_t vm_flags) |
| 2764 | { |
| 2765 | struct mm_struct *mm = current->mm; |
| 2766 | |
| 2767 | /* |
| 2768 | * Check against address space limits by the changed size |
| 2769 | * Note: This happens *after* clearing old mappings in some code paths. |
| 2770 | */ |
| 2771 | vm_flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; |
| 2772 | vm_flags = ksm_vma_flags(mm, NULL, vm_flags); |
| 2773 | if (!may_expand_vm(mm, vm_flags, npages: len >> PAGE_SHIFT)) |
| 2774 | return -ENOMEM; |
| 2775 | |
| 2776 | if (mm->map_count > sysctl_max_map_count) |
| 2777 | return -ENOMEM; |
| 2778 | |
| 2779 | if (security_vm_enough_memory_mm(mm, pages: len >> PAGE_SHIFT)) |
| 2780 | return -ENOMEM; |
| 2781 | |
| 2782 | /* |
| 2783 | * Expand the existing vma if possible; Note that singular lists do not |
| 2784 | * occur after forking, so the expand will only happen on new VMAs. |
| 2785 | */ |
| 2786 | if (vma && vma->vm_end == addr) { |
| 2787 | VMG_STATE(vmg, mm, vmi, addr, addr + len, vm_flags, PHYS_PFN(addr)); |
| 2788 | |
| 2789 | vmg.prev = vma; |
| 2790 | /* vmi is positioned at prev, which this mode expects. */ |
| 2791 | vmg.just_expand = true; |
| 2792 | |
| 2793 | if (vma_merge_new_range(vmg: &vmg)) |
| 2794 | goto out; |
| 2795 | else if (vmg_nomem(vmg: &vmg)) |
| 2796 | goto unacct_fail; |
| 2797 | } |
| 2798 | |
| 2799 | if (vma) |
| 2800 | vma_iter_next_range(vmi); |
| 2801 | /* create a vma struct for an anonymous mapping */ |
| 2802 | vma = vm_area_alloc(mm); |
| 2803 | if (!vma) |
| 2804 | goto unacct_fail; |
| 2805 | |
| 2806 | vma_set_anonymous(vma); |
| 2807 | vma_set_range(vma, start: addr, end: addr + len, pgoff: addr >> PAGE_SHIFT); |
| 2808 | vm_flags_init(vma, flags: vm_flags); |
| 2809 | vma->vm_page_prot = vm_get_page_prot(vm_flags); |
| 2810 | vma_start_write(vma); |
| 2811 | if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL)) |
| 2812 | goto mas_store_fail; |
| 2813 | |
| 2814 | mm->map_count++; |
| 2815 | validate_mm(mm); |
| 2816 | out: |
| 2817 | perf_event_mmap(vma); |
| 2818 | mm->total_vm += len >> PAGE_SHIFT; |
| 2819 | mm->data_vm += len >> PAGE_SHIFT; |
| 2820 | if (vm_flags & VM_LOCKED) |
| 2821 | mm->locked_vm += (len >> PAGE_SHIFT); |
| 2822 | vm_flags_set(vma, VM_SOFTDIRTY); |
| 2823 | return 0; |
| 2824 | |
| 2825 | mas_store_fail: |
| 2826 | vm_area_free(vma); |
| 2827 | unacct_fail: |
| 2828 | vm_unacct_memory(pages: len >> PAGE_SHIFT); |
| 2829 | return -ENOMEM; |
| 2830 | } |
| 2831 | |
| 2832 | /** |
| 2833 | * unmapped_area() - Find an area between the low_limit and the high_limit with |
| 2834 | * the correct alignment and offset, all from @info. Note: current->mm is used |
| 2835 | * for the search. |
| 2836 | * |
| 2837 | * @info: The unmapped area information including the range [low_limit - |
| 2838 | * high_limit), the alignment offset and mask. |
| 2839 | * |
| 2840 | * Return: A memory address or -ENOMEM. |
| 2841 | */ |
| 2842 | unsigned long unmapped_area(struct vm_unmapped_area_info *info) |
| 2843 | { |
| 2844 | unsigned long length, gap; |
| 2845 | unsigned long low_limit, high_limit; |
| 2846 | struct vm_area_struct *tmp; |
| 2847 | VMA_ITERATOR(vmi, current->mm, 0); |
| 2848 | |
| 2849 | /* Adjust search length to account for worst case alignment overhead */ |
| 2850 | length = info->length + info->align_mask + info->start_gap; |
| 2851 | if (length < info->length) |
| 2852 | return -ENOMEM; |
| 2853 | |
| 2854 | low_limit = info->low_limit; |
| 2855 | if (low_limit < mmap_min_addr) |
| 2856 | low_limit = mmap_min_addr; |
| 2857 | high_limit = info->high_limit; |
| 2858 | retry: |
| 2859 | if (vma_iter_area_lowest(vmi: &vmi, min: low_limit, max: high_limit, size: length)) |
| 2860 | return -ENOMEM; |
| 2861 | |
| 2862 | /* |
| 2863 | * Adjust for the gap first so it doesn't interfere with the |
| 2864 | * later alignment. The first step is the minimum needed to |
| 2865 | * fulill the start gap, the next steps is the minimum to align |
| 2866 | * that. It is the minimum needed to fulill both. |
| 2867 | */ |
| 2868 | gap = vma_iter_addr(vmi: &vmi) + info->start_gap; |
| 2869 | gap += (info->align_offset - gap) & info->align_mask; |
| 2870 | tmp = vma_next(vmi: &vmi); |
| 2871 | if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */ |
| 2872 | if (vm_start_gap(vma: tmp) < gap + length - 1) { |
| 2873 | low_limit = tmp->vm_end; |
| 2874 | vma_iter_reset(vmi: &vmi); |
| 2875 | goto retry; |
| 2876 | } |
| 2877 | } else { |
| 2878 | tmp = vma_prev(vmi: &vmi); |
| 2879 | if (tmp && vm_end_gap(vma: tmp) > gap) { |
| 2880 | low_limit = vm_end_gap(vma: tmp); |
| 2881 | vma_iter_reset(vmi: &vmi); |
| 2882 | goto retry; |
| 2883 | } |
| 2884 | } |
| 2885 | |
| 2886 | return gap; |
| 2887 | } |
| 2888 | |
| 2889 | /** |
| 2890 | * unmapped_area_topdown() - Find an area between the low_limit and the |
| 2891 | * high_limit with the correct alignment and offset at the highest available |
| 2892 | * address, all from @info. Note: current->mm is used for the search. |
| 2893 | * |
| 2894 | * @info: The unmapped area information including the range [low_limit - |
| 2895 | * high_limit), the alignment offset and mask. |
| 2896 | * |
| 2897 | * Return: A memory address or -ENOMEM. |
| 2898 | */ |
| 2899 | unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info) |
| 2900 | { |
| 2901 | unsigned long length, gap, gap_end; |
| 2902 | unsigned long low_limit, high_limit; |
| 2903 | struct vm_area_struct *tmp; |
| 2904 | VMA_ITERATOR(vmi, current->mm, 0); |
| 2905 | |
| 2906 | /* Adjust search length to account for worst case alignment overhead */ |
| 2907 | length = info->length + info->align_mask + info->start_gap; |
| 2908 | if (length < info->length) |
| 2909 | return -ENOMEM; |
| 2910 | |
| 2911 | low_limit = info->low_limit; |
| 2912 | if (low_limit < mmap_min_addr) |
| 2913 | low_limit = mmap_min_addr; |
| 2914 | high_limit = info->high_limit; |
| 2915 | retry: |
| 2916 | if (vma_iter_area_highest(vmi: &vmi, min: low_limit, max: high_limit, size: length)) |
| 2917 | return -ENOMEM; |
| 2918 | |
| 2919 | gap = vma_iter_end(vmi: &vmi) - info->length; |
| 2920 | gap -= (gap - info->align_offset) & info->align_mask; |
| 2921 | gap_end = vma_iter_end(vmi: &vmi); |
| 2922 | tmp = vma_next(vmi: &vmi); |
| 2923 | if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */ |
| 2924 | if (vm_start_gap(vma: tmp) < gap_end) { |
| 2925 | high_limit = vm_start_gap(vma: tmp); |
| 2926 | vma_iter_reset(vmi: &vmi); |
| 2927 | goto retry; |
| 2928 | } |
| 2929 | } else { |
| 2930 | tmp = vma_prev(vmi: &vmi); |
| 2931 | if (tmp && vm_end_gap(vma: tmp) > gap) { |
| 2932 | high_limit = tmp->vm_start; |
| 2933 | vma_iter_reset(vmi: &vmi); |
| 2934 | goto retry; |
| 2935 | } |
| 2936 | } |
| 2937 | |
| 2938 | return gap; |
| 2939 | } |
| 2940 | |
| 2941 | /* |
| 2942 | * Verify that the stack growth is acceptable and |
| 2943 | * update accounting. This is shared with both the |
| 2944 | * grow-up and grow-down cases. |
| 2945 | */ |
| 2946 | static int acct_stack_growth(struct vm_area_struct *vma, |
| 2947 | unsigned long size, unsigned long grow) |
| 2948 | { |
| 2949 | struct mm_struct *mm = vma->vm_mm; |
| 2950 | unsigned long new_start; |
| 2951 | |
| 2952 | /* address space limit tests */ |
| 2953 | if (!may_expand_vm(mm, vma->vm_flags, npages: grow)) |
| 2954 | return -ENOMEM; |
| 2955 | |
| 2956 | /* Stack limit test */ |
| 2957 | if (size > rlimit(RLIMIT_STACK)) |
| 2958 | return -ENOMEM; |
| 2959 | |
| 2960 | /* mlock limit tests */ |
| 2961 | if (!mlock_future_ok(mm, vm_flags: vma->vm_flags, bytes: grow << PAGE_SHIFT)) |
| 2962 | return -ENOMEM; |
| 2963 | |
| 2964 | /* Check to ensure the stack will not grow into a hugetlb-only region */ |
| 2965 | new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : |
| 2966 | vma->vm_end - size; |
| 2967 | if (is_hugepage_only_range(mm: vma->vm_mm, addr: new_start, len: size)) |
| 2968 | return -EFAULT; |
| 2969 | |
| 2970 | /* |
| 2971 | * Overcommit.. This must be the final test, as it will |
| 2972 | * update security statistics. |
| 2973 | */ |
| 2974 | if (security_vm_enough_memory_mm(mm, pages: grow)) |
| 2975 | return -ENOMEM; |
| 2976 | |
| 2977 | return 0; |
| 2978 | } |
| 2979 | |
| 2980 | #if defined(CONFIG_STACK_GROWSUP) |
| 2981 | /* |
| 2982 | * PA-RISC uses this for its stack. |
| 2983 | * vma is the last one with address > vma->vm_end. Have to extend vma. |
| 2984 | */ |
| 2985 | int expand_upwards(struct vm_area_struct *vma, unsigned long address) |
| 2986 | { |
| 2987 | struct mm_struct *mm = vma->vm_mm; |
| 2988 | struct vm_area_struct *next; |
| 2989 | unsigned long gap_addr; |
| 2990 | int error = 0; |
| 2991 | VMA_ITERATOR(vmi, mm, vma->vm_start); |
| 2992 | |
| 2993 | if (!(vma->vm_flags & VM_GROWSUP)) |
| 2994 | return -EFAULT; |
| 2995 | |
| 2996 | mmap_assert_write_locked(mm); |
| 2997 | |
| 2998 | /* Guard against exceeding limits of the address space. */ |
| 2999 | address &= PAGE_MASK; |
| 3000 | if (address >= (TASK_SIZE & PAGE_MASK)) |
| 3001 | return -ENOMEM; |
| 3002 | address += PAGE_SIZE; |
| 3003 | |
| 3004 | /* Enforce stack_guard_gap */ |
| 3005 | gap_addr = address + stack_guard_gap; |
| 3006 | |
| 3007 | /* Guard against overflow */ |
| 3008 | if (gap_addr < address || gap_addr > TASK_SIZE) |
| 3009 | gap_addr = TASK_SIZE; |
| 3010 | |
| 3011 | next = find_vma_intersection(mm, vma->vm_end, gap_addr); |
| 3012 | if (next && vma_is_accessible(next)) { |
| 3013 | if (!(next->vm_flags & VM_GROWSUP)) |
| 3014 | return -ENOMEM; |
| 3015 | /* Check that both stack segments have the same anon_vma? */ |
| 3016 | } |
| 3017 | |
| 3018 | if (next) |
| 3019 | vma_iter_prev_range_limit(&vmi, address); |
| 3020 | |
| 3021 | vma_iter_config(&vmi, vma->vm_start, address); |
| 3022 | if (vma_iter_prealloc(&vmi, vma)) |
| 3023 | return -ENOMEM; |
| 3024 | |
| 3025 | /* We must make sure the anon_vma is allocated. */ |
| 3026 | if (unlikely(anon_vma_prepare(vma))) { |
| 3027 | vma_iter_free(&vmi); |
| 3028 | return -ENOMEM; |
| 3029 | } |
| 3030 | |
| 3031 | /* Lock the VMA before expanding to prevent concurrent page faults */ |
| 3032 | vma_start_write(vma); |
| 3033 | /* We update the anon VMA tree. */ |
| 3034 | anon_vma_lock_write(vma->anon_vma); |
| 3035 | |
| 3036 | /* Somebody else might have raced and expanded it already */ |
| 3037 | if (address > vma->vm_end) { |
| 3038 | unsigned long size, grow; |
| 3039 | |
| 3040 | size = address - vma->vm_start; |
| 3041 | grow = (address - vma->vm_end) >> PAGE_SHIFT; |
| 3042 | |
| 3043 | error = -ENOMEM; |
| 3044 | if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { |
| 3045 | error = acct_stack_growth(vma, size, grow); |
| 3046 | if (!error) { |
| 3047 | if (vma->vm_flags & VM_LOCKED) |
| 3048 | mm->locked_vm += grow; |
| 3049 | vm_stat_account(mm, vma->vm_flags, grow); |
| 3050 | anon_vma_interval_tree_pre_update_vma(vma); |
| 3051 | vma->vm_end = address; |
| 3052 | /* Overwrite old entry in mtree. */ |
| 3053 | vma_iter_store_overwrite(&vmi, vma); |
| 3054 | anon_vma_interval_tree_post_update_vma(vma); |
| 3055 | |
| 3056 | perf_event_mmap(vma); |
| 3057 | } |
| 3058 | } |
| 3059 | } |
| 3060 | anon_vma_unlock_write(vma->anon_vma); |
| 3061 | vma_iter_free(&vmi); |
| 3062 | validate_mm(mm); |
| 3063 | return error; |
| 3064 | } |
| 3065 | #endif /* CONFIG_STACK_GROWSUP */ |
| 3066 | |
| 3067 | /* |
| 3068 | * vma is the first one with address < vma->vm_start. Have to extend vma. |
| 3069 | * mmap_lock held for writing. |
| 3070 | */ |
| 3071 | int expand_downwards(struct vm_area_struct *vma, unsigned long address) |
| 3072 | { |
| 3073 | struct mm_struct *mm = vma->vm_mm; |
| 3074 | struct vm_area_struct *prev; |
| 3075 | int error = 0; |
| 3076 | VMA_ITERATOR(vmi, mm, vma->vm_start); |
| 3077 | |
| 3078 | if (!(vma->vm_flags & VM_GROWSDOWN)) |
| 3079 | return -EFAULT; |
| 3080 | |
| 3081 | mmap_assert_write_locked(mm); |
| 3082 | |
| 3083 | address &= PAGE_MASK; |
| 3084 | if (address < mmap_min_addr || address < FIRST_USER_ADDRESS) |
| 3085 | return -EPERM; |
| 3086 | |
| 3087 | /* Enforce stack_guard_gap */ |
| 3088 | prev = vma_prev(vmi: &vmi); |
| 3089 | /* Check that both stack segments have the same anon_vma? */ |
| 3090 | if (prev) { |
| 3091 | if (!(prev->vm_flags & VM_GROWSDOWN) && |
| 3092 | vma_is_accessible(vma: prev) && |
| 3093 | (address - prev->vm_end < stack_guard_gap)) |
| 3094 | return -ENOMEM; |
| 3095 | } |
| 3096 | |
| 3097 | if (prev) |
| 3098 | vma_iter_next_range_limit(vmi: &vmi, max: vma->vm_start); |
| 3099 | |
| 3100 | vma_iter_config(vmi: &vmi, index: address, last: vma->vm_end); |
| 3101 | if (vma_iter_prealloc(vmi: &vmi, vma)) |
| 3102 | return -ENOMEM; |
| 3103 | |
| 3104 | /* We must make sure the anon_vma is allocated. */ |
| 3105 | if (unlikely(anon_vma_prepare(vma))) { |
| 3106 | vma_iter_free(vmi: &vmi); |
| 3107 | return -ENOMEM; |
| 3108 | } |
| 3109 | |
| 3110 | /* Lock the VMA before expanding to prevent concurrent page faults */ |
| 3111 | vma_start_write(vma); |
| 3112 | /* We update the anon VMA tree. */ |
| 3113 | anon_vma_lock_write(anon_vma: vma->anon_vma); |
| 3114 | |
| 3115 | /* Somebody else might have raced and expanded it already */ |
| 3116 | if (address < vma->vm_start) { |
| 3117 | unsigned long size, grow; |
| 3118 | |
| 3119 | size = vma->vm_end - address; |
| 3120 | grow = (vma->vm_start - address) >> PAGE_SHIFT; |
| 3121 | |
| 3122 | error = -ENOMEM; |
| 3123 | if (grow <= vma->vm_pgoff) { |
| 3124 | error = acct_stack_growth(vma, size, grow); |
| 3125 | if (!error) { |
| 3126 | if (vma->vm_flags & VM_LOCKED) |
| 3127 | mm->locked_vm += grow; |
| 3128 | vm_stat_account(mm, vma->vm_flags, npages: grow); |
| 3129 | anon_vma_interval_tree_pre_update_vma(vma); |
| 3130 | vma->vm_start = address; |
| 3131 | vma->vm_pgoff -= grow; |
| 3132 | /* Overwrite old entry in mtree. */ |
| 3133 | vma_iter_store_overwrite(vmi: &vmi, vma); |
| 3134 | anon_vma_interval_tree_post_update_vma(vma); |
| 3135 | |
| 3136 | perf_event_mmap(vma); |
| 3137 | } |
| 3138 | } |
| 3139 | } |
| 3140 | anon_vma_unlock_write(anon_vma: vma->anon_vma); |
| 3141 | vma_iter_free(vmi: &vmi); |
| 3142 | validate_mm(mm); |
| 3143 | return error; |
| 3144 | } |
| 3145 | |
| 3146 | int __vm_munmap(unsigned long start, size_t len, bool unlock) |
| 3147 | { |
| 3148 | int ret; |
| 3149 | struct mm_struct *mm = current->mm; |
| 3150 | LIST_HEAD(uf); |
| 3151 | VMA_ITERATOR(vmi, mm, start); |
| 3152 | |
| 3153 | if (mmap_write_lock_killable(mm)) |
| 3154 | return -EINTR; |
| 3155 | |
| 3156 | ret = do_vmi_munmap(vmi: &vmi, mm, start, len, uf: &uf, unlock); |
| 3157 | if (ret || !unlock) |
| 3158 | mmap_write_unlock(mm); |
| 3159 | |
| 3160 | userfaultfd_unmap_complete(mm, uf: &uf); |
| 3161 | return ret; |
| 3162 | } |
| 3163 | |
| 3164 | /* Insert vm structure into process list sorted by address |
| 3165 | * and into the inode's i_mmap tree. If vm_file is non-NULL |
| 3166 | * then i_mmap_rwsem is taken here. |
| 3167 | */ |
| 3168 | int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) |
| 3169 | { |
| 3170 | unsigned long charged = vma_pages(vma); |
| 3171 | |
| 3172 | |
| 3173 | if (find_vma_intersection(mm, start_addr: vma->vm_start, end_addr: vma->vm_end)) |
| 3174 | return -ENOMEM; |
| 3175 | |
| 3176 | if ((vma->vm_flags & VM_ACCOUNT) && |
| 3177 | security_vm_enough_memory_mm(mm, pages: charged)) |
| 3178 | return -ENOMEM; |
| 3179 | |
| 3180 | /* |
| 3181 | * The vm_pgoff of a purely anonymous vma should be irrelevant |
| 3182 | * until its first write fault, when page's anon_vma and index |
| 3183 | * are set. But now set the vm_pgoff it will almost certainly |
| 3184 | * end up with (unless mremap moves it elsewhere before that |
| 3185 | * first wfault), so /proc/pid/maps tells a consistent story. |
| 3186 | * |
| 3187 | * By setting it to reflect the virtual start address of the |
| 3188 | * vma, merges and splits can happen in a seamless way, just |
| 3189 | * using the existing file pgoff checks and manipulations. |
| 3190 | * Similarly in do_mmap and in do_brk_flags. |
| 3191 | */ |
| 3192 | if (vma_is_anonymous(vma)) { |
| 3193 | BUG_ON(vma->anon_vma); |
| 3194 | vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; |
| 3195 | } |
| 3196 | |
| 3197 | if (vma_link(mm, vma)) { |
| 3198 | if (vma->vm_flags & VM_ACCOUNT) |
| 3199 | vm_unacct_memory(pages: charged); |
| 3200 | return -ENOMEM; |
| 3201 | } |
| 3202 | |
| 3203 | return 0; |
| 3204 | } |
| 3205 | |