1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * IP multicast routing support for mrouted 3.6/3.8
4 *
5 * (c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
6 * Linux Consultancy and Custom Driver Development
7 *
8 * Fixes:
9 * Michael Chastain : Incorrect size of copying.
10 * Alan Cox : Added the cache manager code
11 * Alan Cox : Fixed the clone/copy bug and device race.
12 * Mike McLagan : Routing by source
13 * Malcolm Beattie : Buffer handling fixes.
14 * Alexey Kuznetsov : Double buffer free and other fixes.
15 * SVR Anand : Fixed several multicast bugs and problems.
16 * Alexey Kuznetsov : Status, optimisations and more.
17 * Brad Parker : Better behaviour on mrouted upcall
18 * overflow.
19 * Carlos Picoto : PIMv1 Support
20 * Pavlin Ivanov Radoslavov: PIMv2 Registers must checksum only PIM header
21 * Relax this requirement to work with older peers.
22 */
23
24#include <linux/uaccess.h>
25#include <linux/types.h>
26#include <linux/cache.h>
27#include <linux/capability.h>
28#include <linux/errno.h>
29#include <linux/mm.h>
30#include <linux/kernel.h>
31#include <linux/fcntl.h>
32#include <linux/stat.h>
33#include <linux/socket.h>
34#include <linux/in.h>
35#include <linux/inet.h>
36#include <linux/netdevice.h>
37#include <linux/inetdevice.h>
38#include <linux/igmp.h>
39#include <linux/proc_fs.h>
40#include <linux/seq_file.h>
41#include <linux/mroute.h>
42#include <linux/init.h>
43#include <linux/if_ether.h>
44#include <linux/slab.h>
45#include <net/flow.h>
46#include <net/net_namespace.h>
47#include <net/ip.h>
48#include <net/protocol.h>
49#include <linux/skbuff.h>
50#include <net/route.h>
51#include <net/icmp.h>
52#include <net/udp.h>
53#include <net/raw.h>
54#include <linux/notifier.h>
55#include <linux/if_arp.h>
56#include <linux/netfilter_ipv4.h>
57#include <linux/compat.h>
58#include <linux/export.h>
59#include <linux/rhashtable.h>
60#include <net/ip_tunnels.h>
61#include <net/checksum.h>
62#include <net/netlink.h>
63#include <net/fib_rules.h>
64#include <linux/netconf.h>
65#include <net/rtnh.h>
66#include <net/inet_dscp.h>
67
68#include <linux/nospec.h>
69
70struct ipmr_rule {
71 struct fib_rule common;
72};
73
74struct ipmr_result {
75 struct mr_table *mrt;
76};
77
78/* Big lock, protecting vif table, mrt cache and mroute socket state.
79 * Note that the changes are semaphored via rtnl_lock.
80 */
81
82static DEFINE_SPINLOCK(mrt_lock);
83
84static struct net_device *vif_dev_read(const struct vif_device *vif)
85{
86 return rcu_dereference(vif->dev);
87}
88
89/* Multicast router control variables */
90
91/* Special spinlock for queue of unresolved entries */
92static DEFINE_SPINLOCK(mfc_unres_lock);
93
94/* We return to original Alan's scheme. Hash table of resolved
95 * entries is changed only in process context and protected
96 * with weak lock mrt_lock. Queue of unresolved entries is protected
97 * with strong spinlock mfc_unres_lock.
98 *
99 * In this case data path is free of exclusive locks at all.
100 */
101
102static struct kmem_cache *mrt_cachep __ro_after_init;
103
104static struct mr_table *ipmr_new_table(struct net *net, u32 id);
105static void ipmr_free_table(struct mr_table *mrt);
106
107static void ip_mr_forward(struct net *net, struct mr_table *mrt,
108 struct net_device *dev, struct sk_buff *skb,
109 struct mfc_cache *cache, int local);
110static int ipmr_cache_report(const struct mr_table *mrt,
111 struct sk_buff *pkt, vifi_t vifi, int assert);
112static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
113 int cmd);
114static void igmpmsg_netlink_event(const struct mr_table *mrt, struct sk_buff *pkt);
115static void mroute_clean_tables(struct mr_table *mrt, int flags);
116static void ipmr_expire_process(struct timer_list *t);
117
118#ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
119#define ipmr_for_each_table(mrt, net) \
120 list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list, \
121 lockdep_rtnl_is_held() || \
122 list_empty(&net->ipv4.mr_tables))
123
124static struct mr_table *ipmr_mr_table_iter(struct net *net,
125 struct mr_table *mrt)
126{
127 struct mr_table *ret;
128
129 if (!mrt)
130 ret = list_entry_rcu(net->ipv4.mr_tables.next,
131 struct mr_table, list);
132 else
133 ret = list_entry_rcu(mrt->list.next,
134 struct mr_table, list);
135
136 if (&ret->list == &net->ipv4.mr_tables)
137 return NULL;
138 return ret;
139}
140
141static struct mr_table *__ipmr_get_table(struct net *net, u32 id)
142{
143 struct mr_table *mrt;
144
145 ipmr_for_each_table(mrt, net) {
146 if (mrt->id == id)
147 return mrt;
148 }
149 return NULL;
150}
151
152static struct mr_table *ipmr_get_table(struct net *net, u32 id)
153{
154 struct mr_table *mrt;
155
156 rcu_read_lock();
157 mrt = __ipmr_get_table(net, id);
158 rcu_read_unlock();
159 return mrt;
160}
161
162static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
163 struct mr_table **mrt)
164{
165 int err;
166 struct ipmr_result res;
167 struct fib_lookup_arg arg = {
168 .result = &res,
169 .flags = FIB_LOOKUP_NOREF,
170 };
171
172 /* update flow if oif or iif point to device enslaved to l3mdev */
173 l3mdev_update_flow(net, flowi4_to_flowi(flp4));
174
175 err = fib_rules_lookup(net->ipv4.mr_rules_ops,
176 flowi4_to_flowi(flp4), 0, &arg);
177 if (err < 0)
178 return err;
179 *mrt = res.mrt;
180 return 0;
181}
182
183static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
184 int flags, struct fib_lookup_arg *arg)
185{
186 struct ipmr_result *res = arg->result;
187 struct mr_table *mrt;
188
189 switch (rule->action) {
190 case FR_ACT_TO_TBL:
191 break;
192 case FR_ACT_UNREACHABLE:
193 return -ENETUNREACH;
194 case FR_ACT_PROHIBIT:
195 return -EACCES;
196 case FR_ACT_BLACKHOLE:
197 default:
198 return -EINVAL;
199 }
200
201 arg->table = fib_rule_get_table(rule, arg);
202
203 mrt = __ipmr_get_table(rule->fr_net, arg->table);
204 if (!mrt)
205 return -EAGAIN;
206 res->mrt = mrt;
207 return 0;
208}
209
210static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
211{
212 return 1;
213}
214
215static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
216 struct fib_rule_hdr *frh, struct nlattr **tb,
217 struct netlink_ext_ack *extack)
218{
219 return 0;
220}
221
222static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
223 struct nlattr **tb)
224{
225 return 1;
226}
227
228static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
229 struct fib_rule_hdr *frh)
230{
231 frh->dst_len = 0;
232 frh->src_len = 0;
233 frh->tos = 0;
234 return 0;
235}
236
237static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = {
238 .family = RTNL_FAMILY_IPMR,
239 .rule_size = sizeof(struct ipmr_rule),
240 .addr_size = sizeof(u32),
241 .action = ipmr_rule_action,
242 .match = ipmr_rule_match,
243 .configure = ipmr_rule_configure,
244 .compare = ipmr_rule_compare,
245 .fill = ipmr_rule_fill,
246 .nlgroup = RTNLGRP_IPV4_RULE,
247 .owner = THIS_MODULE,
248};
249
250static int __net_init ipmr_rules_init(struct net *net)
251{
252 struct fib_rules_ops *ops;
253 struct mr_table *mrt;
254 int err;
255
256 ops = fib_rules_register(&ipmr_rules_ops_template, net);
257 if (IS_ERR(ops))
258 return PTR_ERR(ops);
259
260 INIT_LIST_HEAD(&net->ipv4.mr_tables);
261
262 mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
263 if (IS_ERR(mrt)) {
264 err = PTR_ERR(mrt);
265 goto err1;
266 }
267
268 err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT);
269 if (err < 0)
270 goto err2;
271
272 net->ipv4.mr_rules_ops = ops;
273 return 0;
274
275err2:
276 rtnl_lock();
277 ipmr_free_table(mrt);
278 rtnl_unlock();
279err1:
280 fib_rules_unregister(ops);
281 return err;
282}
283
284static void __net_exit ipmr_rules_exit(struct net *net)
285{
286 struct mr_table *mrt, *next;
287
288 ASSERT_RTNL();
289 list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
290 list_del(&mrt->list);
291 ipmr_free_table(mrt);
292 }
293 fib_rules_unregister(net->ipv4.mr_rules_ops);
294}
295
296static int ipmr_rules_dump(struct net *net, struct notifier_block *nb,
297 struct netlink_ext_ack *extack)
298{
299 return fib_rules_dump(net, nb, RTNL_FAMILY_IPMR, extack);
300}
301
302static unsigned int ipmr_rules_seq_read(const struct net *net)
303{
304 return fib_rules_seq_read(net, RTNL_FAMILY_IPMR);
305}
306
307bool ipmr_rule_default(const struct fib_rule *rule)
308{
309 return fib_rule_matchall(rule) && rule->table == RT_TABLE_DEFAULT;
310}
311EXPORT_SYMBOL(ipmr_rule_default);
312#else
313#define ipmr_for_each_table(mrt, net) \
314 for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
315
316static struct mr_table *ipmr_mr_table_iter(struct net *net,
317 struct mr_table *mrt)
318{
319 if (!mrt)
320 return net->ipv4.mrt;
321 return NULL;
322}
323
324static struct mr_table *ipmr_get_table(struct net *net, u32 id)
325{
326 return net->ipv4.mrt;
327}
328
329#define __ipmr_get_table ipmr_get_table
330
331static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
332 struct mr_table **mrt)
333{
334 *mrt = net->ipv4.mrt;
335 return 0;
336}
337
338static int __net_init ipmr_rules_init(struct net *net)
339{
340 struct mr_table *mrt;
341
342 mrt = ipmr_new_table(net, id: RT_TABLE_DEFAULT);
343 if (IS_ERR(ptr: mrt))
344 return PTR_ERR(ptr: mrt);
345 net->ipv4.mrt = mrt;
346 return 0;
347}
348
349static void __net_exit ipmr_rules_exit(struct net *net)
350{
351 ASSERT_RTNL();
352 ipmr_free_table(mrt: net->ipv4.mrt);
353 net->ipv4.mrt = NULL;
354}
355
356static int ipmr_rules_dump(struct net *net, struct notifier_block *nb,
357 struct netlink_ext_ack *extack)
358{
359 return 0;
360}
361
362static unsigned int ipmr_rules_seq_read(const struct net *net)
363{
364 return 0;
365}
366
367bool ipmr_rule_default(const struct fib_rule *rule)
368{
369 return true;
370}
371EXPORT_SYMBOL(ipmr_rule_default);
372#endif
373
374static inline int ipmr_hash_cmp(struct rhashtable_compare_arg *arg,
375 const void *ptr)
376{
377 const struct mfc_cache_cmp_arg *cmparg = arg->key;
378 const struct mfc_cache *c = ptr;
379
380 return cmparg->mfc_mcastgrp != c->mfc_mcastgrp ||
381 cmparg->mfc_origin != c->mfc_origin;
382}
383
384static const struct rhashtable_params ipmr_rht_params = {
385 .head_offset = offsetof(struct mr_mfc, mnode),
386 .key_offset = offsetof(struct mfc_cache, cmparg),
387 .key_len = sizeof(struct mfc_cache_cmp_arg),
388 .nelem_hint = 3,
389 .obj_cmpfn = ipmr_hash_cmp,
390 .automatic_shrinking = true,
391};
392
393static void ipmr_new_table_set(struct mr_table *mrt,
394 struct net *net)
395{
396#ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
397 list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
398#endif
399}
400
401static struct mfc_cache_cmp_arg ipmr_mr_table_ops_cmparg_any = {
402 .mfc_mcastgrp = htonl(INADDR_ANY),
403 .mfc_origin = htonl(INADDR_ANY),
404};
405
406static struct mr_table_ops ipmr_mr_table_ops = {
407 .rht_params = &ipmr_rht_params,
408 .cmparg_any = &ipmr_mr_table_ops_cmparg_any,
409};
410
411static struct mr_table *ipmr_new_table(struct net *net, u32 id)
412{
413 struct mr_table *mrt;
414
415 /* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */
416 if (id != RT_TABLE_DEFAULT && id >= 1000000000)
417 return ERR_PTR(error: -EINVAL);
418
419 mrt = __ipmr_get_table(net, id);
420 if (mrt)
421 return mrt;
422
423 return mr_table_alloc(net, id, ops: &ipmr_mr_table_ops,
424 expire_func: ipmr_expire_process, table_set: ipmr_new_table_set);
425}
426
427static void ipmr_free_table(struct mr_table *mrt)
428{
429 struct net *net = read_pnet(pnet: &mrt->net);
430
431 WARN_ON_ONCE(!mr_can_free_table(net));
432
433 timer_shutdown_sync(timer: &mrt->ipmr_expire_timer);
434 mroute_clean_tables(mrt, MRT_FLUSH_VIFS | MRT_FLUSH_VIFS_STATIC |
435 MRT_FLUSH_MFC | MRT_FLUSH_MFC_STATIC);
436 rhltable_destroy(hlt: &mrt->mfc_hash);
437 kfree(objp: mrt);
438}
439
440/* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
441
442/* Initialize ipmr pimreg/tunnel in_device */
443static bool ipmr_init_vif_indev(const struct net_device *dev)
444{
445 struct in_device *in_dev;
446
447 ASSERT_RTNL();
448
449 in_dev = __in_dev_get_rtnl(dev);
450 if (!in_dev)
451 return false;
452 ipv4_devconf_setall(in_dev);
453 neigh_parms_data_state_setall(p: in_dev->arp_parms);
454 IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
455
456 return true;
457}
458
459static struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
460{
461 struct net_device *tunnel_dev, *new_dev;
462 struct ip_tunnel_parm_kern p = { };
463 int err;
464
465 tunnel_dev = __dev_get_by_name(net, name: "tunl0");
466 if (!tunnel_dev)
467 goto out;
468
469 p.iph.daddr = v->vifc_rmt_addr.s_addr;
470 p.iph.saddr = v->vifc_lcl_addr.s_addr;
471 p.iph.version = 4;
472 p.iph.ihl = 5;
473 p.iph.protocol = IPPROTO_IPIP;
474 sprintf(buf: p.name, fmt: "dvmrp%d", v->vifc_vifi);
475
476 if (!tunnel_dev->netdev_ops->ndo_tunnel_ctl)
477 goto out;
478 err = tunnel_dev->netdev_ops->ndo_tunnel_ctl(tunnel_dev, &p,
479 SIOCADDTUNNEL);
480 if (err)
481 goto out;
482
483 new_dev = __dev_get_by_name(net, name: p.name);
484 if (!new_dev)
485 goto out;
486
487 new_dev->flags |= IFF_MULTICAST;
488 if (!ipmr_init_vif_indev(dev: new_dev))
489 goto out_unregister;
490 if (dev_open(dev: new_dev, NULL))
491 goto out_unregister;
492 dev_hold(dev: new_dev);
493 err = dev_set_allmulti(dev: new_dev, inc: 1);
494 if (err) {
495 dev_close(dev: new_dev);
496 tunnel_dev->netdev_ops->ndo_tunnel_ctl(tunnel_dev, &p,
497 SIOCDELTUNNEL);
498 dev_put(dev: new_dev);
499 new_dev = ERR_PTR(error: err);
500 }
501 return new_dev;
502
503out_unregister:
504 unregister_netdevice(dev: new_dev);
505out:
506 return ERR_PTR(error: -ENOBUFS);
507}
508
509#if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
510static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
511{
512 struct net *net = dev_net(dev);
513 struct mr_table *mrt;
514 struct flowi4 fl4 = {
515 .flowi4_oif = dev->ifindex,
516 .flowi4_iif = skb->skb_iif ? : LOOPBACK_IFINDEX,
517 .flowi4_mark = skb->mark,
518 };
519 int err;
520
521 err = ipmr_fib_lookup(net, flp4: &fl4, mrt: &mrt);
522 if (err < 0) {
523 kfree_skb(skb);
524 return err;
525 }
526
527 DEV_STATS_ADD(dev, tx_bytes, skb->len);
528 DEV_STATS_INC(dev, tx_packets);
529 rcu_read_lock();
530
531 /* Pairs with WRITE_ONCE() in vif_add() and vif_delete() */
532 ipmr_cache_report(mrt, pkt: skb, READ_ONCE(mrt->mroute_reg_vif_num),
533 IGMPMSG_WHOLEPKT);
534
535 rcu_read_unlock();
536 kfree_skb(skb);
537 return NETDEV_TX_OK;
538}
539
540static int reg_vif_get_iflink(const struct net_device *dev)
541{
542 return 0;
543}
544
545static const struct net_device_ops reg_vif_netdev_ops = {
546 .ndo_start_xmit = reg_vif_xmit,
547 .ndo_get_iflink = reg_vif_get_iflink,
548};
549
550static void reg_vif_setup(struct net_device *dev)
551{
552 dev->type = ARPHRD_PIMREG;
553 dev->mtu = ETH_DATA_LEN - sizeof(struct iphdr) - 8;
554 dev->flags = IFF_NOARP;
555 dev->netdev_ops = &reg_vif_netdev_ops;
556 dev->needs_free_netdev = true;
557 dev->netns_immutable = true;
558}
559
560static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
561{
562 struct net_device *dev;
563 char name[IFNAMSIZ];
564
565 if (mrt->id == RT_TABLE_DEFAULT)
566 sprintf(buf: name, fmt: "pimreg");
567 else
568 sprintf(buf: name, fmt: "pimreg%u", mrt->id);
569
570 dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup);
571
572 if (!dev)
573 return NULL;
574
575 dev_net_set(dev, net);
576
577 if (register_netdevice(dev)) {
578 free_netdev(dev);
579 return NULL;
580 }
581
582 if (!ipmr_init_vif_indev(dev))
583 goto failure;
584 if (dev_open(dev, NULL))
585 goto failure;
586
587 dev_hold(dev);
588
589 return dev;
590
591failure:
592 unregister_netdevice(dev);
593 return NULL;
594}
595
596/* called with rcu_read_lock() */
597static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
598 unsigned int pimlen)
599{
600 struct net_device *reg_dev = NULL;
601 struct iphdr *encap;
602 int vif_num;
603
604 encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
605 /* Check that:
606 * a. packet is really sent to a multicast group
607 * b. packet is not a NULL-REGISTER
608 * c. packet is not truncated
609 */
610 if (!ipv4_is_multicast(addr: encap->daddr) ||
611 encap->tot_len == 0 ||
612 ntohs(encap->tot_len) + pimlen > skb->len)
613 return 1;
614
615 /* Pairs with WRITE_ONCE() in vif_add()/vid_delete() */
616 vif_num = READ_ONCE(mrt->mroute_reg_vif_num);
617 if (vif_num >= 0)
618 reg_dev = vif_dev_read(vif: &mrt->vif_table[vif_num]);
619 if (!reg_dev)
620 return 1;
621
622 skb->mac_header = skb->network_header;
623 skb_pull(skb, len: (u8 *)encap - skb->data);
624 skb_reset_network_header(skb);
625 skb->protocol = htons(ETH_P_IP);
626 skb->ip_summed = CHECKSUM_NONE;
627
628 skb_tunnel_rx(skb, dev: reg_dev, net: dev_net(dev: reg_dev));
629
630 netif_rx(skb);
631
632 return NET_RX_SUCCESS;
633}
634#else
635static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
636{
637 return NULL;
638}
639#endif
640
641static int call_ipmr_vif_entry_notifiers(struct net *net,
642 enum fib_event_type event_type,
643 struct vif_device *vif,
644 struct net_device *vif_dev,
645 vifi_t vif_index, u32 tb_id)
646{
647 return mr_call_vif_notifiers(net, RTNL_FAMILY_IPMR, event_type,
648 vif, vif_dev, vif_index, tb_id,
649 ipmr_seq: &net->ipv4.ipmr_seq);
650}
651
652static int call_ipmr_mfc_entry_notifiers(struct net *net,
653 enum fib_event_type event_type,
654 struct mfc_cache *mfc, u32 tb_id)
655{
656 return mr_call_mfc_notifiers(net, RTNL_FAMILY_IPMR, event_type,
657 mfc: &mfc->_c, tb_id, ipmr_seq: &net->ipv4.ipmr_seq);
658}
659
660/**
661 * vif_delete - Delete a VIF entry
662 * @mrt: Table to delete from
663 * @vifi: VIF identifier to delete
664 * @notify: Set to 1, if the caller is a notifier_call
665 * @head: if unregistering the VIF, place it on this queue
666 */
667static int vif_delete(struct mr_table *mrt, int vifi, int notify,
668 struct list_head *head)
669{
670 struct net *net = read_pnet(pnet: &mrt->net);
671 struct vif_device *v;
672 struct net_device *dev;
673 struct in_device *in_dev;
674
675 if (vifi < 0 || vifi >= mrt->maxvif)
676 return -EADDRNOTAVAIL;
677
678 v = &mrt->vif_table[vifi];
679
680 dev = rtnl_dereference(v->dev);
681 if (!dev)
682 return -EADDRNOTAVAIL;
683
684 spin_lock(lock: &mrt_lock);
685 call_ipmr_vif_entry_notifiers(net, event_type: FIB_EVENT_VIF_DEL, vif: v, vif_dev: dev,
686 vif_index: vifi, tb_id: mrt->id);
687 RCU_INIT_POINTER(v->dev, NULL);
688
689 if (vifi == mrt->mroute_reg_vif_num) {
690 /* Pairs with READ_ONCE() in ipmr_cache_report() and reg_vif_xmit() */
691 WRITE_ONCE(mrt->mroute_reg_vif_num, -1);
692 }
693 if (vifi + 1 == mrt->maxvif) {
694 int tmp;
695
696 for (tmp = vifi - 1; tmp >= 0; tmp--) {
697 if (VIF_EXISTS(mrt, tmp))
698 break;
699 }
700 WRITE_ONCE(mrt->maxvif, tmp + 1);
701 }
702
703 spin_unlock(lock: &mrt_lock);
704
705 dev_set_allmulti(dev, inc: -1);
706
707 in_dev = __in_dev_get_rtnl(dev);
708 if (in_dev) {
709 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
710 inet_netconf_notify_devconf(net: dev_net(dev), RTM_NEWNETCONF,
711 type: NETCONFA_MC_FORWARDING,
712 ifindex: dev->ifindex, devconf: &in_dev->cnf);
713 ip_rt_multicast_event(in_dev);
714 }
715
716 if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
717 unregister_netdevice_queue(dev, head);
718
719 netdev_put(dev, tracker: &v->dev_tracker);
720 return 0;
721}
722
723static void ipmr_cache_free_rcu(struct rcu_head *head)
724{
725 struct mr_mfc *c = container_of(head, struct mr_mfc, rcu);
726
727 kmem_cache_free(s: mrt_cachep, objp: (struct mfc_cache *)c);
728}
729
730static void ipmr_cache_free(struct mfc_cache *c)
731{
732 call_rcu(head: &c->_c.rcu, func: ipmr_cache_free_rcu);
733}
734
735/* Destroy an unresolved cache entry, killing queued skbs
736 * and reporting error to netlink readers.
737 */
738static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
739{
740 struct net *net = read_pnet(pnet: &mrt->net);
741 struct sk_buff *skb;
742 struct nlmsgerr *e;
743
744 atomic_dec(v: &mrt->cache_resolve_queue_len);
745
746 while ((skb = skb_dequeue(list: &c->_c.mfc_un.unres.unresolved))) {
747 if (ip_hdr(skb)->version == 0) {
748 struct nlmsghdr *nlh = skb_pull(skb,
749 len: sizeof(struct iphdr));
750 nlh->nlmsg_type = NLMSG_ERROR;
751 nlh->nlmsg_len = nlmsg_msg_size(payload: sizeof(struct nlmsgerr));
752 skb_trim(skb, len: nlh->nlmsg_len);
753 e = nlmsg_data(nlh);
754 e->error = -ETIMEDOUT;
755 memset(s: &e->msg, c: 0, n: sizeof(e->msg));
756
757 rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
758 } else {
759 kfree_skb(skb);
760 }
761 }
762
763 ipmr_cache_free(c);
764}
765
766/* Timer process for the unresolved queue. */
767static void ipmr_expire_process(struct timer_list *t)
768{
769 struct mr_table *mrt = timer_container_of(mrt, t, ipmr_expire_timer);
770 struct mr_mfc *c, *next;
771 unsigned long expires;
772 unsigned long now;
773
774 if (!spin_trylock(lock: &mfc_unres_lock)) {
775 mod_timer(timer: &mrt->ipmr_expire_timer, expires: jiffies+HZ/10);
776 return;
777 }
778
779 if (list_empty(head: &mrt->mfc_unres_queue))
780 goto out;
781
782 now = jiffies;
783 expires = 10*HZ;
784
785 list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
786 if (time_after(c->mfc_un.unres.expires, now)) {
787 unsigned long interval = c->mfc_un.unres.expires - now;
788 if (interval < expires)
789 expires = interval;
790 continue;
791 }
792
793 list_del(entry: &c->list);
794 mroute_netlink_event(mrt, mfc: (struct mfc_cache *)c, RTM_DELROUTE);
795 ipmr_destroy_unres(mrt, c: (struct mfc_cache *)c);
796 }
797
798 if (!list_empty(head: &mrt->mfc_unres_queue))
799 mod_timer(timer: &mrt->ipmr_expire_timer, expires: jiffies + expires);
800
801out:
802 spin_unlock(lock: &mfc_unres_lock);
803}
804
805/* Fill oifs list. It is called under locked mrt_lock. */
806static void ipmr_update_thresholds(struct mr_table *mrt, struct mr_mfc *cache,
807 unsigned char *ttls)
808{
809 int vifi;
810
811 cache->mfc_un.res.minvif = MAXVIFS;
812 cache->mfc_un.res.maxvif = 0;
813 memset(s: cache->mfc_un.res.ttls, c: 255, MAXVIFS);
814
815 for (vifi = 0; vifi < mrt->maxvif; vifi++) {
816 if (VIF_EXISTS(mrt, vifi) &&
817 ttls[vifi] && ttls[vifi] < 255) {
818 cache->mfc_un.res.ttls[vifi] = ttls[vifi];
819 if (cache->mfc_un.res.minvif > vifi)
820 cache->mfc_un.res.minvif = vifi;
821 if (cache->mfc_un.res.maxvif <= vifi)
822 cache->mfc_un.res.maxvif = vifi + 1;
823 }
824 }
825 WRITE_ONCE(cache->mfc_un.res.lastuse, jiffies);
826}
827
828static int vif_add(struct net *net, struct mr_table *mrt,
829 struct vifctl *vifc, int mrtsock)
830{
831 struct netdev_phys_item_id ppid = { };
832 int vifi = vifc->vifc_vifi;
833 struct vif_device *v = &mrt->vif_table[vifi];
834 struct net_device *dev;
835 struct in_device *in_dev;
836 int err;
837
838 /* Is vif busy ? */
839 if (VIF_EXISTS(mrt, vifi))
840 return -EADDRINUSE;
841
842 switch (vifc->vifc_flags) {
843 case VIFF_REGISTER:
844 if (!ipmr_pimsm_enabled())
845 return -EINVAL;
846 /* Special Purpose VIF in PIM
847 * All the packets will be sent to the daemon
848 */
849 if (mrt->mroute_reg_vif_num >= 0)
850 return -EADDRINUSE;
851 dev = ipmr_reg_vif(net, mrt);
852 if (!dev)
853 return -ENOBUFS;
854 err = dev_set_allmulti(dev, inc: 1);
855 if (err) {
856 unregister_netdevice(dev);
857 dev_put(dev);
858 return err;
859 }
860 break;
861 case VIFF_TUNNEL:
862 dev = ipmr_new_tunnel(net, v: vifc);
863 if (IS_ERR(ptr: dev))
864 return PTR_ERR(ptr: dev);
865 break;
866 case VIFF_USE_IFINDEX:
867 case 0:
868 if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
869 dev = dev_get_by_index(net, ifindex: vifc->vifc_lcl_ifindex);
870 if (dev && !__in_dev_get_rtnl(dev)) {
871 dev_put(dev);
872 return -EADDRNOTAVAIL;
873 }
874 } else {
875 dev = ip_dev_find(net, addr: vifc->vifc_lcl_addr.s_addr);
876 }
877 if (!dev)
878 return -EADDRNOTAVAIL;
879 err = dev_set_allmulti(dev, inc: 1);
880 if (err) {
881 dev_put(dev);
882 return err;
883 }
884 break;
885 default:
886 return -EINVAL;
887 }
888
889 in_dev = __in_dev_get_rtnl(dev);
890 if (!in_dev) {
891 dev_put(dev);
892 return -EADDRNOTAVAIL;
893 }
894 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
895 inet_netconf_notify_devconf(net, RTM_NEWNETCONF, type: NETCONFA_MC_FORWARDING,
896 ifindex: dev->ifindex, devconf: &in_dev->cnf);
897 ip_rt_multicast_event(in_dev);
898
899 /* Fill in the VIF structures */
900 vif_device_init(v, dev, rate_limit: vifc->vifc_rate_limit,
901 threshold: vifc->vifc_threshold,
902 flags: vifc->vifc_flags | (!mrtsock ? VIFF_STATIC : 0),
903 get_iflink_mask: (VIFF_TUNNEL | VIFF_REGISTER));
904
905 err = netif_get_port_parent_id(dev, ppid: &ppid, recurse: true);
906 if (err == 0) {
907 memcpy(to: v->dev_parent_id.id, from: ppid.id, len: ppid.id_len);
908 v->dev_parent_id.id_len = ppid.id_len;
909 } else {
910 v->dev_parent_id.id_len = 0;
911 }
912
913 v->local = vifc->vifc_lcl_addr.s_addr;
914 v->remote = vifc->vifc_rmt_addr.s_addr;
915
916 /* And finish update writing critical data */
917 spin_lock(lock: &mrt_lock);
918 rcu_assign_pointer(v->dev, dev);
919 netdev_tracker_alloc(dev, tracker: &v->dev_tracker, GFP_ATOMIC);
920 if (v->flags & VIFF_REGISTER) {
921 /* Pairs with READ_ONCE() in ipmr_cache_report() and reg_vif_xmit() */
922 WRITE_ONCE(mrt->mroute_reg_vif_num, vifi);
923 }
924 if (vifi+1 > mrt->maxvif)
925 WRITE_ONCE(mrt->maxvif, vifi + 1);
926 spin_unlock(lock: &mrt_lock);
927 call_ipmr_vif_entry_notifiers(net, event_type: FIB_EVENT_VIF_ADD, vif: v, vif_dev: dev,
928 vif_index: vifi, tb_id: mrt->id);
929 return 0;
930}
931
932/* called with rcu_read_lock() */
933static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
934 __be32 origin,
935 __be32 mcastgrp)
936{
937 struct mfc_cache_cmp_arg arg = {
938 .mfc_mcastgrp = mcastgrp,
939 .mfc_origin = origin
940 };
941
942 return mr_mfc_find(mrt, hasharg: &arg);
943}
944
945/* Look for a (*,G) entry */
946static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt,
947 __be32 mcastgrp, int vifi)
948{
949 struct mfc_cache_cmp_arg arg = {
950 .mfc_mcastgrp = mcastgrp,
951 .mfc_origin = htonl(INADDR_ANY)
952 };
953
954 if (mcastgrp == htonl(INADDR_ANY))
955 return mr_mfc_find_any_parent(mrt, vifi);
956 return mr_mfc_find_any(mrt, vifi, hasharg: &arg);
957}
958
959/* Look for a (S,G,iif) entry if parent != -1 */
960static struct mfc_cache *ipmr_cache_find_parent(struct mr_table *mrt,
961 __be32 origin, __be32 mcastgrp,
962 int parent)
963{
964 struct mfc_cache_cmp_arg arg = {
965 .mfc_mcastgrp = mcastgrp,
966 .mfc_origin = origin,
967 };
968
969 return mr_mfc_find_parent(mrt, hasharg: &arg, parent);
970}
971
972/* Allocate a multicast cache entry */
973static struct mfc_cache *ipmr_cache_alloc(void)
974{
975 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
976
977 if (c) {
978 c->_c.mfc_un.res.last_assert = jiffies - MFC_ASSERT_THRESH - 1;
979 c->_c.mfc_un.res.minvif = MAXVIFS;
980 c->_c.free = ipmr_cache_free_rcu;
981 refcount_set(r: &c->_c.mfc_un.res.refcount, n: 1);
982 }
983 return c;
984}
985
986static struct mfc_cache *ipmr_cache_alloc_unres(void)
987{
988 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
989
990 if (c) {
991 skb_queue_head_init(list: &c->_c.mfc_un.unres.unresolved);
992 c->_c.mfc_un.unres.expires = jiffies + 10 * HZ;
993 }
994 return c;
995}
996
997/* A cache entry has gone into a resolved state from queued */
998static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
999 struct mfc_cache *uc, struct mfc_cache *c)
1000{
1001 struct sk_buff *skb;
1002 struct nlmsgerr *e;
1003
1004 /* Play the pending entries through our router */
1005 while ((skb = __skb_dequeue(list: &uc->_c.mfc_un.unres.unresolved))) {
1006 if (ip_hdr(skb)->version == 0) {
1007 struct nlmsghdr *nlh = skb_pull(skb,
1008 len: sizeof(struct iphdr));
1009
1010 if (mr_fill_mroute(mrt, skb, c: &c->_c,
1011 rtm: nlmsg_data(nlh)) > 0) {
1012 nlh->nlmsg_len = skb_tail_pointer(skb) -
1013 (u8 *)nlh;
1014 } else {
1015 nlh->nlmsg_type = NLMSG_ERROR;
1016 nlh->nlmsg_len = nlmsg_msg_size(payload: sizeof(struct nlmsgerr));
1017 skb_trim(skb, len: nlh->nlmsg_len);
1018 e = nlmsg_data(nlh);
1019 e->error = -EMSGSIZE;
1020 memset(s: &e->msg, c: 0, n: sizeof(e->msg));
1021 }
1022
1023 rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
1024 } else {
1025 rcu_read_lock();
1026 ip_mr_forward(net, mrt, dev: skb->dev, skb, cache: c, local: 0);
1027 rcu_read_unlock();
1028 }
1029 }
1030}
1031
1032/* Bounce a cache query up to mrouted and netlink.
1033 *
1034 * Called under rcu_read_lock().
1035 */
1036static int ipmr_cache_report(const struct mr_table *mrt,
1037 struct sk_buff *pkt, vifi_t vifi, int assert)
1038{
1039 const int ihl = ip_hdrlen(skb: pkt);
1040 struct sock *mroute_sk;
1041 struct igmphdr *igmp;
1042 struct igmpmsg *msg;
1043 struct sk_buff *skb;
1044 int ret;
1045
1046 mroute_sk = rcu_dereference(mrt->mroute_sk);
1047 if (!mroute_sk)
1048 return -EINVAL;
1049
1050 if (assert == IGMPMSG_WHOLEPKT || assert == IGMPMSG_WRVIFWHOLE)
1051 skb = skb_realloc_headroom(skb: pkt, headroom: sizeof(struct iphdr));
1052 else
1053 skb = alloc_skb(size: 128, GFP_ATOMIC);
1054
1055 if (!skb)
1056 return -ENOBUFS;
1057
1058 if (assert == IGMPMSG_WHOLEPKT || assert == IGMPMSG_WRVIFWHOLE) {
1059 /* Ugly, but we have no choice with this interface.
1060 * Duplicate old header, fix ihl, length etc.
1061 * And all this only to mangle msg->im_msgtype and
1062 * to set msg->im_mbz to "mbz" :-)
1063 */
1064 skb_push(skb, len: sizeof(struct iphdr));
1065 skb_reset_network_header(skb);
1066 skb_reset_transport_header(skb);
1067 msg = (struct igmpmsg *)skb_network_header(skb);
1068 memcpy(to: msg, from: skb_network_header(skb: pkt), len: sizeof(struct iphdr));
1069 msg->im_msgtype = assert;
1070 msg->im_mbz = 0;
1071 if (assert == IGMPMSG_WRVIFWHOLE) {
1072 msg->im_vif = vifi;
1073 msg->im_vif_hi = vifi >> 8;
1074 } else {
1075 /* Pairs with WRITE_ONCE() in vif_add() and vif_delete() */
1076 int vif_num = READ_ONCE(mrt->mroute_reg_vif_num);
1077
1078 msg->im_vif = vif_num;
1079 msg->im_vif_hi = vif_num >> 8;
1080 }
1081 ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
1082 ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
1083 sizeof(struct iphdr));
1084 } else {
1085 /* Copy the IP header */
1086 skb_set_network_header(skb, offset: skb->len);
1087 skb_put(skb, len: ihl);
1088 skb_copy_to_linear_data(skb, from: pkt->data, len: ihl);
1089 /* Flag to the kernel this is a route add */
1090 ip_hdr(skb)->protocol = 0;
1091 msg = (struct igmpmsg *)skb_network_header(skb);
1092 msg->im_vif = vifi;
1093 msg->im_vif_hi = vifi >> 8;
1094 ipv4_pktinfo_prepare(sk: mroute_sk, skb: pkt, drop_dst: false);
1095 memcpy(to: skb->cb, from: pkt->cb, len: sizeof(skb->cb));
1096 /* Add our header */
1097 igmp = skb_put(skb, len: sizeof(struct igmphdr));
1098 igmp->type = assert;
1099 msg->im_msgtype = assert;
1100 igmp->code = 0;
1101 ip_hdr(skb)->tot_len = htons(skb->len); /* Fix the length */
1102 skb->transport_header = skb->network_header;
1103 }
1104
1105 igmpmsg_netlink_event(mrt, pkt: skb);
1106
1107 /* Deliver to mrouted */
1108 ret = sock_queue_rcv_skb(sk: mroute_sk, skb);
1109
1110 if (ret < 0) {
1111 net_warn_ratelimited("mroute: pending queue full, dropping entries\n");
1112 kfree_skb(skb);
1113 }
1114
1115 return ret;
1116}
1117
1118/* Queue a packet for resolution. It gets locked cache entry! */
1119/* Called under rcu_read_lock() */
1120static int ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi,
1121 struct sk_buff *skb, struct net_device *dev)
1122{
1123 const struct iphdr *iph = ip_hdr(skb);
1124 struct mfc_cache *c;
1125 bool found = false;
1126 int err;
1127
1128 spin_lock_bh(lock: &mfc_unres_lock);
1129 list_for_each_entry(c, &mrt->mfc_unres_queue, _c.list) {
1130 if (c->mfc_mcastgrp == iph->daddr &&
1131 c->mfc_origin == iph->saddr) {
1132 found = true;
1133 break;
1134 }
1135 }
1136
1137 if (!found) {
1138 /* Create a new entry if allowable */
1139 c = ipmr_cache_alloc_unres();
1140 if (!c) {
1141 spin_unlock_bh(lock: &mfc_unres_lock);
1142
1143 kfree_skb(skb);
1144 return -ENOBUFS;
1145 }
1146
1147 /* Fill in the new cache entry */
1148 c->_c.mfc_parent = -1;
1149 c->mfc_origin = iph->saddr;
1150 c->mfc_mcastgrp = iph->daddr;
1151
1152 /* Reflect first query at mrouted. */
1153 err = ipmr_cache_report(mrt, pkt: skb, vifi, IGMPMSG_NOCACHE);
1154
1155 if (err < 0) {
1156 /* If the report failed throw the cache entry
1157 out - Brad Parker
1158 */
1159 spin_unlock_bh(lock: &mfc_unres_lock);
1160
1161 ipmr_cache_free(c);
1162 kfree_skb(skb);
1163 return err;
1164 }
1165
1166 atomic_inc(v: &mrt->cache_resolve_queue_len);
1167 list_add(new: &c->_c.list, head: &mrt->mfc_unres_queue);
1168 mroute_netlink_event(mrt, mfc: c, RTM_NEWROUTE);
1169
1170 if (atomic_read(v: &mrt->cache_resolve_queue_len) == 1)
1171 mod_timer(timer: &mrt->ipmr_expire_timer,
1172 expires: c->_c.mfc_un.unres.expires);
1173 }
1174
1175 /* See if we can append the packet */
1176 if (c->_c.mfc_un.unres.unresolved.qlen > 3) {
1177 kfree_skb(skb);
1178 err = -ENOBUFS;
1179 } else {
1180 if (dev) {
1181 skb->dev = dev;
1182 skb->skb_iif = dev->ifindex;
1183 }
1184 skb_queue_tail(list: &c->_c.mfc_un.unres.unresolved, newsk: skb);
1185 err = 0;
1186 }
1187
1188 spin_unlock_bh(lock: &mfc_unres_lock);
1189 return err;
1190}
1191
1192/* MFC cache manipulation by user space mroute daemon */
1193
1194static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent)
1195{
1196 struct net *net = read_pnet(pnet: &mrt->net);
1197 struct mfc_cache *c;
1198
1199 /* The entries are added/deleted only under RTNL */
1200 rcu_read_lock();
1201 c = ipmr_cache_find_parent(mrt, origin: mfc->mfcc_origin.s_addr,
1202 mcastgrp: mfc->mfcc_mcastgrp.s_addr, parent);
1203 rcu_read_unlock();
1204 if (!c)
1205 return -ENOENT;
1206 rhltable_remove(hlt: &mrt->mfc_hash, list: &c->_c.mnode, params: ipmr_rht_params);
1207 list_del_rcu(entry: &c->_c.list);
1208 call_ipmr_mfc_entry_notifiers(net, event_type: FIB_EVENT_ENTRY_DEL, mfc: c, tb_id: mrt->id);
1209 mroute_netlink_event(mrt, mfc: c, RTM_DELROUTE);
1210 mr_cache_put(c: &c->_c);
1211
1212 return 0;
1213}
1214
1215static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
1216 struct mfcctl *mfc, int mrtsock, int parent)
1217{
1218 struct mfc_cache *uc, *c;
1219 struct mr_mfc *_uc;
1220 bool found;
1221 int ret;
1222
1223 if (mfc->mfcc_parent >= MAXVIFS)
1224 return -ENFILE;
1225
1226 /* The entries are added/deleted only under RTNL */
1227 rcu_read_lock();
1228 c = ipmr_cache_find_parent(mrt, origin: mfc->mfcc_origin.s_addr,
1229 mcastgrp: mfc->mfcc_mcastgrp.s_addr, parent);
1230 rcu_read_unlock();
1231 if (c) {
1232 spin_lock(lock: &mrt_lock);
1233 c->_c.mfc_parent = mfc->mfcc_parent;
1234 ipmr_update_thresholds(mrt, cache: &c->_c, ttls: mfc->mfcc_ttls);
1235 if (!mrtsock)
1236 c->_c.mfc_flags |= MFC_STATIC;
1237 spin_unlock(lock: &mrt_lock);
1238 call_ipmr_mfc_entry_notifiers(net, event_type: FIB_EVENT_ENTRY_REPLACE, mfc: c,
1239 tb_id: mrt->id);
1240 mroute_netlink_event(mrt, mfc: c, RTM_NEWROUTE);
1241 return 0;
1242 }
1243
1244 if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) &&
1245 !ipv4_is_multicast(addr: mfc->mfcc_mcastgrp.s_addr))
1246 return -EINVAL;
1247
1248 c = ipmr_cache_alloc();
1249 if (!c)
1250 return -ENOMEM;
1251
1252 c->mfc_origin = mfc->mfcc_origin.s_addr;
1253 c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
1254 c->_c.mfc_parent = mfc->mfcc_parent;
1255 ipmr_update_thresholds(mrt, cache: &c->_c, ttls: mfc->mfcc_ttls);
1256 if (!mrtsock)
1257 c->_c.mfc_flags |= MFC_STATIC;
1258
1259 ret = rhltable_insert_key(hlt: &mrt->mfc_hash, key: &c->cmparg, list: &c->_c.mnode,
1260 params: ipmr_rht_params);
1261 if (ret) {
1262 pr_err("ipmr: rhtable insert error %d\n", ret);
1263 ipmr_cache_free(c);
1264 return ret;
1265 }
1266 list_add_tail_rcu(new: &c->_c.list, head: &mrt->mfc_cache_list);
1267 /* Check to see if we resolved a queued list. If so we
1268 * need to send on the frames and tidy up.
1269 */
1270 found = false;
1271 spin_lock_bh(lock: &mfc_unres_lock);
1272 list_for_each_entry(_uc, &mrt->mfc_unres_queue, list) {
1273 uc = (struct mfc_cache *)_uc;
1274 if (uc->mfc_origin == c->mfc_origin &&
1275 uc->mfc_mcastgrp == c->mfc_mcastgrp) {
1276 list_del(entry: &_uc->list);
1277 atomic_dec(v: &mrt->cache_resolve_queue_len);
1278 found = true;
1279 break;
1280 }
1281 }
1282 if (list_empty(head: &mrt->mfc_unres_queue))
1283 timer_delete(timer: &mrt->ipmr_expire_timer);
1284 spin_unlock_bh(lock: &mfc_unres_lock);
1285
1286 if (found) {
1287 ipmr_cache_resolve(net, mrt, uc, c);
1288 ipmr_cache_free(c: uc);
1289 }
1290 call_ipmr_mfc_entry_notifiers(net, event_type: FIB_EVENT_ENTRY_ADD, mfc: c, tb_id: mrt->id);
1291 mroute_netlink_event(mrt, mfc: c, RTM_NEWROUTE);
1292 return 0;
1293}
1294
1295/* Close the multicast socket, and clear the vif tables etc */
1296static void mroute_clean_tables(struct mr_table *mrt, int flags)
1297{
1298 struct net *net = read_pnet(pnet: &mrt->net);
1299 struct mr_mfc *c, *tmp;
1300 struct mfc_cache *cache;
1301 LIST_HEAD(list);
1302 int i;
1303
1304 /* Shut down all active vif entries */
1305 if (flags & (MRT_FLUSH_VIFS | MRT_FLUSH_VIFS_STATIC)) {
1306 for (i = 0; i < mrt->maxvif; i++) {
1307 if (((mrt->vif_table[i].flags & VIFF_STATIC) &&
1308 !(flags & MRT_FLUSH_VIFS_STATIC)) ||
1309 (!(mrt->vif_table[i].flags & VIFF_STATIC) && !(flags & MRT_FLUSH_VIFS)))
1310 continue;
1311 vif_delete(mrt, vifi: i, notify: 0, head: &list);
1312 }
1313 unregister_netdevice_many(head: &list);
1314 }
1315
1316 /* Wipe the cache */
1317 if (flags & (MRT_FLUSH_MFC | MRT_FLUSH_MFC_STATIC)) {
1318 list_for_each_entry_safe(c, tmp, &mrt->mfc_cache_list, list) {
1319 if (((c->mfc_flags & MFC_STATIC) && !(flags & MRT_FLUSH_MFC_STATIC)) ||
1320 (!(c->mfc_flags & MFC_STATIC) && !(flags & MRT_FLUSH_MFC)))
1321 continue;
1322 rhltable_remove(hlt: &mrt->mfc_hash, list: &c->mnode, params: ipmr_rht_params);
1323 list_del_rcu(entry: &c->list);
1324 cache = (struct mfc_cache *)c;
1325 call_ipmr_mfc_entry_notifiers(net, event_type: FIB_EVENT_ENTRY_DEL, mfc: cache,
1326 tb_id: mrt->id);
1327 mroute_netlink_event(mrt, mfc: cache, RTM_DELROUTE);
1328 mr_cache_put(c);
1329 }
1330 }
1331
1332 if (flags & MRT_FLUSH_MFC) {
1333 if (atomic_read(v: &mrt->cache_resolve_queue_len) != 0) {
1334 spin_lock_bh(lock: &mfc_unres_lock);
1335 list_for_each_entry_safe(c, tmp, &mrt->mfc_unres_queue, list) {
1336 list_del(entry: &c->list);
1337 cache = (struct mfc_cache *)c;
1338 mroute_netlink_event(mrt, mfc: cache, RTM_DELROUTE);
1339 ipmr_destroy_unres(mrt, c: cache);
1340 }
1341 spin_unlock_bh(lock: &mfc_unres_lock);
1342 }
1343 }
1344}
1345
1346/* called from ip_ra_control(), before an RCU grace period,
1347 * we don't need to call synchronize_rcu() here
1348 */
1349static void mrtsock_destruct(struct sock *sk)
1350{
1351 struct net *net = sock_net(sk);
1352 struct mr_table *mrt;
1353
1354 rtnl_lock();
1355 ipmr_for_each_table(mrt, net) {
1356 if (sk == rtnl_dereference(mrt->mroute_sk)) {
1357 IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
1358 inet_netconf_notify_devconf(net, RTM_NEWNETCONF,
1359 type: NETCONFA_MC_FORWARDING,
1360 NETCONFA_IFINDEX_ALL,
1361 devconf: net->ipv4.devconf_all);
1362 RCU_INIT_POINTER(mrt->mroute_sk, NULL);
1363 mroute_clean_tables(mrt, MRT_FLUSH_VIFS | MRT_FLUSH_MFC);
1364 }
1365 }
1366 rtnl_unlock();
1367}
1368
1369/* Socket options and virtual interface manipulation. The whole
1370 * virtual interface system is a complete heap, but unfortunately
1371 * that's how BSD mrouted happens to think. Maybe one day with a proper
1372 * MOSPF/PIM router set up we can clean this up.
1373 */
1374
1375int ip_mroute_setsockopt(struct sock *sk, int optname, sockptr_t optval,
1376 unsigned int optlen)
1377{
1378 struct net *net = sock_net(sk);
1379 int val, ret = 0, parent = 0;
1380 struct mr_table *mrt;
1381 struct vifctl vif;
1382 struct mfcctl mfc;
1383 bool do_wrvifwhole;
1384 u32 uval;
1385
1386 /* There's one exception to the lock - MRT_DONE which needs to unlock */
1387 rtnl_lock();
1388 if (sk->sk_type != SOCK_RAW ||
1389 inet_sk(sk)->inet_num != IPPROTO_IGMP) {
1390 ret = -EOPNOTSUPP;
1391 goto out_unlock;
1392 }
1393
1394 mrt = __ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1395 if (!mrt) {
1396 ret = -ENOENT;
1397 goto out_unlock;
1398 }
1399 if (optname != MRT_INIT) {
1400 if (sk != rcu_access_pointer(mrt->mroute_sk) &&
1401 !ns_capable(ns: net->user_ns, CAP_NET_ADMIN)) {
1402 ret = -EACCES;
1403 goto out_unlock;
1404 }
1405 }
1406
1407 switch (optname) {
1408 case MRT_INIT:
1409 if (optlen != sizeof(int)) {
1410 ret = -EINVAL;
1411 break;
1412 }
1413 if (rtnl_dereference(mrt->mroute_sk)) {
1414 ret = -EADDRINUSE;
1415 break;
1416 }
1417
1418 ret = ip_ra_control(sk, on: 1, destructor: mrtsock_destruct);
1419 if (ret == 0) {
1420 rcu_assign_pointer(mrt->mroute_sk, sk);
1421 IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
1422 inet_netconf_notify_devconf(net, RTM_NEWNETCONF,
1423 type: NETCONFA_MC_FORWARDING,
1424 NETCONFA_IFINDEX_ALL,
1425 devconf: net->ipv4.devconf_all);
1426 }
1427 break;
1428 case MRT_DONE:
1429 if (sk != rcu_access_pointer(mrt->mroute_sk)) {
1430 ret = -EACCES;
1431 } else {
1432 /* We need to unlock here because mrtsock_destruct takes
1433 * care of rtnl itself and we can't change that due to
1434 * the IP_ROUTER_ALERT setsockopt which runs without it.
1435 */
1436 rtnl_unlock();
1437 ret = ip_ra_control(sk, on: 0, NULL);
1438 goto out;
1439 }
1440 break;
1441 case MRT_ADD_VIF:
1442 case MRT_DEL_VIF:
1443 if (optlen != sizeof(vif)) {
1444 ret = -EINVAL;
1445 break;
1446 }
1447 if (copy_from_sockptr(dst: &vif, src: optval, size: sizeof(vif))) {
1448 ret = -EFAULT;
1449 break;
1450 }
1451 if (vif.vifc_vifi >= MAXVIFS) {
1452 ret = -ENFILE;
1453 break;
1454 }
1455 if (optname == MRT_ADD_VIF) {
1456 ret = vif_add(net, mrt, vifc: &vif,
1457 mrtsock: sk == rtnl_dereference(mrt->mroute_sk));
1458 } else {
1459 ret = vif_delete(mrt, vifi: vif.vifc_vifi, notify: 0, NULL);
1460 }
1461 break;
1462 /* Manipulate the forwarding caches. These live
1463 * in a sort of kernel/user symbiosis.
1464 */
1465 case MRT_ADD_MFC:
1466 case MRT_DEL_MFC:
1467 parent = -1;
1468 fallthrough;
1469 case MRT_ADD_MFC_PROXY:
1470 case MRT_DEL_MFC_PROXY:
1471 if (optlen != sizeof(mfc)) {
1472 ret = -EINVAL;
1473 break;
1474 }
1475 if (copy_from_sockptr(dst: &mfc, src: optval, size: sizeof(mfc))) {
1476 ret = -EFAULT;
1477 break;
1478 }
1479 if (parent == 0)
1480 parent = mfc.mfcc_parent;
1481 if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY)
1482 ret = ipmr_mfc_delete(mrt, mfc: &mfc, parent);
1483 else
1484 ret = ipmr_mfc_add(net, mrt, mfc: &mfc,
1485 mrtsock: sk == rtnl_dereference(mrt->mroute_sk),
1486 parent);
1487 break;
1488 case MRT_FLUSH:
1489 if (optlen != sizeof(val)) {
1490 ret = -EINVAL;
1491 break;
1492 }
1493 if (copy_from_sockptr(dst: &val, src: optval, size: sizeof(val))) {
1494 ret = -EFAULT;
1495 break;
1496 }
1497 mroute_clean_tables(mrt, flags: val);
1498 break;
1499 /* Control PIM assert. */
1500 case MRT_ASSERT:
1501 if (optlen != sizeof(val)) {
1502 ret = -EINVAL;
1503 break;
1504 }
1505 if (copy_from_sockptr(dst: &val, src: optval, size: sizeof(val))) {
1506 ret = -EFAULT;
1507 break;
1508 }
1509 mrt->mroute_do_assert = val;
1510 break;
1511 case MRT_PIM:
1512 if (!ipmr_pimsm_enabled()) {
1513 ret = -ENOPROTOOPT;
1514 break;
1515 }
1516 if (optlen != sizeof(val)) {
1517 ret = -EINVAL;
1518 break;
1519 }
1520 if (copy_from_sockptr(dst: &val, src: optval, size: sizeof(val))) {
1521 ret = -EFAULT;
1522 break;
1523 }
1524
1525 do_wrvifwhole = (val == IGMPMSG_WRVIFWHOLE);
1526 val = !!val;
1527 if (val != mrt->mroute_do_pim) {
1528 mrt->mroute_do_pim = val;
1529 mrt->mroute_do_assert = val;
1530 mrt->mroute_do_wrvifwhole = do_wrvifwhole;
1531 }
1532 break;
1533 case MRT_TABLE:
1534 if (!IS_BUILTIN(CONFIG_IP_MROUTE_MULTIPLE_TABLES)) {
1535 ret = -ENOPROTOOPT;
1536 break;
1537 }
1538 if (optlen != sizeof(uval)) {
1539 ret = -EINVAL;
1540 break;
1541 }
1542 if (copy_from_sockptr(dst: &uval, src: optval, size: sizeof(uval))) {
1543 ret = -EFAULT;
1544 break;
1545 }
1546
1547 if (sk == rtnl_dereference(mrt->mroute_sk)) {
1548 ret = -EBUSY;
1549 } else {
1550 mrt = ipmr_new_table(net, id: uval);
1551 if (IS_ERR(ptr: mrt))
1552 ret = PTR_ERR(ptr: mrt);
1553 else
1554 raw_sk(sk)->ipmr_table = uval;
1555 }
1556 break;
1557 /* Spurious command, or MRT_VERSION which you cannot set. */
1558 default:
1559 ret = -ENOPROTOOPT;
1560 }
1561out_unlock:
1562 rtnl_unlock();
1563out:
1564 return ret;
1565}
1566
1567/* Execute if this ioctl is a special mroute ioctl */
1568int ipmr_sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1569{
1570 switch (cmd) {
1571 /* These userspace buffers will be consumed by ipmr_ioctl() */
1572 case SIOCGETVIFCNT: {
1573 struct sioc_vif_req buffer;
1574
1575 return sock_ioctl_inout(sk, cmd, arg, karg: &buffer,
1576 size: sizeof(buffer));
1577 }
1578 case SIOCGETSGCNT: {
1579 struct sioc_sg_req buffer;
1580
1581 return sock_ioctl_inout(sk, cmd, arg, karg: &buffer,
1582 size: sizeof(buffer));
1583 }
1584 }
1585 /* return code > 0 means that the ioctl was not executed */
1586 return 1;
1587}
1588
1589/* Getsock opt support for the multicast routing system. */
1590int ip_mroute_getsockopt(struct sock *sk, int optname, sockptr_t optval,
1591 sockptr_t optlen)
1592{
1593 int olr;
1594 int val;
1595 struct net *net = sock_net(sk);
1596 struct mr_table *mrt;
1597
1598 if (sk->sk_type != SOCK_RAW ||
1599 inet_sk(sk)->inet_num != IPPROTO_IGMP)
1600 return -EOPNOTSUPP;
1601
1602 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1603 if (!mrt)
1604 return -ENOENT;
1605
1606 switch (optname) {
1607 case MRT_VERSION:
1608 val = 0x0305;
1609 break;
1610 case MRT_PIM:
1611 if (!ipmr_pimsm_enabled())
1612 return -ENOPROTOOPT;
1613 val = mrt->mroute_do_pim;
1614 break;
1615 case MRT_ASSERT:
1616 val = mrt->mroute_do_assert;
1617 break;
1618 default:
1619 return -ENOPROTOOPT;
1620 }
1621
1622 if (copy_from_sockptr(dst: &olr, src: optlen, size: sizeof(int)))
1623 return -EFAULT;
1624 if (olr < 0)
1625 return -EINVAL;
1626
1627 olr = min_t(unsigned int, olr, sizeof(int));
1628
1629 if (copy_to_sockptr(dst: optlen, src: &olr, size: sizeof(int)))
1630 return -EFAULT;
1631 if (copy_to_sockptr(dst: optval, src: &val, size: olr))
1632 return -EFAULT;
1633 return 0;
1634}
1635
1636/* The IP multicast ioctl support routines. */
1637int ipmr_ioctl(struct sock *sk, int cmd, void *arg)
1638{
1639 struct vif_device *vif;
1640 struct mfc_cache *c;
1641 struct net *net = sock_net(sk);
1642 struct sioc_vif_req *vr;
1643 struct sioc_sg_req *sr;
1644 struct mr_table *mrt;
1645
1646 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1647 if (!mrt)
1648 return -ENOENT;
1649
1650 switch (cmd) {
1651 case SIOCGETVIFCNT:
1652 vr = (struct sioc_vif_req *)arg;
1653 if (vr->vifi >= mrt->maxvif)
1654 return -EINVAL;
1655 vr->vifi = array_index_nospec(vr->vifi, mrt->maxvif);
1656 rcu_read_lock();
1657 vif = &mrt->vif_table[vr->vifi];
1658 if (VIF_EXISTS(mrt, vr->vifi)) {
1659 vr->icount = READ_ONCE(vif->pkt_in);
1660 vr->ocount = READ_ONCE(vif->pkt_out);
1661 vr->ibytes = READ_ONCE(vif->bytes_in);
1662 vr->obytes = READ_ONCE(vif->bytes_out);
1663 rcu_read_unlock();
1664
1665 return 0;
1666 }
1667 rcu_read_unlock();
1668 return -EADDRNOTAVAIL;
1669 case SIOCGETSGCNT:
1670 sr = (struct sioc_sg_req *)arg;
1671
1672 rcu_read_lock();
1673 c = ipmr_cache_find(mrt, origin: sr->src.s_addr, mcastgrp: sr->grp.s_addr);
1674 if (c) {
1675 sr->pktcnt = atomic_long_read(v: &c->_c.mfc_un.res.pkt);
1676 sr->bytecnt = atomic_long_read(v: &c->_c.mfc_un.res.bytes);
1677 sr->wrong_if = atomic_long_read(v: &c->_c.mfc_un.res.wrong_if);
1678 rcu_read_unlock();
1679 return 0;
1680 }
1681 rcu_read_unlock();
1682 return -EADDRNOTAVAIL;
1683 default:
1684 return -ENOIOCTLCMD;
1685 }
1686}
1687
1688#ifdef CONFIG_COMPAT
1689struct compat_sioc_sg_req {
1690 struct in_addr src;
1691 struct in_addr grp;
1692 compat_ulong_t pktcnt;
1693 compat_ulong_t bytecnt;
1694 compat_ulong_t wrong_if;
1695};
1696
1697struct compat_sioc_vif_req {
1698 vifi_t vifi; /* Which iface */
1699 compat_ulong_t icount;
1700 compat_ulong_t ocount;
1701 compat_ulong_t ibytes;
1702 compat_ulong_t obytes;
1703};
1704
1705int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1706{
1707 struct compat_sioc_sg_req sr;
1708 struct compat_sioc_vif_req vr;
1709 struct vif_device *vif;
1710 struct mfc_cache *c;
1711 struct net *net = sock_net(sk);
1712 struct mr_table *mrt;
1713
1714 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1715 if (!mrt)
1716 return -ENOENT;
1717
1718 switch (cmd) {
1719 case SIOCGETVIFCNT:
1720 if (copy_from_user(to: &vr, from: arg, n: sizeof(vr)))
1721 return -EFAULT;
1722 if (vr.vifi >= mrt->maxvif)
1723 return -EINVAL;
1724 vr.vifi = array_index_nospec(vr.vifi, mrt->maxvif);
1725 rcu_read_lock();
1726 vif = &mrt->vif_table[vr.vifi];
1727 if (VIF_EXISTS(mrt, vr.vifi)) {
1728 vr.icount = READ_ONCE(vif->pkt_in);
1729 vr.ocount = READ_ONCE(vif->pkt_out);
1730 vr.ibytes = READ_ONCE(vif->bytes_in);
1731 vr.obytes = READ_ONCE(vif->bytes_out);
1732 rcu_read_unlock();
1733
1734 if (copy_to_user(to: arg, from: &vr, n: sizeof(vr)))
1735 return -EFAULT;
1736 return 0;
1737 }
1738 rcu_read_unlock();
1739 return -EADDRNOTAVAIL;
1740 case SIOCGETSGCNT:
1741 if (copy_from_user(to: &sr, from: arg, n: sizeof(sr)))
1742 return -EFAULT;
1743
1744 rcu_read_lock();
1745 c = ipmr_cache_find(mrt, origin: sr.src.s_addr, mcastgrp: sr.grp.s_addr);
1746 if (c) {
1747 sr.pktcnt = atomic_long_read(v: &c->_c.mfc_un.res.pkt);
1748 sr.bytecnt = atomic_long_read(v: &c->_c.mfc_un.res.bytes);
1749 sr.wrong_if = atomic_long_read(v: &c->_c.mfc_un.res.wrong_if);
1750 rcu_read_unlock();
1751
1752 if (copy_to_user(to: arg, from: &sr, n: sizeof(sr)))
1753 return -EFAULT;
1754 return 0;
1755 }
1756 rcu_read_unlock();
1757 return -EADDRNOTAVAIL;
1758 default:
1759 return -ENOIOCTLCMD;
1760 }
1761}
1762#endif
1763
1764static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1765{
1766 struct net_device *dev = netdev_notifier_info_to_dev(info: ptr);
1767 struct net *net = dev_net(dev);
1768 struct mr_table *mrt;
1769 struct vif_device *v;
1770 int ct;
1771
1772 if (event != NETDEV_UNREGISTER)
1773 return NOTIFY_DONE;
1774
1775 ipmr_for_each_table(mrt, net) {
1776 v = &mrt->vif_table[0];
1777 for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1778 if (rcu_access_pointer(v->dev) == dev)
1779 vif_delete(mrt, vifi: ct, notify: 1, NULL);
1780 }
1781 }
1782 return NOTIFY_DONE;
1783}
1784
1785static struct notifier_block ip_mr_notifier = {
1786 .notifier_call = ipmr_device_event,
1787};
1788
1789/* Encapsulate a packet by attaching a valid IPIP header to it.
1790 * This avoids tunnel drivers and other mess and gives us the speed so
1791 * important for multicast video.
1792 */
1793static void ip_encap(struct net *net, struct sk_buff *skb,
1794 __be32 saddr, __be32 daddr)
1795{
1796 struct iphdr *iph;
1797 const struct iphdr *old_iph = ip_hdr(skb);
1798
1799 skb_push(skb, len: sizeof(struct iphdr));
1800 skb->transport_header = skb->network_header;
1801 skb_reset_network_header(skb);
1802 iph = ip_hdr(skb);
1803
1804 iph->version = 4;
1805 iph->tos = old_iph->tos;
1806 iph->ttl = old_iph->ttl;
1807 iph->frag_off = 0;
1808 iph->daddr = daddr;
1809 iph->saddr = saddr;
1810 iph->protocol = IPPROTO_IPIP;
1811 iph->ihl = 5;
1812 iph->tot_len = htons(skb->len);
1813 ip_select_ident(net, skb, NULL);
1814 ip_send_check(ip: iph);
1815
1816 memset(s: &(IPCB(skb)->opt), c: 0, n: sizeof(IPCB(skb)->opt));
1817 nf_reset_ct(skb);
1818}
1819
1820static inline int ipmr_forward_finish(struct net *net, struct sock *sk,
1821 struct sk_buff *skb)
1822{
1823 struct ip_options *opt = &(IPCB(skb)->opt);
1824
1825 IP_INC_STATS(net, IPSTATS_MIB_OUTFORWDATAGRAMS);
1826
1827 if (unlikely(opt->optlen))
1828 ip_forward_options(skb);
1829
1830 return dst_output(net, sk, skb);
1831}
1832
1833#ifdef CONFIG_NET_SWITCHDEV
1834static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt,
1835 int in_vifi, int out_vifi)
1836{
1837 struct vif_device *out_vif = &mrt->vif_table[out_vifi];
1838 struct vif_device *in_vif = &mrt->vif_table[in_vifi];
1839
1840 if (!skb->offload_l3_fwd_mark)
1841 return false;
1842 if (!out_vif->dev_parent_id.id_len || !in_vif->dev_parent_id.id_len)
1843 return false;
1844 return netdev_phys_item_id_same(&out_vif->dev_parent_id,
1845 &in_vif->dev_parent_id);
1846}
1847#else
1848static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt,
1849 int in_vifi, int out_vifi)
1850{
1851 return false;
1852}
1853#endif
1854
1855/* Processing handlers for ipmr_forward, under rcu_read_lock() */
1856
1857static int ipmr_prepare_xmit(struct net *net, struct mr_table *mrt,
1858 struct sk_buff *skb, int vifi)
1859{
1860 const struct iphdr *iph = ip_hdr(skb);
1861 struct vif_device *vif = &mrt->vif_table[vifi];
1862 struct net_device *vif_dev;
1863 struct rtable *rt;
1864 struct flowi4 fl4;
1865 int encap = 0;
1866
1867 vif_dev = vif_dev_read(vif);
1868 if (!vif_dev)
1869 return -1;
1870
1871 if (vif->flags & VIFF_REGISTER) {
1872 WRITE_ONCE(vif->pkt_out, vif->pkt_out + 1);
1873 WRITE_ONCE(vif->bytes_out, vif->bytes_out + skb->len);
1874 DEV_STATS_ADD(vif_dev, tx_bytes, skb->len);
1875 DEV_STATS_INC(vif_dev, tx_packets);
1876 ipmr_cache_report(mrt, pkt: skb, vifi, IGMPMSG_WHOLEPKT);
1877 return -1;
1878 }
1879
1880 if (vif->flags & VIFF_TUNNEL) {
1881 rt = ip_route_output_ports(net, fl4: &fl4, NULL,
1882 daddr: vif->remote, saddr: vif->local,
1883 dport: 0, sport: 0,
1884 IPPROTO_IPIP,
1885 tos: iph->tos & INET_DSCP_MASK, oif: vif->link);
1886 if (IS_ERR(ptr: rt))
1887 return -1;
1888 encap = sizeof(struct iphdr);
1889 } else {
1890 rt = ip_route_output_ports(net, fl4: &fl4, NULL, daddr: iph->daddr, saddr: 0,
1891 dport: 0, sport: 0,
1892 IPPROTO_IPIP,
1893 tos: iph->tos & INET_DSCP_MASK, oif: vif->link);
1894 if (IS_ERR(ptr: rt))
1895 return -1;
1896 }
1897
1898 if (skb->len+encap > dst_mtu(dst: &rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
1899 /* Do not fragment multicasts. Alas, IPv4 does not
1900 * allow to send ICMP, so that packets will disappear
1901 * to blackhole.
1902 */
1903 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
1904 ip_rt_put(rt);
1905 return -1;
1906 }
1907
1908 encap += LL_RESERVED_SPACE(dst_dev_rcu(&rt->dst)) + rt->dst.header_len;
1909
1910 if (skb_cow(skb, headroom: encap)) {
1911 ip_rt_put(rt);
1912 return -1;
1913 }
1914
1915 WRITE_ONCE(vif->pkt_out, vif->pkt_out + 1);
1916 WRITE_ONCE(vif->bytes_out, vif->bytes_out + skb->len);
1917
1918 skb_dst_drop(skb);
1919 skb_dst_set(skb, dst: &rt->dst);
1920 ip_decrease_ttl(iph: ip_hdr(skb));
1921
1922 /* FIXME: forward and output firewalls used to be called here.
1923 * What do we do with netfilter? -- RR
1924 */
1925 if (vif->flags & VIFF_TUNNEL) {
1926 ip_encap(net, skb, saddr: vif->local, daddr: vif->remote);
1927 /* FIXME: extra output firewall step used to be here. --RR */
1928 DEV_STATS_INC(vif_dev, tx_packets);
1929 DEV_STATS_ADD(vif_dev, tx_bytes, skb->len);
1930 }
1931
1932 return 0;
1933}
1934
1935static void ipmr_queue_fwd_xmit(struct net *net, struct mr_table *mrt,
1936 int in_vifi, struct sk_buff *skb, int vifi)
1937{
1938 struct rtable *rt;
1939
1940 if (ipmr_forward_offloaded(skb, mrt, in_vifi, out_vifi: vifi))
1941 goto out_free;
1942
1943 if (ipmr_prepare_xmit(net, mrt, skb, vifi))
1944 goto out_free;
1945
1946 rt = skb_rtable(skb);
1947
1948 IPCB(skb)->flags |= IPSKB_FORWARDED;
1949
1950 /* RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
1951 * not only before forwarding, but after forwarding on all output
1952 * interfaces. It is clear, if mrouter runs a multicasting
1953 * program, it should receive packets not depending to what interface
1954 * program is joined.
1955 * If we will not make it, the program will have to join on all
1956 * interfaces. On the other hand, multihoming host (or router, but
1957 * not mrouter) cannot join to more than one interface - it will
1958 * result in receiving multiple packets.
1959 */
1960 NF_HOOK(pf: NFPROTO_IPV4, hook: NF_INET_FORWARD,
1961 net, NULL, skb, in: skb->dev, out: dst_dev_rcu(dst: &rt->dst),
1962 okfn: ipmr_forward_finish);
1963 return;
1964
1965out_free:
1966 kfree_skb(skb);
1967}
1968
1969static void ipmr_queue_output_xmit(struct net *net, struct mr_table *mrt,
1970 struct sk_buff *skb, int vifi)
1971{
1972 if (ipmr_prepare_xmit(net, mrt, skb, vifi))
1973 goto out_free;
1974
1975 ip_mc_output(net, NULL, skb);
1976 return;
1977
1978out_free:
1979 kfree_skb(skb);
1980}
1981
1982/* Called with mrt_lock or rcu_read_lock() */
1983static int ipmr_find_vif(const struct mr_table *mrt, struct net_device *dev)
1984{
1985 int ct;
1986 /* Pairs with WRITE_ONCE() in vif_delete()/vif_add() */
1987 for (ct = READ_ONCE(mrt->maxvif) - 1; ct >= 0; ct--) {
1988 if (rcu_access_pointer(mrt->vif_table[ct].dev) == dev)
1989 break;
1990 }
1991 return ct;
1992}
1993
1994/* "local" means that we should preserve one skb (for local delivery) */
1995/* Called uner rcu_read_lock() */
1996static void ip_mr_forward(struct net *net, struct mr_table *mrt,
1997 struct net_device *dev, struct sk_buff *skb,
1998 struct mfc_cache *c, int local)
1999{
2000 int true_vifi = ipmr_find_vif(mrt, dev);
2001 int psend = -1;
2002 int vif, ct;
2003
2004 vif = c->_c.mfc_parent;
2005 atomic_long_inc(v: &c->_c.mfc_un.res.pkt);
2006 atomic_long_add(i: skb->len, v: &c->_c.mfc_un.res.bytes);
2007 WRITE_ONCE(c->_c.mfc_un.res.lastuse, jiffies);
2008
2009 if (c->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) {
2010 struct mfc_cache *cache_proxy;
2011
2012 /* For an (*,G) entry, we only check that the incoming
2013 * interface is part of the static tree.
2014 */
2015 cache_proxy = mr_mfc_find_any_parent(mrt, vifi: vif);
2016 if (cache_proxy &&
2017 cache_proxy->_c.mfc_un.res.ttls[true_vifi] < 255)
2018 goto forward;
2019 }
2020
2021 /* Wrong interface: drop packet and (maybe) send PIM assert. */
2022 if (rcu_access_pointer(mrt->vif_table[vif].dev) != dev) {
2023 if (rt_is_output_route(rt: skb_rtable(skb))) {
2024 /* It is our own packet, looped back.
2025 * Very complicated situation...
2026 *
2027 * The best workaround until routing daemons will be
2028 * fixed is not to redistribute packet, if it was
2029 * send through wrong interface. It means, that
2030 * multicast applications WILL NOT work for
2031 * (S,G), which have default multicast route pointing
2032 * to wrong oif. In any case, it is not a good
2033 * idea to use multicasting applications on router.
2034 */
2035 goto dont_forward;
2036 }
2037
2038 atomic_long_inc(v: &c->_c.mfc_un.res.wrong_if);
2039
2040 if (true_vifi >= 0 && mrt->mroute_do_assert &&
2041 /* pimsm uses asserts, when switching from RPT to SPT,
2042 * so that we cannot check that packet arrived on an oif.
2043 * It is bad, but otherwise we would need to move pretty
2044 * large chunk of pimd to kernel. Ough... --ANK
2045 */
2046 (mrt->mroute_do_pim ||
2047 c->_c.mfc_un.res.ttls[true_vifi] < 255) &&
2048 time_after(jiffies,
2049 c->_c.mfc_un.res.last_assert +
2050 MFC_ASSERT_THRESH)) {
2051 c->_c.mfc_un.res.last_assert = jiffies;
2052 ipmr_cache_report(mrt, pkt: skb, vifi: true_vifi, IGMPMSG_WRONGVIF);
2053 if (mrt->mroute_do_wrvifwhole)
2054 ipmr_cache_report(mrt, pkt: skb, vifi: true_vifi,
2055 IGMPMSG_WRVIFWHOLE);
2056 }
2057 goto dont_forward;
2058 }
2059
2060forward:
2061 WRITE_ONCE(mrt->vif_table[vif].pkt_in,
2062 mrt->vif_table[vif].pkt_in + 1);
2063 WRITE_ONCE(mrt->vif_table[vif].bytes_in,
2064 mrt->vif_table[vif].bytes_in + skb->len);
2065
2066 /* Forward the frame */
2067 if (c->mfc_origin == htonl(INADDR_ANY) &&
2068 c->mfc_mcastgrp == htonl(INADDR_ANY)) {
2069 if (true_vifi >= 0 &&
2070 true_vifi != c->_c.mfc_parent &&
2071 ip_hdr(skb)->ttl >
2072 c->_c.mfc_un.res.ttls[c->_c.mfc_parent]) {
2073 /* It's an (*,*) entry and the packet is not coming from
2074 * the upstream: forward the packet to the upstream
2075 * only.
2076 */
2077 psend = c->_c.mfc_parent;
2078 goto last_forward;
2079 }
2080 goto dont_forward;
2081 }
2082 for (ct = c->_c.mfc_un.res.maxvif - 1;
2083 ct >= c->_c.mfc_un.res.minvif; ct--) {
2084 /* For (*,G) entry, don't forward to the incoming interface */
2085 if ((c->mfc_origin != htonl(INADDR_ANY) ||
2086 ct != true_vifi) &&
2087 ip_hdr(skb)->ttl > c->_c.mfc_un.res.ttls[ct]) {
2088 if (psend != -1) {
2089 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2090
2091 if (skb2)
2092 ipmr_queue_fwd_xmit(net, mrt, in_vifi: true_vifi,
2093 skb: skb2, vifi: psend);
2094 }
2095 psend = ct;
2096 }
2097 }
2098last_forward:
2099 if (psend != -1) {
2100 if (local) {
2101 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2102
2103 if (skb2)
2104 ipmr_queue_fwd_xmit(net, mrt, in_vifi: true_vifi, skb: skb2,
2105 vifi: psend);
2106 } else {
2107 ipmr_queue_fwd_xmit(net, mrt, in_vifi: true_vifi, skb, vifi: psend);
2108 return;
2109 }
2110 }
2111
2112dont_forward:
2113 if (!local)
2114 kfree_skb(skb);
2115}
2116
2117static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
2118{
2119 struct rtable *rt = skb_rtable(skb);
2120 struct iphdr *iph = ip_hdr(skb);
2121 struct flowi4 fl4 = {
2122 .daddr = iph->daddr,
2123 .saddr = iph->saddr,
2124 .flowi4_dscp = ip4h_dscp(ip4h: iph),
2125 .flowi4_oif = (rt_is_output_route(rt) ?
2126 skb->dev->ifindex : 0),
2127 .flowi4_iif = (rt_is_output_route(rt) ?
2128 LOOPBACK_IFINDEX :
2129 skb->dev->ifindex),
2130 .flowi4_mark = skb->mark,
2131 };
2132 struct mr_table *mrt;
2133 int err;
2134
2135 err = ipmr_fib_lookup(net, flp4: &fl4, mrt: &mrt);
2136 if (err)
2137 return ERR_PTR(error: err);
2138 return mrt;
2139}
2140
2141/* Multicast packets for forwarding arrive here
2142 * Called with rcu_read_lock();
2143 */
2144int ip_mr_input(struct sk_buff *skb)
2145{
2146 struct mfc_cache *cache;
2147 struct net *net = dev_net(dev: skb->dev);
2148 int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
2149 struct mr_table *mrt;
2150 struct net_device *dev;
2151
2152 /* skb->dev passed in is the loX master dev for vrfs.
2153 * As there are no vifs associated with loopback devices,
2154 * get the proper interface that does have a vif associated with it.
2155 */
2156 dev = skb->dev;
2157 if (netif_is_l3_master(dev: skb->dev)) {
2158 dev = dev_get_by_index_rcu(net, IPCB(skb)->iif);
2159 if (!dev) {
2160 kfree_skb(skb);
2161 return -ENODEV;
2162 }
2163 }
2164
2165 /* Packet is looped back after forward, it should not be
2166 * forwarded second time, but still can be delivered locally.
2167 */
2168 if (IPCB(skb)->flags & IPSKB_FORWARDED)
2169 goto dont_forward;
2170
2171 mrt = ipmr_rt_fib_lookup(net, skb);
2172 if (IS_ERR(ptr: mrt)) {
2173 kfree_skb(skb);
2174 return PTR_ERR(ptr: mrt);
2175 }
2176 if (!local) {
2177 if (IPCB(skb)->opt.router_alert) {
2178 if (ip_call_ra_chain(skb))
2179 return 0;
2180 } else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
2181 /* IGMPv1 (and broken IGMPv2 implementations sort of
2182 * Cisco IOS <= 11.2(8)) do not put router alert
2183 * option to IGMP packets destined to routable
2184 * groups. It is very bad, because it means
2185 * that we can forward NO IGMP messages.
2186 */
2187 struct sock *mroute_sk;
2188
2189 mroute_sk = rcu_dereference(mrt->mroute_sk);
2190 if (mroute_sk) {
2191 nf_reset_ct(skb);
2192 raw_rcv(mroute_sk, skb);
2193 return 0;
2194 }
2195 }
2196 }
2197
2198 /* already under rcu_read_lock() */
2199 cache = ipmr_cache_find(mrt, origin: ip_hdr(skb)->saddr, mcastgrp: ip_hdr(skb)->daddr);
2200 if (!cache) {
2201 int vif = ipmr_find_vif(mrt, dev);
2202
2203 if (vif >= 0)
2204 cache = ipmr_cache_find_any(mrt, mcastgrp: ip_hdr(skb)->daddr,
2205 vifi: vif);
2206 }
2207
2208 /* No usable cache entry */
2209 if (!cache) {
2210 int vif;
2211
2212 if (local) {
2213 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2214 ip_local_deliver(skb);
2215 if (!skb2)
2216 return -ENOBUFS;
2217 skb = skb2;
2218 }
2219
2220 vif = ipmr_find_vif(mrt, dev);
2221 if (vif >= 0)
2222 return ipmr_cache_unresolved(mrt, vifi: vif, skb, dev);
2223 kfree_skb(skb);
2224 return -ENODEV;
2225 }
2226
2227 ip_mr_forward(net, mrt, dev, skb, c: cache, local);
2228
2229 if (local)
2230 return ip_local_deliver(skb);
2231
2232 return 0;
2233
2234dont_forward:
2235 if (local)
2236 return ip_local_deliver(skb);
2237 kfree_skb(skb);
2238 return 0;
2239}
2240
2241static void ip_mr_output_finish(struct net *net, struct mr_table *mrt,
2242 struct net_device *dev, struct sk_buff *skb,
2243 struct mfc_cache *c)
2244{
2245 int psend = -1;
2246 int ct;
2247
2248 atomic_long_inc(v: &c->_c.mfc_un.res.pkt);
2249 atomic_long_add(i: skb->len, v: &c->_c.mfc_un.res.bytes);
2250 WRITE_ONCE(c->_c.mfc_un.res.lastuse, jiffies);
2251
2252 /* Forward the frame */
2253 if (c->mfc_origin == htonl(INADDR_ANY) &&
2254 c->mfc_mcastgrp == htonl(INADDR_ANY)) {
2255 if (ip_hdr(skb)->ttl >
2256 c->_c.mfc_un.res.ttls[c->_c.mfc_parent]) {
2257 /* It's an (*,*) entry and the packet is not coming from
2258 * the upstream: forward the packet to the upstream
2259 * only.
2260 */
2261 psend = c->_c.mfc_parent;
2262 goto last_xmit;
2263 }
2264 goto dont_xmit;
2265 }
2266
2267 for (ct = c->_c.mfc_un.res.maxvif - 1;
2268 ct >= c->_c.mfc_un.res.minvif; ct--) {
2269 if (ip_hdr(skb)->ttl > c->_c.mfc_un.res.ttls[ct]) {
2270 if (psend != -1) {
2271 struct sk_buff *skb2;
2272
2273 skb2 = skb_clone(skb, GFP_ATOMIC);
2274 if (skb2)
2275 ipmr_queue_output_xmit(net, mrt,
2276 skb: skb2, vifi: psend);
2277 }
2278 psend = ct;
2279 }
2280 }
2281
2282last_xmit:
2283 if (psend != -1) {
2284 ipmr_queue_output_xmit(net, mrt, skb, vifi: psend);
2285 return;
2286 }
2287
2288dont_xmit:
2289 kfree_skb(skb);
2290}
2291
2292/* Multicast packets for forwarding arrive here
2293 * Called with rcu_read_lock();
2294 */
2295int ip_mr_output(struct net *net, struct sock *sk, struct sk_buff *skb)
2296{
2297 struct rtable *rt = skb_rtable(skb);
2298 struct mfc_cache *cache;
2299 struct net_device *dev;
2300 struct mr_table *mrt;
2301 int vif;
2302
2303 guard(rcu)();
2304
2305 dev = dst_dev_rcu(dst: &rt->dst);
2306
2307 if (IPCB(skb)->flags & IPSKB_FORWARDED)
2308 goto mc_output;
2309 if (!(IPCB(skb)->flags & IPSKB_MCROUTE))
2310 goto mc_output;
2311
2312 skb->dev = dev;
2313
2314 mrt = ipmr_rt_fib_lookup(net, skb);
2315 if (IS_ERR(ptr: mrt))
2316 goto mc_output;
2317
2318 cache = ipmr_cache_find(mrt, origin: ip_hdr(skb)->saddr, mcastgrp: ip_hdr(skb)->daddr);
2319 if (!cache) {
2320 vif = ipmr_find_vif(mrt, dev);
2321 if (vif >= 0)
2322 cache = ipmr_cache_find_any(mrt, mcastgrp: ip_hdr(skb)->daddr,
2323 vifi: vif);
2324 }
2325
2326 /* No usable cache entry */
2327 if (!cache) {
2328 vif = ipmr_find_vif(mrt, dev);
2329 if (vif >= 0)
2330 return ipmr_cache_unresolved(mrt, vifi: vif, skb, dev);
2331 goto mc_output;
2332 }
2333
2334 vif = cache->_c.mfc_parent;
2335 if (rcu_access_pointer(mrt->vif_table[vif].dev) != dev)
2336 goto mc_output;
2337
2338 ip_mr_output_finish(net, mrt, dev, skb, c: cache);
2339 return 0;
2340
2341mc_output:
2342 return ip_mc_output(net, sk, skb);
2343}
2344
2345#ifdef CONFIG_IP_PIMSM_V1
2346/* Handle IGMP messages of PIMv1 */
2347int pim_rcv_v1(struct sk_buff *skb)
2348{
2349 struct igmphdr *pim;
2350 struct net *net = dev_net(dev: skb->dev);
2351 struct mr_table *mrt;
2352
2353 if (!pskb_may_pull(skb, len: sizeof(*pim) + sizeof(struct iphdr)))
2354 goto drop;
2355
2356 pim = igmp_hdr(skb);
2357
2358 mrt = ipmr_rt_fib_lookup(net, skb);
2359 if (IS_ERR(ptr: mrt))
2360 goto drop;
2361 if (!mrt->mroute_do_pim ||
2362 pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
2363 goto drop;
2364
2365 if (__pim_rcv(mrt, skb, pimlen: sizeof(*pim))) {
2366drop:
2367 kfree_skb(skb);
2368 }
2369 return 0;
2370}
2371#endif
2372
2373#ifdef CONFIG_IP_PIMSM_V2
2374static int pim_rcv(struct sk_buff *skb)
2375{
2376 struct pimreghdr *pim;
2377 struct net *net = dev_net(dev: skb->dev);
2378 struct mr_table *mrt;
2379
2380 if (!pskb_may_pull(skb, len: sizeof(*pim) + sizeof(struct iphdr)))
2381 goto drop;
2382
2383 pim = (struct pimreghdr *)skb_transport_header(skb);
2384 if (pim->type != ((PIM_VERSION << 4) | (PIM_TYPE_REGISTER)) ||
2385 (pim->flags & PIM_NULL_REGISTER) ||
2386 (ip_compute_csum(buff: (void *)pim, len: sizeof(*pim)) != 0 &&
2387 csum_fold(sum: skb_checksum(skb, offset: 0, len: skb->len, csum: 0))))
2388 goto drop;
2389
2390 mrt = ipmr_rt_fib_lookup(net, skb);
2391 if (IS_ERR(ptr: mrt))
2392 goto drop;
2393 if (__pim_rcv(mrt, skb, pimlen: sizeof(*pim))) {
2394drop:
2395 kfree_skb(skb);
2396 }
2397 return 0;
2398}
2399#endif
2400
2401int ipmr_get_route(struct net *net, struct sk_buff *skb,
2402 __be32 saddr, __be32 daddr,
2403 struct rtmsg *rtm, u32 portid)
2404{
2405 struct mfc_cache *cache;
2406 struct mr_table *mrt;
2407 int err;
2408
2409 rcu_read_lock();
2410 mrt = __ipmr_get_table(net, id: RT_TABLE_DEFAULT);
2411 if (!mrt) {
2412 rcu_read_unlock();
2413 return -ENOENT;
2414 }
2415
2416 cache = ipmr_cache_find(mrt, origin: saddr, mcastgrp: daddr);
2417 if (!cache && skb->dev) {
2418 int vif = ipmr_find_vif(mrt, dev: skb->dev);
2419
2420 if (vif >= 0)
2421 cache = ipmr_cache_find_any(mrt, mcastgrp: daddr, vifi: vif);
2422 }
2423 if (!cache) {
2424 struct sk_buff *skb2;
2425 struct iphdr *iph;
2426 struct net_device *dev;
2427 int vif = -1;
2428
2429 dev = skb->dev;
2430 if (dev)
2431 vif = ipmr_find_vif(mrt, dev);
2432 if (vif < 0) {
2433 rcu_read_unlock();
2434 return -ENODEV;
2435 }
2436
2437 skb2 = skb_realloc_headroom(skb, headroom: sizeof(struct iphdr));
2438 if (!skb2) {
2439 rcu_read_unlock();
2440 return -ENOMEM;
2441 }
2442
2443 NETLINK_CB(skb2).portid = portid;
2444 skb_push(skb: skb2, len: sizeof(struct iphdr));
2445 skb_reset_network_header(skb: skb2);
2446 iph = ip_hdr(skb: skb2);
2447 iph->ihl = sizeof(struct iphdr) >> 2;
2448 iph->saddr = saddr;
2449 iph->daddr = daddr;
2450 iph->version = 0;
2451 err = ipmr_cache_unresolved(mrt, vifi: vif, skb: skb2, dev);
2452 rcu_read_unlock();
2453 return err;
2454 }
2455
2456 err = mr_fill_mroute(mrt, skb, c: &cache->_c, rtm);
2457 rcu_read_unlock();
2458 return err;
2459}
2460
2461static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2462 u32 portid, u32 seq, struct mfc_cache *c, int cmd,
2463 int flags)
2464{
2465 struct nlmsghdr *nlh;
2466 struct rtmsg *rtm;
2467 int err;
2468
2469 nlh = nlmsg_put(skb, portid, seq, type: cmd, payload: sizeof(*rtm), flags);
2470 if (!nlh)
2471 return -EMSGSIZE;
2472
2473 rtm = nlmsg_data(nlh);
2474 rtm->rtm_family = RTNL_FAMILY_IPMR;
2475 rtm->rtm_dst_len = 32;
2476 rtm->rtm_src_len = 32;
2477 rtm->rtm_tos = 0;
2478 rtm->rtm_table = mrt->id;
2479 if (nla_put_u32(skb, attrtype: RTA_TABLE, value: mrt->id))
2480 goto nla_put_failure;
2481 rtm->rtm_type = RTN_MULTICAST;
2482 rtm->rtm_scope = RT_SCOPE_UNIVERSE;
2483 if (c->_c.mfc_flags & MFC_STATIC)
2484 rtm->rtm_protocol = RTPROT_STATIC;
2485 else
2486 rtm->rtm_protocol = RTPROT_MROUTED;
2487 rtm->rtm_flags = 0;
2488
2489 if (nla_put_in_addr(skb, attrtype: RTA_SRC, addr: c->mfc_origin) ||
2490 nla_put_in_addr(skb, attrtype: RTA_DST, addr: c->mfc_mcastgrp))
2491 goto nla_put_failure;
2492 err = mr_fill_mroute(mrt, skb, c: &c->_c, rtm);
2493 /* do not break the dump if cache is unresolved */
2494 if (err < 0 && err != -ENOENT)
2495 goto nla_put_failure;
2496
2497 nlmsg_end(skb, nlh);
2498 return 0;
2499
2500nla_put_failure:
2501 nlmsg_cancel(skb, nlh);
2502 return -EMSGSIZE;
2503}
2504
2505static int _ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2506 u32 portid, u32 seq, struct mr_mfc *c, int cmd,
2507 int flags)
2508{
2509 return ipmr_fill_mroute(mrt, skb, portid, seq, c: (struct mfc_cache *)c,
2510 cmd, flags);
2511}
2512
2513static size_t mroute_msgsize(bool unresolved, int maxvif)
2514{
2515 size_t len =
2516 NLMSG_ALIGN(sizeof(struct rtmsg))
2517 + nla_total_size(payload: 4) /* RTA_TABLE */
2518 + nla_total_size(payload: 4) /* RTA_SRC */
2519 + nla_total_size(payload: 4) /* RTA_DST */
2520 ;
2521
2522 if (!unresolved)
2523 len = len
2524 + nla_total_size(payload: 4) /* RTA_IIF */
2525 + nla_total_size(payload: 0) /* RTA_MULTIPATH */
2526 + maxvif * NLA_ALIGN(sizeof(struct rtnexthop))
2527 /* RTA_MFC_STATS */
2528 + nla_total_size_64bit(payload: sizeof(struct rta_mfc_stats))
2529 ;
2530
2531 return len;
2532}
2533
2534static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
2535 int cmd)
2536{
2537 struct net *net = read_pnet(pnet: &mrt->net);
2538 struct sk_buff *skb;
2539 int err = -ENOBUFS;
2540
2541 skb = nlmsg_new(payload: mroute_msgsize(unresolved: mfc->_c.mfc_parent >= MAXVIFS,
2542 maxvif: mrt->maxvif),
2543 GFP_ATOMIC);
2544 if (!skb)
2545 goto errout;
2546
2547 err = ipmr_fill_mroute(mrt, skb, portid: 0, seq: 0, c: mfc, cmd, flags: 0);
2548 if (err < 0)
2549 goto errout;
2550
2551 rtnl_notify(skb, net, pid: 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC);
2552 return;
2553
2554errout:
2555 kfree_skb(skb);
2556 rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, error: err);
2557}
2558
2559static size_t igmpmsg_netlink_msgsize(size_t payloadlen)
2560{
2561 size_t len =
2562 NLMSG_ALIGN(sizeof(struct rtgenmsg))
2563 + nla_total_size(payload: 1) /* IPMRA_CREPORT_MSGTYPE */
2564 + nla_total_size(payload: 4) /* IPMRA_CREPORT_VIF_ID */
2565 + nla_total_size(payload: 4) /* IPMRA_CREPORT_SRC_ADDR */
2566 + nla_total_size(payload: 4) /* IPMRA_CREPORT_DST_ADDR */
2567 + nla_total_size(payload: 4) /* IPMRA_CREPORT_TABLE */
2568 /* IPMRA_CREPORT_PKT */
2569 + nla_total_size(payload: payloadlen)
2570 ;
2571
2572 return len;
2573}
2574
2575static void igmpmsg_netlink_event(const struct mr_table *mrt, struct sk_buff *pkt)
2576{
2577 struct net *net = read_pnet(pnet: &mrt->net);
2578 struct nlmsghdr *nlh;
2579 struct rtgenmsg *rtgenm;
2580 struct igmpmsg *msg;
2581 struct sk_buff *skb;
2582 struct nlattr *nla;
2583 int payloadlen;
2584
2585 payloadlen = pkt->len - sizeof(struct igmpmsg);
2586 msg = (struct igmpmsg *)skb_network_header(skb: pkt);
2587
2588 skb = nlmsg_new(payload: igmpmsg_netlink_msgsize(payloadlen), GFP_ATOMIC);
2589 if (!skb)
2590 goto errout;
2591
2592 nlh = nlmsg_put(skb, portid: 0, seq: 0, RTM_NEWCACHEREPORT,
2593 payload: sizeof(struct rtgenmsg), flags: 0);
2594 if (!nlh)
2595 goto errout;
2596 rtgenm = nlmsg_data(nlh);
2597 rtgenm->rtgen_family = RTNL_FAMILY_IPMR;
2598 if (nla_put_u8(skb, attrtype: IPMRA_CREPORT_MSGTYPE, value: msg->im_msgtype) ||
2599 nla_put_u32(skb, attrtype: IPMRA_CREPORT_VIF_ID, value: msg->im_vif | (msg->im_vif_hi << 8)) ||
2600 nla_put_in_addr(skb, attrtype: IPMRA_CREPORT_SRC_ADDR,
2601 addr: msg->im_src.s_addr) ||
2602 nla_put_in_addr(skb, attrtype: IPMRA_CREPORT_DST_ADDR,
2603 addr: msg->im_dst.s_addr) ||
2604 nla_put_u32(skb, attrtype: IPMRA_CREPORT_TABLE, value: mrt->id))
2605 goto nla_put_failure;
2606
2607 nla = nla_reserve(skb, attrtype: IPMRA_CREPORT_PKT, attrlen: payloadlen);
2608 if (!nla || skb_copy_bits(skb: pkt, offset: sizeof(struct igmpmsg),
2609 to: nla_data(nla), len: payloadlen))
2610 goto nla_put_failure;
2611
2612 nlmsg_end(skb, nlh);
2613
2614 rtnl_notify(skb, net, pid: 0, RTNLGRP_IPV4_MROUTE_R, NULL, GFP_ATOMIC);
2615 return;
2616
2617nla_put_failure:
2618 nlmsg_cancel(skb, nlh);
2619errout:
2620 kfree_skb(skb);
2621 rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE_R, error: -ENOBUFS);
2622}
2623
2624static int ipmr_rtm_valid_getroute_req(struct sk_buff *skb,
2625 const struct nlmsghdr *nlh,
2626 struct nlattr **tb,
2627 struct netlink_ext_ack *extack)
2628{
2629 struct rtmsg *rtm;
2630 int i, err;
2631
2632 rtm = nlmsg_payload(nlh, len: sizeof(*rtm));
2633 if (!rtm) {
2634 NL_SET_ERR_MSG(extack, "ipv4: Invalid header for multicast route get request");
2635 return -EINVAL;
2636 }
2637
2638 if (!netlink_strict_get_check(skb))
2639 return nlmsg_parse_deprecated(nlh, hdrlen: sizeof(*rtm), tb, RTA_MAX,
2640 policy: rtm_ipv4_policy, extack);
2641
2642 if ((rtm->rtm_src_len && rtm->rtm_src_len != 32) ||
2643 (rtm->rtm_dst_len && rtm->rtm_dst_len != 32) ||
2644 rtm->rtm_tos || rtm->rtm_table || rtm->rtm_protocol ||
2645 rtm->rtm_scope || rtm->rtm_type || rtm->rtm_flags) {
2646 NL_SET_ERR_MSG(extack, "ipv4: Invalid values in header for multicast route get request");
2647 return -EINVAL;
2648 }
2649
2650 err = nlmsg_parse_deprecated_strict(nlh, hdrlen: sizeof(*rtm), tb, RTA_MAX,
2651 policy: rtm_ipv4_policy, extack);
2652 if (err)
2653 return err;
2654
2655 if ((tb[RTA_SRC] && !rtm->rtm_src_len) ||
2656 (tb[RTA_DST] && !rtm->rtm_dst_len)) {
2657 NL_SET_ERR_MSG(extack, "ipv4: rtm_src_len and rtm_dst_len must be 32 for IPv4");
2658 return -EINVAL;
2659 }
2660
2661 for (i = 0; i <= RTA_MAX; i++) {
2662 if (!tb[i])
2663 continue;
2664
2665 switch (i) {
2666 case RTA_SRC:
2667 case RTA_DST:
2668 case RTA_TABLE:
2669 break;
2670 default:
2671 NL_SET_ERR_MSG(extack, "ipv4: Unsupported attribute in multicast route get request");
2672 return -EINVAL;
2673 }
2674 }
2675
2676 return 0;
2677}
2678
2679static int ipmr_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr *nlh,
2680 struct netlink_ext_ack *extack)
2681{
2682 struct net *net = sock_net(sk: in_skb->sk);
2683 struct nlattr *tb[RTA_MAX + 1];
2684 struct sk_buff *skb = NULL;
2685 struct mfc_cache *cache;
2686 struct mr_table *mrt;
2687 __be32 src, grp;
2688 u32 tableid;
2689 int err;
2690
2691 err = ipmr_rtm_valid_getroute_req(skb: in_skb, nlh, tb, extack);
2692 if (err < 0)
2693 goto errout;
2694
2695 src = nla_get_in_addr_default(nla: tb[RTA_SRC], defvalue: 0);
2696 grp = nla_get_in_addr_default(nla: tb[RTA_DST], defvalue: 0);
2697 tableid = nla_get_u32_default(nla: tb[RTA_TABLE], defvalue: 0);
2698
2699 mrt = __ipmr_get_table(net, id: tableid ? tableid : RT_TABLE_DEFAULT);
2700 if (!mrt) {
2701 err = -ENOENT;
2702 goto errout_free;
2703 }
2704
2705 /* entries are added/deleted only under RTNL */
2706 rcu_read_lock();
2707 cache = ipmr_cache_find(mrt, origin: src, mcastgrp: grp);
2708 rcu_read_unlock();
2709 if (!cache) {
2710 err = -ENOENT;
2711 goto errout_free;
2712 }
2713
2714 skb = nlmsg_new(payload: mroute_msgsize(unresolved: false, maxvif: mrt->maxvif), GFP_KERNEL);
2715 if (!skb) {
2716 err = -ENOBUFS;
2717 goto errout_free;
2718 }
2719
2720 err = ipmr_fill_mroute(mrt, skb, NETLINK_CB(in_skb).portid,
2721 seq: nlh->nlmsg_seq, c: cache,
2722 RTM_NEWROUTE, flags: 0);
2723 if (err < 0)
2724 goto errout_free;
2725
2726 err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).portid);
2727
2728errout:
2729 return err;
2730
2731errout_free:
2732 kfree_skb(skb);
2733 goto errout;
2734}
2735
2736static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2737{
2738 struct fib_dump_filter filter = {
2739 .rtnl_held = true,
2740 };
2741 int err;
2742
2743 if (cb->strict_check) {
2744 err = ip_valid_fib_dump_req(net: sock_net(sk: skb->sk), nlh: cb->nlh,
2745 filter: &filter, cb);
2746 if (err < 0)
2747 return err;
2748 }
2749
2750 if (filter.table_id) {
2751 struct mr_table *mrt;
2752
2753 mrt = __ipmr_get_table(net: sock_net(sk: skb->sk), id: filter.table_id);
2754 if (!mrt) {
2755 if (rtnl_msg_family(nlh: cb->nlh) != RTNL_FAMILY_IPMR)
2756 return skb->len;
2757
2758 NL_SET_ERR_MSG(cb->extack, "ipv4: MR table does not exist");
2759 return -ENOENT;
2760 }
2761 err = mr_table_dump(mrt, skb, cb, fill: _ipmr_fill_mroute,
2762 lock: &mfc_unres_lock, filter: &filter);
2763 return skb->len ? : err;
2764 }
2765
2766 return mr_rtm_dumproute(skb, cb, iter: ipmr_mr_table_iter,
2767 fill: _ipmr_fill_mroute, lock: &mfc_unres_lock, filter: &filter);
2768}
2769
2770static const struct nla_policy rtm_ipmr_policy[RTA_MAX + 1] = {
2771 [RTA_SRC] = { .type = NLA_U32 },
2772 [RTA_DST] = { .type = NLA_U32 },
2773 [RTA_IIF] = { .type = NLA_U32 },
2774 [RTA_TABLE] = { .type = NLA_U32 },
2775 [RTA_MULTIPATH] = { .len = sizeof(struct rtnexthop) },
2776};
2777
2778static bool ipmr_rtm_validate_proto(unsigned char rtm_protocol)
2779{
2780 switch (rtm_protocol) {
2781 case RTPROT_STATIC:
2782 case RTPROT_MROUTED:
2783 return true;
2784 }
2785 return false;
2786}
2787
2788static int ipmr_nla_get_ttls(const struct nlattr *nla, struct mfcctl *mfcc)
2789{
2790 struct rtnexthop *rtnh = nla_data(nla);
2791 int remaining = nla_len(nla), vifi = 0;
2792
2793 while (rtnh_ok(rtnh, remaining)) {
2794 mfcc->mfcc_ttls[vifi] = rtnh->rtnh_hops;
2795 if (++vifi == MAXVIFS)
2796 break;
2797 rtnh = rtnh_next(rtnh, remaining: &remaining);
2798 }
2799
2800 return remaining > 0 ? -EINVAL : vifi;
2801}
2802
2803/* returns < 0 on error, 0 for ADD_MFC and 1 for ADD_MFC_PROXY */
2804static int rtm_to_ipmr_mfcc(struct net *net, struct nlmsghdr *nlh,
2805 struct mfcctl *mfcc, int *mrtsock,
2806 struct mr_table **mrtret,
2807 struct netlink_ext_ack *extack)
2808{
2809 struct net_device *dev = NULL;
2810 u32 tblid = RT_TABLE_DEFAULT;
2811 struct mr_table *mrt;
2812 struct nlattr *attr;
2813 struct rtmsg *rtm;
2814 int ret, rem;
2815
2816 ret = nlmsg_validate_deprecated(nlh, hdrlen: sizeof(*rtm), RTA_MAX,
2817 policy: rtm_ipmr_policy, extack);
2818 if (ret < 0)
2819 goto out;
2820 rtm = nlmsg_data(nlh);
2821
2822 ret = -EINVAL;
2823 if (rtm->rtm_family != RTNL_FAMILY_IPMR || rtm->rtm_dst_len != 32 ||
2824 rtm->rtm_type != RTN_MULTICAST ||
2825 rtm->rtm_scope != RT_SCOPE_UNIVERSE ||
2826 !ipmr_rtm_validate_proto(rtm_protocol: rtm->rtm_protocol))
2827 goto out;
2828
2829 memset(s: mfcc, c: 0, n: sizeof(*mfcc));
2830 mfcc->mfcc_parent = -1;
2831 ret = 0;
2832 nlmsg_for_each_attr(attr, nlh, sizeof(struct rtmsg), rem) {
2833 switch (nla_type(nla: attr)) {
2834 case RTA_SRC:
2835 mfcc->mfcc_origin.s_addr = nla_get_be32(nla: attr);
2836 break;
2837 case RTA_DST:
2838 mfcc->mfcc_mcastgrp.s_addr = nla_get_be32(nla: attr);
2839 break;
2840 case RTA_IIF:
2841 dev = __dev_get_by_index(net, ifindex: nla_get_u32(nla: attr));
2842 if (!dev) {
2843 ret = -ENODEV;
2844 goto out;
2845 }
2846 break;
2847 case RTA_MULTIPATH:
2848 if (ipmr_nla_get_ttls(nla: attr, mfcc) < 0) {
2849 ret = -EINVAL;
2850 goto out;
2851 }
2852 break;
2853 case RTA_PREFSRC:
2854 ret = 1;
2855 break;
2856 case RTA_TABLE:
2857 tblid = nla_get_u32(nla: attr);
2858 break;
2859 }
2860 }
2861 mrt = __ipmr_get_table(net, id: tblid);
2862 if (!mrt) {
2863 ret = -ENOENT;
2864 goto out;
2865 }
2866 *mrtret = mrt;
2867 *mrtsock = rtm->rtm_protocol == RTPROT_MROUTED ? 1 : 0;
2868 if (dev)
2869 mfcc->mfcc_parent = ipmr_find_vif(mrt, dev);
2870
2871out:
2872 return ret;
2873}
2874
2875/* takes care of both newroute and delroute */
2876static int ipmr_rtm_route(struct sk_buff *skb, struct nlmsghdr *nlh,
2877 struct netlink_ext_ack *extack)
2878{
2879 struct net *net = sock_net(sk: skb->sk);
2880 int ret, mrtsock, parent;
2881 struct mr_table *tbl;
2882 struct mfcctl mfcc;
2883
2884 mrtsock = 0;
2885 tbl = NULL;
2886 ret = rtm_to_ipmr_mfcc(net, nlh, mfcc: &mfcc, mrtsock: &mrtsock, mrtret: &tbl, extack);
2887 if (ret < 0)
2888 return ret;
2889
2890 parent = ret ? mfcc.mfcc_parent : -1;
2891 if (nlh->nlmsg_type == RTM_NEWROUTE)
2892 return ipmr_mfc_add(net, mrt: tbl, mfc: &mfcc, mrtsock, parent);
2893 else
2894 return ipmr_mfc_delete(mrt: tbl, mfc: &mfcc, parent);
2895}
2896
2897static bool ipmr_fill_table(struct mr_table *mrt, struct sk_buff *skb)
2898{
2899 u32 queue_len = atomic_read(v: &mrt->cache_resolve_queue_len);
2900
2901 if (nla_put_u32(skb, attrtype: IPMRA_TABLE_ID, value: mrt->id) ||
2902 nla_put_u32(skb, attrtype: IPMRA_TABLE_CACHE_RES_QUEUE_LEN, value: queue_len) ||
2903 nla_put_s32(skb, attrtype: IPMRA_TABLE_MROUTE_REG_VIF_NUM,
2904 value: mrt->mroute_reg_vif_num) ||
2905 nla_put_u8(skb, attrtype: IPMRA_TABLE_MROUTE_DO_ASSERT,
2906 value: mrt->mroute_do_assert) ||
2907 nla_put_u8(skb, attrtype: IPMRA_TABLE_MROUTE_DO_PIM, value: mrt->mroute_do_pim) ||
2908 nla_put_u8(skb, attrtype: IPMRA_TABLE_MROUTE_DO_WRVIFWHOLE,
2909 value: mrt->mroute_do_wrvifwhole))
2910 return false;
2911
2912 return true;
2913}
2914
2915static bool ipmr_fill_vif(struct mr_table *mrt, u32 vifid, struct sk_buff *skb)
2916{
2917 struct net_device *vif_dev;
2918 struct nlattr *vif_nest;
2919 struct vif_device *vif;
2920
2921 vif = &mrt->vif_table[vifid];
2922 vif_dev = rtnl_dereference(vif->dev);
2923 /* if the VIF doesn't exist just continue */
2924 if (!vif_dev)
2925 return true;
2926
2927 vif_nest = nla_nest_start_noflag(skb, attrtype: IPMRA_VIF);
2928 if (!vif_nest)
2929 return false;
2930
2931 if (nla_put_u32(skb, attrtype: IPMRA_VIFA_IFINDEX, value: vif_dev->ifindex) ||
2932 nla_put_u32(skb, attrtype: IPMRA_VIFA_VIF_ID, value: vifid) ||
2933 nla_put_u16(skb, attrtype: IPMRA_VIFA_FLAGS, value: vif->flags) ||
2934 nla_put_u64_64bit(skb, attrtype: IPMRA_VIFA_BYTES_IN, value: vif->bytes_in,
2935 padattr: IPMRA_VIFA_PAD) ||
2936 nla_put_u64_64bit(skb, attrtype: IPMRA_VIFA_BYTES_OUT, value: vif->bytes_out,
2937 padattr: IPMRA_VIFA_PAD) ||
2938 nla_put_u64_64bit(skb, attrtype: IPMRA_VIFA_PACKETS_IN, value: vif->pkt_in,
2939 padattr: IPMRA_VIFA_PAD) ||
2940 nla_put_u64_64bit(skb, attrtype: IPMRA_VIFA_PACKETS_OUT, value: vif->pkt_out,
2941 padattr: IPMRA_VIFA_PAD) ||
2942 nla_put_be32(skb, attrtype: IPMRA_VIFA_LOCAL_ADDR, value: vif->local) ||
2943 nla_put_be32(skb, attrtype: IPMRA_VIFA_REMOTE_ADDR, value: vif->remote)) {
2944 nla_nest_cancel(skb, start: vif_nest);
2945 return false;
2946 }
2947 nla_nest_end(skb, start: vif_nest);
2948
2949 return true;
2950}
2951
2952static int ipmr_valid_dumplink(const struct nlmsghdr *nlh,
2953 struct netlink_ext_ack *extack)
2954{
2955 struct ifinfomsg *ifm;
2956
2957 ifm = nlmsg_payload(nlh, len: sizeof(*ifm));
2958 if (!ifm) {
2959 NL_SET_ERR_MSG(extack, "ipv4: Invalid header for ipmr link dump");
2960 return -EINVAL;
2961 }
2962
2963 if (nlmsg_attrlen(nlh, hdrlen: sizeof(*ifm))) {
2964 NL_SET_ERR_MSG(extack, "Invalid data after header in ipmr link dump");
2965 return -EINVAL;
2966 }
2967
2968 if (ifm->__ifi_pad || ifm->ifi_type || ifm->ifi_flags ||
2969 ifm->ifi_change || ifm->ifi_index) {
2970 NL_SET_ERR_MSG(extack, "Invalid values in header for ipmr link dump request");
2971 return -EINVAL;
2972 }
2973
2974 return 0;
2975}
2976
2977static int ipmr_rtm_dumplink(struct sk_buff *skb, struct netlink_callback *cb)
2978{
2979 struct net *net = sock_net(sk: skb->sk);
2980 struct nlmsghdr *nlh = NULL;
2981 unsigned int t = 0, s_t;
2982 unsigned int e = 0, s_e;
2983 struct mr_table *mrt;
2984
2985 if (cb->strict_check) {
2986 int err = ipmr_valid_dumplink(nlh: cb->nlh, extack: cb->extack);
2987
2988 if (err < 0)
2989 return err;
2990 }
2991
2992 s_t = cb->args[0];
2993 s_e = cb->args[1];
2994
2995 ipmr_for_each_table(mrt, net) {
2996 struct nlattr *vifs, *af;
2997 struct ifinfomsg *hdr;
2998 u32 i;
2999
3000 if (t < s_t)
3001 goto skip_table;
3002 nlh = nlmsg_put(skb, NETLINK_CB(cb->skb).portid,
3003 seq: cb->nlh->nlmsg_seq, RTM_NEWLINK,
3004 payload: sizeof(*hdr), NLM_F_MULTI);
3005 if (!nlh)
3006 break;
3007
3008 hdr = nlmsg_data(nlh);
3009 memset(s: hdr, c: 0, n: sizeof(*hdr));
3010 hdr->ifi_family = RTNL_FAMILY_IPMR;
3011
3012 af = nla_nest_start_noflag(skb, attrtype: IFLA_AF_SPEC);
3013 if (!af) {
3014 nlmsg_cancel(skb, nlh);
3015 goto out;
3016 }
3017
3018 if (!ipmr_fill_table(mrt, skb)) {
3019 nlmsg_cancel(skb, nlh);
3020 goto out;
3021 }
3022
3023 vifs = nla_nest_start_noflag(skb, attrtype: IPMRA_TABLE_VIFS);
3024 if (!vifs) {
3025 nla_nest_end(skb, start: af);
3026 nlmsg_end(skb, nlh);
3027 goto out;
3028 }
3029 for (i = 0; i < mrt->maxvif; i++) {
3030 if (e < s_e)
3031 goto skip_entry;
3032 if (!ipmr_fill_vif(mrt, vifid: i, skb)) {
3033 nla_nest_end(skb, start: vifs);
3034 nla_nest_end(skb, start: af);
3035 nlmsg_end(skb, nlh);
3036 goto out;
3037 }
3038skip_entry:
3039 e++;
3040 }
3041 s_e = 0;
3042 e = 0;
3043 nla_nest_end(skb, start: vifs);
3044 nla_nest_end(skb, start: af);
3045 nlmsg_end(skb, nlh);
3046skip_table:
3047 t++;
3048 }
3049
3050out:
3051 cb->args[1] = e;
3052 cb->args[0] = t;
3053
3054 return skb->len;
3055}
3056
3057#ifdef CONFIG_PROC_FS
3058/* The /proc interfaces to multicast routing :
3059 * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif
3060 */
3061
3062static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
3063 __acquires(RCU)
3064{
3065 struct mr_vif_iter *iter = seq->private;
3066 struct net *net = seq_file_net(seq);
3067 struct mr_table *mrt;
3068
3069 rcu_read_lock();
3070 mrt = __ipmr_get_table(net, id: RT_TABLE_DEFAULT);
3071 if (!mrt) {
3072 rcu_read_unlock();
3073 return ERR_PTR(error: -ENOENT);
3074 }
3075
3076 iter->mrt = mrt;
3077
3078 return mr_vif_seq_start(seq, pos);
3079}
3080
3081static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
3082 __releases(RCU)
3083{
3084 rcu_read_unlock();
3085}
3086
3087static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
3088{
3089 struct mr_vif_iter *iter = seq->private;
3090 struct mr_table *mrt = iter->mrt;
3091
3092 if (v == SEQ_START_TOKEN) {
3093 seq_puts(m: seq,
3094 s: "Interface BytesIn PktsIn BytesOut PktsOut Flags Local Remote\n");
3095 } else {
3096 const struct vif_device *vif = v;
3097 const struct net_device *vif_dev;
3098 const char *name;
3099
3100 vif_dev = vif_dev_read(vif);
3101 name = vif_dev ? vif_dev->name : "none";
3102 seq_printf(m: seq,
3103 fmt: "%2td %-10s %8ld %7ld %8ld %7ld %05X %08X %08X\n",
3104 vif - mrt->vif_table,
3105 name, vif->bytes_in, vif->pkt_in,
3106 vif->bytes_out, vif->pkt_out,
3107 vif->flags, vif->local, vif->remote);
3108 }
3109 return 0;
3110}
3111
3112static const struct seq_operations ipmr_vif_seq_ops = {
3113 .start = ipmr_vif_seq_start,
3114 .next = mr_vif_seq_next,
3115 .stop = ipmr_vif_seq_stop,
3116 .show = ipmr_vif_seq_show,
3117};
3118
3119static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
3120{
3121 struct net *net = seq_file_net(seq);
3122 struct mr_table *mrt;
3123
3124 mrt = ipmr_get_table(net, id: RT_TABLE_DEFAULT);
3125 if (!mrt)
3126 return ERR_PTR(error: -ENOENT);
3127
3128 return mr_mfc_seq_start(seq, pos, mrt, lock: &mfc_unres_lock);
3129}
3130
3131static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
3132{
3133 int n;
3134
3135 if (v == SEQ_START_TOKEN) {
3136 seq_puts(m: seq,
3137 s: "Group Origin Iif Pkts Bytes Wrong Oifs\n");
3138 } else {
3139 const struct mfc_cache *mfc = v;
3140 const struct mr_mfc_iter *it = seq->private;
3141 const struct mr_table *mrt = it->mrt;
3142
3143 seq_printf(m: seq, fmt: "%08X %08X %-3hd",
3144 (__force u32) mfc->mfc_mcastgrp,
3145 (__force u32) mfc->mfc_origin,
3146 mfc->_c.mfc_parent);
3147
3148 if (it->cache != &mrt->mfc_unres_queue) {
3149 seq_printf(m: seq, fmt: " %8lu %8lu %8lu",
3150 atomic_long_read(v: &mfc->_c.mfc_un.res.pkt),
3151 atomic_long_read(v: &mfc->_c.mfc_un.res.bytes),
3152 atomic_long_read(v: &mfc->_c.mfc_un.res.wrong_if));
3153 for (n = mfc->_c.mfc_un.res.minvif;
3154 n < mfc->_c.mfc_un.res.maxvif; n++) {
3155 if (VIF_EXISTS(mrt, n) &&
3156 mfc->_c.mfc_un.res.ttls[n] < 255)
3157 seq_printf(m: seq,
3158 fmt: " %2d:%-3d",
3159 n, mfc->_c.mfc_un.res.ttls[n]);
3160 }
3161 } else {
3162 /* unresolved mfc_caches don't contain
3163 * pkt, bytes and wrong_if values
3164 */
3165 seq_printf(m: seq, fmt: " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
3166 }
3167 seq_putc(m: seq, c: '\n');
3168 }
3169 return 0;
3170}
3171
3172static const struct seq_operations ipmr_mfc_seq_ops = {
3173 .start = ipmr_mfc_seq_start,
3174 .next = mr_mfc_seq_next,
3175 .stop = mr_mfc_seq_stop,
3176 .show = ipmr_mfc_seq_show,
3177};
3178#endif
3179
3180#ifdef CONFIG_IP_PIMSM_V2
3181static const struct net_protocol pim_protocol = {
3182 .handler = pim_rcv,
3183};
3184#endif
3185
3186static unsigned int ipmr_seq_read(const struct net *net)
3187{
3188 return READ_ONCE(net->ipv4.ipmr_seq) + ipmr_rules_seq_read(net);
3189}
3190
3191static int ipmr_dump(struct net *net, struct notifier_block *nb,
3192 struct netlink_ext_ack *extack)
3193{
3194 return mr_dump(net, nb, RTNL_FAMILY_IPMR, rules_dump: ipmr_rules_dump,
3195 mr_iter: ipmr_mr_table_iter, extack);
3196}
3197
3198static const struct fib_notifier_ops ipmr_notifier_ops_template = {
3199 .family = RTNL_FAMILY_IPMR,
3200 .fib_seq_read = ipmr_seq_read,
3201 .fib_dump = ipmr_dump,
3202 .owner = THIS_MODULE,
3203};
3204
3205static int __net_init ipmr_notifier_init(struct net *net)
3206{
3207 struct fib_notifier_ops *ops;
3208
3209 net->ipv4.ipmr_seq = 0;
3210
3211 ops = fib_notifier_ops_register(tmpl: &ipmr_notifier_ops_template, net);
3212 if (IS_ERR(ptr: ops))
3213 return PTR_ERR(ptr: ops);
3214 net->ipv4.ipmr_notifier_ops = ops;
3215
3216 return 0;
3217}
3218
3219static void __net_exit ipmr_notifier_exit(struct net *net)
3220{
3221 fib_notifier_ops_unregister(ops: net->ipv4.ipmr_notifier_ops);
3222 net->ipv4.ipmr_notifier_ops = NULL;
3223}
3224
3225/* Setup for IP multicast routing */
3226static int __net_init ipmr_net_init(struct net *net)
3227{
3228 int err;
3229
3230 err = ipmr_notifier_init(net);
3231 if (err)
3232 goto ipmr_notifier_fail;
3233
3234 err = ipmr_rules_init(net);
3235 if (err < 0)
3236 goto ipmr_rules_fail;
3237
3238#ifdef CONFIG_PROC_FS
3239 err = -ENOMEM;
3240 if (!proc_create_net("ip_mr_vif", 0, net->proc_net, &ipmr_vif_seq_ops,
3241 sizeof(struct mr_vif_iter)))
3242 goto proc_vif_fail;
3243 if (!proc_create_net("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_seq_ops,
3244 sizeof(struct mr_mfc_iter)))
3245 goto proc_cache_fail;
3246#endif
3247 return 0;
3248
3249#ifdef CONFIG_PROC_FS
3250proc_cache_fail:
3251 remove_proc_entry("ip_mr_vif", net->proc_net);
3252proc_vif_fail:
3253 rtnl_lock();
3254 ipmr_rules_exit(net);
3255 rtnl_unlock();
3256#endif
3257ipmr_rules_fail:
3258 ipmr_notifier_exit(net);
3259ipmr_notifier_fail:
3260 return err;
3261}
3262
3263static void __net_exit ipmr_net_exit(struct net *net)
3264{
3265#ifdef CONFIG_PROC_FS
3266 remove_proc_entry("ip_mr_cache", net->proc_net);
3267 remove_proc_entry("ip_mr_vif", net->proc_net);
3268#endif
3269 ipmr_notifier_exit(net);
3270}
3271
3272static void __net_exit ipmr_net_exit_batch(struct list_head *net_list)
3273{
3274 struct net *net;
3275
3276 rtnl_lock();
3277 list_for_each_entry(net, net_list, exit_list)
3278 ipmr_rules_exit(net);
3279 rtnl_unlock();
3280}
3281
3282static struct pernet_operations ipmr_net_ops = {
3283 .init = ipmr_net_init,
3284 .exit = ipmr_net_exit,
3285 .exit_batch = ipmr_net_exit_batch,
3286};
3287
3288static const struct rtnl_msg_handler ipmr_rtnl_msg_handlers[] __initconst = {
3289 {.protocol = RTNL_FAMILY_IPMR, .msgtype = RTM_GETLINK,
3290 .dumpit = ipmr_rtm_dumplink},
3291 {.protocol = RTNL_FAMILY_IPMR, .msgtype = RTM_NEWROUTE,
3292 .doit = ipmr_rtm_route},
3293 {.protocol = RTNL_FAMILY_IPMR, .msgtype = RTM_DELROUTE,
3294 .doit = ipmr_rtm_route},
3295 {.protocol = RTNL_FAMILY_IPMR, .msgtype = RTM_GETROUTE,
3296 .doit = ipmr_rtm_getroute, .dumpit = ipmr_rtm_dumproute},
3297};
3298
3299int __init ip_mr_init(void)
3300{
3301 int err;
3302
3303 mrt_cachep = KMEM_CACHE(mfc_cache, SLAB_HWCACHE_ALIGN | SLAB_PANIC);
3304
3305 err = register_pernet_subsys(&ipmr_net_ops);
3306 if (err)
3307 goto reg_pernet_fail;
3308
3309 err = register_netdevice_notifier(nb: &ip_mr_notifier);
3310 if (err)
3311 goto reg_notif_fail;
3312#ifdef CONFIG_IP_PIMSM_V2
3313 if (inet_add_protocol(prot: &pim_protocol, IPPROTO_PIM) < 0) {
3314 pr_err("%s: can't add PIM protocol\n", __func__);
3315 err = -EAGAIN;
3316 goto add_proto_fail;
3317 }
3318#endif
3319 rtnl_register_many(ipmr_rtnl_msg_handlers);
3320
3321 return 0;
3322
3323#ifdef CONFIG_IP_PIMSM_V2
3324add_proto_fail:
3325 unregister_netdevice_notifier(nb: &ip_mr_notifier);
3326#endif
3327reg_notif_fail:
3328 unregister_pernet_subsys(&ipmr_net_ops);
3329reg_pernet_fail:
3330 kmem_cache_destroy(s: mrt_cachep);
3331 return err;
3332}
3333