| 1 | // SPDX-License-Identifier: GPL-2.0 | 
|---|
| 2 | #include <linux/tcp.h> | 
|---|
| 3 | #include <net/tcp.h> | 
|---|
| 4 |  | 
|---|
| 5 | static u32 tcp_rack_reo_wnd(const struct sock *sk) | 
|---|
| 6 | { | 
|---|
| 7 | const struct tcp_sock *tp = tcp_sk(sk); | 
|---|
| 8 |  | 
|---|
| 9 | if (!tp->reord_seen) { | 
|---|
| 10 | /* If reordering has not been observed, be aggressive during | 
|---|
| 11 | * the recovery or starting the recovery by DUPACK threshold. | 
|---|
| 12 | */ | 
|---|
| 13 | if (inet_csk(sk)->icsk_ca_state >= TCP_CA_Recovery) | 
|---|
| 14 | return 0; | 
|---|
| 15 |  | 
|---|
| 16 | if (tp->sacked_out >= tp->reordering && | 
|---|
| 17 | !(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_recovery) & | 
|---|
| 18 | TCP_RACK_NO_DUPTHRESH)) | 
|---|
| 19 | return 0; | 
|---|
| 20 | } | 
|---|
| 21 |  | 
|---|
| 22 | /* To be more reordering resilient, allow min_rtt/4 settling delay. | 
|---|
| 23 | * Use min_rtt instead of the smoothed RTT because reordering is | 
|---|
| 24 | * often a path property and less related to queuing or delayed ACKs. | 
|---|
| 25 | * Upon receiving DSACKs, linearly increase the window up to the | 
|---|
| 26 | * smoothed RTT. | 
|---|
| 27 | */ | 
|---|
| 28 | return min((tcp_min_rtt(tp) >> 2) * tp->rack.reo_wnd_steps, | 
|---|
| 29 | tp->srtt_us >> 3); | 
|---|
| 30 | } | 
|---|
| 31 |  | 
|---|
| 32 | s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb, u32 reo_wnd) | 
|---|
| 33 | { | 
|---|
| 34 | return tp->rack.rtt_us + reo_wnd - | 
|---|
| 35 | tcp_stamp_us_delta(t1: tp->tcp_mstamp, t0: tcp_skb_timestamp_us(skb)); | 
|---|
| 36 | } | 
|---|
| 37 |  | 
|---|
| 38 | /* RACK loss detection (IETF RFC8985): | 
|---|
| 39 | * | 
|---|
| 40 | * Marks a packet lost, if some packet sent later has been (s)acked. | 
|---|
| 41 | * The underlying idea is similar to the traditional dupthresh and FACK | 
|---|
| 42 | * but they look at different metrics: | 
|---|
| 43 | * | 
|---|
| 44 | * dupthresh: 3 OOO packets delivered (packet count) | 
|---|
| 45 | * FACK: sequence delta to highest sacked sequence (sequence space) | 
|---|
| 46 | * RACK: sent time delta to the latest delivered packet (time domain) | 
|---|
| 47 | * | 
|---|
| 48 | * The advantage of RACK is it applies to both original and retransmitted | 
|---|
| 49 | * packet and therefore is robust against tail losses. Another advantage | 
|---|
| 50 | * is being more resilient to reordering by simply allowing some | 
|---|
| 51 | * "settling delay", instead of tweaking the dupthresh. | 
|---|
| 52 | * | 
|---|
| 53 | * When tcp_rack_detect_loss() detects some packets are lost and we | 
|---|
| 54 | * are not already in the CA_Recovery state, either tcp_rack_reo_timeout() | 
|---|
| 55 | * or tcp_time_to_recover()'s "Trick#1: the loss is proven" code path will | 
|---|
| 56 | * make us enter the CA_Recovery state. | 
|---|
| 57 | */ | 
|---|
| 58 | static void tcp_rack_detect_loss(struct sock *sk, u32 *reo_timeout) | 
|---|
| 59 | { | 
|---|
| 60 | struct tcp_sock *tp = tcp_sk(sk); | 
|---|
| 61 | struct sk_buff *skb, *n; | 
|---|
| 62 | u32 reo_wnd; | 
|---|
| 63 |  | 
|---|
| 64 | *reo_timeout = 0; | 
|---|
| 65 | reo_wnd = tcp_rack_reo_wnd(sk); | 
|---|
| 66 | list_for_each_entry_safe(skb, n, &tp->tsorted_sent_queue, | 
|---|
| 67 | tcp_tsorted_anchor) { | 
|---|
| 68 | struct tcp_skb_cb *scb = TCP_SKB_CB(skb); | 
|---|
| 69 | s32 remaining; | 
|---|
| 70 |  | 
|---|
| 71 | /* Skip ones marked lost but not yet retransmitted */ | 
|---|
| 72 | if ((scb->sacked & TCPCB_LOST) && | 
|---|
| 73 | !(scb->sacked & TCPCB_SACKED_RETRANS)) | 
|---|
| 74 | continue; | 
|---|
| 75 |  | 
|---|
| 76 | if (!tcp_skb_sent_after(t1: tp->rack.mstamp, | 
|---|
| 77 | t2: tcp_skb_timestamp_us(skb), | 
|---|
| 78 | seq1: tp->rack.end_seq, seq2: scb->end_seq)) | 
|---|
| 79 | break; | 
|---|
| 80 |  | 
|---|
| 81 | /* A packet is lost if it has not been s/acked beyond | 
|---|
| 82 | * the recent RTT plus the reordering window. | 
|---|
| 83 | */ | 
|---|
| 84 | remaining = tcp_rack_skb_timeout(tp, skb, reo_wnd); | 
|---|
| 85 | if (remaining <= 0) { | 
|---|
| 86 | tcp_mark_skb_lost(sk, skb); | 
|---|
| 87 | list_del_init(entry: &skb->tcp_tsorted_anchor); | 
|---|
| 88 | } else { | 
|---|
| 89 | /* Record maximum wait time */ | 
|---|
| 90 | *reo_timeout = max_t(u32, *reo_timeout, remaining); | 
|---|
| 91 | } | 
|---|
| 92 | } | 
|---|
| 93 | } | 
|---|
| 94 |  | 
|---|
| 95 | bool tcp_rack_mark_lost(struct sock *sk) | 
|---|
| 96 | { | 
|---|
| 97 | struct tcp_sock *tp = tcp_sk(sk); | 
|---|
| 98 | u32 timeout; | 
|---|
| 99 |  | 
|---|
| 100 | if (!tp->rack.advanced) | 
|---|
| 101 | return false; | 
|---|
| 102 |  | 
|---|
| 103 | /* Reset the advanced flag to avoid unnecessary queue scanning */ | 
|---|
| 104 | tp->rack.advanced = 0; | 
|---|
| 105 | tcp_rack_detect_loss(sk, reo_timeout: &timeout); | 
|---|
| 106 | if (timeout) { | 
|---|
| 107 | timeout = usecs_to_jiffies(u: timeout + TCP_TIMEOUT_MIN_US); | 
|---|
| 108 | inet_csk_reset_xmit_timer(sk, ICSK_TIME_REO_TIMEOUT, | 
|---|
| 109 | when: timeout, inet_csk(sk)->icsk_rto); | 
|---|
| 110 | } | 
|---|
| 111 | return !!timeout; | 
|---|
| 112 | } | 
|---|
| 113 |  | 
|---|
| 114 | /* Record the most recently (re)sent time among the (s)acked packets | 
|---|
| 115 | * This is "Step 3: Advance RACK.xmit_time and update RACK.RTT" from | 
|---|
| 116 | * draft-cheng-tcpm-rack-00.txt | 
|---|
| 117 | */ | 
|---|
| 118 | void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq, | 
|---|
| 119 | u64 xmit_time) | 
|---|
| 120 | { | 
|---|
| 121 | u32 rtt_us; | 
|---|
| 122 |  | 
|---|
| 123 | rtt_us = tcp_stamp_us_delta(t1: tp->tcp_mstamp, t0: xmit_time); | 
|---|
| 124 | if (rtt_us < tcp_min_rtt(tp) && (sacked & TCPCB_RETRANS)) { | 
|---|
| 125 | /* If the sacked packet was retransmitted, it's ambiguous | 
|---|
| 126 | * whether the retransmission or the original (or the prior | 
|---|
| 127 | * retransmission) was sacked. | 
|---|
| 128 | * | 
|---|
| 129 | * If the original is lost, there is no ambiguity. Otherwise | 
|---|
| 130 | * we assume the original can be delayed up to aRTT + min_rtt. | 
|---|
| 131 | * the aRTT term is bounded by the fast recovery or timeout, | 
|---|
| 132 | * so it's at least one RTT (i.e., retransmission is at least | 
|---|
| 133 | * an RTT later). | 
|---|
| 134 | */ | 
|---|
| 135 | return; | 
|---|
| 136 | } | 
|---|
| 137 | tp->rack.advanced = 1; | 
|---|
| 138 | tp->rack.rtt_us = rtt_us; | 
|---|
| 139 | if (tcp_skb_sent_after(t1: xmit_time, t2: tp->rack.mstamp, | 
|---|
| 140 | seq1: end_seq, seq2: tp->rack.end_seq)) { | 
|---|
| 141 | tp->rack.mstamp = xmit_time; | 
|---|
| 142 | tp->rack.end_seq = end_seq; | 
|---|
| 143 | } | 
|---|
| 144 | } | 
|---|
| 145 |  | 
|---|
| 146 | /* We have waited long enough to accommodate reordering. Mark the expired | 
|---|
| 147 | * packets lost and retransmit them. | 
|---|
| 148 | */ | 
|---|
| 149 | void tcp_rack_reo_timeout(struct sock *sk) | 
|---|
| 150 | { | 
|---|
| 151 | struct tcp_sock *tp = tcp_sk(sk); | 
|---|
| 152 | u32 timeout, prior_inflight; | 
|---|
| 153 | u32 lost = tp->lost; | 
|---|
| 154 |  | 
|---|
| 155 | prior_inflight = tcp_packets_in_flight(tp); | 
|---|
| 156 | tcp_rack_detect_loss(sk, reo_timeout: &timeout); | 
|---|
| 157 | if (prior_inflight != tcp_packets_in_flight(tp)) { | 
|---|
| 158 | if (inet_csk(sk)->icsk_ca_state != TCP_CA_Recovery) { | 
|---|
| 159 | tcp_enter_recovery(sk, ece_ack: false); | 
|---|
| 160 | if (!inet_csk(sk)->icsk_ca_ops->cong_control) | 
|---|
| 161 | tcp_cwnd_reduction(sk, newly_acked_sacked: 1, newly_lost: tp->lost - lost, flag: 0); | 
|---|
| 162 | } | 
|---|
| 163 | tcp_xmit_retransmit_queue(sk); | 
|---|
| 164 | } | 
|---|
| 165 | if (inet_csk(sk)->icsk_pending != ICSK_TIME_RETRANS) | 
|---|
| 166 | tcp_rearm_rto(sk); | 
|---|
| 167 | } | 
|---|
| 168 |  | 
|---|
| 169 | /* Updates the RACK's reo_wnd based on DSACK and no. of recoveries. | 
|---|
| 170 | * | 
|---|
| 171 | * If a DSACK is received that seems like it may have been due to reordering | 
|---|
| 172 | * triggering fast recovery, increment reo_wnd by min_rtt/4 (upper bounded | 
|---|
| 173 | * by srtt), since there is possibility that spurious retransmission was | 
|---|
| 174 | * due to reordering delay longer than reo_wnd. | 
|---|
| 175 | * | 
|---|
| 176 | * Persist the current reo_wnd value for TCP_RACK_RECOVERY_THRESH (16) | 
|---|
| 177 | * no. of successful recoveries (accounts for full DSACK-based loss | 
|---|
| 178 | * recovery undo). After that, reset it to default (min_rtt/4). | 
|---|
| 179 | * | 
|---|
| 180 | * At max, reo_wnd is incremented only once per rtt. So that the new | 
|---|
| 181 | * DSACK on which we are reacting, is due to the spurious retx (approx) | 
|---|
| 182 | * after the reo_wnd has been updated last time. | 
|---|
| 183 | * | 
|---|
| 184 | * reo_wnd is tracked in terms of steps (of min_rtt/4), rather than | 
|---|
| 185 | * absolute value to account for change in rtt. | 
|---|
| 186 | */ | 
|---|
| 187 | void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs) | 
|---|
| 188 | { | 
|---|
| 189 | struct tcp_sock *tp = tcp_sk(sk); | 
|---|
| 190 |  | 
|---|
| 191 | if ((READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_recovery) & | 
|---|
| 192 | TCP_RACK_STATIC_REO_WND) || | 
|---|
| 193 | !rs->prior_delivered) | 
|---|
| 194 | return; | 
|---|
| 195 |  | 
|---|
| 196 | /* Disregard DSACK if a rtt has not passed since we adjusted reo_wnd */ | 
|---|
| 197 | if (before(seq1: rs->prior_delivered, seq2: tp->rack.last_delivered)) | 
|---|
| 198 | tp->rack.dsack_seen = 0; | 
|---|
| 199 |  | 
|---|
| 200 | /* Adjust the reo_wnd if update is pending */ | 
|---|
| 201 | if (tp->rack.dsack_seen) { | 
|---|
| 202 | tp->rack.reo_wnd_steps = min_t(u32, 0xFF, | 
|---|
| 203 | tp->rack.reo_wnd_steps + 1); | 
|---|
| 204 | tp->rack.dsack_seen = 0; | 
|---|
| 205 | tp->rack.last_delivered = tp->delivered; | 
|---|
| 206 | tp->rack.reo_wnd_persist = TCP_RACK_RECOVERY_THRESH; | 
|---|
| 207 | } else if (!tp->rack.reo_wnd_persist) { | 
|---|
| 208 | tp->rack.reo_wnd_steps = 1; | 
|---|
| 209 | } | 
|---|
| 210 | } | 
|---|
| 211 |  | 
|---|
| 212 | /* RFC6582 NewReno recovery for non-SACK connection. It simply retransmits | 
|---|
| 213 | * the next unacked packet upon receiving | 
|---|
| 214 | * a) three or more DUPACKs to start the fast recovery | 
|---|
| 215 | * b) an ACK acknowledging new data during the fast recovery. | 
|---|
| 216 | */ | 
|---|
| 217 | void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced) | 
|---|
| 218 | { | 
|---|
| 219 | const u8 state = inet_csk(sk)->icsk_ca_state; | 
|---|
| 220 | struct tcp_sock *tp = tcp_sk(sk); | 
|---|
| 221 |  | 
|---|
| 222 | if ((state < TCP_CA_Recovery && tp->sacked_out >= tp->reordering) || | 
|---|
| 223 | (state == TCP_CA_Recovery && snd_una_advanced)) { | 
|---|
| 224 | struct sk_buff *skb = tcp_rtx_queue_head(sk); | 
|---|
| 225 | u32 mss; | 
|---|
| 226 |  | 
|---|
| 227 | if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) | 
|---|
| 228 | return; | 
|---|
| 229 |  | 
|---|
| 230 | mss = tcp_skb_mss(skb); | 
|---|
| 231 | if (tcp_skb_pcount(skb) > 1 && skb->len > mss) | 
|---|
| 232 | tcp_fragment(sk, tcp_queue: TCP_FRAG_IN_RTX_QUEUE, skb, | 
|---|
| 233 | len: mss, mss_now: mss, GFP_ATOMIC); | 
|---|
| 234 |  | 
|---|
| 235 | tcp_mark_skb_lost(sk, skb); | 
|---|
| 236 | } | 
|---|
| 237 | } | 
|---|
| 238 |  | 
|---|