1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Wireless utility functions
4 *
5 * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2017 Intel Deutschland GmbH
8 * Copyright (C) 2018-2023, 2025 Intel Corporation
9 */
10#include <linux/export.h>
11#include <linux/bitops.h>
12#include <linux/etherdevice.h>
13#include <linux/slab.h>
14#include <linux/ieee80211.h>
15#include <net/cfg80211.h>
16#include <net/ip.h>
17#include <net/dsfield.h>
18#include <linux/if_vlan.h>
19#include <linux/mpls.h>
20#include <linux/gcd.h>
21#include <linux/bitfield.h>
22#include <linux/nospec.h>
23#include "core.h"
24#include "rdev-ops.h"
25
26
27const struct ieee80211_rate *
28ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
29 u32 basic_rates, int bitrate)
30{
31 struct ieee80211_rate *result = &sband->bitrates[0];
32 int i;
33
34 for (i = 0; i < sband->n_bitrates; i++) {
35 if (!(basic_rates & BIT(i)))
36 continue;
37 if (sband->bitrates[i].bitrate > bitrate)
38 continue;
39 result = &sband->bitrates[i];
40 }
41
42 return result;
43}
44EXPORT_SYMBOL(ieee80211_get_response_rate);
45
46u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband)
47{
48 struct ieee80211_rate *bitrates;
49 u32 mandatory_rates = 0;
50 enum ieee80211_rate_flags mandatory_flag;
51 int i;
52
53 if (WARN_ON(!sband))
54 return 1;
55
56 if (sband->band == NL80211_BAND_2GHZ)
57 mandatory_flag = IEEE80211_RATE_MANDATORY_B;
58 else
59 mandatory_flag = IEEE80211_RATE_MANDATORY_A;
60
61 bitrates = sband->bitrates;
62 for (i = 0; i < sband->n_bitrates; i++)
63 if (bitrates[i].flags & mandatory_flag)
64 mandatory_rates |= BIT(i);
65 return mandatory_rates;
66}
67EXPORT_SYMBOL(ieee80211_mandatory_rates);
68
69u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band)
70{
71 /* see 802.11 17.3.8.3.2 and Annex J
72 * there are overlapping channel numbers in 5GHz and 2GHz bands */
73 if (chan <= 0)
74 return 0; /* not supported */
75 switch (band) {
76 case NL80211_BAND_2GHZ:
77 case NL80211_BAND_LC:
78 if (chan == 14)
79 return MHZ_TO_KHZ(2484);
80 else if (chan < 14)
81 return MHZ_TO_KHZ(2407 + chan * 5);
82 break;
83 case NL80211_BAND_5GHZ:
84 if (chan >= 182 && chan <= 196)
85 return MHZ_TO_KHZ(4000 + chan * 5);
86 else
87 return MHZ_TO_KHZ(5000 + chan * 5);
88 break;
89 case NL80211_BAND_6GHZ:
90 /* see 802.11ax D6.1 27.3.23.2 */
91 if (chan == 2)
92 return MHZ_TO_KHZ(5935);
93 if (chan <= 233)
94 return MHZ_TO_KHZ(5950 + chan * 5);
95 break;
96 case NL80211_BAND_60GHZ:
97 if (chan < 7)
98 return MHZ_TO_KHZ(56160 + chan * 2160);
99 break;
100 case NL80211_BAND_S1GHZ:
101 return 902000 + chan * 500;
102 default:
103 ;
104 }
105 return 0; /* not supported */
106}
107EXPORT_SYMBOL(ieee80211_channel_to_freq_khz);
108
109int ieee80211_freq_khz_to_channel(u32 freq)
110{
111 /* TODO: just handle MHz for now */
112 freq = KHZ_TO_MHZ(freq);
113
114 /* see 802.11 17.3.8.3.2 and Annex J */
115 if (freq == 2484)
116 return 14;
117 else if (freq < 2484)
118 return (freq - 2407) / 5;
119 else if (freq >= 4910 && freq <= 4980)
120 return (freq - 4000) / 5;
121 else if (freq < 5925)
122 return (freq - 5000) / 5;
123 else if (freq == 5935)
124 return 2;
125 else if (freq <= 45000) /* DMG band lower limit */
126 /* see 802.11ax D6.1 27.3.22.2 */
127 return (freq - 5950) / 5;
128 else if (freq >= 58320 && freq <= 70200)
129 return (freq - 56160) / 2160;
130 else
131 return 0;
132}
133EXPORT_SYMBOL(ieee80211_freq_khz_to_channel);
134
135struct ieee80211_channel *ieee80211_get_channel_khz(struct wiphy *wiphy,
136 u32 freq)
137{
138 enum nl80211_band band;
139 struct ieee80211_supported_band *sband;
140 int i;
141
142 for (band = 0; band < NUM_NL80211_BANDS; band++) {
143 sband = wiphy->bands[band];
144
145 if (!sband)
146 continue;
147
148 for (i = 0; i < sband->n_channels; i++) {
149 struct ieee80211_channel *chan = &sband->channels[i];
150
151 if (ieee80211_channel_to_khz(chan) == freq)
152 return chan;
153 }
154 }
155
156 return NULL;
157}
158EXPORT_SYMBOL(ieee80211_get_channel_khz);
159
160static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
161{
162 int i, want;
163
164 switch (sband->band) {
165 case NL80211_BAND_5GHZ:
166 case NL80211_BAND_6GHZ:
167 want = 3;
168 for (i = 0; i < sband->n_bitrates; i++) {
169 if (sband->bitrates[i].bitrate == 60 ||
170 sband->bitrates[i].bitrate == 120 ||
171 sband->bitrates[i].bitrate == 240) {
172 sband->bitrates[i].flags |=
173 IEEE80211_RATE_MANDATORY_A;
174 want--;
175 }
176 }
177 WARN_ON(want);
178 break;
179 case NL80211_BAND_2GHZ:
180 case NL80211_BAND_LC:
181 want = 7;
182 for (i = 0; i < sband->n_bitrates; i++) {
183 switch (sband->bitrates[i].bitrate) {
184 case 10:
185 case 20:
186 case 55:
187 case 110:
188 sband->bitrates[i].flags |=
189 IEEE80211_RATE_MANDATORY_B |
190 IEEE80211_RATE_MANDATORY_G;
191 want--;
192 break;
193 case 60:
194 case 120:
195 case 240:
196 sband->bitrates[i].flags |=
197 IEEE80211_RATE_MANDATORY_G;
198 want--;
199 fallthrough;
200 default:
201 sband->bitrates[i].flags |=
202 IEEE80211_RATE_ERP_G;
203 break;
204 }
205 }
206 WARN_ON(want != 0 && want != 3);
207 break;
208 case NL80211_BAND_60GHZ:
209 /* check for mandatory HT MCS 1..4 */
210 WARN_ON(!sband->ht_cap.ht_supported);
211 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
212 break;
213 case NL80211_BAND_S1GHZ:
214 /* Figure 9-589bd: 3 means unsupported, so != 3 means at least
215 * mandatory is ok.
216 */
217 WARN_ON((sband->s1g_cap.nss_mcs[0] & 0x3) == 0x3);
218 break;
219 case NUM_NL80211_BANDS:
220 default:
221 WARN_ON(1);
222 break;
223 }
224}
225
226void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
227{
228 enum nl80211_band band;
229
230 for (band = 0; band < NUM_NL80211_BANDS; band++)
231 if (wiphy->bands[band])
232 set_mandatory_flags_band(wiphy->bands[band]);
233}
234
235bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
236{
237 int i;
238 for (i = 0; i < wiphy->n_cipher_suites; i++)
239 if (cipher == wiphy->cipher_suites[i])
240 return true;
241 return false;
242}
243
244static bool
245cfg80211_igtk_cipher_supported(struct cfg80211_registered_device *rdev)
246{
247 struct wiphy *wiphy = &rdev->wiphy;
248 int i;
249
250 for (i = 0; i < wiphy->n_cipher_suites; i++) {
251 switch (wiphy->cipher_suites[i]) {
252 case WLAN_CIPHER_SUITE_AES_CMAC:
253 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
254 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
255 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
256 return true;
257 }
258 }
259
260 return false;
261}
262
263bool cfg80211_valid_key_idx(struct cfg80211_registered_device *rdev,
264 int key_idx, bool pairwise)
265{
266 int max_key_idx;
267
268 if (pairwise)
269 max_key_idx = 3;
270 else if (wiphy_ext_feature_isset(wiphy: &rdev->wiphy,
271 ftidx: NL80211_EXT_FEATURE_BEACON_PROTECTION) ||
272 wiphy_ext_feature_isset(wiphy: &rdev->wiphy,
273 ftidx: NL80211_EXT_FEATURE_BEACON_PROTECTION_CLIENT))
274 max_key_idx = 7;
275 else if (cfg80211_igtk_cipher_supported(rdev))
276 max_key_idx = 5;
277 else
278 max_key_idx = 3;
279
280 if (key_idx < 0 || key_idx > max_key_idx)
281 return false;
282
283 return true;
284}
285
286int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
287 struct key_params *params, int key_idx,
288 bool pairwise, const u8 *mac_addr)
289{
290 if (!cfg80211_valid_key_idx(rdev, key_idx, pairwise))
291 return -EINVAL;
292
293 if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
294 return -EINVAL;
295
296 if (pairwise && !mac_addr)
297 return -EINVAL;
298
299 switch (params->cipher) {
300 case WLAN_CIPHER_SUITE_TKIP:
301 /* Extended Key ID can only be used with CCMP/GCMP ciphers */
302 if ((pairwise && key_idx) ||
303 params->mode != NL80211_KEY_RX_TX)
304 return -EINVAL;
305 break;
306 case WLAN_CIPHER_SUITE_CCMP:
307 case WLAN_CIPHER_SUITE_CCMP_256:
308 case WLAN_CIPHER_SUITE_GCMP:
309 case WLAN_CIPHER_SUITE_GCMP_256:
310 /* IEEE802.11-2016 allows only 0 and - when supporting
311 * Extended Key ID - 1 as index for pairwise keys.
312 * @NL80211_KEY_NO_TX is only allowed for pairwise keys when
313 * the driver supports Extended Key ID.
314 * @NL80211_KEY_SET_TX can't be set when installing and
315 * validating a key.
316 */
317 if ((params->mode == NL80211_KEY_NO_TX && !pairwise) ||
318 params->mode == NL80211_KEY_SET_TX)
319 return -EINVAL;
320 if (wiphy_ext_feature_isset(wiphy: &rdev->wiphy,
321 ftidx: NL80211_EXT_FEATURE_EXT_KEY_ID)) {
322 if (pairwise && (key_idx < 0 || key_idx > 1))
323 return -EINVAL;
324 } else if (pairwise && key_idx) {
325 return -EINVAL;
326 }
327 break;
328 case WLAN_CIPHER_SUITE_AES_CMAC:
329 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
330 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
331 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
332 /* Disallow BIP (group-only) cipher as pairwise cipher */
333 if (pairwise)
334 return -EINVAL;
335 if (key_idx < 4)
336 return -EINVAL;
337 break;
338 case WLAN_CIPHER_SUITE_WEP40:
339 case WLAN_CIPHER_SUITE_WEP104:
340 if (key_idx > 3)
341 return -EINVAL;
342 break;
343 default:
344 break;
345 }
346
347 switch (params->cipher) {
348 case WLAN_CIPHER_SUITE_WEP40:
349 if (params->key_len != WLAN_KEY_LEN_WEP40)
350 return -EINVAL;
351 break;
352 case WLAN_CIPHER_SUITE_TKIP:
353 if (params->key_len != WLAN_KEY_LEN_TKIP)
354 return -EINVAL;
355 break;
356 case WLAN_CIPHER_SUITE_CCMP:
357 if (params->key_len != WLAN_KEY_LEN_CCMP)
358 return -EINVAL;
359 break;
360 case WLAN_CIPHER_SUITE_CCMP_256:
361 if (params->key_len != WLAN_KEY_LEN_CCMP_256)
362 return -EINVAL;
363 break;
364 case WLAN_CIPHER_SUITE_GCMP:
365 if (params->key_len != WLAN_KEY_LEN_GCMP)
366 return -EINVAL;
367 break;
368 case WLAN_CIPHER_SUITE_GCMP_256:
369 if (params->key_len != WLAN_KEY_LEN_GCMP_256)
370 return -EINVAL;
371 break;
372 case WLAN_CIPHER_SUITE_WEP104:
373 if (params->key_len != WLAN_KEY_LEN_WEP104)
374 return -EINVAL;
375 break;
376 case WLAN_CIPHER_SUITE_AES_CMAC:
377 if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
378 return -EINVAL;
379 break;
380 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
381 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
382 return -EINVAL;
383 break;
384 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
385 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
386 return -EINVAL;
387 break;
388 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
389 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
390 return -EINVAL;
391 break;
392 default:
393 /*
394 * We don't know anything about this algorithm,
395 * allow using it -- but the driver must check
396 * all parameters! We still check below whether
397 * or not the driver supports this algorithm,
398 * of course.
399 */
400 break;
401 }
402
403 if (params->seq) {
404 switch (params->cipher) {
405 case WLAN_CIPHER_SUITE_WEP40:
406 case WLAN_CIPHER_SUITE_WEP104:
407 /* These ciphers do not use key sequence */
408 return -EINVAL;
409 case WLAN_CIPHER_SUITE_TKIP:
410 case WLAN_CIPHER_SUITE_CCMP:
411 case WLAN_CIPHER_SUITE_CCMP_256:
412 case WLAN_CIPHER_SUITE_GCMP:
413 case WLAN_CIPHER_SUITE_GCMP_256:
414 case WLAN_CIPHER_SUITE_AES_CMAC:
415 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
416 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
417 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
418 if (params->seq_len != 6)
419 return -EINVAL;
420 break;
421 }
422 }
423
424 if (!cfg80211_supported_cipher_suite(wiphy: &rdev->wiphy, cipher: params->cipher))
425 return -EINVAL;
426
427 return 0;
428}
429
430unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
431{
432 unsigned int hdrlen = 24;
433
434 if (ieee80211_is_ext(fc)) {
435 hdrlen = 4;
436 goto out;
437 }
438
439 if (ieee80211_is_data(fc)) {
440 if (ieee80211_has_a4(fc))
441 hdrlen = 30;
442 if (ieee80211_is_data_qos(fc)) {
443 hdrlen += IEEE80211_QOS_CTL_LEN;
444 if (ieee80211_has_order(fc))
445 hdrlen += IEEE80211_HT_CTL_LEN;
446 }
447 goto out;
448 }
449
450 if (ieee80211_is_mgmt(fc)) {
451 if (ieee80211_has_order(fc))
452 hdrlen += IEEE80211_HT_CTL_LEN;
453 goto out;
454 }
455
456 if (ieee80211_is_ctl(fc)) {
457 /*
458 * ACK and CTS are 10 bytes, all others 16. To see how
459 * to get this condition consider
460 * subtype mask: 0b0000000011110000 (0x00F0)
461 * ACK subtype: 0b0000000011010000 (0x00D0)
462 * CTS subtype: 0b0000000011000000 (0x00C0)
463 * bits that matter: ^^^ (0x00E0)
464 * value of those: 0b0000000011000000 (0x00C0)
465 */
466 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
467 hdrlen = 10;
468 else
469 hdrlen = 16;
470 }
471out:
472 return hdrlen;
473}
474EXPORT_SYMBOL(ieee80211_hdrlen);
475
476unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
477{
478 const struct ieee80211_hdr *hdr =
479 (const struct ieee80211_hdr *)skb->data;
480 unsigned int hdrlen;
481
482 if (unlikely(skb->len < 10))
483 return 0;
484 hdrlen = ieee80211_hdrlen(hdr->frame_control);
485 if (unlikely(hdrlen > skb->len))
486 return 0;
487 return hdrlen;
488}
489EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
490
491static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
492{
493 int ae = flags & MESH_FLAGS_AE;
494 /* 802.11-2012, 8.2.4.7.3 */
495 switch (ae) {
496 default:
497 case 0:
498 return 6;
499 case MESH_FLAGS_AE_A4:
500 return 12;
501 case MESH_FLAGS_AE_A5_A6:
502 return 18;
503 }
504}
505
506unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
507{
508 return __ieee80211_get_mesh_hdrlen(flags: meshhdr->flags);
509}
510EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
511
512bool ieee80211_get_8023_tunnel_proto(const void *hdr, __be16 *proto)
513{
514 const __be16 *hdr_proto = hdr + ETH_ALEN;
515
516 if (!(ether_addr_equal(addr1: hdr, addr2: rfc1042_header) &&
517 *hdr_proto != htons(ETH_P_AARP) &&
518 *hdr_proto != htons(ETH_P_IPX)) &&
519 !ether_addr_equal(addr1: hdr, addr2: bridge_tunnel_header))
520 return false;
521
522 *proto = *hdr_proto;
523
524 return true;
525}
526EXPORT_SYMBOL(ieee80211_get_8023_tunnel_proto);
527
528int ieee80211_strip_8023_mesh_hdr(struct sk_buff *skb)
529{
530 const void *mesh_addr;
531 struct {
532 struct ethhdr eth;
533 u8 flags;
534 } payload;
535 int hdrlen;
536 int ret;
537
538 ret = skb_copy_bits(skb, offset: 0, to: &payload, len: sizeof(payload));
539 if (ret)
540 return ret;
541
542 hdrlen = sizeof(payload.eth) + __ieee80211_get_mesh_hdrlen(flags: payload.flags);
543
544 if (likely(pskb_may_pull(skb, hdrlen + 8) &&
545 ieee80211_get_8023_tunnel_proto(skb->data + hdrlen,
546 &payload.eth.h_proto)))
547 hdrlen += ETH_ALEN + 2;
548 else if (!pskb_may_pull(skb, len: hdrlen))
549 return -EINVAL;
550 else
551 payload.eth.h_proto = htons(skb->len - hdrlen);
552
553 mesh_addr = skb->data + sizeof(payload.eth) + ETH_ALEN;
554 switch (payload.flags & MESH_FLAGS_AE) {
555 case MESH_FLAGS_AE_A4:
556 memcpy(to: &payload.eth.h_source, from: mesh_addr, ETH_ALEN);
557 break;
558 case MESH_FLAGS_AE_A5_A6:
559 memcpy(to: &payload.eth, from: mesh_addr, len: 2 * ETH_ALEN);
560 break;
561 default:
562 break;
563 }
564
565 pskb_pull(skb, len: hdrlen - sizeof(payload.eth));
566 memcpy(to: skb->data, from: &payload.eth, len: sizeof(payload.eth));
567
568 return 0;
569}
570EXPORT_SYMBOL(ieee80211_strip_8023_mesh_hdr);
571
572int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
573 const u8 *addr, enum nl80211_iftype iftype,
574 u8 data_offset, bool is_amsdu)
575{
576 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
577 struct {
578 u8 hdr[ETH_ALEN] __aligned(2);
579 __be16 proto;
580 } payload;
581 struct ethhdr tmp;
582 u16 hdrlen;
583
584 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
585 return -1;
586
587 hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset;
588 if (skb->len < hdrlen)
589 return -1;
590
591 /* convert IEEE 802.11 header + possible LLC headers into Ethernet
592 * header
593 * IEEE 802.11 address fields:
594 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
595 * 0 0 DA SA BSSID n/a
596 * 0 1 DA BSSID SA n/a
597 * 1 0 BSSID SA DA n/a
598 * 1 1 RA TA DA SA
599 */
600 memcpy(to: tmp.h_dest, from: ieee80211_get_DA(hdr), ETH_ALEN);
601 memcpy(to: tmp.h_source, from: ieee80211_get_SA(hdr), ETH_ALEN);
602
603 switch (hdr->frame_control &
604 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
605 case cpu_to_le16(IEEE80211_FCTL_TODS):
606 if (unlikely(iftype != NL80211_IFTYPE_AP &&
607 iftype != NL80211_IFTYPE_AP_VLAN &&
608 iftype != NL80211_IFTYPE_P2P_GO))
609 return -1;
610 break;
611 case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
612 if (unlikely(iftype != NL80211_IFTYPE_MESH_POINT &&
613 iftype != NL80211_IFTYPE_AP_VLAN &&
614 iftype != NL80211_IFTYPE_STATION))
615 return -1;
616 break;
617 case cpu_to_le16(IEEE80211_FCTL_FROMDS):
618 if ((iftype != NL80211_IFTYPE_STATION &&
619 iftype != NL80211_IFTYPE_P2P_CLIENT &&
620 iftype != NL80211_IFTYPE_MESH_POINT) ||
621 (is_multicast_ether_addr(addr: tmp.h_dest) &&
622 ether_addr_equal(addr1: tmp.h_source, addr2: addr)))
623 return -1;
624 break;
625 case cpu_to_le16(0):
626 if (iftype != NL80211_IFTYPE_ADHOC &&
627 iftype != NL80211_IFTYPE_STATION &&
628 iftype != NL80211_IFTYPE_OCB)
629 return -1;
630 break;
631 }
632
633 if (likely(!is_amsdu && iftype != NL80211_IFTYPE_MESH_POINT &&
634 skb_copy_bits(skb, hdrlen, &payload, sizeof(payload)) == 0 &&
635 ieee80211_get_8023_tunnel_proto(&payload, &tmp.h_proto))) {
636 /* remove RFC1042 or Bridge-Tunnel encapsulation */
637 hdrlen += ETH_ALEN + 2;
638 skb_postpull_rcsum(skb, start: &payload, ETH_ALEN + 2);
639 } else {
640 tmp.h_proto = htons(skb->len - hdrlen);
641 }
642
643 pskb_pull(skb, len: hdrlen);
644
645 if (!ehdr)
646 ehdr = skb_push(skb, len: sizeof(struct ethhdr));
647 memcpy(to: ehdr, from: &tmp, len: sizeof(tmp));
648
649 return 0;
650}
651EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
652
653static void
654__frame_add_frag(struct sk_buff *skb, struct page *page,
655 void *ptr, int len, int size)
656{
657 struct skb_shared_info *sh = skb_shinfo(skb);
658 int page_offset;
659
660 get_page(page);
661 page_offset = ptr - page_address(page);
662 skb_add_rx_frag(skb, i: sh->nr_frags, page, off: page_offset, size: len, truesize: size);
663}
664
665static void
666__ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
667 int offset, int len)
668{
669 struct skb_shared_info *sh = skb_shinfo(skb);
670 const skb_frag_t *frag = &sh->frags[0];
671 struct page *frag_page;
672 void *frag_ptr;
673 int frag_len, frag_size;
674 int head_size = skb->len - skb->data_len;
675 int cur_len;
676
677 frag_page = virt_to_head_page(x: skb->head);
678 frag_ptr = skb->data;
679 frag_size = head_size;
680
681 while (offset >= frag_size) {
682 offset -= frag_size;
683 frag_page = skb_frag_page(frag);
684 frag_ptr = skb_frag_address(frag);
685 frag_size = skb_frag_size(frag);
686 frag++;
687 }
688
689 frag_ptr += offset;
690 frag_len = frag_size - offset;
691
692 cur_len = min(len, frag_len);
693
694 __frame_add_frag(skb: frame, page: frag_page, ptr: frag_ptr, len: cur_len, size: frag_size);
695 len -= cur_len;
696
697 while (len > 0) {
698 frag_len = skb_frag_size(frag);
699 cur_len = min(len, frag_len);
700 __frame_add_frag(skb: frame, page: skb_frag_page(frag),
701 ptr: skb_frag_address(frag), len: cur_len, size: frag_len);
702 len -= cur_len;
703 frag++;
704 }
705}
706
707static struct sk_buff *
708__ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
709 int offset, int len, bool reuse_frag,
710 int min_len)
711{
712 struct sk_buff *frame;
713 int cur_len = len;
714
715 if (skb->len - offset < len)
716 return NULL;
717
718 /*
719 * When reusing fragments, copy some data to the head to simplify
720 * ethernet header handling and speed up protocol header processing
721 * in the stack later.
722 */
723 if (reuse_frag)
724 cur_len = min_t(int, len, min_len);
725
726 /*
727 * Allocate and reserve two bytes more for payload
728 * alignment since sizeof(struct ethhdr) is 14.
729 */
730 frame = dev_alloc_skb(length: hlen + sizeof(struct ethhdr) + 2 + cur_len);
731 if (!frame)
732 return NULL;
733
734 frame->priority = skb->priority;
735 skb_reserve(skb: frame, len: hlen + sizeof(struct ethhdr) + 2);
736 skb_copy_bits(skb, offset, to: skb_put(skb: frame, len: cur_len), len: cur_len);
737
738 len -= cur_len;
739 if (!len)
740 return frame;
741
742 offset += cur_len;
743 __ieee80211_amsdu_copy_frag(skb, frame, offset, len);
744
745 return frame;
746}
747
748static u16
749ieee80211_amsdu_subframe_length(void *field, u8 mesh_flags, u8 hdr_type)
750{
751 __le16 *field_le = field;
752 __be16 *field_be = field;
753 u16 len;
754
755 if (hdr_type >= 2)
756 len = le16_to_cpu(*field_le);
757 else
758 len = be16_to_cpu(*field_be);
759 if (hdr_type)
760 len += __ieee80211_get_mesh_hdrlen(flags: mesh_flags);
761
762 return len;
763}
764
765bool ieee80211_is_valid_amsdu(struct sk_buff *skb, u8 mesh_hdr)
766{
767 int offset = 0, subframe_len, padding;
768
769 for (offset = 0; offset < skb->len; offset += subframe_len + padding) {
770 int remaining = skb->len - offset;
771 struct {
772 __be16 len;
773 u8 mesh_flags;
774 } hdr;
775 u16 len;
776
777 if (sizeof(hdr) > remaining)
778 return false;
779
780 if (skb_copy_bits(skb, offset: offset + 2 * ETH_ALEN, to: &hdr, len: sizeof(hdr)) < 0)
781 return false;
782
783 len = ieee80211_amsdu_subframe_length(field: &hdr.len, mesh_flags: hdr.mesh_flags,
784 hdr_type: mesh_hdr);
785 subframe_len = sizeof(struct ethhdr) + len;
786 padding = (4 - subframe_len) & 0x3;
787
788 if (subframe_len > remaining)
789 return false;
790 }
791
792 return true;
793}
794EXPORT_SYMBOL(ieee80211_is_valid_amsdu);
795
796
797/*
798 * Detects if an MSDU frame was maliciously converted into an A-MSDU
799 * frame by an adversary. This is done by parsing the received frame
800 * as if it were a regular MSDU, even though the A-MSDU flag is set.
801 *
802 * For non-mesh interfaces, detection involves checking whether the
803 * payload, when interpreted as an MSDU, begins with a valid RFC1042
804 * header. This is done by comparing the A-MSDU subheader's destination
805 * address to the start of the RFC1042 header.
806 *
807 * For mesh interfaces, the MSDU includes a 6-byte Mesh Control field
808 * and an optional variable-length Mesh Address Extension field before
809 * the RFC1042 header. The position of the RFC1042 header must therefore
810 * be calculated based on the mesh header length.
811 *
812 * Since this function intentionally parses an A-MSDU frame as an MSDU,
813 * it only assumes that the A-MSDU subframe header is present, and
814 * beyond this it performs its own bounds checks under the assumption
815 * that the frame is instead parsed as a non-aggregated MSDU.
816 */
817static bool
818is_amsdu_aggregation_attack(struct ethhdr *eth, struct sk_buff *skb,
819 enum nl80211_iftype iftype)
820{
821 int offset;
822
823 /* Non-mesh case can be directly compared */
824 if (iftype != NL80211_IFTYPE_MESH_POINT)
825 return ether_addr_equal(addr1: eth->h_dest, addr2: rfc1042_header);
826
827 offset = __ieee80211_get_mesh_hdrlen(flags: eth->h_dest[0]);
828 if (offset == 6) {
829 /* Mesh case with empty address extension field */
830 return ether_addr_equal(addr1: eth->h_source, addr2: rfc1042_header);
831 } else if (offset + ETH_ALEN <= skb->len) {
832 /* Mesh case with non-empty address extension field */
833 u8 temp[ETH_ALEN];
834
835 skb_copy_bits(skb, offset, to: temp, ETH_ALEN);
836 return ether_addr_equal(addr1: temp, addr2: rfc1042_header);
837 }
838
839 return false;
840}
841
842void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
843 const u8 *addr, enum nl80211_iftype iftype,
844 const unsigned int extra_headroom,
845 const u8 *check_da, const u8 *check_sa,
846 u8 mesh_control)
847{
848 unsigned int hlen = ALIGN(extra_headroom, 4);
849 struct sk_buff *frame = NULL;
850 int offset = 0;
851 struct {
852 struct ethhdr eth;
853 uint8_t flags;
854 } hdr;
855 bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
856 bool reuse_skb = false;
857 bool last = false;
858 int copy_len = sizeof(hdr.eth);
859
860 if (iftype == NL80211_IFTYPE_MESH_POINT)
861 copy_len = sizeof(hdr);
862
863 while (!last) {
864 int remaining = skb->len - offset;
865 unsigned int subframe_len;
866 int len, mesh_len = 0;
867 u8 padding;
868
869 if (copy_len > remaining)
870 goto purge;
871
872 skb_copy_bits(skb, offset, to: &hdr, len: copy_len);
873 if (iftype == NL80211_IFTYPE_MESH_POINT)
874 mesh_len = __ieee80211_get_mesh_hdrlen(flags: hdr.flags);
875 len = ieee80211_amsdu_subframe_length(field: &hdr.eth.h_proto, mesh_flags: hdr.flags,
876 hdr_type: mesh_control);
877 subframe_len = sizeof(struct ethhdr) + len;
878 padding = (4 - subframe_len) & 0x3;
879
880 /* the last MSDU has no padding */
881 if (subframe_len > remaining)
882 goto purge;
883 /* mitigate A-MSDU aggregation injection attacks, to be
884 * checked when processing first subframe (offset == 0).
885 */
886 if (offset == 0 && is_amsdu_aggregation_attack(eth: &hdr.eth, skb, iftype))
887 goto purge;
888
889 offset += sizeof(struct ethhdr);
890 last = remaining <= subframe_len + padding;
891
892 /* FIXME: should we really accept multicast DA? */
893 if ((check_da && !is_multicast_ether_addr(addr: hdr.eth.h_dest) &&
894 !ether_addr_equal(addr1: check_da, addr2: hdr.eth.h_dest)) ||
895 (check_sa && !ether_addr_equal(addr1: check_sa, addr2: hdr.eth.h_source))) {
896 offset += len + padding;
897 continue;
898 }
899
900 /* reuse skb for the last subframe */
901 if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
902 skb_pull(skb, len: offset);
903 frame = skb;
904 reuse_skb = true;
905 } else {
906 frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
907 reuse_frag, min_len: 32 + mesh_len);
908 if (!frame)
909 goto purge;
910
911 offset += len + padding;
912 }
913
914 skb_reset_network_header(skb: frame);
915 frame->dev = skb->dev;
916 frame->priority = skb->priority;
917
918 if (likely(iftype != NL80211_IFTYPE_MESH_POINT &&
919 ieee80211_get_8023_tunnel_proto(frame->data, &hdr.eth.h_proto)))
920 skb_pull(skb: frame, ETH_ALEN + 2);
921
922 memcpy(to: skb_push(skb: frame, len: sizeof(hdr.eth)), from: &hdr.eth, len: sizeof(hdr.eth));
923 __skb_queue_tail(list, newsk: frame);
924 }
925
926 if (!reuse_skb)
927 dev_kfree_skb(skb);
928
929 return;
930
931 purge:
932 __skb_queue_purge(list);
933 dev_kfree_skb(skb);
934}
935EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
936
937/* Given a data frame determine the 802.1p/1d tag to use. */
938unsigned int cfg80211_classify8021d(struct sk_buff *skb,
939 struct cfg80211_qos_map *qos_map)
940{
941 unsigned int dscp;
942 unsigned char vlan_priority;
943 unsigned int ret;
944
945 /* skb->priority values from 256->263 are magic values to
946 * directly indicate a specific 802.1d priority. This is used
947 * to allow 802.1d priority to be passed directly in from VLAN
948 * tags, etc.
949 */
950 if (skb->priority >= 256 && skb->priority <= 263) {
951 ret = skb->priority - 256;
952 goto out;
953 }
954
955 if (skb_vlan_tag_present(skb)) {
956 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
957 >> VLAN_PRIO_SHIFT;
958 if (vlan_priority > 0) {
959 ret = vlan_priority;
960 goto out;
961 }
962 }
963
964 switch (skb->protocol) {
965 case htons(ETH_P_IP):
966 dscp = ipv4_get_dsfield(iph: ip_hdr(skb)) & 0xfc;
967 break;
968 case htons(ETH_P_IPV6):
969 dscp = ipv6_get_dsfield(ipv6h: ipv6_hdr(skb)) & 0xfc;
970 break;
971 case htons(ETH_P_MPLS_UC):
972 case htons(ETH_P_MPLS_MC): {
973 struct mpls_label mpls_tmp, *mpls;
974
975 mpls = skb_header_pointer(skb, offset: sizeof(struct ethhdr),
976 len: sizeof(*mpls), buffer: &mpls_tmp);
977 if (!mpls)
978 return 0;
979
980 ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
981 >> MPLS_LS_TC_SHIFT;
982 goto out;
983 }
984 case htons(ETH_P_80221):
985 /* 802.21 is always network control traffic */
986 return 7;
987 default:
988 return 0;
989 }
990
991 if (qos_map) {
992 unsigned int i, tmp_dscp = dscp >> 2;
993
994 for (i = 0; i < qos_map->num_des; i++) {
995 if (tmp_dscp == qos_map->dscp_exception[i].dscp) {
996 ret = qos_map->dscp_exception[i].up;
997 goto out;
998 }
999 }
1000
1001 for (i = 0; i < 8; i++) {
1002 if (tmp_dscp >= qos_map->up[i].low &&
1003 tmp_dscp <= qos_map->up[i].high) {
1004 ret = i;
1005 goto out;
1006 }
1007 }
1008 }
1009
1010 /* The default mapping as defined Section 2.3 in RFC8325: The three
1011 * Most Significant Bits (MSBs) of the DSCP are used as the
1012 * corresponding L2 markings.
1013 */
1014 ret = dscp >> 5;
1015
1016 /* Handle specific DSCP values for which the default mapping (as
1017 * described above) doesn't adhere to the intended usage of the DSCP
1018 * value. See section 4 in RFC8325. Specifically, for the following
1019 * Diffserv Service Classes no update is needed:
1020 * - Standard: DF
1021 * - Low Priority Data: CS1
1022 * - Multimedia Conferencing: AF41, AF42, AF43
1023 * - Network Control Traffic: CS7
1024 * - Real-Time Interactive: CS4
1025 * - Signaling: CS5
1026 */
1027 switch (dscp >> 2) {
1028 case 10:
1029 case 12:
1030 case 14:
1031 /* High throughput data: AF11, AF12, AF13 */
1032 ret = 0;
1033 break;
1034 case 16:
1035 /* Operations, Administration, and Maintenance and Provisioning:
1036 * CS2
1037 */
1038 ret = 0;
1039 break;
1040 case 18:
1041 case 20:
1042 case 22:
1043 /* Low latency data: AF21, AF22, AF23 */
1044 ret = 3;
1045 break;
1046 case 24:
1047 /* Broadcasting video: CS3 */
1048 ret = 4;
1049 break;
1050 case 26:
1051 case 28:
1052 case 30:
1053 /* Multimedia Streaming: AF31, AF32, AF33 */
1054 ret = 4;
1055 break;
1056 case 44:
1057 /* Voice Admit: VA */
1058 ret = 6;
1059 break;
1060 case 46:
1061 /* Telephony traffic: EF */
1062 ret = 6;
1063 break;
1064 case 48:
1065 /* Network Control Traffic: CS6 */
1066 ret = 7;
1067 break;
1068 }
1069out:
1070 return array_index_nospec(ret, IEEE80211_NUM_TIDS);
1071}
1072EXPORT_SYMBOL(cfg80211_classify8021d);
1073
1074const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id)
1075{
1076 const struct cfg80211_bss_ies *ies;
1077
1078 ies = rcu_dereference(bss->ies);
1079 if (!ies)
1080 return NULL;
1081
1082 return cfg80211_find_elem(eid: id, ies: ies->data, len: ies->len);
1083}
1084EXPORT_SYMBOL(ieee80211_bss_get_elem);
1085
1086void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
1087{
1088 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy: wdev->wiphy);
1089 struct net_device *dev = wdev->netdev;
1090 int i;
1091
1092 if (!wdev->connect_keys)
1093 return;
1094
1095 for (i = 0; i < 4; i++) {
1096 if (!wdev->connect_keys->params[i].cipher)
1097 continue;
1098 if (rdev_add_key(rdev, netdev: dev, link_id: -1, key_index: i, pairwise: false, NULL,
1099 params: &wdev->connect_keys->params[i])) {
1100 netdev_err(dev, format: "failed to set key %d\n", i);
1101 continue;
1102 }
1103 if (wdev->connect_keys->def == i &&
1104 rdev_set_default_key(rdev, netdev: dev, link_id: -1, key_index: i, unicast: true, multicast: true)) {
1105 netdev_err(dev, format: "failed to set defkey %d\n", i);
1106 continue;
1107 }
1108 }
1109
1110 kfree_sensitive(objp: wdev->connect_keys);
1111 wdev->connect_keys = NULL;
1112}
1113
1114void cfg80211_process_wdev_events(struct wireless_dev *wdev)
1115{
1116 struct cfg80211_event *ev;
1117 unsigned long flags;
1118
1119 spin_lock_irqsave(&wdev->event_lock, flags);
1120 while (!list_empty(head: &wdev->event_list)) {
1121 ev = list_first_entry(&wdev->event_list,
1122 struct cfg80211_event, list);
1123 list_del(entry: &ev->list);
1124 spin_unlock_irqrestore(lock: &wdev->event_lock, flags);
1125
1126 switch (ev->type) {
1127 case EVENT_CONNECT_RESULT:
1128 __cfg80211_connect_result(
1129 dev: wdev->netdev,
1130 params: &ev->cr,
1131 wextev: ev->cr.status == WLAN_STATUS_SUCCESS);
1132 break;
1133 case EVENT_ROAMED:
1134 __cfg80211_roamed(wdev, info: &ev->rm);
1135 break;
1136 case EVENT_DISCONNECTED:
1137 __cfg80211_disconnected(dev: wdev->netdev,
1138 ie: ev->dc.ie, ie_len: ev->dc.ie_len,
1139 reason: ev->dc.reason,
1140 from_ap: !ev->dc.locally_generated);
1141 break;
1142 case EVENT_IBSS_JOINED:
1143 __cfg80211_ibss_joined(dev: wdev->netdev, bssid: ev->ij.bssid,
1144 channel: ev->ij.channel);
1145 break;
1146 case EVENT_STOPPED:
1147 cfg80211_leave(rdev: wiphy_to_rdev(wiphy: wdev->wiphy), wdev);
1148 break;
1149 case EVENT_PORT_AUTHORIZED:
1150 __cfg80211_port_authorized(wdev, peer_addr: ev->pa.peer_addr,
1151 td_bitmap: ev->pa.td_bitmap,
1152 td_bitmap_len: ev->pa.td_bitmap_len);
1153 break;
1154 }
1155
1156 kfree(objp: ev);
1157
1158 spin_lock_irqsave(&wdev->event_lock, flags);
1159 }
1160 spin_unlock_irqrestore(lock: &wdev->event_lock, flags);
1161}
1162
1163void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
1164{
1165 struct wireless_dev *wdev;
1166
1167 lockdep_assert_held(&rdev->wiphy.mtx);
1168
1169 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
1170 cfg80211_process_wdev_events(wdev);
1171}
1172
1173int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
1174 struct net_device *dev, enum nl80211_iftype ntype,
1175 struct vif_params *params)
1176{
1177 int err;
1178 enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
1179
1180 lockdep_assert_held(&rdev->wiphy.mtx);
1181
1182 /* don't support changing VLANs, you just re-create them */
1183 if (otype == NL80211_IFTYPE_AP_VLAN)
1184 return -EOPNOTSUPP;
1185
1186 /* cannot change into P2P device or NAN */
1187 if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
1188 ntype == NL80211_IFTYPE_NAN)
1189 return -EOPNOTSUPP;
1190
1191 if (!rdev->ops->change_virtual_intf ||
1192 !(rdev->wiphy.interface_modes & (1 << ntype)))
1193 return -EOPNOTSUPP;
1194
1195 if (ntype != otype) {
1196 /* if it's part of a bridge, reject changing type to station/ibss */
1197 if (netif_is_bridge_port(dev) &&
1198 (ntype == NL80211_IFTYPE_ADHOC ||
1199 ntype == NL80211_IFTYPE_STATION ||
1200 ntype == NL80211_IFTYPE_P2P_CLIENT))
1201 return -EBUSY;
1202
1203 dev->ieee80211_ptr->use_4addr = false;
1204 rdev_set_qos_map(rdev, dev, NULL);
1205
1206 switch (otype) {
1207 case NL80211_IFTYPE_AP:
1208 case NL80211_IFTYPE_P2P_GO:
1209 cfg80211_stop_ap(rdev, dev, link: -1, notify: true);
1210 break;
1211 case NL80211_IFTYPE_ADHOC:
1212 cfg80211_leave_ibss(rdev, dev, nowext: false);
1213 break;
1214 case NL80211_IFTYPE_STATION:
1215 case NL80211_IFTYPE_P2P_CLIENT:
1216 cfg80211_disconnect(rdev, dev,
1217 reason: WLAN_REASON_DEAUTH_LEAVING, wextev: true);
1218 break;
1219 case NL80211_IFTYPE_MESH_POINT:
1220 /* mesh should be handled? */
1221 break;
1222 case NL80211_IFTYPE_OCB:
1223 cfg80211_leave_ocb(rdev, dev);
1224 break;
1225 default:
1226 break;
1227 }
1228
1229 cfg80211_process_rdev_events(rdev);
1230 cfg80211_mlme_purge_registrations(wdev: dev->ieee80211_ptr);
1231
1232 memset(s: &dev->ieee80211_ptr->u, c: 0,
1233 n: sizeof(dev->ieee80211_ptr->u));
1234 memset(s: &dev->ieee80211_ptr->links, c: 0,
1235 n: sizeof(dev->ieee80211_ptr->links));
1236 }
1237
1238 err = rdev_change_virtual_intf(rdev, dev, type: ntype, params);
1239
1240 WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
1241
1242 if (!err && params && params->use_4addr != -1)
1243 dev->ieee80211_ptr->use_4addr = params->use_4addr;
1244
1245 if (!err) {
1246 dev->priv_flags &= ~IFF_DONT_BRIDGE;
1247 switch (ntype) {
1248 case NL80211_IFTYPE_STATION:
1249 if (dev->ieee80211_ptr->use_4addr)
1250 break;
1251 fallthrough;
1252 case NL80211_IFTYPE_OCB:
1253 case NL80211_IFTYPE_P2P_CLIENT:
1254 case NL80211_IFTYPE_ADHOC:
1255 dev->priv_flags |= IFF_DONT_BRIDGE;
1256 break;
1257 case NL80211_IFTYPE_P2P_GO:
1258 case NL80211_IFTYPE_AP:
1259 case NL80211_IFTYPE_AP_VLAN:
1260 case NL80211_IFTYPE_MESH_POINT:
1261 /* bridging OK */
1262 break;
1263 case NL80211_IFTYPE_MONITOR:
1264 /* monitor can't bridge anyway */
1265 break;
1266 case NL80211_IFTYPE_UNSPECIFIED:
1267 case NUM_NL80211_IFTYPES:
1268 /* not happening */
1269 break;
1270 case NL80211_IFTYPE_P2P_DEVICE:
1271 case NL80211_IFTYPE_WDS:
1272 case NL80211_IFTYPE_NAN:
1273 WARN_ON(1);
1274 break;
1275 }
1276 }
1277
1278 if (!err && ntype != otype && netif_running(dev)) {
1279 cfg80211_update_iface_num(rdev, iftype: ntype, num: 1);
1280 cfg80211_update_iface_num(rdev, iftype: otype, num: -1);
1281 }
1282
1283 return err;
1284}
1285
1286static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
1287{
1288 int modulation, streams, bitrate;
1289
1290 /* the formula below does only work for MCS values smaller than 32 */
1291 if (WARN_ON_ONCE(rate->mcs >= 32))
1292 return 0;
1293
1294 modulation = rate->mcs & 7;
1295 streams = (rate->mcs >> 3) + 1;
1296
1297 bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1298
1299 if (modulation < 4)
1300 bitrate *= (modulation + 1);
1301 else if (modulation == 4)
1302 bitrate *= (modulation + 2);
1303 else
1304 bitrate *= (modulation + 3);
1305
1306 bitrate *= streams;
1307
1308 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1309 bitrate = (bitrate / 9) * 10;
1310
1311 /* do NOT round down here */
1312 return (bitrate + 50000) / 100000;
1313}
1314
1315static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate)
1316{
1317 static const u32 __mcs2bitrate[] = {
1318 /* control PHY */
1319 [0] = 275,
1320 /* SC PHY */
1321 [1] = 3850,
1322 [2] = 7700,
1323 [3] = 9625,
1324 [4] = 11550,
1325 [5] = 12512, /* 1251.25 mbps */
1326 [6] = 15400,
1327 [7] = 19250,
1328 [8] = 23100,
1329 [9] = 25025,
1330 [10] = 30800,
1331 [11] = 38500,
1332 [12] = 46200,
1333 /* OFDM PHY */
1334 [13] = 6930,
1335 [14] = 8662, /* 866.25 mbps */
1336 [15] = 13860,
1337 [16] = 17325,
1338 [17] = 20790,
1339 [18] = 27720,
1340 [19] = 34650,
1341 [20] = 41580,
1342 [21] = 45045,
1343 [22] = 51975,
1344 [23] = 62370,
1345 [24] = 67568, /* 6756.75 mbps */
1346 /* LP-SC PHY */
1347 [25] = 6260,
1348 [26] = 8340,
1349 [27] = 11120,
1350 [28] = 12510,
1351 [29] = 16680,
1352 [30] = 22240,
1353 [31] = 25030,
1354 };
1355
1356 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1357 return 0;
1358
1359 return __mcs2bitrate[rate->mcs];
1360}
1361
1362static u32 cfg80211_calculate_bitrate_extended_sc_dmg(struct rate_info *rate)
1363{
1364 static const u32 __mcs2bitrate[] = {
1365 [6 - 6] = 26950, /* MCS 9.1 : 2695.0 mbps */
1366 [7 - 6] = 50050, /* MCS 12.1 */
1367 [8 - 6] = 53900,
1368 [9 - 6] = 57750,
1369 [10 - 6] = 63900,
1370 [11 - 6] = 75075,
1371 [12 - 6] = 80850,
1372 };
1373
1374 /* Extended SC MCS not defined for base MCS below 6 or above 12 */
1375 if (WARN_ON_ONCE(rate->mcs < 6 || rate->mcs > 12))
1376 return 0;
1377
1378 return __mcs2bitrate[rate->mcs - 6];
1379}
1380
1381static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate)
1382{
1383 static const u32 __mcs2bitrate[] = {
1384 /* control PHY */
1385 [0] = 275,
1386 /* SC PHY */
1387 [1] = 3850,
1388 [2] = 7700,
1389 [3] = 9625,
1390 [4] = 11550,
1391 [5] = 12512, /* 1251.25 mbps */
1392 [6] = 13475,
1393 [7] = 15400,
1394 [8] = 19250,
1395 [9] = 23100,
1396 [10] = 25025,
1397 [11] = 26950,
1398 [12] = 30800,
1399 [13] = 38500,
1400 [14] = 46200,
1401 [15] = 50050,
1402 [16] = 53900,
1403 [17] = 57750,
1404 [18] = 69300,
1405 [19] = 75075,
1406 [20] = 80850,
1407 };
1408
1409 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1410 return 0;
1411
1412 return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch;
1413}
1414
1415static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1416{
1417 static const u32 base[4][12] = {
1418 { 6500000,
1419 13000000,
1420 19500000,
1421 26000000,
1422 39000000,
1423 52000000,
1424 58500000,
1425 65000000,
1426 78000000,
1427 /* not in the spec, but some devices use this: */
1428 86700000,
1429 97500000,
1430 108300000,
1431 },
1432 { 13500000,
1433 27000000,
1434 40500000,
1435 54000000,
1436 81000000,
1437 108000000,
1438 121500000,
1439 135000000,
1440 162000000,
1441 180000000,
1442 202500000,
1443 225000000,
1444 },
1445 { 29300000,
1446 58500000,
1447 87800000,
1448 117000000,
1449 175500000,
1450 234000000,
1451 263300000,
1452 292500000,
1453 351000000,
1454 390000000,
1455 438800000,
1456 487500000,
1457 },
1458 { 58500000,
1459 117000000,
1460 175500000,
1461 234000000,
1462 351000000,
1463 468000000,
1464 526500000,
1465 585000000,
1466 702000000,
1467 780000000,
1468 877500000,
1469 975000000,
1470 },
1471 };
1472 u32 bitrate;
1473 int idx;
1474
1475 if (rate->mcs > 11)
1476 goto warn;
1477
1478 switch (rate->bw) {
1479 case RATE_INFO_BW_160:
1480 idx = 3;
1481 break;
1482 case RATE_INFO_BW_80:
1483 idx = 2;
1484 break;
1485 case RATE_INFO_BW_40:
1486 idx = 1;
1487 break;
1488 case RATE_INFO_BW_5:
1489 case RATE_INFO_BW_10:
1490 default:
1491 goto warn;
1492 case RATE_INFO_BW_20:
1493 idx = 0;
1494 }
1495
1496 bitrate = base[idx][rate->mcs];
1497 bitrate *= rate->nss;
1498
1499 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1500 bitrate = (bitrate / 9) * 10;
1501
1502 /* do NOT round down here */
1503 return (bitrate + 50000) / 100000;
1504 warn:
1505 WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1506 rate->bw, rate->mcs, rate->nss);
1507 return 0;
1508}
1509
1510static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate)
1511{
1512#define SCALE 6144
1513 u32 mcs_divisors[14] = {
1514 102399, /* 16.666666... */
1515 51201, /* 8.333333... */
1516 34134, /* 5.555555... */
1517 25599, /* 4.166666... */
1518 17067, /* 2.777777... */
1519 12801, /* 2.083333... */
1520 11377, /* 1.851725... */
1521 10239, /* 1.666666... */
1522 8532, /* 1.388888... */
1523 7680, /* 1.250000... */
1524 6828, /* 1.111111... */
1525 6144, /* 1.000000... */
1526 5690, /* 0.926106... */
1527 5120, /* 0.833333... */
1528 };
1529 u32 rates_160M[3] = { 960777777, 907400000, 816666666 };
1530 u32 rates_996[3] = { 480388888, 453700000, 408333333 };
1531 u32 rates_484[3] = { 229411111, 216666666, 195000000 };
1532 u32 rates_242[3] = { 114711111, 108333333, 97500000 };
1533 u32 rates_106[3] = { 40000000, 37777777, 34000000 };
1534 u32 rates_52[3] = { 18820000, 17777777, 16000000 };
1535 u32 rates_26[3] = { 9411111, 8888888, 8000000 };
1536 u64 tmp;
1537 u32 result;
1538
1539 if (WARN_ON_ONCE(rate->mcs > 13))
1540 return 0;
1541
1542 if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2))
1543 return 0;
1544 if (WARN_ON_ONCE(rate->he_ru_alloc >
1545 NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1546 return 0;
1547 if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1548 return 0;
1549
1550 if (rate->bw == RATE_INFO_BW_160 ||
1551 (rate->bw == RATE_INFO_BW_HE_RU &&
1552 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1553 result = rates_160M[rate->he_gi];
1554 else if (rate->bw == RATE_INFO_BW_80 ||
1555 (rate->bw == RATE_INFO_BW_HE_RU &&
1556 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996))
1557 result = rates_996[rate->he_gi];
1558 else if (rate->bw == RATE_INFO_BW_40 ||
1559 (rate->bw == RATE_INFO_BW_HE_RU &&
1560 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484))
1561 result = rates_484[rate->he_gi];
1562 else if (rate->bw == RATE_INFO_BW_20 ||
1563 (rate->bw == RATE_INFO_BW_HE_RU &&
1564 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242))
1565 result = rates_242[rate->he_gi];
1566 else if (rate->bw == RATE_INFO_BW_HE_RU &&
1567 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106)
1568 result = rates_106[rate->he_gi];
1569 else if (rate->bw == RATE_INFO_BW_HE_RU &&
1570 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52)
1571 result = rates_52[rate->he_gi];
1572 else if (rate->bw == RATE_INFO_BW_HE_RU &&
1573 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26)
1574 result = rates_26[rate->he_gi];
1575 else {
1576 WARN(1, "invalid HE MCS: bw:%d, ru:%d\n",
1577 rate->bw, rate->he_ru_alloc);
1578 return 0;
1579 }
1580
1581 /* now scale to the appropriate MCS */
1582 tmp = result;
1583 tmp *= SCALE;
1584 do_div(tmp, mcs_divisors[rate->mcs]);
1585 result = tmp;
1586
1587 /* and take NSS, DCM into account */
1588 result = (result * rate->nss) / 8;
1589 if (rate->he_dcm)
1590 result /= 2;
1591
1592 return result / 10000;
1593}
1594
1595static u32 cfg80211_calculate_bitrate_eht(struct rate_info *rate)
1596{
1597#define SCALE 6144
1598 static const u32 mcs_divisors[16] = {
1599 102399, /* 16.666666... */
1600 51201, /* 8.333333... */
1601 34134, /* 5.555555... */
1602 25599, /* 4.166666... */
1603 17067, /* 2.777777... */
1604 12801, /* 2.083333... */
1605 11377, /* 1.851725... */
1606 10239, /* 1.666666... */
1607 8532, /* 1.388888... */
1608 7680, /* 1.250000... */
1609 6828, /* 1.111111... */
1610 6144, /* 1.000000... */
1611 5690, /* 0.926106... */
1612 5120, /* 0.833333... */
1613 409600, /* 66.666666... */
1614 204800, /* 33.333333... */
1615 };
1616 static const u32 rates_996[3] = { 480388888, 453700000, 408333333 };
1617 static const u32 rates_484[3] = { 229411111, 216666666, 195000000 };
1618 static const u32 rates_242[3] = { 114711111, 108333333, 97500000 };
1619 static const u32 rates_106[3] = { 40000000, 37777777, 34000000 };
1620 static const u32 rates_52[3] = { 18820000, 17777777, 16000000 };
1621 static const u32 rates_26[3] = { 9411111, 8888888, 8000000 };
1622 u64 tmp;
1623 u32 result;
1624
1625 if (WARN_ON_ONCE(rate->mcs > 15))
1626 return 0;
1627 if (WARN_ON_ONCE(rate->eht_gi > NL80211_RATE_INFO_EHT_GI_3_2))
1628 return 0;
1629 if (WARN_ON_ONCE(rate->eht_ru_alloc >
1630 NL80211_RATE_INFO_EHT_RU_ALLOC_4x996))
1631 return 0;
1632 if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1633 return 0;
1634
1635 /* Bandwidth checks for MCS 14 */
1636 if (rate->mcs == 14) {
1637 if ((rate->bw != RATE_INFO_BW_EHT_RU &&
1638 rate->bw != RATE_INFO_BW_80 &&
1639 rate->bw != RATE_INFO_BW_160 &&
1640 rate->bw != RATE_INFO_BW_320) ||
1641 (rate->bw == RATE_INFO_BW_EHT_RU &&
1642 rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_996 &&
1643 rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_2x996 &&
1644 rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_4x996)) {
1645 WARN(1, "invalid EHT BW for MCS 14: bw:%d, ru:%d\n",
1646 rate->bw, rate->eht_ru_alloc);
1647 return 0;
1648 }
1649 }
1650
1651 if (rate->bw == RATE_INFO_BW_320 ||
1652 (rate->bw == RATE_INFO_BW_EHT_RU &&
1653 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_4x996))
1654 result = 4 * rates_996[rate->eht_gi];
1655 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1656 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_3x996P484)
1657 result = 3 * rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1658 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1659 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_3x996)
1660 result = 3 * rates_996[rate->eht_gi];
1661 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1662 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_2x996P484)
1663 result = 2 * rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1664 else if (rate->bw == RATE_INFO_BW_160 ||
1665 (rate->bw == RATE_INFO_BW_EHT_RU &&
1666 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_2x996))
1667 result = 2 * rates_996[rate->eht_gi];
1668 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1669 rate->eht_ru_alloc ==
1670 NL80211_RATE_INFO_EHT_RU_ALLOC_996P484P242)
1671 result = rates_996[rate->eht_gi] + rates_484[rate->eht_gi]
1672 + rates_242[rate->eht_gi];
1673 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1674 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996P484)
1675 result = rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1676 else if (rate->bw == RATE_INFO_BW_80 ||
1677 (rate->bw == RATE_INFO_BW_EHT_RU &&
1678 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996))
1679 result = rates_996[rate->eht_gi];
1680 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1681 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_484P242)
1682 result = rates_484[rate->eht_gi] + rates_242[rate->eht_gi];
1683 else if (rate->bw == RATE_INFO_BW_40 ||
1684 (rate->bw == RATE_INFO_BW_EHT_RU &&
1685 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_484))
1686 result = rates_484[rate->eht_gi];
1687 else if (rate->bw == RATE_INFO_BW_20 ||
1688 (rate->bw == RATE_INFO_BW_EHT_RU &&
1689 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_242))
1690 result = rates_242[rate->eht_gi];
1691 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1692 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_106P26)
1693 result = rates_106[rate->eht_gi] + rates_26[rate->eht_gi];
1694 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1695 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_106)
1696 result = rates_106[rate->eht_gi];
1697 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1698 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_52P26)
1699 result = rates_52[rate->eht_gi] + rates_26[rate->eht_gi];
1700 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1701 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_52)
1702 result = rates_52[rate->eht_gi];
1703 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1704 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_26)
1705 result = rates_26[rate->eht_gi];
1706 else {
1707 WARN(1, "invalid EHT MCS: bw:%d, ru:%d\n",
1708 rate->bw, rate->eht_ru_alloc);
1709 return 0;
1710 }
1711
1712 /* now scale to the appropriate MCS */
1713 tmp = result;
1714 tmp *= SCALE;
1715 do_div(tmp, mcs_divisors[rate->mcs]);
1716
1717 /* and take NSS */
1718 tmp *= rate->nss;
1719 do_div(tmp, 8);
1720
1721 result = tmp;
1722
1723 return result / 10000;
1724}
1725
1726static u32 cfg80211_calculate_bitrate_s1g(struct rate_info *rate)
1727{
1728 /* For 1, 2, 4, 8 and 16 MHz channels */
1729 static const u32 base[5][11] = {
1730 { 300000,
1731 600000,
1732 900000,
1733 1200000,
1734 1800000,
1735 2400000,
1736 2700000,
1737 3000000,
1738 3600000,
1739 4000000,
1740 /* MCS 10 supported in 1 MHz only */
1741 150000,
1742 },
1743 { 650000,
1744 1300000,
1745 1950000,
1746 2600000,
1747 3900000,
1748 5200000,
1749 5850000,
1750 6500000,
1751 7800000,
1752 /* MCS 9 not valid */
1753 },
1754 { 1350000,
1755 2700000,
1756 4050000,
1757 5400000,
1758 8100000,
1759 10800000,
1760 12150000,
1761 13500000,
1762 16200000,
1763 18000000,
1764 },
1765 { 2925000,
1766 5850000,
1767 8775000,
1768 11700000,
1769 17550000,
1770 23400000,
1771 26325000,
1772 29250000,
1773 35100000,
1774 39000000,
1775 },
1776 { 8580000,
1777 11700000,
1778 17550000,
1779 23400000,
1780 35100000,
1781 46800000,
1782 52650000,
1783 58500000,
1784 70200000,
1785 78000000,
1786 },
1787 };
1788 u32 bitrate;
1789 /* default is 1 MHz index */
1790 int idx = 0;
1791
1792 if (rate->mcs >= 11)
1793 goto warn;
1794
1795 switch (rate->bw) {
1796 case RATE_INFO_BW_16:
1797 idx = 4;
1798 break;
1799 case RATE_INFO_BW_8:
1800 idx = 3;
1801 break;
1802 case RATE_INFO_BW_4:
1803 idx = 2;
1804 break;
1805 case RATE_INFO_BW_2:
1806 idx = 1;
1807 break;
1808 case RATE_INFO_BW_1:
1809 idx = 0;
1810 break;
1811 case RATE_INFO_BW_5:
1812 case RATE_INFO_BW_10:
1813 case RATE_INFO_BW_20:
1814 case RATE_INFO_BW_40:
1815 case RATE_INFO_BW_80:
1816 case RATE_INFO_BW_160:
1817 default:
1818 goto warn;
1819 }
1820
1821 bitrate = base[idx][rate->mcs];
1822 bitrate *= rate->nss;
1823
1824 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1825 bitrate = (bitrate / 9) * 10;
1826 /* do NOT round down here */
1827 return (bitrate + 50000) / 100000;
1828warn:
1829 WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1830 rate->bw, rate->mcs, rate->nss);
1831 return 0;
1832}
1833
1834u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1835{
1836 if (rate->flags & RATE_INFO_FLAGS_MCS)
1837 return cfg80211_calculate_bitrate_ht(rate);
1838 if (rate->flags & RATE_INFO_FLAGS_DMG)
1839 return cfg80211_calculate_bitrate_dmg(rate);
1840 if (rate->flags & RATE_INFO_FLAGS_EXTENDED_SC_DMG)
1841 return cfg80211_calculate_bitrate_extended_sc_dmg(rate);
1842 if (rate->flags & RATE_INFO_FLAGS_EDMG)
1843 return cfg80211_calculate_bitrate_edmg(rate);
1844 if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1845 return cfg80211_calculate_bitrate_vht(rate);
1846 if (rate->flags & RATE_INFO_FLAGS_HE_MCS)
1847 return cfg80211_calculate_bitrate_he(rate);
1848 if (rate->flags & RATE_INFO_FLAGS_EHT_MCS)
1849 return cfg80211_calculate_bitrate_eht(rate);
1850 if (rate->flags & RATE_INFO_FLAGS_S1G_MCS)
1851 return cfg80211_calculate_bitrate_s1g(rate);
1852
1853 return rate->legacy;
1854}
1855EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1856
1857int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1858 enum ieee80211_p2p_attr_id attr,
1859 u8 *buf, unsigned int bufsize)
1860{
1861 u8 *out = buf;
1862 u16 attr_remaining = 0;
1863 bool desired_attr = false;
1864 u16 desired_len = 0;
1865
1866 while (len > 0) {
1867 unsigned int iedatalen;
1868 unsigned int copy;
1869 const u8 *iedata;
1870
1871 if (len < 2)
1872 return -EILSEQ;
1873 iedatalen = ies[1];
1874 if (iedatalen + 2 > len)
1875 return -EILSEQ;
1876
1877 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1878 goto cont;
1879
1880 if (iedatalen < 4)
1881 goto cont;
1882
1883 iedata = ies + 2;
1884
1885 /* check WFA OUI, P2P subtype */
1886 if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1887 iedata[2] != 0x9a || iedata[3] != 0x09)
1888 goto cont;
1889
1890 iedatalen -= 4;
1891 iedata += 4;
1892
1893 /* check attribute continuation into this IE */
1894 copy = min_t(unsigned int, attr_remaining, iedatalen);
1895 if (copy && desired_attr) {
1896 desired_len += copy;
1897 if (out) {
1898 memcpy(to: out, from: iedata, min(bufsize, copy));
1899 out += min(bufsize, copy);
1900 bufsize -= min(bufsize, copy);
1901 }
1902
1903
1904 if (copy == attr_remaining)
1905 return desired_len;
1906 }
1907
1908 attr_remaining -= copy;
1909 if (attr_remaining)
1910 goto cont;
1911
1912 iedatalen -= copy;
1913 iedata += copy;
1914
1915 while (iedatalen > 0) {
1916 u16 attr_len;
1917
1918 /* P2P attribute ID & size must fit */
1919 if (iedatalen < 3)
1920 return -EILSEQ;
1921 desired_attr = iedata[0] == attr;
1922 attr_len = get_unaligned_le16(p: iedata + 1);
1923 iedatalen -= 3;
1924 iedata += 3;
1925
1926 copy = min_t(unsigned int, attr_len, iedatalen);
1927
1928 if (desired_attr) {
1929 desired_len += copy;
1930 if (out) {
1931 memcpy(to: out, from: iedata, min(bufsize, copy));
1932 out += min(bufsize, copy);
1933 bufsize -= min(bufsize, copy);
1934 }
1935
1936 if (copy == attr_len)
1937 return desired_len;
1938 }
1939
1940 iedata += copy;
1941 iedatalen -= copy;
1942 attr_remaining = attr_len - copy;
1943 }
1944
1945 cont:
1946 len -= ies[1] + 2;
1947 ies += ies[1] + 2;
1948 }
1949
1950 if (attr_remaining && desired_attr)
1951 return -EILSEQ;
1952
1953 return -ENOENT;
1954}
1955EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1956
1957static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext)
1958{
1959 int i;
1960
1961 /* Make sure array values are legal */
1962 if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION))
1963 return false;
1964
1965 i = 0;
1966 while (i < n_ids) {
1967 if (ids[i] == WLAN_EID_EXTENSION) {
1968 if (id_ext && (ids[i + 1] == id))
1969 return true;
1970
1971 i += 2;
1972 continue;
1973 }
1974
1975 if (ids[i] == id && !id_ext)
1976 return true;
1977
1978 i++;
1979 }
1980 return false;
1981}
1982
1983static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1984{
1985 /* we assume a validly formed IEs buffer */
1986 u8 len = ies[pos + 1];
1987
1988 pos += 2 + len;
1989
1990 /* the IE itself must have 255 bytes for fragments to follow */
1991 if (len < 255)
1992 return pos;
1993
1994 while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1995 len = ies[pos + 1];
1996 pos += 2 + len;
1997 }
1998
1999 return pos;
2000}
2001
2002size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
2003 const u8 *ids, int n_ids,
2004 const u8 *after_ric, int n_after_ric,
2005 size_t offset)
2006{
2007 size_t pos = offset;
2008
2009 while (pos < ielen) {
2010 u8 ext = 0;
2011
2012 if (ies[pos] == WLAN_EID_EXTENSION)
2013 ext = 2;
2014 if ((pos + ext) >= ielen)
2015 break;
2016
2017 if (!ieee80211_id_in_list(ids, n_ids, id: ies[pos + ext],
2018 id_ext: ies[pos] == WLAN_EID_EXTENSION))
2019 break;
2020
2021 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
2022 pos = skip_ie(ies, ielen, pos);
2023
2024 while (pos < ielen) {
2025 if (ies[pos] == WLAN_EID_EXTENSION)
2026 ext = 2;
2027 else
2028 ext = 0;
2029
2030 if ((pos + ext) >= ielen)
2031 break;
2032
2033 if (!ieee80211_id_in_list(ids: after_ric,
2034 n_ids: n_after_ric,
2035 id: ies[pos + ext],
2036 id_ext: ext == 2))
2037 pos = skip_ie(ies, ielen, pos);
2038 else
2039 break;
2040 }
2041 } else {
2042 pos = skip_ie(ies, ielen, pos);
2043 }
2044 }
2045
2046 return pos;
2047}
2048EXPORT_SYMBOL(ieee80211_ie_split_ric);
2049
2050void ieee80211_fragment_element(struct sk_buff *skb, u8 *len_pos, u8 frag_id)
2051{
2052 unsigned int elem_len;
2053
2054 if (!len_pos)
2055 return;
2056
2057 elem_len = skb->data + skb->len - len_pos - 1;
2058
2059 while (elem_len > 255) {
2060 /* this one is 255 */
2061 *len_pos = 255;
2062 /* remaining data gets smaller */
2063 elem_len -= 255;
2064 /* make space for the fragment ID/len in SKB */
2065 skb_put(skb, len: 2);
2066 /* shift back the remaining data to place fragment ID/len */
2067 memmove(dest: len_pos + 255 + 3, src: len_pos + 255 + 1, count: elem_len);
2068 /* place the fragment ID */
2069 len_pos += 255 + 1;
2070 *len_pos = frag_id;
2071 /* and point to fragment length to update later */
2072 len_pos++;
2073 }
2074
2075 *len_pos = elem_len;
2076}
2077EXPORT_SYMBOL(ieee80211_fragment_element);
2078
2079bool ieee80211_operating_class_to_band(u8 operating_class,
2080 enum nl80211_band *band)
2081{
2082 switch (operating_class) {
2083 case 112:
2084 case 115 ... 127:
2085 case 128 ... 130:
2086 *band = NL80211_BAND_5GHZ;
2087 return true;
2088 case 131 ... 135:
2089 case 137:
2090 *band = NL80211_BAND_6GHZ;
2091 return true;
2092 case 81:
2093 case 82:
2094 case 83:
2095 case 84:
2096 *band = NL80211_BAND_2GHZ;
2097 return true;
2098 case 180:
2099 *band = NL80211_BAND_60GHZ;
2100 return true;
2101 }
2102
2103 return false;
2104}
2105EXPORT_SYMBOL(ieee80211_operating_class_to_band);
2106
2107bool ieee80211_operating_class_to_chandef(u8 operating_class,
2108 struct ieee80211_channel *chan,
2109 struct cfg80211_chan_def *chandef)
2110{
2111 u32 control_freq, offset = 0;
2112 enum nl80211_band band;
2113
2114 if (!ieee80211_operating_class_to_band(operating_class, &band) ||
2115 !chan || band != chan->band)
2116 return false;
2117
2118 control_freq = chan->center_freq;
2119 chandef->chan = chan;
2120
2121 if (control_freq >= 5955)
2122 offset = control_freq - 5955;
2123 else if (control_freq >= 5745)
2124 offset = control_freq - 5745;
2125 else if (control_freq >= 5180)
2126 offset = control_freq - 5180;
2127 offset /= 20;
2128
2129 switch (operating_class) {
2130 case 81: /* 2 GHz band; 20 MHz; channels 1..13 */
2131 case 82: /* 2 GHz band; 20 MHz; channel 14 */
2132 case 115: /* 5 GHz band; 20 MHz; channels 36,40,44,48 */
2133 case 118: /* 5 GHz band; 20 MHz; channels 52,56,60,64 */
2134 case 121: /* 5 GHz band; 20 MHz; channels 100..144 */
2135 case 124: /* 5 GHz band; 20 MHz; channels 149,153,157,161 */
2136 case 125: /* 5 GHz band; 20 MHz; channels 149..177 */
2137 case 131: /* 6 GHz band; 20 MHz; channels 1..233*/
2138 case 136: /* 6 GHz band; 20 MHz; channel 2 */
2139 chandef->center_freq1 = control_freq;
2140 chandef->width = NL80211_CHAN_WIDTH_20;
2141 return true;
2142 case 83: /* 2 GHz band; 40 MHz; channels 1..9 */
2143 case 116: /* 5 GHz band; 40 MHz; channels 36,44 */
2144 case 119: /* 5 GHz band; 40 MHz; channels 52,60 */
2145 case 122: /* 5 GHz band; 40 MHz; channels 100,108,116,124,132,140 */
2146 case 126: /* 5 GHz band; 40 MHz; channels 149,157,165,173 */
2147 chandef->center_freq1 = control_freq + 10;
2148 chandef->width = NL80211_CHAN_WIDTH_40;
2149 return true;
2150 case 84: /* 2 GHz band; 40 MHz; channels 5..13 */
2151 case 117: /* 5 GHz band; 40 MHz; channels 40,48 */
2152 case 120: /* 5 GHz band; 40 MHz; channels 56,64 */
2153 case 123: /* 5 GHz band; 40 MHz; channels 104,112,120,128,136,144 */
2154 case 127: /* 5 GHz band; 40 MHz; channels 153,161,169,177 */
2155 chandef->center_freq1 = control_freq - 10;
2156 chandef->width = NL80211_CHAN_WIDTH_40;
2157 return true;
2158 case 132: /* 6 GHz band; 40 MHz; channels 1,5,..,229*/
2159 chandef->center_freq1 = control_freq + 10 - (offset & 1) * 20;
2160 chandef->width = NL80211_CHAN_WIDTH_40;
2161 return true;
2162 case 128: /* 5 GHz band; 80 MHz; channels 36..64,100..144,149..177 */
2163 case 133: /* 6 GHz band; 80 MHz; channels 1,5,..,229 */
2164 chandef->center_freq1 = control_freq + 30 - (offset & 3) * 20;
2165 chandef->width = NL80211_CHAN_WIDTH_80;
2166 return true;
2167 case 129: /* 5 GHz band; 160 MHz; channels 36..64,100..144,149..177 */
2168 case 134: /* 6 GHz band; 160 MHz; channels 1,5,..,229 */
2169 chandef->center_freq1 = control_freq + 70 - (offset & 7) * 20;
2170 chandef->width = NL80211_CHAN_WIDTH_160;
2171 return true;
2172 case 130: /* 5 GHz band; 80+80 MHz; channels 36..64,100..144,149..177 */
2173 case 135: /* 6 GHz band; 80+80 MHz; channels 1,5,..,229 */
2174 /* The center_freq2 of 80+80 MHz is unknown */
2175 case 137: /* 6 GHz band; 320 MHz; channels 1,5,..,229 */
2176 /* 320-1 or 320-2 channelization is unknown */
2177 default:
2178 return false;
2179 }
2180}
2181EXPORT_SYMBOL(ieee80211_operating_class_to_chandef);
2182
2183bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
2184 u8 *op_class)
2185{
2186 u8 vht_opclass;
2187 u32 freq = chandef->center_freq1;
2188
2189 if (freq >= 2412 && freq <= 2472) {
2190 if (chandef->width > NL80211_CHAN_WIDTH_40)
2191 return false;
2192
2193 /* 2.407 GHz, channels 1..13 */
2194 if (chandef->width == NL80211_CHAN_WIDTH_40) {
2195 if (freq > chandef->chan->center_freq)
2196 *op_class = 83; /* HT40+ */
2197 else
2198 *op_class = 84; /* HT40- */
2199 } else {
2200 *op_class = 81;
2201 }
2202
2203 return true;
2204 }
2205
2206 if (freq == 2484) {
2207 /* channel 14 is only for IEEE 802.11b */
2208 if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT)
2209 return false;
2210
2211 *op_class = 82; /* channel 14 */
2212 return true;
2213 }
2214
2215 switch (chandef->width) {
2216 case NL80211_CHAN_WIDTH_80:
2217 vht_opclass = 128;
2218 break;
2219 case NL80211_CHAN_WIDTH_160:
2220 vht_opclass = 129;
2221 break;
2222 case NL80211_CHAN_WIDTH_80P80:
2223 vht_opclass = 130;
2224 break;
2225 case NL80211_CHAN_WIDTH_10:
2226 case NL80211_CHAN_WIDTH_5:
2227 return false; /* unsupported for now */
2228 default:
2229 vht_opclass = 0;
2230 break;
2231 }
2232
2233 /* 5 GHz, channels 36..48 */
2234 if (freq >= 5180 && freq <= 5240) {
2235 if (vht_opclass) {
2236 *op_class = vht_opclass;
2237 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
2238 if (freq > chandef->chan->center_freq)
2239 *op_class = 116;
2240 else
2241 *op_class = 117;
2242 } else {
2243 *op_class = 115;
2244 }
2245
2246 return true;
2247 }
2248
2249 /* 5 GHz, channels 52..64 */
2250 if (freq >= 5260 && freq <= 5320) {
2251 if (vht_opclass) {
2252 *op_class = vht_opclass;
2253 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
2254 if (freq > chandef->chan->center_freq)
2255 *op_class = 119;
2256 else
2257 *op_class = 120;
2258 } else {
2259 *op_class = 118;
2260 }
2261
2262 return true;
2263 }
2264
2265 /* 5 GHz, channels 100..144 */
2266 if (freq >= 5500 && freq <= 5720) {
2267 if (vht_opclass) {
2268 *op_class = vht_opclass;
2269 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
2270 if (freq > chandef->chan->center_freq)
2271 *op_class = 122;
2272 else
2273 *op_class = 123;
2274 } else {
2275 *op_class = 121;
2276 }
2277
2278 return true;
2279 }
2280
2281 /* 5 GHz, channels 149..169 */
2282 if (freq >= 5745 && freq <= 5845) {
2283 if (vht_opclass) {
2284 *op_class = vht_opclass;
2285 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
2286 if (freq > chandef->chan->center_freq)
2287 *op_class = 126;
2288 else
2289 *op_class = 127;
2290 } else if (freq <= 5805) {
2291 *op_class = 124;
2292 } else {
2293 *op_class = 125;
2294 }
2295
2296 return true;
2297 }
2298
2299 /* 56.16 GHz, channel 1..4 */
2300 if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) {
2301 if (chandef->width >= NL80211_CHAN_WIDTH_40)
2302 return false;
2303
2304 *op_class = 180;
2305 return true;
2306 }
2307
2308 /* not supported yet */
2309 return false;
2310}
2311EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
2312
2313static int cfg80211_wdev_bi(struct wireless_dev *wdev)
2314{
2315 switch (wdev->iftype) {
2316 case NL80211_IFTYPE_AP:
2317 case NL80211_IFTYPE_P2P_GO:
2318 WARN_ON(wdev->valid_links);
2319 return wdev->links[0].ap.beacon_interval;
2320 case NL80211_IFTYPE_MESH_POINT:
2321 return wdev->u.mesh.beacon_interval;
2322 case NL80211_IFTYPE_ADHOC:
2323 return wdev->u.ibss.beacon_interval;
2324 default:
2325 break;
2326 }
2327
2328 return 0;
2329}
2330
2331static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
2332 u32 *beacon_int_gcd,
2333 bool *beacon_int_different,
2334 int radio_idx)
2335{
2336 struct cfg80211_registered_device *rdev;
2337 struct wireless_dev *wdev;
2338
2339 *beacon_int_gcd = 0;
2340 *beacon_int_different = false;
2341
2342 rdev = wiphy_to_rdev(wiphy);
2343 list_for_each_entry(wdev, &wiphy->wdev_list, list) {
2344 int wdev_bi;
2345
2346 /* this feature isn't supported with MLO */
2347 if (wdev->valid_links)
2348 continue;
2349
2350 /* skip wdevs not active on the given wiphy radio */
2351 if (radio_idx >= 0 &&
2352 !(rdev_get_radio_mask(rdev, dev: wdev->netdev) & BIT(radio_idx)))
2353 continue;
2354
2355 wdev_bi = cfg80211_wdev_bi(wdev);
2356
2357 if (!wdev_bi)
2358 continue;
2359
2360 if (!*beacon_int_gcd) {
2361 *beacon_int_gcd = wdev_bi;
2362 continue;
2363 }
2364
2365 if (wdev_bi == *beacon_int_gcd)
2366 continue;
2367
2368 *beacon_int_different = true;
2369 *beacon_int_gcd = gcd(a: *beacon_int_gcd, b: wdev_bi);
2370 }
2371
2372 if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
2373 if (*beacon_int_gcd)
2374 *beacon_int_different = true;
2375 *beacon_int_gcd = gcd(a: *beacon_int_gcd, b: new_beacon_int);
2376 }
2377}
2378
2379int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
2380 enum nl80211_iftype iftype, u32 beacon_int)
2381{
2382 /*
2383 * This is just a basic pre-condition check; if interface combinations
2384 * are possible the driver must already be checking those with a call
2385 * to cfg80211_check_combinations(), in which case we'll validate more
2386 * through the cfg80211_calculate_bi_data() call and code in
2387 * cfg80211_iter_combinations().
2388 */
2389
2390 if (beacon_int < 10 || beacon_int > 10000)
2391 return -EINVAL;
2392
2393 return 0;
2394}
2395
2396int cfg80211_iter_combinations(struct wiphy *wiphy,
2397 struct iface_combination_params *params,
2398 void (*iter)(const struct ieee80211_iface_combination *c,
2399 void *data),
2400 void *data)
2401{
2402 const struct wiphy_radio *radio = NULL;
2403 const struct ieee80211_iface_combination *c, *cs;
2404 const struct ieee80211_regdomain *regdom;
2405 enum nl80211_dfs_regions region = 0;
2406 int i, j, n, iftype;
2407 int num_interfaces = 0;
2408 u32 used_iftypes = 0;
2409 u32 beacon_int_gcd;
2410 bool beacon_int_different;
2411
2412 if (params->radio_idx >= 0)
2413 radio = &wiphy->radio[params->radio_idx];
2414
2415 /*
2416 * This is a bit strange, since the iteration used to rely only on
2417 * the data given by the driver, but here it now relies on context,
2418 * in form of the currently operating interfaces.
2419 * This is OK for all current users, and saves us from having to
2420 * push the GCD calculations into all the drivers.
2421 * In the future, this should probably rely more on data that's in
2422 * cfg80211 already - the only thing not would appear to be any new
2423 * interfaces (while being brought up) and channel/radar data.
2424 */
2425 cfg80211_calculate_bi_data(wiphy, new_beacon_int: params->new_beacon_int,
2426 beacon_int_gcd: &beacon_int_gcd, beacon_int_different: &beacon_int_different,
2427 radio_idx: params->radio_idx);
2428
2429 if (params->radar_detect) {
2430 rcu_read_lock();
2431 regdom = rcu_dereference(cfg80211_regdomain);
2432 if (regdom)
2433 region = regdom->dfs_region;
2434 rcu_read_unlock();
2435 }
2436
2437 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
2438 num_interfaces += params->iftype_num[iftype];
2439 if (params->iftype_num[iftype] > 0 &&
2440 !cfg80211_iftype_allowed(wiphy, iftype, is_4addr: 0, check_swif: 1))
2441 used_iftypes |= BIT(iftype);
2442 }
2443
2444 if (radio) {
2445 cs = radio->iface_combinations;
2446 n = radio->n_iface_combinations;
2447 } else {
2448 cs = wiphy->iface_combinations;
2449 n = wiphy->n_iface_combinations;
2450 }
2451 for (i = 0; i < n; i++) {
2452 struct ieee80211_iface_limit *limits;
2453 u32 all_iftypes = 0;
2454
2455 c = &cs[i];
2456 if (num_interfaces > c->max_interfaces)
2457 continue;
2458 if (params->num_different_channels > c->num_different_channels)
2459 continue;
2460
2461 limits = kmemdup_array(src: c->limits, count: c->n_limits, element_size: sizeof(*limits),
2462 GFP_KERNEL);
2463 if (!limits)
2464 return -ENOMEM;
2465
2466 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
2467 if (cfg80211_iftype_allowed(wiphy, iftype, is_4addr: 0, check_swif: 1))
2468 continue;
2469 for (j = 0; j < c->n_limits; j++) {
2470 all_iftypes |= limits[j].types;
2471 if (!(limits[j].types & BIT(iftype)))
2472 continue;
2473 if (limits[j].max < params->iftype_num[iftype])
2474 goto cont;
2475 limits[j].max -= params->iftype_num[iftype];
2476 }
2477 }
2478
2479 if (params->radar_detect !=
2480 (c->radar_detect_widths & params->radar_detect))
2481 goto cont;
2482
2483 if (params->radar_detect && c->radar_detect_regions &&
2484 !(c->radar_detect_regions & BIT(region)))
2485 goto cont;
2486
2487 /* Finally check that all iftypes that we're currently
2488 * using are actually part of this combination. If they
2489 * aren't then we can't use this combination and have
2490 * to continue to the next.
2491 */
2492 if ((all_iftypes & used_iftypes) != used_iftypes)
2493 goto cont;
2494
2495 if (beacon_int_gcd) {
2496 if (c->beacon_int_min_gcd &&
2497 beacon_int_gcd < c->beacon_int_min_gcd)
2498 goto cont;
2499 if (!c->beacon_int_min_gcd && beacon_int_different)
2500 goto cont;
2501 }
2502
2503 /* This combination covered all interface types and
2504 * supported the requested numbers, so we're good.
2505 */
2506
2507 (*iter)(c, data);
2508 cont:
2509 kfree(objp: limits);
2510 }
2511
2512 return 0;
2513}
2514EXPORT_SYMBOL(cfg80211_iter_combinations);
2515
2516static void
2517cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
2518 void *data)
2519{
2520 int *num = data;
2521 (*num)++;
2522}
2523
2524int cfg80211_check_combinations(struct wiphy *wiphy,
2525 struct iface_combination_params *params)
2526{
2527 int err, num = 0;
2528
2529 err = cfg80211_iter_combinations(wiphy, params,
2530 cfg80211_iter_sum_ifcombs, &num);
2531 if (err)
2532 return err;
2533 if (num == 0)
2534 return -EBUSY;
2535
2536 return 0;
2537}
2538EXPORT_SYMBOL(cfg80211_check_combinations);
2539
2540int cfg80211_get_radio_idx_by_chan(struct wiphy *wiphy,
2541 const struct ieee80211_channel *chan)
2542{
2543 const struct wiphy_radio *radio;
2544 int i, j;
2545 u32 freq;
2546
2547 if (!chan)
2548 return -EINVAL;
2549
2550 freq = ieee80211_channel_to_khz(chan);
2551 for (i = 0; i < wiphy->n_radio; i++) {
2552 radio = &wiphy->radio[i];
2553 for (j = 0; j < radio->n_freq_range; j++) {
2554 if (freq >= radio->freq_range[j].start_freq &&
2555 freq < radio->freq_range[j].end_freq)
2556 return i;
2557 }
2558 }
2559
2560 return -EINVAL;
2561}
2562EXPORT_SYMBOL(cfg80211_get_radio_idx_by_chan);
2563
2564int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
2565 const u8 *rates, unsigned int n_rates,
2566 u32 *mask)
2567{
2568 int i, j;
2569
2570 if (!sband)
2571 return -EINVAL;
2572
2573 if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
2574 return -EINVAL;
2575
2576 *mask = 0;
2577
2578 for (i = 0; i < n_rates; i++) {
2579 int rate = (rates[i] & 0x7f) * 5;
2580 bool found = false;
2581
2582 for (j = 0; j < sband->n_bitrates; j++) {
2583 if (sband->bitrates[j].bitrate == rate) {
2584 found = true;
2585 *mask |= BIT(j);
2586 break;
2587 }
2588 }
2589 if (!found)
2590 return -EINVAL;
2591 }
2592
2593 /*
2594 * mask must have at least one bit set here since we
2595 * didn't accept a 0-length rates array nor allowed
2596 * entries in the array that didn't exist
2597 */
2598
2599 return 0;
2600}
2601
2602unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
2603{
2604 enum nl80211_band band;
2605 unsigned int n_channels = 0;
2606
2607 for (band = 0; band < NUM_NL80211_BANDS; band++)
2608 if (wiphy->bands[band])
2609 n_channels += wiphy->bands[band]->n_channels;
2610
2611 return n_channels;
2612}
2613EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
2614
2615int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
2616 struct station_info *sinfo)
2617{
2618 struct cfg80211_registered_device *rdev;
2619 struct wireless_dev *wdev;
2620
2621 wdev = dev->ieee80211_ptr;
2622 if (!wdev)
2623 return -EOPNOTSUPP;
2624
2625 rdev = wiphy_to_rdev(wiphy: wdev->wiphy);
2626 if (!rdev->ops->get_station)
2627 return -EOPNOTSUPP;
2628
2629 memset(s: sinfo, c: 0, n: sizeof(*sinfo));
2630
2631 guard(wiphy)(T: &rdev->wiphy);
2632
2633 return rdev_get_station(rdev, dev, mac: mac_addr, sinfo);
2634}
2635EXPORT_SYMBOL(cfg80211_get_station);
2636
2637void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
2638{
2639 int i;
2640
2641 if (!f)
2642 return;
2643
2644 kfree(objp: f->serv_spec_info);
2645 kfree(objp: f->srf_bf);
2646 kfree(objp: f->srf_macs);
2647 for (i = 0; i < f->num_rx_filters; i++)
2648 kfree(objp: f->rx_filters[i].filter);
2649
2650 for (i = 0; i < f->num_tx_filters; i++)
2651 kfree(objp: f->tx_filters[i].filter);
2652
2653 kfree(objp: f->rx_filters);
2654 kfree(objp: f->tx_filters);
2655 kfree(objp: f);
2656}
2657EXPORT_SYMBOL(cfg80211_free_nan_func);
2658
2659bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
2660 u32 center_freq_khz, u32 bw_khz)
2661{
2662 u32 start_freq_khz, end_freq_khz;
2663
2664 start_freq_khz = center_freq_khz - (bw_khz / 2);
2665 end_freq_khz = center_freq_khz + (bw_khz / 2);
2666
2667 if (start_freq_khz >= freq_range->start_freq_khz &&
2668 end_freq_khz <= freq_range->end_freq_khz)
2669 return true;
2670
2671 return false;
2672}
2673
2674int cfg80211_link_sinfo_alloc_tid_stats(struct link_station_info *link_sinfo,
2675 gfp_t gfp)
2676{
2677 link_sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1,
2678 sizeof(*link_sinfo->pertid), gfp);
2679 if (!link_sinfo->pertid)
2680 return -ENOMEM;
2681
2682 return 0;
2683}
2684EXPORT_SYMBOL(cfg80211_link_sinfo_alloc_tid_stats);
2685
2686int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp)
2687{
2688 sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1,
2689 sizeof(*(sinfo->pertid)),
2690 gfp);
2691 if (!sinfo->pertid)
2692 return -ENOMEM;
2693
2694 return 0;
2695}
2696EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats);
2697
2698/* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
2699/* Ethernet-II snap header (RFC1042 for most EtherTypes) */
2700const unsigned char rfc1042_header[] __aligned(2) =
2701 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
2702EXPORT_SYMBOL(rfc1042_header);
2703
2704/* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
2705const unsigned char bridge_tunnel_header[] __aligned(2) =
2706 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
2707EXPORT_SYMBOL(bridge_tunnel_header);
2708
2709/* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */
2710struct iapp_layer2_update {
2711 u8 da[ETH_ALEN]; /* broadcast */
2712 u8 sa[ETH_ALEN]; /* STA addr */
2713 __be16 len; /* 6 */
2714 u8 dsap; /* 0 */
2715 u8 ssap; /* 0 */
2716 u8 control;
2717 u8 xid_info[3];
2718} __packed;
2719
2720void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr)
2721{
2722 struct iapp_layer2_update *msg;
2723 struct sk_buff *skb;
2724
2725 /* Send Level 2 Update Frame to update forwarding tables in layer 2
2726 * bridge devices */
2727
2728 skb = dev_alloc_skb(length: sizeof(*msg));
2729 if (!skb)
2730 return;
2731 msg = skb_put(skb, len: sizeof(*msg));
2732
2733 /* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID)
2734 * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */
2735
2736 eth_broadcast_addr(addr: msg->da);
2737 ether_addr_copy(dst: msg->sa, src: addr);
2738 msg->len = htons(6);
2739 msg->dsap = 0;
2740 msg->ssap = 0x01; /* NULL LSAP, CR Bit: Response */
2741 msg->control = 0xaf; /* XID response lsb.1111F101.
2742 * F=0 (no poll command; unsolicited frame) */
2743 msg->xid_info[0] = 0x81; /* XID format identifier */
2744 msg->xid_info[1] = 1; /* LLC types/classes: Type 1 LLC */
2745 msg->xid_info[2] = 0; /* XID sender's receive window size (RW) */
2746
2747 skb->dev = dev;
2748 skb->protocol = eth_type_trans(skb, dev);
2749 memset(s: skb->cb, c: 0, n: sizeof(skb->cb));
2750 netif_rx(skb);
2751}
2752EXPORT_SYMBOL(cfg80211_send_layer2_update);
2753
2754int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap,
2755 enum ieee80211_vht_chanwidth bw,
2756 int mcs, bool ext_nss_bw_capable,
2757 unsigned int max_vht_nss)
2758{
2759 u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map);
2760 int ext_nss_bw;
2761 int supp_width;
2762 int i, mcs_encoding;
2763
2764 if (map == 0xffff)
2765 return 0;
2766
2767 if (WARN_ON(mcs > 9 || max_vht_nss > 8))
2768 return 0;
2769 if (mcs <= 7)
2770 mcs_encoding = 0;
2771 else if (mcs == 8)
2772 mcs_encoding = 1;
2773 else
2774 mcs_encoding = 2;
2775
2776 if (!max_vht_nss) {
2777 /* find max_vht_nss for the given MCS */
2778 for (i = 7; i >= 0; i--) {
2779 int supp = (map >> (2 * i)) & 3;
2780
2781 if (supp == 3)
2782 continue;
2783
2784 if (supp >= mcs_encoding) {
2785 max_vht_nss = i + 1;
2786 break;
2787 }
2788 }
2789 }
2790
2791 if (!(cap->supp_mcs.tx_mcs_map &
2792 cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE)))
2793 return max_vht_nss;
2794
2795 ext_nss_bw = le32_get_bits(v: cap->vht_cap_info,
2796 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK);
2797 supp_width = le32_get_bits(v: cap->vht_cap_info,
2798 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK);
2799
2800 /* if not capable, treat ext_nss_bw as 0 */
2801 if (!ext_nss_bw_capable)
2802 ext_nss_bw = 0;
2803
2804 /* This is invalid */
2805 if (supp_width == 3)
2806 return 0;
2807
2808 /* This is an invalid combination so pretend nothing is supported */
2809 if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2))
2810 return 0;
2811
2812 /*
2813 * Cover all the special cases according to IEEE 802.11-2016
2814 * Table 9-250. All other cases are either factor of 1 or not
2815 * valid/supported.
2816 */
2817 switch (bw) {
2818 case IEEE80211_VHT_CHANWIDTH_USE_HT:
2819 case IEEE80211_VHT_CHANWIDTH_80MHZ:
2820 if ((supp_width == 1 || supp_width == 2) &&
2821 ext_nss_bw == 3)
2822 return 2 * max_vht_nss;
2823 break;
2824 case IEEE80211_VHT_CHANWIDTH_160MHZ:
2825 if (supp_width == 0 &&
2826 (ext_nss_bw == 1 || ext_nss_bw == 2))
2827 return max_vht_nss / 2;
2828 if (supp_width == 0 &&
2829 ext_nss_bw == 3)
2830 return (3 * max_vht_nss) / 4;
2831 if (supp_width == 1 &&
2832 ext_nss_bw == 3)
2833 return 2 * max_vht_nss;
2834 break;
2835 case IEEE80211_VHT_CHANWIDTH_80P80MHZ:
2836 if (supp_width == 0 && ext_nss_bw == 1)
2837 return 0; /* not possible */
2838 if (supp_width == 0 &&
2839 ext_nss_bw == 2)
2840 return max_vht_nss / 2;
2841 if (supp_width == 0 &&
2842 ext_nss_bw == 3)
2843 return (3 * max_vht_nss) / 4;
2844 if (supp_width == 1 &&
2845 ext_nss_bw == 0)
2846 return 0; /* not possible */
2847 if (supp_width == 1 &&
2848 ext_nss_bw == 1)
2849 return max_vht_nss / 2;
2850 if (supp_width == 1 &&
2851 ext_nss_bw == 2)
2852 return (3 * max_vht_nss) / 4;
2853 break;
2854 }
2855
2856 /* not covered or invalid combination received */
2857 return max_vht_nss;
2858}
2859EXPORT_SYMBOL(ieee80211_get_vht_max_nss);
2860
2861bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype,
2862 bool is_4addr, u8 check_swif)
2863
2864{
2865 bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN;
2866
2867 switch (check_swif) {
2868 case 0:
2869 if (is_vlan && is_4addr)
2870 return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2871 return wiphy->interface_modes & BIT(iftype);
2872 case 1:
2873 if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan)
2874 return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2875 return wiphy->software_iftypes & BIT(iftype);
2876 default:
2877 break;
2878 }
2879
2880 return false;
2881}
2882EXPORT_SYMBOL(cfg80211_iftype_allowed);
2883
2884void cfg80211_remove_link(struct wireless_dev *wdev, unsigned int link_id)
2885{
2886 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy: wdev->wiphy);
2887
2888 lockdep_assert_wiphy(wdev->wiphy);
2889
2890 switch (wdev->iftype) {
2891 case NL80211_IFTYPE_AP:
2892 case NL80211_IFTYPE_P2P_GO:
2893 cfg80211_stop_ap(rdev, dev: wdev->netdev, link: link_id, notify: true);
2894 break;
2895 default:
2896 /* per-link not relevant */
2897 break;
2898 }
2899
2900 rdev_del_intf_link(rdev, wdev, link_id);
2901
2902 wdev->valid_links &= ~BIT(link_id);
2903 eth_zero_addr(addr: wdev->links[link_id].addr);
2904}
2905
2906void cfg80211_remove_links(struct wireless_dev *wdev)
2907{
2908 unsigned int link_id;
2909
2910 /*
2911 * links are controlled by upper layers (userspace/cfg)
2912 * only for AP mode, so only remove them here for AP
2913 */
2914 if (wdev->iftype != NL80211_IFTYPE_AP)
2915 return;
2916
2917 if (wdev->valid_links) {
2918 for_each_valid_link(wdev, link_id)
2919 cfg80211_remove_link(wdev, link_id);
2920 }
2921}
2922
2923int cfg80211_remove_virtual_intf(struct cfg80211_registered_device *rdev,
2924 struct wireless_dev *wdev)
2925{
2926 cfg80211_remove_links(wdev);
2927
2928 return rdev_del_virtual_intf(rdev, wdev);
2929}
2930
2931const struct wiphy_iftype_ext_capab *
2932cfg80211_get_iftype_ext_capa(struct wiphy *wiphy, enum nl80211_iftype type)
2933{
2934 int i;
2935
2936 for (i = 0; i < wiphy->num_iftype_ext_capab; i++) {
2937 if (wiphy->iftype_ext_capab[i].iftype == type)
2938 return &wiphy->iftype_ext_capab[i];
2939 }
2940
2941 return NULL;
2942}
2943EXPORT_SYMBOL(cfg80211_get_iftype_ext_capa);
2944
2945static bool
2946ieee80211_radio_freq_range_valid(const struct wiphy_radio *radio,
2947 u32 freq, u32 width)
2948{
2949 const struct wiphy_radio_freq_range *r;
2950 int i;
2951
2952 for (i = 0; i < radio->n_freq_range; i++) {
2953 r = &radio->freq_range[i];
2954 if (freq - width / 2 >= r->start_freq &&
2955 freq + width / 2 <= r->end_freq)
2956 return true;
2957 }
2958
2959 return false;
2960}
2961
2962bool cfg80211_radio_chandef_valid(const struct wiphy_radio *radio,
2963 const struct cfg80211_chan_def *chandef)
2964{
2965 u32 freq, width;
2966
2967 freq = ieee80211_chandef_to_khz(chandef);
2968 width = MHZ_TO_KHZ(cfg80211_chandef_get_width(chandef));
2969 if (!ieee80211_radio_freq_range_valid(radio, freq, width))
2970 return false;
2971
2972 freq = MHZ_TO_KHZ(chandef->center_freq2);
2973 if (freq && !ieee80211_radio_freq_range_valid(radio, freq, width))
2974 return false;
2975
2976 return true;
2977}
2978EXPORT_SYMBOL(cfg80211_radio_chandef_valid);
2979
2980bool cfg80211_wdev_channel_allowed(struct wireless_dev *wdev,
2981 struct ieee80211_channel *chan)
2982{
2983 struct wiphy *wiphy = wdev->wiphy;
2984 const struct wiphy_radio *radio;
2985 struct cfg80211_chan_def chandef;
2986 u32 radio_mask;
2987 int i;
2988
2989 radio_mask = wdev->radio_mask;
2990 if (!wiphy->n_radio || radio_mask == BIT(wiphy->n_radio) - 1)
2991 return true;
2992
2993 cfg80211_chandef_create(chandef: &chandef, channel: chan, chantype: NL80211_CHAN_HT20);
2994 for (i = 0; i < wiphy->n_radio; i++) {
2995 if (!(radio_mask & BIT(i)))
2996 continue;
2997
2998 radio = &wiphy->radio[i];
2999 if (!cfg80211_radio_chandef_valid(radio, &chandef))
3000 continue;
3001
3002 return true;
3003 }
3004
3005 return false;
3006}
3007EXPORT_SYMBOL(cfg80211_wdev_channel_allowed);
3008