| 1 | // SPDX-License-Identifier: GPL-2.0-only | 
|---|
| 2 | /* | 
|---|
| 3 | *  Copyright (C) 1991, 1992  Linus Torvalds | 
|---|
| 4 | *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs | 
|---|
| 5 | *  Copyright (C) 2011	Don Zickus Red Hat, Inc. | 
|---|
| 6 | * | 
|---|
| 7 | *  Pentium III FXSR, SSE support | 
|---|
| 8 | *	Gareth Hughes <gareth@valinux.com>, May 2000 | 
|---|
| 9 | */ | 
|---|
| 10 |  | 
|---|
| 11 | /* | 
|---|
| 12 | * Handle hardware traps and faults. | 
|---|
| 13 | */ | 
|---|
| 14 | #include <linux/spinlock.h> | 
|---|
| 15 | #include <linux/kprobes.h> | 
|---|
| 16 | #include <linux/kdebug.h> | 
|---|
| 17 | #include <linux/sched/debug.h> | 
|---|
| 18 | #include <linux/nmi.h> | 
|---|
| 19 | #include <linux/debugfs.h> | 
|---|
| 20 | #include <linux/delay.h> | 
|---|
| 21 | #include <linux/hardirq.h> | 
|---|
| 22 | #include <linux/ratelimit.h> | 
|---|
| 23 | #include <linux/slab.h> | 
|---|
| 24 | #include <linux/export.h> | 
|---|
| 25 | #include <linux/atomic.h> | 
|---|
| 26 | #include <linux/sched/clock.h> | 
|---|
| 27 |  | 
|---|
| 28 | #include <asm/cpu_entry_area.h> | 
|---|
| 29 | #include <asm/traps.h> | 
|---|
| 30 | #include <asm/mach_traps.h> | 
|---|
| 31 | #include <asm/nmi.h> | 
|---|
| 32 | #include <asm/x86_init.h> | 
|---|
| 33 | #include <asm/reboot.h> | 
|---|
| 34 | #include <asm/cache.h> | 
|---|
| 35 | #include <asm/nospec-branch.h> | 
|---|
| 36 | #include <asm/microcode.h> | 
|---|
| 37 | #include <asm/sev.h> | 
|---|
| 38 | #include <asm/fred.h> | 
|---|
| 39 |  | 
|---|
| 40 | #define CREATE_TRACE_POINTS | 
|---|
| 41 | #include <trace/events/nmi.h> | 
|---|
| 42 |  | 
|---|
| 43 | /* | 
|---|
| 44 | * An emergency handler can be set in any context including NMI | 
|---|
| 45 | */ | 
|---|
| 46 | struct nmi_desc { | 
|---|
| 47 | raw_spinlock_t lock; | 
|---|
| 48 | nmi_handler_t emerg_handler; | 
|---|
| 49 | struct list_head head; | 
|---|
| 50 | }; | 
|---|
| 51 |  | 
|---|
| 52 | #define NMI_DESC_INIT(type) { \ | 
|---|
| 53 | .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[type].lock), \ | 
|---|
| 54 | .head = LIST_HEAD_INIT(nmi_desc[type].head), \ | 
|---|
| 55 | } | 
|---|
| 56 |  | 
|---|
| 57 | static struct nmi_desc nmi_desc[NMI_MAX] = { | 
|---|
| 58 | NMI_DESC_INIT(NMI_LOCAL), | 
|---|
| 59 | NMI_DESC_INIT(NMI_UNKNOWN), | 
|---|
| 60 | NMI_DESC_INIT(NMI_SERR), | 
|---|
| 61 | NMI_DESC_INIT(NMI_IO_CHECK), | 
|---|
| 62 | }; | 
|---|
| 63 |  | 
|---|
| 64 | #define nmi_to_desc(type) (&nmi_desc[type]) | 
|---|
| 65 |  | 
|---|
| 66 | struct nmi_stats { | 
|---|
| 67 | unsigned int normal; | 
|---|
| 68 | unsigned int unknown; | 
|---|
| 69 | unsigned int external; | 
|---|
| 70 | unsigned int swallow; | 
|---|
| 71 | unsigned long recv_jiffies; | 
|---|
| 72 | unsigned long idt_seq; | 
|---|
| 73 | unsigned long idt_nmi_seq; | 
|---|
| 74 | unsigned long idt_ignored; | 
|---|
| 75 | atomic_long_t idt_calls; | 
|---|
| 76 | unsigned long idt_seq_snap; | 
|---|
| 77 | unsigned long idt_nmi_seq_snap; | 
|---|
| 78 | unsigned long idt_ignored_snap; | 
|---|
| 79 | long idt_calls_snap; | 
|---|
| 80 | }; | 
|---|
| 81 |  | 
|---|
| 82 | static DEFINE_PER_CPU(struct nmi_stats, nmi_stats); | 
|---|
| 83 |  | 
|---|
| 84 | static int ignore_nmis __read_mostly; | 
|---|
| 85 |  | 
|---|
| 86 | int unknown_nmi_panic; | 
|---|
| 87 | int panic_on_unrecovered_nmi; | 
|---|
| 88 | int panic_on_io_nmi; | 
|---|
| 89 |  | 
|---|
| 90 | /* | 
|---|
| 91 | * Prevent NMI reason port (0x61) being accessed simultaneously, can | 
|---|
| 92 | * only be used in NMI handler. | 
|---|
| 93 | */ | 
|---|
| 94 | static DEFINE_RAW_SPINLOCK(nmi_reason_lock); | 
|---|
| 95 |  | 
|---|
| 96 | static int __init setup_unknown_nmi_panic(char *str) | 
|---|
| 97 | { | 
|---|
| 98 | unknown_nmi_panic = 1; | 
|---|
| 99 | return 1; | 
|---|
| 100 | } | 
|---|
| 101 | __setup( "unknown_nmi_panic", setup_unknown_nmi_panic); | 
|---|
| 102 |  | 
|---|
| 103 | static u64 nmi_longest_ns = 1 * NSEC_PER_MSEC; | 
|---|
| 104 |  | 
|---|
| 105 | static int __init nmi_warning_debugfs(void) | 
|---|
| 106 | { | 
|---|
| 107 | debugfs_create_u64(name: "nmi_longest_ns", mode: 0644, | 
|---|
| 108 | parent: arch_debugfs_dir, value: &nmi_longest_ns); | 
|---|
| 109 | return 0; | 
|---|
| 110 | } | 
|---|
| 111 | fs_initcall(nmi_warning_debugfs); | 
|---|
| 112 |  | 
|---|
| 113 | static void nmi_check_duration(struct nmiaction *action, u64 duration) | 
|---|
| 114 | { | 
|---|
| 115 | int remainder_ns, decimal_msecs; | 
|---|
| 116 |  | 
|---|
| 117 | if (duration < nmi_longest_ns || duration < action->max_duration) | 
|---|
| 118 | return; | 
|---|
| 119 |  | 
|---|
| 120 | action->max_duration = duration; | 
|---|
| 121 |  | 
|---|
| 122 | /* Convert duration from nsec to msec */ | 
|---|
| 123 | remainder_ns = do_div(duration, NSEC_PER_MSEC); | 
|---|
| 124 | decimal_msecs = remainder_ns / NSEC_PER_USEC; | 
|---|
| 125 |  | 
|---|
| 126 | pr_info_ratelimited( "INFO: NMI handler (%ps) took too long to run: %lld.%03d msecs\n", | 
|---|
| 127 | action->handler, duration, decimal_msecs); | 
|---|
| 128 | } | 
|---|
| 129 |  | 
|---|
| 130 | static int nmi_handle(unsigned int type, struct pt_regs *regs) | 
|---|
| 131 | { | 
|---|
| 132 | struct nmi_desc *desc = nmi_to_desc(type); | 
|---|
| 133 | nmi_handler_t ehandler; | 
|---|
| 134 | struct nmiaction *a; | 
|---|
| 135 | int handled=0; | 
|---|
| 136 |  | 
|---|
| 137 | /* | 
|---|
| 138 | * Call the emergency handler, if set | 
|---|
| 139 | * | 
|---|
| 140 | * In the case of crash_nmi_callback() emergency handler, it will | 
|---|
| 141 | * return in the case of the crashing CPU to enable it to complete | 
|---|
| 142 | * other necessary crashing actions ASAP. Other handlers in the | 
|---|
| 143 | * linked list won't need to be run. | 
|---|
| 144 | */ | 
|---|
| 145 | ehandler = desc->emerg_handler; | 
|---|
| 146 | if (ehandler) | 
|---|
| 147 | return ehandler(type, regs); | 
|---|
| 148 |  | 
|---|
| 149 | rcu_read_lock(); | 
|---|
| 150 |  | 
|---|
| 151 | /* | 
|---|
| 152 | * NMIs are edge-triggered, which means if you have enough | 
|---|
| 153 | * of them concurrently, you can lose some because only one | 
|---|
| 154 | * can be latched at any given time.  Walk the whole list | 
|---|
| 155 | * to handle those situations. | 
|---|
| 156 | */ | 
|---|
| 157 | list_for_each_entry_rcu(a, &desc->head, list) { | 
|---|
| 158 | int thishandled; | 
|---|
| 159 | u64 delta; | 
|---|
| 160 |  | 
|---|
| 161 | delta = sched_clock(); | 
|---|
| 162 | thishandled = a->handler(type, regs); | 
|---|
| 163 | handled += thishandled; | 
|---|
| 164 | delta = sched_clock() - delta; | 
|---|
| 165 | trace_nmi_handler(handler: a->handler, delta_ns: (int)delta, handled: thishandled); | 
|---|
| 166 |  | 
|---|
| 167 | nmi_check_duration(action: a, duration: delta); | 
|---|
| 168 | } | 
|---|
| 169 |  | 
|---|
| 170 | rcu_read_unlock(); | 
|---|
| 171 |  | 
|---|
| 172 | /* return total number of NMI events handled */ | 
|---|
| 173 | return handled; | 
|---|
| 174 | } | 
|---|
| 175 | NOKPROBE_SYMBOL(nmi_handle); | 
|---|
| 176 |  | 
|---|
| 177 | int __register_nmi_handler(unsigned int type, struct nmiaction *action) | 
|---|
| 178 | { | 
|---|
| 179 | struct nmi_desc *desc = nmi_to_desc(type); | 
|---|
| 180 | unsigned long flags; | 
|---|
| 181 |  | 
|---|
| 182 | if (WARN_ON_ONCE(!action->handler || !list_empty(&action->list))) | 
|---|
| 183 | return -EINVAL; | 
|---|
| 184 |  | 
|---|
| 185 | raw_spin_lock_irqsave(&desc->lock, flags); | 
|---|
| 186 |  | 
|---|
| 187 | /* | 
|---|
| 188 | * Indicate if there are multiple registrations on the | 
|---|
| 189 | * internal NMI handler call chains (SERR and IO_CHECK). | 
|---|
| 190 | */ | 
|---|
| 191 | WARN_ON_ONCE(type == NMI_SERR && !list_empty(&desc->head)); | 
|---|
| 192 | WARN_ON_ONCE(type == NMI_IO_CHECK && !list_empty(&desc->head)); | 
|---|
| 193 |  | 
|---|
| 194 | /* | 
|---|
| 195 | * some handlers need to be executed first otherwise a fake | 
|---|
| 196 | * event confuses some handlers (kdump uses this flag) | 
|---|
| 197 | */ | 
|---|
| 198 | if (action->flags & NMI_FLAG_FIRST) | 
|---|
| 199 | list_add_rcu(new: &action->list, head: &desc->head); | 
|---|
| 200 | else | 
|---|
| 201 | list_add_tail_rcu(new: &action->list, head: &desc->head); | 
|---|
| 202 |  | 
|---|
| 203 | raw_spin_unlock_irqrestore(&desc->lock, flags); | 
|---|
| 204 | return 0; | 
|---|
| 205 | } | 
|---|
| 206 | EXPORT_SYMBOL(__register_nmi_handler); | 
|---|
| 207 |  | 
|---|
| 208 | void unregister_nmi_handler(unsigned int type, const char *name) | 
|---|
| 209 | { | 
|---|
| 210 | struct nmi_desc *desc = nmi_to_desc(type); | 
|---|
| 211 | struct nmiaction *n, *found = NULL; | 
|---|
| 212 | unsigned long flags; | 
|---|
| 213 |  | 
|---|
| 214 | raw_spin_lock_irqsave(&desc->lock, flags); | 
|---|
| 215 |  | 
|---|
| 216 | list_for_each_entry_rcu(n, &desc->head, list) { | 
|---|
| 217 | /* | 
|---|
| 218 | * the name passed in to describe the nmi handler | 
|---|
| 219 | * is used as the lookup key | 
|---|
| 220 | */ | 
|---|
| 221 | if (!strcmp(n->name, name)) { | 
|---|
| 222 | WARN(in_nmi(), | 
|---|
| 223 | "Trying to free NMI (%s) from NMI context!\n", n->name); | 
|---|
| 224 | list_del_rcu(entry: &n->list); | 
|---|
| 225 | found = n; | 
|---|
| 226 | break; | 
|---|
| 227 | } | 
|---|
| 228 | } | 
|---|
| 229 |  | 
|---|
| 230 | raw_spin_unlock_irqrestore(&desc->lock, flags); | 
|---|
| 231 | if (found) { | 
|---|
| 232 | synchronize_rcu(); | 
|---|
| 233 | INIT_LIST_HEAD(list: &found->list); | 
|---|
| 234 | } | 
|---|
| 235 | } | 
|---|
| 236 | EXPORT_SYMBOL_GPL(unregister_nmi_handler); | 
|---|
| 237 |  | 
|---|
| 238 | /** | 
|---|
| 239 | * set_emergency_nmi_handler - Set emergency handler | 
|---|
| 240 | * @type:    NMI type | 
|---|
| 241 | * @handler: the emergency handler to be stored | 
|---|
| 242 | * | 
|---|
| 243 | * Set an emergency NMI handler which, if set, will preempt all the other | 
|---|
| 244 | * handlers in the linked list. If a NULL handler is passed in, it will clear | 
|---|
| 245 | * it. It is expected that concurrent calls to this function will not happen | 
|---|
| 246 | * or the system is screwed beyond repair. | 
|---|
| 247 | */ | 
|---|
| 248 | void set_emergency_nmi_handler(unsigned int type, nmi_handler_t handler) | 
|---|
| 249 | { | 
|---|
| 250 | struct nmi_desc *desc = nmi_to_desc(type); | 
|---|
| 251 |  | 
|---|
| 252 | if (WARN_ON_ONCE(desc->emerg_handler == handler)) | 
|---|
| 253 | return; | 
|---|
| 254 | desc->emerg_handler = handler; | 
|---|
| 255 |  | 
|---|
| 256 | /* | 
|---|
| 257 | * Ensure the emergency handler is visible to other CPUs before | 
|---|
| 258 | * function return | 
|---|
| 259 | */ | 
|---|
| 260 | smp_wmb(); | 
|---|
| 261 | } | 
|---|
| 262 |  | 
|---|
| 263 | static void | 
|---|
| 264 | pci_serr_error(unsigned char reason, struct pt_regs *regs) | 
|---|
| 265 | { | 
|---|
| 266 | /* check to see if anyone registered against these types of errors */ | 
|---|
| 267 | if (nmi_handle(type: NMI_SERR, regs)) | 
|---|
| 268 | return; | 
|---|
| 269 |  | 
|---|
| 270 | pr_emerg( "NMI: PCI system error (SERR) for reason %02x on CPU %d.\n", | 
|---|
| 271 | reason, smp_processor_id()); | 
|---|
| 272 |  | 
|---|
| 273 | if (panic_on_unrecovered_nmi) | 
|---|
| 274 | nmi_panic(regs, msg: "NMI: Not continuing"); | 
|---|
| 275 |  | 
|---|
| 276 | pr_emerg( "Dazed and confused, but trying to continue\n"); | 
|---|
| 277 |  | 
|---|
| 278 | /* Clear and disable the PCI SERR error line. */ | 
|---|
| 279 | reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR; | 
|---|
| 280 | outb(value: reason, NMI_REASON_PORT); | 
|---|
| 281 | } | 
|---|
| 282 | NOKPROBE_SYMBOL(pci_serr_error); | 
|---|
| 283 |  | 
|---|
| 284 | static void | 
|---|
| 285 | io_check_error(unsigned char reason, struct pt_regs *regs) | 
|---|
| 286 | { | 
|---|
| 287 | unsigned long i; | 
|---|
| 288 |  | 
|---|
| 289 | /* check to see if anyone registered against these types of errors */ | 
|---|
| 290 | if (nmi_handle(type: NMI_IO_CHECK, regs)) | 
|---|
| 291 | return; | 
|---|
| 292 |  | 
|---|
| 293 | pr_emerg( | 
|---|
| 294 | "NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n", | 
|---|
| 295 | reason, smp_processor_id()); | 
|---|
| 296 | show_regs(regs); | 
|---|
| 297 |  | 
|---|
| 298 | if (panic_on_io_nmi) { | 
|---|
| 299 | nmi_panic(regs, msg: "NMI IOCK error: Not continuing"); | 
|---|
| 300 |  | 
|---|
| 301 | /* | 
|---|
| 302 | * If we end up here, it means we have received an NMI while | 
|---|
| 303 | * processing panic(). Simply return without delaying and | 
|---|
| 304 | * re-enabling NMIs. | 
|---|
| 305 | */ | 
|---|
| 306 | return; | 
|---|
| 307 | } | 
|---|
| 308 |  | 
|---|
| 309 | /* Re-enable the IOCK line, wait for a few seconds */ | 
|---|
| 310 | reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK; | 
|---|
| 311 | outb(value: reason, NMI_REASON_PORT); | 
|---|
| 312 |  | 
|---|
| 313 | i = 20000; | 
|---|
| 314 | while (--i) { | 
|---|
| 315 | touch_nmi_watchdog(); | 
|---|
| 316 | udelay(usec: 100); | 
|---|
| 317 | } | 
|---|
| 318 |  | 
|---|
| 319 | reason &= ~NMI_REASON_CLEAR_IOCHK; | 
|---|
| 320 | outb(value: reason, NMI_REASON_PORT); | 
|---|
| 321 | } | 
|---|
| 322 | NOKPROBE_SYMBOL(io_check_error); | 
|---|
| 323 |  | 
|---|
| 324 | static void | 
|---|
| 325 | unknown_nmi_error(unsigned char reason, struct pt_regs *regs) | 
|---|
| 326 | { | 
|---|
| 327 | int handled; | 
|---|
| 328 |  | 
|---|
| 329 | /* | 
|---|
| 330 | * As a last resort, let the "unknown" handlers make a | 
|---|
| 331 | * best-effort attempt to figure out if they can claim | 
|---|
| 332 | * responsibility for this Unknown NMI. | 
|---|
| 333 | */ | 
|---|
| 334 | handled = nmi_handle(type: NMI_UNKNOWN, regs); | 
|---|
| 335 | if (handled) { | 
|---|
| 336 | __this_cpu_add(nmi_stats.unknown, handled); | 
|---|
| 337 | return; | 
|---|
| 338 | } | 
|---|
| 339 |  | 
|---|
| 340 | __this_cpu_add(nmi_stats.unknown, 1); | 
|---|
| 341 |  | 
|---|
| 342 | pr_emerg_ratelimited( "Uhhuh. NMI received for unknown reason %02x on CPU %d.\n", | 
|---|
| 343 | reason, smp_processor_id()); | 
|---|
| 344 |  | 
|---|
| 345 | if (unknown_nmi_panic || panic_on_unrecovered_nmi) | 
|---|
| 346 | nmi_panic(regs, msg: "NMI: Not continuing"); | 
|---|
| 347 |  | 
|---|
| 348 | pr_emerg_ratelimited( "Dazed and confused, but trying to continue\n"); | 
|---|
| 349 | } | 
|---|
| 350 | NOKPROBE_SYMBOL(unknown_nmi_error); | 
|---|
| 351 |  | 
|---|
| 352 | static DEFINE_PER_CPU(bool, swallow_nmi); | 
|---|
| 353 | static DEFINE_PER_CPU(unsigned long, last_nmi_rip); | 
|---|
| 354 |  | 
|---|
| 355 | static noinstr void default_do_nmi(struct pt_regs *regs) | 
|---|
| 356 | { | 
|---|
| 357 | unsigned char reason = 0; | 
|---|
| 358 | int handled; | 
|---|
| 359 | bool b2b = false; | 
|---|
| 360 |  | 
|---|
| 361 | /* | 
|---|
| 362 | * Back-to-back NMIs are detected by comparing the RIP of the | 
|---|
| 363 | * current NMI with that of the previous NMI. If it is the same, | 
|---|
| 364 | * it is assumed that the CPU did not have a chance to jump back | 
|---|
| 365 | * into a non-NMI context and execute code in between the two | 
|---|
| 366 | * NMIs. | 
|---|
| 367 | * | 
|---|
| 368 | * They are interesting because even if there are more than two, | 
|---|
| 369 | * only a maximum of two can be detected (anything over two is | 
|---|
| 370 | * dropped due to NMI being edge-triggered). If this is the | 
|---|
| 371 | * second half of the back-to-back NMI, assume we dropped things | 
|---|
| 372 | * and process more handlers. Otherwise, reset the 'swallow' NMI | 
|---|
| 373 | * behavior. | 
|---|
| 374 | */ | 
|---|
| 375 | if (regs->ip == __this_cpu_read(last_nmi_rip)) | 
|---|
| 376 | b2b = true; | 
|---|
| 377 | else | 
|---|
| 378 | __this_cpu_write(swallow_nmi, false); | 
|---|
| 379 |  | 
|---|
| 380 | __this_cpu_write(last_nmi_rip, regs->ip); | 
|---|
| 381 |  | 
|---|
| 382 | instrumentation_begin(); | 
|---|
| 383 |  | 
|---|
| 384 | if (microcode_nmi_handler_enabled() && microcode_nmi_handler()) | 
|---|
| 385 | goto out; | 
|---|
| 386 |  | 
|---|
| 387 | /* | 
|---|
| 388 | * CPU-specific NMI must be processed before non-CPU-specific | 
|---|
| 389 | * NMI, otherwise we may lose it, because the CPU-specific | 
|---|
| 390 | * NMI can not be detected/processed on other CPUs. | 
|---|
| 391 | */ | 
|---|
| 392 | handled = nmi_handle(type: NMI_LOCAL, regs); | 
|---|
| 393 | __this_cpu_add(nmi_stats.normal, handled); | 
|---|
| 394 | if (handled) { | 
|---|
| 395 | /* | 
|---|
| 396 | * There are cases when a NMI handler handles multiple | 
|---|
| 397 | * events in the current NMI.  One of these events may | 
|---|
| 398 | * be queued for in the next NMI.  Because the event is | 
|---|
| 399 | * already handled, the next NMI will result in an unknown | 
|---|
| 400 | * NMI.  Instead lets flag this for a potential NMI to | 
|---|
| 401 | * swallow. | 
|---|
| 402 | */ | 
|---|
| 403 | if (handled > 1) | 
|---|
| 404 | __this_cpu_write(swallow_nmi, true); | 
|---|
| 405 | goto out; | 
|---|
| 406 | } | 
|---|
| 407 |  | 
|---|
| 408 | /* | 
|---|
| 409 | * Non-CPU-specific NMI: NMI sources can be processed on any CPU. | 
|---|
| 410 | * | 
|---|
| 411 | * Another CPU may be processing panic routines while holding | 
|---|
| 412 | * nmi_reason_lock. Check if the CPU issued the IPI for crash dumping, | 
|---|
| 413 | * and if so, call its callback directly.  If there is no CPU preparing | 
|---|
| 414 | * crash dump, we simply loop here. | 
|---|
| 415 | */ | 
|---|
| 416 | while (!raw_spin_trylock(&nmi_reason_lock)) { | 
|---|
| 417 | run_crash_ipi_callback(regs); | 
|---|
| 418 | cpu_relax(); | 
|---|
| 419 | } | 
|---|
| 420 |  | 
|---|
| 421 | reason = x86_platform.get_nmi_reason(); | 
|---|
| 422 |  | 
|---|
| 423 | if (reason & NMI_REASON_MASK) { | 
|---|
| 424 | if (reason & NMI_REASON_SERR) | 
|---|
| 425 | pci_serr_error(reason, regs); | 
|---|
| 426 | else if (reason & NMI_REASON_IOCHK) | 
|---|
| 427 | io_check_error(reason, regs); | 
|---|
| 428 |  | 
|---|
| 429 | /* | 
|---|
| 430 | * Reassert NMI in case it became active | 
|---|
| 431 | * meanwhile as it's edge-triggered: | 
|---|
| 432 | */ | 
|---|
| 433 | if (IS_ENABLED(CONFIG_X86_32)) | 
|---|
| 434 | reassert_nmi(); | 
|---|
| 435 |  | 
|---|
| 436 | __this_cpu_add(nmi_stats.external, 1); | 
|---|
| 437 | raw_spin_unlock(&nmi_reason_lock); | 
|---|
| 438 | goto out; | 
|---|
| 439 | } | 
|---|
| 440 | raw_spin_unlock(&nmi_reason_lock); | 
|---|
| 441 |  | 
|---|
| 442 | /* | 
|---|
| 443 | * Only one NMI can be latched at a time.  To handle | 
|---|
| 444 | * this we may process multiple nmi handlers at once to | 
|---|
| 445 | * cover the case where an NMI is dropped.  The downside | 
|---|
| 446 | * to this approach is we may process an NMI prematurely, | 
|---|
| 447 | * while its real NMI is sitting latched.  This will cause | 
|---|
| 448 | * an unknown NMI on the next run of the NMI processing. | 
|---|
| 449 | * | 
|---|
| 450 | * We tried to flag that condition above, by setting the | 
|---|
| 451 | * swallow_nmi flag when we process more than one event. | 
|---|
| 452 | * This condition is also only present on the second half | 
|---|
| 453 | * of a back-to-back NMI, so we flag that condition too. | 
|---|
| 454 | * | 
|---|
| 455 | * If both are true, we assume we already processed this | 
|---|
| 456 | * NMI previously and we swallow it.  Otherwise we reset | 
|---|
| 457 | * the logic. | 
|---|
| 458 | * | 
|---|
| 459 | * There are scenarios where we may accidentally swallow | 
|---|
| 460 | * a 'real' unknown NMI.  For example, while processing | 
|---|
| 461 | * a perf NMI another perf NMI comes in along with a | 
|---|
| 462 | * 'real' unknown NMI.  These two NMIs get combined into | 
|---|
| 463 | * one (as described above).  When the next NMI gets | 
|---|
| 464 | * processed, it will be flagged by perf as handled, but | 
|---|
| 465 | * no one will know that there was a 'real' unknown NMI sent | 
|---|
| 466 | * also.  As a result it gets swallowed.  Or if the first | 
|---|
| 467 | * perf NMI returns two events handled then the second | 
|---|
| 468 | * NMI will get eaten by the logic below, again losing a | 
|---|
| 469 | * 'real' unknown NMI.  But this is the best we can do | 
|---|
| 470 | * for now. | 
|---|
| 471 | */ | 
|---|
| 472 | if (b2b && __this_cpu_read(swallow_nmi)) | 
|---|
| 473 | __this_cpu_add(nmi_stats.swallow, 1); | 
|---|
| 474 | else | 
|---|
| 475 | unknown_nmi_error(reason, regs); | 
|---|
| 476 |  | 
|---|
| 477 | out: | 
|---|
| 478 | instrumentation_end(); | 
|---|
| 479 | } | 
|---|
| 480 |  | 
|---|
| 481 | /* | 
|---|
| 482 | * NMIs can page fault or hit breakpoints which will cause it to lose | 
|---|
| 483 | * its NMI context with the CPU when the breakpoint or page fault does an IRET. | 
|---|
| 484 | * | 
|---|
| 485 | * As a result, NMIs can nest if NMIs get unmasked due an IRET during | 
|---|
| 486 | * NMI processing.  On x86_64, the asm glue protects us from nested NMIs | 
|---|
| 487 | * if the outer NMI came from kernel mode, but we can still nest if the | 
|---|
| 488 | * outer NMI came from user mode. | 
|---|
| 489 | * | 
|---|
| 490 | * To handle these nested NMIs, we have three states: | 
|---|
| 491 | * | 
|---|
| 492 | *  1) not running | 
|---|
| 493 | *  2) executing | 
|---|
| 494 | *  3) latched | 
|---|
| 495 | * | 
|---|
| 496 | * When no NMI is in progress, it is in the "not running" state. | 
|---|
| 497 | * When an NMI comes in, it goes into the "executing" state. | 
|---|
| 498 | * Normally, if another NMI is triggered, it does not interrupt | 
|---|
| 499 | * the running NMI and the HW will simply latch it so that when | 
|---|
| 500 | * the first NMI finishes, it will restart the second NMI. | 
|---|
| 501 | * (Note, the latch is binary, thus multiple NMIs triggering, | 
|---|
| 502 | *  when one is running, are ignored. Only one NMI is restarted.) | 
|---|
| 503 | * | 
|---|
| 504 | * If an NMI executes an iret, another NMI can preempt it. We do not | 
|---|
| 505 | * want to allow this new NMI to run, but we want to execute it when the | 
|---|
| 506 | * first one finishes.  We set the state to "latched", and the exit of | 
|---|
| 507 | * the first NMI will perform a dec_return, if the result is zero | 
|---|
| 508 | * (NOT_RUNNING), then it will simply exit the NMI handler. If not, the | 
|---|
| 509 | * dec_return would have set the state to NMI_EXECUTING (what we want it | 
|---|
| 510 | * to be when we are running). In this case, we simply jump back to | 
|---|
| 511 | * rerun the NMI handler again, and restart the 'latched' NMI. | 
|---|
| 512 | * | 
|---|
| 513 | * No trap (breakpoint or page fault) should be hit before nmi_restart, | 
|---|
| 514 | * thus there is no race between the first check of state for NOT_RUNNING | 
|---|
| 515 | * and setting it to NMI_EXECUTING. The HW will prevent nested NMIs | 
|---|
| 516 | * at this point. | 
|---|
| 517 | * | 
|---|
| 518 | * In case the NMI takes a page fault, we need to save off the CR2 | 
|---|
| 519 | * because the NMI could have preempted another page fault and corrupt | 
|---|
| 520 | * the CR2 that is about to be read. As nested NMIs must be restarted | 
|---|
| 521 | * and they can not take breakpoints or page faults, the update of the | 
|---|
| 522 | * CR2 must be done before converting the nmi state back to NOT_RUNNING. | 
|---|
| 523 | * Otherwise, there would be a race of another nested NMI coming in | 
|---|
| 524 | * after setting state to NOT_RUNNING but before updating the nmi_cr2. | 
|---|
| 525 | */ | 
|---|
| 526 | enum nmi_states { | 
|---|
| 527 | NMI_NOT_RUNNING = 0, | 
|---|
| 528 | NMI_EXECUTING, | 
|---|
| 529 | NMI_LATCHED, | 
|---|
| 530 | }; | 
|---|
| 531 | static DEFINE_PER_CPU(enum nmi_states, nmi_state); | 
|---|
| 532 | static DEFINE_PER_CPU(unsigned long, nmi_cr2); | 
|---|
| 533 | static DEFINE_PER_CPU(unsigned long, nmi_dr7); | 
|---|
| 534 |  | 
|---|
| 535 | DEFINE_IDTENTRY_RAW(exc_nmi) | 
|---|
| 536 | { | 
|---|
| 537 | irqentry_state_t irq_state; | 
|---|
| 538 | struct nmi_stats *nsp = this_cpu_ptr(&nmi_stats); | 
|---|
| 539 |  | 
|---|
| 540 | /* | 
|---|
| 541 | * Re-enable NMIs right here when running as an SEV-ES guest. This might | 
|---|
| 542 | * cause nested NMIs, but those can be handled safely. | 
|---|
| 543 | */ | 
|---|
| 544 | sev_es_nmi_complete(); | 
|---|
| 545 | if (IS_ENABLED(CONFIG_NMI_CHECK_CPU)) | 
|---|
| 546 | raw_atomic_long_inc(v: &nsp->idt_calls); | 
|---|
| 547 |  | 
|---|
| 548 | if (arch_cpu_is_offline(smp_processor_id())) { | 
|---|
| 549 | if (microcode_nmi_handler_enabled()) | 
|---|
| 550 | microcode_offline_nmi_handler(); | 
|---|
| 551 | return; | 
|---|
| 552 | } | 
|---|
| 553 |  | 
|---|
| 554 | if (this_cpu_read(nmi_state) != NMI_NOT_RUNNING) { | 
|---|
| 555 | this_cpu_write(nmi_state, NMI_LATCHED); | 
|---|
| 556 | return; | 
|---|
| 557 | } | 
|---|
| 558 | this_cpu_write(nmi_state, NMI_EXECUTING); | 
|---|
| 559 | this_cpu_write(nmi_cr2, read_cr2()); | 
|---|
| 560 |  | 
|---|
| 561 | nmi_restart: | 
|---|
| 562 | if (IS_ENABLED(CONFIG_NMI_CHECK_CPU)) { | 
|---|
| 563 | WRITE_ONCE(nsp->idt_seq, nsp->idt_seq + 1); | 
|---|
| 564 | WARN_ON_ONCE(!(nsp->idt_seq & 0x1)); | 
|---|
| 565 | WRITE_ONCE(nsp->recv_jiffies, jiffies); | 
|---|
| 566 | } | 
|---|
| 567 |  | 
|---|
| 568 | /* | 
|---|
| 569 | * Needs to happen before DR7 is accessed, because the hypervisor can | 
|---|
| 570 | * intercept DR7 reads/writes, turning those into #VC exceptions. | 
|---|
| 571 | */ | 
|---|
| 572 | sev_es_ist_enter(regs); | 
|---|
| 573 |  | 
|---|
| 574 | this_cpu_write(nmi_dr7, local_db_save()); | 
|---|
| 575 |  | 
|---|
| 576 | irq_state = irqentry_nmi_enter(regs); | 
|---|
| 577 |  | 
|---|
| 578 | inc_irq_stat(__nmi_count); | 
|---|
| 579 |  | 
|---|
| 580 | if (IS_ENABLED(CONFIG_NMI_CHECK_CPU) && ignore_nmis) { | 
|---|
| 581 | WRITE_ONCE(nsp->idt_ignored, nsp->idt_ignored + 1); | 
|---|
| 582 | } else if (!ignore_nmis) { | 
|---|
| 583 | if (IS_ENABLED(CONFIG_NMI_CHECK_CPU)) { | 
|---|
| 584 | WRITE_ONCE(nsp->idt_nmi_seq, nsp->idt_nmi_seq + 1); | 
|---|
| 585 | WARN_ON_ONCE(!(nsp->idt_nmi_seq & 0x1)); | 
|---|
| 586 | } | 
|---|
| 587 | default_do_nmi(regs); | 
|---|
| 588 | if (IS_ENABLED(CONFIG_NMI_CHECK_CPU)) { | 
|---|
| 589 | WRITE_ONCE(nsp->idt_nmi_seq, nsp->idt_nmi_seq + 1); | 
|---|
| 590 | WARN_ON_ONCE(nsp->idt_nmi_seq & 0x1); | 
|---|
| 591 | } | 
|---|
| 592 | } | 
|---|
| 593 |  | 
|---|
| 594 | irqentry_nmi_exit(regs, irq_state); | 
|---|
| 595 |  | 
|---|
| 596 | local_db_restore(this_cpu_read(nmi_dr7)); | 
|---|
| 597 |  | 
|---|
| 598 | sev_es_ist_exit(); | 
|---|
| 599 |  | 
|---|
| 600 | if (unlikely(this_cpu_read(nmi_cr2) != read_cr2())) | 
|---|
| 601 | write_cr2(this_cpu_read(nmi_cr2)); | 
|---|
| 602 | if (IS_ENABLED(CONFIG_NMI_CHECK_CPU)) { | 
|---|
| 603 | WRITE_ONCE(nsp->idt_seq, nsp->idt_seq + 1); | 
|---|
| 604 | WARN_ON_ONCE(nsp->idt_seq & 0x1); | 
|---|
| 605 | WRITE_ONCE(nsp->recv_jiffies, jiffies); | 
|---|
| 606 | } | 
|---|
| 607 | if (this_cpu_dec_return(nmi_state)) | 
|---|
| 608 | goto nmi_restart; | 
|---|
| 609 | } | 
|---|
| 610 |  | 
|---|
| 611 | #if IS_ENABLED(CONFIG_KVM_INTEL) | 
|---|
| 612 | DEFINE_IDTENTRY_RAW(exc_nmi_kvm_vmx) | 
|---|
| 613 | { | 
|---|
| 614 | exc_nmi(regs); | 
|---|
| 615 | } | 
|---|
| 616 | #if IS_MODULE(CONFIG_KVM_INTEL) | 
|---|
| 617 | EXPORT_SYMBOL_GPL(asm_exc_nmi_kvm_vmx); | 
|---|
| 618 | #endif | 
|---|
| 619 | #endif | 
|---|
| 620 |  | 
|---|
| 621 | #ifdef CONFIG_NMI_CHECK_CPU | 
|---|
| 622 |  | 
|---|
| 623 | static char *nmi_check_stall_msg[] = { | 
|---|
| 624 | /*									*/ | 
|---|
| 625 | /* +--------- nmi_seq & 0x1: CPU is currently in NMI handler.		*/ | 
|---|
| 626 | /* | +------ cpu_is_offline(cpu)					*/ | 
|---|
| 627 | /* | | +--- nsp->idt_calls_snap != atomic_long_read(&nsp->idt_calls):	*/ | 
|---|
| 628 | /* | | |	NMI handler has been invoked.				*/ | 
|---|
| 629 | /* | | |								*/ | 
|---|
| 630 | /* V V V								*/ | 
|---|
| 631 | /* 0 0 0 */ "NMIs are not reaching exc_nmi() handler", | 
|---|
| 632 | /* 0 0 1 */ "exc_nmi() handler is ignoring NMIs", | 
|---|
| 633 | /* 0 1 0 */ "CPU is offline and NMIs are not reaching exc_nmi() handler", | 
|---|
| 634 | /* 0 1 1 */ "CPU is offline and exc_nmi() handler is legitimately ignoring NMIs", | 
|---|
| 635 | /* 1 0 0 */ "CPU is in exc_nmi() handler and no further NMIs are reaching handler", | 
|---|
| 636 | /* 1 0 1 */ "CPU is in exc_nmi() handler which is legitimately ignoring NMIs", | 
|---|
| 637 | /* 1 1 0 */ "CPU is offline in exc_nmi() handler and no more NMIs are reaching exc_nmi() handler", | 
|---|
| 638 | /* 1 1 1 */ "CPU is offline in exc_nmi() handler which is legitimately ignoring NMIs", | 
|---|
| 639 | }; | 
|---|
| 640 |  | 
|---|
| 641 | void nmi_backtrace_stall_snap(const struct cpumask *btp) | 
|---|
| 642 | { | 
|---|
| 643 | int cpu; | 
|---|
| 644 | struct nmi_stats *nsp; | 
|---|
| 645 |  | 
|---|
| 646 | for_each_cpu(cpu, btp) { | 
|---|
| 647 | nsp = per_cpu_ptr(&nmi_stats, cpu); | 
|---|
| 648 | nsp->idt_seq_snap = READ_ONCE(nsp->idt_seq); | 
|---|
| 649 | nsp->idt_nmi_seq_snap = READ_ONCE(nsp->idt_nmi_seq); | 
|---|
| 650 | nsp->idt_ignored_snap = READ_ONCE(nsp->idt_ignored); | 
|---|
| 651 | nsp->idt_calls_snap = atomic_long_read(&nsp->idt_calls); | 
|---|
| 652 | } | 
|---|
| 653 | } | 
|---|
| 654 |  | 
|---|
| 655 | void nmi_backtrace_stall_check(const struct cpumask *btp) | 
|---|
| 656 | { | 
|---|
| 657 | int cpu; | 
|---|
| 658 | int idx; | 
|---|
| 659 | unsigned long nmi_seq; | 
|---|
| 660 | unsigned long j = jiffies; | 
|---|
| 661 | char *modp; | 
|---|
| 662 | char *msgp; | 
|---|
| 663 | char *msghp; | 
|---|
| 664 | struct nmi_stats *nsp; | 
|---|
| 665 |  | 
|---|
| 666 | for_each_cpu(cpu, btp) { | 
|---|
| 667 | nsp = per_cpu_ptr(&nmi_stats, cpu); | 
|---|
| 668 | modp = ""; | 
|---|
| 669 | msghp = ""; | 
|---|
| 670 | nmi_seq = READ_ONCE(nsp->idt_nmi_seq); | 
|---|
| 671 | if (nsp->idt_nmi_seq_snap + 1 == nmi_seq && (nmi_seq & 0x1)) { | 
|---|
| 672 | msgp = "CPU entered NMI handler function, but has not exited"; | 
|---|
| 673 | } else if (nsp->idt_nmi_seq_snap == nmi_seq || | 
|---|
| 674 | nsp->idt_nmi_seq_snap + 1 == nmi_seq) { | 
|---|
| 675 | idx = ((nmi_seq & 0x1) << 2) | | 
|---|
| 676 | (cpu_is_offline(cpu) << 1) | | 
|---|
| 677 | (nsp->idt_calls_snap != atomic_long_read(&nsp->idt_calls)); | 
|---|
| 678 | msgp = nmi_check_stall_msg[idx]; | 
|---|
| 679 | if (nsp->idt_ignored_snap != READ_ONCE(nsp->idt_ignored) && (idx & 0x1)) | 
|---|
| 680 | modp = ", but OK because ignore_nmis was set"; | 
|---|
| 681 | if (nsp->idt_nmi_seq_snap + 1 == nmi_seq) | 
|---|
| 682 | msghp = " (CPU exited one NMI handler function)"; | 
|---|
| 683 | else if (nmi_seq & 0x1) | 
|---|
| 684 | msghp = " (CPU currently in NMI handler function)"; | 
|---|
| 685 | else | 
|---|
| 686 | msghp = " (CPU was never in an NMI handler function)"; | 
|---|
| 687 | } else { | 
|---|
| 688 | msgp = "CPU is handling NMIs"; | 
|---|
| 689 | } | 
|---|
| 690 | pr_alert( "%s: CPU %d: %s%s%s\n", __func__, cpu, msgp, modp, msghp); | 
|---|
| 691 | pr_alert( "%s: last activity: %lu jiffies ago.\n", | 
|---|
| 692 | __func__, j - READ_ONCE(nsp->recv_jiffies)); | 
|---|
| 693 | } | 
|---|
| 694 | } | 
|---|
| 695 |  | 
|---|
| 696 | #endif | 
|---|
| 697 |  | 
|---|
| 698 | #ifdef CONFIG_X86_FRED | 
|---|
| 699 | /* | 
|---|
| 700 | * With FRED, CR2/DR6 is pushed to #PF/#DB stack frame during FRED | 
|---|
| 701 | * event delivery, i.e., there is no problem of transient states. | 
|---|
| 702 | * And NMI unblocking only happens when the stack frame indicates | 
|---|
| 703 | * that so should happen. | 
|---|
| 704 | * | 
|---|
| 705 | * Thus, the NMI entry stub for FRED is really straightforward and | 
|---|
| 706 | * as simple as most exception handlers. As such, #DB is allowed | 
|---|
| 707 | * during NMI handling. | 
|---|
| 708 | */ | 
|---|
| 709 | DEFINE_FREDENTRY_NMI(exc_nmi) | 
|---|
| 710 | { | 
|---|
| 711 | irqentry_state_t irq_state; | 
|---|
| 712 |  | 
|---|
| 713 | if (arch_cpu_is_offline(smp_processor_id())) { | 
|---|
| 714 | if (microcode_nmi_handler_enabled()) | 
|---|
| 715 | microcode_offline_nmi_handler(); | 
|---|
| 716 | return; | 
|---|
| 717 | } | 
|---|
| 718 |  | 
|---|
| 719 | /* | 
|---|
| 720 | * Save CR2 for eventual restore to cover the case where the NMI | 
|---|
| 721 | * hits the VMENTER/VMEXIT region where guest CR2 is life. This | 
|---|
| 722 | * prevents guest state corruption in case that the NMI handler | 
|---|
| 723 | * takes a page fault. | 
|---|
| 724 | */ | 
|---|
| 725 | this_cpu_write(nmi_cr2, read_cr2()); | 
|---|
| 726 |  | 
|---|
| 727 | irq_state = irqentry_nmi_enter(regs); | 
|---|
| 728 |  | 
|---|
| 729 | inc_irq_stat(__nmi_count); | 
|---|
| 730 | default_do_nmi(regs); | 
|---|
| 731 |  | 
|---|
| 732 | irqentry_nmi_exit(regs, irq_state); | 
|---|
| 733 |  | 
|---|
| 734 | if (unlikely(this_cpu_read(nmi_cr2) != read_cr2())) | 
|---|
| 735 | write_cr2(this_cpu_read(nmi_cr2)); | 
|---|
| 736 | } | 
|---|
| 737 | #endif | 
|---|
| 738 |  | 
|---|
| 739 | void stop_nmi(void) | 
|---|
| 740 | { | 
|---|
| 741 | ignore_nmis++; | 
|---|
| 742 | } | 
|---|
| 743 |  | 
|---|
| 744 | void restart_nmi(void) | 
|---|
| 745 | { | 
|---|
| 746 | ignore_nmis--; | 
|---|
| 747 | } | 
|---|
| 748 |  | 
|---|
| 749 | /* reset the back-to-back NMI logic */ | 
|---|
| 750 | void local_touch_nmi(void) | 
|---|
| 751 | { | 
|---|
| 752 | __this_cpu_write(last_nmi_rip, 0); | 
|---|
| 753 | } | 
|---|
| 754 |  | 
|---|