| 1 | /* SPDX-License-Identifier: GPL-2.0 |
| 2 | * |
| 3 | * IO cost model based controller. |
| 4 | * |
| 5 | * Copyright (C) 2019 Tejun Heo <tj@kernel.org> |
| 6 | * Copyright (C) 2019 Andy Newell <newella@fb.com> |
| 7 | * Copyright (C) 2019 Facebook |
| 8 | * |
| 9 | * One challenge of controlling IO resources is the lack of trivially |
| 10 | * observable cost metric. This is distinguished from CPU and memory where |
| 11 | * wallclock time and the number of bytes can serve as accurate enough |
| 12 | * approximations. |
| 13 | * |
| 14 | * Bandwidth and iops are the most commonly used metrics for IO devices but |
| 15 | * depending on the type and specifics of the device, different IO patterns |
| 16 | * easily lead to multiple orders of magnitude variations rendering them |
| 17 | * useless for the purpose of IO capacity distribution. While on-device |
| 18 | * time, with a lot of clutches, could serve as a useful approximation for |
| 19 | * non-queued rotational devices, this is no longer viable with modern |
| 20 | * devices, even the rotational ones. |
| 21 | * |
| 22 | * While there is no cost metric we can trivially observe, it isn't a |
| 23 | * complete mystery. For example, on a rotational device, seek cost |
| 24 | * dominates while a contiguous transfer contributes a smaller amount |
| 25 | * proportional to the size. If we can characterize at least the relative |
| 26 | * costs of these different types of IOs, it should be possible to |
| 27 | * implement a reasonable work-conserving proportional IO resource |
| 28 | * distribution. |
| 29 | * |
| 30 | * 1. IO Cost Model |
| 31 | * |
| 32 | * IO cost model estimates the cost of an IO given its basic parameters and |
| 33 | * history (e.g. the end sector of the last IO). The cost is measured in |
| 34 | * device time. If a given IO is estimated to cost 10ms, the device should |
| 35 | * be able to process ~100 of those IOs in a second. |
| 36 | * |
| 37 | * Currently, there's only one builtin cost model - linear. Each IO is |
| 38 | * classified as sequential or random and given a base cost accordingly. |
| 39 | * On top of that, a size cost proportional to the length of the IO is |
| 40 | * added. While simple, this model captures the operational |
| 41 | * characteristics of a wide varienty of devices well enough. Default |
| 42 | * parameters for several different classes of devices are provided and the |
| 43 | * parameters can be configured from userspace via |
| 44 | * /sys/fs/cgroup/io.cost.model. |
| 45 | * |
| 46 | * If needed, tools/cgroup/iocost_coef_gen.py can be used to generate |
| 47 | * device-specific coefficients. |
| 48 | * |
| 49 | * 2. Control Strategy |
| 50 | * |
| 51 | * The device virtual time (vtime) is used as the primary control metric. |
| 52 | * The control strategy is composed of the following three parts. |
| 53 | * |
| 54 | * 2-1. Vtime Distribution |
| 55 | * |
| 56 | * When a cgroup becomes active in terms of IOs, its hierarchical share is |
| 57 | * calculated. Please consider the following hierarchy where the numbers |
| 58 | * inside parentheses denote the configured weights. |
| 59 | * |
| 60 | * root |
| 61 | * / \ |
| 62 | * A (w:100) B (w:300) |
| 63 | * / \ |
| 64 | * A0 (w:100) A1 (w:100) |
| 65 | * |
| 66 | * If B is idle and only A0 and A1 are actively issuing IOs, as the two are |
| 67 | * of equal weight, each gets 50% share. If then B starts issuing IOs, B |
| 68 | * gets 300/(100+300) or 75% share, and A0 and A1 equally splits the rest, |
| 69 | * 12.5% each. The distribution mechanism only cares about these flattened |
| 70 | * shares. They're called hweights (hierarchical weights) and always add |
| 71 | * upto 1 (WEIGHT_ONE). |
| 72 | * |
| 73 | * A given cgroup's vtime runs slower in inverse proportion to its hweight. |
| 74 | * For example, with 12.5% weight, A0's time runs 8 times slower (100/12.5) |
| 75 | * against the device vtime - an IO which takes 10ms on the underlying |
| 76 | * device is considered to take 80ms on A0. |
| 77 | * |
| 78 | * This constitutes the basis of IO capacity distribution. Each cgroup's |
| 79 | * vtime is running at a rate determined by its hweight. A cgroup tracks |
| 80 | * the vtime consumed by past IOs and can issue a new IO if doing so |
| 81 | * wouldn't outrun the current device vtime. Otherwise, the IO is |
| 82 | * suspended until the vtime has progressed enough to cover it. |
| 83 | * |
| 84 | * 2-2. Vrate Adjustment |
| 85 | * |
| 86 | * It's unrealistic to expect the cost model to be perfect. There are too |
| 87 | * many devices and even on the same device the overall performance |
| 88 | * fluctuates depending on numerous factors such as IO mixture and device |
| 89 | * internal garbage collection. The controller needs to adapt dynamically. |
| 90 | * |
| 91 | * This is achieved by adjusting the overall IO rate according to how busy |
| 92 | * the device is. If the device becomes overloaded, we're sending down too |
| 93 | * many IOs and should generally slow down. If there are waiting issuers |
| 94 | * but the device isn't saturated, we're issuing too few and should |
| 95 | * generally speed up. |
| 96 | * |
| 97 | * To slow down, we lower the vrate - the rate at which the device vtime |
| 98 | * passes compared to the wall clock. For example, if the vtime is running |
| 99 | * at the vrate of 75%, all cgroups added up would only be able to issue |
| 100 | * 750ms worth of IOs per second, and vice-versa for speeding up. |
| 101 | * |
| 102 | * Device business is determined using two criteria - rq wait and |
| 103 | * completion latencies. |
| 104 | * |
| 105 | * When a device gets saturated, the on-device and then the request queues |
| 106 | * fill up and a bio which is ready to be issued has to wait for a request |
| 107 | * to become available. When this delay becomes noticeable, it's a clear |
| 108 | * indication that the device is saturated and we lower the vrate. This |
| 109 | * saturation signal is fairly conservative as it only triggers when both |
| 110 | * hardware and software queues are filled up, and is used as the default |
| 111 | * busy signal. |
| 112 | * |
| 113 | * As devices can have deep queues and be unfair in how the queued commands |
| 114 | * are executed, solely depending on rq wait may not result in satisfactory |
| 115 | * control quality. For a better control quality, completion latency QoS |
| 116 | * parameters can be configured so that the device is considered saturated |
| 117 | * if N'th percentile completion latency rises above the set point. |
| 118 | * |
| 119 | * The completion latency requirements are a function of both the |
| 120 | * underlying device characteristics and the desired IO latency quality of |
| 121 | * service. There is an inherent trade-off - the tighter the latency QoS, |
| 122 | * the higher the bandwidth lossage. Latency QoS is disabled by default |
| 123 | * and can be set through /sys/fs/cgroup/io.cost.qos. |
| 124 | * |
| 125 | * 2-3. Work Conservation |
| 126 | * |
| 127 | * Imagine two cgroups A and B with equal weights. A is issuing a small IO |
| 128 | * periodically while B is sending out enough parallel IOs to saturate the |
| 129 | * device on its own. Let's say A's usage amounts to 100ms worth of IO |
| 130 | * cost per second, i.e., 10% of the device capacity. The naive |
| 131 | * distribution of half and half would lead to 60% utilization of the |
| 132 | * device, a significant reduction in the total amount of work done |
| 133 | * compared to free-for-all competition. This is too high a cost to pay |
| 134 | * for IO control. |
| 135 | * |
| 136 | * To conserve the total amount of work done, we keep track of how much |
| 137 | * each active cgroup is actually using and yield part of its weight if |
| 138 | * there are other cgroups which can make use of it. In the above case, |
| 139 | * A's weight will be lowered so that it hovers above the actual usage and |
| 140 | * B would be able to use the rest. |
| 141 | * |
| 142 | * As we don't want to penalize a cgroup for donating its weight, the |
| 143 | * surplus weight adjustment factors in a margin and has an immediate |
| 144 | * snapback mechanism in case the cgroup needs more IO vtime for itself. |
| 145 | * |
| 146 | * Note that adjusting down surplus weights has the same effects as |
| 147 | * accelerating vtime for other cgroups and work conservation can also be |
| 148 | * implemented by adjusting vrate dynamically. However, squaring who can |
| 149 | * donate and should take back how much requires hweight propagations |
| 150 | * anyway making it easier to implement and understand as a separate |
| 151 | * mechanism. |
| 152 | * |
| 153 | * 3. Monitoring |
| 154 | * |
| 155 | * Instead of debugfs or other clumsy monitoring mechanisms, this |
| 156 | * controller uses a drgn based monitoring script - |
| 157 | * tools/cgroup/iocost_monitor.py. For details on drgn, please see |
| 158 | * https://github.com/osandov/drgn. The output looks like the following. |
| 159 | * |
| 160 | * sdb RUN per=300ms cur_per=234.218:v203.695 busy= +1 vrate= 62.12% |
| 161 | * active weight hweight% inflt% dbt delay usages% |
| 162 | * test/a * 50/ 50 33.33/ 33.33 27.65 2 0*041 033:033:033 |
| 163 | * test/b * 100/ 100 66.67/ 66.67 17.56 0 0*000 066:079:077 |
| 164 | * |
| 165 | * - per : Timer period |
| 166 | * - cur_per : Internal wall and device vtime clock |
| 167 | * - vrate : Device virtual time rate against wall clock |
| 168 | * - weight : Surplus-adjusted and configured weights |
| 169 | * - hweight : Surplus-adjusted and configured hierarchical weights |
| 170 | * - inflt : The percentage of in-flight IO cost at the end of last period |
| 171 | * - del_ms : Deferred issuer delay induction level and duration |
| 172 | * - usages : Usage history |
| 173 | */ |
| 174 | |
| 175 | #include <linux/kernel.h> |
| 176 | #include <linux/module.h> |
| 177 | #include <linux/timer.h> |
| 178 | #include <linux/time64.h> |
| 179 | #include <linux/parser.h> |
| 180 | #include <linux/sched/signal.h> |
| 181 | #include <asm/local.h> |
| 182 | #include <asm/local64.h> |
| 183 | #include "blk-rq-qos.h" |
| 184 | #include "blk-stat.h" |
| 185 | #include "blk-wbt.h" |
| 186 | #include "blk-cgroup.h" |
| 187 | |
| 188 | #ifdef CONFIG_TRACEPOINTS |
| 189 | |
| 190 | /* copied from TRACE_CGROUP_PATH, see cgroup-internal.h */ |
| 191 | #define TRACE_IOCG_PATH_LEN 1024 |
| 192 | static DEFINE_SPINLOCK(trace_iocg_path_lock); |
| 193 | static char trace_iocg_path[TRACE_IOCG_PATH_LEN]; |
| 194 | |
| 195 | #define TRACE_IOCG_PATH(type, iocg, ...) \ |
| 196 | do { \ |
| 197 | unsigned long flags; \ |
| 198 | if (trace_iocost_##type##_enabled()) { \ |
| 199 | spin_lock_irqsave(&trace_iocg_path_lock, flags); \ |
| 200 | cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup, \ |
| 201 | trace_iocg_path, TRACE_IOCG_PATH_LEN); \ |
| 202 | trace_iocost_##type(iocg, trace_iocg_path, \ |
| 203 | ##__VA_ARGS__); \ |
| 204 | spin_unlock_irqrestore(&trace_iocg_path_lock, flags); \ |
| 205 | } \ |
| 206 | } while (0) |
| 207 | |
| 208 | #else /* CONFIG_TRACE_POINTS */ |
| 209 | #define TRACE_IOCG_PATH(type, iocg, ...) do { } while (0) |
| 210 | #endif /* CONFIG_TRACE_POINTS */ |
| 211 | |
| 212 | enum { |
| 213 | MILLION = 1000000, |
| 214 | |
| 215 | /* timer period is calculated from latency requirements, bound it */ |
| 216 | MIN_PERIOD = USEC_PER_MSEC, |
| 217 | MAX_PERIOD = USEC_PER_SEC, |
| 218 | |
| 219 | /* |
| 220 | * iocg->vtime is targeted at 50% behind the device vtime, which |
| 221 | * serves as its IO credit buffer. Surplus weight adjustment is |
| 222 | * immediately canceled if the vtime margin runs below 10%. |
| 223 | */ |
| 224 | MARGIN_MIN_PCT = 10, |
| 225 | MARGIN_LOW_PCT = 20, |
| 226 | MARGIN_TARGET_PCT = 50, |
| 227 | |
| 228 | INUSE_ADJ_STEP_PCT = 25, |
| 229 | |
| 230 | /* Have some play in timer operations */ |
| 231 | TIMER_SLACK_PCT = 1, |
| 232 | |
| 233 | /* 1/64k is granular enough and can easily be handled w/ u32 */ |
| 234 | WEIGHT_ONE = 1 << 16, |
| 235 | }; |
| 236 | |
| 237 | enum { |
| 238 | /* |
| 239 | * As vtime is used to calculate the cost of each IO, it needs to |
| 240 | * be fairly high precision. For example, it should be able to |
| 241 | * represent the cost of a single page worth of discard with |
| 242 | * suffificient accuracy. At the same time, it should be able to |
| 243 | * represent reasonably long enough durations to be useful and |
| 244 | * convenient during operation. |
| 245 | * |
| 246 | * 1s worth of vtime is 2^37. This gives us both sub-nanosecond |
| 247 | * granularity and days of wrap-around time even at extreme vrates. |
| 248 | */ |
| 249 | VTIME_PER_SEC_SHIFT = 37, |
| 250 | VTIME_PER_SEC = 1LLU << VTIME_PER_SEC_SHIFT, |
| 251 | VTIME_PER_USEC = VTIME_PER_SEC / USEC_PER_SEC, |
| 252 | VTIME_PER_NSEC = VTIME_PER_SEC / NSEC_PER_SEC, |
| 253 | |
| 254 | /* bound vrate adjustments within two orders of magnitude */ |
| 255 | VRATE_MIN_PPM = 10000, /* 1% */ |
| 256 | VRATE_MAX_PPM = 100000000, /* 10000% */ |
| 257 | |
| 258 | VRATE_MIN = VTIME_PER_USEC * VRATE_MIN_PPM / MILLION, |
| 259 | VRATE_CLAMP_ADJ_PCT = 4, |
| 260 | |
| 261 | /* switch iff the conditions are met for longer than this */ |
| 262 | AUTOP_CYCLE_NSEC = 10LLU * NSEC_PER_SEC, |
| 263 | }; |
| 264 | |
| 265 | enum { |
| 266 | /* if IOs end up waiting for requests, issue less */ |
| 267 | RQ_WAIT_BUSY_PCT = 5, |
| 268 | |
| 269 | /* unbusy hysterisis */ |
| 270 | UNBUSY_THR_PCT = 75, |
| 271 | |
| 272 | /* |
| 273 | * The effect of delay is indirect and non-linear and a huge amount of |
| 274 | * future debt can accumulate abruptly while unthrottled. Linearly scale |
| 275 | * up delay as debt is going up and then let it decay exponentially. |
| 276 | * This gives us quick ramp ups while delay is accumulating and long |
| 277 | * tails which can help reducing the frequency of debt explosions on |
| 278 | * unthrottle. The parameters are experimentally determined. |
| 279 | * |
| 280 | * The delay mechanism provides adequate protection and behavior in many |
| 281 | * cases. However, this is far from ideal and falls shorts on both |
| 282 | * fronts. The debtors are often throttled too harshly costing a |
| 283 | * significant level of fairness and possibly total work while the |
| 284 | * protection against their impacts on the system can be choppy and |
| 285 | * unreliable. |
| 286 | * |
| 287 | * The shortcoming primarily stems from the fact that, unlike for page |
| 288 | * cache, the kernel doesn't have well-defined back-pressure propagation |
| 289 | * mechanism and policies for anonymous memory. Fully addressing this |
| 290 | * issue will likely require substantial improvements in the area. |
| 291 | */ |
| 292 | MIN_DELAY_THR_PCT = 500, |
| 293 | MAX_DELAY_THR_PCT = 25000, |
| 294 | MIN_DELAY = 250, |
| 295 | MAX_DELAY = 250 * USEC_PER_MSEC, |
| 296 | |
| 297 | /* halve debts if avg usage over 100ms is under 50% */ |
| 298 | DFGV_USAGE_PCT = 50, |
| 299 | DFGV_PERIOD = 100 * USEC_PER_MSEC, |
| 300 | |
| 301 | /* don't let cmds which take a very long time pin lagging for too long */ |
| 302 | MAX_LAGGING_PERIODS = 10, |
| 303 | |
| 304 | /* |
| 305 | * Count IO size in 4k pages. The 12bit shift helps keeping |
| 306 | * size-proportional components of cost calculation in closer |
| 307 | * numbers of digits to per-IO cost components. |
| 308 | */ |
| 309 | IOC_PAGE_SHIFT = 12, |
| 310 | IOC_PAGE_SIZE = 1 << IOC_PAGE_SHIFT, |
| 311 | IOC_SECT_TO_PAGE_SHIFT = IOC_PAGE_SHIFT - SECTOR_SHIFT, |
| 312 | |
| 313 | /* if apart further than 16M, consider randio for linear model */ |
| 314 | LCOEF_RANDIO_PAGES = 4096, |
| 315 | }; |
| 316 | |
| 317 | enum ioc_running { |
| 318 | IOC_IDLE, |
| 319 | IOC_RUNNING, |
| 320 | IOC_STOP, |
| 321 | }; |
| 322 | |
| 323 | /* io.cost.qos controls including per-dev enable of the whole controller */ |
| 324 | enum { |
| 325 | QOS_ENABLE, |
| 326 | QOS_CTRL, |
| 327 | NR_QOS_CTRL_PARAMS, |
| 328 | }; |
| 329 | |
| 330 | /* io.cost.qos params */ |
| 331 | enum { |
| 332 | QOS_RPPM, |
| 333 | QOS_RLAT, |
| 334 | QOS_WPPM, |
| 335 | QOS_WLAT, |
| 336 | QOS_MIN, |
| 337 | QOS_MAX, |
| 338 | NR_QOS_PARAMS, |
| 339 | }; |
| 340 | |
| 341 | /* io.cost.model controls */ |
| 342 | enum { |
| 343 | COST_CTRL, |
| 344 | COST_MODEL, |
| 345 | NR_COST_CTRL_PARAMS, |
| 346 | }; |
| 347 | |
| 348 | /* builtin linear cost model coefficients */ |
| 349 | enum { |
| 350 | I_LCOEF_RBPS, |
| 351 | I_LCOEF_RSEQIOPS, |
| 352 | I_LCOEF_RRANDIOPS, |
| 353 | I_LCOEF_WBPS, |
| 354 | I_LCOEF_WSEQIOPS, |
| 355 | I_LCOEF_WRANDIOPS, |
| 356 | NR_I_LCOEFS, |
| 357 | }; |
| 358 | |
| 359 | enum { |
| 360 | LCOEF_RPAGE, |
| 361 | LCOEF_RSEQIO, |
| 362 | LCOEF_RRANDIO, |
| 363 | LCOEF_WPAGE, |
| 364 | LCOEF_WSEQIO, |
| 365 | LCOEF_WRANDIO, |
| 366 | NR_LCOEFS, |
| 367 | }; |
| 368 | |
| 369 | enum { |
| 370 | AUTOP_INVALID, |
| 371 | AUTOP_HDD, |
| 372 | AUTOP_SSD_QD1, |
| 373 | AUTOP_SSD_DFL, |
| 374 | AUTOP_SSD_FAST, |
| 375 | }; |
| 376 | |
| 377 | struct ioc_params { |
| 378 | u32 qos[NR_QOS_PARAMS]; |
| 379 | u64 i_lcoefs[NR_I_LCOEFS]; |
| 380 | u64 lcoefs[NR_LCOEFS]; |
| 381 | u32 too_fast_vrate_pct; |
| 382 | u32 too_slow_vrate_pct; |
| 383 | }; |
| 384 | |
| 385 | struct ioc_margins { |
| 386 | s64 min; |
| 387 | s64 low; |
| 388 | s64 target; |
| 389 | }; |
| 390 | |
| 391 | struct ioc_missed { |
| 392 | local_t nr_met; |
| 393 | local_t nr_missed; |
| 394 | u32 last_met; |
| 395 | u32 last_missed; |
| 396 | }; |
| 397 | |
| 398 | struct ioc_pcpu_stat { |
| 399 | struct ioc_missed missed[2]; |
| 400 | |
| 401 | local64_t rq_wait_ns; |
| 402 | u64 last_rq_wait_ns; |
| 403 | }; |
| 404 | |
| 405 | /* per device */ |
| 406 | struct ioc { |
| 407 | struct rq_qos rqos; |
| 408 | |
| 409 | bool enabled; |
| 410 | |
| 411 | struct ioc_params params; |
| 412 | struct ioc_margins margins; |
| 413 | u32 period_us; |
| 414 | u32 timer_slack_ns; |
| 415 | u64 vrate_min; |
| 416 | u64 vrate_max; |
| 417 | |
| 418 | spinlock_t lock; |
| 419 | struct timer_list timer; |
| 420 | struct list_head active_iocgs; /* active cgroups */ |
| 421 | struct ioc_pcpu_stat __percpu *pcpu_stat; |
| 422 | |
| 423 | enum ioc_running running; |
| 424 | atomic64_t vtime_rate; |
| 425 | u64 vtime_base_rate; |
| 426 | s64 vtime_err; |
| 427 | |
| 428 | seqcount_spinlock_t period_seqcount; |
| 429 | u64 period_at; /* wallclock starttime */ |
| 430 | u64 period_at_vtime; /* vtime starttime */ |
| 431 | |
| 432 | atomic64_t cur_period; /* inc'd each period */ |
| 433 | int busy_level; /* saturation history */ |
| 434 | |
| 435 | bool weights_updated; |
| 436 | atomic_t hweight_gen; /* for lazy hweights */ |
| 437 | |
| 438 | /* debt forgivness */ |
| 439 | u64 dfgv_period_at; |
| 440 | u64 dfgv_period_rem; |
| 441 | u64 dfgv_usage_us_sum; |
| 442 | |
| 443 | u64 autop_too_fast_at; |
| 444 | u64 autop_too_slow_at; |
| 445 | int autop_idx; |
| 446 | bool user_qos_params:1; |
| 447 | bool user_cost_model:1; |
| 448 | }; |
| 449 | |
| 450 | struct iocg_pcpu_stat { |
| 451 | local64_t abs_vusage; |
| 452 | }; |
| 453 | |
| 454 | struct iocg_stat { |
| 455 | u64 usage_us; |
| 456 | u64 wait_us; |
| 457 | u64 indebt_us; |
| 458 | u64 indelay_us; |
| 459 | }; |
| 460 | |
| 461 | /* per device-cgroup pair */ |
| 462 | struct ioc_gq { |
| 463 | struct blkg_policy_data pd; |
| 464 | struct ioc *ioc; |
| 465 | |
| 466 | /* |
| 467 | * A iocg can get its weight from two sources - an explicit |
| 468 | * per-device-cgroup configuration or the default weight of the |
| 469 | * cgroup. `cfg_weight` is the explicit per-device-cgroup |
| 470 | * configuration. `weight` is the effective considering both |
| 471 | * sources. |
| 472 | * |
| 473 | * When an idle cgroup becomes active its `active` goes from 0 to |
| 474 | * `weight`. `inuse` is the surplus adjusted active weight. |
| 475 | * `active` and `inuse` are used to calculate `hweight_active` and |
| 476 | * `hweight_inuse`. |
| 477 | * |
| 478 | * `last_inuse` remembers `inuse` while an iocg is idle to persist |
| 479 | * surplus adjustments. |
| 480 | * |
| 481 | * `inuse` may be adjusted dynamically during period. `saved_*` are used |
| 482 | * to determine and track adjustments. |
| 483 | */ |
| 484 | u32 cfg_weight; |
| 485 | u32 weight; |
| 486 | u32 active; |
| 487 | u32 inuse; |
| 488 | |
| 489 | u32 last_inuse; |
| 490 | s64 saved_margin; |
| 491 | |
| 492 | sector_t cursor; /* to detect randio */ |
| 493 | |
| 494 | /* |
| 495 | * `vtime` is this iocg's vtime cursor which progresses as IOs are |
| 496 | * issued. If lagging behind device vtime, the delta represents |
| 497 | * the currently available IO budget. If running ahead, the |
| 498 | * overage. |
| 499 | * |
| 500 | * `vtime_done` is the same but progressed on completion rather |
| 501 | * than issue. The delta behind `vtime` represents the cost of |
| 502 | * currently in-flight IOs. |
| 503 | */ |
| 504 | atomic64_t vtime; |
| 505 | atomic64_t done_vtime; |
| 506 | u64 abs_vdebt; |
| 507 | |
| 508 | /* current delay in effect and when it started */ |
| 509 | u64 delay; |
| 510 | u64 delay_at; |
| 511 | |
| 512 | /* |
| 513 | * The period this iocg was last active in. Used for deactivation |
| 514 | * and invalidating `vtime`. |
| 515 | */ |
| 516 | atomic64_t active_period; |
| 517 | struct list_head active_list; |
| 518 | |
| 519 | /* see __propagate_weights() and current_hweight() for details */ |
| 520 | u64 child_active_sum; |
| 521 | u64 child_inuse_sum; |
| 522 | u64 child_adjusted_sum; |
| 523 | int hweight_gen; |
| 524 | u32 hweight_active; |
| 525 | u32 hweight_inuse; |
| 526 | u32 hweight_donating; |
| 527 | u32 hweight_after_donation; |
| 528 | |
| 529 | struct list_head walk_list; |
| 530 | struct list_head surplus_list; |
| 531 | |
| 532 | struct wait_queue_head waitq; |
| 533 | struct hrtimer waitq_timer; |
| 534 | |
| 535 | /* timestamp at the latest activation */ |
| 536 | u64 activated_at; |
| 537 | |
| 538 | /* statistics */ |
| 539 | struct iocg_pcpu_stat __percpu *pcpu_stat; |
| 540 | struct iocg_stat stat; |
| 541 | struct iocg_stat last_stat; |
| 542 | u64 last_stat_abs_vusage; |
| 543 | u64 usage_delta_us; |
| 544 | u64 wait_since; |
| 545 | u64 indebt_since; |
| 546 | u64 indelay_since; |
| 547 | |
| 548 | /* this iocg's depth in the hierarchy and ancestors including self */ |
| 549 | int level; |
| 550 | struct ioc_gq *ancestors[]; |
| 551 | }; |
| 552 | |
| 553 | /* per cgroup */ |
| 554 | struct ioc_cgrp { |
| 555 | struct blkcg_policy_data cpd; |
| 556 | unsigned int dfl_weight; |
| 557 | }; |
| 558 | |
| 559 | struct ioc_now { |
| 560 | u64 now_ns; |
| 561 | u64 now; |
| 562 | u64 vnow; |
| 563 | }; |
| 564 | |
| 565 | struct iocg_wait { |
| 566 | struct wait_queue_entry wait; |
| 567 | struct bio *bio; |
| 568 | u64 abs_cost; |
| 569 | bool committed; |
| 570 | }; |
| 571 | |
| 572 | struct iocg_wake_ctx { |
| 573 | struct ioc_gq *iocg; |
| 574 | u32 hw_inuse; |
| 575 | s64 vbudget; |
| 576 | }; |
| 577 | |
| 578 | static const struct ioc_params autop[] = { |
| 579 | [AUTOP_HDD] = { |
| 580 | .qos = { |
| 581 | [QOS_RLAT] = 250000, /* 250ms */ |
| 582 | [QOS_WLAT] = 250000, |
| 583 | [QOS_MIN] = VRATE_MIN_PPM, |
| 584 | [QOS_MAX] = VRATE_MAX_PPM, |
| 585 | }, |
| 586 | .i_lcoefs = { |
| 587 | [I_LCOEF_RBPS] = 174019176, |
| 588 | [I_LCOEF_RSEQIOPS] = 41708, |
| 589 | [I_LCOEF_RRANDIOPS] = 370, |
| 590 | [I_LCOEF_WBPS] = 178075866, |
| 591 | [I_LCOEF_WSEQIOPS] = 42705, |
| 592 | [I_LCOEF_WRANDIOPS] = 378, |
| 593 | }, |
| 594 | }, |
| 595 | [AUTOP_SSD_QD1] = { |
| 596 | .qos = { |
| 597 | [QOS_RLAT] = 25000, /* 25ms */ |
| 598 | [QOS_WLAT] = 25000, |
| 599 | [QOS_MIN] = VRATE_MIN_PPM, |
| 600 | [QOS_MAX] = VRATE_MAX_PPM, |
| 601 | }, |
| 602 | .i_lcoefs = { |
| 603 | [I_LCOEF_RBPS] = 245855193, |
| 604 | [I_LCOEF_RSEQIOPS] = 61575, |
| 605 | [I_LCOEF_RRANDIOPS] = 6946, |
| 606 | [I_LCOEF_WBPS] = 141365009, |
| 607 | [I_LCOEF_WSEQIOPS] = 33716, |
| 608 | [I_LCOEF_WRANDIOPS] = 26796, |
| 609 | }, |
| 610 | }, |
| 611 | [AUTOP_SSD_DFL] = { |
| 612 | .qos = { |
| 613 | [QOS_RLAT] = 25000, /* 25ms */ |
| 614 | [QOS_WLAT] = 25000, |
| 615 | [QOS_MIN] = VRATE_MIN_PPM, |
| 616 | [QOS_MAX] = VRATE_MAX_PPM, |
| 617 | }, |
| 618 | .i_lcoefs = { |
| 619 | [I_LCOEF_RBPS] = 488636629, |
| 620 | [I_LCOEF_RSEQIOPS] = 8932, |
| 621 | [I_LCOEF_RRANDIOPS] = 8518, |
| 622 | [I_LCOEF_WBPS] = 427891549, |
| 623 | [I_LCOEF_WSEQIOPS] = 28755, |
| 624 | [I_LCOEF_WRANDIOPS] = 21940, |
| 625 | }, |
| 626 | .too_fast_vrate_pct = 500, |
| 627 | }, |
| 628 | [AUTOP_SSD_FAST] = { |
| 629 | .qos = { |
| 630 | [QOS_RLAT] = 5000, /* 5ms */ |
| 631 | [QOS_WLAT] = 5000, |
| 632 | [QOS_MIN] = VRATE_MIN_PPM, |
| 633 | [QOS_MAX] = VRATE_MAX_PPM, |
| 634 | }, |
| 635 | .i_lcoefs = { |
| 636 | [I_LCOEF_RBPS] = 3102524156LLU, |
| 637 | [I_LCOEF_RSEQIOPS] = 724816, |
| 638 | [I_LCOEF_RRANDIOPS] = 778122, |
| 639 | [I_LCOEF_WBPS] = 1742780862LLU, |
| 640 | [I_LCOEF_WSEQIOPS] = 425702, |
| 641 | [I_LCOEF_WRANDIOPS] = 443193, |
| 642 | }, |
| 643 | .too_slow_vrate_pct = 10, |
| 644 | }, |
| 645 | }; |
| 646 | |
| 647 | /* |
| 648 | * vrate adjust percentages indexed by ioc->busy_level. We adjust up on |
| 649 | * vtime credit shortage and down on device saturation. |
| 650 | */ |
| 651 | static const u32 vrate_adj_pct[] = |
| 652 | { 0, 0, 0, 0, |
| 653 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, |
| 654 | 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, |
| 655 | 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 16 }; |
| 656 | |
| 657 | static struct blkcg_policy blkcg_policy_iocost; |
| 658 | |
| 659 | /* accessors and helpers */ |
| 660 | static struct ioc *rqos_to_ioc(struct rq_qos *rqos) |
| 661 | { |
| 662 | return container_of(rqos, struct ioc, rqos); |
| 663 | } |
| 664 | |
| 665 | static struct ioc *q_to_ioc(struct request_queue *q) |
| 666 | { |
| 667 | return rqos_to_ioc(rqos: rq_qos_id(q, id: RQ_QOS_COST)); |
| 668 | } |
| 669 | |
| 670 | static const char __maybe_unused *ioc_name(struct ioc *ioc) |
| 671 | { |
| 672 | struct gendisk *disk = ioc->rqos.disk; |
| 673 | |
| 674 | if (!disk) |
| 675 | return "<unknown>" ; |
| 676 | return disk->disk_name; |
| 677 | } |
| 678 | |
| 679 | static struct ioc_gq *pd_to_iocg(struct blkg_policy_data *pd) |
| 680 | { |
| 681 | return pd ? container_of(pd, struct ioc_gq, pd) : NULL; |
| 682 | } |
| 683 | |
| 684 | static struct ioc_gq *blkg_to_iocg(struct blkcg_gq *blkg) |
| 685 | { |
| 686 | return pd_to_iocg(pd: blkg_to_pd(blkg, pol: &blkcg_policy_iocost)); |
| 687 | } |
| 688 | |
| 689 | static struct blkcg_gq *iocg_to_blkg(struct ioc_gq *iocg) |
| 690 | { |
| 691 | return pd_to_blkg(pd: &iocg->pd); |
| 692 | } |
| 693 | |
| 694 | static struct ioc_cgrp *blkcg_to_iocc(struct blkcg *blkcg) |
| 695 | { |
| 696 | return container_of(blkcg_to_cpd(blkcg, &blkcg_policy_iocost), |
| 697 | struct ioc_cgrp, cpd); |
| 698 | } |
| 699 | |
| 700 | /* |
| 701 | * Scale @abs_cost to the inverse of @hw_inuse. The lower the hierarchical |
| 702 | * weight, the more expensive each IO. Must round up. |
| 703 | */ |
| 704 | static u64 abs_cost_to_cost(u64 abs_cost, u32 hw_inuse) |
| 705 | { |
| 706 | return DIV64_U64_ROUND_UP(abs_cost * WEIGHT_ONE, hw_inuse); |
| 707 | } |
| 708 | |
| 709 | /* |
| 710 | * The inverse of abs_cost_to_cost(). Must round up. |
| 711 | */ |
| 712 | static u64 cost_to_abs_cost(u64 cost, u32 hw_inuse) |
| 713 | { |
| 714 | return DIV64_U64_ROUND_UP(cost * hw_inuse, WEIGHT_ONE); |
| 715 | } |
| 716 | |
| 717 | static void iocg_commit_bio(struct ioc_gq *iocg, struct bio *bio, |
| 718 | u64 abs_cost, u64 cost) |
| 719 | { |
| 720 | struct iocg_pcpu_stat *gcs; |
| 721 | |
| 722 | bio->bi_iocost_cost = cost; |
| 723 | atomic64_add(i: cost, v: &iocg->vtime); |
| 724 | |
| 725 | gcs = get_cpu_ptr(iocg->pcpu_stat); |
| 726 | local64_add(abs_cost, &gcs->abs_vusage); |
| 727 | put_cpu_ptr(gcs); |
| 728 | } |
| 729 | |
| 730 | static void iocg_lock(struct ioc_gq *iocg, bool lock_ioc, unsigned long *flags) |
| 731 | { |
| 732 | if (lock_ioc) { |
| 733 | spin_lock_irqsave(&iocg->ioc->lock, *flags); |
| 734 | spin_lock(lock: &iocg->waitq.lock); |
| 735 | } else { |
| 736 | spin_lock_irqsave(&iocg->waitq.lock, *flags); |
| 737 | } |
| 738 | } |
| 739 | |
| 740 | static void iocg_unlock(struct ioc_gq *iocg, bool unlock_ioc, unsigned long *flags) |
| 741 | { |
| 742 | if (unlock_ioc) { |
| 743 | spin_unlock(lock: &iocg->waitq.lock); |
| 744 | spin_unlock_irqrestore(lock: &iocg->ioc->lock, flags: *flags); |
| 745 | } else { |
| 746 | spin_unlock_irqrestore(lock: &iocg->waitq.lock, flags: *flags); |
| 747 | } |
| 748 | } |
| 749 | |
| 750 | #define CREATE_TRACE_POINTS |
| 751 | #include <trace/events/iocost.h> |
| 752 | |
| 753 | static void ioc_refresh_margins(struct ioc *ioc) |
| 754 | { |
| 755 | struct ioc_margins *margins = &ioc->margins; |
| 756 | u32 period_us = ioc->period_us; |
| 757 | u64 vrate = ioc->vtime_base_rate; |
| 758 | |
| 759 | margins->min = (period_us * MARGIN_MIN_PCT / 100) * vrate; |
| 760 | margins->low = (period_us * MARGIN_LOW_PCT / 100) * vrate; |
| 761 | margins->target = (period_us * MARGIN_TARGET_PCT / 100) * vrate; |
| 762 | } |
| 763 | |
| 764 | /* latency Qos params changed, update period_us and all the dependent params */ |
| 765 | static void ioc_refresh_period_us(struct ioc *ioc) |
| 766 | { |
| 767 | u32 ppm, lat, multi, period_us; |
| 768 | |
| 769 | lockdep_assert_held(&ioc->lock); |
| 770 | |
| 771 | /* pick the higher latency target */ |
| 772 | if (ioc->params.qos[QOS_RLAT] >= ioc->params.qos[QOS_WLAT]) { |
| 773 | ppm = ioc->params.qos[QOS_RPPM]; |
| 774 | lat = ioc->params.qos[QOS_RLAT]; |
| 775 | } else { |
| 776 | ppm = ioc->params.qos[QOS_WPPM]; |
| 777 | lat = ioc->params.qos[QOS_WLAT]; |
| 778 | } |
| 779 | |
| 780 | /* |
| 781 | * We want the period to be long enough to contain a healthy number |
| 782 | * of IOs while short enough for granular control. Define it as a |
| 783 | * multiple of the latency target. Ideally, the multiplier should |
| 784 | * be scaled according to the percentile so that it would nominally |
| 785 | * contain a certain number of requests. Let's be simpler and |
| 786 | * scale it linearly so that it's 2x >= pct(90) and 10x at pct(50). |
| 787 | */ |
| 788 | if (ppm) |
| 789 | multi = max_t(u32, (MILLION - ppm) / 50000, 2); |
| 790 | else |
| 791 | multi = 2; |
| 792 | period_us = multi * lat; |
| 793 | period_us = clamp_t(u32, period_us, MIN_PERIOD, MAX_PERIOD); |
| 794 | |
| 795 | /* calculate dependent params */ |
| 796 | ioc->period_us = period_us; |
| 797 | ioc->timer_slack_ns = div64_u64( |
| 798 | dividend: (u64)period_us * NSEC_PER_USEC * TIMER_SLACK_PCT, |
| 799 | divisor: 100); |
| 800 | ioc_refresh_margins(ioc); |
| 801 | } |
| 802 | |
| 803 | /* |
| 804 | * ioc->rqos.disk isn't initialized when this function is called from |
| 805 | * the init path. |
| 806 | */ |
| 807 | static int ioc_autop_idx(struct ioc *ioc, struct gendisk *disk) |
| 808 | { |
| 809 | int idx = ioc->autop_idx; |
| 810 | const struct ioc_params *p = &autop[idx]; |
| 811 | u32 vrate_pct; |
| 812 | u64 now_ns; |
| 813 | |
| 814 | /* rotational? */ |
| 815 | if (!blk_queue_nonrot(disk->queue)) |
| 816 | return AUTOP_HDD; |
| 817 | |
| 818 | /* handle SATA SSDs w/ broken NCQ */ |
| 819 | if (blk_queue_depth(q: disk->queue) == 1) |
| 820 | return AUTOP_SSD_QD1; |
| 821 | |
| 822 | /* use one of the normal ssd sets */ |
| 823 | if (idx < AUTOP_SSD_DFL) |
| 824 | return AUTOP_SSD_DFL; |
| 825 | |
| 826 | /* if user is overriding anything, maintain what was there */ |
| 827 | if (ioc->user_qos_params || ioc->user_cost_model) |
| 828 | return idx; |
| 829 | |
| 830 | /* step up/down based on the vrate */ |
| 831 | vrate_pct = div64_u64(dividend: ioc->vtime_base_rate * 100, divisor: VTIME_PER_USEC); |
| 832 | now_ns = blk_time_get_ns(); |
| 833 | |
| 834 | if (p->too_fast_vrate_pct && p->too_fast_vrate_pct <= vrate_pct) { |
| 835 | if (!ioc->autop_too_fast_at) |
| 836 | ioc->autop_too_fast_at = now_ns; |
| 837 | if (now_ns - ioc->autop_too_fast_at >= AUTOP_CYCLE_NSEC) |
| 838 | return idx + 1; |
| 839 | } else { |
| 840 | ioc->autop_too_fast_at = 0; |
| 841 | } |
| 842 | |
| 843 | if (p->too_slow_vrate_pct && p->too_slow_vrate_pct >= vrate_pct) { |
| 844 | if (!ioc->autop_too_slow_at) |
| 845 | ioc->autop_too_slow_at = now_ns; |
| 846 | if (now_ns - ioc->autop_too_slow_at >= AUTOP_CYCLE_NSEC) |
| 847 | return idx - 1; |
| 848 | } else { |
| 849 | ioc->autop_too_slow_at = 0; |
| 850 | } |
| 851 | |
| 852 | return idx; |
| 853 | } |
| 854 | |
| 855 | /* |
| 856 | * Take the followings as input |
| 857 | * |
| 858 | * @bps maximum sequential throughput |
| 859 | * @seqiops maximum sequential 4k iops |
| 860 | * @randiops maximum random 4k iops |
| 861 | * |
| 862 | * and calculate the linear model cost coefficients. |
| 863 | * |
| 864 | * *@page per-page cost 1s / (@bps / 4096) |
| 865 | * *@seqio base cost of a seq IO max((1s / @seqiops) - *@page, 0) |
| 866 | * @randiops base cost of a rand IO max((1s / @randiops) - *@page, 0) |
| 867 | */ |
| 868 | static void calc_lcoefs(u64 bps, u64 seqiops, u64 randiops, |
| 869 | u64 *page, u64 *seqio, u64 *randio) |
| 870 | { |
| 871 | u64 v; |
| 872 | |
| 873 | *page = *seqio = *randio = 0; |
| 874 | |
| 875 | if (bps) { |
| 876 | u64 bps_pages = DIV_ROUND_UP_ULL(bps, IOC_PAGE_SIZE); |
| 877 | |
| 878 | if (bps_pages) |
| 879 | *page = DIV64_U64_ROUND_UP(VTIME_PER_SEC, bps_pages); |
| 880 | else |
| 881 | *page = 1; |
| 882 | } |
| 883 | |
| 884 | if (seqiops) { |
| 885 | v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, seqiops); |
| 886 | if (v > *page) |
| 887 | *seqio = v - *page; |
| 888 | } |
| 889 | |
| 890 | if (randiops) { |
| 891 | v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, randiops); |
| 892 | if (v > *page) |
| 893 | *randio = v - *page; |
| 894 | } |
| 895 | } |
| 896 | |
| 897 | static void ioc_refresh_lcoefs(struct ioc *ioc) |
| 898 | { |
| 899 | u64 *u = ioc->params.i_lcoefs; |
| 900 | u64 *c = ioc->params.lcoefs; |
| 901 | |
| 902 | calc_lcoefs(bps: u[I_LCOEF_RBPS], seqiops: u[I_LCOEF_RSEQIOPS], randiops: u[I_LCOEF_RRANDIOPS], |
| 903 | page: &c[LCOEF_RPAGE], seqio: &c[LCOEF_RSEQIO], randio: &c[LCOEF_RRANDIO]); |
| 904 | calc_lcoefs(bps: u[I_LCOEF_WBPS], seqiops: u[I_LCOEF_WSEQIOPS], randiops: u[I_LCOEF_WRANDIOPS], |
| 905 | page: &c[LCOEF_WPAGE], seqio: &c[LCOEF_WSEQIO], randio: &c[LCOEF_WRANDIO]); |
| 906 | } |
| 907 | |
| 908 | /* |
| 909 | * struct gendisk is required as an argument because ioc->rqos.disk |
| 910 | * is not properly initialized when called from the init path. |
| 911 | */ |
| 912 | static bool ioc_refresh_params_disk(struct ioc *ioc, bool force, |
| 913 | struct gendisk *disk) |
| 914 | { |
| 915 | const struct ioc_params *p; |
| 916 | int idx; |
| 917 | |
| 918 | lockdep_assert_held(&ioc->lock); |
| 919 | |
| 920 | idx = ioc_autop_idx(ioc, disk); |
| 921 | p = &autop[idx]; |
| 922 | |
| 923 | if (idx == ioc->autop_idx && !force) |
| 924 | return false; |
| 925 | |
| 926 | if (idx != ioc->autop_idx) { |
| 927 | atomic64_set(v: &ioc->vtime_rate, i: VTIME_PER_USEC); |
| 928 | ioc->vtime_base_rate = VTIME_PER_USEC; |
| 929 | } |
| 930 | |
| 931 | ioc->autop_idx = idx; |
| 932 | ioc->autop_too_fast_at = 0; |
| 933 | ioc->autop_too_slow_at = 0; |
| 934 | |
| 935 | if (!ioc->user_qos_params) |
| 936 | memcpy(to: ioc->params.qos, from: p->qos, len: sizeof(p->qos)); |
| 937 | if (!ioc->user_cost_model) |
| 938 | memcpy(to: ioc->params.i_lcoefs, from: p->i_lcoefs, len: sizeof(p->i_lcoefs)); |
| 939 | |
| 940 | ioc_refresh_period_us(ioc); |
| 941 | ioc_refresh_lcoefs(ioc); |
| 942 | |
| 943 | ioc->vrate_min = DIV64_U64_ROUND_UP((u64)ioc->params.qos[QOS_MIN] * |
| 944 | VTIME_PER_USEC, MILLION); |
| 945 | ioc->vrate_max = DIV64_U64_ROUND_UP((u64)ioc->params.qos[QOS_MAX] * |
| 946 | VTIME_PER_USEC, MILLION); |
| 947 | |
| 948 | return true; |
| 949 | } |
| 950 | |
| 951 | static bool ioc_refresh_params(struct ioc *ioc, bool force) |
| 952 | { |
| 953 | return ioc_refresh_params_disk(ioc, force, disk: ioc->rqos.disk); |
| 954 | } |
| 955 | |
| 956 | /* |
| 957 | * When an iocg accumulates too much vtime or gets deactivated, we throw away |
| 958 | * some vtime, which lowers the overall device utilization. As the exact amount |
| 959 | * which is being thrown away is known, we can compensate by accelerating the |
| 960 | * vrate accordingly so that the extra vtime generated in the current period |
| 961 | * matches what got lost. |
| 962 | */ |
| 963 | static void ioc_refresh_vrate(struct ioc *ioc, struct ioc_now *now) |
| 964 | { |
| 965 | s64 pleft = ioc->period_at + ioc->period_us - now->now; |
| 966 | s64 vperiod = ioc->period_us * ioc->vtime_base_rate; |
| 967 | s64 vcomp, vcomp_min, vcomp_max; |
| 968 | |
| 969 | lockdep_assert_held(&ioc->lock); |
| 970 | |
| 971 | /* we need some time left in this period */ |
| 972 | if (pleft <= 0) |
| 973 | goto done; |
| 974 | |
| 975 | /* |
| 976 | * Calculate how much vrate should be adjusted to offset the error. |
| 977 | * Limit the amount of adjustment and deduct the adjusted amount from |
| 978 | * the error. |
| 979 | */ |
| 980 | vcomp = -div64_s64(dividend: ioc->vtime_err, divisor: pleft); |
| 981 | vcomp_min = -(ioc->vtime_base_rate >> 1); |
| 982 | vcomp_max = ioc->vtime_base_rate; |
| 983 | vcomp = clamp(vcomp, vcomp_min, vcomp_max); |
| 984 | |
| 985 | ioc->vtime_err += vcomp * pleft; |
| 986 | |
| 987 | atomic64_set(v: &ioc->vtime_rate, i: ioc->vtime_base_rate + vcomp); |
| 988 | done: |
| 989 | /* bound how much error can accumulate */ |
| 990 | ioc->vtime_err = clamp(ioc->vtime_err, -vperiod, vperiod); |
| 991 | } |
| 992 | |
| 993 | static void ioc_adjust_base_vrate(struct ioc *ioc, u32 rq_wait_pct, |
| 994 | int nr_lagging, int nr_shortages, |
| 995 | int prev_busy_level, u32 *missed_ppm) |
| 996 | { |
| 997 | u64 vrate = ioc->vtime_base_rate; |
| 998 | u64 vrate_min = ioc->vrate_min, vrate_max = ioc->vrate_max; |
| 999 | |
| 1000 | if (!ioc->busy_level || (ioc->busy_level < 0 && nr_lagging)) { |
| 1001 | if (ioc->busy_level != prev_busy_level || nr_lagging) |
| 1002 | trace_iocost_ioc_vrate_adj(ioc, new_vrate: vrate, |
| 1003 | missed_ppm, rq_wait_pct, |
| 1004 | nr_lagging, nr_shortages); |
| 1005 | |
| 1006 | return; |
| 1007 | } |
| 1008 | |
| 1009 | /* |
| 1010 | * If vrate is out of bounds, apply clamp gradually as the |
| 1011 | * bounds can change abruptly. Otherwise, apply busy_level |
| 1012 | * based adjustment. |
| 1013 | */ |
| 1014 | if (vrate < vrate_min) { |
| 1015 | vrate = div64_u64(dividend: vrate * (100 + VRATE_CLAMP_ADJ_PCT), divisor: 100); |
| 1016 | vrate = min(vrate, vrate_min); |
| 1017 | } else if (vrate > vrate_max) { |
| 1018 | vrate = div64_u64(dividend: vrate * (100 - VRATE_CLAMP_ADJ_PCT), divisor: 100); |
| 1019 | vrate = max(vrate, vrate_max); |
| 1020 | } else { |
| 1021 | int idx = min_t(int, abs(ioc->busy_level), |
| 1022 | ARRAY_SIZE(vrate_adj_pct) - 1); |
| 1023 | u32 adj_pct = vrate_adj_pct[idx]; |
| 1024 | |
| 1025 | if (ioc->busy_level > 0) |
| 1026 | adj_pct = 100 - adj_pct; |
| 1027 | else |
| 1028 | adj_pct = 100 + adj_pct; |
| 1029 | |
| 1030 | vrate = clamp(DIV64_U64_ROUND_UP(vrate * adj_pct, 100), |
| 1031 | vrate_min, vrate_max); |
| 1032 | } |
| 1033 | |
| 1034 | trace_iocost_ioc_vrate_adj(ioc, new_vrate: vrate, missed_ppm, rq_wait_pct, |
| 1035 | nr_lagging, nr_shortages); |
| 1036 | |
| 1037 | ioc->vtime_base_rate = vrate; |
| 1038 | ioc_refresh_margins(ioc); |
| 1039 | } |
| 1040 | |
| 1041 | /* take a snapshot of the current [v]time and vrate */ |
| 1042 | static void ioc_now(struct ioc *ioc, struct ioc_now *now) |
| 1043 | { |
| 1044 | unsigned seq; |
| 1045 | u64 vrate; |
| 1046 | |
| 1047 | now->now_ns = blk_time_get_ns(); |
| 1048 | now->now = ktime_to_us(kt: now->now_ns); |
| 1049 | vrate = atomic64_read(v: &ioc->vtime_rate); |
| 1050 | |
| 1051 | /* |
| 1052 | * The current vtime is |
| 1053 | * |
| 1054 | * vtime at period start + (wallclock time since the start) * vrate |
| 1055 | * |
| 1056 | * As a consistent snapshot of `period_at_vtime` and `period_at` is |
| 1057 | * needed, they're seqcount protected. |
| 1058 | */ |
| 1059 | do { |
| 1060 | seq = read_seqcount_begin(&ioc->period_seqcount); |
| 1061 | now->vnow = ioc->period_at_vtime + |
| 1062 | (now->now - ioc->period_at) * vrate; |
| 1063 | } while (read_seqcount_retry(&ioc->period_seqcount, seq)); |
| 1064 | } |
| 1065 | |
| 1066 | static void ioc_start_period(struct ioc *ioc, struct ioc_now *now) |
| 1067 | { |
| 1068 | WARN_ON_ONCE(ioc->running != IOC_RUNNING); |
| 1069 | |
| 1070 | write_seqcount_begin(&ioc->period_seqcount); |
| 1071 | ioc->period_at = now->now; |
| 1072 | ioc->period_at_vtime = now->vnow; |
| 1073 | write_seqcount_end(&ioc->period_seqcount); |
| 1074 | |
| 1075 | ioc->timer.expires = jiffies + usecs_to_jiffies(u: ioc->period_us); |
| 1076 | add_timer(timer: &ioc->timer); |
| 1077 | } |
| 1078 | |
| 1079 | /* |
| 1080 | * Update @iocg's `active` and `inuse` to @active and @inuse, update level |
| 1081 | * weight sums and propagate upwards accordingly. If @save, the current margin |
| 1082 | * is saved to be used as reference for later inuse in-period adjustments. |
| 1083 | */ |
| 1084 | static void __propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse, |
| 1085 | bool save, struct ioc_now *now) |
| 1086 | { |
| 1087 | struct ioc *ioc = iocg->ioc; |
| 1088 | int lvl; |
| 1089 | |
| 1090 | lockdep_assert_held(&ioc->lock); |
| 1091 | |
| 1092 | /* |
| 1093 | * For an active leaf node, its inuse shouldn't be zero or exceed |
| 1094 | * @active. An active internal node's inuse is solely determined by the |
| 1095 | * inuse to active ratio of its children regardless of @inuse. |
| 1096 | */ |
| 1097 | if (list_empty(head: &iocg->active_list) && iocg->child_active_sum) { |
| 1098 | inuse = DIV64_U64_ROUND_UP(active * iocg->child_inuse_sum, |
| 1099 | iocg->child_active_sum); |
| 1100 | } else { |
| 1101 | /* |
| 1102 | * It may be tempting to turn this into a clamp expression with |
| 1103 | * a lower limit of 1 but active may be 0, which cannot be used |
| 1104 | * as an upper limit in that situation. This expression allows |
| 1105 | * active to clamp inuse unless it is 0, in which case inuse |
| 1106 | * becomes 1. |
| 1107 | */ |
| 1108 | inuse = min(inuse, active) ?: 1; |
| 1109 | } |
| 1110 | |
| 1111 | iocg->last_inuse = iocg->inuse; |
| 1112 | if (save) |
| 1113 | iocg->saved_margin = now->vnow - atomic64_read(v: &iocg->vtime); |
| 1114 | |
| 1115 | if (active == iocg->active && inuse == iocg->inuse) |
| 1116 | return; |
| 1117 | |
| 1118 | for (lvl = iocg->level - 1; lvl >= 0; lvl--) { |
| 1119 | struct ioc_gq *parent = iocg->ancestors[lvl]; |
| 1120 | struct ioc_gq *child = iocg->ancestors[lvl + 1]; |
| 1121 | u32 parent_active = 0, parent_inuse = 0; |
| 1122 | |
| 1123 | /* update the level sums */ |
| 1124 | parent->child_active_sum += (s32)(active - child->active); |
| 1125 | parent->child_inuse_sum += (s32)(inuse - child->inuse); |
| 1126 | /* apply the updates */ |
| 1127 | child->active = active; |
| 1128 | child->inuse = inuse; |
| 1129 | |
| 1130 | /* |
| 1131 | * The delta between inuse and active sums indicates that |
| 1132 | * much of weight is being given away. Parent's inuse |
| 1133 | * and active should reflect the ratio. |
| 1134 | */ |
| 1135 | if (parent->child_active_sum) { |
| 1136 | parent_active = parent->weight; |
| 1137 | parent_inuse = DIV64_U64_ROUND_UP( |
| 1138 | parent_active * parent->child_inuse_sum, |
| 1139 | parent->child_active_sum); |
| 1140 | } |
| 1141 | |
| 1142 | /* do we need to keep walking up? */ |
| 1143 | if (parent_active == parent->active && |
| 1144 | parent_inuse == parent->inuse) |
| 1145 | break; |
| 1146 | |
| 1147 | active = parent_active; |
| 1148 | inuse = parent_inuse; |
| 1149 | } |
| 1150 | |
| 1151 | ioc->weights_updated = true; |
| 1152 | } |
| 1153 | |
| 1154 | static void commit_weights(struct ioc *ioc) |
| 1155 | { |
| 1156 | lockdep_assert_held(&ioc->lock); |
| 1157 | |
| 1158 | if (ioc->weights_updated) { |
| 1159 | /* paired with rmb in current_hweight(), see there */ |
| 1160 | smp_wmb(); |
| 1161 | atomic_inc(v: &ioc->hweight_gen); |
| 1162 | ioc->weights_updated = false; |
| 1163 | } |
| 1164 | } |
| 1165 | |
| 1166 | static void propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse, |
| 1167 | bool save, struct ioc_now *now) |
| 1168 | { |
| 1169 | __propagate_weights(iocg, active, inuse, save, now); |
| 1170 | commit_weights(ioc: iocg->ioc); |
| 1171 | } |
| 1172 | |
| 1173 | static void current_hweight(struct ioc_gq *iocg, u32 *hw_activep, u32 *hw_inusep) |
| 1174 | { |
| 1175 | struct ioc *ioc = iocg->ioc; |
| 1176 | int lvl; |
| 1177 | u32 hwa, hwi; |
| 1178 | int ioc_gen; |
| 1179 | |
| 1180 | /* hot path - if uptodate, use cached */ |
| 1181 | ioc_gen = atomic_read(v: &ioc->hweight_gen); |
| 1182 | if (ioc_gen == iocg->hweight_gen) |
| 1183 | goto out; |
| 1184 | |
| 1185 | /* |
| 1186 | * Paired with wmb in commit_weights(). If we saw the updated |
| 1187 | * hweight_gen, all the weight updates from __propagate_weights() are |
| 1188 | * visible too. |
| 1189 | * |
| 1190 | * We can race with weight updates during calculation and get it |
| 1191 | * wrong. However, hweight_gen would have changed and a future |
| 1192 | * reader will recalculate and we're guaranteed to discard the |
| 1193 | * wrong result soon. |
| 1194 | */ |
| 1195 | smp_rmb(); |
| 1196 | |
| 1197 | hwa = hwi = WEIGHT_ONE; |
| 1198 | for (lvl = 0; lvl <= iocg->level - 1; lvl++) { |
| 1199 | struct ioc_gq *parent = iocg->ancestors[lvl]; |
| 1200 | struct ioc_gq *child = iocg->ancestors[lvl + 1]; |
| 1201 | u64 active_sum = READ_ONCE(parent->child_active_sum); |
| 1202 | u64 inuse_sum = READ_ONCE(parent->child_inuse_sum); |
| 1203 | u32 active = READ_ONCE(child->active); |
| 1204 | u32 inuse = READ_ONCE(child->inuse); |
| 1205 | |
| 1206 | /* we can race with deactivations and either may read as zero */ |
| 1207 | if (!active_sum || !inuse_sum) |
| 1208 | continue; |
| 1209 | |
| 1210 | active_sum = max_t(u64, active, active_sum); |
| 1211 | hwa = div64_u64(dividend: (u64)hwa * active, divisor: active_sum); |
| 1212 | |
| 1213 | inuse_sum = max_t(u64, inuse, inuse_sum); |
| 1214 | hwi = div64_u64(dividend: (u64)hwi * inuse, divisor: inuse_sum); |
| 1215 | } |
| 1216 | |
| 1217 | iocg->hweight_active = max_t(u32, hwa, 1); |
| 1218 | iocg->hweight_inuse = max_t(u32, hwi, 1); |
| 1219 | iocg->hweight_gen = ioc_gen; |
| 1220 | out: |
| 1221 | if (hw_activep) |
| 1222 | *hw_activep = iocg->hweight_active; |
| 1223 | if (hw_inusep) |
| 1224 | *hw_inusep = iocg->hweight_inuse; |
| 1225 | } |
| 1226 | |
| 1227 | /* |
| 1228 | * Calculate the hweight_inuse @iocg would get with max @inuse assuming all the |
| 1229 | * other weights stay unchanged. |
| 1230 | */ |
| 1231 | static u32 current_hweight_max(struct ioc_gq *iocg) |
| 1232 | { |
| 1233 | u32 hwm = WEIGHT_ONE; |
| 1234 | u32 inuse = iocg->active; |
| 1235 | u64 child_inuse_sum; |
| 1236 | int lvl; |
| 1237 | |
| 1238 | lockdep_assert_held(&iocg->ioc->lock); |
| 1239 | |
| 1240 | for (lvl = iocg->level - 1; lvl >= 0; lvl--) { |
| 1241 | struct ioc_gq *parent = iocg->ancestors[lvl]; |
| 1242 | struct ioc_gq *child = iocg->ancestors[lvl + 1]; |
| 1243 | |
| 1244 | child_inuse_sum = parent->child_inuse_sum + inuse - child->inuse; |
| 1245 | hwm = div64_u64(dividend: (u64)hwm * inuse, divisor: child_inuse_sum); |
| 1246 | inuse = DIV64_U64_ROUND_UP(parent->active * child_inuse_sum, |
| 1247 | parent->child_active_sum); |
| 1248 | } |
| 1249 | |
| 1250 | return max_t(u32, hwm, 1); |
| 1251 | } |
| 1252 | |
| 1253 | static void weight_updated(struct ioc_gq *iocg, struct ioc_now *now) |
| 1254 | { |
| 1255 | struct ioc *ioc = iocg->ioc; |
| 1256 | struct blkcg_gq *blkg = iocg_to_blkg(iocg); |
| 1257 | struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg: blkg->blkcg); |
| 1258 | u32 weight; |
| 1259 | |
| 1260 | lockdep_assert_held(&ioc->lock); |
| 1261 | |
| 1262 | weight = iocg->cfg_weight ?: iocc->dfl_weight; |
| 1263 | if (weight != iocg->weight && iocg->active) |
| 1264 | propagate_weights(iocg, active: weight, inuse: iocg->inuse, save: true, now); |
| 1265 | iocg->weight = weight; |
| 1266 | } |
| 1267 | |
| 1268 | static bool iocg_activate(struct ioc_gq *iocg, struct ioc_now *now) |
| 1269 | { |
| 1270 | struct ioc *ioc = iocg->ioc; |
| 1271 | u64 __maybe_unused last_period, cur_period; |
| 1272 | u64 vtime, vtarget; |
| 1273 | int i; |
| 1274 | |
| 1275 | /* |
| 1276 | * If seem to be already active, just update the stamp to tell the |
| 1277 | * timer that we're still active. We don't mind occassional races. |
| 1278 | */ |
| 1279 | if (!list_empty(head: &iocg->active_list)) { |
| 1280 | ioc_now(ioc, now); |
| 1281 | cur_period = atomic64_read(v: &ioc->cur_period); |
| 1282 | if (atomic64_read(v: &iocg->active_period) != cur_period) |
| 1283 | atomic64_set(v: &iocg->active_period, i: cur_period); |
| 1284 | return true; |
| 1285 | } |
| 1286 | |
| 1287 | /* racy check on internal node IOs, treat as root level IOs */ |
| 1288 | if (iocg->child_active_sum) |
| 1289 | return false; |
| 1290 | |
| 1291 | spin_lock_irq(lock: &ioc->lock); |
| 1292 | |
| 1293 | ioc_now(ioc, now); |
| 1294 | |
| 1295 | /* update period */ |
| 1296 | cur_period = atomic64_read(v: &ioc->cur_period); |
| 1297 | last_period = atomic64_read(v: &iocg->active_period); |
| 1298 | atomic64_set(v: &iocg->active_period, i: cur_period); |
| 1299 | |
| 1300 | /* already activated or breaking leaf-only constraint? */ |
| 1301 | if (!list_empty(head: &iocg->active_list)) |
| 1302 | goto succeed_unlock; |
| 1303 | for (i = iocg->level - 1; i > 0; i--) |
| 1304 | if (!list_empty(head: &iocg->ancestors[i]->active_list)) |
| 1305 | goto fail_unlock; |
| 1306 | |
| 1307 | if (iocg->child_active_sum) |
| 1308 | goto fail_unlock; |
| 1309 | |
| 1310 | /* |
| 1311 | * Always start with the target budget. On deactivation, we throw away |
| 1312 | * anything above it. |
| 1313 | */ |
| 1314 | vtarget = now->vnow - ioc->margins.target; |
| 1315 | vtime = atomic64_read(v: &iocg->vtime); |
| 1316 | |
| 1317 | atomic64_add(i: vtarget - vtime, v: &iocg->vtime); |
| 1318 | atomic64_add(i: vtarget - vtime, v: &iocg->done_vtime); |
| 1319 | vtime = vtarget; |
| 1320 | |
| 1321 | /* |
| 1322 | * Activate, propagate weight and start period timer if not |
| 1323 | * running. Reset hweight_gen to avoid accidental match from |
| 1324 | * wrapping. |
| 1325 | */ |
| 1326 | iocg->hweight_gen = atomic_read(v: &ioc->hweight_gen) - 1; |
| 1327 | list_add(new: &iocg->active_list, head: &ioc->active_iocgs); |
| 1328 | |
| 1329 | propagate_weights(iocg, active: iocg->weight, |
| 1330 | inuse: iocg->last_inuse ?: iocg->weight, save: true, now); |
| 1331 | |
| 1332 | TRACE_IOCG_PATH(iocg_activate, iocg, now, |
| 1333 | last_period, cur_period, vtime); |
| 1334 | |
| 1335 | iocg->activated_at = now->now; |
| 1336 | |
| 1337 | if (ioc->running == IOC_IDLE) { |
| 1338 | ioc->running = IOC_RUNNING; |
| 1339 | ioc->dfgv_period_at = now->now; |
| 1340 | ioc->dfgv_period_rem = 0; |
| 1341 | ioc_start_period(ioc, now); |
| 1342 | } |
| 1343 | |
| 1344 | succeed_unlock: |
| 1345 | spin_unlock_irq(lock: &ioc->lock); |
| 1346 | return true; |
| 1347 | |
| 1348 | fail_unlock: |
| 1349 | spin_unlock_irq(lock: &ioc->lock); |
| 1350 | return false; |
| 1351 | } |
| 1352 | |
| 1353 | static bool iocg_kick_delay(struct ioc_gq *iocg, struct ioc_now *now) |
| 1354 | { |
| 1355 | struct ioc *ioc = iocg->ioc; |
| 1356 | struct blkcg_gq *blkg = iocg_to_blkg(iocg); |
| 1357 | u64 tdelta, delay, new_delay, shift; |
| 1358 | s64 vover, vover_pct; |
| 1359 | u32 hwa; |
| 1360 | |
| 1361 | lockdep_assert_held(&iocg->waitq.lock); |
| 1362 | |
| 1363 | /* |
| 1364 | * If the delay is set by another CPU, we may be in the past. No need to |
| 1365 | * change anything if so. This avoids decay calculation underflow. |
| 1366 | */ |
| 1367 | if (time_before64(now->now, iocg->delay_at)) |
| 1368 | return false; |
| 1369 | |
| 1370 | /* calculate the current delay in effect - 1/2 every second */ |
| 1371 | tdelta = now->now - iocg->delay_at; |
| 1372 | shift = div64_u64(dividend: tdelta, USEC_PER_SEC); |
| 1373 | if (iocg->delay && shift < BITS_PER_LONG) |
| 1374 | delay = iocg->delay >> shift; |
| 1375 | else |
| 1376 | delay = 0; |
| 1377 | |
| 1378 | /* calculate the new delay from the debt amount */ |
| 1379 | current_hweight(iocg, hw_activep: &hwa, NULL); |
| 1380 | vover = atomic64_read(v: &iocg->vtime) + |
| 1381 | abs_cost_to_cost(abs_cost: iocg->abs_vdebt, hw_inuse: hwa) - now->vnow; |
| 1382 | vover_pct = div64_s64(dividend: 100 * vover, |
| 1383 | divisor: ioc->period_us * ioc->vtime_base_rate); |
| 1384 | |
| 1385 | if (vover_pct <= MIN_DELAY_THR_PCT) |
| 1386 | new_delay = 0; |
| 1387 | else if (vover_pct >= MAX_DELAY_THR_PCT) |
| 1388 | new_delay = MAX_DELAY; |
| 1389 | else |
| 1390 | new_delay = MIN_DELAY + |
| 1391 | div_u64(dividend: (MAX_DELAY - MIN_DELAY) * |
| 1392 | (vover_pct - MIN_DELAY_THR_PCT), |
| 1393 | divisor: MAX_DELAY_THR_PCT - MIN_DELAY_THR_PCT); |
| 1394 | |
| 1395 | /* pick the higher one and apply */ |
| 1396 | if (new_delay > delay) { |
| 1397 | iocg->delay = new_delay; |
| 1398 | iocg->delay_at = now->now; |
| 1399 | delay = new_delay; |
| 1400 | } |
| 1401 | |
| 1402 | if (delay >= MIN_DELAY) { |
| 1403 | if (!iocg->indelay_since) |
| 1404 | iocg->indelay_since = now->now; |
| 1405 | blkcg_set_delay(blkg, delay: delay * NSEC_PER_USEC); |
| 1406 | return true; |
| 1407 | } else { |
| 1408 | if (iocg->indelay_since) { |
| 1409 | iocg->stat.indelay_us += now->now - iocg->indelay_since; |
| 1410 | iocg->indelay_since = 0; |
| 1411 | } |
| 1412 | iocg->delay = 0; |
| 1413 | blkcg_clear_delay(blkg); |
| 1414 | return false; |
| 1415 | } |
| 1416 | } |
| 1417 | |
| 1418 | static void iocg_incur_debt(struct ioc_gq *iocg, u64 abs_cost, |
| 1419 | struct ioc_now *now) |
| 1420 | { |
| 1421 | struct iocg_pcpu_stat *gcs; |
| 1422 | |
| 1423 | lockdep_assert_held(&iocg->ioc->lock); |
| 1424 | lockdep_assert_held(&iocg->waitq.lock); |
| 1425 | WARN_ON_ONCE(list_empty(&iocg->active_list)); |
| 1426 | |
| 1427 | /* |
| 1428 | * Once in debt, debt handling owns inuse. @iocg stays at the minimum |
| 1429 | * inuse donating all of it share to others until its debt is paid off. |
| 1430 | */ |
| 1431 | if (!iocg->abs_vdebt && abs_cost) { |
| 1432 | iocg->indebt_since = now->now; |
| 1433 | propagate_weights(iocg, active: iocg->active, inuse: 0, save: false, now); |
| 1434 | } |
| 1435 | |
| 1436 | iocg->abs_vdebt += abs_cost; |
| 1437 | |
| 1438 | gcs = get_cpu_ptr(iocg->pcpu_stat); |
| 1439 | local64_add(abs_cost, &gcs->abs_vusage); |
| 1440 | put_cpu_ptr(gcs); |
| 1441 | } |
| 1442 | |
| 1443 | static void iocg_pay_debt(struct ioc_gq *iocg, u64 abs_vpay, |
| 1444 | struct ioc_now *now) |
| 1445 | { |
| 1446 | lockdep_assert_held(&iocg->ioc->lock); |
| 1447 | lockdep_assert_held(&iocg->waitq.lock); |
| 1448 | |
| 1449 | /* |
| 1450 | * make sure that nobody messed with @iocg. Check iocg->pd.online |
| 1451 | * to avoid warn when removing blkcg or disk. |
| 1452 | */ |
| 1453 | WARN_ON_ONCE(list_empty(&iocg->active_list) && iocg->pd.online); |
| 1454 | WARN_ON_ONCE(iocg->inuse > 1); |
| 1455 | |
| 1456 | iocg->abs_vdebt -= min(abs_vpay, iocg->abs_vdebt); |
| 1457 | |
| 1458 | /* if debt is paid in full, restore inuse */ |
| 1459 | if (!iocg->abs_vdebt) { |
| 1460 | iocg->stat.indebt_us += now->now - iocg->indebt_since; |
| 1461 | iocg->indebt_since = 0; |
| 1462 | |
| 1463 | propagate_weights(iocg, active: iocg->active, inuse: iocg->last_inuse, |
| 1464 | save: false, now); |
| 1465 | } |
| 1466 | } |
| 1467 | |
| 1468 | static int iocg_wake_fn(struct wait_queue_entry *wq_entry, unsigned mode, |
| 1469 | int flags, void *key) |
| 1470 | { |
| 1471 | struct iocg_wait *wait = container_of(wq_entry, struct iocg_wait, wait); |
| 1472 | struct iocg_wake_ctx *ctx = key; |
| 1473 | u64 cost = abs_cost_to_cost(abs_cost: wait->abs_cost, hw_inuse: ctx->hw_inuse); |
| 1474 | |
| 1475 | ctx->vbudget -= cost; |
| 1476 | |
| 1477 | if (ctx->vbudget < 0) |
| 1478 | return -1; |
| 1479 | |
| 1480 | iocg_commit_bio(iocg: ctx->iocg, bio: wait->bio, abs_cost: wait->abs_cost, cost); |
| 1481 | wait->committed = true; |
| 1482 | |
| 1483 | /* |
| 1484 | * autoremove_wake_function() removes the wait entry only when it |
| 1485 | * actually changed the task state. We want the wait always removed. |
| 1486 | * Remove explicitly and use default_wake_function(). Note that the |
| 1487 | * order of operations is important as finish_wait() tests whether |
| 1488 | * @wq_entry is removed without grabbing the lock. |
| 1489 | */ |
| 1490 | default_wake_function(wq_entry, mode, flags, key); |
| 1491 | list_del_init_careful(entry: &wq_entry->entry); |
| 1492 | return 0; |
| 1493 | } |
| 1494 | |
| 1495 | /* |
| 1496 | * Calculate the accumulated budget, pay debt if @pay_debt and wake up waiters |
| 1497 | * accordingly. When @pay_debt is %true, the caller must be holding ioc->lock in |
| 1498 | * addition to iocg->waitq.lock. |
| 1499 | */ |
| 1500 | static void iocg_kick_waitq(struct ioc_gq *iocg, bool pay_debt, |
| 1501 | struct ioc_now *now) |
| 1502 | { |
| 1503 | struct ioc *ioc = iocg->ioc; |
| 1504 | struct iocg_wake_ctx ctx = { .iocg = iocg }; |
| 1505 | u64 vshortage, expires, oexpires; |
| 1506 | s64 vbudget; |
| 1507 | u32 hwa; |
| 1508 | |
| 1509 | lockdep_assert_held(&iocg->waitq.lock); |
| 1510 | |
| 1511 | current_hweight(iocg, hw_activep: &hwa, NULL); |
| 1512 | vbudget = now->vnow - atomic64_read(v: &iocg->vtime); |
| 1513 | |
| 1514 | /* pay off debt */ |
| 1515 | if (pay_debt && iocg->abs_vdebt && vbudget > 0) { |
| 1516 | u64 abs_vbudget = cost_to_abs_cost(cost: vbudget, hw_inuse: hwa); |
| 1517 | u64 abs_vpay = min_t(u64, abs_vbudget, iocg->abs_vdebt); |
| 1518 | u64 vpay = abs_cost_to_cost(abs_cost: abs_vpay, hw_inuse: hwa); |
| 1519 | |
| 1520 | lockdep_assert_held(&ioc->lock); |
| 1521 | |
| 1522 | atomic64_add(i: vpay, v: &iocg->vtime); |
| 1523 | atomic64_add(i: vpay, v: &iocg->done_vtime); |
| 1524 | iocg_pay_debt(iocg, abs_vpay, now); |
| 1525 | vbudget -= vpay; |
| 1526 | } |
| 1527 | |
| 1528 | if (iocg->abs_vdebt || iocg->delay) |
| 1529 | iocg_kick_delay(iocg, now); |
| 1530 | |
| 1531 | /* |
| 1532 | * Debt can still be outstanding if we haven't paid all yet or the |
| 1533 | * caller raced and called without @pay_debt. Shouldn't wake up waiters |
| 1534 | * under debt. Make sure @vbudget reflects the outstanding amount and is |
| 1535 | * not positive. |
| 1536 | */ |
| 1537 | if (iocg->abs_vdebt) { |
| 1538 | s64 vdebt = abs_cost_to_cost(abs_cost: iocg->abs_vdebt, hw_inuse: hwa); |
| 1539 | vbudget = min_t(s64, 0, vbudget - vdebt); |
| 1540 | } |
| 1541 | |
| 1542 | /* |
| 1543 | * Wake up the ones which are due and see how much vtime we'll need for |
| 1544 | * the next one. As paying off debt restores hw_inuse, it must be read |
| 1545 | * after the above debt payment. |
| 1546 | */ |
| 1547 | ctx.vbudget = vbudget; |
| 1548 | current_hweight(iocg, NULL, hw_inusep: &ctx.hw_inuse); |
| 1549 | |
| 1550 | __wake_up_locked_key(wq_head: &iocg->waitq, TASK_NORMAL, key: &ctx); |
| 1551 | |
| 1552 | if (!waitqueue_active(wq_head: &iocg->waitq)) { |
| 1553 | if (iocg->wait_since) { |
| 1554 | iocg->stat.wait_us += now->now - iocg->wait_since; |
| 1555 | iocg->wait_since = 0; |
| 1556 | } |
| 1557 | return; |
| 1558 | } |
| 1559 | |
| 1560 | if (!iocg->wait_since) |
| 1561 | iocg->wait_since = now->now; |
| 1562 | |
| 1563 | if (WARN_ON_ONCE(ctx.vbudget >= 0)) |
| 1564 | return; |
| 1565 | |
| 1566 | /* determine next wakeup, add a timer margin to guarantee chunking */ |
| 1567 | vshortage = -ctx.vbudget; |
| 1568 | expires = now->now_ns + |
| 1569 | DIV64_U64_ROUND_UP(vshortage, ioc->vtime_base_rate) * |
| 1570 | NSEC_PER_USEC; |
| 1571 | expires += ioc->timer_slack_ns; |
| 1572 | |
| 1573 | /* if already active and close enough, don't bother */ |
| 1574 | oexpires = ktime_to_ns(kt: hrtimer_get_softexpires(timer: &iocg->waitq_timer)); |
| 1575 | if (hrtimer_is_queued(timer: &iocg->waitq_timer) && |
| 1576 | abs(oexpires - expires) <= ioc->timer_slack_ns) |
| 1577 | return; |
| 1578 | |
| 1579 | hrtimer_start_range_ns(timer: &iocg->waitq_timer, tim: ns_to_ktime(ns: expires), |
| 1580 | range_ns: ioc->timer_slack_ns, mode: HRTIMER_MODE_ABS); |
| 1581 | } |
| 1582 | |
| 1583 | static enum hrtimer_restart iocg_waitq_timer_fn(struct hrtimer *timer) |
| 1584 | { |
| 1585 | struct ioc_gq *iocg = container_of(timer, struct ioc_gq, waitq_timer); |
| 1586 | bool pay_debt = READ_ONCE(iocg->abs_vdebt); |
| 1587 | struct ioc_now now; |
| 1588 | unsigned long flags; |
| 1589 | |
| 1590 | ioc_now(ioc: iocg->ioc, now: &now); |
| 1591 | |
| 1592 | iocg_lock(iocg, lock_ioc: pay_debt, flags: &flags); |
| 1593 | iocg_kick_waitq(iocg, pay_debt, now: &now); |
| 1594 | iocg_unlock(iocg, unlock_ioc: pay_debt, flags: &flags); |
| 1595 | |
| 1596 | return HRTIMER_NORESTART; |
| 1597 | } |
| 1598 | |
| 1599 | static void ioc_lat_stat(struct ioc *ioc, u32 *missed_ppm_ar, u32 *rq_wait_pct_p) |
| 1600 | { |
| 1601 | u32 nr_met[2] = { }; |
| 1602 | u32 nr_missed[2] = { }; |
| 1603 | u64 rq_wait_ns = 0; |
| 1604 | int cpu, rw; |
| 1605 | |
| 1606 | for_each_online_cpu(cpu) { |
| 1607 | struct ioc_pcpu_stat *stat = per_cpu_ptr(ioc->pcpu_stat, cpu); |
| 1608 | u64 this_rq_wait_ns; |
| 1609 | |
| 1610 | for (rw = READ; rw <= WRITE; rw++) { |
| 1611 | u32 this_met = local_read(&stat->missed[rw].nr_met); |
| 1612 | u32 this_missed = local_read(&stat->missed[rw].nr_missed); |
| 1613 | |
| 1614 | nr_met[rw] += this_met - stat->missed[rw].last_met; |
| 1615 | nr_missed[rw] += this_missed - stat->missed[rw].last_missed; |
| 1616 | stat->missed[rw].last_met = this_met; |
| 1617 | stat->missed[rw].last_missed = this_missed; |
| 1618 | } |
| 1619 | |
| 1620 | this_rq_wait_ns = local64_read(&stat->rq_wait_ns); |
| 1621 | rq_wait_ns += this_rq_wait_ns - stat->last_rq_wait_ns; |
| 1622 | stat->last_rq_wait_ns = this_rq_wait_ns; |
| 1623 | } |
| 1624 | |
| 1625 | for (rw = READ; rw <= WRITE; rw++) { |
| 1626 | if (nr_met[rw] + nr_missed[rw]) |
| 1627 | missed_ppm_ar[rw] = |
| 1628 | DIV64_U64_ROUND_UP((u64)nr_missed[rw] * MILLION, |
| 1629 | nr_met[rw] + nr_missed[rw]); |
| 1630 | else |
| 1631 | missed_ppm_ar[rw] = 0; |
| 1632 | } |
| 1633 | |
| 1634 | *rq_wait_pct_p = div64_u64(dividend: rq_wait_ns * 100, |
| 1635 | divisor: ioc->period_us * NSEC_PER_USEC); |
| 1636 | } |
| 1637 | |
| 1638 | /* was iocg idle this period? */ |
| 1639 | static bool iocg_is_idle(struct ioc_gq *iocg) |
| 1640 | { |
| 1641 | struct ioc *ioc = iocg->ioc; |
| 1642 | |
| 1643 | /* did something get issued this period? */ |
| 1644 | if (atomic64_read(v: &iocg->active_period) == |
| 1645 | atomic64_read(v: &ioc->cur_period)) |
| 1646 | return false; |
| 1647 | |
| 1648 | /* is something in flight? */ |
| 1649 | if (atomic64_read(v: &iocg->done_vtime) != atomic64_read(v: &iocg->vtime)) |
| 1650 | return false; |
| 1651 | |
| 1652 | return true; |
| 1653 | } |
| 1654 | |
| 1655 | /* |
| 1656 | * Call this function on the target leaf @iocg's to build pre-order traversal |
| 1657 | * list of all the ancestors in @inner_walk. The inner nodes are linked through |
| 1658 | * ->walk_list and the caller is responsible for dissolving the list after use. |
| 1659 | */ |
| 1660 | static void iocg_build_inner_walk(struct ioc_gq *iocg, |
| 1661 | struct list_head *inner_walk) |
| 1662 | { |
| 1663 | int lvl; |
| 1664 | |
| 1665 | WARN_ON_ONCE(!list_empty(&iocg->walk_list)); |
| 1666 | |
| 1667 | /* find the first ancestor which hasn't been visited yet */ |
| 1668 | for (lvl = iocg->level - 1; lvl >= 0; lvl--) { |
| 1669 | if (!list_empty(head: &iocg->ancestors[lvl]->walk_list)) |
| 1670 | break; |
| 1671 | } |
| 1672 | |
| 1673 | /* walk down and visit the inner nodes to get pre-order traversal */ |
| 1674 | while (++lvl <= iocg->level - 1) { |
| 1675 | struct ioc_gq *inner = iocg->ancestors[lvl]; |
| 1676 | |
| 1677 | /* record traversal order */ |
| 1678 | list_add_tail(new: &inner->walk_list, head: inner_walk); |
| 1679 | } |
| 1680 | } |
| 1681 | |
| 1682 | /* propagate the deltas to the parent */ |
| 1683 | static void iocg_flush_stat_upward(struct ioc_gq *iocg) |
| 1684 | { |
| 1685 | if (iocg->level > 0) { |
| 1686 | struct iocg_stat *parent_stat = |
| 1687 | &iocg->ancestors[iocg->level - 1]->stat; |
| 1688 | |
| 1689 | parent_stat->usage_us += |
| 1690 | iocg->stat.usage_us - iocg->last_stat.usage_us; |
| 1691 | parent_stat->wait_us += |
| 1692 | iocg->stat.wait_us - iocg->last_stat.wait_us; |
| 1693 | parent_stat->indebt_us += |
| 1694 | iocg->stat.indebt_us - iocg->last_stat.indebt_us; |
| 1695 | parent_stat->indelay_us += |
| 1696 | iocg->stat.indelay_us - iocg->last_stat.indelay_us; |
| 1697 | } |
| 1698 | |
| 1699 | iocg->last_stat = iocg->stat; |
| 1700 | } |
| 1701 | |
| 1702 | /* collect per-cpu counters and propagate the deltas to the parent */ |
| 1703 | static void iocg_flush_stat_leaf(struct ioc_gq *iocg, struct ioc_now *now) |
| 1704 | { |
| 1705 | struct ioc *ioc = iocg->ioc; |
| 1706 | u64 abs_vusage = 0; |
| 1707 | u64 vusage_delta; |
| 1708 | int cpu; |
| 1709 | |
| 1710 | lockdep_assert_held(&iocg->ioc->lock); |
| 1711 | |
| 1712 | /* collect per-cpu counters */ |
| 1713 | for_each_possible_cpu(cpu) { |
| 1714 | abs_vusage += local64_read( |
| 1715 | per_cpu_ptr(&iocg->pcpu_stat->abs_vusage, cpu)); |
| 1716 | } |
| 1717 | vusage_delta = abs_vusage - iocg->last_stat_abs_vusage; |
| 1718 | iocg->last_stat_abs_vusage = abs_vusage; |
| 1719 | |
| 1720 | iocg->usage_delta_us = div64_u64(dividend: vusage_delta, divisor: ioc->vtime_base_rate); |
| 1721 | iocg->stat.usage_us += iocg->usage_delta_us; |
| 1722 | |
| 1723 | iocg_flush_stat_upward(iocg); |
| 1724 | } |
| 1725 | |
| 1726 | /* get stat counters ready for reading on all active iocgs */ |
| 1727 | static void iocg_flush_stat(struct list_head *target_iocgs, struct ioc_now *now) |
| 1728 | { |
| 1729 | LIST_HEAD(inner_walk); |
| 1730 | struct ioc_gq *iocg, *tiocg; |
| 1731 | |
| 1732 | /* flush leaves and build inner node walk list */ |
| 1733 | list_for_each_entry(iocg, target_iocgs, active_list) { |
| 1734 | iocg_flush_stat_leaf(iocg, now); |
| 1735 | iocg_build_inner_walk(iocg, inner_walk: &inner_walk); |
| 1736 | } |
| 1737 | |
| 1738 | /* keep flushing upwards by walking the inner list backwards */ |
| 1739 | list_for_each_entry_safe_reverse(iocg, tiocg, &inner_walk, walk_list) { |
| 1740 | iocg_flush_stat_upward(iocg); |
| 1741 | list_del_init(entry: &iocg->walk_list); |
| 1742 | } |
| 1743 | } |
| 1744 | |
| 1745 | /* |
| 1746 | * Determine what @iocg's hweight_inuse should be after donating unused |
| 1747 | * capacity. @hwm is the upper bound and used to signal no donation. This |
| 1748 | * function also throws away @iocg's excess budget. |
| 1749 | */ |
| 1750 | static u32 hweight_after_donation(struct ioc_gq *iocg, u32 old_hwi, u32 hwm, |
| 1751 | u32 usage, struct ioc_now *now) |
| 1752 | { |
| 1753 | struct ioc *ioc = iocg->ioc; |
| 1754 | u64 vtime = atomic64_read(v: &iocg->vtime); |
| 1755 | s64 excess, delta, target, new_hwi; |
| 1756 | |
| 1757 | /* debt handling owns inuse for debtors */ |
| 1758 | if (iocg->abs_vdebt) |
| 1759 | return 1; |
| 1760 | |
| 1761 | /* see whether minimum margin requirement is met */ |
| 1762 | if (waitqueue_active(wq_head: &iocg->waitq) || |
| 1763 | time_after64(vtime, now->vnow - ioc->margins.min)) |
| 1764 | return hwm; |
| 1765 | |
| 1766 | /* throw away excess above target */ |
| 1767 | excess = now->vnow - vtime - ioc->margins.target; |
| 1768 | if (excess > 0) { |
| 1769 | atomic64_add(i: excess, v: &iocg->vtime); |
| 1770 | atomic64_add(i: excess, v: &iocg->done_vtime); |
| 1771 | vtime += excess; |
| 1772 | ioc->vtime_err -= div64_u64(dividend: excess * old_hwi, divisor: WEIGHT_ONE); |
| 1773 | } |
| 1774 | |
| 1775 | /* |
| 1776 | * Let's say the distance between iocg's and device's vtimes as a |
| 1777 | * fraction of period duration is delta. Assuming that the iocg will |
| 1778 | * consume the usage determined above, we want to determine new_hwi so |
| 1779 | * that delta equals MARGIN_TARGET at the end of the next period. |
| 1780 | * |
| 1781 | * We need to execute usage worth of IOs while spending the sum of the |
| 1782 | * new budget (1 - MARGIN_TARGET) and the leftover from the last period |
| 1783 | * (delta): |
| 1784 | * |
| 1785 | * usage = (1 - MARGIN_TARGET + delta) * new_hwi |
| 1786 | * |
| 1787 | * Therefore, the new_hwi is: |
| 1788 | * |
| 1789 | * new_hwi = usage / (1 - MARGIN_TARGET + delta) |
| 1790 | */ |
| 1791 | delta = div64_s64(dividend: WEIGHT_ONE * (now->vnow - vtime), |
| 1792 | divisor: now->vnow - ioc->period_at_vtime); |
| 1793 | target = WEIGHT_ONE * MARGIN_TARGET_PCT / 100; |
| 1794 | new_hwi = div64_s64(dividend: WEIGHT_ONE * usage, divisor: WEIGHT_ONE - target + delta); |
| 1795 | |
| 1796 | return clamp_t(s64, new_hwi, 1, hwm); |
| 1797 | } |
| 1798 | |
| 1799 | /* |
| 1800 | * For work-conservation, an iocg which isn't using all of its share should |
| 1801 | * donate the leftover to other iocgs. There are two ways to achieve this - 1. |
| 1802 | * bumping up vrate accordingly 2. lowering the donating iocg's inuse weight. |
| 1803 | * |
| 1804 | * #1 is mathematically simpler but has the drawback of requiring synchronous |
| 1805 | * global hweight_inuse updates when idle iocg's get activated or inuse weights |
| 1806 | * change due to donation snapbacks as it has the possibility of grossly |
| 1807 | * overshooting what's allowed by the model and vrate. |
| 1808 | * |
| 1809 | * #2 is inherently safe with local operations. The donating iocg can easily |
| 1810 | * snap back to higher weights when needed without worrying about impacts on |
| 1811 | * other nodes as the impacts will be inherently correct. This also makes idle |
| 1812 | * iocg activations safe. The only effect activations have is decreasing |
| 1813 | * hweight_inuse of others, the right solution to which is for those iocgs to |
| 1814 | * snap back to higher weights. |
| 1815 | * |
| 1816 | * So, we go with #2. The challenge is calculating how each donating iocg's |
| 1817 | * inuse should be adjusted to achieve the target donation amounts. This is done |
| 1818 | * using Andy's method described in the following pdf. |
| 1819 | * |
| 1820 | * https://drive.google.com/file/d/1PsJwxPFtjUnwOY1QJ5AeICCcsL7BM3bo |
| 1821 | * |
| 1822 | * Given the weights and target after-donation hweight_inuse values, Andy's |
| 1823 | * method determines how the proportional distribution should look like at each |
| 1824 | * sibling level to maintain the relative relationship between all non-donating |
| 1825 | * pairs. To roughly summarize, it divides the tree into donating and |
| 1826 | * non-donating parts, calculates global donation rate which is used to |
| 1827 | * determine the target hweight_inuse for each node, and then derives per-level |
| 1828 | * proportions. |
| 1829 | * |
| 1830 | * The following pdf shows that global distribution calculated this way can be |
| 1831 | * achieved by scaling inuse weights of donating leaves and propagating the |
| 1832 | * adjustments upwards proportionally. |
| 1833 | * |
| 1834 | * https://drive.google.com/file/d/1vONz1-fzVO7oY5DXXsLjSxEtYYQbOvsE |
| 1835 | * |
| 1836 | * Combining the above two, we can determine how each leaf iocg's inuse should |
| 1837 | * be adjusted to achieve the target donation. |
| 1838 | * |
| 1839 | * https://drive.google.com/file/d/1WcrltBOSPN0qXVdBgnKm4mdp9FhuEFQN |
| 1840 | * |
| 1841 | * The inline comments use symbols from the last pdf. |
| 1842 | * |
| 1843 | * b is the sum of the absolute budgets in the subtree. 1 for the root node. |
| 1844 | * f is the sum of the absolute budgets of non-donating nodes in the subtree. |
| 1845 | * t is the sum of the absolute budgets of donating nodes in the subtree. |
| 1846 | * w is the weight of the node. w = w_f + w_t |
| 1847 | * w_f is the non-donating portion of w. w_f = w * f / b |
| 1848 | * w_b is the donating portion of w. w_t = w * t / b |
| 1849 | * s is the sum of all sibling weights. s = Sum(w) for siblings |
| 1850 | * s_f and s_t are the non-donating and donating portions of s. |
| 1851 | * |
| 1852 | * Subscript p denotes the parent's counterpart and ' the adjusted value - e.g. |
| 1853 | * w_pt is the donating portion of the parent's weight and w'_pt the same value |
| 1854 | * after adjustments. Subscript r denotes the root node's values. |
| 1855 | */ |
| 1856 | static void transfer_surpluses(struct list_head *surpluses, struct ioc_now *now) |
| 1857 | { |
| 1858 | LIST_HEAD(over_hwa); |
| 1859 | LIST_HEAD(inner_walk); |
| 1860 | struct ioc_gq *iocg, *tiocg, *root_iocg; |
| 1861 | u32 after_sum, over_sum, over_target, gamma; |
| 1862 | |
| 1863 | /* |
| 1864 | * It's pretty unlikely but possible for the total sum of |
| 1865 | * hweight_after_donation's to be higher than WEIGHT_ONE, which will |
| 1866 | * confuse the following calculations. If such condition is detected, |
| 1867 | * scale down everyone over its full share equally to keep the sum below |
| 1868 | * WEIGHT_ONE. |
| 1869 | */ |
| 1870 | after_sum = 0; |
| 1871 | over_sum = 0; |
| 1872 | list_for_each_entry(iocg, surpluses, surplus_list) { |
| 1873 | u32 hwa; |
| 1874 | |
| 1875 | current_hweight(iocg, hw_activep: &hwa, NULL); |
| 1876 | after_sum += iocg->hweight_after_donation; |
| 1877 | |
| 1878 | if (iocg->hweight_after_donation > hwa) { |
| 1879 | over_sum += iocg->hweight_after_donation; |
| 1880 | list_add(new: &iocg->walk_list, head: &over_hwa); |
| 1881 | } |
| 1882 | } |
| 1883 | |
| 1884 | if (after_sum >= WEIGHT_ONE) { |
| 1885 | /* |
| 1886 | * The delta should be deducted from the over_sum, calculate |
| 1887 | * target over_sum value. |
| 1888 | */ |
| 1889 | u32 over_delta = after_sum - (WEIGHT_ONE - 1); |
| 1890 | WARN_ON_ONCE(over_sum <= over_delta); |
| 1891 | over_target = over_sum - over_delta; |
| 1892 | } else { |
| 1893 | over_target = 0; |
| 1894 | } |
| 1895 | |
| 1896 | list_for_each_entry_safe(iocg, tiocg, &over_hwa, walk_list) { |
| 1897 | if (over_target) |
| 1898 | iocg->hweight_after_donation = |
| 1899 | div_u64(dividend: (u64)iocg->hweight_after_donation * |
| 1900 | over_target, divisor: over_sum); |
| 1901 | list_del_init(entry: &iocg->walk_list); |
| 1902 | } |
| 1903 | |
| 1904 | /* |
| 1905 | * Build pre-order inner node walk list and prepare for donation |
| 1906 | * adjustment calculations. |
| 1907 | */ |
| 1908 | list_for_each_entry(iocg, surpluses, surplus_list) { |
| 1909 | iocg_build_inner_walk(iocg, inner_walk: &inner_walk); |
| 1910 | } |
| 1911 | |
| 1912 | root_iocg = list_first_entry(&inner_walk, struct ioc_gq, walk_list); |
| 1913 | WARN_ON_ONCE(root_iocg->level > 0); |
| 1914 | |
| 1915 | list_for_each_entry(iocg, &inner_walk, walk_list) { |
| 1916 | iocg->child_adjusted_sum = 0; |
| 1917 | iocg->hweight_donating = 0; |
| 1918 | iocg->hweight_after_donation = 0; |
| 1919 | } |
| 1920 | |
| 1921 | /* |
| 1922 | * Propagate the donating budget (b_t) and after donation budget (b'_t) |
| 1923 | * up the hierarchy. |
| 1924 | */ |
| 1925 | list_for_each_entry(iocg, surpluses, surplus_list) { |
| 1926 | struct ioc_gq *parent = iocg->ancestors[iocg->level - 1]; |
| 1927 | |
| 1928 | parent->hweight_donating += iocg->hweight_donating; |
| 1929 | parent->hweight_after_donation += iocg->hweight_after_donation; |
| 1930 | } |
| 1931 | |
| 1932 | list_for_each_entry_reverse(iocg, &inner_walk, walk_list) { |
| 1933 | if (iocg->level > 0) { |
| 1934 | struct ioc_gq *parent = iocg->ancestors[iocg->level - 1]; |
| 1935 | |
| 1936 | parent->hweight_donating += iocg->hweight_donating; |
| 1937 | parent->hweight_after_donation += iocg->hweight_after_donation; |
| 1938 | } |
| 1939 | } |
| 1940 | |
| 1941 | /* |
| 1942 | * Calculate inner hwa's (b) and make sure the donation values are |
| 1943 | * within the accepted ranges as we're doing low res calculations with |
| 1944 | * roundups. |
| 1945 | */ |
| 1946 | list_for_each_entry(iocg, &inner_walk, walk_list) { |
| 1947 | if (iocg->level) { |
| 1948 | struct ioc_gq *parent = iocg->ancestors[iocg->level - 1]; |
| 1949 | |
| 1950 | iocg->hweight_active = DIV64_U64_ROUND_UP( |
| 1951 | (u64)parent->hweight_active * iocg->active, |
| 1952 | parent->child_active_sum); |
| 1953 | |
| 1954 | } |
| 1955 | |
| 1956 | iocg->hweight_donating = min(iocg->hweight_donating, |
| 1957 | iocg->hweight_active); |
| 1958 | iocg->hweight_after_donation = min(iocg->hweight_after_donation, |
| 1959 | iocg->hweight_donating - 1); |
| 1960 | if (WARN_ON_ONCE(iocg->hweight_active <= 1 || |
| 1961 | iocg->hweight_donating <= 1 || |
| 1962 | iocg->hweight_after_donation == 0)) { |
| 1963 | pr_warn("iocg: invalid donation weights in " ); |
| 1964 | pr_cont_cgroup_path(cgrp: iocg_to_blkg(iocg)->blkcg->css.cgroup); |
| 1965 | pr_cont(": active=%u donating=%u after=%u\n" , |
| 1966 | iocg->hweight_active, iocg->hweight_donating, |
| 1967 | iocg->hweight_after_donation); |
| 1968 | } |
| 1969 | } |
| 1970 | |
| 1971 | /* |
| 1972 | * Calculate the global donation rate (gamma) - the rate to adjust |
| 1973 | * non-donating budgets by. |
| 1974 | * |
| 1975 | * No need to use 64bit multiplication here as the first operand is |
| 1976 | * guaranteed to be smaller than WEIGHT_ONE (1<<16). |
| 1977 | * |
| 1978 | * We know that there are beneficiary nodes and the sum of the donating |
| 1979 | * hweights can't be whole; however, due to the round-ups during hweight |
| 1980 | * calculations, root_iocg->hweight_donating might still end up equal to |
| 1981 | * or greater than whole. Limit the range when calculating the divider. |
| 1982 | * |
| 1983 | * gamma = (1 - t_r') / (1 - t_r) |
| 1984 | */ |
| 1985 | gamma = DIV_ROUND_UP( |
| 1986 | (WEIGHT_ONE - root_iocg->hweight_after_donation) * WEIGHT_ONE, |
| 1987 | WEIGHT_ONE - min_t(u32, root_iocg->hweight_donating, WEIGHT_ONE - 1)); |
| 1988 | |
| 1989 | /* |
| 1990 | * Calculate adjusted hwi, child_adjusted_sum and inuse for the inner |
| 1991 | * nodes. |
| 1992 | */ |
| 1993 | list_for_each_entry(iocg, &inner_walk, walk_list) { |
| 1994 | struct ioc_gq *parent; |
| 1995 | u32 inuse, wpt, wptp; |
| 1996 | u64 st, sf; |
| 1997 | |
| 1998 | if (iocg->level == 0) { |
| 1999 | /* adjusted weight sum for 1st level: s' = s * b_pf / b'_pf */ |
| 2000 | iocg->child_adjusted_sum = DIV64_U64_ROUND_UP( |
| 2001 | iocg->child_active_sum * (WEIGHT_ONE - iocg->hweight_donating), |
| 2002 | WEIGHT_ONE - iocg->hweight_after_donation); |
| 2003 | continue; |
| 2004 | } |
| 2005 | |
| 2006 | parent = iocg->ancestors[iocg->level - 1]; |
| 2007 | |
| 2008 | /* b' = gamma * b_f + b_t' */ |
| 2009 | iocg->hweight_inuse = DIV64_U64_ROUND_UP( |
| 2010 | (u64)gamma * (iocg->hweight_active - iocg->hweight_donating), |
| 2011 | WEIGHT_ONE) + iocg->hweight_after_donation; |
| 2012 | |
| 2013 | /* w' = s' * b' / b'_p */ |
| 2014 | inuse = DIV64_U64_ROUND_UP( |
| 2015 | (u64)parent->child_adjusted_sum * iocg->hweight_inuse, |
| 2016 | parent->hweight_inuse); |
| 2017 | |
| 2018 | /* adjusted weight sum for children: s' = s_f + s_t * w'_pt / w_pt */ |
| 2019 | st = DIV64_U64_ROUND_UP( |
| 2020 | iocg->child_active_sum * iocg->hweight_donating, |
| 2021 | iocg->hweight_active); |
| 2022 | sf = iocg->child_active_sum - st; |
| 2023 | wpt = DIV64_U64_ROUND_UP( |
| 2024 | (u64)iocg->active * iocg->hweight_donating, |
| 2025 | iocg->hweight_active); |
| 2026 | wptp = DIV64_U64_ROUND_UP( |
| 2027 | (u64)inuse * iocg->hweight_after_donation, |
| 2028 | iocg->hweight_inuse); |
| 2029 | |
| 2030 | iocg->child_adjusted_sum = sf + DIV64_U64_ROUND_UP(st * wptp, wpt); |
| 2031 | } |
| 2032 | |
| 2033 | /* |
| 2034 | * All inner nodes now have ->hweight_inuse and ->child_adjusted_sum and |
| 2035 | * we can finally determine leaf adjustments. |
| 2036 | */ |
| 2037 | list_for_each_entry(iocg, surpluses, surplus_list) { |
| 2038 | struct ioc_gq *parent = iocg->ancestors[iocg->level - 1]; |
| 2039 | u32 inuse; |
| 2040 | |
| 2041 | /* |
| 2042 | * In-debt iocgs participated in the donation calculation with |
| 2043 | * the minimum target hweight_inuse. Configuring inuse |
| 2044 | * accordingly would work fine but debt handling expects |
| 2045 | * @iocg->inuse stay at the minimum and we don't wanna |
| 2046 | * interfere. |
| 2047 | */ |
| 2048 | if (iocg->abs_vdebt) { |
| 2049 | WARN_ON_ONCE(iocg->inuse > 1); |
| 2050 | continue; |
| 2051 | } |
| 2052 | |
| 2053 | /* w' = s' * b' / b'_p, note that b' == b'_t for donating leaves */ |
| 2054 | inuse = DIV64_U64_ROUND_UP( |
| 2055 | parent->child_adjusted_sum * iocg->hweight_after_donation, |
| 2056 | parent->hweight_inuse); |
| 2057 | |
| 2058 | TRACE_IOCG_PATH(inuse_transfer, iocg, now, |
| 2059 | iocg->inuse, inuse, |
| 2060 | iocg->hweight_inuse, |
| 2061 | iocg->hweight_after_donation); |
| 2062 | |
| 2063 | __propagate_weights(iocg, active: iocg->active, inuse, save: true, now); |
| 2064 | } |
| 2065 | |
| 2066 | /* walk list should be dissolved after use */ |
| 2067 | list_for_each_entry_safe(iocg, tiocg, &inner_walk, walk_list) |
| 2068 | list_del_init(entry: &iocg->walk_list); |
| 2069 | } |
| 2070 | |
| 2071 | /* |
| 2072 | * A low weight iocg can amass a large amount of debt, for example, when |
| 2073 | * anonymous memory gets reclaimed aggressively. If the system has a lot of |
| 2074 | * memory paired with a slow IO device, the debt can span multiple seconds or |
| 2075 | * more. If there are no other subsequent IO issuers, the in-debt iocg may end |
| 2076 | * up blocked paying its debt while the IO device is idle. |
| 2077 | * |
| 2078 | * The following protects against such cases. If the device has been |
| 2079 | * sufficiently idle for a while, the debts are halved and delays are |
| 2080 | * recalculated. |
| 2081 | */ |
| 2082 | static void ioc_forgive_debts(struct ioc *ioc, u64 usage_us_sum, int nr_debtors, |
| 2083 | struct ioc_now *now) |
| 2084 | { |
| 2085 | struct ioc_gq *iocg; |
| 2086 | u64 dur, usage_pct, nr_cycles, nr_cycles_shift; |
| 2087 | |
| 2088 | /* if no debtor, reset the cycle */ |
| 2089 | if (!nr_debtors) { |
| 2090 | ioc->dfgv_period_at = now->now; |
| 2091 | ioc->dfgv_period_rem = 0; |
| 2092 | ioc->dfgv_usage_us_sum = 0; |
| 2093 | return; |
| 2094 | } |
| 2095 | |
| 2096 | /* |
| 2097 | * Debtors can pass through a lot of writes choking the device and we |
| 2098 | * don't want to be forgiving debts while the device is struggling from |
| 2099 | * write bursts. If we're missing latency targets, consider the device |
| 2100 | * fully utilized. |
| 2101 | */ |
| 2102 | if (ioc->busy_level > 0) |
| 2103 | usage_us_sum = max_t(u64, usage_us_sum, ioc->period_us); |
| 2104 | |
| 2105 | ioc->dfgv_usage_us_sum += usage_us_sum; |
| 2106 | if (time_before64(now->now, ioc->dfgv_period_at + DFGV_PERIOD)) |
| 2107 | return; |
| 2108 | |
| 2109 | /* |
| 2110 | * At least DFGV_PERIOD has passed since the last period. Calculate the |
| 2111 | * average usage and reset the period counters. |
| 2112 | */ |
| 2113 | dur = now->now - ioc->dfgv_period_at; |
| 2114 | usage_pct = div64_u64(dividend: 100 * ioc->dfgv_usage_us_sum, divisor: dur); |
| 2115 | |
| 2116 | ioc->dfgv_period_at = now->now; |
| 2117 | ioc->dfgv_usage_us_sum = 0; |
| 2118 | |
| 2119 | /* if was too busy, reset everything */ |
| 2120 | if (usage_pct > DFGV_USAGE_PCT) { |
| 2121 | ioc->dfgv_period_rem = 0; |
| 2122 | return; |
| 2123 | } |
| 2124 | |
| 2125 | /* |
| 2126 | * Usage is lower than threshold. Let's forgive some debts. Debt |
| 2127 | * forgiveness runs off of the usual ioc timer but its period usually |
| 2128 | * doesn't match ioc's. Compensate the difference by performing the |
| 2129 | * reduction as many times as would fit in the duration since the last |
| 2130 | * run and carrying over the left-over duration in @ioc->dfgv_period_rem |
| 2131 | * - if ioc period is 75% of DFGV_PERIOD, one out of three consecutive |
| 2132 | * reductions is doubled. |
| 2133 | */ |
| 2134 | nr_cycles = dur + ioc->dfgv_period_rem; |
| 2135 | ioc->dfgv_period_rem = do_div(nr_cycles, DFGV_PERIOD); |
| 2136 | |
| 2137 | list_for_each_entry(iocg, &ioc->active_iocgs, active_list) { |
| 2138 | u64 __maybe_unused old_debt, __maybe_unused old_delay; |
| 2139 | |
| 2140 | if (!iocg->abs_vdebt && !iocg->delay) |
| 2141 | continue; |
| 2142 | |
| 2143 | spin_lock(lock: &iocg->waitq.lock); |
| 2144 | |
| 2145 | old_debt = iocg->abs_vdebt; |
| 2146 | old_delay = iocg->delay; |
| 2147 | |
| 2148 | nr_cycles_shift = min_t(u64, nr_cycles, BITS_PER_LONG - 1); |
| 2149 | if (iocg->abs_vdebt) |
| 2150 | iocg->abs_vdebt = iocg->abs_vdebt >> nr_cycles_shift ?: 1; |
| 2151 | |
| 2152 | if (iocg->delay) |
| 2153 | iocg->delay = iocg->delay >> nr_cycles_shift ?: 1; |
| 2154 | |
| 2155 | iocg_kick_waitq(iocg, pay_debt: true, now); |
| 2156 | |
| 2157 | TRACE_IOCG_PATH(iocg_forgive_debt, iocg, now, usage_pct, |
| 2158 | old_debt, iocg->abs_vdebt, |
| 2159 | old_delay, iocg->delay); |
| 2160 | |
| 2161 | spin_unlock(lock: &iocg->waitq.lock); |
| 2162 | } |
| 2163 | } |
| 2164 | |
| 2165 | /* |
| 2166 | * Check the active iocgs' state to avoid oversleeping and deactive |
| 2167 | * idle iocgs. |
| 2168 | * |
| 2169 | * Since waiters determine the sleep durations based on the vrate |
| 2170 | * they saw at the time of sleep, if vrate has increased, some |
| 2171 | * waiters could be sleeping for too long. Wake up tardy waiters |
| 2172 | * which should have woken up in the last period and expire idle |
| 2173 | * iocgs. |
| 2174 | */ |
| 2175 | static int ioc_check_iocgs(struct ioc *ioc, struct ioc_now *now) |
| 2176 | { |
| 2177 | int nr_debtors = 0; |
| 2178 | struct ioc_gq *iocg, *tiocg; |
| 2179 | |
| 2180 | list_for_each_entry_safe(iocg, tiocg, &ioc->active_iocgs, active_list) { |
| 2181 | if (!waitqueue_active(wq_head: &iocg->waitq) && !iocg->abs_vdebt && |
| 2182 | !iocg->delay && !iocg_is_idle(iocg)) |
| 2183 | continue; |
| 2184 | |
| 2185 | spin_lock(lock: &iocg->waitq.lock); |
| 2186 | |
| 2187 | /* flush wait and indebt stat deltas */ |
| 2188 | if (iocg->wait_since) { |
| 2189 | iocg->stat.wait_us += now->now - iocg->wait_since; |
| 2190 | iocg->wait_since = now->now; |
| 2191 | } |
| 2192 | if (iocg->indebt_since) { |
| 2193 | iocg->stat.indebt_us += |
| 2194 | now->now - iocg->indebt_since; |
| 2195 | iocg->indebt_since = now->now; |
| 2196 | } |
| 2197 | if (iocg->indelay_since) { |
| 2198 | iocg->stat.indelay_us += |
| 2199 | now->now - iocg->indelay_since; |
| 2200 | iocg->indelay_since = now->now; |
| 2201 | } |
| 2202 | |
| 2203 | if (waitqueue_active(wq_head: &iocg->waitq) || iocg->abs_vdebt || |
| 2204 | iocg->delay) { |
| 2205 | /* might be oversleeping vtime / hweight changes, kick */ |
| 2206 | iocg_kick_waitq(iocg, pay_debt: true, now); |
| 2207 | if (iocg->abs_vdebt || iocg->delay) |
| 2208 | nr_debtors++; |
| 2209 | } else if (iocg_is_idle(iocg)) { |
| 2210 | /* no waiter and idle, deactivate */ |
| 2211 | u64 vtime = atomic64_read(v: &iocg->vtime); |
| 2212 | s64 excess; |
| 2213 | |
| 2214 | /* |
| 2215 | * @iocg has been inactive for a full duration and will |
| 2216 | * have a high budget. Account anything above target as |
| 2217 | * error and throw away. On reactivation, it'll start |
| 2218 | * with the target budget. |
| 2219 | */ |
| 2220 | excess = now->vnow - vtime - ioc->margins.target; |
| 2221 | if (excess > 0) { |
| 2222 | u32 old_hwi; |
| 2223 | |
| 2224 | current_hweight(iocg, NULL, hw_inusep: &old_hwi); |
| 2225 | ioc->vtime_err -= div64_u64(dividend: excess * old_hwi, |
| 2226 | divisor: WEIGHT_ONE); |
| 2227 | } |
| 2228 | |
| 2229 | TRACE_IOCG_PATH(iocg_idle, iocg, now, |
| 2230 | atomic64_read(&iocg->active_period), |
| 2231 | atomic64_read(&ioc->cur_period), vtime); |
| 2232 | __propagate_weights(iocg, active: 0, inuse: 0, save: false, now); |
| 2233 | list_del_init(entry: &iocg->active_list); |
| 2234 | } |
| 2235 | |
| 2236 | spin_unlock(lock: &iocg->waitq.lock); |
| 2237 | } |
| 2238 | |
| 2239 | commit_weights(ioc); |
| 2240 | return nr_debtors; |
| 2241 | } |
| 2242 | |
| 2243 | static void ioc_timer_fn(struct timer_list *timer) |
| 2244 | { |
| 2245 | struct ioc *ioc = container_of(timer, struct ioc, timer); |
| 2246 | struct ioc_gq *iocg, *tiocg; |
| 2247 | struct ioc_now now; |
| 2248 | LIST_HEAD(surpluses); |
| 2249 | int nr_debtors, nr_shortages = 0, nr_lagging = 0; |
| 2250 | u64 usage_us_sum = 0; |
| 2251 | u32 ppm_rthr; |
| 2252 | u32 ppm_wthr; |
| 2253 | u32 missed_ppm[2], rq_wait_pct; |
| 2254 | u64 period_vtime; |
| 2255 | int prev_busy_level; |
| 2256 | |
| 2257 | /* how were the latencies during the period? */ |
| 2258 | ioc_lat_stat(ioc, missed_ppm_ar: missed_ppm, rq_wait_pct_p: &rq_wait_pct); |
| 2259 | |
| 2260 | /* take care of active iocgs */ |
| 2261 | spin_lock_irq(lock: &ioc->lock); |
| 2262 | |
| 2263 | ppm_rthr = MILLION - ioc->params.qos[QOS_RPPM]; |
| 2264 | ppm_wthr = MILLION - ioc->params.qos[QOS_WPPM]; |
| 2265 | ioc_now(ioc, now: &now); |
| 2266 | |
| 2267 | period_vtime = now.vnow - ioc->period_at_vtime; |
| 2268 | if (WARN_ON_ONCE(!period_vtime)) { |
| 2269 | spin_unlock_irq(lock: &ioc->lock); |
| 2270 | return; |
| 2271 | } |
| 2272 | |
| 2273 | nr_debtors = ioc_check_iocgs(ioc, now: &now); |
| 2274 | |
| 2275 | /* |
| 2276 | * Wait and indebt stat are flushed above and the donation calculation |
| 2277 | * below needs updated usage stat. Let's bring stat up-to-date. |
| 2278 | */ |
| 2279 | iocg_flush_stat(target_iocgs: &ioc->active_iocgs, now: &now); |
| 2280 | |
| 2281 | /* calc usage and see whether some weights need to be moved around */ |
| 2282 | list_for_each_entry(iocg, &ioc->active_iocgs, active_list) { |
| 2283 | u64 vdone, vtime, usage_us; |
| 2284 | u32 hw_active, hw_inuse; |
| 2285 | |
| 2286 | /* |
| 2287 | * Collect unused and wind vtime closer to vnow to prevent |
| 2288 | * iocgs from accumulating a large amount of budget. |
| 2289 | */ |
| 2290 | vdone = atomic64_read(v: &iocg->done_vtime); |
| 2291 | vtime = atomic64_read(v: &iocg->vtime); |
| 2292 | current_hweight(iocg, hw_activep: &hw_active, hw_inusep: &hw_inuse); |
| 2293 | |
| 2294 | /* |
| 2295 | * Latency QoS detection doesn't account for IOs which are |
| 2296 | * in-flight for longer than a period. Detect them by |
| 2297 | * comparing vdone against period start. If lagging behind |
| 2298 | * IOs from past periods, don't increase vrate. |
| 2299 | */ |
| 2300 | if ((ppm_rthr != MILLION || ppm_wthr != MILLION) && |
| 2301 | !atomic_read(v: &iocg_to_blkg(iocg)->use_delay) && |
| 2302 | time_after64(vtime, vdone) && |
| 2303 | time_after64(vtime, now.vnow - |
| 2304 | MAX_LAGGING_PERIODS * period_vtime) && |
| 2305 | time_before64(vdone, now.vnow - period_vtime)) |
| 2306 | nr_lagging++; |
| 2307 | |
| 2308 | /* |
| 2309 | * Determine absolute usage factoring in in-flight IOs to avoid |
| 2310 | * high-latency completions appearing as idle. |
| 2311 | */ |
| 2312 | usage_us = iocg->usage_delta_us; |
| 2313 | usage_us_sum += usage_us; |
| 2314 | |
| 2315 | /* see whether there's surplus vtime */ |
| 2316 | WARN_ON_ONCE(!list_empty(&iocg->surplus_list)); |
| 2317 | if (hw_inuse < hw_active || |
| 2318 | (!waitqueue_active(wq_head: &iocg->waitq) && |
| 2319 | time_before64(vtime, now.vnow - ioc->margins.low))) { |
| 2320 | u32 hwa, old_hwi, hwm, new_hwi, usage; |
| 2321 | u64 usage_dur; |
| 2322 | |
| 2323 | if (vdone != vtime) { |
| 2324 | u64 inflight_us = DIV64_U64_ROUND_UP( |
| 2325 | cost_to_abs_cost(vtime - vdone, hw_inuse), |
| 2326 | ioc->vtime_base_rate); |
| 2327 | |
| 2328 | usage_us = max(usage_us, inflight_us); |
| 2329 | } |
| 2330 | |
| 2331 | /* convert to hweight based usage ratio */ |
| 2332 | if (time_after64(iocg->activated_at, ioc->period_at)) |
| 2333 | usage_dur = max_t(u64, now.now - iocg->activated_at, 1); |
| 2334 | else |
| 2335 | usage_dur = max_t(u64, now.now - ioc->period_at, 1); |
| 2336 | |
| 2337 | usage = clamp_t(u32, |
| 2338 | DIV64_U64_ROUND_UP(usage_us * WEIGHT_ONE, |
| 2339 | usage_dur), |
| 2340 | 1, WEIGHT_ONE); |
| 2341 | |
| 2342 | /* |
| 2343 | * Already donating or accumulated enough to start. |
| 2344 | * Determine the donation amount. |
| 2345 | */ |
| 2346 | current_hweight(iocg, hw_activep: &hwa, hw_inusep: &old_hwi); |
| 2347 | hwm = current_hweight_max(iocg); |
| 2348 | new_hwi = hweight_after_donation(iocg, old_hwi, hwm, |
| 2349 | usage, now: &now); |
| 2350 | /* |
| 2351 | * Donation calculation assumes hweight_after_donation |
| 2352 | * to be positive, a condition that a donor w/ hwa < 2 |
| 2353 | * can't meet. Don't bother with donation if hwa is |
| 2354 | * below 2. It's not gonna make a meaningful difference |
| 2355 | * anyway. |
| 2356 | */ |
| 2357 | if (new_hwi < hwm && hwa >= 2) { |
| 2358 | iocg->hweight_donating = hwa; |
| 2359 | iocg->hweight_after_donation = new_hwi; |
| 2360 | list_add(new: &iocg->surplus_list, head: &surpluses); |
| 2361 | } else if (!iocg->abs_vdebt) { |
| 2362 | /* |
| 2363 | * @iocg doesn't have enough to donate. Reset |
| 2364 | * its inuse to active. |
| 2365 | * |
| 2366 | * Don't reset debtors as their inuse's are |
| 2367 | * owned by debt handling. This shouldn't affect |
| 2368 | * donation calculuation in any meaningful way |
| 2369 | * as @iocg doesn't have a meaningful amount of |
| 2370 | * share anyway. |
| 2371 | */ |
| 2372 | TRACE_IOCG_PATH(inuse_shortage, iocg, &now, |
| 2373 | iocg->inuse, iocg->active, |
| 2374 | iocg->hweight_inuse, new_hwi); |
| 2375 | |
| 2376 | __propagate_weights(iocg, active: iocg->active, |
| 2377 | inuse: iocg->active, save: true, now: &now); |
| 2378 | nr_shortages++; |
| 2379 | } |
| 2380 | } else { |
| 2381 | /* genuinely short on vtime */ |
| 2382 | nr_shortages++; |
| 2383 | } |
| 2384 | } |
| 2385 | |
| 2386 | if (!list_empty(head: &surpluses) && nr_shortages) |
| 2387 | transfer_surpluses(surpluses: &surpluses, now: &now); |
| 2388 | |
| 2389 | commit_weights(ioc); |
| 2390 | |
| 2391 | /* surplus list should be dissolved after use */ |
| 2392 | list_for_each_entry_safe(iocg, tiocg, &surpluses, surplus_list) |
| 2393 | list_del_init(entry: &iocg->surplus_list); |
| 2394 | |
| 2395 | /* |
| 2396 | * If q is getting clogged or we're missing too much, we're issuing |
| 2397 | * too much IO and should lower vtime rate. If we're not missing |
| 2398 | * and experiencing shortages but not surpluses, we're too stingy |
| 2399 | * and should increase vtime rate. |
| 2400 | */ |
| 2401 | prev_busy_level = ioc->busy_level; |
| 2402 | if (rq_wait_pct > RQ_WAIT_BUSY_PCT || |
| 2403 | missed_ppm[READ] > ppm_rthr || |
| 2404 | missed_ppm[WRITE] > ppm_wthr) { |
| 2405 | /* clearly missing QoS targets, slow down vrate */ |
| 2406 | ioc->busy_level = max(ioc->busy_level, 0); |
| 2407 | ioc->busy_level++; |
| 2408 | } else if (rq_wait_pct <= RQ_WAIT_BUSY_PCT * UNBUSY_THR_PCT / 100 && |
| 2409 | missed_ppm[READ] <= ppm_rthr * UNBUSY_THR_PCT / 100 && |
| 2410 | missed_ppm[WRITE] <= ppm_wthr * UNBUSY_THR_PCT / 100) { |
| 2411 | /* QoS targets are being met with >25% margin */ |
| 2412 | if (nr_shortages) { |
| 2413 | /* |
| 2414 | * We're throttling while the device has spare |
| 2415 | * capacity. If vrate was being slowed down, stop. |
| 2416 | */ |
| 2417 | ioc->busy_level = min(ioc->busy_level, 0); |
| 2418 | |
| 2419 | /* |
| 2420 | * If there are IOs spanning multiple periods, wait |
| 2421 | * them out before pushing the device harder. |
| 2422 | */ |
| 2423 | if (!nr_lagging) |
| 2424 | ioc->busy_level--; |
| 2425 | } else { |
| 2426 | /* |
| 2427 | * Nobody is being throttled and the users aren't |
| 2428 | * issuing enough IOs to saturate the device. We |
| 2429 | * simply don't know how close the device is to |
| 2430 | * saturation. Coast. |
| 2431 | */ |
| 2432 | ioc->busy_level = 0; |
| 2433 | } |
| 2434 | } else { |
| 2435 | /* inside the hysterisis margin, we're good */ |
| 2436 | ioc->busy_level = 0; |
| 2437 | } |
| 2438 | |
| 2439 | ioc->busy_level = clamp(ioc->busy_level, -1000, 1000); |
| 2440 | |
| 2441 | ioc_adjust_base_vrate(ioc, rq_wait_pct, nr_lagging, nr_shortages, |
| 2442 | prev_busy_level, missed_ppm); |
| 2443 | |
| 2444 | ioc_refresh_params(ioc, force: false); |
| 2445 | |
| 2446 | ioc_forgive_debts(ioc, usage_us_sum, nr_debtors, now: &now); |
| 2447 | |
| 2448 | /* |
| 2449 | * This period is done. Move onto the next one. If nothing's |
| 2450 | * going on with the device, stop the timer. |
| 2451 | */ |
| 2452 | atomic64_inc(v: &ioc->cur_period); |
| 2453 | |
| 2454 | if (ioc->running != IOC_STOP) { |
| 2455 | if (!list_empty(head: &ioc->active_iocgs)) { |
| 2456 | ioc_start_period(ioc, now: &now); |
| 2457 | } else { |
| 2458 | ioc->busy_level = 0; |
| 2459 | ioc->vtime_err = 0; |
| 2460 | ioc->running = IOC_IDLE; |
| 2461 | } |
| 2462 | |
| 2463 | ioc_refresh_vrate(ioc, now: &now); |
| 2464 | } |
| 2465 | |
| 2466 | spin_unlock_irq(lock: &ioc->lock); |
| 2467 | } |
| 2468 | |
| 2469 | static u64 adjust_inuse_and_calc_cost(struct ioc_gq *iocg, u64 vtime, |
| 2470 | u64 abs_cost, struct ioc_now *now) |
| 2471 | { |
| 2472 | struct ioc *ioc = iocg->ioc; |
| 2473 | struct ioc_margins *margins = &ioc->margins; |
| 2474 | u32 __maybe_unused old_inuse = iocg->inuse, __maybe_unused old_hwi; |
| 2475 | u32 hwi, adj_step; |
| 2476 | s64 margin; |
| 2477 | u64 cost, new_inuse; |
| 2478 | unsigned long flags; |
| 2479 | |
| 2480 | current_hweight(iocg, NULL, hw_inusep: &hwi); |
| 2481 | old_hwi = hwi; |
| 2482 | cost = abs_cost_to_cost(abs_cost, hw_inuse: hwi); |
| 2483 | margin = now->vnow - vtime - cost; |
| 2484 | |
| 2485 | /* debt handling owns inuse for debtors */ |
| 2486 | if (iocg->abs_vdebt) |
| 2487 | return cost; |
| 2488 | |
| 2489 | /* |
| 2490 | * We only increase inuse during period and do so if the margin has |
| 2491 | * deteriorated since the previous adjustment. |
| 2492 | */ |
| 2493 | if (margin >= iocg->saved_margin || margin >= margins->low || |
| 2494 | iocg->inuse == iocg->active) |
| 2495 | return cost; |
| 2496 | |
| 2497 | spin_lock_irqsave(&ioc->lock, flags); |
| 2498 | |
| 2499 | /* we own inuse only when @iocg is in the normal active state */ |
| 2500 | if (iocg->abs_vdebt || list_empty(head: &iocg->active_list)) { |
| 2501 | spin_unlock_irqrestore(lock: &ioc->lock, flags); |
| 2502 | return cost; |
| 2503 | } |
| 2504 | |
| 2505 | /* |
| 2506 | * Bump up inuse till @abs_cost fits in the existing budget. |
| 2507 | * adj_step must be determined after acquiring ioc->lock - we might |
| 2508 | * have raced and lost to another thread for activation and could |
| 2509 | * be reading 0 iocg->active before ioc->lock which will lead to |
| 2510 | * infinite loop. |
| 2511 | */ |
| 2512 | new_inuse = iocg->inuse; |
| 2513 | adj_step = DIV_ROUND_UP(iocg->active * INUSE_ADJ_STEP_PCT, 100); |
| 2514 | do { |
| 2515 | new_inuse = new_inuse + adj_step; |
| 2516 | propagate_weights(iocg, active: iocg->active, inuse: new_inuse, save: true, now); |
| 2517 | current_hweight(iocg, NULL, hw_inusep: &hwi); |
| 2518 | cost = abs_cost_to_cost(abs_cost, hw_inuse: hwi); |
| 2519 | } while (time_after64(vtime + cost, now->vnow) && |
| 2520 | iocg->inuse != iocg->active); |
| 2521 | |
| 2522 | spin_unlock_irqrestore(lock: &ioc->lock, flags); |
| 2523 | |
| 2524 | TRACE_IOCG_PATH(inuse_adjust, iocg, now, |
| 2525 | old_inuse, iocg->inuse, old_hwi, hwi); |
| 2526 | |
| 2527 | return cost; |
| 2528 | } |
| 2529 | |
| 2530 | static void calc_vtime_cost_builtin(struct bio *bio, struct ioc_gq *iocg, |
| 2531 | bool is_merge, u64 *costp) |
| 2532 | { |
| 2533 | struct ioc *ioc = iocg->ioc; |
| 2534 | u64 coef_seqio, coef_randio, coef_page; |
| 2535 | u64 pages = max_t(u64, bio_sectors(bio) >> IOC_SECT_TO_PAGE_SHIFT, 1); |
| 2536 | u64 seek_pages = 0; |
| 2537 | u64 cost = 0; |
| 2538 | |
| 2539 | /* Can't calculate cost for empty bio */ |
| 2540 | if (!bio->bi_iter.bi_size) |
| 2541 | goto out; |
| 2542 | |
| 2543 | switch (bio_op(bio)) { |
| 2544 | case REQ_OP_READ: |
| 2545 | coef_seqio = ioc->params.lcoefs[LCOEF_RSEQIO]; |
| 2546 | coef_randio = ioc->params.lcoefs[LCOEF_RRANDIO]; |
| 2547 | coef_page = ioc->params.lcoefs[LCOEF_RPAGE]; |
| 2548 | break; |
| 2549 | case REQ_OP_WRITE: |
| 2550 | coef_seqio = ioc->params.lcoefs[LCOEF_WSEQIO]; |
| 2551 | coef_randio = ioc->params.lcoefs[LCOEF_WRANDIO]; |
| 2552 | coef_page = ioc->params.lcoefs[LCOEF_WPAGE]; |
| 2553 | break; |
| 2554 | default: |
| 2555 | goto out; |
| 2556 | } |
| 2557 | |
| 2558 | if (iocg->cursor) { |
| 2559 | seek_pages = abs(bio->bi_iter.bi_sector - iocg->cursor); |
| 2560 | seek_pages >>= IOC_SECT_TO_PAGE_SHIFT; |
| 2561 | } |
| 2562 | |
| 2563 | if (!is_merge) { |
| 2564 | if (seek_pages > LCOEF_RANDIO_PAGES) { |
| 2565 | cost += coef_randio; |
| 2566 | } else { |
| 2567 | cost += coef_seqio; |
| 2568 | } |
| 2569 | } |
| 2570 | cost += pages * coef_page; |
| 2571 | out: |
| 2572 | *costp = cost; |
| 2573 | } |
| 2574 | |
| 2575 | static u64 calc_vtime_cost(struct bio *bio, struct ioc_gq *iocg, bool is_merge) |
| 2576 | { |
| 2577 | u64 cost; |
| 2578 | |
| 2579 | calc_vtime_cost_builtin(bio, iocg, is_merge, costp: &cost); |
| 2580 | return cost; |
| 2581 | } |
| 2582 | |
| 2583 | static void calc_size_vtime_cost_builtin(struct request *rq, struct ioc *ioc, |
| 2584 | u64 *costp) |
| 2585 | { |
| 2586 | unsigned int pages = blk_rq_stats_sectors(rq) >> IOC_SECT_TO_PAGE_SHIFT; |
| 2587 | |
| 2588 | switch (req_op(req: rq)) { |
| 2589 | case REQ_OP_READ: |
| 2590 | *costp = pages * ioc->params.lcoefs[LCOEF_RPAGE]; |
| 2591 | break; |
| 2592 | case REQ_OP_WRITE: |
| 2593 | *costp = pages * ioc->params.lcoefs[LCOEF_WPAGE]; |
| 2594 | break; |
| 2595 | default: |
| 2596 | *costp = 0; |
| 2597 | } |
| 2598 | } |
| 2599 | |
| 2600 | static u64 calc_size_vtime_cost(struct request *rq, struct ioc *ioc) |
| 2601 | { |
| 2602 | u64 cost; |
| 2603 | |
| 2604 | calc_size_vtime_cost_builtin(rq, ioc, costp: &cost); |
| 2605 | return cost; |
| 2606 | } |
| 2607 | |
| 2608 | static void ioc_rqos_throttle(struct rq_qos *rqos, struct bio *bio) |
| 2609 | { |
| 2610 | struct blkcg_gq *blkg = bio->bi_blkg; |
| 2611 | struct ioc *ioc = rqos_to_ioc(rqos); |
| 2612 | struct ioc_gq *iocg = blkg_to_iocg(blkg); |
| 2613 | struct ioc_now now; |
| 2614 | struct iocg_wait wait; |
| 2615 | u64 abs_cost, cost, vtime; |
| 2616 | bool use_debt, ioc_locked; |
| 2617 | unsigned long flags; |
| 2618 | |
| 2619 | /* bypass IOs if disabled, still initializing, or for root cgroup */ |
| 2620 | if (!ioc->enabled || !iocg || !iocg->level) |
| 2621 | return; |
| 2622 | |
| 2623 | /* calculate the absolute vtime cost */ |
| 2624 | abs_cost = calc_vtime_cost(bio, iocg, is_merge: false); |
| 2625 | if (!abs_cost) |
| 2626 | return; |
| 2627 | |
| 2628 | if (!iocg_activate(iocg, now: &now)) |
| 2629 | return; |
| 2630 | |
| 2631 | iocg->cursor = bio_end_sector(bio); |
| 2632 | vtime = atomic64_read(v: &iocg->vtime); |
| 2633 | cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, now: &now); |
| 2634 | |
| 2635 | /* |
| 2636 | * If no one's waiting and within budget, issue right away. The |
| 2637 | * tests are racy but the races aren't systemic - we only miss once |
| 2638 | * in a while which is fine. |
| 2639 | */ |
| 2640 | if (!waitqueue_active(wq_head: &iocg->waitq) && !iocg->abs_vdebt && |
| 2641 | time_before_eq64(vtime + cost, now.vnow)) { |
| 2642 | iocg_commit_bio(iocg, bio, abs_cost, cost); |
| 2643 | return; |
| 2644 | } |
| 2645 | |
| 2646 | /* |
| 2647 | * We're over budget. This can be handled in two ways. IOs which may |
| 2648 | * cause priority inversions are punted to @ioc->aux_iocg and charged as |
| 2649 | * debt. Otherwise, the issuer is blocked on @iocg->waitq. Debt handling |
| 2650 | * requires @ioc->lock, waitq handling @iocg->waitq.lock. Determine |
| 2651 | * whether debt handling is needed and acquire locks accordingly. |
| 2652 | */ |
| 2653 | use_debt = bio_issue_as_root_blkg(bio) || fatal_signal_pending(current); |
| 2654 | ioc_locked = use_debt || READ_ONCE(iocg->abs_vdebt); |
| 2655 | retry_lock: |
| 2656 | iocg_lock(iocg, lock_ioc: ioc_locked, flags: &flags); |
| 2657 | |
| 2658 | /* |
| 2659 | * @iocg must stay activated for debt and waitq handling. Deactivation |
| 2660 | * is synchronized against both ioc->lock and waitq.lock and we won't |
| 2661 | * get deactivated as long as we're waiting or has debt, so we're good |
| 2662 | * if we're activated here. In the unlikely cases that we aren't, just |
| 2663 | * issue the IO. |
| 2664 | */ |
| 2665 | if (unlikely(list_empty(&iocg->active_list))) { |
| 2666 | iocg_unlock(iocg, unlock_ioc: ioc_locked, flags: &flags); |
| 2667 | iocg_commit_bio(iocg, bio, abs_cost, cost); |
| 2668 | return; |
| 2669 | } |
| 2670 | |
| 2671 | /* |
| 2672 | * We're over budget. If @bio has to be issued regardless, remember |
| 2673 | * the abs_cost instead of advancing vtime. iocg_kick_waitq() will pay |
| 2674 | * off the debt before waking more IOs. |
| 2675 | * |
| 2676 | * This way, the debt is continuously paid off each period with the |
| 2677 | * actual budget available to the cgroup. If we just wound vtime, we |
| 2678 | * would incorrectly use the current hw_inuse for the entire amount |
| 2679 | * which, for example, can lead to the cgroup staying blocked for a |
| 2680 | * long time even with substantially raised hw_inuse. |
| 2681 | * |
| 2682 | * An iocg with vdebt should stay online so that the timer can keep |
| 2683 | * deducting its vdebt and [de]activate use_delay mechanism |
| 2684 | * accordingly. We don't want to race against the timer trying to |
| 2685 | * clear them and leave @iocg inactive w/ dangling use_delay heavily |
| 2686 | * penalizing the cgroup and its descendants. |
| 2687 | */ |
| 2688 | if (use_debt) { |
| 2689 | iocg_incur_debt(iocg, abs_cost, now: &now); |
| 2690 | if (iocg_kick_delay(iocg, now: &now)) |
| 2691 | blkcg_schedule_throttle(disk: rqos->disk, |
| 2692 | use_memdelay: (bio->bi_opf & REQ_SWAP) == REQ_SWAP); |
| 2693 | iocg_unlock(iocg, unlock_ioc: ioc_locked, flags: &flags); |
| 2694 | return; |
| 2695 | } |
| 2696 | |
| 2697 | /* guarantee that iocgs w/ waiters have maximum inuse */ |
| 2698 | if (!iocg->abs_vdebt && iocg->inuse != iocg->active) { |
| 2699 | if (!ioc_locked) { |
| 2700 | iocg_unlock(iocg, unlock_ioc: false, flags: &flags); |
| 2701 | ioc_locked = true; |
| 2702 | goto retry_lock; |
| 2703 | } |
| 2704 | propagate_weights(iocg, active: iocg->active, inuse: iocg->active, save: true, |
| 2705 | now: &now); |
| 2706 | } |
| 2707 | |
| 2708 | /* |
| 2709 | * Append self to the waitq and schedule the wakeup timer if we're |
| 2710 | * the first waiter. The timer duration is calculated based on the |
| 2711 | * current vrate. vtime and hweight changes can make it too short |
| 2712 | * or too long. Each wait entry records the absolute cost it's |
| 2713 | * waiting for to allow re-evaluation using a custom wait entry. |
| 2714 | * |
| 2715 | * If too short, the timer simply reschedules itself. If too long, |
| 2716 | * the period timer will notice and trigger wakeups. |
| 2717 | * |
| 2718 | * All waiters are on iocg->waitq and the wait states are |
| 2719 | * synchronized using waitq.lock. |
| 2720 | */ |
| 2721 | init_wait_func(&wait.wait, iocg_wake_fn); |
| 2722 | wait.bio = bio; |
| 2723 | wait.abs_cost = abs_cost; |
| 2724 | wait.committed = false; /* will be set true by waker */ |
| 2725 | |
| 2726 | __add_wait_queue_entry_tail(wq_head: &iocg->waitq, wq_entry: &wait.wait); |
| 2727 | iocg_kick_waitq(iocg, pay_debt: ioc_locked, now: &now); |
| 2728 | |
| 2729 | iocg_unlock(iocg, unlock_ioc: ioc_locked, flags: &flags); |
| 2730 | |
| 2731 | while (true) { |
| 2732 | set_current_state(TASK_UNINTERRUPTIBLE); |
| 2733 | if (wait.committed) |
| 2734 | break; |
| 2735 | io_schedule(); |
| 2736 | } |
| 2737 | |
| 2738 | /* waker already committed us, proceed */ |
| 2739 | finish_wait(wq_head: &iocg->waitq, wq_entry: &wait.wait); |
| 2740 | } |
| 2741 | |
| 2742 | static void ioc_rqos_merge(struct rq_qos *rqos, struct request *rq, |
| 2743 | struct bio *bio) |
| 2744 | { |
| 2745 | struct ioc_gq *iocg = blkg_to_iocg(blkg: bio->bi_blkg); |
| 2746 | struct ioc *ioc = rqos_to_ioc(rqos); |
| 2747 | sector_t bio_end = bio_end_sector(bio); |
| 2748 | struct ioc_now now; |
| 2749 | u64 vtime, abs_cost, cost; |
| 2750 | unsigned long flags; |
| 2751 | |
| 2752 | /* bypass if disabled, still initializing, or for root cgroup */ |
| 2753 | if (!ioc->enabled || !iocg || !iocg->level) |
| 2754 | return; |
| 2755 | |
| 2756 | abs_cost = calc_vtime_cost(bio, iocg, is_merge: true); |
| 2757 | if (!abs_cost) |
| 2758 | return; |
| 2759 | |
| 2760 | ioc_now(ioc, now: &now); |
| 2761 | |
| 2762 | vtime = atomic64_read(v: &iocg->vtime); |
| 2763 | cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, now: &now); |
| 2764 | |
| 2765 | /* update cursor if backmerging into the request at the cursor */ |
| 2766 | if (blk_rq_pos(rq) < bio_end && |
| 2767 | blk_rq_pos(rq) + blk_rq_sectors(rq) == iocg->cursor) |
| 2768 | iocg->cursor = bio_end; |
| 2769 | |
| 2770 | /* |
| 2771 | * Charge if there's enough vtime budget and the existing request has |
| 2772 | * cost assigned. |
| 2773 | */ |
| 2774 | if (rq->bio && rq->bio->bi_iocost_cost && |
| 2775 | time_before_eq64(atomic64_read(&iocg->vtime) + cost, now.vnow)) { |
| 2776 | iocg_commit_bio(iocg, bio, abs_cost, cost); |
| 2777 | return; |
| 2778 | } |
| 2779 | |
| 2780 | /* |
| 2781 | * Otherwise, account it as debt if @iocg is online, which it should |
| 2782 | * be for the vast majority of cases. See debt handling in |
| 2783 | * ioc_rqos_throttle() for details. |
| 2784 | */ |
| 2785 | spin_lock_irqsave(&ioc->lock, flags); |
| 2786 | spin_lock(lock: &iocg->waitq.lock); |
| 2787 | |
| 2788 | if (likely(!list_empty(&iocg->active_list))) { |
| 2789 | iocg_incur_debt(iocg, abs_cost, now: &now); |
| 2790 | if (iocg_kick_delay(iocg, now: &now)) |
| 2791 | blkcg_schedule_throttle(disk: rqos->disk, |
| 2792 | use_memdelay: (bio->bi_opf & REQ_SWAP) == REQ_SWAP); |
| 2793 | } else { |
| 2794 | iocg_commit_bio(iocg, bio, abs_cost, cost); |
| 2795 | } |
| 2796 | |
| 2797 | spin_unlock(lock: &iocg->waitq.lock); |
| 2798 | spin_unlock_irqrestore(lock: &ioc->lock, flags); |
| 2799 | } |
| 2800 | |
| 2801 | static void ioc_rqos_done_bio(struct rq_qos *rqos, struct bio *bio) |
| 2802 | { |
| 2803 | struct ioc_gq *iocg = blkg_to_iocg(blkg: bio->bi_blkg); |
| 2804 | |
| 2805 | if (iocg && bio->bi_iocost_cost) |
| 2806 | atomic64_add(i: bio->bi_iocost_cost, v: &iocg->done_vtime); |
| 2807 | } |
| 2808 | |
| 2809 | static void ioc_rqos_done(struct rq_qos *rqos, struct request *rq) |
| 2810 | { |
| 2811 | struct ioc *ioc = rqos_to_ioc(rqos); |
| 2812 | struct ioc_pcpu_stat *ccs; |
| 2813 | u64 on_q_ns, rq_wait_ns, size_nsec; |
| 2814 | int pidx, rw; |
| 2815 | |
| 2816 | if (!ioc->enabled || !rq->alloc_time_ns || !rq->start_time_ns) |
| 2817 | return; |
| 2818 | |
| 2819 | switch (req_op(req: rq)) { |
| 2820 | case REQ_OP_READ: |
| 2821 | pidx = QOS_RLAT; |
| 2822 | rw = READ; |
| 2823 | break; |
| 2824 | case REQ_OP_WRITE: |
| 2825 | pidx = QOS_WLAT; |
| 2826 | rw = WRITE; |
| 2827 | break; |
| 2828 | default: |
| 2829 | return; |
| 2830 | } |
| 2831 | |
| 2832 | on_q_ns = blk_time_get_ns() - rq->alloc_time_ns; |
| 2833 | rq_wait_ns = rq->start_time_ns - rq->alloc_time_ns; |
| 2834 | size_nsec = div64_u64(dividend: calc_size_vtime_cost(rq, ioc), divisor: VTIME_PER_NSEC); |
| 2835 | |
| 2836 | ccs = get_cpu_ptr(ioc->pcpu_stat); |
| 2837 | |
| 2838 | if (on_q_ns <= size_nsec || |
| 2839 | on_q_ns - size_nsec <= ioc->params.qos[pidx] * NSEC_PER_USEC) |
| 2840 | local_inc(l: &ccs->missed[rw].nr_met); |
| 2841 | else |
| 2842 | local_inc(l: &ccs->missed[rw].nr_missed); |
| 2843 | |
| 2844 | local64_add(rq_wait_ns, &ccs->rq_wait_ns); |
| 2845 | |
| 2846 | put_cpu_ptr(ccs); |
| 2847 | } |
| 2848 | |
| 2849 | static void ioc_rqos_queue_depth_changed(struct rq_qos *rqos) |
| 2850 | { |
| 2851 | struct ioc *ioc = rqos_to_ioc(rqos); |
| 2852 | |
| 2853 | spin_lock_irq(lock: &ioc->lock); |
| 2854 | ioc_refresh_params(ioc, force: false); |
| 2855 | spin_unlock_irq(lock: &ioc->lock); |
| 2856 | } |
| 2857 | |
| 2858 | static void ioc_rqos_exit(struct rq_qos *rqos) |
| 2859 | { |
| 2860 | struct ioc *ioc = rqos_to_ioc(rqos); |
| 2861 | |
| 2862 | blkcg_deactivate_policy(disk: rqos->disk, pol: &blkcg_policy_iocost); |
| 2863 | |
| 2864 | spin_lock_irq(lock: &ioc->lock); |
| 2865 | ioc->running = IOC_STOP; |
| 2866 | spin_unlock_irq(lock: &ioc->lock); |
| 2867 | |
| 2868 | timer_shutdown_sync(timer: &ioc->timer); |
| 2869 | free_percpu(pdata: ioc->pcpu_stat); |
| 2870 | kfree(objp: ioc); |
| 2871 | } |
| 2872 | |
| 2873 | static const struct rq_qos_ops ioc_rqos_ops = { |
| 2874 | .throttle = ioc_rqos_throttle, |
| 2875 | .merge = ioc_rqos_merge, |
| 2876 | .done_bio = ioc_rqos_done_bio, |
| 2877 | .done = ioc_rqos_done, |
| 2878 | .queue_depth_changed = ioc_rqos_queue_depth_changed, |
| 2879 | .exit = ioc_rqos_exit, |
| 2880 | }; |
| 2881 | |
| 2882 | static int blk_iocost_init(struct gendisk *disk) |
| 2883 | { |
| 2884 | struct ioc *ioc; |
| 2885 | int i, cpu, ret; |
| 2886 | |
| 2887 | ioc = kzalloc(sizeof(*ioc), GFP_KERNEL); |
| 2888 | if (!ioc) |
| 2889 | return -ENOMEM; |
| 2890 | |
| 2891 | ioc->pcpu_stat = alloc_percpu(struct ioc_pcpu_stat); |
| 2892 | if (!ioc->pcpu_stat) { |
| 2893 | kfree(objp: ioc); |
| 2894 | return -ENOMEM; |
| 2895 | } |
| 2896 | |
| 2897 | for_each_possible_cpu(cpu) { |
| 2898 | struct ioc_pcpu_stat *ccs = per_cpu_ptr(ioc->pcpu_stat, cpu); |
| 2899 | |
| 2900 | for (i = 0; i < ARRAY_SIZE(ccs->missed); i++) { |
| 2901 | local_set(&ccs->missed[i].nr_met, 0); |
| 2902 | local_set(&ccs->missed[i].nr_missed, 0); |
| 2903 | } |
| 2904 | local64_set(&ccs->rq_wait_ns, 0); |
| 2905 | } |
| 2906 | |
| 2907 | spin_lock_init(&ioc->lock); |
| 2908 | timer_setup(&ioc->timer, ioc_timer_fn, 0); |
| 2909 | INIT_LIST_HEAD(list: &ioc->active_iocgs); |
| 2910 | |
| 2911 | ioc->running = IOC_IDLE; |
| 2912 | ioc->vtime_base_rate = VTIME_PER_USEC; |
| 2913 | atomic64_set(v: &ioc->vtime_rate, i: VTIME_PER_USEC); |
| 2914 | seqcount_spinlock_init(&ioc->period_seqcount, &ioc->lock); |
| 2915 | ioc->period_at = ktime_to_us(kt: blk_time_get()); |
| 2916 | atomic64_set(v: &ioc->cur_period, i: 0); |
| 2917 | atomic_set(v: &ioc->hweight_gen, i: 0); |
| 2918 | |
| 2919 | spin_lock_irq(lock: &ioc->lock); |
| 2920 | ioc->autop_idx = AUTOP_INVALID; |
| 2921 | ioc_refresh_params_disk(ioc, force: true, disk); |
| 2922 | spin_unlock_irq(lock: &ioc->lock); |
| 2923 | |
| 2924 | /* |
| 2925 | * rqos must be added before activation to allow ioc_pd_init() to |
| 2926 | * lookup the ioc from q. This means that the rqos methods may get |
| 2927 | * called before policy activation completion, can't assume that the |
| 2928 | * target bio has an iocg associated and need to test for NULL iocg. |
| 2929 | */ |
| 2930 | ret = rq_qos_add(rqos: &ioc->rqos, disk, id: RQ_QOS_COST, ops: &ioc_rqos_ops); |
| 2931 | if (ret) |
| 2932 | goto err_free_ioc; |
| 2933 | |
| 2934 | ret = blkcg_activate_policy(disk, pol: &blkcg_policy_iocost); |
| 2935 | if (ret) |
| 2936 | goto err_del_qos; |
| 2937 | return 0; |
| 2938 | |
| 2939 | err_del_qos: |
| 2940 | rq_qos_del(rqos: &ioc->rqos); |
| 2941 | err_free_ioc: |
| 2942 | free_percpu(pdata: ioc->pcpu_stat); |
| 2943 | kfree(objp: ioc); |
| 2944 | return ret; |
| 2945 | } |
| 2946 | |
| 2947 | static struct blkcg_policy_data *ioc_cpd_alloc(gfp_t gfp) |
| 2948 | { |
| 2949 | struct ioc_cgrp *iocc; |
| 2950 | |
| 2951 | iocc = kzalloc(sizeof(struct ioc_cgrp), gfp); |
| 2952 | if (!iocc) |
| 2953 | return NULL; |
| 2954 | |
| 2955 | iocc->dfl_weight = CGROUP_WEIGHT_DFL * WEIGHT_ONE; |
| 2956 | return &iocc->cpd; |
| 2957 | } |
| 2958 | |
| 2959 | static void ioc_cpd_free(struct blkcg_policy_data *cpd) |
| 2960 | { |
| 2961 | kfree(container_of(cpd, struct ioc_cgrp, cpd)); |
| 2962 | } |
| 2963 | |
| 2964 | static struct blkg_policy_data *ioc_pd_alloc(struct gendisk *disk, |
| 2965 | struct blkcg *blkcg, gfp_t gfp) |
| 2966 | { |
| 2967 | int levels = blkcg->css.cgroup->level + 1; |
| 2968 | struct ioc_gq *iocg; |
| 2969 | |
| 2970 | iocg = kzalloc_node(struct_size(iocg, ancestors, levels), gfp, |
| 2971 | disk->node_id); |
| 2972 | if (!iocg) |
| 2973 | return NULL; |
| 2974 | |
| 2975 | iocg->pcpu_stat = alloc_percpu_gfp(struct iocg_pcpu_stat, gfp); |
| 2976 | if (!iocg->pcpu_stat) { |
| 2977 | kfree(objp: iocg); |
| 2978 | return NULL; |
| 2979 | } |
| 2980 | |
| 2981 | return &iocg->pd; |
| 2982 | } |
| 2983 | |
| 2984 | static void ioc_pd_init(struct blkg_policy_data *pd) |
| 2985 | { |
| 2986 | struct ioc_gq *iocg = pd_to_iocg(pd); |
| 2987 | struct blkcg_gq *blkg = pd_to_blkg(pd: &iocg->pd); |
| 2988 | struct ioc *ioc = q_to_ioc(q: blkg->q); |
| 2989 | struct ioc_now now; |
| 2990 | struct blkcg_gq *tblkg; |
| 2991 | unsigned long flags; |
| 2992 | |
| 2993 | ioc_now(ioc, now: &now); |
| 2994 | |
| 2995 | iocg->ioc = ioc; |
| 2996 | atomic64_set(v: &iocg->vtime, i: now.vnow); |
| 2997 | atomic64_set(v: &iocg->done_vtime, i: now.vnow); |
| 2998 | atomic64_set(v: &iocg->active_period, i: atomic64_read(v: &ioc->cur_period)); |
| 2999 | INIT_LIST_HEAD(list: &iocg->active_list); |
| 3000 | INIT_LIST_HEAD(list: &iocg->walk_list); |
| 3001 | INIT_LIST_HEAD(list: &iocg->surplus_list); |
| 3002 | iocg->hweight_active = WEIGHT_ONE; |
| 3003 | iocg->hweight_inuse = WEIGHT_ONE; |
| 3004 | |
| 3005 | init_waitqueue_head(&iocg->waitq); |
| 3006 | hrtimer_setup(timer: &iocg->waitq_timer, function: iocg_waitq_timer_fn, CLOCK_MONOTONIC, mode: HRTIMER_MODE_ABS); |
| 3007 | |
| 3008 | iocg->level = blkg->blkcg->css.cgroup->level; |
| 3009 | |
| 3010 | for (tblkg = blkg; tblkg; tblkg = tblkg->parent) { |
| 3011 | struct ioc_gq *tiocg = blkg_to_iocg(blkg: tblkg); |
| 3012 | iocg->ancestors[tiocg->level] = tiocg; |
| 3013 | } |
| 3014 | |
| 3015 | spin_lock_irqsave(&ioc->lock, flags); |
| 3016 | weight_updated(iocg, now: &now); |
| 3017 | spin_unlock_irqrestore(lock: &ioc->lock, flags); |
| 3018 | } |
| 3019 | |
| 3020 | static void ioc_pd_free(struct blkg_policy_data *pd) |
| 3021 | { |
| 3022 | struct ioc_gq *iocg = pd_to_iocg(pd); |
| 3023 | struct ioc *ioc = iocg->ioc; |
| 3024 | unsigned long flags; |
| 3025 | |
| 3026 | if (ioc) { |
| 3027 | spin_lock_irqsave(&ioc->lock, flags); |
| 3028 | |
| 3029 | if (!list_empty(head: &iocg->active_list)) { |
| 3030 | struct ioc_now now; |
| 3031 | |
| 3032 | ioc_now(ioc, now: &now); |
| 3033 | propagate_weights(iocg, active: 0, inuse: 0, save: false, now: &now); |
| 3034 | list_del_init(entry: &iocg->active_list); |
| 3035 | } |
| 3036 | |
| 3037 | WARN_ON_ONCE(!list_empty(&iocg->walk_list)); |
| 3038 | WARN_ON_ONCE(!list_empty(&iocg->surplus_list)); |
| 3039 | |
| 3040 | spin_unlock_irqrestore(lock: &ioc->lock, flags); |
| 3041 | |
| 3042 | hrtimer_cancel(timer: &iocg->waitq_timer); |
| 3043 | } |
| 3044 | free_percpu(pdata: iocg->pcpu_stat); |
| 3045 | kfree(objp: iocg); |
| 3046 | } |
| 3047 | |
| 3048 | static void ioc_pd_stat(struct blkg_policy_data *pd, struct seq_file *s) |
| 3049 | { |
| 3050 | struct ioc_gq *iocg = pd_to_iocg(pd); |
| 3051 | struct ioc *ioc = iocg->ioc; |
| 3052 | |
| 3053 | if (!ioc->enabled) |
| 3054 | return; |
| 3055 | |
| 3056 | if (iocg->level == 0) { |
| 3057 | unsigned vp10k = DIV64_U64_ROUND_CLOSEST( |
| 3058 | ioc->vtime_base_rate * 10000, |
| 3059 | VTIME_PER_USEC); |
| 3060 | seq_printf(m: s, fmt: " cost.vrate=%u.%02u" , vp10k / 100, vp10k % 100); |
| 3061 | } |
| 3062 | |
| 3063 | seq_printf(m: s, fmt: " cost.usage=%llu" , iocg->last_stat.usage_us); |
| 3064 | |
| 3065 | if (blkcg_debug_stats) |
| 3066 | seq_printf(m: s, fmt: " cost.wait=%llu cost.indebt=%llu cost.indelay=%llu" , |
| 3067 | iocg->last_stat.wait_us, |
| 3068 | iocg->last_stat.indebt_us, |
| 3069 | iocg->last_stat.indelay_us); |
| 3070 | } |
| 3071 | |
| 3072 | static u64 ioc_weight_prfill(struct seq_file *sf, struct blkg_policy_data *pd, |
| 3073 | int off) |
| 3074 | { |
| 3075 | const char *dname = blkg_dev_name(blkg: pd->blkg); |
| 3076 | struct ioc_gq *iocg = pd_to_iocg(pd); |
| 3077 | |
| 3078 | if (dname && iocg->cfg_weight) |
| 3079 | seq_printf(m: sf, fmt: "%s %u\n" , dname, iocg->cfg_weight / WEIGHT_ONE); |
| 3080 | return 0; |
| 3081 | } |
| 3082 | |
| 3083 | |
| 3084 | static int ioc_weight_show(struct seq_file *sf, void *v) |
| 3085 | { |
| 3086 | struct blkcg *blkcg = css_to_blkcg(css: seq_css(seq: sf)); |
| 3087 | struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg); |
| 3088 | |
| 3089 | seq_printf(m: sf, fmt: "default %u\n" , iocc->dfl_weight / WEIGHT_ONE); |
| 3090 | blkcg_print_blkgs(sf, blkcg, prfill: ioc_weight_prfill, |
| 3091 | pol: &blkcg_policy_iocost, data: seq_cft(seq: sf)->private, show_total: false); |
| 3092 | return 0; |
| 3093 | } |
| 3094 | |
| 3095 | static ssize_t ioc_weight_write(struct kernfs_open_file *of, char *buf, |
| 3096 | size_t nbytes, loff_t off) |
| 3097 | { |
| 3098 | struct blkcg *blkcg = css_to_blkcg(css: of_css(of)); |
| 3099 | struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg); |
| 3100 | struct blkg_conf_ctx ctx; |
| 3101 | struct ioc_now now; |
| 3102 | struct ioc_gq *iocg; |
| 3103 | u32 v; |
| 3104 | int ret; |
| 3105 | |
| 3106 | if (!strchr(buf, ':')) { |
| 3107 | struct blkcg_gq *blkg; |
| 3108 | |
| 3109 | if (!sscanf(buf, "default %u" , &v) && !sscanf(buf, "%u" , &v)) |
| 3110 | return -EINVAL; |
| 3111 | |
| 3112 | if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX) |
| 3113 | return -EINVAL; |
| 3114 | |
| 3115 | spin_lock_irq(lock: &blkcg->lock); |
| 3116 | iocc->dfl_weight = v * WEIGHT_ONE; |
| 3117 | hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) { |
| 3118 | struct ioc_gq *iocg = blkg_to_iocg(blkg); |
| 3119 | |
| 3120 | if (iocg) { |
| 3121 | spin_lock(lock: &iocg->ioc->lock); |
| 3122 | ioc_now(ioc: iocg->ioc, now: &now); |
| 3123 | weight_updated(iocg, now: &now); |
| 3124 | spin_unlock(lock: &iocg->ioc->lock); |
| 3125 | } |
| 3126 | } |
| 3127 | spin_unlock_irq(lock: &blkcg->lock); |
| 3128 | |
| 3129 | return nbytes; |
| 3130 | } |
| 3131 | |
| 3132 | blkg_conf_init(ctx: &ctx, input: buf); |
| 3133 | |
| 3134 | ret = blkg_conf_prep(blkcg, pol: &blkcg_policy_iocost, ctx: &ctx); |
| 3135 | if (ret) |
| 3136 | goto err; |
| 3137 | |
| 3138 | iocg = blkg_to_iocg(blkg: ctx.blkg); |
| 3139 | |
| 3140 | if (!strncmp(ctx.body, "default" , 7)) { |
| 3141 | v = 0; |
| 3142 | } else { |
| 3143 | if (!sscanf(ctx.body, "%u" , &v)) |
| 3144 | goto einval; |
| 3145 | if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX) |
| 3146 | goto einval; |
| 3147 | } |
| 3148 | |
| 3149 | spin_lock(lock: &iocg->ioc->lock); |
| 3150 | iocg->cfg_weight = v * WEIGHT_ONE; |
| 3151 | ioc_now(ioc: iocg->ioc, now: &now); |
| 3152 | weight_updated(iocg, now: &now); |
| 3153 | spin_unlock(lock: &iocg->ioc->lock); |
| 3154 | |
| 3155 | blkg_conf_exit(ctx: &ctx); |
| 3156 | return nbytes; |
| 3157 | |
| 3158 | einval: |
| 3159 | ret = -EINVAL; |
| 3160 | err: |
| 3161 | blkg_conf_exit(ctx: &ctx); |
| 3162 | return ret; |
| 3163 | } |
| 3164 | |
| 3165 | static u64 ioc_qos_prfill(struct seq_file *sf, struct blkg_policy_data *pd, |
| 3166 | int off) |
| 3167 | { |
| 3168 | const char *dname = blkg_dev_name(blkg: pd->blkg); |
| 3169 | struct ioc *ioc = pd_to_iocg(pd)->ioc; |
| 3170 | |
| 3171 | if (!dname) |
| 3172 | return 0; |
| 3173 | |
| 3174 | spin_lock(lock: &ioc->lock); |
| 3175 | seq_printf(m: sf, fmt: "%s enable=%d ctrl=%s rpct=%u.%02u rlat=%u wpct=%u.%02u wlat=%u min=%u.%02u max=%u.%02u\n" , |
| 3176 | dname, ioc->enabled, ioc->user_qos_params ? "user" : "auto" , |
| 3177 | ioc->params.qos[QOS_RPPM] / 10000, |
| 3178 | ioc->params.qos[QOS_RPPM] % 10000 / 100, |
| 3179 | ioc->params.qos[QOS_RLAT], |
| 3180 | ioc->params.qos[QOS_WPPM] / 10000, |
| 3181 | ioc->params.qos[QOS_WPPM] % 10000 / 100, |
| 3182 | ioc->params.qos[QOS_WLAT], |
| 3183 | ioc->params.qos[QOS_MIN] / 10000, |
| 3184 | ioc->params.qos[QOS_MIN] % 10000 / 100, |
| 3185 | ioc->params.qos[QOS_MAX] / 10000, |
| 3186 | ioc->params.qos[QOS_MAX] % 10000 / 100); |
| 3187 | spin_unlock(lock: &ioc->lock); |
| 3188 | return 0; |
| 3189 | } |
| 3190 | |
| 3191 | static int ioc_qos_show(struct seq_file *sf, void *v) |
| 3192 | { |
| 3193 | struct blkcg *blkcg = css_to_blkcg(css: seq_css(seq: sf)); |
| 3194 | |
| 3195 | blkcg_print_blkgs(sf, blkcg, prfill: ioc_qos_prfill, |
| 3196 | pol: &blkcg_policy_iocost, data: seq_cft(seq: sf)->private, show_total: false); |
| 3197 | return 0; |
| 3198 | } |
| 3199 | |
| 3200 | static const match_table_t qos_ctrl_tokens = { |
| 3201 | { QOS_ENABLE, "enable=%u" }, |
| 3202 | { .token: QOS_CTRL, .pattern: "ctrl=%s" }, |
| 3203 | { .token: NR_QOS_CTRL_PARAMS, NULL }, |
| 3204 | }; |
| 3205 | |
| 3206 | static const match_table_t qos_tokens = { |
| 3207 | { QOS_RPPM, "rpct=%s" }, |
| 3208 | { .token: QOS_RLAT, .pattern: "rlat=%u" }, |
| 3209 | { .token: QOS_WPPM, .pattern: "wpct=%s" }, |
| 3210 | { .token: QOS_WLAT, .pattern: "wlat=%u" }, |
| 3211 | { .token: QOS_MIN, .pattern: "min=%s" }, |
| 3212 | { .token: QOS_MAX, .pattern: "max=%s" }, |
| 3213 | { .token: NR_QOS_PARAMS, NULL }, |
| 3214 | }; |
| 3215 | |
| 3216 | static ssize_t ioc_qos_write(struct kernfs_open_file *of, char *input, |
| 3217 | size_t nbytes, loff_t off) |
| 3218 | { |
| 3219 | struct blkg_conf_ctx ctx; |
| 3220 | struct gendisk *disk; |
| 3221 | struct ioc *ioc; |
| 3222 | u32 qos[NR_QOS_PARAMS]; |
| 3223 | bool enable, user; |
| 3224 | char *body, *p; |
| 3225 | unsigned long memflags; |
| 3226 | int ret; |
| 3227 | |
| 3228 | blkg_conf_init(ctx: &ctx, input); |
| 3229 | |
| 3230 | memflags = blkg_conf_open_bdev_frozen(ctx: &ctx); |
| 3231 | if (IS_ERR_VALUE(memflags)) { |
| 3232 | ret = memflags; |
| 3233 | goto err; |
| 3234 | } |
| 3235 | |
| 3236 | body = ctx.body; |
| 3237 | disk = ctx.bdev->bd_disk; |
| 3238 | if (!queue_is_mq(q: disk->queue)) { |
| 3239 | ret = -EOPNOTSUPP; |
| 3240 | goto err; |
| 3241 | } |
| 3242 | |
| 3243 | ioc = q_to_ioc(q: disk->queue); |
| 3244 | if (!ioc) { |
| 3245 | ret = blk_iocost_init(disk); |
| 3246 | if (ret) |
| 3247 | goto err; |
| 3248 | ioc = q_to_ioc(q: disk->queue); |
| 3249 | } |
| 3250 | |
| 3251 | blk_mq_quiesce_queue(q: disk->queue); |
| 3252 | |
| 3253 | spin_lock_irq(lock: &ioc->lock); |
| 3254 | memcpy(to: qos, from: ioc->params.qos, len: sizeof(qos)); |
| 3255 | enable = ioc->enabled; |
| 3256 | user = ioc->user_qos_params; |
| 3257 | |
| 3258 | while ((p = strsep(&body, " \t\n" ))) { |
| 3259 | substring_t args[MAX_OPT_ARGS]; |
| 3260 | char buf[32]; |
| 3261 | int tok; |
| 3262 | s64 v; |
| 3263 | |
| 3264 | if (!*p) |
| 3265 | continue; |
| 3266 | |
| 3267 | switch (match_token(p, table: qos_ctrl_tokens, args)) { |
| 3268 | case QOS_ENABLE: |
| 3269 | if (match_u64(&args[0], result: &v)) |
| 3270 | goto einval; |
| 3271 | enable = v; |
| 3272 | continue; |
| 3273 | case QOS_CTRL: |
| 3274 | match_strlcpy(buf, &args[0], sizeof(buf)); |
| 3275 | if (!strcmp(buf, "auto" )) |
| 3276 | user = false; |
| 3277 | else if (!strcmp(buf, "user" )) |
| 3278 | user = true; |
| 3279 | else |
| 3280 | goto einval; |
| 3281 | continue; |
| 3282 | } |
| 3283 | |
| 3284 | tok = match_token(p, table: qos_tokens, args); |
| 3285 | switch (tok) { |
| 3286 | case QOS_RPPM: |
| 3287 | case QOS_WPPM: |
| 3288 | if (match_strlcpy(buf, &args[0], sizeof(buf)) >= |
| 3289 | sizeof(buf)) |
| 3290 | goto einval; |
| 3291 | if (cgroup_parse_float(input: buf, dec_shift: 2, v: &v)) |
| 3292 | goto einval; |
| 3293 | if (v < 0 || v > 10000) |
| 3294 | goto einval; |
| 3295 | qos[tok] = v * 100; |
| 3296 | break; |
| 3297 | case QOS_RLAT: |
| 3298 | case QOS_WLAT: |
| 3299 | if (match_u64(&args[0], result: &v)) |
| 3300 | goto einval; |
| 3301 | qos[tok] = v; |
| 3302 | break; |
| 3303 | case QOS_MIN: |
| 3304 | case QOS_MAX: |
| 3305 | if (match_strlcpy(buf, &args[0], sizeof(buf)) >= |
| 3306 | sizeof(buf)) |
| 3307 | goto einval; |
| 3308 | if (cgroup_parse_float(input: buf, dec_shift: 2, v: &v)) |
| 3309 | goto einval; |
| 3310 | if (v < 0) |
| 3311 | goto einval; |
| 3312 | qos[tok] = clamp_t(s64, v * 100, |
| 3313 | VRATE_MIN_PPM, VRATE_MAX_PPM); |
| 3314 | break; |
| 3315 | default: |
| 3316 | goto einval; |
| 3317 | } |
| 3318 | user = true; |
| 3319 | } |
| 3320 | |
| 3321 | if (qos[QOS_MIN] > qos[QOS_MAX]) |
| 3322 | goto einval; |
| 3323 | |
| 3324 | if (enable && !ioc->enabled) { |
| 3325 | blk_stat_enable_accounting(q: disk->queue); |
| 3326 | blk_queue_flag_set(flag: QUEUE_FLAG_RQ_ALLOC_TIME, q: disk->queue); |
| 3327 | ioc->enabled = true; |
| 3328 | } else if (!enable && ioc->enabled) { |
| 3329 | blk_stat_disable_accounting(q: disk->queue); |
| 3330 | blk_queue_flag_clear(flag: QUEUE_FLAG_RQ_ALLOC_TIME, q: disk->queue); |
| 3331 | ioc->enabled = false; |
| 3332 | } |
| 3333 | |
| 3334 | if (user) { |
| 3335 | memcpy(to: ioc->params.qos, from: qos, len: sizeof(qos)); |
| 3336 | ioc->user_qos_params = true; |
| 3337 | } else { |
| 3338 | ioc->user_qos_params = false; |
| 3339 | } |
| 3340 | |
| 3341 | ioc_refresh_params(ioc, force: true); |
| 3342 | spin_unlock_irq(lock: &ioc->lock); |
| 3343 | |
| 3344 | if (enable) |
| 3345 | wbt_disable_default(disk); |
| 3346 | else |
| 3347 | wbt_enable_default(disk); |
| 3348 | |
| 3349 | blk_mq_unquiesce_queue(q: disk->queue); |
| 3350 | |
| 3351 | blkg_conf_exit_frozen(ctx: &ctx, memflags); |
| 3352 | return nbytes; |
| 3353 | einval: |
| 3354 | spin_unlock_irq(lock: &ioc->lock); |
| 3355 | blk_mq_unquiesce_queue(q: disk->queue); |
| 3356 | ret = -EINVAL; |
| 3357 | err: |
| 3358 | blkg_conf_exit_frozen(ctx: &ctx, memflags); |
| 3359 | return ret; |
| 3360 | } |
| 3361 | |
| 3362 | static u64 ioc_cost_model_prfill(struct seq_file *sf, |
| 3363 | struct blkg_policy_data *pd, int off) |
| 3364 | { |
| 3365 | const char *dname = blkg_dev_name(blkg: pd->blkg); |
| 3366 | struct ioc *ioc = pd_to_iocg(pd)->ioc; |
| 3367 | u64 *u = ioc->params.i_lcoefs; |
| 3368 | |
| 3369 | if (!dname) |
| 3370 | return 0; |
| 3371 | |
| 3372 | spin_lock(lock: &ioc->lock); |
| 3373 | seq_printf(m: sf, fmt: "%s ctrl=%s model=linear " |
| 3374 | "rbps=%llu rseqiops=%llu rrandiops=%llu " |
| 3375 | "wbps=%llu wseqiops=%llu wrandiops=%llu\n" , |
| 3376 | dname, ioc->user_cost_model ? "user" : "auto" , |
| 3377 | u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS], |
| 3378 | u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS]); |
| 3379 | spin_unlock(lock: &ioc->lock); |
| 3380 | return 0; |
| 3381 | } |
| 3382 | |
| 3383 | static int ioc_cost_model_show(struct seq_file *sf, void *v) |
| 3384 | { |
| 3385 | struct blkcg *blkcg = css_to_blkcg(css: seq_css(seq: sf)); |
| 3386 | |
| 3387 | blkcg_print_blkgs(sf, blkcg, prfill: ioc_cost_model_prfill, |
| 3388 | pol: &blkcg_policy_iocost, data: seq_cft(seq: sf)->private, show_total: false); |
| 3389 | return 0; |
| 3390 | } |
| 3391 | |
| 3392 | static const match_table_t cost_ctrl_tokens = { |
| 3393 | { COST_CTRL, "ctrl=%s" }, |
| 3394 | { .token: COST_MODEL, .pattern: "model=%s" }, |
| 3395 | { .token: NR_COST_CTRL_PARAMS, NULL }, |
| 3396 | }; |
| 3397 | |
| 3398 | static const match_table_t i_lcoef_tokens = { |
| 3399 | { I_LCOEF_RBPS, "rbps=%u" }, |
| 3400 | { .token: I_LCOEF_RSEQIOPS, .pattern: "rseqiops=%u" }, |
| 3401 | { .token: I_LCOEF_RRANDIOPS, .pattern: "rrandiops=%u" }, |
| 3402 | { .token: I_LCOEF_WBPS, .pattern: "wbps=%u" }, |
| 3403 | { .token: I_LCOEF_WSEQIOPS, .pattern: "wseqiops=%u" }, |
| 3404 | { .token: I_LCOEF_WRANDIOPS, .pattern: "wrandiops=%u" }, |
| 3405 | { .token: NR_I_LCOEFS, NULL }, |
| 3406 | }; |
| 3407 | |
| 3408 | static ssize_t ioc_cost_model_write(struct kernfs_open_file *of, char *input, |
| 3409 | size_t nbytes, loff_t off) |
| 3410 | { |
| 3411 | struct blkg_conf_ctx ctx; |
| 3412 | struct request_queue *q; |
| 3413 | unsigned int memflags; |
| 3414 | struct ioc *ioc; |
| 3415 | u64 u[NR_I_LCOEFS]; |
| 3416 | bool user; |
| 3417 | char *body, *p; |
| 3418 | int ret; |
| 3419 | |
| 3420 | blkg_conf_init(ctx: &ctx, input); |
| 3421 | |
| 3422 | ret = blkg_conf_open_bdev(ctx: &ctx); |
| 3423 | if (ret) |
| 3424 | goto err; |
| 3425 | |
| 3426 | body = ctx.body; |
| 3427 | q = bdev_get_queue(bdev: ctx.bdev); |
| 3428 | if (!queue_is_mq(q)) { |
| 3429 | ret = -EOPNOTSUPP; |
| 3430 | goto err; |
| 3431 | } |
| 3432 | |
| 3433 | ioc = q_to_ioc(q); |
| 3434 | if (!ioc) { |
| 3435 | ret = blk_iocost_init(disk: ctx.bdev->bd_disk); |
| 3436 | if (ret) |
| 3437 | goto err; |
| 3438 | ioc = q_to_ioc(q); |
| 3439 | } |
| 3440 | |
| 3441 | memflags = blk_mq_freeze_queue(q); |
| 3442 | blk_mq_quiesce_queue(q); |
| 3443 | |
| 3444 | spin_lock_irq(lock: &ioc->lock); |
| 3445 | memcpy(to: u, from: ioc->params.i_lcoefs, len: sizeof(u)); |
| 3446 | user = ioc->user_cost_model; |
| 3447 | |
| 3448 | while ((p = strsep(&body, " \t\n" ))) { |
| 3449 | substring_t args[MAX_OPT_ARGS]; |
| 3450 | char buf[32]; |
| 3451 | int tok; |
| 3452 | u64 v; |
| 3453 | |
| 3454 | if (!*p) |
| 3455 | continue; |
| 3456 | |
| 3457 | switch (match_token(p, table: cost_ctrl_tokens, args)) { |
| 3458 | case COST_CTRL: |
| 3459 | match_strlcpy(buf, &args[0], sizeof(buf)); |
| 3460 | if (!strcmp(buf, "auto" )) |
| 3461 | user = false; |
| 3462 | else if (!strcmp(buf, "user" )) |
| 3463 | user = true; |
| 3464 | else |
| 3465 | goto einval; |
| 3466 | continue; |
| 3467 | case COST_MODEL: |
| 3468 | match_strlcpy(buf, &args[0], sizeof(buf)); |
| 3469 | if (strcmp(buf, "linear" )) |
| 3470 | goto einval; |
| 3471 | continue; |
| 3472 | } |
| 3473 | |
| 3474 | tok = match_token(p, table: i_lcoef_tokens, args); |
| 3475 | if (tok == NR_I_LCOEFS) |
| 3476 | goto einval; |
| 3477 | if (match_u64(&args[0], result: &v)) |
| 3478 | goto einval; |
| 3479 | u[tok] = v; |
| 3480 | user = true; |
| 3481 | } |
| 3482 | |
| 3483 | if (user) { |
| 3484 | memcpy(to: ioc->params.i_lcoefs, from: u, len: sizeof(u)); |
| 3485 | ioc->user_cost_model = true; |
| 3486 | } else { |
| 3487 | ioc->user_cost_model = false; |
| 3488 | } |
| 3489 | ioc_refresh_params(ioc, force: true); |
| 3490 | spin_unlock_irq(lock: &ioc->lock); |
| 3491 | |
| 3492 | blk_mq_unquiesce_queue(q); |
| 3493 | blk_mq_unfreeze_queue(q, memflags); |
| 3494 | |
| 3495 | blkg_conf_exit(ctx: &ctx); |
| 3496 | return nbytes; |
| 3497 | |
| 3498 | einval: |
| 3499 | spin_unlock_irq(lock: &ioc->lock); |
| 3500 | |
| 3501 | blk_mq_unquiesce_queue(q); |
| 3502 | blk_mq_unfreeze_queue(q, memflags); |
| 3503 | |
| 3504 | ret = -EINVAL; |
| 3505 | err: |
| 3506 | blkg_conf_exit(ctx: &ctx); |
| 3507 | return ret; |
| 3508 | } |
| 3509 | |
| 3510 | static struct cftype ioc_files[] = { |
| 3511 | { |
| 3512 | .name = "weight" , |
| 3513 | .flags = CFTYPE_NOT_ON_ROOT, |
| 3514 | .seq_show = ioc_weight_show, |
| 3515 | .write = ioc_weight_write, |
| 3516 | }, |
| 3517 | { |
| 3518 | .name = "cost.qos" , |
| 3519 | .flags = CFTYPE_ONLY_ON_ROOT, |
| 3520 | .seq_show = ioc_qos_show, |
| 3521 | .write = ioc_qos_write, |
| 3522 | }, |
| 3523 | { |
| 3524 | .name = "cost.model" , |
| 3525 | .flags = CFTYPE_ONLY_ON_ROOT, |
| 3526 | .seq_show = ioc_cost_model_show, |
| 3527 | .write = ioc_cost_model_write, |
| 3528 | }, |
| 3529 | {} |
| 3530 | }; |
| 3531 | |
| 3532 | static struct blkcg_policy blkcg_policy_iocost = { |
| 3533 | .dfl_cftypes = ioc_files, |
| 3534 | .cpd_alloc_fn = ioc_cpd_alloc, |
| 3535 | .cpd_free_fn = ioc_cpd_free, |
| 3536 | .pd_alloc_fn = ioc_pd_alloc, |
| 3537 | .pd_init_fn = ioc_pd_init, |
| 3538 | .pd_free_fn = ioc_pd_free, |
| 3539 | .pd_stat_fn = ioc_pd_stat, |
| 3540 | }; |
| 3541 | |
| 3542 | static int __init ioc_init(void) |
| 3543 | { |
| 3544 | return blkcg_policy_register(pol: &blkcg_policy_iocost); |
| 3545 | } |
| 3546 | |
| 3547 | static void __exit ioc_exit(void) |
| 3548 | { |
| 3549 | blkcg_policy_unregister(pol: &blkcg_policy_iocost); |
| 3550 | } |
| 3551 | |
| 3552 | module_init(ioc_init); |
| 3553 | module_exit(ioc_exit); |
| 3554 | |