| 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * blk-mq scheduling framework |
| 4 | * |
| 5 | * Copyright (C) 2016 Jens Axboe |
| 6 | */ |
| 7 | #include <linux/kernel.h> |
| 8 | #include <linux/module.h> |
| 9 | #include <linux/list_sort.h> |
| 10 | |
| 11 | #include <trace/events/block.h> |
| 12 | |
| 13 | #include "blk.h" |
| 14 | #include "blk-mq.h" |
| 15 | #include "blk-mq-debugfs.h" |
| 16 | #include "blk-mq-sched.h" |
| 17 | #include "blk-wbt.h" |
| 18 | |
| 19 | /* |
| 20 | * Mark a hardware queue as needing a restart. |
| 21 | */ |
| 22 | void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx) |
| 23 | { |
| 24 | if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state)) |
| 25 | return; |
| 26 | |
| 27 | set_bit(nr: BLK_MQ_S_SCHED_RESTART, addr: &hctx->state); |
| 28 | } |
| 29 | EXPORT_SYMBOL_GPL(blk_mq_sched_mark_restart_hctx); |
| 30 | |
| 31 | void __blk_mq_sched_restart(struct blk_mq_hw_ctx *hctx) |
| 32 | { |
| 33 | clear_bit(nr: BLK_MQ_S_SCHED_RESTART, addr: &hctx->state); |
| 34 | |
| 35 | /* |
| 36 | * Order clearing SCHED_RESTART and list_empty_careful(&hctx->dispatch) |
| 37 | * in blk_mq_run_hw_queue(). Its pair is the barrier in |
| 38 | * blk_mq_dispatch_rq_list(). So dispatch code won't see SCHED_RESTART, |
| 39 | * meantime new request added to hctx->dispatch is missed to check in |
| 40 | * blk_mq_run_hw_queue(). |
| 41 | */ |
| 42 | smp_mb(); |
| 43 | |
| 44 | blk_mq_run_hw_queue(hctx, async: true); |
| 45 | } |
| 46 | |
| 47 | static int sched_rq_cmp(void *priv, const struct list_head *a, |
| 48 | const struct list_head *b) |
| 49 | { |
| 50 | struct request *rqa = container_of(a, struct request, queuelist); |
| 51 | struct request *rqb = container_of(b, struct request, queuelist); |
| 52 | |
| 53 | return rqa->mq_hctx > rqb->mq_hctx; |
| 54 | } |
| 55 | |
| 56 | static bool blk_mq_dispatch_hctx_list(struct list_head *rq_list) |
| 57 | { |
| 58 | struct blk_mq_hw_ctx *hctx = |
| 59 | list_first_entry(rq_list, struct request, queuelist)->mq_hctx; |
| 60 | struct request *rq; |
| 61 | LIST_HEAD(hctx_list); |
| 62 | |
| 63 | list_for_each_entry(rq, rq_list, queuelist) { |
| 64 | if (rq->mq_hctx != hctx) { |
| 65 | list_cut_before(list: &hctx_list, head: rq_list, entry: &rq->queuelist); |
| 66 | goto dispatch; |
| 67 | } |
| 68 | } |
| 69 | list_splice_tail_init(list: rq_list, head: &hctx_list); |
| 70 | |
| 71 | dispatch: |
| 72 | return blk_mq_dispatch_rq_list(hctx, &hctx_list, false); |
| 73 | } |
| 74 | |
| 75 | #define BLK_MQ_BUDGET_DELAY 3 /* ms units */ |
| 76 | |
| 77 | /* |
| 78 | * Only SCSI implements .get_budget and .put_budget, and SCSI restarts |
| 79 | * its queue by itself in its completion handler, so we don't need to |
| 80 | * restart queue if .get_budget() fails to get the budget. |
| 81 | * |
| 82 | * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to |
| 83 | * be run again. This is necessary to avoid starving flushes. |
| 84 | */ |
| 85 | static int __blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx) |
| 86 | { |
| 87 | struct request_queue *q = hctx->queue; |
| 88 | struct elevator_queue *e = q->elevator; |
| 89 | bool multi_hctxs = false, run_queue = false; |
| 90 | bool dispatched = false, busy = false; |
| 91 | unsigned int max_dispatch; |
| 92 | LIST_HEAD(rq_list); |
| 93 | int count = 0; |
| 94 | |
| 95 | if (hctx->dispatch_busy) |
| 96 | max_dispatch = 1; |
| 97 | else |
| 98 | max_dispatch = hctx->queue->nr_requests; |
| 99 | |
| 100 | do { |
| 101 | struct request *rq; |
| 102 | int budget_token; |
| 103 | |
| 104 | if (e->type->ops.has_work && !e->type->ops.has_work(hctx)) |
| 105 | break; |
| 106 | |
| 107 | if (!list_empty_careful(head: &hctx->dispatch)) { |
| 108 | busy = true; |
| 109 | break; |
| 110 | } |
| 111 | |
| 112 | budget_token = blk_mq_get_dispatch_budget(q); |
| 113 | if (budget_token < 0) |
| 114 | break; |
| 115 | |
| 116 | rq = e->type->ops.dispatch_request(hctx); |
| 117 | if (!rq) { |
| 118 | blk_mq_put_dispatch_budget(q, budget_token); |
| 119 | /* |
| 120 | * We're releasing without dispatching. Holding the |
| 121 | * budget could have blocked any "hctx"s with the |
| 122 | * same queue and if we didn't dispatch then there's |
| 123 | * no guarantee anyone will kick the queue. Kick it |
| 124 | * ourselves. |
| 125 | */ |
| 126 | run_queue = true; |
| 127 | break; |
| 128 | } |
| 129 | |
| 130 | blk_mq_set_rq_budget_token(rq, token: budget_token); |
| 131 | |
| 132 | /* |
| 133 | * Now this rq owns the budget which has to be released |
| 134 | * if this rq won't be queued to driver via .queue_rq() |
| 135 | * in blk_mq_dispatch_rq_list(). |
| 136 | */ |
| 137 | list_add_tail(new: &rq->queuelist, head: &rq_list); |
| 138 | count++; |
| 139 | if (rq->mq_hctx != hctx) |
| 140 | multi_hctxs = true; |
| 141 | |
| 142 | /* |
| 143 | * If we cannot get tag for the request, stop dequeueing |
| 144 | * requests from the IO scheduler. We are unlikely to be able |
| 145 | * to submit them anyway and it creates false impression for |
| 146 | * scheduling heuristics that the device can take more IO. |
| 147 | */ |
| 148 | if (!blk_mq_get_driver_tag(rq)) |
| 149 | break; |
| 150 | } while (count < max_dispatch); |
| 151 | |
| 152 | if (!count) { |
| 153 | if (run_queue) |
| 154 | blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY); |
| 155 | } else if (multi_hctxs) { |
| 156 | /* |
| 157 | * Requests from different hctx may be dequeued from some |
| 158 | * schedulers, such as bfq and deadline. |
| 159 | * |
| 160 | * Sort the requests in the list according to their hctx, |
| 161 | * dispatch batching requests from same hctx at a time. |
| 162 | */ |
| 163 | list_sort(NULL, head: &rq_list, cmp: sched_rq_cmp); |
| 164 | do { |
| 165 | dispatched |= blk_mq_dispatch_hctx_list(rq_list: &rq_list); |
| 166 | } while (!list_empty(head: &rq_list)); |
| 167 | } else { |
| 168 | dispatched = blk_mq_dispatch_rq_list(hctx, &rq_list, false); |
| 169 | } |
| 170 | |
| 171 | if (busy) |
| 172 | return -EAGAIN; |
| 173 | return !!dispatched; |
| 174 | } |
| 175 | |
| 176 | static int blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx) |
| 177 | { |
| 178 | unsigned long end = jiffies + HZ; |
| 179 | int ret; |
| 180 | |
| 181 | do { |
| 182 | ret = __blk_mq_do_dispatch_sched(hctx); |
| 183 | if (ret != 1) |
| 184 | break; |
| 185 | if (need_resched() || time_is_before_jiffies(end)) { |
| 186 | blk_mq_delay_run_hw_queue(hctx, msecs: 0); |
| 187 | break; |
| 188 | } |
| 189 | } while (1); |
| 190 | |
| 191 | return ret; |
| 192 | } |
| 193 | |
| 194 | static struct blk_mq_ctx *blk_mq_next_ctx(struct blk_mq_hw_ctx *hctx, |
| 195 | struct blk_mq_ctx *ctx) |
| 196 | { |
| 197 | unsigned short idx = ctx->index_hw[hctx->type]; |
| 198 | |
| 199 | if (++idx == hctx->nr_ctx) |
| 200 | idx = 0; |
| 201 | |
| 202 | return hctx->ctxs[idx]; |
| 203 | } |
| 204 | |
| 205 | /* |
| 206 | * Only SCSI implements .get_budget and .put_budget, and SCSI restarts |
| 207 | * its queue by itself in its completion handler, so we don't need to |
| 208 | * restart queue if .get_budget() fails to get the budget. |
| 209 | * |
| 210 | * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to |
| 211 | * be run again. This is necessary to avoid starving flushes. |
| 212 | */ |
| 213 | static int blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx *hctx) |
| 214 | { |
| 215 | struct request_queue *q = hctx->queue; |
| 216 | LIST_HEAD(rq_list); |
| 217 | struct blk_mq_ctx *ctx = READ_ONCE(hctx->dispatch_from); |
| 218 | int ret = 0; |
| 219 | struct request *rq; |
| 220 | |
| 221 | do { |
| 222 | int budget_token; |
| 223 | |
| 224 | if (!list_empty_careful(head: &hctx->dispatch)) { |
| 225 | ret = -EAGAIN; |
| 226 | break; |
| 227 | } |
| 228 | |
| 229 | if (!sbitmap_any_bit_set(sb: &hctx->ctx_map)) |
| 230 | break; |
| 231 | |
| 232 | budget_token = blk_mq_get_dispatch_budget(q); |
| 233 | if (budget_token < 0) |
| 234 | break; |
| 235 | |
| 236 | rq = blk_mq_dequeue_from_ctx(hctx, start: ctx); |
| 237 | if (!rq) { |
| 238 | blk_mq_put_dispatch_budget(q, budget_token); |
| 239 | /* |
| 240 | * We're releasing without dispatching. Holding the |
| 241 | * budget could have blocked any "hctx"s with the |
| 242 | * same queue and if we didn't dispatch then there's |
| 243 | * no guarantee anyone will kick the queue. Kick it |
| 244 | * ourselves. |
| 245 | */ |
| 246 | blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY); |
| 247 | break; |
| 248 | } |
| 249 | |
| 250 | blk_mq_set_rq_budget_token(rq, token: budget_token); |
| 251 | |
| 252 | /* |
| 253 | * Now this rq owns the budget which has to be released |
| 254 | * if this rq won't be queued to driver via .queue_rq() |
| 255 | * in blk_mq_dispatch_rq_list(). |
| 256 | */ |
| 257 | list_add(new: &rq->queuelist, head: &rq_list); |
| 258 | |
| 259 | /* round robin for fair dispatch */ |
| 260 | ctx = blk_mq_next_ctx(hctx, ctx: rq->mq_ctx); |
| 261 | |
| 262 | } while (blk_mq_dispatch_rq_list(hctx: rq->mq_hctx, &rq_list, false)); |
| 263 | |
| 264 | WRITE_ONCE(hctx->dispatch_from, ctx); |
| 265 | return ret; |
| 266 | } |
| 267 | |
| 268 | static int __blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx) |
| 269 | { |
| 270 | bool need_dispatch = false; |
| 271 | LIST_HEAD(rq_list); |
| 272 | |
| 273 | /* |
| 274 | * If we have previous entries on our dispatch list, grab them first for |
| 275 | * more fair dispatch. |
| 276 | */ |
| 277 | if (!list_empty_careful(head: &hctx->dispatch)) { |
| 278 | spin_lock(lock: &hctx->lock); |
| 279 | if (!list_empty(head: &hctx->dispatch)) |
| 280 | list_splice_init(list: &hctx->dispatch, head: &rq_list); |
| 281 | spin_unlock(lock: &hctx->lock); |
| 282 | } |
| 283 | |
| 284 | /* |
| 285 | * Only ask the scheduler for requests, if we didn't have residual |
| 286 | * requests from the dispatch list. This is to avoid the case where |
| 287 | * we only ever dispatch a fraction of the requests available because |
| 288 | * of low device queue depth. Once we pull requests out of the IO |
| 289 | * scheduler, we can no longer merge or sort them. So it's best to |
| 290 | * leave them there for as long as we can. Mark the hw queue as |
| 291 | * needing a restart in that case. |
| 292 | * |
| 293 | * We want to dispatch from the scheduler if there was nothing |
| 294 | * on the dispatch list or we were able to dispatch from the |
| 295 | * dispatch list. |
| 296 | */ |
| 297 | if (!list_empty(head: &rq_list)) { |
| 298 | blk_mq_sched_mark_restart_hctx(hctx); |
| 299 | if (!blk_mq_dispatch_rq_list(hctx, &rq_list, true)) |
| 300 | return 0; |
| 301 | need_dispatch = true; |
| 302 | } else { |
| 303 | need_dispatch = hctx->dispatch_busy; |
| 304 | } |
| 305 | |
| 306 | if (hctx->queue->elevator) |
| 307 | return blk_mq_do_dispatch_sched(hctx); |
| 308 | |
| 309 | /* dequeue request one by one from sw queue if queue is busy */ |
| 310 | if (need_dispatch) |
| 311 | return blk_mq_do_dispatch_ctx(hctx); |
| 312 | blk_mq_flush_busy_ctxs(hctx, list: &rq_list); |
| 313 | blk_mq_dispatch_rq_list(hctx, &rq_list, true); |
| 314 | return 0; |
| 315 | } |
| 316 | |
| 317 | void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx) |
| 318 | { |
| 319 | struct request_queue *q = hctx->queue; |
| 320 | |
| 321 | /* RCU or SRCU read lock is needed before checking quiesced flag */ |
| 322 | if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q))) |
| 323 | return; |
| 324 | |
| 325 | /* |
| 326 | * A return of -EAGAIN is an indication that hctx->dispatch is not |
| 327 | * empty and we must run again in order to avoid starving flushes. |
| 328 | */ |
| 329 | if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN) { |
| 330 | if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN) |
| 331 | blk_mq_run_hw_queue(hctx, async: true); |
| 332 | } |
| 333 | } |
| 334 | |
| 335 | bool blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio, |
| 336 | unsigned int nr_segs) |
| 337 | { |
| 338 | struct elevator_queue *e = q->elevator; |
| 339 | struct blk_mq_ctx *ctx; |
| 340 | struct blk_mq_hw_ctx *hctx; |
| 341 | bool ret = false; |
| 342 | enum hctx_type type; |
| 343 | |
| 344 | if (e && e->type->ops.bio_merge) { |
| 345 | ret = e->type->ops.bio_merge(q, bio, nr_segs); |
| 346 | goto out_put; |
| 347 | } |
| 348 | |
| 349 | ctx = blk_mq_get_ctx(q); |
| 350 | hctx = blk_mq_map_queue(opf: bio->bi_opf, ctx); |
| 351 | type = hctx->type; |
| 352 | if (list_empty_careful(head: &ctx->rq_lists[type])) |
| 353 | goto out_put; |
| 354 | |
| 355 | /* default per sw-queue merge */ |
| 356 | spin_lock(lock: &ctx->lock); |
| 357 | /* |
| 358 | * Reverse check our software queue for entries that we could |
| 359 | * potentially merge with. Currently includes a hand-wavy stop |
| 360 | * count of 8, to not spend too much time checking for merges. |
| 361 | */ |
| 362 | if (blk_bio_list_merge(q, list: &ctx->rq_lists[type], bio, nr_segs)) |
| 363 | ret = true; |
| 364 | |
| 365 | spin_unlock(lock: &ctx->lock); |
| 366 | out_put: |
| 367 | return ret; |
| 368 | } |
| 369 | |
| 370 | bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq, |
| 371 | struct list_head *free) |
| 372 | { |
| 373 | return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq, free); |
| 374 | } |
| 375 | EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge); |
| 376 | |
| 377 | /* called in queue's release handler, tagset has gone away */ |
| 378 | static void blk_mq_sched_tags_teardown(struct request_queue *q, unsigned int flags) |
| 379 | { |
| 380 | struct blk_mq_hw_ctx *hctx; |
| 381 | unsigned long i; |
| 382 | |
| 383 | queue_for_each_hw_ctx(q, hctx, i) |
| 384 | hctx->sched_tags = NULL; |
| 385 | |
| 386 | if (blk_mq_is_shared_tags(flags)) |
| 387 | q->sched_shared_tags = NULL; |
| 388 | } |
| 389 | |
| 390 | void blk_mq_sched_reg_debugfs(struct request_queue *q) |
| 391 | { |
| 392 | struct blk_mq_hw_ctx *hctx; |
| 393 | unsigned long i; |
| 394 | |
| 395 | mutex_lock(lock: &q->debugfs_mutex); |
| 396 | blk_mq_debugfs_register_sched(q); |
| 397 | queue_for_each_hw_ctx(q, hctx, i) |
| 398 | blk_mq_debugfs_register_sched_hctx(q, hctx); |
| 399 | mutex_unlock(lock: &q->debugfs_mutex); |
| 400 | } |
| 401 | |
| 402 | void blk_mq_sched_unreg_debugfs(struct request_queue *q) |
| 403 | { |
| 404 | struct blk_mq_hw_ctx *hctx; |
| 405 | unsigned long i; |
| 406 | |
| 407 | mutex_lock(lock: &q->debugfs_mutex); |
| 408 | queue_for_each_hw_ctx(q, hctx, i) |
| 409 | blk_mq_debugfs_unregister_sched_hctx(hctx); |
| 410 | blk_mq_debugfs_unregister_sched(q); |
| 411 | mutex_unlock(lock: &q->debugfs_mutex); |
| 412 | } |
| 413 | |
| 414 | void blk_mq_free_sched_tags(struct elevator_tags *et, |
| 415 | struct blk_mq_tag_set *set) |
| 416 | { |
| 417 | unsigned long i; |
| 418 | |
| 419 | /* Shared tags are stored at index 0 in @tags. */ |
| 420 | if (blk_mq_is_shared_tags(flags: set->flags)) |
| 421 | blk_mq_free_map_and_rqs(set, tags: et->tags[0], BLK_MQ_NO_HCTX_IDX); |
| 422 | else { |
| 423 | for (i = 0; i < et->nr_hw_queues; i++) |
| 424 | blk_mq_free_map_and_rqs(set, tags: et->tags[i], hctx_idx: i); |
| 425 | } |
| 426 | |
| 427 | kfree(objp: et); |
| 428 | } |
| 429 | |
| 430 | void blk_mq_free_sched_tags_batch(struct xarray *et_table, |
| 431 | struct blk_mq_tag_set *set) |
| 432 | { |
| 433 | struct request_queue *q; |
| 434 | struct elevator_tags *et; |
| 435 | |
| 436 | lockdep_assert_held_write(&set->update_nr_hwq_lock); |
| 437 | |
| 438 | list_for_each_entry(q, &set->tag_list, tag_set_list) { |
| 439 | /* |
| 440 | * Accessing q->elevator without holding q->elevator_lock is |
| 441 | * safe because we're holding here set->update_nr_hwq_lock in |
| 442 | * the writer context. So, scheduler update/switch code (which |
| 443 | * acquires the same lock but in the reader context) can't run |
| 444 | * concurrently. |
| 445 | */ |
| 446 | if (q->elevator) { |
| 447 | et = xa_load(et_table, index: q->id); |
| 448 | if (unlikely(!et)) |
| 449 | WARN_ON_ONCE(1); |
| 450 | else |
| 451 | blk_mq_free_sched_tags(et, set); |
| 452 | } |
| 453 | } |
| 454 | } |
| 455 | |
| 456 | struct elevator_tags *blk_mq_alloc_sched_tags(struct blk_mq_tag_set *set, |
| 457 | unsigned int nr_hw_queues, unsigned int nr_requests) |
| 458 | { |
| 459 | unsigned int nr_tags; |
| 460 | int i; |
| 461 | struct elevator_tags *et; |
| 462 | gfp_t gfp = GFP_NOIO | __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY; |
| 463 | |
| 464 | if (blk_mq_is_shared_tags(flags: set->flags)) |
| 465 | nr_tags = 1; |
| 466 | else |
| 467 | nr_tags = nr_hw_queues; |
| 468 | |
| 469 | et = kmalloc(sizeof(struct elevator_tags) + |
| 470 | nr_tags * sizeof(struct blk_mq_tags *), gfp); |
| 471 | if (!et) |
| 472 | return NULL; |
| 473 | |
| 474 | et->nr_requests = nr_requests; |
| 475 | et->nr_hw_queues = nr_hw_queues; |
| 476 | |
| 477 | if (blk_mq_is_shared_tags(flags: set->flags)) { |
| 478 | /* Shared tags are stored at index 0 in @tags. */ |
| 479 | et->tags[0] = blk_mq_alloc_map_and_rqs(set, BLK_MQ_NO_HCTX_IDX, |
| 480 | MAX_SCHED_RQ); |
| 481 | if (!et->tags[0]) |
| 482 | goto out; |
| 483 | } else { |
| 484 | for (i = 0; i < et->nr_hw_queues; i++) { |
| 485 | et->tags[i] = blk_mq_alloc_map_and_rqs(set, hctx_idx: i, |
| 486 | depth: et->nr_requests); |
| 487 | if (!et->tags[i]) |
| 488 | goto out_unwind; |
| 489 | } |
| 490 | } |
| 491 | |
| 492 | return et; |
| 493 | out_unwind: |
| 494 | while (--i >= 0) |
| 495 | blk_mq_free_map_and_rqs(set, tags: et->tags[i], hctx_idx: i); |
| 496 | out: |
| 497 | kfree(objp: et); |
| 498 | return NULL; |
| 499 | } |
| 500 | |
| 501 | int blk_mq_alloc_sched_tags_batch(struct xarray *et_table, |
| 502 | struct blk_mq_tag_set *set, unsigned int nr_hw_queues) |
| 503 | { |
| 504 | struct request_queue *q; |
| 505 | struct elevator_tags *et; |
| 506 | gfp_t gfp = GFP_NOIO | __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY; |
| 507 | |
| 508 | lockdep_assert_held_write(&set->update_nr_hwq_lock); |
| 509 | |
| 510 | list_for_each_entry(q, &set->tag_list, tag_set_list) { |
| 511 | /* |
| 512 | * Accessing q->elevator without holding q->elevator_lock is |
| 513 | * safe because we're holding here set->update_nr_hwq_lock in |
| 514 | * the writer context. So, scheduler update/switch code (which |
| 515 | * acquires the same lock but in the reader context) can't run |
| 516 | * concurrently. |
| 517 | */ |
| 518 | if (q->elevator) { |
| 519 | et = blk_mq_alloc_sched_tags(set, nr_hw_queues, |
| 520 | nr_requests: blk_mq_default_nr_requests(set)); |
| 521 | if (!et) |
| 522 | goto out_unwind; |
| 523 | if (xa_insert(xa: et_table, index: q->id, entry: et, gfp)) |
| 524 | goto out_free_tags; |
| 525 | } |
| 526 | } |
| 527 | return 0; |
| 528 | out_free_tags: |
| 529 | blk_mq_free_sched_tags(et, set); |
| 530 | out_unwind: |
| 531 | list_for_each_entry_continue_reverse(q, &set->tag_list, tag_set_list) { |
| 532 | if (q->elevator) { |
| 533 | et = xa_load(et_table, index: q->id); |
| 534 | if (et) |
| 535 | blk_mq_free_sched_tags(et, set); |
| 536 | } |
| 537 | } |
| 538 | return -ENOMEM; |
| 539 | } |
| 540 | |
| 541 | /* caller must have a reference to @e, will grab another one if successful */ |
| 542 | int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e, |
| 543 | struct elevator_tags *et) |
| 544 | { |
| 545 | unsigned int flags = q->tag_set->flags; |
| 546 | struct blk_mq_hw_ctx *hctx; |
| 547 | struct elevator_queue *eq; |
| 548 | unsigned long i; |
| 549 | int ret; |
| 550 | |
| 551 | eq = elevator_alloc(q, e, et); |
| 552 | if (!eq) |
| 553 | return -ENOMEM; |
| 554 | |
| 555 | q->nr_requests = et->nr_requests; |
| 556 | |
| 557 | if (blk_mq_is_shared_tags(flags)) { |
| 558 | /* Shared tags are stored at index 0 in @et->tags. */ |
| 559 | q->sched_shared_tags = et->tags[0]; |
| 560 | blk_mq_tag_update_sched_shared_tags(q); |
| 561 | } |
| 562 | |
| 563 | queue_for_each_hw_ctx(q, hctx, i) { |
| 564 | if (blk_mq_is_shared_tags(flags)) |
| 565 | hctx->sched_tags = q->sched_shared_tags; |
| 566 | else |
| 567 | hctx->sched_tags = et->tags[i]; |
| 568 | } |
| 569 | |
| 570 | ret = e->ops.init_sched(q, eq); |
| 571 | if (ret) |
| 572 | goto out; |
| 573 | |
| 574 | queue_for_each_hw_ctx(q, hctx, i) { |
| 575 | if (e->ops.init_hctx) { |
| 576 | ret = e->ops.init_hctx(hctx, i); |
| 577 | if (ret) { |
| 578 | blk_mq_exit_sched(q, e: eq); |
| 579 | kobject_put(kobj: &eq->kobj); |
| 580 | return ret; |
| 581 | } |
| 582 | } |
| 583 | } |
| 584 | return 0; |
| 585 | |
| 586 | out: |
| 587 | blk_mq_sched_tags_teardown(q, flags); |
| 588 | kobject_put(kobj: &eq->kobj); |
| 589 | q->elevator = NULL; |
| 590 | return ret; |
| 591 | } |
| 592 | |
| 593 | /* |
| 594 | * called in either blk_queue_cleanup or elevator_switch, tagset |
| 595 | * is required for freeing requests |
| 596 | */ |
| 597 | void blk_mq_sched_free_rqs(struct request_queue *q) |
| 598 | { |
| 599 | struct blk_mq_hw_ctx *hctx; |
| 600 | unsigned long i; |
| 601 | |
| 602 | if (blk_mq_is_shared_tags(flags: q->tag_set->flags)) { |
| 603 | blk_mq_free_rqs(set: q->tag_set, tags: q->sched_shared_tags, |
| 604 | BLK_MQ_NO_HCTX_IDX); |
| 605 | } else { |
| 606 | queue_for_each_hw_ctx(q, hctx, i) { |
| 607 | if (hctx->sched_tags) |
| 608 | blk_mq_free_rqs(set: q->tag_set, |
| 609 | tags: hctx->sched_tags, hctx_idx: i); |
| 610 | } |
| 611 | } |
| 612 | } |
| 613 | |
| 614 | void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e) |
| 615 | { |
| 616 | struct blk_mq_hw_ctx *hctx; |
| 617 | unsigned long i; |
| 618 | unsigned int flags = 0; |
| 619 | |
| 620 | queue_for_each_hw_ctx(q, hctx, i) { |
| 621 | if (e->type->ops.exit_hctx && hctx->sched_data) { |
| 622 | e->type->ops.exit_hctx(hctx, i); |
| 623 | hctx->sched_data = NULL; |
| 624 | } |
| 625 | flags = hctx->flags; |
| 626 | } |
| 627 | |
| 628 | if (e->type->ops.exit_sched) |
| 629 | e->type->ops.exit_sched(e); |
| 630 | blk_mq_sched_tags_teardown(q, flags); |
| 631 | set_bit(ELEVATOR_FLAG_DYING, addr: &q->elevator->flags); |
| 632 | q->elevator = NULL; |
| 633 | } |
| 634 | |